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ABSTRACT

The weighted projection of a hypergraph is the weighted undirected graph with the same
vertex set and edge weight equal to the number of hyperedges that contain the edge; the
projection is the unweighted graph with the same vertex set and edge set consisting of
edges with weight at least one. For d ≥ 3, after observing the unweighted and weighted
projection of a random d-uniform hypergraph that is sampled using a generalization of the
Erdős–Rényi random model, we study the recovery of a fraction of the hyperedges and the
entire hypergraph. For both cases, we show that there is a sharp phase transition in the
feasibility of recovery based on the density of the hypergraph, with recovery possible only
when the hypergraph is sufficiently sparse. Particularly, we resolve numerous conjectures
from [5]. Furthermore, we display an efficient algorithm that is optimal for both exact and
partial recovery. We also analyze the phase transition for exact recovery by exhibiting a
regime of probabilities that is below the exact recovery threshold by a polylogarithmic factor
for which exact recovery is possible.
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Chapter 1

Introduction

A hypergraph consists of a set of vertices and a set of hyperedges, each of which is a subset of
the vertex set. Storing the data of hypergraphs can be very challenging due to the potential
high-dimensionality of the hyperedges. For example, if we are given that a hypergraph has
n ≥ 1 vertices, the number of potential hypergraphs is 22

n−1, assuming that the hyperedges
must be nonempty. Even if we assume that each hyperedge has size d, the number of potential
hypergraphs is 2(

n
d). In order to decrease the dimensionality of the dataset, we can consider

applying lower-dimensional processing. Then, the question that we pose is, what fraction of
the hypergraphs can we recover after applying this processing?

A method to represent the data of a hypergraph is to store its edge data. We refer to the
set of edges between any two vertices both present in some hyperedge of the hypergraph as
its unweighted edge data and the counts of how many hyperedges contain each edge as its
weighted edge data. We also refer to the unweighted edge data as the (unweighted) projected
graph and the weighted edge data as the weighted projected graph. See Section 1.1 for rigorous
definitions of these terms.

Observe that we can uniquely determine the edge data of a hypergraph but we cannot
always determine a hypergraph given its edge data. In this paper, we study the problem of
recovery for the hyperedges of random uniform hypergraphs after storing its unweighted and
weighted edge data.

The paper [5] studies the recovery of the hypergraph exactly after storing unweighted edge
data and we extend upon its results. Furthermore, [15] studies recovering the communities
exactly in the hypergraph stochastic block model (HSBM) after observing the hypergraph
and [8, 14, 17] study recovery in the HSBM after observing the weighted edge data of the
hypergraph. We study recovering the hypergraph exactly after observing the weighted edge
data as well.

The paper [22] considers reconstructing a hypergraph given its projected graph, but
the random hypergraph model that it considers differs significantly from the model that
we consider. In the random hypergraph model studied by the paper, the hypergraph can
have hyperedges of any size and there can be multiple hyperedges with the same vertex set.
Furthermore, the number of hyperedges that have a given vertex set is determined by a
Poisson distribution with mean determined by the size of the vertex set.

A statistical and machine learning approach is used in [20] to reconstruct a hypergraph
given its projected graph. The approach considered involves first selecting cliques from the
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projected graph and then deciding which of these cliques are hyperedges using a machine
learning approach. The paper does not restrict to uniform hypergraphs and does not consider
recovering the hypergraph completely but rather optimizing the Jaccard score between the
original and predicted hyperedges.

Furthermore, the paper [7] views data as a weighted hypergraph with the goal of analyzing
the pretraining of foundational models. The hypergraph model that the paper studies first
samples hyperedges from a weighted hypergraph with probabilities proportional to their
weights. Afterwards, the goal is to use this data to construct a hypergraph that is isomorphic
or approximately isomorphic to the original hypergraph, where the distance between two
weighted hypergraphs is the L1 distance between the vectors of weights assigned to their
hyperedges.

A hypergraph with vertex set V has an edge set E such that each hyperedge e ∈ E is
a nonempty subset of V . For d ≥ 2, each hyperedge of a d-uniform hypergraph contains
d vertices. Then, a 2-uniform hypergraph corresponds to a graph. We consider d-uniform
hypergraphs for d ≥ 3.

The random hypergraph model that we consider is introduced in [5] and generalizes the
Erdős-Rényi model G(n, p). Suppose d ≥ 3 and n is a positive integer. In this paper we
often denote the set of d-uniform hypergraphs with vertex set [n] as {0, 1}(

[n]
d ). Then, for

some δ ∈ (−∞, d− 1) and p ∝ (1 + on(1))n
−d+1+δ, the random d-uniform hypergraph H is

sampled from Ber(p)(
[n]
d ). We specify the model in more detail in Section 1.1. After observing

the unweighted or weighted edge data of H, the goal is to recover information of H.
We extend upon the exact recovery results of the paper [5] and study the problem of

partial recovery introduced in Appendix C of the paper. Exact recovery refers to recovering
each hyperedge of H and the main quantifier of it that we use is the probability of exact
recovery. For the definition of this metric, see Subsection 1.2.2. The partial recovery problem
refers to recovering a fraction of the hyperedges of H on average and the main quantifier of
partial recovery we use is the partial recovery loss. The partial recovery loss is the ratio of
the size of the symmetric difference between the hyperedges of H and the hyperedges we
predict to be in H to the expected number of hyperedges of H, see Subsection 1.2.1.

As mentioned earlier, the papers [8, 14, 15, 17] consider exact recovery for the hypergraph
SBM. On the other hand, [21] considers exact and partial recovery for graph matching and
discusses “all-or-nothing" thresholds. We discuss these thresholds later in Section 1.3.

We can describe the exact recovery problem for the unweighted projection as min(AH, 1) =

Proj(H), where A ∈ {0, 1}(
[n]
2 )×(

[n]
d ) is fixed, H ∈ {0, 1}(

[n]
d ) is the prediction of H, and

Proj ∈ {0, 1}(
[n]
2 ). In this case, for h ∈

(
[n]
d

)
and e ∈

(
[n]
2

)
, Aeh = 1{e ⊂ h}. The exact

recovery problem for the weighted projection is more interesting interesting, since we can

describe it as the linear equation AH = ProjW (H), where ProjW ∈ Z(
[n]
2 )

≥0 .
Furthermore, observe that this recovery problem is an example of a planted constraint

satisfaction problem (CSP). First, we randomly select H, which then deterministically defines
the set of constraints. For more works on planted CSPs, see [1–3, 11–13, 16].

In this paper we study thresholds for δ for when the probability of exact recovery and
partial recovery rate are asymptotically equal to 0 or 1. We find the threshold values for δ for
both types of recovery for all d ≥ 3. Moreover, we observe that in most contexts, there is an
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“all-or-nothing” transition at d−1
d+1

, meaning that the probability of exact recovery is 1− on(1)

for δ < d−1
d+1

and the partial recovery loss is 1− on(1) for δ > d−1
d+1

, see Section 1.3. In general,
we first focus on recovery for unweighted edge data and afterwards we discuss how to extend
the results to weighted edge data.

We also note that this problem has been solved algorithmically. See Section 5.4 for
discussion regarding this direction.

1.1 Random model
We define the projected graph and random hypergraph model that are introduced in [5].

For a d-uniform hypergraph H = (V,E) let the projection of H be the 2-uniform hyper-
graph with vertex set V and edge set equal to the set of {i, j} such that i, j ∈ V , i ̸= j, and
there exists h ∈ E such that {i, j} ⊂ h; we denote the projection of H by Proj(H). Let
the weighted projection of H be the weighted graph with vertex set V and edge weight of
{i, j} equal to the number of h ∈ H that contain {i, j} for all i, j ∈ V , i ̸= j; we denote the
weighted projection of H by ProjW (H).

Suppose δ ∈ (−∞, d − 1) and c ∈ (0,∞). Unless otherwise stated assume that p =

(c+on(1))n
−d+1+δ. Suppose H ⊂ {0, 1}(

[n]
d ) is a random variable such that each element of

(
[n]
d

)
is a hyperedge of H independently with probability p. Furthermore suppose Hc ∈ {0, 1}(

[n]
d )

is the random variable such that each d-clique in Proj(H) is a hyperedge of Hc. We observe
Proj(H) and use this projected graph to make statistical inferences about H.

Remark 1.1. The regime of p we consider is slightly different from that of the paper [5], which
considers when p = n−d+1+δ. Despite this, many of the results from the paper are still true.

1.2 Notation
Next we describe some additional notation that is used throughout this paper. Suppose d ≥ 2
and H is a d-uniform hypergraph. Let E(H) and V (H) denote the sets of edges and vertices
of H, respectively, and let e(H) = |E(H)| and v(H) = |V (H)|. Furthermore let α(H) = e(H)

v(H)

and m(H) = maxK≤H α(H), where the maximum is over subgraphs K of H.
Let G (resp. GW ) be the set of projections (resp. weighted projections) of some d-uniform

hypergraph. Also let q = Pr[[d] ∈ E(Hc)]. Note that q is the probability that any element of(
[n]
d

)
is an edge of Hc by symmetry.

1.2.1 Partial recovery

Suppose B : G → {0, 1}(
[n]
d ) is a partial recovery algorithm for the unweighted projection. We

define the loss of B to be
ℓ(B) = E[|B(Ψ)∆E(H)|]

p
(
n
d

) ,

where p
(
n
d

)
= E[|E(H)|].
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Observe that

E[|B(Ψ)∆H|] =
∑

h∈([n]
d )

1h∈B(Ψ) Pr[h /∈ H|Ψ] + (1− 1h∈B(Ψ)) Pr[h ∈ H|Ψ].

Hence the optimal unweighted partial recovery algorithm is

B∗ : G → {0, 1}(
[n]
d ), G 7→ {h ∈

(
[n]

d

)
: Pr[h ∈ H|Proj(H) = G] ≥ 1

2
}.

For a partial recovery algorithm BW : GW → {0, 1}(
[n]
d ) for the weighted projection, the

loss of BW is

ℓW (BW ) =
E[|BW (ProjW (H))∆E(H)|]

p
(
n
d

) .

The optimal weighted partial recovery algorithm B∗
W is defined analogously to B∗. That is,

B∗
W : G → {0, 1}(

[n]
d ), G 7→ {h ∈

(
[n]

d

)
: Pr[h ∈ H|ProjW (H) = G] ≥ 1

2
}.

Definition 1.2. The partial recovery loss is ℓ(B∗). If ℓ(B∗) = on(1), then almost exact
recovery is possible.

The weighted partial recovery loss is ℓW (B∗
W ). If ℓW (B∗

W ) = on(1), then almost exact
weighted recovery is possible.

Remark 1.3. Observe that this definition of almost exact recovery is equivalent to the definition
of almost exact recovery in [21].

1.2.2 Exact recovery

Suppose A : G → {0, 1}(
[n]
d ) is an exact recovery algorithm for the unweighted projection. Its

probability of error is Pr[A(Proj(H)) ̸= H]. As discussed in [5, Section 2.3], the algorithm
minimizing the probability of error is the MAP algorithm A∗ : G → {0, 1}(

[n]
d ) where

A∗(G) ∈ argmax
H:Proj(H)=G

Pr[H = H] = argmin
H:Proj(H)=G

e(H).

Similarly, for an exact recovery algorithm AW : GW → {0, 1}(
[n]
d ) for the unweighted

projection, its probability of error is Pr[AW (ProjW (H)) ̸= H]. The algorithim minimizing
the probability error is the MAP algorithm A∗

W : GW → {0, 1}(
[n]
d ) which is analogous to A∗.

Definition 1.4. The probability of exact recovery is Pr[A∗(Proj(H)) = H]. The weighted
probability of exact recovery is Pr[A∗

W (ProjW (H)) = H].
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1.3 Main results
Theorem 1.5 (Partial Recovery). If δ < d−1

d+1
then the partial recovery loss is on(1) and if

δ > d−1
d+1

then the partial recovery loss is 1− on(1).

Proof. This follows from Theorem 3.1, Theorem 3.7, and Theorem 3.8. ■

Theorem 1.6 (Partial Recovery for Weighted Projection). If δ < d−1
d+1

then the partial
recovery loss is on(1) and if δ > d−1

d+1
then the weighted partial recovery loss is 1− on(1).

Proof. Since the partial recovery loss is on(1) for δ < d−1
d+1

by Theorem 1.5, the same is true
for the weighted partial recovery loss, see Lemma 1.10. Afterwards, using Theorem 3.13
finishes the proof. ■

Furthermore, we prove the following two theorems in Chapter 5.

Theorem 1.7 (Exact Recovery). Suppose 3 ≤ d ≤ 5. If δ < 2d−4
2d−1

then the probability of
exact recovery is 1− on(1) and if δ > 2d−4

2d−1
then the probability of exact recovery is on(1).

Suppose d ≥ 5. If δ < d−1
d+1

then the probability of exact recovery is 1−on(1) and if δ > d−1
d+1

,
the probability of exact recovery is on(1).

Remark 1.8. Observe that Theorem 1.7 verifies the conjecture from [5, Appendix C] that the
threshold for exact recovery is 2d−4

2d−1
for d = 4, 5. Furthermore, the two cases of the statement

overlap for d = 5. This is intentional since 2d−4
2d−1

= d−1
d+1

when d = 5.

Theorem 1.9 (Exact Recovery for Weighted Projection). If δ < d−1
d+1

then the probability of
weighted exact recovery is 1− on(1) and if δ > d−1

d+1
the probability of weighted exact recovery

is on(1).

The contributions of this paper as compared to previously established exact recovery
thresholds are summarized in Table 1.1.

d Previous work New Partial recovery
(exact recovery) (exact recovery) Weighted exact recovery

3 2/5 2/5 1/2
4 [1/2, 4/7] 4/7 3/5
5 [1/2, 2/3] 2/3 2/3

≥ 6 [d−3
d
, d

2−d−2
d2−d+2

] d−1
d+1

d−1
d+1

Table 1.1: This table compares exact recovery thresholds discovered in [5] with the contribu-
tions of this paper. Note that the exact recovery thresholds correspond to the problem of
unweighted exact recovery. Furthermore, the partial recovery thresholds are the same for
observing the unweighted or weighted projection.

An all-or-nothing phase transition occurs at a threshold if, for example, we can recover all
of the input with high probability below the threshold, but we cannot recover any constant
fraction of the input with constant probability above. As mentioned earlier, [21] finds that the
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all-or-nothing threshold occurs for the problem of graph-matching. All-or-nothing thresholds
are also discovered in [19] for the problem of recovering a sparse binary vector with linear
regression, where the metric is the mean squared error. Furthermore, [4] finds all-or-nothing
thresholds for recovery in the spiked Wigner model.

We observe an all-or-nothing threshold at d−1
d+1

for unweighted recovery when d ≥ 5 and
weighted recovery when d ≥ 3. This is the case because we transition from having a probability
of exact recovery of 1− on(1) below the threshold to a partial recovery loss of 1− on(1) above.

Furthermore, observe that the exact recovery results do not consider when δ = min(d−1
d+1

, 2d−4
2d−1

).
We exhibit regimes of probabilities satisfying this condition for which the probability of exact
recovery is 1− on(1) in Chapter 6.

1.4 Introduction to the partial recovery loss
We discuss some fundamental equalities for the partial recovery loss introduced in Subsec-
tion 1.2.1. First, we have that

EH|Ψ[|B∗(Ψ)∆H|] =
∑

h∈([n]
d )

min(Pr[h ∈ H|Ψ],Pr[h /∈ H|Ψ]). (1.1)

Using this gives that

p

(
n

d

)
ℓ(B∗) = EΨ[EH|Ψ[|B∗(Ψ)∆H|]]

=
∑
G∈G

∑
h∈([n]

d )

Pr[Ψ = G] min(Pr[h ∈ H|Ψ],Pr[h /∈ H|Ψ])

=
∑

h∈([n]
d )

∑
G∈G

Pr[Ψ = G] min(Pr[h ∈ H|Ψ],Pr[h /∈ H|Ψ])

=

(
n

d

)∑
G∈G

Pr[Ψ = G] min(Pr[[d] ∈ H|Ψ],Pr[[d] /∈ H|Ψ])

=

(
n

d

)∑
G∈G

Pr[Ψ = G]

(
1

2
−
∣∣∣∣Pr[[d] ∈ H|Ψ]− 1

2

∣∣∣∣) .

(1.2)

Furthermore, ℓ(B∗) ≤ 1 since the trivial algorithm that always outputs the empty set has a
loss of 1.

Lemma 1.10. ℓ(B∗) ≥ ℓW (B∗
W ) and Pr[A∗(Proj(H)) = H] ≤ Pr[A∗

W (ProjW (H)) = H].

Proof. It is straightforward to deduce that Pr[A∗(Proj(H)) = H] ≤ Pr[A∗
W (ProjW (H)) = H].

For ℓ(B∗) ≥ ℓW (B∗
W ), using (1.2) and its analogue for weighted projections gives that it

suffices to prove that∑
G∈G

Pr[Ψ = G]

(
1

2
−
∣∣∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣∣∣)
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≥
∑

G∈GW

Pr[ProjW (H) = G]

(
1

2
−
∣∣∣∣Pr[[d] ∈ H|ProjW (H) = G]− 1

2

∣∣∣∣) ,

which is equivalent to∑
G∈GW

∣∣∣∣Pr[[d] ∈ H|ProjW (H) = G]− 1

2

∣∣∣∣ ≥∑
G∈G

∣∣∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣∣∣ .
This can be proved using Jensen’s inequality since x 7→

∣∣x− 1
2

∣∣ is convex. ■

1.5 Thesis organization
This thesis is based on the contents of the preprint [6], a paper that I am a primary author
of. Chapter 6 does not appear in the paper, but all other content of this thesis appears in
the paper.

In Chapter 2, we enumerate combinatorial structures in Ψ and prove the concentration
result Theorem 2.9; this concentration result implies Corollary 2.10, which is used to justify
the upper bounds of the partial recovery thresholds. Afterwards, in Chapter 3, we prove
the partial recovery results. In Chapter 4, we prove extremal combinatorial results related
to ambiguous graphs which are essential to showing the lower bounds of the exact recovery
thresholds. In Chapter 5, we display the proofs of the exact recovery results, and in particular
prove the upper bounds of the exact recovery thresholds in Theorem 5.7. Furthermore, we
discuss efficient algorithms for partial and exact recovery in Section 5.4. Next, in Chapter 6,
we analyze the phase transition for exact recovery by exhibiting a regime of probabilities
that are below the exact recovery threshold by a polylogarithmic factor for which the exact
recovery loss is 1− on(1). In Appendix A, we analyze the conditional entropy H(H|Ψ).
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Chapter 2

Structures of the Projected Graph

2.1 Projection covers and relaxations
First, we give two lemmas that generalize ideas from [5, Proof of Lemma 39]. We do not
include the proofs.

Lemma 2.1. Suppose k ≥ 2 and U ⊂ 2[k]. The probability that there exists h ∈ E(H) such
that h ∩ [k] = u for all u ∈ U is ∏

u∈U

(1− (1− p)(
n−k
d−|u|)).

Furthermore, this probability is at most

p|U|
∏
u∈U

(
n− k

d− |u|

)
= Θn(n

(1+δ)|U|−
∑

u∈U |u|).

Lemma 2.2. Suppose k ≥ 2 and E ⊂
(
[k]
2

)
. The probability that E ⊂ E(Proj(H)) is at most

∑
U

p|U|
∏
u∈U

(
n− k

d− |u|

)
,

where the sum is over U ⊂ 2[k] satisfying the following conditions:

• For all u ∈ U , |u| ≥ 2 and
(
u
2

)
̸⊂
⋃

u′∈U\{u}
(
u′

2

)
.

• E ⊂
⋃

u∈U
(
u
2

)
.

Remark 2.3. Proj(H) is a 2-uniform hypergraph, so E(Proj(H)) is a set of edges, which are
hyperedges with size 2.

Next we discuss a technique from [5] that involves using relaxation to establish a convex
optimization problem after applying Lemmas 2.1 and 2.2. Suppose k ≥ 2 and E ⊂

(
[k]
2

)
.

The goal is to upper bound the probability that E ⊂ E(Proj(H)) using Lemma 2.2. Sup-
pose U satisfies the conditions of Lemma 2.2; the lemma implies that an upper bound on
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p|U|∏
u∈U

(
n−k
d−|u|

)
is an upper bound on the probability that E ⊂ E(Proj(H)) after scaling by

some constant since the number of U is finite.
First observe that |E| ≤

∑
u∈U ,|u|≥2

(|u|
2

)
. The relaxation technique is to replace

(
x
2

)
for

some real variable x ≥ 2 with the real variable y ≥ 1; that is, y =
(
x
2

)
and x = 1+

√
1+8y
2

. If
yu =

(
xu

2

)
for u ∈ U such that |u| ≥ 2 then |E| ≤

∑
u∈U ,|u|≥2 yu. From Lemma 2.1,

p|U|
∏
u∈U

(
n− k

d− |u|

)
= Θn(n

(1+δ)|U|−
∑

u∈U |u|) = Θn(n
(1+δ)|U|−

∑
u∈U

1+
√
1+8yu
2 ).

Suppose M = |U|; the conditions of Lemma 2.2 imply that 1 ≤ M ≤ |E|. Then maximizing
the quantity p|U|∏

u∈U
(
n−k
d−|u|

)
corresponds to maximizing (1 + δ)M −

∑M
i=1

1+
√
1+8yi
2

given
that

∑M
i=1 yi ≥ |E| and yi ≥ 1 for 1 ≤ i ≤ M , which is a convex optimization problem.

Particularly, since the function (1 + δ)M −
∑M

i=1
1+

√
1+8yi
2

is convex, it is maximized at a
vertex of the set of inputs.

Some results of [5] that are proved using the methods described in this subsection are
[5, Lemmas 35, 39, and 40]. In this paper we prove results in Chapter 2, Theorem 3.3, and
Lemma 4.5 using these methods.

Remark 2.4. For the proof of Lemma 2.6, we also impose the constraint that |u| ≤ d for all
u ∈ U , which corresponds to yi ≤

(
d
2

)
for 1 ≤ i ≤ M , because the hyperedges of H have size

d. It is necessary to impose this constraint because the value k in Lemma 2.1 and Lemma 2.2
may be greater than d in the context of Lemma 2.6. We also impose this constraint in the
proof of Lemma 4.5.

2.2 Structure results
The main goal of this section is to prove that e(Hc) is concentrated around its mean if δ > d−1

d+1
,

see Corollary 2.10. Observe that Lemmas 2.5 and 2.6 have similar statements and proofs as
[5, Lemma 35 and Lemma 40], but some differences are that we require different bounds and
only consider when δ > d−1

d+1
. Furthermore, we use methods discussed in Section 2.1 in this

section.

Lemma 2.5. Suppose δ > d−1
d+1

. Suppose m is an integer such that 0 ≤ m ≤ d− 1. Assume
that {Ki : 1 ≤ i ≤ M} is a set of subsets S of [d] such that 2 ≤ |S| ≤ d. Assume that

M⋃
i=1

(
Ki

2

)
⊃
(
[d]

2

)
\
(
[m]

2

)
.

Then

(1 + δ)M −
M∑
i=1

|Ki| ≤
((

d

2

)
−
(
m

2

))
(δ − 1).

Equality occurs if and only if the Ki are distinct and {Ki : 1 ≤ i ≤ M} =
(
[d]
2

)
\
(
[m]
2

)
.
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Proof. First we may assume that
(
Ki

2

)
∩
((

[d]
2

)
\
(
[m]
2

))
̸⊂
⋃

j∈[M ]\{i}
(
Kj

2

)
for 1 ≤ i ≤ M .

We can assume this because if the condition is not true we can remove Ki and increase
(1 + δ)M −

∑M
i=1 |Ki|. This condition implies that the Ki are distinct and M ≤

(
d
2

)
−
(
m
2

)
.

Suppose yi =
(|Ki|

2

)
for 1 ≤ i ≤ M , then yi ≥ 1 for 1 ≤ i ≤ m and

∑M
i=1 yi ≥

(
d
2

)
−
(
m
2

)
.

We have that

(1 + δ)M −
M∑
i=1

|Ki| = (1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Let

f(y1, . . . , yM) = (1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Since f is convex, its maximal value occurs at a vertex. Suppose (yi)1≤i≤M is the vertex
such that yi = 1 for 1 ≤ i ≤ M − 1 and yM =

(
d
2

)
−
(
m
2

)
−M + 1. Then

f(y1, . . . , yM) = (δ − 1)M + 2−
1 +

√
1 + 8(

(
d
2

)
−
(
m
2

)
−M + 1)

2
.

Since f(y1, . . . , yM) is convex with respect to M , the maximum value of f(y1, . . . , yM) for
1 ≤ M ≤

(
d
2

)
−
(
m
2

)
occurs when M ∈ {1,

(
d
2

)
−
(
m
2

)
}.

Suppose M = 1. Then

f(y1, . . . , yM) = 1 + δ −
1 +

√
1 + 8(

(
d
2

)
−
(
m
2

)
)

2
.

Because the number of edges in [d] but not [m] is greater than M , we also must prove that
equality does not hold. Because δ > d−1

d+1
it suffices to prove that

1 +
d− 1

d+ 1
−

1 +
√

1 + 8(
(
d
2

)
−
(
m
2

)
)

2
≤ −

((
d

2

)
−
(
m

2

))
2

d+ 1
.

This can be proved using expansion.
Next suppose M =

(
d
2

)
−
(
m
2

)
. Then yM = 1 so

f(y1, . . . , yM) =

((
d

2

)
−
(
m

2

))
(δ − 1).

Afterwards it is straightforward to verify the equality case. ■

Lemma 2.6. Suppose δ > d−1
d+1

. Suppose m and k are integers such that m ∈ {0, 1, 2, d− 1}
and m ≤ k ≤ d− 1. Assume that {Ki : 1 ≤ i ≤ M} is a set of subsets S of [1, 2d− k] such
that 2 ≤ |S| ≤ d. Assume that

M⋃
i=1

(
Ki

2

)
⊃
((

[d]

2

)⋃(
[k] ∪ {i : d+ 1 ≤ i ≤ 2d− k}

2

))
\
(
[m]

2

)
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Then

(1 + δ)M −
M∑
i=1

|Ki| ≤ k −m+ (d(d− 1)−m(m− 1))(δ − 1). (2.1)

Equality occurs if and only if k = m, the Ki are distinct, and {Ki : 1 ≤ i ≤ M} =((
[d]
2

)⋃ ([k]∪{i:d+1≤i≤2d−k}
2

))
\
(
[m]
2

)
.

Proof. Let

E =

((
[d]

2

)
∪
(
[k]
⋃
{i : d+ 1 ≤ i ≤ 2d− k}

2

))
\
(
[m]

2

)
.

Similarly to the proof of Lemma 2.5, assume the condition (∗1) that for 1 ≤ i ≤ M ,(
Ki

2

)
∩ E ̸⊂

⋃
j∈[M ]\{i}

(
Kj

2

)
. Note that (∗1) implies that the Ki are distinct and that

M ≤ |E| = 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
.

We must prove that the equality case of (2.1) occurs if and only if M = 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
.

Furthermore, since each element of [2d− k] must be a vertex of one of the Ki and 2d− k > d,
M ≥ 2.
Case 1: m ∈ {0, 1, 2}, m < d− 1

Suppose m ∈ {0, 1, 2} and m < d− 1. (We do not consider when m = 2 and d = 3.)
Suppose yi =

(|Ki|
2

)
for 1 ≤ i ≤ M . Then, 1 ≤ yi ≤

(
d
2

)
for 1 ≤ i ≤ M and

M∑
i=1

yi ≥ 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
.

Furthermore, the left hand side of (2.1) is

(1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Let RM be the set of (yi)1≤i≤M such that 1 ≤ yi ≤
(
d
2

)
for 1 ≤ i ≤ M and

∑M
i=1 yi ≥

2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
. Additionally, let

f(y1, . . . , yM) = (1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Observe that f is convex so the maximum value of f over RM occurs at a vertex of RM .
Suppose (yi)1≤i≤M is a vertex of RM such that yi ∈ {1,

(
d
2

)
} for 1 ≤ i ≤ M − 1.

Suppose 2 ≤ M ≤
(
d
2

)
−
(
k
2

)
−
(
m
2

)
. If yi = 1 for 1 ≤ i ≤ M − 1 then

yM ≥ 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1 >

(
d

2

)
,

which is a contradiction. Assume that one of the yi, 1 ≤ i ≤ M − 1 equals
(
d
2

)
; it is clearly

not optimal if two distinct yi for 1 ≤ i ≤ M − 1 equal
(
d
2

)
since we will then have that
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∑M
i=1 yi > 2

(
d
2

)
, so we can increase the value of f by decreasing some of the yi. Without loss

of generality, assume that yi = 1 for 1 ≤ i ≤ M − 2, yM−1 =
(
d
2

)
, and

yM =

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 2.

Then,

f(y1, . . . , yM) = (δ − 1)M + 2(δ + 1) + 4− d− 1 +
√
1 + 8yM
2

.

Since M < 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
, we must prove that equality does not occur. Therefore, we must

prove that

(δ − 1)M + 4− d− 1 +
√
1 + 8yM
2

< k −m+ (d(d− 1)−m(m− 1))(δ − 1)

It suffices to prove that this inequality is true for 2 ≤ M ≤
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1 (observe

that we add
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1 as a value for M to simplify calculations). The left hand

side is convex with respect to M , so it suffices to prove that the inequality is true for
M ∈ {2,

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1}.

First, suppose M = 2. The required inequality is

2(δ − 1) + 4− d−
1 +

√
1 + 8(

(
d
2

)
−
(
k
2

)
−
(
m
2

)
)

2
< k −m+ (d(d− 1)−m(m− 1))(δ − 1).

Since δ > d−1
d+1

and d(d− 1)−m(m− 1) > 2, it suffices to prove that

− 4

d+ 1
+ 4− d−

1 +
√

1 + 8(
(
d
2

)
−
(
k
2

)
−
(
m
2

)
)

2
≤ k −m− 2

d+ 1
(d(d− 1)−m(m− 1)).

This inequality can be verified by expansion. Note that equality occurs if and only if
k = m = 0 or k = m = 1.

Although Lemma 2.6 is true for m ∈ {0, 1, 2, d − 1}, we only use the case m = 0, see
Remark 2.7. Therefore, for completeness, we include the expansion for the case m = 0 and
equivalently m = 1. It suffices to prove that

− 4

d+ 1
+ 4− d− 1 +

√
1 + 4d2 − 4d− 4k2 + 4k

2
≤ k − 2d(d− 1)

d+ 1

⇔2d2 − 2d− 4

d+ 1
+ 4− d− k − 1

2
≤

√
1 + 4d2 − 4d− 4k2 + 4k

2

⇔2d− 2k − 1 ≤
√
1 + 4d2 − 4d− 4k2 + 4k ⇔ 8k2 ≤ 8dk,

which follows from 0 ≤ k ≤ d− 1.
Next, suppose M =

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1. Then, yM = 1 so the required inequality is

(δ − 1)

((
d

2

)
−
(
k

2

)
−
(
m

2

)
+ 1

)
+ 2− d < k −m+ (d(d− 1)−m(m− 1))(δ − 1).
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This is equivalent to

(1− δ)

((
d

2

)
−
(
m

2

)
+

(
k

2

)
− 1

)
+ 2 < k −m+ d.

We need to prove this inequality for δ > d−1
d+1

, so it suffices to prove that

2

d+ 1

((
d

2

)
−
(
m

2

)
+

(
k

2

)
− 1

)
+ 2 ≤ k −m+ d.

This inequality is equivalent to

(k −m)(d+ 2− k −m) ≥ 0,

which is true since m ≤ k ≤ d− 1 and m ≤ 2.
Suppose

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1 ≤ M ≤ 2

(
d
2

)
−
(
k
2

)
−
(
m
2

)
. It is clearly not optimal for two of

the yi for 1 ≤ i ≤ M − 1 to equal
(
d
2

)
. Suppose one of the yi for 1 ≤ i ≤ M − 1 equals

(
d
2

)
.

Without loss of generality, suppose yi = 1 for 1 ≤ i ≤ M − 2 and yM−1 =
(
d
2

)
. Then,

yM ≥
(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 2.

Since
(
d
2

)
−
(
k
2

)
−
(
m
2

)
−M + 2 ≤ 1,

f(y1, . . . , yM−2, yM−1, yM) ≤ f

(
y1, . . . , yM−2,

(
d

2

)
, 1

)
≤ f

(
y1, . . . , yM−2, 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1, 1

)
= f

(
y1, . . . , yM−2, 1, 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1

)
.

Then, we may assume that yi = 1 for 1 ≤ i ≤ M − 1. We have that

yM = 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1.

Furthermore,

f(y1, . . . , yM) = (δ − 1)M + 2−
1 +

√
1 + 8(2

(
d
2

)
−
(
k
2

)
−
(
m
2

)
−M + 1)

2
.

Observe that f convex with respect to M . Therefore, f is maximized over
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+1 ≤

M ≤ 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
when M ∈ {

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1, 2

(
d
2

)
−
(
k
2

)
−
(
m
2

)
}.

Suppose M =
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+1. Then yM =

(
d
2

)
so this case is equivalent to the previous

case we considered where (y1, . . . , yM) = (1, . . . , 1,
(
d
2

)
, 1).
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Next suppose M = 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
. Then yM = 1 so the required inequality is

(δ − 1)

(
2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
) ≤ k −m+ (d(d− 1)−m(m− 1)

)
(δ − 1).

This is equivalent to

(1− δ)

((
k

2

)
−
(
m

2

))
≤ k −m.

If k = m then it is clear that equality occurs. Suppose k > m. We must prove that

(1− δ)

((
k

2

)
−
(
m

2

))
< k −m.

Since δ > d−1
d+1

, it suffices to prove that

2

d+ 1

((
k

2

)
−
(
m

2

))
≤ k −m.

This is equivalent to
1

d+ 1
(k −m)(k +m− 1) ≤ k −m,

which is true since m ≤ 2 and k ≤ d− 1.
Case 2: m = d− 1

Next suppose m = d− 1. Since k = m = d− 1, we must prove that

(1 + δ)M −
M∑
i=1

|Ki| ≤ 2(d− 1)(δ − 1)

and that equality occurs if and only if {Ki : 1 ≤ i ≤ M} = E . Note that

E = {{d, j} : j ∈ [d− 1]} ∪ {{d+ 1, j} : j ∈ [d− 1]} ⊂
M⋃
i=1

(
Ki

2

)
.

Suppose
{Ki : 1 ≤ i ≤ M} = Sa ⊔ Sb ⊔ Sab,

where Ki ∈ Sa if Ki ∩ {d, d+ 1} = {d}, Ki ∈ Sb if Ki ∩ {d, d+ 1} = {d+ 1}, and Ki ∈ Sab if
Ki ∩ {d, d+ 1} = {d, d+ 1} for 1 ≤ i ≤ M .

Let Z = {j : j ∈ [d− 1],∃k ∈ Sab such that j ∈ k}. For all j ∈ Z, both edges in E that
contain j are covered by an element of Sab. Suppose k ∈ Sa contains an element j of Z. If
k = {d, j} then (∗1) will be contradicted so |k| ≥ 3. If we remove j from k then the left hand
side of (2.1) will decrease but all of the edges of E will remain covered. Hence, we can assume
that no element of Sa contains an element of Z. We can similarly assume that no element of
Sb contains an element of Z.

Furthermore, assume that j ∈ [d− 1] and k1, k2 ∈ Sa satisfy k1 ≠ k2 and j ∈ k1 ∩ k2. If
k1 = {d, j} then (∗1) will be contradicted so |k1| ≥ 3. If we remove j from k1 then the left
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hand side of (2.1) will decrease but all of the edges of E will remain covered. Hence, we can
assume that no element of [d− 1] is contained in two elements of Sa. We can similarly assume
that no element of [d− 1] is contained in two elements of Sb and that no element of [d− 1] is
contained in two elements of Sab.

Suppose k ∈ Sa and |k| ≥ 3. Suppose j ∈ [d− 1] ∩ k. Suppose we remove j from k and
add {d, j} to {Ki : 1 ≤ i ≤ M}. Then, the left hand side of (2.1) will increase by δ. Hence,
we can assume that |k| = 2 for all k ∈ Sa and similarly that |k| = 2 for all k ∈ Sb.

Since each element of Sa is {d, j} for some j ∈ [d− 1]\Z, |Sa| = d− 1− |Z|. Similarly,
|Sb| = d− 1− |Z|. Furthermore, the left hand side of (2.1) is

2(δ − 1)(d− 1− |Z|) +
∑
k∈Sab

1 + δ − |k| = (δ − 1)(2d− 2− 2|Z|+ |Sab|)− |Z|.

The inequality
(δ − 1)(2d− 2− 2|Z|+ |Sab|)− |Z| ≤ (δ − 1)(2d− 2)

is equivalent to
−(1− δ)|Sab| ≤ (2δ − 1)|Z|.

If |Z| = |Sab| = 0, then the inequality holds with equality. Suppose |Z| > 0. Then, the
inequality is strict because δ > d−1

d+1
≥ 1

2
. Hence, equality holds if and only if |Z| = |Sab| = 0.

Furthermore, |Z| = |Sab| = 0 if and only if {Ki : 1 ≤ i ≤ M} = E . ■

Remark 2.7. It may be possible to generalize the previous result to more values of m. We use
the case m = 0 and intermediate results to prove Corollary 2.10, which is used in Section 3.3.

Theorem 2.8. Suppose δ > d−1
d+1

. Suppose m is an integer such that 0 ≤ m ≤ d− 1 and l is
an integer such that l ≥ m. Let X be the set of elements h of

(
[n]
d

)
such that h ∩ [l] = [m]

and
(
h
2

)
\
(
[m]
2

)
⊂ e(Ψ), where [0] is the empty set. Then

E[|X|] = (1 + on(1))

(
n

d−m

)(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

Proof. The proof of this theorem has the same structure as the proof of Theorem 3.3. Suppose
h ∈

(
[n]
d

)
and h ∩ [l] = [m]. The number of h is

(
n−l
d−m

)
. Hence, it suffices to prove that

Pr[h ∈ X] = Pr[

(
h

2

)
\
(
[m]

2

)
⊂ e(Ψ)] = (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

Using the Harris inequality gives that

Pr[h ∈ X] ≥ (1− (1− p)(
n−2
d−2))(

d
2)−(

m
2 )

≥
((

n− 2

d− 2

)
p− p−On((n

d−2p)2)

)(d2)−(m2 )
≥ (1− on(1))

((
n− 2

d− 2

)
p

)(d2)−(m2 )
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= (1− on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

From Lemma 2.2 with [k] replaced by h and E replaced by
(
h
2

)
\
(
[m]
2

)
,

Pr[

(
h

2

)
\
(
[m]

2

)
⊂ e(Hc)] ≤

∑
U

p|U|
∏
u∈U

(
n− d

d− |u|

)
,

where the sum is over U ⊂ 2h satisfying the conditions of the lemma.
If U =

(
h
2

)
\
(
[m]
2

)
, then

p|U|
∏
u∈U

(
n− d

d− |u|

)
≤ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

Otherwise

p|U|
∏
u∈U

(
n− d

d− |u|

)
= Θn(n

(1+δ)|U|−
∑

u∈U |u|) = on

(
n((

d
2)−(

m
2 ))(δ−1)

)
by Lemma 2.5. Therefore

Pr[[d] ∈ X] ≤ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
,

which finishes the proof. ■

Theorem 2.9. Suppose δ > d−1
d+1

. Suppose m is an integer such that m ∈ {0, 1, 2, d− 1} and
l is an integer such that l ≥ m. Let X be the set of elements h of

(
[n]
d

)
such that h∩ [l] = [m]

and
(
h
2

)
\
(
[m]
2

)
⊂ e(Ψ), where [0] is the empty set. Then Var[|X|] = on(E[|X|]2).

Proof. Let S be the set of elements of
(
[n]
d

)
that have intersection with [l] equal to [m]. We

have that
E[|X|2] =

∑
a,b∈S

Pr[a, b ∈ X].

Suppose m ≤ k ≤ d − 1. Suppose a, b ∈ S and k = |a ∩ b|. From Lemma 2.2 with [k]
replaced by a ∪ b and E replaced by (a ∪ b)\

(
[m]
2

)
,

Pr[a, b ∈ X] = Pr[(

(
a

2

)
∪
(
b

2

)
)\
(
[m]

2

)
⊂ E(Hc)] ≤

∑
U

p|U|
∏
u∈U

(
n− 2d+ k

d− |u|

)
, (2.2)

where the sum is over U ⊂ 2a∪b satisfying the conditions of the lemma. For convenience,
denote the set of such U by P .

Suppose k > m. From Lemma 2.6, for U ∈ P we have that

(1 + δ)|U| −
∑
u∈U

|u| < k −m+ (d(d− 1)−m(m− 1))(δ − 1),
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where the equality case of the lemma cannot occur. Using (2.2) then gives that

Pr[a, b ∈ X] = on(n
k−m+(d(d−1)−m(m−1))(δ−1)).

Suppose k = m. From Lemma 2.6, for U ∈ P we have that

(1 + δ)|U| −
∑
u∈U

|u| ≤ (d(d− 1)−m(m− 1))(δ − 1)

with equality if and only if U = (
(
a
2

)
∪
(
b
2

)
)\
(
[m]
2

)
. Using (2.2) then gives that

Pr[a, b ∈ X] ≤ (1 + on(1))

(
cnδ−1

(d− 2)!

)d(d−1)−m(m−1)

.

We therefore have that

EH[|X|2] =
∑
a,b∈S

Pr[a, b ∈ X] =
d∑

k=m

∑
a,b∈S, |a∩b|=k

Pr[a, b ∈ X]

≤E[|X|] +
d−1∑

k=m+1

(
n− l

d−m

)(
d−m

k −m

)(
n− l − d+m

d− k

)
on(n

k−m+d(d−1)(δ−1))

+

(
n− l

d−m

)(
n− l − d+m

d−m

)
(1 + on(1))

(
cnδ−1

(d− 2)!

)d(d−1)−m(m−1)

=E[|X|] + (1 + on(1))

(
n

d−m

)2(
cnδ−1

(d− 2)!

)d(d−1)−m(m−1)

.

Furthermore, from Theorem 2.8,

E[|X|] ≥ (1− on(1))

(
n

d−m

)(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

It follows that
Var[|X|] = E[|X|2]− E[|X|]2 = on(E[|X|]2),

which finishes the proof. ■

Corollary 2.10. Suppose δ > d−1
d+1

. Then Var[|e(Hc)|] = on(E[|e(Hc)|]2).

Proof. This follows from Theorem 2.9 with l = m = 0. ■

Remark 2.11. We expect Corollary 2.10 to be true for δ ≤ d−1
d+1

as well although we omit a
rigorous proof. For δ < d−1

d+1
, the idea is that almost all hyperedges of Hc are hyperedges of

H, the number of which we know is concentrated.
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Chapter 3

Partial recovery

3.1 Dense regime
In this section we consider when δ ≥ 1, in which case H is very dense. In any other parts of
the paper, it is assumed that δ < 1.

Theorem 3.1. Suppose 1 ≤ δ < d− 1. The partial recovery loss is 1− on(1).

Proof. This follows from Lemma 1.10 and Theorem 3.2. ■

Theorem 3.2. Suppose 1 ≤ δ < d− 1. The weighted partial recovery loss is 1− on(1).

Proof. Suppose the function f : GW → {0, 1} satisfies the condition that if G ∈ G then
f(G) = 1[d]∈B∗(G). Using (1.2) gives that

E[|B∗(ProjW (H))∆H|] =
(
n

d

)
Pr
H
[f(ProjW (H)) ̸= 1[d]∈e(H)]. (3.1)

From Fano’s inequality,

H(1[d]∈e(H)|ProjW (H)) ≤ HB(Pr
H
[f(ProjW (H)) ̸= 1[d]∈e(H)]).

Using this gives that(
n

d

)
HB(Pr

H
[f(ProjW (H)) ̸= 1[d]∈e(H)]) ≥

∑
h∈([n]

d )

H(1{h ∈ H})|ProjW (H))

≥ H(H|ProjW (H)) = H(H)−H(ProjW (H)).

(3.2)

First suppose δ > 1. Then, for all i, j ∈ [n], i ̸= j, we have that

H(|{h ∈ E(H) : {i, j} ⊂ h}|) ≤ log

((
n− 2

d− 2

))
.

Thus,

H(ProjW (H)) ≤
∑

1≤i<j≤n

H(|{h ∈ E(H) : {i, j} ⊂ h}|) ≤
(
n

2

)
log

((
n− 2

d− 2

))
.
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Since H(H) =
(
n
d

)
HB(p) = Ωn(n

1+δ log(n)), we then have that H(ProjW (H)) = on(H(H)).
Hence, (3.2) gives that Pr[f(ProjW (H)) ̸= 1[d]∈e(H)] = (1− on(1))p so using (3.1) gives that

ℓ(B∗) =
EH[|B∗(Ψ)∆H|]

p
(
n
d

) =
PrH[f(Ψ) ̸= 1[d]∈e(H)]

p
= 1− on(1).

Next suppose δ = 1. Suppose i, j ∈ [n], i ̸= j. We have that

|{h ∈ E(H) : {i, j} ⊂ h}| ∼ Binomial
((

n− 2

d− 2

)
, p

)
so

H(|{h ∈ E(H) : {i, j} ⊂ h}|) = On(1)

since |{h ∈ E(H) : {i, j} ⊂ h}| has mean
(
n−2
d−2

)
p = On(1), see [18, Exercise I.4]. Then,

H(ProjW (H)) ≤
∑

1≤i<j≤n

H(|{h ∈ E(H) : {i, j} ⊂ h}|) = On(n
2).

Since H(H) = Ωn(n
2 log(n)), H(ProjW (H)) = on(H(H)) and we conclude similarly as the

case δ > 1. ■

3.2 Preliminary results

Theorem 3.3. Recall that q = Pr[
(
[d]
2

)
⊆ Ψ]. Then

q = (1 + on(1))

(
p+

(
cnδ−1

(d− 2)!

)(d2)
+ on

(
p+ n(

d
2)(δ−1)

))
.

Proof. First we lower bound q. Note that if [d] ∈ e(H) then [d] ∈ e(Hc) so q ≥ p. Suppose
[d] /∈ e(H); this event occurs with probability 1− p. Then, [d] ∈ e(Hc) if and only if for each
edge {i, j} for 1 ≤ i < j ≤ d, there exists h ∈

(
[n]
d

)
\{[d]} such that {i, j} ⊂ h and h ∈ e(H).

Suppose 1 ≤ i < j ≤ d. The probability there exists h ∈
(
[n]
d

)
\{[d]} such that {i, j} ⊂ h

and h ∈ e(H) is 1− (1− p)(
n−2
d−2)−1. Using the Harris inequality gives that

Pr[[d] ∈ e(Hc)|[d] /∈ e(H)] ≥
(
1− (1− p)(

n−2
d−2)−1

)(d2)
≥
((

n− 2

d− 2

)
p− p−On((n

d−2p)2)

)(d2)
≥ (1− on(1))

((
n− 2

d− 2

)
p

)(d2)
= (1− on(1))

(
cnδ−1

(d− 2)!

)(d2)
.
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Hence,

q = Pr[[d] ∈ e(Hc)] ≥ p+ (1− p)(1− on(1))

(
cnδ−1

(d− 2)!

)(d2)
= p+ (

cn(δ−1)

(d− 2)!
)(

d
2) + on(n

(d2)(δ−1)).

(3.3)

Next we upper bound q using the technique discussed in Section 2.1. From Lemma 2.2
with [k] replaced by [d] and E replaced by

(
[d]
2

)
,

q = Pr[[d] ∈ e(Hc)] ≤
∑
U

p|U|
∏
u∈U

(
n− d

d− |u|

)
,

where the sum is over U ⊂ 2[d] satisfying the conditions of the lemma. For convenience,
denote the set of such U by P .

Suppose U ∈ P and M = |U|. It is clear that 1 ≤ M ≤
(
d
2

)
. If M = 1 (U = {[d]}) the

probability is p and if M =
(
d
2

)
(U =

(
[d]
2

)
) then the probability is (1 + on(1))

(
cnδ−1

(d−2)!

)(d2).
Using the union bound gives that

q ≤ p+ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)
+

∑
2≤M≤(d2)−1,

U∈P,|U|=M

Θn(n
(1+δ)M−

∑
u∈U |u|). (3.4)

Suppose U ∈ P and M = |U|; recall that 1 ≤ M ≤
(
d
2

)
. Furthermore suppose yu =

(|u|
2

)
for u ∈ U . Then yu ≥ 1 for u ∈ U and

∑
u∈U yu ≥

(
d
2

)
. Furthermore

M(1 + δ)−
∑
u∈U

|u| = M(1 + δ)−
∑
u∈U

1 +
√
8yu + 1

2
. (3.5)

Suppose 1 ≤ M ≤
(
d
2

)
. Let RM be the set of (yi)1≤i≤M such that yi ≥ 1 for 1 ≤ i ≤ M

and
∑M

i=1 yi ≥
(
d
2

)
. Let

f(y1, . . . , yM) = M(1 + δ)−
m∑
i=1

1 +
√
8yi + 1

2
.

An upper bound of (3.5) is the maximal value of bound f over RM . Since f is convex, this
maximal value occurs at the vertex yi = 1 for 1 ≤ i ≤ M − 1 and yM =

(
d
2

)
−M + 1. The

value of f at this vertex is

g(M) := M(1− δ) + 2−
1 +

√
8(
(
d
2

)
−M + 1) + 1

2

and maxy∈RM
f(y) = g(M). Observe that g is convex in M over [1,

(
d
2

)
]. Hence, the

maximum value of g for M ∈ [1,
(
d
2

)
] is g(1) = −d+1+ δ or g(

(
d
2

)
) =

(
d
2

)
(δ− 1). Particularly,
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if 1 < M <
(
d
2

)
then g(M) < max(−d + 1 + δ,

(
d
2

)
(δ − 1)). Using the fact that an upper

bound of (3.5) is g(M) then gives that if U ∈ P and 1 < |U| <
(
d
2

)
,

|U|(1 + δ)−
∑
u∈U

|u| < max(−d+ 1 + δ,

(
d

2

)
(δ − 1)).

Using (3.4) then gives that

Pr[[d] ∈ e(Hc)] ≤ p+ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)
+ on(p+ n(

d
2)(δ−1)).

Using this inequality and (3.3) completes the proof. ■

Remark 3.4. Observe that Theorem 3.3 for δ > d−1
d+1

is implied by Theorem 2.8 with l = m = 0.

Corollary 3.5. The asymptotic expressions

q =


(1 + on(1))p if δ < d−1

d+1

p+Θn(p) if δ = d−1
d+1

ωn(p) if δ > d−1
d+1

are true.

Proof. This follows from Theorem 3.3 and the fact that
(
d
2

)
(δ − 1) > −d+ 1 + δ if and only

if δ > d−1
d+1

. ■

Lemma 3.6. Almost exact recovery is possible if and only if∑
G∈G

Pr[Ψ = G] Pr[[d] ∈ H|Ψ]2 = p− on(p).

Furthermore if ∑
G∈G

Pr[Ψ = G] Pr[[d] ∈ H|Ψ]2 = on(p)

then the partial recovery loss is 1− on(1).

Proof. Since

1 ≤
∑

G∈G Pr[Ψ = G]
(
1
2
−
∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣)∑
G∈G Pr[Ψ = G]

(
1
4
−
(
Pr[[d] ∈ H|Ψ = G]− 1

2

)2) ≤ 2

we have that

1 ≤
∑

G∈G Pr[Ψ = G]
(
1
2
−
∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣)
p−

∑
G∈G Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2

≤ 2. (3.6)
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From (1.2), almost exact recovery is possible if and only if∑
G∈G

Pr[Ψ = G]

(
1

2
−
∣∣∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣∣∣) = on(p).

Then, from (3.6) almost exact recovery is possible if and only if∑
G∈G

Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2 = p− on(p).

Furthermore from (1.2) the partial recovery loss is 1− on(1) if and only if∑
G∈G

Pr[Ψ = G]

(
1

2
−
∣∣∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣∣∣) = p− on(p).

Then (3.6) gives that ∑
G∈G

Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2 = on(p)

implies that ∑
G∈G

Pr[Ψ = G]

(
1

2
−
∣∣∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣∣∣) ≥ p− on(p).

This quantity is also at most p, which implies that partial recovery loss is 1− on(1). ■

Theorem 3.7. Almost exact recovery, which means on(1) partial recovery loss, is possible if
δ < d−1

d+1
.

Proof. Suppose δ < d−1
d+1

. We have that∑
G∈G

Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2 =
∑

G∈G,([d]2 )⊂e(G)

Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2.

Using Cauchy-Schwarz and Corollary 3.5 gives that∑
G∈G,([d]2 )⊂e(G)

Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2 ≥ p2

Pr[
(
[d]
2

)
⊂ e(Ψ)]

=
p2

q
= (1− on(1))p.

Then, almost exact recovery is possible if δ < d−1
d+1

from Lemma 3.6. ■

3.3 Partial recovery
The goal of this section is to prove the following result.

Theorem 3.8. Suppose δ > d−1
d+1

. Then the partial recovery loss is 1− on(1).
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Towards this direction, we analyze when the partial recovery loss is 1 − on(1) by us-
ing Lemma 3.6. First, assume that H′ is sampled from the conditional distribution pH|Ψ
independently of H. Then, we obtain the Markov chain

H → Proj(H) = Proj(H′) → H′.

The following lemma is essential.

Lemma 3.9. (
n

d

)∑
G∈G

Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2

=
∑

H,H′∈{0,1}(
[n]
d ),

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)|.

Lemma 3.10. Suppose Un ⊂ {0, 1}(
[n]
d ), n ≥ 1 satisfy Pr[H ∈ Un] = on(1). Then∑

H∈Un,H′∈{0,1}(
[n]
d )

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)| = on

(
p

(
n

d

))
.

Proof. Using the Cauchy-Schwarz inequality gives that∑
H∈Un,H′∈{0,1}(

[n]
d )

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H)]
|E(H) ∩ E(H ′)| ≤

∑
H∈Un

Pr[H = H]e(H)

≤

 ∑
H∈{0,1}(

[n]
d )

Pr[H = H]


1
2 (∑

H∈Un

Pr[H = H]e(H)2

) 1
2

= on

(
p

(
n

d

))
.

■

First observe that e(H) is concentrated around its mean p
(
n
d

)
and Corollary 2.10 gives

that e(Hc) is concentrated around its mean q
(
n
d

)
. Suppose ϵ = on(1) satisfies e(H) ∈

[(1− ϵ)p
(
n
d

)
, (1+ ϵ)p

(
n
d

)
] and e(Hc) ∈ [(1− ϵ)q

(
n
d

)
, (1+ ϵ)q

(
n
d

)
] with probability 1− on(1). Let

Z be the set of H ∈ {0, 1}(
[n]
d ) such that e(H) ∈ [(1− ϵ)p

(
n
d

)
, (1 + ϵ)p

(
n
d

)
] and the number of

d-cliques in Proj(H) is in [(1− ϵ)q
(
n
d

)
, (1 + ϵ)q

(
n
d

)
]. From Lemma 3.10,∑

H,H′∈{0,1}(
[n]
d ),

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)|

=
∑

H,H′∈Z,
Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)|+ on

(
p

(
n

d

))
.

(3.7)
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Lemma 3.11. Suppose δ > d−1
d+1

. Then,

∑
H,H′∈Z,

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]2
≤

(
(1 + on(1))e

(d2)

q

)(1+ϵ)p(nd)

.

Proof. Let G ′ = Proj(Z). We have that∑
H,H′∈Z,

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]2
≤
∑
H∈Z

Pr[H = H]

Pr[Proj(H) = Proj(H)]
≤ |G ′|.

The maximum number of edges in some G ∈ G ′ is (1 + ϵ)
(
d
2

)
p
(
n
d

)
. Therefore,

|G ′| ≤ (1 + ϵ)

(
d

2

)
p

(
n

d

)( (
n
2

)
(1 + ϵ)

(
d
2

)
p
(
n
d

)),
if n is sufficiently large so that (1 + ϵ)

(
d
2

)
p
(
n
d

)
< 1

2

(
n
2

)
. Stirling’s approximation gives that

k! ≥
(
k
e

)k. Thus using Theorem 3.3 and the fact that δ > d−1
d+1

gives that

( (
n
2

)
(1 + ϵ)

(
d
2

)
p
(
n
d

)) ≤

(
e
(
n
2

)
(1 + ϵ)

(
d
2

)
p
(
n
d

))(1+ϵ)(d2)p(
n
d)

=

(
(1 + on(1))e

(d2)

q

)(1+ϵ)p(nd)

.

■

Lemma 3.12. Suppose δ > d−1
d+1

and M ∈ (0, 1). Then∑
H,H′∈Z,

Proj(H)=Proj(H′),

E(H)∩E(H′)≥Mp(nd)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
= on(1).

Proof. If H ′ ∈ Z then

Pr[H = H ′] ≤
(

p

1− p

)(1−ϵ)p(nd)
(1− p)(

n
d).

Suppose I ∈ [Mp
(
n
d

)
, (1 + ϵ)p

(
n
d

)
] is an integer. Next we upper bound the number of choices

for H ′ given H and |E(H) ∩ E(H ′)| = I.
Suppose H ∈ Z. The number of choices for E(H) ∩ E(H ′) is at most(

⌊(1 + ϵ)p
(
n
d

)
⌋

I

)
.

Since E(H ′) ⊂ E(Hc), the number of choices for E(H ′)\E(H) is at most( ⌊(1 + ϵ)q
(
n
d

)
⌋

⌊(1 + ϵ)p
(
n
d

)
⌋ − I

)
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assuming that n is sufficiently large so that p ≤ q
2
. Hence∑

H,H′∈Z,
Proj(H)=Proj(H′),
E(H)∩E(H′)=I

Pr[H = H] Pr[H = H ′]

≤
∑
H∈Z

Pr[H = H]

(
p

1− p

)(1−ϵ)p(nd)
(1− p)(

n
d)
(
⌊(1 + ϵ)p

(
n
d

)
⌋

I

)( ⌊(1 + ϵ)q
(
n
d

)
⌋

⌊(1 + ϵ)p
(
n
d

)
⌋ − I

)

≤
(

p

1− p

)(1−ϵ)p(nd)
e−p(nd)

(
e(1 + ϵ)

I/(p
(
n
d

)
)

)I (
e(1 + ϵ) q

p

1 + ϵ− I/(p
(
n
d

)
)

)(1+ϵ−I/(p(nd)))p(
n
d)

≤ (1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)

·

(
1 + on(1)

(I/(p
(
n
d

)
))I/(p(

n
d))(1 + ϵ− I/(p

(
n
d

)
))1+ϵ−I/(p(nd))

)p(nd)

.

Observe that the inequalities are true even for the edge-case I = ⌊(1 + ϵ)p
(
n
d

)
⌋. Let α =

maxm∈[M,1)
2

mm(1−m)1−m . Then if n is sufficiently large,∑
H,H′∈Z,

Proj(H)=Proj(H′),
E(H)∩E(H′)=I

Pr[H = H] Pr[H = H ′] ≤ (1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)αp(nd).

(3.8)
Using this inequality, Lemma 3.11, and Cauchy-Schwarz gives that∑

H,H′∈Z,
Proj(H)=Proj(H′),

Mp(nd)≤|E(H)∩E(H′)|≤(1+ϵ)p(nd)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = H]

≤


∑

Mp(nd)≤I≤(1+ϵ)p(nd)

∑
H,H′∈Z,

Proj(H)=Proj(H′),
E(H)∩E(H′)=I

Pr[H = H] Pr[H = H ′]



1
2

·

 ∑
H,H′∈Z,

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]2


1
2

≤ (
∑

Mp(nd)≤I≤(1+ϵ)p(nd)

(1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)αp(nd)

·

(
(1 + on(1))e

(d2)

q

)(1+ϵ)p(nd)

)
1
2
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=

 ∑
Mp(nd)≤I≤(1+ϵ)p(nd)

(
(1 + on(1))

(
p

q

)I/(p(nd))
p−2ϵαe(

d
2)

)p(nd)


1
2

.

Observe that using Theorem 3.3 gives that

q

p
≥ (1 + on(1))

c(
d
2)−1

(d− 2)!(
d
2)
n(

d
2)(δ−1)+d−1−δ.

Because δ > d−1
d+1

,
(
d
2

)
(δ − 1) + d − 1 − δ > 0. Suppose Mp

(
n
d

)
≤ I ≤ (1 + ϵ)p

(
n
d

)
. Then

I/(p
(
n
d

)
) ≥ M so

(1 + on(1))

(
p

q

)I/(p(nd))
p−2ϵαe(

d
2) = On(n

−M((d2)(δ−1)+d−1−δ)+2ϵ(d−1−δ)).

Particualrly, if n is sufficiently large then

(1 + on(1))

(
p

q

)I/(p(nd))
p−2ϵαe(

d
2) = On(n

−M
2 ((

d
2)(δ−1)+d−1−δ))

since ϵ = on(1). We therefore have that∑
H,H′∈Z,

Proj(H)=Proj(H′),

Mp(nd)≤|E(H)∩E(H′)|≤(1+ϵ)p(nd)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = H]

≤
(
(1 + ϵ)p

(
n

d

)
On(n

−M
2 ((

d
2)(δ−1)+d−1−δ))p(

n
d)
) 1

2

= on(1).

■

Proof of Theorem 3.8. From Lemma 3.6 and Lemma 3.9 it suffices to prove that∑
H,H′∈{0,1}(

[n]
d ),

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)| = on

(
p

(
n

d

))
.

From Lemma 3.12, for all M ∈ (0, 1) we have that∑
H,H′∈{0,1}(

[n]
d ),

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)| ≤ (M + on(1))p

(
n

d

)
.

Considering the limit M → 0 completes the proof. ■
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3.4 Weighted partial recovery
For weighted partial recovery, we can prove a similar result as Theorem 3.8 using a very
similar method. This is the statement of the result.

Theorem 3.13. Suppose δ > d−1
d+1

. Then the weighted partial recovery loss is 1− on(1).

Proof. Suppose k ≥ 1. For i, j ∈ [n], i ̸= j, the probability that {i, j} is contained in at least
k hyperedges of H is

(1− p)(
n−2
d−2)

(n−2
d−2)∑
m=k

((n−2
d−2

)
m

)(
p

1− p

)m

≤
∑
m≥k

((
n− 2

d− 2

)
p

)m

= On(n
k(δ−1)).

Then, the expected number of {i, j} that are contained in at least k hyperedges of H is
On(n

2+k(δ−1)). By selecting k to be sufficiently large, this expected value will be on(1), so the
probability that there exists an edge {i, j} that is contained in at least k hyperedges is on(1).

Suppose k is sufficiently large. Then, set Z ′ to be the set of H ∈ Z such that each edge
{i, j} is contained in less than k hyperedges. We have that Pr[H ∈ Z ′] = 1− on(1), so we
can use Z ′ in place of Z.

We can now essentially use the same proof as Theorem 3.8, of course after replacing Proj
with ProjW and Z with Z ′. The only significant step is to prove the analogue of Lemma 3.12;
the remaining steps are straightforward to verify. For this proof, we can follow the framework
given in the proof of Lemma 3.12.

The most important step is to justify the analogue of Lemma 3.11. Letting G ′′ = ProjW (Z ′),
since each edge of Proj(H) is contained in less than k hyperedges and the number of edges in
Proj(H) is at most (1 + ϵ)

(
d
2

)
p
(
n
d

)
for H ∈ Z ′, we have that

|G ′′| ≤ (k − 1)(1+ϵ)(d2)p(
n
d)|G ′|,

so using Lemma 3.11 gives that

∑
H,H′∈Z′,

ProjW (H)=ProjW (H′)

Pr[H = H] Pr[H = H ′]

Pr[ProjW (H) = ProjW (H)]2
≤ |G ′′| ≤

(
(1 + on(1))(ke)

(d2)

q

)(1+ϵ)p(nd)

.

Furthermore, it is clear that∑
H,H′∈Z′,

ProjW (H)=ProjW (H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′] ≤
∑

H,H′∈Z,
Proj(H)=Proj(H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′]

for all I ∈ [Mp
(
n
d

)
, (1 + ϵ)p

(
n
d

)
], so the analogue∑

H,H′∈Z,ProjW (H)
=ProjW (H′),

|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′] ≤ (1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)αp(nd)

of (3.8) is true. Afterwards, we can follow the same steps to prove the analogue of Lemma 3.12.
■
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3.5 Correlation inequality
It is in fact possible to extend the results from Theorem 3.8 from one hyperedge to multiple
hyperedges. As explained in the proof of the following result, the special case k = 1 is
equivalent to Theorem 3.8.

Theorem 3.14. Suppose Suppose δ > d−1
d+1

and k ≥ 1. Then

sup
h1,...,hk∈([n]

d )
distinct

∑
G∈G

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G] = on(p
k).

Proof. First we resolve the case k = 1. From Lemma 3.6, it suffices to prove that EH,H′ [E(H)∩
E(H′)] = on

(
p
(
n
d

))
, which we show in the proof of Theorem 3.8.

Next, assume that k ≥ 2. Suppose h1, . . . , hk ∈
(
[n]
d

)
. Suppose Si, 1 ≤ i ≤ k are disjoint

sets of ⌊n
k
⌋−d vertices that are disjoint from hi, 1 ≤ i ≤ k, assuming n ≥ kd. Let Ti = Si∪hi

for 1 ≤ i ≤ k. Let Hi be H with vertex set restricted to Ti for 1 ≤ i ≤ k. Observe that the
Hi do not have any overlapping hyperedges. Furthermore, let HC denote H\

(⋃k
i=1Hi

)
, that

is, HC is H restricted to
(
[n]
d

)
\
(⋃k

i=1

(
Ti

d

))
.

Suppose G ∈ G. Where Gi is some graph with vertex set Ti for 1 ≤ i ≤ k and GC is some
graph with vertex set [n], we have that

Pr[Proj(H) = G] =
∑

Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi] Pr[Proj(HC) = GC ]

and

Pr[h1, . . . , hk ∈ E(H),Proj(H) = G]

=
∑

Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)] Pr[Proj(HC) = GC ].

Using the Cauchy-Schwarz inequality gives that

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G]

=

(∑
Gi,1≤i≤k,GC ,
projection is G

∏k
i=1 Pr[Proj(Hi) = Gi, hi ∈ E(Hi)] Pr[Proj(HC) = GC ]

)2

∑
Gi,1≤i≤k,GC ,
projection is G

∏k
i=1 Pr[Proj(Hi) = Gi, hi ∈ E(Hi)] Pr[Proj(HC) = GC ]

≤
∑

Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
Pr[Proj(HC) = GC ].
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Afterwards summing over the G gives that∑
G∈G

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G]

≤
∑
G∈G

∑
Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
Pr[Proj(HC) = GC ]

=
∑

Gi,1≤i≤k,GC

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
Pr[Proj(HC) = GC ]

=
∑

Gi,1≤i≤k

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]

=
k∏

i=1

∑
Gi

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
.

Observe that the Hi follow the same random model as H but with a different value of p. The
Hi have ⌊n

k
⌋ vertices and each hyperedge appears with probability (c+ on(1))n

−d+1+δ. Thus,
when the Hi have n vertices, each hyperedge appears with probability (c+on(1))k

−d+1+δn−d+1+δ.
From repeating the case k = 1 for this random model,∑

G∈G

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G]

≤
k∏

i=1

∑
Gi

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
= on(p

k).

■

Remark 3.15. The previous proof exhibits an advantage of considering the regime p =
(c+ on(1))n

−d+1+δ.
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Chapter 4

Ambiguous graph results

4.1 Introduction to ambiguous graphs
The goal of this chapter is to prove combinatorial results that will eventually justify lower
bounds of the exact recovery thresholds. We apply these results in Chapter 5 to prove
Theorems 1.7 and 1.9. First, in Definition 4.1, we define an ambiguous graph, which is
introduced in the paper [5]. Afterwards, in Definition 4.2, we define the ambiguous graph
Ga,d, which is also introduced in the paper.

Definition 4.1. A minimal preimage of a graph G is a hypergraph H such that Proj(H) = G
and |e(H)| is minimal. A graph G is ambiguous if there exists two distinct minimal preimages
of G.

Definition 4.2. Define the hypergraph H = (V,E) as follows:

• V = {w1, w2} ⊔ {v1, . . . , vd−1}
⊔d−1

i=1 S
1
i

⊔d−1
i=1 S

2
i .

• E consists of {w1, v1, . . . , vd−1}, {w1, vi} ⊔ S1
i for 1 ≤ i ≤ d− 1, and {w2, vi} ⊔ S2

i for
1 ≤ i ≤ d− 1.

Then, define Ga,d := Proj(H).

As explained in [5, Lemma 27], H and H ′ are minimal preimages of Ga,d, where H ′ is H
with the hyperedge {w1, v1, . . . , vd−1} replaced by {w2, v1, . . . , vd−1}.

The following result is the main result of this chapter. We dedicate the sections of this
chapter to proving various cases of the theorem for d ≥ 4.

Theorem 4.3. Suppose d ≥ 3. For any preimage h of an ambiguous graph, d−1− 1
m(h)

≥ 2d−4
2d−1

.

Proof. The d = 3 case is resolved in [5, Appendix D]. The cases d = 4 and d = 5 follow from
Lemmas 4.8 and 4.9, respectively. ■

Remark 4.4. Observe that d − 1 − 1
m(h)

= 2d−4
2d−1

for the minimal preimage h of Ga,d, so
Theorem 4.3 implies that Ga,d is the optimal ambiguous graph in the context of the theorem.
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u

v1

w

v2

Su
2

Su
1 Sv

1

Sw
2

Figure 4.1: This figure displays Ga,3. One minimal preimage consists of the gray and red
triangles while the other consists of the gray and blue triangles. For general d ≥ 3, the set
{v1, v2} is replaced with {v1, . . . , vd−1}. Then, the red and blue triangles are replaced by
d-cliques. Furthermore, the sets Su

i and Sw
i are replaced by (d− 2)-cliques for 1 ≤ i ≤ d− 1.

4.2 Optimization result
Lemma 4.5. Suppose d ≥ 3 and γ ∈ [d−1

d+1
,∞). Assume that h is a d-uniform hypergraph.

Assume that the set of edges of h is Eh ⊔ I, where Eh and I are disjoint. Suppose U is a set
of vertices of h such that each hyperedge in Eh is a subset of U . Suppose P is a set of edges
such that for all {a, b} ∈ P, {a, b} ⊂ U and there exists i ∈ I such that {a, b} ⊂ i. If

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

≥ γ,

then d− 1− 1
m(h)

≥ min(γ, 1).

Proof. Assume that
(d− 1)|Eh| − |U |+ |P|

|Eh|+ |P|
≥ γ.

For all i ∈ I, let xi = |i ∩ U |. Let Z be the set of i ∈ I such that xi ≤ 1. Let V be the set of
vertices in U or some hyperedge in I\Z; that is, V = U

⋃
i∈I\Z i. Suppose h′ is the subgraph

of h that is induced by V .
Start with the vertex set U . The number of vertices is |U |. After adding the hyperedges

i ∈ I\Z, the number of vertices |V | satisfies

|V | ≤ |U |+
∑
i∈I\Z

|i\U | = |U |+
∑
i∈I\Z

(d− xi).

Therefore,

α(h′) ≥ |Eh|+ |I\Z|
|V |

≥ |Eh|+ |I\Z|
|U |+

∑
i∈I\Z(d− xi)

.

Note that

d− 1− 1

m(h)
≥ d− 1− 1

α(h′)
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≥ d− 1−
|U |+

∑
i∈I\Z(d− xi)

|Eh|+ |I\Z|

=
(d− 1)|Eh| − |U |+ (d− 1)|I\Z| −

∑
i∈I\Z(d− xi)

|Eh|+ |I\Z|

=
(d− 1)|Eh| − |U | − |I\Z|+

∑
i∈I\Z xi

|Eh|+ |I\Z|
.

Hence, it suffices to prove that

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z xi

|Eh|+ |I\Z|
≥ min(γ, 1).

Next we use the technique from Section 2.1 to finish the proof. Observe that∑
i∈I\Z

(
xi

2

)
≥ |P|

from the definition of P . For all i ∈ I\Z, let yi =
(
xi

2

)
. Note that

xi =
1 +

√
1 + 8yi
2

for all i ∈ I\Z. Because xi ≥ 2 for all i ∈ I\Z, 1 ≤ yi ≤
(
d
2

)
for all i ∈ I\Z. We have that

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z xi

|Eh|+ |I\Z|

≥ min
1≤yi≤(d2), i∈I\Z,∑

i∈I\Z yi≥|P|

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z
1+

√
1+8yi
2

|Eh|+ |I\Z|
.

Hence, it suffices to prove that

min
1≤yi≤(d2), i∈I\Z,∑

i∈I\Z yi≥|P|

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z
1+

√
1+8yi
2

|Eh|+ |I\Z|
≥ min(γ, 1).

Assume that M = |I\Z| and replace I\Z with {1, . . . ,M}, for simplicity. Furthermore,
let RM = {(yi)1≤i≤M : 1 ≤ yi ≤

(
d
2

)
, 1 ≤ i ≤ M,

∑M
i=1 yi ≥ |P|} for M ≥ 1.

Case 1: M = 0
If M = 0, then |P| = 0, so

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
=

(d− 1)|Eh| − |U |
|Eh|

=
(d− 1)|Eh| − |U |+ |P|

|Eh|+ |P|
≥ γ.
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Case 2: 1 ≤ M ≤ |P|
Suppose 1 ≤ M ≤ |P|. Observe that

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M

is concave in (yi)1≤i≤M , so the function is minimized over RM at a vertex.
At the vertex, M −1 of the values must be elements of {1,

(
d
2

)
}. Without loss of generality,

assume that yj ∈ {1,
(
d
2

)
} for 1 ≤ j ≤ M − 1. Assume that A of these values equal

(
d
2

)
and

M − A− 1 equal 1. Then, since
∑M

i=1 yi ≥ |P|,

yM − 1 + A

((
d

2

)
− 1

)
≥ |P| −M ⇒ (d− 2)A+

2(yM − 1)

d+ 1
≥ 2(P −M)

d+ 1
. (4.1)

Furthermore,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M

=
(d− 1)|Eh| − |U | −M + Ad+ 2M − 2A− 2 + 1+

√
1+8yM
2

|Eh|+M

=
(d− 1)|Eh| − |U |+ |P| − (|P| −M) + Ad− 2A+ −3+

√
1+8yM
2

|Eh|+ |P| − (|P| −M)
.

Let X = (d−1)|Eh|−|U |+ |P|, Y = |Eh|+ |P|, W = |P|−M , and ∆ = Ad−2A+ −3+
√
1+8yM
2

.
Then,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
=

X −W +∆

Y −W
,

and we know that X
Y
≥ γ ≥ d−1

d+1
. Observe that

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
− X

Y
=

W (X − Y ) + ∆Y

(Y −W )Y
=

W (X−Y
Y

) + ∆

Y −W
.

Because X−Y
Y

≥ γ − 1 ≥ − 2
d+1

,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
− X

Y
≥

∆− 2W
d+1

Y −W
.

The goal is to prove that (d−1)|Eh|−|U |−M+
∑M

i=1

1+
√

1+8yi
2

|Eh|+M
≥ X

Y
. For this, it suffices to prove that

∆ ≥ 2W
d+1

.
Since ∆ = (d− 2)A+ −3+

√
1+8yM
2

, in order to prove that ∆ ≥ 2W
d+1

, using (4.1) gives that
it suffices to prove that

−3 +
√
1 + 8yM
2

≥ 2(yM − 1)

d+ 1
,
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where 1 ≤ yM ≤
(
d
2

)
. We have that f(x) = −3+

√
1+8x

2
− 2(x−1)

d+1
is concave, so f(x) is minimized

over the interval [1,
(
d
2

)
] at its endpoints. Since f(1) = f(

(
d
2

)
) = 0, f(x) ≥ 0 over [1,

(
d
2

)
],

which shows that ∆ ≥ 2W
d+1

. Thus,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
≥ X

Y
≥ γ.

Case 3: M > |P|
Next, suppose M > |P|. Then,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M

is minimized over RM at yi = 1 for 1 ≤ i ≤ M . Therefore, over RM we have that

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
≥ (d− 1)|Eh| − |U |+M

|Eh|+M

=
(d− 1)|Eh| − |U |+ |P|+ (M − |P|)

|Eh|+ |P|+ (M − |P|)
≥ min(γ, 1).

We are done. ■

4.3 Unweighted
Suppose h and g are hypergraphs such that Proj(h) = Proj(g), h ̸= g, and e(h) ≥ e(g). Note
that G := Proj(h) is not necessarily ambiguous (despite the title of this chapter) and g is
not necessarily minimal. In this chapter we derive lower bounds for d− 1− 1

m(h)
for different

values of d.
Let Eh be the set of hyperedges in h but not g and Eg be the set of hyperedges in g but

not h. Furthermore, let I be the set of hyperedges in both h and g.
Let Eh be the set of edges of Proj(Eh) and Eg be the set of edges of Proj(Eg). Furthermore,

let E be the set of edges of Proj(I).

Lemma 4.6. The set Eh is a subset of E ∪ Eg and the set Eg is a subset of E ∪ Eg.

Proof. Suppose {i, j} ∈ Eh. Then, {i, j} is an edge of Proj(h) = G. Hence, {i, j} is an edge
of Proj(g) = G, which implies that {i, j} ∈ E ∪ Eg. ■

Let P be the symmetric difference of Eh and Eg. From Lemma 4.6, P ⊂ E . Let U be the
set of vertices in some hyperedge in Eh ∪Eg. Observe that for all {a, b} ∈ P , {a, b} ⊂ U and
because P ⊂ E , there exists i ∈ I such that {a, b} ⊂ i. Hence, Eh, I, U , and P satisfy the
conditions of Lemma 4.5.

Let Vh be the set of vertices that are in Eh but not Eg, Vg be the set of vertices that are
in Eg but not in Eh, and VI be the set of vertices that are in both Eg and Eh. Observe that

U = Vh ⊔ Vg ⊔ VI .
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Suppose v ∈ U . Let dh(v) be the number of elements of Eh that contain v and d∗h(v) be
the number of u ∈ U such that {u, v} ∈ Eh\Eg. Similarly, let dg(v) be the number of elements
of Eg that contain v and d∗g(v) be the number of u ∈ U such that {u, v} ∈ Eg\Eh.

Suppose v ∈ VI . Let k(v) be the largest positive integer k such that there exists ih ∈ Eh

and ig ∈ Eg such that v ∈ ih, ig and |ih\ig| = |ig\ih| = k. Assume that ih ∈ Eh and ig ∈ Eg

satisfy v ∈ ih, ig and |ih\ig| = k(v). We have that ih ≠ ig so ih\ig and ig\ih are nonempty.
Let ih(v) = ih and ig(v) = ig. If there are multiple choices for (ih, ig), we can select one choice
randomly. Let nh(v) be the number of w ∈ ih\ig such that {v, w} ∈ Eh\Eg and ng(v) be the
number of w ∈ ig\ih such that {v, w} ∈ Eg\Eh.

The following lemma is implied by Lemma 4.9. However, we include its proof since its
contents motivate later methods.

Lemma 4.7. Suppose d ≥ 5. Then d− 1− 1
m(h)

≥ d−1
d+1

.

Proof. From Lemma 4.5, it suffices to prove that

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

≥ d− 1

d+ 1
.

Thus, it suffices to prove that

d(d− 1)|Eh|+ 2|P| ≥ (d+ 1)|U |. (4.2)

We have that

d|Eh| =
∑
v∈U

dh(v) =
∑

v∈Vh∪VI

dh(v) and d|Eg| =
∑

v∈Vg∪VI

dg(v).

Furthermore,
2|P| =

∑
v∈U

d∗h(v) + d∗g(v),

so
2|P| =

∑
v∈Vh

d∗h(v) +
∑
v∈Vg

d∗g(v) +
∑
v∈VI

(d∗h(v) + d∗g(v)). (4.3)

Suppose v ∈ VI . For simplicty, let ih = ih(v) and ig = ig(v).
Assume that nh(v) = 0. Suppose w ∈ ih\ig. Then, there exists i ∈ Eg such that {u,w} ∈ i

because {u,w} ∈ Eh and {u,w} /∈ Eh\Eg. Because w /∈ ig, i ̸= ig. As v ∈ i, ig, dg(v) ≥ 2.
Assume that nh(v) > 0. Then, there exists w ∈ ih\ig such that {u,w} ∈ Eh\Eg, so

d∗h(v) ≥ 1. Observe that dg(v) ≥ 1 because v ∈ ig.
Hence,

dg(v) ≥ 1 + 1nh(v)=0 and d∗h(v) ≥ 1− 1nh(v)=0.

We similarly have that

dh(v) ≥ 1 + 1ng(v)=0 and d∗g(v) ≥ 1− 1ng(v)=0.

Let
Nh =

∑
v∈VI

1nh(v)=0 and Ng =
∑
v∈VI

1ng(v)=0.
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We have that dh(v) ≥ 1 for all v ∈ Vh and dg(v) ≥ 1 for all v ∈ Vg. Thus,

d|Eh| =
∑

v∈Vh∪VI

dh(v) ≥ |Vh|+
∑
v∈VI

(1 + 1ng(v)=0) ≥ |Vh|+ |VI |+Ng (4.4)

and similarly,
d|Eg| ≥ |Vg|+ |VI |+Nh. (4.5)

Adding (4.4) and (4.5) gives that

d(|Eh|+ |Eg|) ≥ |Vh|+ |Vg|+
∑
v∈VI

(2 + 1nh(v)=0 + 1ng(v)=0)

= |Vh|+ |Vg|+ 2|VI |+Nh +Ng

= |U |+ |VI |+Nh +Ng.

Since |Eh| ≥ |Eg| because g is minimal,

d|Eh| ≥
|U |+ |VI |+Nh +Ng

2
. (4.6)

Suppose v ∈ Vh. Suppose v ∈ i for i ∈ h. We have that for all w ∈ i such that v ̸= w,
{v, w} ∈ Eh\Eg because v ∈ Vh. Therefore, d∗h(v) ≥ d− 1. Similarly, if v ∈ Vg, d∗g(v) ≥ d− 1.
Hence, (4.3) gives that

2|P| ≥ (d− 1)|Vh|+ (d− 1)|Vg|+
∑
v∈VI

(2− 1nh(v)=0 − 1ng(v)=0)

= (d− 1)(|Vh|+ |Vg|) + 2|VI | −Nh −Ng.

(4.7)

We have that

d(d− 1)|Eh|+ 2|P| ≥ (d− 1)|U |
2

+
(d+ 3)|VI |

2
+ (d− 1)(|Vh|+ |Vg|) +

d− 3

2
(Nh +Ng)

=
(d− 1)|U |

2
+

(d+ 3)|U |
2

+
d− 5

2
(|Vh|+ |Vg|) +

d− 3

2
(Nh +Ng)

= (d+ 1)|U |+ d− 5

2
(|Vh|+ |Vg|) +

d− 3

2
(Nh +Ng)

≥ (d+ 1)|U |.

This proves that (4.2) is true, which finishes the proof. ■

Lemma 4.8. Suppose d = 4. Then, d− 1− 1
m(h)

≥ 2d−4
2d−1

= 4
7
.

Proof. For the sake of contradiction, that d − 1 − 1
m(h)

< 4
7
< 3

5
, where d−1

d+1
= 3

5
. From

Lemma 4.5,
(d− 1)|Eh| − |U |+ |P|

|Eh|+ |P|
<

3

5
.

This is equivalent to
12|Eh|+ 2|P| < 5|U |. (4.8)
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For the sake of contradiction, assume that |Vh| = 0. Using (4.6) gives that

4|Eh| ≥
|U |+ |VI |+Nh +Ng

2

and using (4.7) gives that

2|P| ≥ 3|Vg|+ 2|VI | −Nh −Ng = 2|U |+ |Vg| −Nh −Ng.

Hence,

12|Eh|+ 2|P| ≥ 12

8
(|U |+ |VI |+Nh +Ng) + 2|U |+ |Vg| −Nh −Ng

=
7

2
|U |+ (|VI |+ |Vg|) +

1

2
(|VI |+Nh +Ng)

=
9

2
|U |+ 1

2
(|VI |+Nh +Ng).

Therefore, (4.8) implies that

9

2
|U |+ 1

2
(|VI |+Nh +Ng) < 5|U |,

so
|VI |+Nh +Ng < |U |. (4.9)

Additionally, using (4.5) gives that,

4|Eh| ≥ 4|Eg| ≥ |Vg|+ |VI |+Nh = |U |+Nh.

We therefore have that

12|Eh|+ 2|P| ≥ 3(|U |+Nh) + 2|U |+ |Vg| −Nh −Ng

= 5|U |+ |Vg|+ 2Nh −Ng.

Thus, (4.8) gives that

5|U |+ |Vg|+ 2Nh −Ng < 5|U | ⇒ 2Nh + |Vg| < Ng.

Substituting this in (4.9) implies that

|VI |+ 3Nh + |Vg| < |U |,

which is a contradiction to |U | = |VI |+ |Vg|. Thus, |Vh| > 0.
Next we prove that m(h) ≥ 1

d−1− 2d−4
2d−1

= 7
17

. Suppose v ∈ Vh. Assume that i ∈ h and v ∈ i.

Suppose i = {v, u1, u2, u3}. Observe that because v ∈ Vh, {v, u1}, {v, u2}, {v, u3} ∈ Eh\Eg.
Hence, each of these edges is contained in an element of I by Lemma 4.6. Let

I = {{v, u1}, {v, u2}, {v, u3}}.

Step 1: Covering the edges of I
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We cannot cover the edges in I with one element of I. Suppose we cover the edges with
a, b ∈ I, where {v, u1, u2} ⊂ a and {v, u3} ⊂ b without loss of generality. Then, if κ is the
subgraph of h induced by the vertices of a, b, and i, e(κ) ≥ 3 and v(κ) ≤ 7 so

e(κ)

v(κ)
≥ 3

7
>

7

17
.

Hence, m(h) > 7
17

.
Suppose we cover the edges in I with a, b, c ∈ I, where {v, u1} ⊂ a, {v, u2} ⊂ b, and

{v, u3} ⊂ c. Let f(a) = {v, u1}, f(b) = {v, u2}, f(c) = {v, u3}, and f(i) = {v, u1, u2, u3}. For
any two distinct elements x, y ∈ {a, b, c, i}, f(x) ∩ f(y) ⊂ x ∩ y since f(x) ⊂ x and f(y) ⊂ y.
Suppose there exists two distinct elements x, y ∈ {a, b, c, i} such that f(x) ∩ f(y) is a strict
subset of x ∩ y. Then, if κ is the subgraph of h induced by the vertices of a, b, c, and i, then
e(κ) ≥ 4 and v(κ) ≤ 9 so

e(κ)

v(κ)
≥ 4

9
>

7

17
.

Assume that for any two distinct elements x, y ∈ {a, b, c, i}, f(x) ∩ f(y) = x ∩ y. Then, if κ is
the subgraph of h induced by the vertices of a, b, c, and i, e(κ) ≥ 4 and v(κ) = 10.
Step 2: Covering {u1, u2}, {u2, u3}, and {u3, u1}

We have that the edges {u1, u2}, {u2, u3}, and {u3, u1} must be covered by elements of
Eg ∪ I by Lemma 4.6.

Assume that d ∈ (Eh ∪ I)\{a, b, c, i} and |d ∩ {u1, u2, u3}| ≥ 2. If κ is the subgraph of h
induced by the vertices of a, b, c, d, and i, then

e(κ)

v(κ)
≥ 5

12
>

7

17
.

Next, assume the condition (∗2) that there does not exist d ∈ (Eh ∪ I)\{a, b, c, i} such
that |d ∩ {u1, u2, u3}| ≥ 2. In particular, this implies that the edges {u1, u2}, {u2, u3}, and
{u3, u1} must be covered by elements of Eg.

Let V be the set of vertices of a, b, c, and i; observe that |V| = 10.
Step 2.1: Covering {u1, u2}

Suppose d ∈ Eg and {u1, u2} ⊂ d. The two cases are d ∩ {u1, u2, u3} equals {u1, u2} or
{u1, u2, u3}.
Step 2.1.1: d ∩ {u1, u2, u3} = {u1, u2, u3}

Assume that d ∩ {u1, u2, u3} = {u1, u2, u3}. Suppose d = {w, u1, u2, u3}. By Lemma 4.6,
all edges in the set

S = {{w, u1}, {w, u2}, {w, u3}}
must be covered by an element of Eh ∩ I.

Assume that w ∈ V . For the sake of contradiction, assume that all edges in S are covered
by an element of {a, b, c, i}. Then, {w, u1} is covered by some element of {a, b, c, i}. Thus,
w ∈ a ∪ i since u1 /∈ b, c. Since w /∈ i, w ∈ a. Similarly, w ∈ b, c. Hence, w ∈ a ∩ b ∩ c = {v},
which is a contradiction to d ̸= i. Suppose e ∈ Eh ∪ I is not an element of {a, b, c, i} and
covers some element of S. If κ is the subgraph of h induced by the vertices of a, b, c, e, and
i, e(κ) ≥ 5 and v(κ) ≤ 12 so

e(κ)

v(κ)
≥ 5

12
>

7

17
.
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Assume that w /∈ V . Then, no element of S is covered by an element of {a, b, c, i}. By (∗2),
each of the elements of S must be covered by a distinct element of (Eh∪I)\{a, b, c, i}, otherwise
two elements of {u1, u2, u3} will be contained in a single element of (Eh∪I)\{a, b, c, i}. Hence,
this is the only case that we consider.

Suppose the elements of S can be covered by three elements of (Eh∪ I)\{a, b, c, i} but not
less than three. Then, there exists e, f, j ∈ Eh ∪ I such that {w, u1} ⊂ e, {w, u2} ⊂ f , and
{w, u3} ⊂ j. If κ is the subgraph of h induced by the vertices a, b, c, e, f , j, and i, e(κ) ≥ 7
and v(κ) ≤ 17 so

e(κ)

v(κ)
≥ 7

17
.

Step 2.1.2: d ∩ {u1, u2, u3} = {u1, u2}
Suppose d ∩ {u1, u2, u3} = {u1, u2}. Suppose d = {u1, u2, w1, w2}. Observe that the five

edges in the set

S = {{u1, w1}, {u1, w2}, {u2, w1}, {u2, w2}, {w1, w2}}

must be covered by elements of Eh ∪ I by Lemma 4.6.
Assume that w1, w2 ∈ V. For the sake of contradiction, assume that all edges in S are

covered by some element of {a, b, c, i}. Then, {w1, u1} must be covered by a or i, so w1 ∈ a∪ i.
Also, {w1, u2} must be covered by b or i, so w1 ∈ b ∪ i. Observe that (a ∪ i) ∩ (b ∪ i) = i,
so w1 ∈ i. Similarly, w2 ∈ i. This is a contradiction to d ̸= i. Thus, some edge in S is not
covered by some element of {a, b, c, i}. This edge must be covered by e ∈ Eh ∪ I. Note that
because d ⊂ V and |d ∩ e| ≥ 2, |e\V| ≤ 2. Then, if κ is the subgraph of h induced by the
vertices of a, b, c, e, and i, e(κ) ≥ 5 and v(κ) ≤ 12 so

e(κ)

v(κ)
≥ 5

12
>

7

17
.

Assume that |{w1, w2} ∩ V| = 1. Without loss of generality, assume that w1 ∈ V and
w2 /∈ V. We have that the edges {w2, w1}, {w2, u1}, and {w2, u2} in S are not covered by
elements of {a, b, c, i}. Let

Q = {{w2, w1}, {w2, u1}, {w2, u2}}.

The cases that we must consider are that the elements of Q are covered by two or three
elements of Eh ∪ I. By (∗2), they cannot be covered by one element of Eh ∪ I.

Suppose the elements of Q can be covered by two elements of Eh ∪ I. There exists
e, f ∈ Eh ∪ I such that w2 ∈ e, f and {w1, u1, u2} ⊂ e ∪ f . Suppose e, f ∈ Eh ∪ I such
that {w2, u1, u2} ⊂ e and {w2, w1} ⊂ f , without loss of generality; note that the vertices
{w1, u1, u2} can be considered to be equivalent for the purposes of this computation. If κ is
the subgraph of h induced by the vertices of a, b, c, e, f , and i, e(κ) ≥ 6 and v(κ) ≤ 14 so

e(κ)

v(κ)
≥ 6

14
>

7

17
.

Suppose the elements of Q can be covered by three elements of Eh ∪ I but not less than
three elements. Then, there exists e, f, j ∈ Eh ∪ I such that {w2, u1} ⊂ e and {w2, u2} ⊂ f ,
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and {w2, w1} ⊂ j. Assume that e, f , and j satisfy this condition. If κ is the subgraph of h
induced by the vertices of a, b, c, e, f , j, and i, e(κ) ≥ 7 and v(κ) ≤ 17 so

e(κ)

v(κ)
≥ 7

17
.

Next, assume that w1, w2 /∈ V . Then, none of the elements of S are covered by elements
of {a, b, c, i}. The cases we consider are when the elements of S are covered by at least 2 and
at most 5 elements of Eh ∪ I. Furthermore, recall that there does not exist an element of
(Eh ∪ I)\{a, b, c, i} that contains {u1, u2} by (∗2).

Suppose the elements of S can be covered by two elements of Eh ∪ I. There exists
e, f ∈ Eh ∪ I such that {w1, w2, u1} ⊂ e and {w1, w2, u2} ⊂ f . Assume that e and f satisfy
this condition. If κ is the subgraph of h induced by the vertices of a, b, c, e, f , and i, then
e(κ) ≥ 6 and v(κ) ≤ 14 so

e(κ)

v(κ)
≥ 6

14
>

7

17
.

Suppose the elements of S can be covered by three elements of Eh∪I but not less than three
elements. Then, there exists e, f, j ∈ Eh ∪ I such that either {w1, w2, u1} ⊂ e, {w1, u2} ⊂ f ,
and {w2, u2} ⊂ j or {w1, w2, u2} ⊂ e, {w1, u1} ⊂ f , and {w2, u1} ⊂ j. Without loss of
generality, suppose e, f, j ∈ Eh ∪ I satisfy the condition that {w1, w2, u1} ⊂ e, {w1, u2} ⊂ f ,
and {w2, u2} ⊂ j. If κ is the subgraph of h induced by the vertices of a, b, c, e, f , j, and i,
then e(κ) ≥ 7 and v(κ) ≤ 17 so

e(κ)

v(κ)
≥ 7

17
.

Next, suppose the elements of S can be covered by four elements of Eh ∪ I but not less
than four elements. Suppose e, f, j, k ∈ Eh∪ I cover the elements of S. Since |S| = 5, at least
one of e, f, j, k must contain three elements of {u1, u2, w1, w2}. Without loss of generality,
suppose e satisfies this condition. Since e cannot contain {u1, u2}, suppose {w1, w2, u1} ⊂ e,
without loss of generality. The uncovered edges of S are {w1, u2} and {w2, u2}. There exists
two elements of {f, j, k} that covers both of these edges, so the elements of S can be covered
by at most three elements, which is a contradiction.

Suppose the elements of S are covered by five elements of Eh ∪ I but not less than
five elements. Suppose e, f, j, k, l ∈ Eh ∪ I and {u1, w1} ⊂ e, {u1, w2} ⊂ f , {u2, w1} ⊂ j,
{u2, w2} ⊂ k, and {w1, w2} ⊂ l. Let f(e) = {u1, w1}, f(f) = {u1, w2}, f(j) = {u2, w1}, f(k) =
{u2, w2}, and f(l) = {w1, w2}. For any two distinct elements x, y ∈ {a, b, c, e, f, j, k, l, i},
f(x) ∩ f(y) ⊂ x ∩ y since f(x) ⊂ x and f(y) ⊂ y. Suppose there exists two distinct elements
x, y ∈ {a, b, c, e, f, j, k, l, i} such that f(x) ∩ f(y) is a strict subset of x ∩ y. Then, if κ is the
subgraph of h induced by the vertices of a, b, c, e, f , j, k, l, and i, then e(κ) ≥ 9 and
v(κ) ≤ 21 so

e(κ)

v(κ)
≥ 9

21
>

7

17
.

Assume that for any two distinct elements x, y ∈ {a, b, c, e, f, j, k, l, i}, f(x) ∩ f(y) = x ∩ y.
Then, if κ is the subgraph of h induced by the vertices of a, b, c, e, f , j, k, l, and i, e(κ) ≥ 9
and v(κ) = 22.
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Step 2.2: Covering {u3, u1}
There exists d′ ∈ Eg such that {u3, u1} ⊂ d′. Assume that d′ ∩ {u1, u2, u3} = {u3, u1}; we

have already considered the case d′ ∩ {u1, u2, u3} = {u1, u2, u3} in the case d ∩ {u1, u2, u3} =
{u1, u2, u3}. Suppose d′ = {u3, u1, w

′
1, w

′
2}. By symmetry, we have that the only case we must

consider is if w′
1, w

′
2 /∈ V and the edges in the set

{{u3, w
′
1}, {u3, w

′
2}, {u1, w

′
1}, {u1, w

′
2}, {w′

1, w
′
2}}

are covered by five elements e′, f ′, j′, k′, and l′ of Eh∩I. Suppose {u3, w
′
1} ⊂ e′, {u3, w

′
2} ⊂ f ′,

{u1, w
′
1} ⊂ j′, {u1, w

′
2} ⊂ k′, and {w′

1, w
′
2} ⊂ l′. Let f(e′) = {u3, w

′
1}, f(f ′) = {u3, w

′
2},

f(j′) = {u1, w
′
1}, f(k′) = {u1, w

′
2}, and f(l′) = {w′

1, w
′
2}. By symmetry, we may further assume

that for any two distinct elements x, y ∈ {a, b, c, e′, f ′, j′, k′, l′, i}, f(x) ∩ f(y) = x ∩ y.
Let V ′ be the set of vertices of elements of {a, b, c, e, f, j, k, l, i}; observe that |V ′| = 22.
Suppose w′

1, w
′
2 ∈ V ′\V. Note that the edges {w′

1, u3} and {w′
2, u3} are not covered by

any element of {e, f, j, k, l} since no element of {e, f, j, k, l} contains u3. Because, w′
1, w

′
2 /∈ V ,

{w′
1, u3} and {w′

2, u3} are not covered by any element of {a, b, c, i}. Since {w′
1, u3} is covered

by e′ and {w′
2, u3} is covered by f ′, we have that e′, f ′ /∈ {a, b, c, e, f, j, k, l, i}. Then, if κ is

the subgraph of h induced by the vertices of a, b, c, e, e′, f , f ′, j, k, l, and i, e(κ) ≥ 11 and
v(κ) ≤ 26 so

e(κ)

v(κ)
≥ 11

26
>

7

17
.

Assume that |{w′
1, w

′
2} ∩ V ′\V| = 1. Without loss of generality, assume that w′

1 ∈ V ′\V
and w′

2 /∈ V ′. Using the argument from the previous case gives that {w′
1, u3} is not covered

by any element of {a, b, c, e, f, j, k, l, i}, so e′ /∈ {a, b, c, e, f, j, k, l, i}. Because w′
2 /∈ V ′, any

element of {e′, f ′, j′, k′, l′} that contains w′
2 is not an element of {a, b, c, e, f, j, k, l, i}. Thus,

f ′, k′, l′ /∈ {a, b, c, e, f, j, k, l, i}. Then, if κ is the subgraph of h induced by the vertices of a,
b, c, e, e′, f , f ′, j, k, k′, l, l′, and i, e(κ) ≥ 13 and v(κ) ≤ 31 so

e(κ)

v(κ)
≥ 13

31
>

7

17
.

Assume that w′
1, w

′
2 /∈ V ′. Then, e′, f ′, j′, k′, l′ /∈ {a, b, c, e, f, j, k, l, i}. Thus, if κ is the

subgraph of h induced by the vertices of a, b, c, e, e′, f , f ′, j, j′, k, k′, l, l′, and i, e(κ) ≥ 14
and v(κ) ≤ 34 so

e(κ)

v(κ)
≥ 14

34
=

7

17
.

This proves that m(h) ≥ 7
17

. ■

Lemma 4.9. Suppose d ≥ 5. Then, d− 1− 1
m(h)

≥ 2d−4
2d−1

.

Proof. For the sake of contradiction, assume that d − 1 − 1
m(h)

< 2d−4
2d−1

. Let γ = 2d−4
2d−1

. We
must have that d− 1− 1

m(h)
< γ. Because γ ≥ d−1

d+1
, Lemma 4.5 gives that

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

< γ.
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This is equivalent to
(d− 1− γ)|Eh|+ (1− γ)|P| < |U |.

Observe that
|Eh| ≥

1

2d
(|Vh|+ |Vg|+

∑
v∈VI

(dh(v) + dg(v)))

and from (4.3),

|P| ≥ 1

2
((d− 1)(|Vh|+ |Vg|) +

∑
v∈VI

(d∗h(v) + d∗g(v))).

Hence,

d− 1− γ

2d
(|Vh|+ |Vg|+

∑
v∈VI

(dh(v) + dg(v)))

+
1− γ

2
((d− 1)(|Vh|+ |Vg|) +

∑
v∈VI

(d∗h(v) + d∗g(v))) < |U |.

For v ∈ VI , let

f(v) =
d− 1− γ

2d
(dh(v) + dg(v)) +

1− γ

2
(d∗h(v) + d∗g(v)).

We have that (
d− 1− γ

2d
+

(d− 1)(1− γ)

2

)
(|Vh|+ |Vg|) +

∑
v∈VI

f(v) < |U |. (4.10)

Claim 4.10. Suppose v ∈ VI . If nh(v) < k(v) then dg(v) > 1 and if ng(v) < k(v) then
dh(v) > 1.

Proof. Suppose v ∈ VI , ig = ig(v), and ih = ih(v). Assume that nh(v) < k(v); the case
ng(v) < k(v) follows similarly. Then, there exists w ∈ ih\ig such that {v, w} ∈ Eh and
{v, w} /∈ Eh\Eg. Assume that w satisfies this condition. Then, there exists i ∈ Eg such that
i ̸= ig and {v, w} ⊂ i, so dg(v) ≥ 2. ■

Let V be the set of v ∈ VI such that:

1. dh(v) = dg(v) = 1.

2. k(v) = nh(v) = ng(v) = 1.

Observe that if v ∈ V, ih(v) and ig(v) are deterministic since dh(v) = 1 and dg(v) = 1,
respectively. Furthermore, the formulation of V corresponds to the ambiguous graph Ga,d

from [5]. For the sake of contradiction, assume the condition (∗3) that there does not exist
ih ∈ Eh and ig ∈ Eg such that |ih\ig| = 1 and ih ∩ ig ⊂ V .

Suppose v ∈ V . Since dh(v) = dg(v) = 1, d∗h(v) ≥ nh(v) = 1, and d∗g(v) ≥ ng(v) = 1,

f(v) ≥ d− 1− γ

d
+ (1− γ). (4.11)
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Let C = d−1−γ
d

+ (1− γ).
Suppose v ∈ VI\V . If nh(v) < k(v) or ng(v) < k(v), then using Claim 4.10 gives that

f(v) ≥ C +
d− 1− γ

2d
− 1− γ

2
.

If k(v) = nh(v) = ng(v) > 1, then,

f(v) ≥ C + (1− γ).

If dh(v) > 1 or dg(v) > 1 and k(v) = nh(v) = ng(v) = 1, then

f(v) ≥ C +
d− 1− γ

2d
.

Suppose β ∈ R such that d−1−γ
d

≥ (1 + 2β)(1 − γ) and 0 ≤ β ≤ 1. Then, since
d−1−γ

2d
− 1−γ

2
≥ β(1− γ) and β ≤ 1,

f(v) ≥ C + β(1− γ) =
d− 1− γ

d
+ (1 + β)(1− γ). (4.12)

Note that d−1−γ
d

≥ (1 + 2β)(1− γ) if and only if

β ≤ 1

2

(
d− 1− γ

d(1− γ)
− 1

)
=

1

2

(
2d

3
− 8

3
+

5

3d

)
. (4.13)

Let A be the set of v ∈ VI such that dh(v)+dg(v) ≥ 3 and there exists ih ∈ Eh and ig ∈ Eg

such that v ∈ ih ∩ ig and |ih\ig| = 1. Let S be the set of v ∈ A such that dh(v) + dg(v) = 3
and T be the set of v ∈ A such that dh(v) + dg(v) > 3.

Let V∗ be the set of v ∈ V such that ih(v) ∩ ig(v) ∩ S is nonempty. Furthermore, let V∗∗

be the set of v ∈ V such that ih(v) ∩ ig(v) ∩ T is nonempty.
Suppose v ∈ V. By (∗3), there exists u ∈ ih(v) ∩ ig(v) such that u /∈ V. Assume that u

satisfies this condition. We have that there exists i ∈ Eh ∪ Eg\{ih(v), ig(v)} such that u ∈ i
because u /∈ V , so dg(u) + dh(u) ≥ 3 and u ∈ A. This implies that V∗ ∪ V∗∗ = V .

Claim 4.11. (d− 1)(
∑

v∈S dh(v) + dg(v)) ≥ 3|V∗|.

Proof. Suppose v ∈ S. Without loss of generality, assume that dh(v) = 2 and dg(v) = 1.
Suppose i1h, i

2
h ∈ Eh, i1h ̸= i2h, ig ∈ Eg, |i1h\ig| = 1, and v ∈ i1h ∩ i2h ∩ ig. Let

s(v) = ((i1h ∩ ig) ∪ (i2h ∩ ig)) ∩ V∗.

Note that s(v) ⊂ ig\{v} so |s(v)| ≤ d− 1. Hence,

(d− 1)(dh(v) + dg(v)) = 3(d− 1) ≥ 3|s(v)|.

This implies that
(d− 1)

∑
v∈S

(dh(v) + dg(v)) ≥ 3
∑
v∈S

|s(v)|.

Suppose u ∈ V∗ and suppose v ∈ ih(u)∩ ig(u)∩S; note that ih(u)∩ ig(u)∩S is nonempty
by the definition of V∗. We have that u ∈ s(v). Hence, V∗ ⊂

⋃
v∈S s(v) so |V∗| ≤

∑
v∈S |s(v)|.

This finishes the proof. ■
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Claim 4.12. (d− 1)(
∑

v∈T dh(v) + dg(v)) ≥ 2|V∗∗|.

Proof. Suppose v ∈ T . Define

t(v) =


⋃

ih∈Eh,ig∈Eg ,
v∈ih∩ig ,
|ih\ig |=1

(ih ∩ ig)

 ∩ V∗∗.

Suppose ih ∈ Eh and v ∈ ih. Note that ih ∩ t(v) ⊂ ih\{v} so |ih ∩ t(v)| ≤ d− 1. We have that

|t(v)| ≤
∑

ih∈Eh:v∈ih

|ih ∩ t(v)| ≤ (d− 1)dh(v).

Similarly, |t(v)| ≤ (d− 1)dg(v). Hence,

(d− 1)(dh(v) + dg(v)) ≥ 2|t(v)|.

We then have that
(d− 1)

∑
v∈T

(dh(v) + dg(v)) ≥ 2
∑
v∈T

|t(v)|.

Suppose u ∈ V∗∗. We have that ih(u) ∩ ig(u) ∩ T is nonempty by the definition of V∗∗. If
v ∈ ih(u) ∩ ig(u) ∩ T then u ∈ t(v). Hence, V∗∗ ⊂

⋃
v∈T t(v), so |V∗∗| ≤

∑
v∈T |t(v)|. We are

done. ■

Observe that (4.10) implies that

(−d− 1− γ

2d
+

(d− 1)(1− γ)

2
)(|Vh|+ |Vg|) +

∑
v∈VI

(f(v)− d− 1− γ

d
) <

1 + γ

d
|U |.

Note that −d−1−γ
2d

+ (d−1)(1−γ)
2

≥ 1+γ
d

, so

1 + γ

d
(|Vh|+ |Vg|) +

∑
v∈VI

(f(v)− d− 1− γ

d
) <

1 + γ

d
|U |.

This implies that ∑
v∈VI

(f(v)− d− 1− γ

d
) <

1 + γ

d
|VI |. (4.14)

If v ∈ V , then (4.11) gives that

f(v)− d− 1− γ

d
= 1− γ.
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Hence, using (4.12) gives that∑
v∈VI

(f(v)− d− 1− γ

d
)

≥ (1− γ)|V|+
∑

v∈S∪T

(f(v)− d− 1− γ

d
) +

∑
v∈VI\(V∪S∪T )

(f(v)− d− 1− γ

d
)

≥ (1− γ)|V|+
∑

v∈S∪T

(f(v)− d− 1− γ

d
) + (|VI | − |V| − |S ∪ T |)(1 + β)(1− γ)

= (1− γ)|V|+
∑

v∈S∪T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) + (|VI | − |V|)(1 + β)(1− γ).

(4.15)

Suppose v ∈ S. Then,

d− 1− γ

2d
(dh(v) + dg(v)) ≥ 3

d− 1− γ

2d
.

Without loss of generality, assume that dh(v) = 2 and dg(v) = 1. Suppose ih ∈ Eh, ig ∈ Eg,
and v ∈ ih ∩ ig. Observe that for all w ∈ ih\ig, {w, v} ∈ Eh\Eg since dg(v) = 1. Since
|ih\ig| ≥ 1, d∗h(v) ≥ 1. Similarly, if dh(v) = 1 and dg(v) = 2, d∗g(v) ≥ 1. It follows that

d∗h(v) + d∗g(v) ≥ 1.

Hence, ∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥ |S| · (d− 1− γ

2d
− (

1

2
+ β)(1− γ)).

Furthermore, using Claim 4.11 gives that∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ))

≥ d− 1− γ

2d

∑
v∈S

(dh(v) + dg(v))− (
d− 1− γ

d
+ (

1

2
+ β)(1− γ))|S|

≥ d− 1− γ

2d
· 3|V

∗|
d− 1

− (
d− 1− γ

d
+ (

1

2
+ β)(1− γ))|S|.

Next, we consider a linear combination of these two inequalities. If

c∗ =
d−1−γ

2d
− (1

2
+ β)(1− γ)(

d−1−γ
2d

− (1
2
+ β)(1− γ)

)
+
(
d−1−γ

d
+ (1

2
+ β)(1− γ)

) =
d−1−γ

2d
− (1

2
+ β)(1− γ)

3d−1−γ
2d

,

then ∑
v∈S

(
d− 1− γ

2d
(dh(v) + dg(v))−

d− 1− γ

d
− (1 + β)(1− γ))
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≥ (1− c∗)|S| · (d− 1− γ

2d
− (

1

2
+ β)(1− γ))

+ c∗(
d− 1− γ

2d
· 3|V

∗|
d− 1

− (
d− 1− γ

d
+ (

1

2
+ β)(1− γ))|S|)

= (
d− 1− γ

2d(d− 1)
−

(1
2
+ β)(1− γ)

d− 1
)|V∗|.

Observe that c∗ ≥ 0 because d−1−γ
d

≥ (1 + 2β)(1− γ).
Suppose v ∈ T . Then,

f(v) ≥ 2
d− 1− γ

d
.

Hence, ∑
v∈T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥ |T | · (d− 1− γ

d
− (1 + β)(1− γ)).

Furthermore, using Claim 4.12 gives that∑
v∈T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ))

≥ d− 1− γ

2d

∑
v∈T

(dh(v) + dg(v))− (
d− 1− γ

d
+ (1 + β)(1− γ))|T |

≥ d− 1− γ

d
· |V

∗∗|
d− 1

− (
d− 1− γ

d
+ (1 + β)(1− γ))|T |.

Next, we consider a linear combination of these two inequalities. If

c∗∗ =
d−1−γ

d
− (1 + β)(1− γ)(

d−1−γ
d

− (1 + β)(1− γ)
)
+
(
d−1−γ

d
+ (1 + β)(1− γ)

) =
d−1−γ

d
− (1 + β)(1− γ)

2d−1−γ
d

,

then∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥ (1− c∗∗)|T | · (d− 1− γ

d
− (1 + β)(1− γ))

+ c∗∗(
d− 1− γ

d
· |V

∗∗|
d− 1

− (
d− 1− γ

d
+ (1 + β)(1− γ))|T |)

= (
d− 1− γ

2d(d− 1)
− (1 + β)(1− γ)

2(d− 1)
)|V∗∗|.

Similarly, c∗∗ ≥ 0 because d−1−γ
d

≥ (1 + β)(1− γ).
Let β∗ = 1

2
+ β. Because d−1−γ

d
≥ (1 + 2β)(1 − γ), d−1−γ

d
≥ 2β∗(1 − γ). Furthermore,

1
2
+ β ≥ 1+β

2
since β ≥ 0. It follows that∑

v∈S∪T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥(

d− 1− γ

2d(d− 1)
− (

1

2
+ β)

1− γ

d− 1
)|V∗|
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+ (
d− 1− γ

2d(d− 1)
− (1 + β)(1− γ)

2(d− 1)
)|V∗∗|

≥(
d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
)(|V∗|+ |V∗∗|)

≥(
d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
)|V|.

Using this inequality and (4.15) gives that∑
v∈VI

(f(v)− d− 1− γ

d
) ≥ (1− γ +

d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
)|V|+ (|VI | − |V|)(1 + β)(1− γ).

Afterwards, (4.14) implies that

(1− γ +
d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
)|V|+ (|VI | − |V|)(1 + β)(1− γ) <

1 + γ

d
|VI |.

From (4.13), we can set β to be 1
3
. Let β = 1

3
and β∗ = 1

2
+ β = 5

6
. Furthermore, let

ℓ(x) = (1− γ +
d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
)x+ (|VI | − x)(1 + β)(1− γ).

We have that ℓ(|V|) < 1+γ
d
|VI |. Note that ℓ is a linear function and 0 ≤ |V| ≤ |VI |. Then,

ℓ(|V|) < 1+γ
d
|VI | implies that min(ℓ(0), ℓ(|VI |)) < 1+γ

d
|VI |.

First, observe that

ℓ(0)− 1 + γ

d
|VI | = ((1 + β)(1− γ)− 1 + γ

d
)|VI | =

1

2d− 1
(3(1 + β)− 4d− 5

d
)|VI |.

Since
3(1 + β)− 4d− 5

d
=

5

d
> 0,

ℓ(0) ≥ 1+γ
d
|VI |.

Furthermore,

ℓ(|VI |) = (1− γ +
d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
)|VI |.

We have that

1− γ +
d− 1− γ

2d(d− 1)
− β∗1− γ

d− 1
− 1 + γ

d
=

7d− 5− 6dβ∗

2d(d− 1)(2d− 1)
.

Since β∗ = 5
6
,

7d− 5− 6dβ∗ = 2d− 5 > 0.

Thus, ℓ(|VI |) ≥ 1+γ
d
|VI |. This is a contradiction to min(ℓ(0), ℓ(|VI |)) < 1+γ

d
|VI |.

Therefore, there exists ih ∈ Eh and ig ∈ Eg such that |ih\ig| = 1 and ih ∩ ig ⊂ V . Assume
that ih and ig satisfy this condition. Suppose ih = (ih ∩ ig) ∪ {vh} and ig = (ih ∩ ig) ∪ {vg}.
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Because ih ∩ ig ⊂ V , dh(v) = dg(v) = 1 for all v ∈ ih ∩ ig, which implies that {vh, v} ∈ Eh\Eg
and {vg, v} ∈ Eg\Eh for all v ∈ ih ∩ ig.

Let E ′
h = {ih}, E ′

g = {ig}, U ′ = ih ∪ ig, and P ′ = {{vh, v} : v ∈ ih ∩ ig} ∪ {{vg, v} : v ∈
ih ∩ ig}. Let I ′ be the set of i ∈ I such that there exists e ∈ P ′ such that e ⊂ i. Because
P ′ ⊂ P, each edge in P ′ is contained in some element of I ′. Let V ′ be the set of vertices in
ih, ig, or some hyperedge in I ′. Let h′ be the subgraph of h induced by V ′. Furthermore, let
h′′ be the graph with vertex set V ′ and edge set E ′

h ∪ I ′. We have that

d− 1− 1

m(h)
≥ d− 1− 1

α(h′)
≥ d− 1− 1

α(h′′)

so it suffices to prove that

d− 1− 1

α(h′′)
≥ 2d− 4

2d− 1
.

Using Lemma 4.5 gives that to prove that d− 1− 1
α(h′′)

≥ 2d−4
2d−1

, it suffices to prove that

(d− 1)|E ′
h| − |U ′|+ |P ′|

|E ′
h|+ |P ′|

≥ 2d− 4

2d− 1
.

Observe that

(d− 1)|E ′
h| − |U ′|+ |P ′|

|E ′
h|+ |P ′|

=
d− 1− (d+ 1) + 2(d− 1)

1 + 2(d− 1)
=

2d− 4

2d− 1
,

which finishes the proof. ■

4.4 Weighted ambiguous graphs
For recovery after observing the weighted projection, we consider when two hypergraphs have
the same weighted projections, which would imply that they have the same projection. First,
we define weighted-ambiguous graphs, which are analogous to ambiguous graphs.

Definition 4.13. A weighted-minimal preimage of a graph G is a hypergraph H such that
ProjW (H) = G and |e(H)| is minimal. A graph G is weighted-ambiguous if there exists two
distinct minimal weighted-preimages of G.

We use similar conditions as the previous section: suppose h and g are hypergraphs such
that ProjW (h) = ProjW (g); observe that this immediately implies that e(h) = e(g). The goal
is to prove the following result:

Theorem 4.14. Suppose d ≥ 3. Then d− 1− 1
m(h)

≥ d
2
− 1 ≥ d−1

d+1
.

First, observe that we can remove all hyperedges in both h and g; afterwards, the condition
ProjW (h) = ProjW (g) will still be satisfied, and d−1− 1

m(h)
will be decreased. Hence, assume

that E(h) and E(g) are disjoint. Since h ̸= g, both E(h) and E(g) are nonempty.

Lemma 4.15. Suppose v ∈ V . Then, dh(v) ̸= 1.
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Proof. For the sake of contradiction, assume that dh(v) = 1. Suppose i is the hyperedge of h
that contains v. Then, the weight of {v, u} for all u ∈ i\{v} in ProjW (h) equals one. Since
ProjW (g) = ProjW (h), each edge {v, u} for u ∈ i\{v} is contained in a hyperedge iu of g.
If all of the iu are equal, then they must all equal i, which is a contradiction to E(h) and
E(g) being disjoint. Therefore, some two of the iu are distinct, which implies that dg(v) ≥ 2.
However, ProjW (h) = ProjW (g) implies that dg(v) = dh(v) = 1, which is a contradiction. ■

Proof of Theorem 4.14. Let V ′ be the set of v ∈ V such that dh(v) ≥ 1. Let h′ be the
subgraph of h induced by V ′. Using Lemma 4.15 implies that

de(h′) = de(h) =
∑
v∈V ′

dh(v) ≥ 2v(h′),

so m(h) ≥ α(h′) ≥ 2
d
⇒ d−1− 1

m(h)
≥ d

2
−1. It is straightforward to verify that d

2
−1 ≥ d−1

d+1
. ■

The following result is an immediate implication of Theorem 4.14,

Corollary 4.16. Suppose G is a weighted-ambiguous graph. For a preimage h of G, d− 1−
1

m(h)
≥ d

2
− 1.

Observe that threshold of d
2
− 1 is greater than the threshold of 2d−4

2d−1
for the unweighted

projection in Theorem 4.3. The reason for this is that the graph Ga,d defined in Definition 4.2
is not ambiguous under the weighted projection. In fact, we show that the threshold in
Theorem 4.14 is tight by defining a weighted-ambiguous graph that achieves it.

Definition 4.17. Define the hypergraph H = (V,E) as follows:

• V = S1 ⊔ S2 ⊔ {w1, w2, w3, w4}, where |S1| = |S2| = d− 2.

• E consists of S1 ∪ {w1, w2}, S1 ∪ {w3, w4}, S2 ∪ {w2, w3}, and S2 ∪ {w4, w1}.

Then, define Gw
a,d := Projw(H).

Suppose H ′ has the same vertex set as H and edge set S2 ∪ {w1, w2}, S2 ∪ {w3, w4},
S1∪{w2, w3}, and S1∪{w4, w1}. Then, H and H ′ are two distinct minimal preimages of Gw

a,d,
so Gw

a,d is a weighted-ambiguous graph. Since each vertex of H is contained in two hyperedges,
we also observe that H achieves the lower bound in Theorem 4.14. For an example, when
d = 3, H corresponds to an octahedron.
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Chapter 5

Exact Recovery

5.1 Two-connected components
First, we introduce the notion of two-connected components from [5] in the following definition,
which we use in the proof of Theorem 1.7.

Definition 5.1. Suppose H is a hypergraph. Two hyperedges a and b of H are two-connected
if there exists a sequence of hyperedges (hi)1≤i≤m such that if h0 = a and hm+1 = b then
|hi ∩ hi+1| ≥ 2 for 0 ≤ i ≤ m. A two-connected component of H is a set C of hyperedges
of H such that any two elements of C are two-connected and no element of E(H)\C is
two-connected to an element of C.

From [5, Lemma 32], if δ < d−1
d+1

then all two-connected components of Hc have O(1)

vertices with probability 1− on(1). We refer to d−1
d+1

as the two-connectivity threshold.
The papers [10] and [9] use a notion of connectivity that generalizes two-connectivty.

The random hypergraph models the papers consider are the same as H and the papers
bound the sizes of the largest connected components given the probability a hyperedge is
present. However, the results of the papers are not directly applicable to the two-connected
components of Hc since the hyperedges in Hc are not independent. Because Hc is the set of
d-cliques in Ψ, its hyperedges are positively correlated.

5.2 Proof of Theorem 1.7
From [5, Theorem 4], the probability of exact recovery is 1 − on(1) if d = 3 and δ < 2d−4

2d−1
.

In this section we address the remaining cases of Theorem 1.7. First, we address the lower
bound of the exact recovery thresholds for d ≥ 4. We state two lemmas.

Lemma 5.2 ([5, Lemma 17]). Suppose K is a fixed d-uniform hypergraph. Then,

Pr[K ⊂ H] =


on(1) if p = on(n

− 1
m(K) ),

1− on(1) if p = ωn(n
− 1

m(K) ),

Ωn(1) if p = Θn(n
− 1

m(K) ).
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Lemma 5.3 ([5, Lemma 19]). Suppose δ < d−1
d+1

. If for all finite ambiguous graphs Ga,

Pr[Cli(Ga) is a two-connected component of Hc] = on(1),

then Pr[A∗(Ψ) = H] ≥ 1− on(1).

Theorem 5.4. Suppose d = 4. If δ < 2d−4
2d−1

then the probability of exact recovery is 1− on(1).

Proof. Suppose δ < 2d−4
2d−1

. From Lemma 5.3, it suffices to prove that for all ambiguous graphs
Ga, the probability that Cli(Ga) is a 2-connected component of Hc is on(1). Suppose Ga is
an ambiguous graph. Let P be the set of hypergraphs h such that Proj(h) = Ga. Then,

Pr[Cli(Ga) is a two-connected component of Hc] ≤
∑
h∈P

Pr[h ⊂ H]. (5.1)

Suppose h ∈ P . Using Theorem 4.3, or more specifically Lemma 4.8, gives that

−d+ 1 + δ < −d+ 1 +
2d− 4

2d− 1
≤ − 1

m(h)
.

Then, Lemma 5.2 implies that Pr[h ⊂ H] = on(1). Using (5.1) finishes the proof because P
is finite. ■

Theorem 5.5. Suppose d ≥ 5. If δ < d−1
d+1

then the probability of exact recovery is 1− on(1).

Proof. We can prove this result using Theorem 4.3, or more specifically Lemma 4.9, and the
same argument as the proof of Theorem 5.4. ■

Remark 5.6. It suffices to the weaker result Lemma 4.7 rather than Lemma 4.9 in the proof
of Theorem 5.5. Using the lemma gives that if h ∈ P , then

δ <
d− 1

d+ 1
≤ d− 1− 1

m(h)
,

and similarly Lemma 5.2 implies that Pr[h ⊂ H] = on(1).

Next we address the upper bound of the exact recovery threshold. Observe that it suffices
to prove that if δ > min(d−1

d+1
, 2d−4
2d−1

), then the probability of exact recovery is on(1). From
Theorem 1.5, the partial recovery loss is on(1) if δ > d−1

d+1
, which implies that the probability

of exact recovery is on(1) in this regime. Proving the following result completes the proof of
Theorem 1.7.

Theorem 5.7. Suppose d ≥ 3. If δ = 2d−4
2d−1

then the probability of exact recovery is 1− Ωn(1)

and if δ > 2d−4
2d−1

then the probability of exact recovery is on(1).

Remark 5.8. The case where δ ≥ 2d−4
2d−1

implies exact recovery having 1−Ωn(1) probability has
been proved in [5, Appendix A] for 3 ≤ d ≤ 5 using two-connected components. Furthermore,
when d ≥ 5 the probability of exact recovery is on(1) if δ > 2d−4

2d−1
≥ d−1

d+1
from Theorem 1.5.

Hence the main contribution of this result is proving that the probability of exact recovery is
on(1) if δ > 2d−4

2d−1
and d = 3, 4.
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Proof of Theorem 5.7. Suppose δ ≥ 2d−4
2d−1

. It suffices to prove that A∗ fails with probability
Ωn(1) and 1− on(1) if δ > 2d−4

2d−1
.

We consider a hypergraph that is a minimal preimage of Ga,d repeated over many two-
connected components. For the definition of Ga,d and one of its minimal preimages, see
Definition 4.2. Suppose m ≥ 1 and h is a d-uniform hypergraph with vertex set V . Suppose
V =

⊔m
i=1 Vi. For 1 ≤ i ≤ m suppose

Vi = {vij : 1 ≤ j ≤ d+ 1}
⊔

1≤j≤d−1

S1;i
j

⊔
1≤j≤d−1

S2;i
j ,

where |S1;i
j | = |S2;i

j | = d− 2 for 1 ≤ j ≤ d− 1. Furthermore, suppose that for 1 ≤ i ≤ m the
hyperedges of the subgraph of h induced by Vi are {vi1, . . . , vid}, {vid, vij, S

1;i
j } for j ∈ [d− 1],

and {vid+1, v
i
j, S

2;i
j } for j ∈ [d− 1]. Additionally assume that h has no other hyperedges.

We have that
Pr[A∗(Ψ) ̸= H|h ⊂ H,H is not minimal] = 1.

For all G ∈ {0, 1}(
[n]
2 ), let S(G) be the set of hypergraphs H such that Proj(H) = G,

h ⊂ H, and H is minimal. Let G∗ be the set of G such that |S(G)| ≥ 1.
Suppose G ∈ G∗. Suppose H ∈ S(G). For 1 ≤ i ≤ m, let H i be the hypergraph

obtained from H after the hyperedge for {vi1, . . . , vid} is removed and the hyperedge for
{vi1, . . . , vid−1, v

i
d+1} is added. Note that H and H i are distinct elements of S(G) for 1 ≤ i ≤ m

so |S(G)| ≥ m+ 1.
Furthermore, for all G ∈ G∗, let P (G) be Pr[H = H] for a hypergraph H such that

Proj(H) = G and H is minimal. We have that

Pr[h ⊂ H,H is minimal] =
∑

h⊂H,H is minimal

Pr[H = H]

=
∑
G∈G∗

∑
H∈S(G)

Pr[H = H]

=
∑
G∈G∗

P (G)|S(G)|.

Furthermore,

Pr[A∗(Ψ) = H, h ⊂ H,H is minimal] =
∑
G∈G∗

∑
H∈S(G)

Pr[A(Ψ) = H,H = H].

Suppose G ∈ G∗. We have that∑
H∈S(G)

Pr[A∗(Ψ) = H,H = H] =
∑

H∈S(G)

Pr[A∗(Ψ) = H|H = H] Pr[H = H]

= P (G)
∑

Proj(H)=G,h⊂H,
H is minimal

Pr[A∗(Ψ) = H|Ψ = G]

≤ P (G).
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Therefore,
Pr[A∗(Ψ) = H, h ⊂ H,H is minimal] ≤

∑
G∈G∗

P (G).

Since |S(G)| ≥ m for all G ∈ G∗,

Pr[A∗(Ψ) = H, h ⊂ H,H is minimal] ≤
∑
G∈G∗

P (G) ≤ 1

m+ 1

∑
G∈G∗

P (G)|S(G)|

=
1

m+ 1
Pr[h ⊂ H,H is minimal].

It follows that

Pr[A∗(Ψ) ̸= H, h ⊂ H,H is minimal] ≥ m

m+ 1
Pr[h ⊂ H,H is minimal].

Thus,

Pr[A∗(Ψ) ̸= H] ≥Pr[A∗(Ψ) ̸= H, h ⊂ H,H is not minimal]
+ Pr[A∗(Ψ) ̸= H, h ⊂ H,H is minimal]

≥Pr[h ⊂ H,H is not minimal] +
m

m+ 1
Pr[h ⊂ H,H is minimal]

≥ m

m+ 1
Pr[h ⊂ H].

Because
− 1

m(h)
= −d+ 1 +

2d− 4

2d− 1
≤ −d+ 1 + δ,

Pr[h ⊂ H] = Ω(1) so Pr[A∗(Ψ) ̸= H] = Ω(1). Assume that δ > 2d−4
2d−1

. Then, − 1
m(h)

<

−d+ 1 + δ so Pr[h ⊂ H] = 1− on(1). It follows that for all m ≥ 1,

Pr[A∗(Ψ) ̸= H] ≥ m

m+ 1
(1− on(1)).

Therefore Pr[A∗(Ψ) ̸= H] = 1− on(1). ■

5.3 Proof of Theorem 1.9
Observe that the probability of exact recovery being on(1) if δ > d−1

d+1
follows from the partial

recovery loss being 1− on(1) if δ > d−1
d+1

by Theorem 1.6. Thus it suffices to prove that the
probability of exact recovery is 1− on(1) if δ < d−1

d+1
.

First note that the analog of Lemma 5.3 is true with projections replaced by weighted
projections. Afterwards we can use Theorem 4.14 and the same argument as the proof of
Theorem 5.4.
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5.4 Efficient algorithms for partial and exact recovery
For partial recovery, consider the algorithm that returns Hc. It is clear that this algorithm
is efficient, since there are

(
n
d

)
hyperedges that must be considered to compute Hc from Ψ.

In the regime δ < d−1
d+1

where partial recovery is possible, this algorithm achieves a partial
recovery loss of on(1), because Hc outputs q

(
n
d

)
hyperedges on average and q = (1 + on(1))p

by Corollary 3.5.
Furthermore, in the regime δ < d−1

d+1
, the MAP algorithm is efficiently computable because

each of the two-connected components has size On(1) with high probability, see [5, Theorem
10]. Since the exact recovery threshold is always at most d−1

d+1
, this implies that we can achieve

1− on(1) probability of exact recovery with an efficient algorithm when it is possible.
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Chapter 6

Phase transition

In the main results in Section 1.3, we do not consider when δ equals the exact recovery
threshold min

(
d−1
d+1

, 2d−4
2d−1

)
while analyzing exact recovery. In this chapter, we analyze this case

by exhibiting regimes for p which are below the exact recovery threshold n−d+1+min( d−1
d+1

, 2d−4
2d−1)

by a polylogarithmic factor and at which exact recovery has probability 1− on(1). Note that
we no longer consider when p ∝ (1 + on(1))n

−d+1+δ in this chapter.
The first result that we prove bounds the sizes of the two-connected components with

high probability, similarly to [5, Lemma 12]. The difference is that we consider when δ = d−1
d+1

rather than when δ < d−1
d+1

.

Theorem 6.1. Suppose δ = d−1
d+1

. Assume that t satisfies limn→∞ logn(t!) = ∞. Furthermore,
assume that p ≤ at−dn−d+1+δ for some a > 0. All 2-connected components in Hc have at
most On(t) vertices with probability 1− on(1).

Proof. We use the methods of Appendix B of the paper [5] in this proof; in particular, we
follow the proof of Lemma 34 of the paper. Suppose H ′ ∈ Grow(H); that is, E(H) ⊊ E(H ′)
and there exists a d-clique h that is two-connected to H such that:

• Proj(h) ⊂ Proj(H ′).

• |h′ ∩ h| ≥ 2 for all h′ ∈ E(H ′)\E(H), and the sets h′ ∩ h for h′ ∈ E(H ′)\E(H) are
disjoint.

Note that h can be any d-clique; for example, h can be a hyperedge of H. Furthermore,
in contrast with [5], we allow Proj(h′ ∩ h) to be a subset of Proj(H), to account for when
Proj(H ′) = Proj(H) or similar cases. We have that all hypergraphs whose projection is a
two-connected component is isomorphic to a hypergraph obtained from applying the grow
operation to [d] a finite number of times.

Let XH and XH′ be the expected number of appearances of H and H ′ in H as non-induced
subgraphs. In this case, we only require the hyperedges of H to be a subset of the hyperedges
of H, so there does not have to be a bijection between the non-hyperedges. Note that H and
H ′ do not have any disconnected vertices, so

|aut(H ′)|E[XH′ ]

|aut(H)|E[XH ]
=

|v(H ′)|!
(

n
|v(H′)|

)
p|e(H

′)|

|v(H)|!
(

n
|v(H)|

)
p|e(H)| ≤

|v(H ′)|!
(

n
|v(H′)|

)
p|e(H

′)|

|v(H)|!
(

n
|v(H)|

)
p|e(H)| .
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Therefore,

|aut(H ′)|E[XH′ ]

|aut(H)|E[XH ]
≤

n−|v(H′)||v(H ′)|!
(

n
|v(H′)|

)
(at−d)|e(H

′)|

n−|v(H)||v(H)|!
(

n
|v(H)|

)
(at−d)|e(H)| · n|v(H′)|−|v(H)|+(−d+1+δ)(|e(H′)|−|e(H)|).

From [5, Lemma 35],

|v(H ′)| − |v(H)|+ (−d+ 1 + δ)(|e(H ′)| − |e(H)|) ≤ δ − d− 1

d+ 1
= 0. (6.1)

Additionally, |e(H ′)|−|e(H)| ≤ 2d, so |v(H ′)|−|v(H)| ≤ (d−1)(|e(H ′)|−|e(H)|) ≤ (d−1)2d.
Hence,

|aut(H ′)|E[XH′ ]

|aut(H)|E[XH ]
≤

n−|v(H′)||v(H ′)|!
(

n
|v(H′)|

)
(at−d)|e(H

′)|

n−|v(H)||v(H)|!
(

n
|v(H)|

)
(at−d)|e(H)| =

|v(H′)|−1∏
i=|v(H)|

n− i

n

(at−d
)|e(H′)|−|e(H)|

≤
(
at−d

)|e(H′)|−|e(H)|
.

(6.2)

Suppose H = [d] and H ′ ∈ Grow(T )([d]). Repeating (6.2) with |aut([d])| = d! gives that

|aut(H ′)|E[XH′ ] ≤ d!
(
at−d

)|e(H′)|−1 E[XH ].

Furthermore, |v(H ′)| ≤ d + T (d − 1)2d. For all k ≥ 1, the number of H ′ ∈ Grow(T )([d])

with k hyperedges is at most 1k≥t

((d+T (d−1)2d

d )
k

)
; note that k ≥ T because we add at least one

hyperedge at each step. Hence,∑
H′∈Grow(T )([d])

|aut(H ′)|E[XH′ ] ≤ d!
∑
k≥T

((d+T (d−1)2d

d

)
k

)(
at−d

)k−1 E[XH ]

≤ d!

T !

∑
k≥T

(
(d+ T (d− 1)2d)d

d!

)k (
at−d

)k−1 E[XH ].

Suppose T = t

a
1
d (d−1)2d

. Then,(
(d+ T (d− 1)2d)d

d!

)
at−d =

(1 + da
1
d t−1)d

d!
=

1 + on(1)

d!
.

Let this quantity be ϵ. Note that c does not depend on n. Then,∑
H′∈Grow(T )([d])

|aut(H ′)|E[XH′ ] ≤ d!td

aT !

∑
k≥T

ϵkE[XH ] ≤
d!td

aT !

ϵT

1− ϵ
· n1+δ at

−d

d!
=

n1+δϵT

T !(1− ϵ)
. (6.3)

Observe that (T !)2a
1
d (d−1)2d > t! as n → ∞. Therefore, since limn→∞ logn(t!) = ∞,

limn→∞ logn(T !) = ∞. It follows that∑
H′∈Grow(T )([d])

|aut(H ′)|E[XH′ ] = on(1).
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This implies that the probability that there exists H ′ ∈ Grow(T )([d]) such that H ′ is a
non-induced subgraph of H is on(1). Since all elements of Grow(T ′)([d]) for T ′ ≥ T must
contain an element of Grow(T )([d]) as a non-induced subgraph, all 2-connected components
in Hc are isomorphic to the projection of an element of Grow(T ′)([d]) for some T ′ < T with
probability 1−on(1). Therefore, all 2-connected have On(T ) = On(t) vertices with probability
1− on(1). ■

Note that it is possible to refine the previous result to require limn→∞ t! > C, for some
constant C that depends on a and d. For simplicity, we omit this calculation. Consider the
following example of t such that limn→∞ logn(t!) = ∞.

Lemma 6.2. Suppose t = log(n)
log(log(log(n)))

. Then, limn→∞ logn(t!) = ∞.

Proof. Using Stirling’s approximation for t! gives that t! > ( t
e
)t. Observe that

logn(e
t) =

t

log(n)
= on(1).

Thus, it suffices to prove that limn→∞ logn(t
t) = ∞. Observe that

logn(t
t) =

log(n)

log(log(log(n)))
· 1

log(n)
· (log(log(n))− log(log(log(log(n))))).

Since limn→∞
log(log(n))

log(log(log(n)))
= ∞, limn→∞ logn(t

t) = ∞, which finishes the proof. ■

Theorem 6.3. Suppose d ≥ 6, δ = d−1
d+1

, a > 0, and p ≤ at−dn−d+1+δ, where limn→∞ logn(t!) =
∞ and limn→∞ logn(t) = 0. Then the exact recovery probability is 1− on(1).

Proof. From (A.5) it suffices to prove that the probability that H is not a unique minimal
preimage is on(1); if H is a unique minimal preimage, then the MAP algorithm applied to
its projected graph outputs H. Suppose H is not a unique minimal preimage. Then, there
exists a 2-connected component of Proj(H) that H is not the unique minimal preimage for.
That is, there exists a set of vertices S such that S induces a 2-connected component in
Proj(H) and if h is the subgraph of H induced by S then there exists a hypergraph g such
that Proj(g) = Proj(h) and e(g) ≤ e(h). From Lemma 4.9, d − 1 − 1

m(h)
≥ 2d−4

2d−1
. Then, H

has a subgraph h′ such that d− 1− 1
α(h′)

≥ 2d−4
2d−1

. Furthermore, Theorem 6.1 gives that the
sum of Pr[H = H] for H such that |S| > Ct is on(1) for some C > 0.

Let N be the set of H such that H contains a subgraph h′ such that d− 1− 1
α(h′)

≥ 2d−4
2d−1

and |v(h′)| ≤ Ct. Since the probability that H is not uniquely minimal and H /∈ N is on(1),
it suffices to prove that Pr[H ∈ N ] = on(1).

Let R be the set of hypergraphs h′ such that |v(h′)| ≤ Ct and d − 1 − 1
α(h′)

≥ 2d−4
2d−1

. It
suffices to prove that the probability that an element of R appears as a subgraph of H is
on(1) to prove that Pr[H ∈ N ] = on(1).

Suppose that the hypergraph h′ satisfies d− 1− 1
α(h′)

≥ 2d−4
2d−1

. Then,

E[Xh′ ] ≤ n|v(h′)|p|e(h
′)| ≤ (at−d)|e(h

′)|n
|e(h′)|( 1

α(h′)−(d−1−δ)) ≤ (at−d)|e(h
′)|n−( 2d−4

2d−1
−δ)|e(h′)|.
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Observe that 2d−4
2d−1

− δ > 0 since d ≥ 6. Furthermore, the number of hypergraphs h′ with v

vertices and k hyperedges is at most
((vd)

k

)
. Hence,

∑
h′∈R

E[Xh′ ] ≤
∑

d≤v≤Ct,
k≥ 1

d−1− 2d−4
2d−1

v

((v
d

)
k

)
(at−d)kn−( 2d−4

2d−1
−δ)k

≤
∑

d≤v≤Ct,
k≥ 1

d−1− 2d−4
2d−1

v

vdk(at−d)kn−( 2d−4
2d−1

−δ)k

≤
∑

d≤v≤Ct

vdat−dn−( 2d−4
2d−1

−δ)

1− vdat−dn−( 2d−4
2d−1

−δ)

≤ Ct
(Ct)dat−dn−( 2d−4

2d−1
−δ)

1− (Ct)dat−dn−( 2d−4
2d−1

−δ)

= on(1).

(6.4)

Observe that we have used limn→∞ logn(t) = 0. This implies that
∑

h′∈R Pr[h′ ∈ H] ≤∑
h′∈R E[Xh′ ] = on(1). Applying union bound proves that the probability that an element of

R appears in H is on(1). ■

Theorem 6.4. Suppose d = 5, δ = 2d−4
2d−1

= d−1
d+1

, and p = on(t
−d−1n−d+1+δ), where

limn→∞ logn(t!) = ∞. Then the exact recovery probability is 1− on(1).

Proof. This theorem can be proved using the proof of Theorem 6.3. Similarly, we analyze
when the two-connected components have size On(t) with probability 1− on(1). The only
difference is in (6.4). ■

Theorem 6.5. Suppose d = 3, 4, δ = 2d−4
2d−1

, and p = on(n
−d+1+δ). Then the exact recovery

probability is 1− on(1).

Proof. This theorem can be proved using the fact that the 2-connected components have at
most On(1) vertices from [5, Lemma 32] and the proof of Theorem 6.3. ■

From Theorem 5.7 or [5, Appendix A], when p ∝ (1+on(1))n
−d+1+ 2d−4

2d−1 for d = 3, 4, 5, then
the probability of exact recovery is 1− Ωn(1). Then, we see that Theorem 6.5 describes the
phase transition in the exact recovery probability very sharply when d = 3, 4. Theorem 6.4
also captures the phase transition in the exact recovery probability for d = 5, but the
transition is not as sharp.
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Appendix A

Entropy and exact recovery

For simplicity, assume that the logarithms in entropy are base e. In this section we mainly
analyze the entropy of Proj(H) and hence the conditional entropy H(H|Proj(H)) = H(H)−
H(Proj(H)).

Lemma A.1. Suppose δ > d−1
d+1

, c > 0, and p = (c+ on(1))n
−d+1+δ. Then there exists C > 0

such that C does not depend on c and H(H|Ψ) ≥ (C + on(1))H(H).

Proof. Since H(H|Ψ) = H(H)−H(Ψ), it suffices to prove that H(H)−H(Ψ) = Ωn(H(H))
if δ > d−1

d+1
.

First observe that

H(H) = −
(
n

d

)
HB(p) = c

d− 1− δ

d!
log(n)n1+δ + on(log(n)n

1+δ). (A.1)

For all i, j ∈ [n] such that i ̸= j, let X{i,j} = 1{i,j}∈e(Ψ). We have that

H(Ψ) = H(X{i,j} : 1 ≤ i < j ≤ n) ≤
∑

1≤i<j≤n

H(X{i,j}) =

(
n

2

)
HB(1− (1− p)(

n−2
d−2)). (A.2)

Bernoulli’s inequality implies that

1− (1− p)(
n−2
d−2) ≤

(
n− 2

d− 2

)
p

and for sufficiently large n we have that
(
n−2
d−2

)
p ≤ 1

e
. Hence, for sufficiently large n we have

that
−(1− (1− p)(

n−2
d−2)) log(1− (1− p)(

n−2
d−2)) ≤ −

(
n− 2

d− 2

)
p log(

(
n− 2

d− 2

)
p)

since −x log(x) increases as x increases over [0, 1
e
]. Then,

HB(1− (1− p)(
n−2
d−2)) ≤ −

(
n− 2

d− 2

)
p log(

(
n− 2

d− 2

)
p)− (1− p)(

n−2
d−2) log((1− p)(

n−2
d−2))

= (1− δ)

(
n− 2

d− 2

)
p log(n) + on(log(n)n

δ−1).
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Using this inequality and (A.2) gives that

H(Ψ) ≤ c
1− δ

2(d− 2)!
log(n)n1+δ + on(log(n)n

δ+1).

Using this inequality and (A.1) then gives that it suffices to prove that

1− δ

2(d− 2)!
<

d− 1− δ

d!
;

afterwards we can let C =
d−1−δ

d!
− 1−δ

2(d−2)!
d−1−δ

d!

, which does not depend on c. This inequality is true

because δ > d−1
d+1

, which finishes the proof. ■

Firstly observe that H(H|Ψ) = H(H)−H(Ψ) and

H(Ψ) ≤ H(H) = Θn(n
1+δ log(n)).

We analyze H(H|Ψ) and H(Ψ) in the next result.

Theorem A.2. H(Ψ) = Θn(n
1+δ log(n)). Furthermore

H(H|Ψ) =


on(n

1+δ) if δ < d−1
d+1

,

On(n
1+δ) if δ = d−1

d+1
,

Θn(n
1+δ log(n)) if δ > d−1

d+1
.

Proof. We have that

H(Ψ) = I(H; Ψ) ≥
(
n

d

)
I(1[d]∈e(H); Ψ)

=

(
n

d

)(
HB(p)−

∑
G∈G

Pr[Ψ = G]H(1[d]∈e(H)|Ψ = G)

)

=

(
n

d

)HB(p)−
∑

G∈G,([d]2 )⊂e(G)

Pr[Ψ = G]H(1[d]∈e(H)|Ψ = G)

 .

Observe that q =
∑

G∈G,([d]2 )⊂E(G)
Pr[Ψ = G]. Then Jensen’s inequality implies that

∑
G∈G,([d]2 )⊂e(G)

Pr[Ψ = G]H(1[d]∈e(H)|Ψ = G) ≤ qHB

(
p

q

)
.

Therefore

H(Ψ) ≥
(
n

d

)(
HB(p)− qHB

(
p

q

))
=

(
n

d

)(
−(1− p) ln(1− p)− p ln(q) + (q − p) ln(1− p

q
)

)
.

(A.3)
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Assume that δ < d−1
d+1

. Then Corollary 3.5 gives that q = (1 + on(1))p so qHB(
p
q
) = on(p)

and (A.3) gives that H(Ψ) = H(H)− on(n
1+δ)

Next assume that δ = d−1
d+1

. We have that q = (1 + Θn(1))p from Corollary 3.5 so
qHB(

p
q
) = On(p) and (A.3) gives that H(Ψ) = H(H)−On(n

1+δ).
Suppose δ > d−1

d+1
. Then q = ωn(p) from Corollary 3.5 so if n is sufficiently large then

Lemma A.5 gives that

(q − p) ln(1− p

q
) ≥ −2(q − p)

p

q
= Ωn(p)

and using (A.3) gives that H(Ψ) = Ωn(n
1+δ log(n)). Furthermore Lemma A.1 gives that

H(H|Ψ) = Θn(H(H)). ■

Corollary A.3. The conditional entropy H(H|Ψ) is on(H(H)) if δ ≤ d−1
d+1

.

Proof. This follows from Theorem A.2. ■

Theorem A.4. If n is sufficiently large then

H(Ψ) ≥

(
1−

(
n

d−2

)
p

1−
(

n
d−2

)
p

)
n−d+2∑
i=2

(i− 1)HB(1− (1− p)(
n−i
d−2)) = Ω(n1+δ log(n)).

Proof. Assume that n is sufficiently large throughout the proof. Suppose the set of vertices
in H is [n]. We construct a sequence of edges S. Initialize S as the empty sequence. From
i = 2 to i = n, add the edges {i, j} to S from j = 1 to j = i− 1. Note that S contains each
edge between two vertices of [n] exactly once. It follows that

H(Ψ) =

(n2)∑
a=1

H(XSa |XSb
, 1 ≤ b ≤ a− 1).

Suppose 1 ≤ a ≤
(
n
2

)
. Assume that Sa = {i, j} where 1 ≤ j < i ≤ n. Observe that the

random variables 1h∈H for h ∈
(
([n]\[i−1])∪{j}

d

)
are independent of the random variables XSb

for 1 ≤ b ≤ a− 1. This is because no hyperedge in
(
([n]\[i−1])∪{j}

d

)
contains Sb as an edge for

1 ≤ b ≤ a− 1. The probability that a hyperedge in
(
([n]\[i−1])∪{j}

d

)
that contains Sa is present

in H is
1− (1− p)(

n−i
d−2).

Suppose xb ∈ {0, 1} for 1 ≤ b ≤ a− 1. Hence,

Pr[XSa = 1|XSb
= xb, 1 ≤ b ≤ a− 1] ≥ 1− (1− p)(

n−i
d−2).

Note that 1− (1− p)(
n−i
d−2) ≤

(
n−i
d−2

)
p ≤ 1

2
if n is sufficiently large. Thus, if

Pr[XSa = 1|XSb
= xb, 1 ≤ b ≤ a− 1] ≤ (1− p)(

n−i
d−2)
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as well, then

H(XSa |XSb
= xb, 1 ≤ b ≤ a− 1) = HB(Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1])

≥ HB(1− (1− p)(
n−i
d−2)).

(A.4)

We have that

EXSb
,1≤b≤a−1[Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1]] = Pr[XSa = 1] ≤
(

n

d− 2

)
p.

Therefore, Markov’s inequality implies that

Pr
XSb

,1≤b≤a−1
[Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1] > (1− p)(
n−i
d−2)] ≤

(
n

d−2

)
p

(1− p)(
n−i
d−2)

.

Observe that ( n
d−2)p

(1−p)(
n−i
d−2)

<
( n
d−2)p

1−( n
d−2)p

. Using (A.4) then gives that

H(XSa |XSb
, 1 ≤ b ≤ a− 1) = EXSb

,1≤b≤a−1[H(XSa|XSb
= xb, 1 ≤ b ≤ a− 1)]

≥ (1− Pr
XSb

,1≤b≤a−1
[Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1] ≤ (1− p)(
n−i
d−2)])

·HB(1− (1− p)(
n−i
d−2))

≥ (1−
(

n
d−2

)
p

1−
(

n
d−2

)
p
)HB(1− (1− p)(

n−i
d−2)).

Summing this inequality from a = 1 to a =
(
n
2

)
gives

H(Ψ) ≥ (1−
(

n
d−2

)
p

1−
(

n
d−2

)
p
)
n−d+2∑
i=2

(i− 1)HB(1− (1− p)(
n−i
d−2)).

Observe that we use the fact that if i > n − d + 2 then HB(1 − (1 − p)(
n−i
d−2)) = 0. It is

straightforward to check that this lower bound on H(Ψ) is Ωn(n
1+δ log(n)). ■

A.1 Exact recovery
Lemma A.5. e−p ≥ 1− p for all n ≥ 1 and e−2p ≤ 1− p if n is sufficiently large.

Theorem A.6. Suppose X is a finite set. Suppose S ⊂ Z≥1 contains infinitely many elements.
Suppose n ∈ S. Suppose fn : X n → Yn and An : Yn → X n are functions such that for
all y ∈ Yn, fn(An(y)) = y. Suppose Xn ∈ X n is a random variable such that Xi, i ≥ 1
are independent and identically distributed with distribution pn. Assume that x− ∈ X and
limn→∞ pn(x) = 0 and limn→∞ npn(x) = ∞ for all x ∈ X− := X\{x−}, where the limits
are over S. Also assume that supy∈Yn

Pr[fn(X
n) = y] ≤ 1

e
if n is sufficiently large. The

probability that An(fn(X
n)) is not Xn is at least 1− H(fn(Xn))

H(Xn)
+ on(1), where the asymptotic

term on(1) does not depend on fn.
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Proof. Suppose n ∈ S. Let Un be the set of xn ∈ X n such that there does not exist y ∈ Yn

such that An(y) = xn. Observe that

Pr[An(fn(X
n)) ̸= Xn] = Pr[Xn ∈ Un] (A.5)

In order to prove this, it suffices to prove that An(fn(x
n)) = xn ⇔ xn ̸∈ Un. Assume that

An(fn(x
n)) = xn; then, it is clear that xn /∈ Un. Next, assume that xn /∈ Un. Suppose

xn = An(y) for y ∈ Yn. We have that fn(xn) = fn(An(y)) = y, so An(fn(x
n)) = An(y) = xn.

First observe that

H(Xn) =−
∑
y∈Yn

Pr[Xn = An(y)] log(Pr[X
n = An(y)])

−
∑

xn∈Un

Pr[Xn = xn] log(Pr[Xn = xn]).
(A.6)

Suppose xn ∈ Un. Then,

log(Pr[Xn = xn]) = (n−
∑
x∈X−

Nx(x
n)) log(pn(x

−)) +
∑
x∈X−

Nx(x
n) log(pn(x)).

Using Lemma A.5 and the fact that limn→∞ pn(x) = 0 for x ∈ X− gives that

0 ≥ (n−
∑
x∈X−

Nx(x
n)) log(pn(x

−)) ≥ −2n
∑
x∈X−

pn(x)

if n is sufficiently large. Observe that

H(Xn) ≥ −n
∑
x∈X−

pn(x) log(pn(x))

and − log(pn(x)) = Ωn(1) since pn(x) = on(1) for all x ∈ X−. Hence

(n−
∑
x∈X−

Nx(x
n)) log(pn(x

−)) = on(H(Xn)) (A.7)

so
log(Pr[Xn = xn]) =

∑
x∈X−

Nx(x
n) log(pn(x)) + on(H(Xn)).

This implies that

−
∑

xn∈Un

Pr[Xn = xn] log(Pr[Xn = xn])

= on(H(Xn))−
∑

xn∈Un

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x)).

(A.8)

Let Wn be the set of xn ∈ X n such that

Nx(x
n) ∈ [npn(x)− (npn(x))

3
4 , npn(x) + (npn(x))

3
4 ]
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for all x ∈ X−. For all x ∈ X− the random variable variable |Nx(X
n)| has mean npn(x) and

variance npn(x)(1− pn(x)). Because pn(x) = on(1) for all x ∈ X−, Chebyshev’s inequality
implies that Xn ∈ Wn with probability 1 − on(1). Therefore, Pr[Xn ∈ Un\Wn] = on(1).
Observe that ∑

xn∈Un

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x))

=
∑

xn∈Un∩Wn

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x))

+
∑

xn∈Un\Wn

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x))

= Pr[Xn ∈ Un]

(
n
∑
x∈X−

pn(x) log(pn(x))

)
+

∑
xn∈Un\Wn

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x)) + on(H(Xn)).

Suppose x ∈ X−. We have that∑
xn∈Un\Wn

Pr[Xn = xn]Nx(x
n) ≤ (

∑
xn∈Un\Wn

Pr[Xn = xn])
1
2 (

∑
xn∈Un\Wn

Pr[Xn = xn]Nx(x
n)2)

1
2

≤ (
∑

xn∈Un\Wn

Pr[Xn = xn])
1
2 (n2pn(x)

2 + npn(x)(1− pn(x)))
1
2

= on(npn(x)).

Hence ∑
xn∈Un\Wn

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x)) = on(H(Xn)).

Therefore using (A.7) with xn = (x−)n gives that∑
xn∈Un

Pr[Xn = xn]
∑
x∈X−

Nx(x
n) log(pn(x))

= Pr[Xn ∈ Un]

(
n
∑
x∈X−

pn(x) log(pn(x))

)
+ on(H(Xn))

= Pr[Xn ∈ Un]H(Xn) + on(H(Xn)).

Then, using (A.6) gives that

H(Xn) = −
∑
y∈Yn

Pr[Xn = An(y)] log(Pr[X
n = An(y)]) + Pr[Xn ∈ Un]H(Xn) + on(H(Xn)).

(A.9)
For all y ∈ Yn we have that Pr[fn(X

n) = y] ≤ 1
e

if n is sufficiently large and

Pr[fn(X
n) = y] ≥ Pr[Xn = An(y)].
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Afterwards using the fact that the function −x log(x) increases as x increases over [0, 1
e
] gives

that
H(fn(X

n)) ≥ −
∑
y∈Yn

Pr[Xn = A(y)] log(Pr[Xn = A(y)]) (A.10)

if n is sufficiently large. Afterwards using (A.9) and (A.10) gives that

H(Xn)−H(fn(X
n)) ≤ Pr[Xn ∈ Un]H(Xn) + on(H(Xn)).

This finishes the proof after using (A.5). ■

Lemma A.7. Suppose δ < 1. Then

max
G∈G

Pr[Ψ = G] = on(1).

Proof. Suppose G has at least 2
(
d
2

)
p
(
n
d

)
= Θ(n1+δ) edges. Then the number of hyperedges in

a preimage H of G has at least
2(d2)p(

n
d)

(d2)
= 2p

(
n
d

)
hyperedges. Since e(H) has mean p

(
n
d

)
and

variance on(n
2+2δ),

Pr[Ψ = G] ≤ on(n
2+2δ)

(p
(
n
d

)
)2

= on(1).

from Chebyshev’s inequality.
Next suppose G has less than 2

(
d
2

)
p
(
n
d

)
edges. For some m ≥ 1 there exists Gi, 1 ≤ i ≤ m

which are distinct isomorphic copies of G such that each element of
(
[n]
2

)
is an edge of Gi for

some i. We have that

m >

(
n
2

)
2
(
d
2

)
p
(
n
d

) = Ωn(n
1−δ).

Since the Gi are distinct and Pr[Ψ = Gi] = Pr[Ψ = G] for 1 ≤ i ≤ m,

Pr[Ψ = G] ≤ 1

m
= On(n

δ−1) = on(1).

■

Remark A.8. If δ > 1 then Pr[Proj(H) =
(
[n]
2

)
] = 1− on(1).

We give an example of an application of Theorem A.6. Observe that the following corollary
is weaker than Theorem 1.7, which proves that in the same regime, the probability of exact
recovery is on(1).

Corollary A.9. Suppose d ≥ 5 and δ < d−1
d+1

. Then, the probability of exact recovery is
1− Ωn(1).

Proof. By Lemma A.7, we can apply Theorem A.6 to get that the probability of exact
recovery is at most H(Ψ)

H(H)
− on(1). By Lemma A.1, this quantity is 1− Ωn(1). ■
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