
Quantization Methods for Matrix Multiplication and
Efficient Transformers

by

Semyon Savkin
Bachelor of Science in Mathematics and Computer Science and Engineering, MIT, 2024

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2025

© 2025 Semyon Savkin. All rights reserved.

The author hereby grants to MIT a nonexclusive, worldwide, irrevocable, royalty-free license
to exercise any and all rights under copyright, including to reproduce, preserve, distribute
and publicly display copies of the thesis, or release the thesis under an open-access license.

Authored by: Semyon Savkin
Department of Electrical Engineering and Computer Science
August 15, 2025

Certified by: Yury Polyanskiy
Professor, Thesis Supervisor

Accepted by: Katrina LaCurts
Chair
Master of Engineering Thesis Committee

2

Quantization Methods for Matrix Multiplication and Efficient
Transformers

by

Semyon Savkin

Submitted to the Department of Electrical Engineering and Computer Science
on August 15, 2025 in partial fulfillment of the requirements for the degree of

MASTER OF ENGINEERING IN ELECTRICAL ENGINEERING AND
COMPUTER SCIENCE

ABSTRACT

We study quantization in Machine Learning. First, we introduce NestQuant — a technique
for quantization of matrix products and post-training quantization of LLMs. Beyond reducing
the memory footprint, quantization accelerates inference, as the primary bottleneck during
autoregressive generation is often the memory bandwidth. NestQuant leverages two nested
lattices to construct an efficient vector codebook for quantization, along with practical
encoding and decoding algorithms. The approach is grounded in recent theoretical work
that characterizes the optimal rate–distortion trade-off for matrix products. Empirically, on
Llama-3-8B, it reduces the perplexity gap between full-precision and quantized models by
more than 55% relative to the current state-of-the-art technique (SpinQuant).

Second, we investigate data-domain quantization for RF signals. We propose a tokenized
transformer for source separation that discretizes RF waveforms into learned tokens and
operates directly on the resulting sequences, outperforming strong convolutional baselines.

Together, these contributions connect information-theoretic limits with deployable sys-
tems: structured vector quantizers accelerate LLM inference and enable competitive discrete
representations for RF tasks.

Thesis supervisor: Yury Polyanskiy
Title: Professor

3

4

Acknowledgments

First, I am very grateful to my advisor, Prof. Yury Polyanskiy. His help and guidance, as well
as the ideas that he proposed, were indispensable for my research progress. I am incredibly
lucky to be advised by someone with such deep expertise in the field.

I also want to thank my collaborators: Eitan Porat and Prof. Or Ordentlich in the
NestQuant project, and Egor Lifar, Dr. Tejas Jayashankar, Rachana Madhukara, and Prof.
Gregory Wornell in the RF transformer project. It was a pleasure to work with them.

In the NestQuant project, I significantly benefited from discussions with Nikita Lazarev,
Shang Yang, and Guangxuan Xiao about GPU kernels and the overall quantization algorithm.

Finally, I want to thank my family, my girlfriend, and my friends for their support and
encouragement.

5

6

Contents

List of Figures 11
List of Tables 13

1 Introduction 15
1.1 Thesis structure . 16

2 Background 17
2.1 Quantization overview . 17

2.1.1 Gaussian data . 18
2.1.2 Matrix multiplication quantization 19

2.2 Language models overview . 20
2.2.1 Autoregressive text generation . 20
2.2.2 Transformer model architecture . 21
2.2.3 Quantization of transformer LLMs 22

2.3 LLM quantization techniques . 23
2.3.1 Uniform scalar quantization . 23
2.3.2 Outliers and random rotation . 23
2.3.3 GPTQ . 24

3 Related works 27
3.1 Outlier avoidance . 27

3.1.1 LLM.int8() . 27
3.1.2 SmoothQuant . 27
3.1.3 AWQ . 28

3.2 Optimized rotations . 28
3.2.1 SpinQuant . 28
3.2.2 FlatQuant . 29

3.3 Using vector quantization . 29
3.3.1 QuIP# . 29
3.3.2 AQLM . 30
3.3.3 QTIP . 31

3.4 A better objective function . 31
3.4.1 GuidedQuant . 31
3.4.2 YAQA . 32

3.5 Our work . 33

7

4 Codebook design 35
4.1 Motivation for the codebook choice . 35
4.2 Codebook details . 38
4.3 Optimal scaling coefficients . 39

5 QA-LDLQ 43
5.1 Summary . 43
5.2 Motivation . 44

6 NestQuant overview 47
6.1 Matrix quantization . 47
6.2 LLM quantization . 48
6.3 Algorithm summary . 49

7 Experimental results 51
7.1 Simulated Data . 51
7.2 Llama results . 52

7.2.1 Experimental design . 52
7.2.2 Results for 4-bit quantization . 52
7.2.3 LLM quantization scaling . 53
7.2.4 Results for Llama3.2-1B . 53
7.2.5 Results for 3-bit model quantization 54
7.2.6 Zero shot benchmarks . 54

7.3 Ablation studies . 54
7.3.1 Choosing the number of scaling coefficients 55

8 Algorithm efficiency 57
8.1 Gosset oracle . 57
8.2 NestQuantM algorithm . 58
8.3 CUDA Kernel Implementation . 60

8.3.1 Runtime comparison of GEMV . 63
8.4 Dequantization circuit . 63

9 Tokenization 67
9.1 Digital systems preliminaries . 68

9.1.1 Problem setup . 68
9.2 Proposed architecture . 68

9.2.1 Architecture Overview . 69
9.2.2 The SOI Tokenizer . 70
9.2.3 The RF Transformer . 70

9.3 Experimental results . 71
9.3.1 Experimental Setup . 71
9.3.2 Results . 72

8

10 Conclusion 75
10.1 RF transformer . 75
10.2 NestQuant . 75

References 77

9

10

List of Figures

2.1 Comparison between the theoretical rate-distortion function and the results
achieved by Lloyd’s algorithm for scalar quantization 19

2.2 The internal architecture of the transformer layer 21
2.3 Relative performance of GPTQ (LDLQ) with pointwise quantization for the

w1 layer of the 15th transformer block of Llama-3-8B. The loss is proportional
to the expected MSE between layer outputs. The x-axis is the rate R in bits,
and the y-axis shows log10

L
2−2R . We see that GPTQ consistently outperforms

pointwise quantization by a factor of ∼ 1.5. 26

4.1 Demonstrating the advantage of NestQuant in 2D. Typical weights and ac-
tivations are vectors inside the black circle. Uniform quantization wastes
about 32% of allocated bitstrings for vectors outside of the circle, while nested
hexagonal lattices only waste 15% (explicitly enumerating points inside the
circle to avoid the waste is too slow to do at runtime). This allows NestQuant
to use a finer grid while quantizing to the same rate R. The gain becomes
much more dramatic in higher dimensions. 35

4.2 The blue point experiences granular quantization error, while the green point
has an overload error . 36

4.3 Complement Gaussian measure of an 8-dimensional cube (corresponding to
shaping using an ℓ∞ ball), a Voronoi region of the Gosset lattice E8 (correspond-
ing to shaping using Voronoi codes with base lattice E8), and a Euclidean
ball (corresponding to shaping with a ball, which does not admit efficient
implementation) . 38

4.4 Granular and overload error for standard Gaussian vectors, q = 16 40

5.1 We run QA-LDLQ for value projection layer of the first transformer block of
Llama-3-70B. We try different values of ε on logarithmic scale from 10−5 to 1.
For each ε, we find modified weight W̃ , and plot the amplification ratio for W̃
in y-axis, as well as how close the outputs of the weight W̃ to the outputs of
weight W . The value on x axis is defined as 1−R2 := E∥WX−W̃X∥2

Var(WX)
, where X

contains activation inputs from 10 sequences of length 2048 from wikitext2.
The right plot is bottom right corner of the left plot, zoomed in. We note
that by paying a small price in the accuracy of the weight, we can reduce the
amplification ratio dramatically. 45

11

6.1 The quantization scheme of multi-head attention. H is the Hadamard rotation
described in 6.2. Q is the quantization function described in 6.1 48

7.1 RMSE for quantized matrix multiplication for i.i.d. N (0, 1) matrices. The
NestQuant algorithm is optimized over q and multiple β’s. Also shown is the
information-theoretic lower bound from (2.1). 51

7.2 The perplexity-bitrate scaling of NestQuant with different values of k, all
components of the model (weights, KV cache, activations) are quantized . . 55

8.1 Circuit diagram of NestQuant dequantization circuit 64

9.1 Schematic overview of the proposed architecture 69
9.2 Overview of the SOI Tokenizer architecture. The main differences from the

SoundStream architecture are: (i) additional transformer blocks after down-
sampling and before upsampling; (ii) the use of FSQ instead of RVQ for
discretization; and (iii) the omission of the discriminator network. 70

9.3 Source separation performance for separating mixtures with CommSignal5G1
and EMISignal1 interference using different methods. In both cases, our
proposed architecture is highly competitive and surpasses most baselines
across a wide range of SIRs. 72

12

List of Tables

4.1 Mean RMSE for reconstructed i.i.d. standard Gaussian 8-vectors, q = 16, k
betas are uniform on [0, 10]. 40

7.1 The wikitext2 perplexity with a context window of 2048 for various quantization
methods of Llama models. 52

7.2 Wikitext2 perplexity of NestQuant quantization of Llama-3-8B at different
rates. The "bits" column is the bit rate per entry with zstd compression of
scaling coefficients, and "bits (no zstd)" is the bit rate without compression.
The "W", "W+KV", and "W+KV+A" describe the quantization regime
(whether weights, KV cache, or activations are quantized). The perplexity of
non-quantized model is 6.139 . 53

7.3 Wikitext2 perplexity of NestQuant quantization of Llama-3.2-1B. The format
of the table is the same as in Table 7.2. The perplexity of non-quantized model
is 9.749 . 53

7.4 4-bit quantization of Llama-3-8B. The bits column for NestQuant corresponds
to actually measured average number of bits per entry (when a vector of
auxiliary scaling coefficients β is compressed via zstd) and the second column
shows quantization rate when no compression step is used. 54

7.5 Effect of LDLQ on NestQuant (q = 14 and k = 4) wikitext2 perplexity . . . 54
7.6 Effect of rotation on NestQuant (q = 14 and k = 4) wikitext2 perplexity . . 55

8.1 Runtime comparison of GEMV kernels on an 8192 × 8192 matrix using an
NVIDIA A100 GPU. 63

8.2 6-bit two complement representation of the result depending on the parameters.
We denote 4 least significant bits of vi as p 65

8.3 Simulation results . 66

9.1 Summary of the interference datasets used in our experiments. 71
9.2 The performance of source separation methods on all datasets 73

13

14

Chapter 1

Introduction

Quantization is the process of mapping a large set of possible values to a smaller, finite set of
discrete values. Quantization techniques have been used for many years in signal processing
and data compression. Recently, quantization has also become important in machine learning,
where it is needed for fast and low-memory inference of Large Language Models (LLMs).

The performance of LLMs is highly influenced by their size. Having a larger model
size results in lower throughput and a need for an accelerator with more available memory.
Therefore, being able to quantize models makes it possible to run a more performant model
under resource constraints.

In this work, we will focus on post-training quantization (PTQ). PTQ techniques allow
storing weights and doing computations in lower precision. The model is trained in full
precision, while quantization is applied afterward, with no or little calibration data.

Since memory bandwidth is a bottleneck in LLM inference, reducing precision not only
decreases memory consumption but also accelerates inference. During the generation phase,
the main operation is the matrix–vector product, where loading the weights from DRAM
to compute cores is often the most time-consuming operation. If the weights are quantized,
loading them takes less time.

We present a new LLM quantization framework named NestQuant. The NestQuant
algorithm is described in Chapters 4-6. NestQuant is a generic drop-in replacement for any
matrix multiplication. Its performance for synthetic random Gaussian matrices approaches
information-theoretic limits (see Fig. 7.1) and significantly outperforms uniform quantiza-
tion. Switching from scalar (uniform) quantization to vector quantization introduces some
computational overhead (see Chapter 8); however, among vector quantizers, NestQuant is
rather economical as it builds upon the Voronoi Codes framework of [1]. We mention that in
the presence of activation quantization, it is important to quantize weights properly — an
innovation we call QA-LDLQ (see Chapter 5).

In Chapter 9, we consider a problem related to quantization — continuous data tokenization
in generative modeling. We demonstrate the benefits of the tokenized representation in the
domain of source separation of RF signals.

15

1.1 Thesis structure

Chapter 2 covers the necessary background for the domain of LLM quantization, and Chapter 3
surveys the current works in this domain, grouping them by the area of proposed contribution.

Chapters 4-8 are primarily based on the paper “NestQuant: Nested Lattice Quantization
for Matrix Products and LLMs” [2] published at the 42nd International Conference on
Machine Learning (ICML 2025). This was one of the two projects I worked on. Chapter
8 also includes preliminary work on hardware simulation of the vector quantizer used in
NestQuant.

Chapter 9 discusses tokenized representations for source separation in the RF domain. It
is based on a paper that is currently under review at The Thirty-Ninth Annual Conference
on Neural Information Processing Systems (NeurIPS 2025), which was the second project in
my Master’s degree.

16

Chapter 2

Background

In this chapter, we describe the foundational concepts in the field of LLM and matrix
multiplication quantization, as well as core techniques that are used across many algorithms.

2.1 Quantization overview

In general, the goal of quantization is to compress an object into a low-bit representation,
minimizing the distortion between the original and reconstructed objects. Let X be the set
of possible objects with some associated distribution pX . For a maximum codebook size s,
we aim to find the following components:

Codebook C |C| ≤ s
Encoder f X → C
Decoder g C → X

Given a metric c : X×X → R, we are minimizing the distortion D, which is the expectation
of the metric between the original object x and the reconstructed object g ◦ f(x):

D(X, c, C, f, g) :=
∫
x∈X

c(x, (g ◦ f)(x)) dPX

Often, we are interested in compressing multiple i.i.d. samples from the distribution. For
a finite number of samples n, we can define the average distortion as the mean of the metric
values across individual samples:

cn : X
n ×Xn → R, cn({x1, . . . , xn}, {x′

1, . . . , x
′
n}) =

1

n

n∑
i=1

c(xi, x
′
i)

We also parametrize the codebook size through the rate R — the number of bits needed
to send the compressed representation of one sample: s = 2Rn. Note that now our encoder
and decoder operate on n-vectors of samples (Xn).

We note that having a larger rate (thus, larger codebook size) enables us to pack codebook
elements more densely and achieve a smaller distortion. For a given distribution, there exists
the optimal trade-off curve of (s,D) pairs. The function that describes this curve for the

17

case of encoding i.i.d. samples as their number goes to infinity is called the rate-distortion
function.

Definition 2.1.1 (adapted from [3]). Given a set X with a distribution PX , as well as a
metric c, the rate-distortion function R(D) is defined as:

R(D) = lim
n→∞

inf
R∈R
{R : ∃ f, g, C : |C| ≤ 2nR,D(X, cn, C, f, g) ≤ D}

The rate-distortion function characterizes the fundamental limits of lossy compression. It
serves as a rate lower bound for the evaluation of any practical quantization algorithm: no
code can achieve a better rate than the rate given by the rate-distortion function.

2.1.1 Gaussian data

As we will see later, the case of quantizing Gaussian data with quadratic loss is crucial for
compressing LLMs, since the inputs to the quantizer can be made approximately Gaussian.
In this section, we set X = R, PX = N (0, 1), and c(x, y) = |x− y|2, and describe algorithms
applicable to such data.

Lloyd’s algorithm

One way of quantizing n independent Gaussian inputs is to use a scalar quantizer: a real-
valued codebook applied independently to each input. If the size of this codebook is q, we
achieve rate R = log2 q. For each value of q, an optimal codebook for our metric c can be
found using Lloyd’s algorithm [4], described below.

1. Initialize the codebook elements randomly, c1 ≤ c2 ≤ . . . ≤ cq.

2. Define Voronoi boundaries:

li =

{
−∞, i = 1,
ci+ci−1

2
, i > 1,

ri =

{
ci+ci+1

2
, i < q,

∞, i = q.

Assign all points x such that li ≤ x < ri to cluster i.

3. Set new c′i := E[x | x ∈ [li, ri]].

4. Repeat steps 2 and 3 until convergence.

In practice, this algorithm often converges to the optimal codebook. However, while
quantizing each entry independently is intuitive, the performance of such scalar quantizers is
suboptimal compared to the rate-distortion frontier, which can be expressed in closed form.

18

Theoretical bounds

The following theorem connects the rate-distortion function with mutual information:

Theorem 2.1.2 (Rate–Distortion Theorem). For the setup above,

R(D) = min
p(x̂|x) : E[c(x,x̂)]≤D

I(x; x̂)

Using this theorem, we obtain a closed-form solution for the rate-distortion function of a
Gaussian random variable: R(D) = −1

2
log2(D). The inverse function relating optimal D to

R is D = 2−2R. Figure 2.1 compares the optimal rate-distortion curve with the performance
of Lloyd’s algorithm.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
Bits per sample (R)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

M
ea

n
Sq

ua
re

d
Er

ro
r (

M
SE

)

Lloyd Max MSE vs. Theoretical Bound
Lloyd Max MSE
Theoretical bound 2 2R

Figure 2.1: Comparison between the theoretical rate-distortion function and the results
achieved by Lloyd’s algorithm for scalar quantization

Many practical vector quantization methods come close to the theoretical bound. One
is trellis quantization [5]; another is lattice quantization [6]. None of the finite-dimensional
algorithms can achieve the theoretical bounds, but as the dimensionality of a good lattice
or trellis grows to infinity, the achieved rate-distortion function approaches the theoretical
optimum.

2.1.2 Matrix multiplication quantization

In the problem of matrix multiplication quantization, we compress two matrices A ∈ Ra×n

and B ∈ Rn×b with the goal of reconstructing only their product, rather than the matrices
themselves. Formally, a rate-R quantization scheme consists of two encoders f1 : Ra×n →

19

[2Ran] and f2 : Rn×b → [2Rnb], and a decoder g : [2Ran]× [2Rnb]→ Ra×b (where [k] is the set
of integers between 0 and k − 1). The reconstructed matrix product is obtained as:

ÂB = g(f1(A), f2(B))

The authors of [7] show that if the entries in matrices A and B are independent unit
Gaussians, then for any rate-R algorithm we must have:

∀i,jE
[(

(ÂB)ij − (AB)ij

)2
]
≥ nΓ(R), (2.1)

where

Γ(R) =

{
1−

(
1− (2 · 2−2R∗ − 2−4R∗

)
)

R
R∗ , R < R∗

2 · 2−2R − 2−4R, R ≥ R∗ , (2.2)

and R∗ ≈ 0.906 is a solution to the equation R = 1
2
log2(1 + 4R ln 2).

Since matrix multiplication dominates the computational cost in LLM inference, quanti-
zation of matrix multiplication is an important subproblem of LLM quantization.

2.2 Language models overview

The goal of this section is to provide background on large language models and the transformer
architecture, and to define what it means to “quantize” a language model across different
regimes. We define the framework of autoregressive text generation and describe (a variant
of) the transformer architecture.

2.2.1 Autoregressive text generation

Modern LLMs operate on sequences of tokens rather than directly on raw text. Let {t1, . . . , tm}
be a fixed dictionary. Each text s can be decomposed into a token sequence a1, . . . , ak,
such that concatenating the strings tai for i = 1, 2, . . . , k yields s. The decomposition is
deterministic and is obtained by running a certain algorithm (typically Byte-Pair Encoding
[8]). The model learns the distribution of token sequences induced by the training corpus by
modeling the conditional distribution:

pak+1|a1,a2,...,ak(·|·) (2.3)

Given such a model, one can sample new tokens one by one conditioned on all the
previous tokens in the sequence. The sampling process starts with some user prompt (that is
decomposed into tokens) and ends when a special “end-of-sequence” token is drawn.

In this setting, the user and the LLM alternate turns, with the model generating tokens
autoregressively until a special end-of-response token is produced.

20

2.2.2 Transformer model architecture

The transformer architecture is a parametrized function mapping a sequence of tokens to
the conditional distribution of the next token from equation (2.3). We describe the Llama
architecture [9]; other LLM transformer architectures are structurally similar to this one.

The transformer has an integer parameter d — the token dimension. First, each token in
the sequence is mapped into a d-dimensional vector with an arbitrary embedding function
[m] → Rd. Then, some number of transformer layers is applied to the tokens, where a
transformer layer is a parametrized function that takes a sequence of d-dimensional vectors and
returns the same number of d-dimensional vectors. The transformer layers have independent
parameters. Finally, each of the resulting vectors is projected by the same linear mapping
Rd → Rm. The last vector (among k vectors corresponding to tokens) contains logits of the
probability distribution of the new token, and the probabilities can be obtained by applying
the softmax function to the logits.

norm

Wq

Wk

Wv

RoPe

RoPe

Softmax

Wo MLPnorm

multi-head attention

Figure 2.2: The internal architecture of the transformer layer

Now we describe the transformer layer. Its primary component is multi-head attention,
which is the only place where the vectors corresponding to different tokens interact. The
multi-head attention consists of heads, whose outputs are summed to produce the final result.
Let dh be the head dimension. Each head consists of linear projections Wq, Wk, and Wv

mapping Rd → Rdh ; the outputs are referred to as queries, keys, and values. Then, we apply
positional embeddings to keys and queries — a function on the token vector that depends
on the position of the token in the sequence. This is the only component that makes the
transformer not permutation-invariant. For each query q, we compute the dot products with
the keys that are earlier or equal in the sequence, and apply softmax on the results, obtaining
attention scores with respect to the previous tokens. The result for each query is the linear
combination of values with coefficients taken from the attention scores. We apply the final
projection Wo (Rdh → Rd) to get the head’s result for each token.

Besides the attention, transformer layers also have an MLP layer (consisting of several
linear layers and non-linearity), per-token norms, and residual connections. In total, each
transformer layer has 7 linear layers: Wq, Wk, Wv, Wo from attention, and Wup, Wgate, and
Wdown from the MLP.

21

From an efficiency perspective, we note:

1. In order to evaluate the next-token prediction for a sequence, we need the final vector
for the last token. But we cannot just run the transformer only on the last token, since
the attention result depends on the previous tokens. However, we do not need to do a
full pass on the whole sequence either. The only information we need from other tokens
is the key and value vectors at each of the transformer layers. We store them (this
technique is called KV caching). With the keys and values of previous tokens cached,
we can run inference only on newer tokens.

2. There are two different modes of operation in LLMs. When processing a token sequence
from the user, we can run all linear sublayers on all the tokens together, thus obtaining
dense matrix multiplication operations. However, when the model generates the
response, it generates tokens one by one; thus, the primary operation will be matrix-
vector multiplication. We refer to the first mode as the “prefill” stage and to the second
mode as the “generation” stage.

2.2.3 Quantization of transformer LLMs

Unquantized LLM inference is typically performed in 16-bit precision (the numbers are stored
in either fp16 or bf16 format). However, for some layers that require higher precision (norms,
softmax, MLP nonlinearity), the vectors may be upcast to fp32.

The same is true for low-bit quantization: quantizing the model to R bits does not mean
that all computations are done in R-bit numbers. In fact, there are three most popular
quantization regimes where most methods are compared:

1. Weight-only quantization. For some R < 16, all weights of linear layers in the
transformers are stored in R-bit format. Note that this does not affect the initial
embedding layer and the final linear projection. Key properties of this regime include:

• The weights are stored in compressed format in DRAM, thus reducing memory
usage of the model.

• When running the inference, the weights need to be dequantized.

• Reduces the memory transfer between DRAM and compute cores (where the
weights are dequantized), thus achieves speedup.

• The encoding algorithm in the quantizer can be very slow, because the quantization
is done offline. The decoding needs to be fast, because it’s done during inference.

• Especially beneficial in the generation stage, where loading weights from DRAM
is the primary bottleneck.

2. KV-cache quantization. We store the vectors in the KV-cache in low-bit format.

• Has similar implications as weight quantization: less memory usage, faster queries
to the KV-cache, especially in the generation phase.

22

• Unlike weight quantization, requires reasonably fast encoding, since we need to
apply it to each token during inference.

3. Activation quantization. We refer to the inputs to linear layers as “activations.”
Activation quantization means that every input to every linear layer (aside from the
last projection) needs to be compressed into fewer bits. Note that the output can be
computed in full precision.

• Has an impact on the runtime (since fewer bits will need to be moved between
memory buffers) during the prefill stage.

• Minimal impact on memory usage.

• Generally, activations are the hardest to quantize to the given number of bits
without a significant accuracy drop.

We note that the attention scores are not quantized in any of these regimes. Typically,
evaluations are conducted in three settings: weight-only, weight+KV-cache (“W+KV”), and
full quantization of weights, KV-cache, and activations (“W+KV+A”).

2.3 LLM quantization techniques

2.3.1 Uniform scalar quantization

Uniform scaling quantization is the simplest quantization algorithm. In this algorithm, the
quantization is independent per entry, and the codebook points form an arithmetic sequence.

We will use the following convention to describe a linear layer. Let n be the number of
input features, m be the number of output features, W be the matrix describing the weight
(m× n), and X be the matrix describing the input (b× n), where b is the batch size. The
output of the layer is XW T (size b×m).

The uniform scalar quantization works independently row-by-row. Suppose we want to
quantize a row with maximum absolute value C into R bits. We use a quantization range
of integers in [−A,A] for A = 2R−1 − 1 (we sacrifice one value for convenience). Then,
the quantized representation of a coordinate x in this row will be round

(
xA
C

)
, while the

dequantization function maps y → yC
A

.
Note that we can multiply the quantized representations directly to get an estimate for

the matrix product. Thus, we can use integer multipliers, which work faster on current GPUs.
The adjustment for the scaling coefficients in the dequantization function is asymptotically
less significant.

While this algorithm does not achieve the best rate-distortion function, it is used in
practice due to its efficiency.

2.3.2 Outliers and random rotation

One common problem when quantizing activations arises from outliers. When we scale the
values to put them in the quantizable range, the outliers in a token make the corresponding

23

scaling coefficient very large. After we scale down by a large coefficient, the quantization
error for non-outlier values becomes large relative to the values themselves. This makes naive
4-bit quantization of LLMs not feasible.

To mitigate the issue with outliers, we choose an orthogonal transformation U and apply
it to both the weight and the activations (i.e., X → XU , W → WU). This transformation
of a linear layer is fully equivalent:

(XU)(WUT) = XUUTW T = XW T

The goal is to reduce the impact of outliers. In particular, if we sample U uniformly from the
Haar measure on orthogonal matrices, the distribution of each row of X will be approximately
Gaussian. The exact mathematical fact is:

Lemma 2.3.1. Let xn be any sequence of deterministic vectors of dimension n, and Un be
a random orthogonal n × n matrix. Then, for any fixed k, the distribution of the first k
coordinates of

√
nUnxn

|xn| converges to N (0, Ik).

Proof. Note that the distribution of
√
nUnxn

|xn| is uniform over the n-dimensional sphere of

radius
√
n. Let Zn ∼ N (0, In). The distribution of

√
nZn

|Zn| is also uniform over the same sphere,

so we can prove convergence in distribution for the first k coordinates of
√
nZn

|Zn| = Zn

|Zn|/
√
n
.

Note that |Zn|2
n

=
∑n

i=1
(Zn)i
n

converges in probability to 1, thus the denominator converges
in probability to 1. The first k coordinates of Zn are always distributed as N (0, Ik), and
since the denominator converges in probability to 1, the fraction converges in distribution to
N (0, Ik) by Slutsky’s theorem.

If the data we quantize is Gaussian, the issue of outliers is no longer a problem and we
can use the theory for Gaussian quantization (see subsection 2.1.1). However, we cannot
generate an arbitrary matrix, since the activations X need to be multiplied by U during
inference, which takes just as much as multiplying by the original weight. There are two
possible approaches to tackle this problem:

• For some layers, it is possible to incorporate the multiplication by U into the previous
weight. There is a set of layer transformations that make activations before most of the
linear layers randomly rotated; however, it is not possible to achieve this for all layers.

• Instead of multiplying by a random orthogonal matrix, we multiply by a random
Hadamard matrix, which can be done efficiently. While it is harder to explain why
the Gaussian assumption is applicable in this case, using a Hadamard matrix removes
outliers quite efficiently in practice. In particular, when n is a power of 2, multiplication
of a vector by an n× n Hadamard matrix obtained by a construction can be done in
O(n log n).

2.3.3 GPTQ

Here we describe a weight quantization idea from [10] that became popular in recent LLM
quantization works. Consider weight W , and let the reconstructed weight be W ′. A natural

24

objective to minimize is the MSE between the quantized and original weight: |W −W ′|2.
However, note that the weight encodes a linear transform. If we model the input x of this
linear transform as a random vector, we can choose the objective to be the MSE between
outputs of this transform:

L(W ′) = E[|W ′x−Wx|2]

Let ∆W = W −W ′ and H = E[xxT]. Then:

L(W ′) = E[|W ′x−Wx|2] = E[tr(∆W)x((∆W)x)T] =

E[tr(∆W)xxT (∆W)T] = E[tr(∆W)H(∆W)T]

It is unclear how to optimize this objective. The authors of GPTQ propose the following
heuristic: we quantize the weight column-by-column, letting U be an upper triangular matrix
of linear feedback from already quantized columns to new columns. Specifically, for i < j,
Ui,j is the feedback from the i-th to j-th column: when quantizing the weight at position
(r, j), instead of quantizing Wrj , we quantize Wrj +

∑j−1
i=1 (∆W)riUij . If Q is the quantization

operator, the following equation holds:

W ′ = Q(W + (∆W)U)⇒ −∆W = Q(W + (∆W)U)−W

Assume now that quantization just adds quantization error to the data, modeled as random
Gaussian with mean 0 and variance τ (thus, quantization error is

√
τZ where Zij ∼ N (0, 1)).

Then:

−∆W = W + (∆W)U +
√
τZ −W = (∆W)U +

√
τZ ⇒ ∆W = −

√
τZ(U + I)−1

We decompose H = PDP T , where P is unit upper triangular and D is diagonal (analogous
to LDL decomposition). Then, the expectation of our loss is:

L = E[tr
√
τZ(U + I)−1PDP T (

√
τZ(U + I)−1)T] =

τE[trZ(U + I)−1PDP T (U + I)−TZT] = τ tr(U + I)−1PDP T (U + I)−T

H is positive semidefinite, so D has non-negative entries. Therefore, to minimize the objective
we want (U + I)−1P = I (since it must be a unit upper triangular matrix, and trADAT is
minimized at A = I for unit upper triangular A). We can achieve this by setting U = P − I.
The GPTQ algorithm is:

• Compute the matrix H. To do this, run the model on a certain calibration dataset and
get the statistics E[xxT].

• Compute the decomposition H = PDP T , set U = P − I.

• Run the quantization with column feedback given by this matrix U .

The GPTQ algorithm significantly optimizes its objective compared to naively optimiz-
ing MSE. While expected, optimizing the GPTQ objective results in better downstream
performance than optimizing the MSE between unquantized and reconstructed weights.

25

1 2 3 4 5
R (bits)

5.1

5.2

5.3

5.4

5.5

lo
g1

0(
lo

ss
 /

2^
(-2

R)
)

scalar
LDLQ

Figure 2.3: Relative performance of GPTQ (LDLQ) with pointwise quantization for the w1
layer of the 15th transformer block of Llama-3-8B. The loss is proportional to the expected
MSE between layer outputs. The x-axis is the rate R in bits, and the y-axis shows log10 L

2−2R .
We see that GPTQ consistently outperforms pointwise quantization by a factor of ∼ 1.5.

26

Chapter 3

Related works

3.1 Outlier avoidance

3.1.1 LLM.int8()

Before the rotational methods described in section 2.3.2 became popular, LLM quantization
methods were designed to deal with outliers in different ways. One such method is described
in [11]. The authors note that in linear layers of LLMs the weights do not contain many
outliers, while the activation tokens contain outliers only in a small subset of channels.

Recall that in our setup the linear layer has n input units, m output units, the weight
matrix is of shape m×n, and the input matrix has shape b×n, where b is the batch/sequence
dimension. By rearranging the input dimension, we can get the decomposition X = (Xl Xh),
W = (Wl Wh), where Xl does not have outliers and Wh has a much smaller number of
columns than Xl. Then, the output to the layer XW T can be decomposed as:

XW T = (Xl Xh)

(
Wl

Wh

)
= XlWl +XhWh

The key idea of the method is to compute XlWl in low precision (8 bits), but compute XhWh

in high precision (16 bits). The authors claim that the fraction of channels with outliers is no
more than 0.1%, so the overhead for keeping the outliers in high precision is not large. This
method enables 8-bit quantization of weights and activations with negligible performance
drop.

3.1.2 SmoothQuant

Another method of dealing with outliers is per-channel scaling coefficients, utilized by
SmoothQuant [12]. Let s be a sequence of length n. Then, we can rewrite:

XW T = (Xdiag(s)−1)(Wdiag(s))T (3.1)

We note that weights W generally do not have outliers. To reduce the significance of outliers
in X, we set:

si =

√
maxr Xri

maxr Wri

27

These coefficients "balance" the outliers in X with the smoothness of W , making these
matrices similarly challenging to quantize. However, this method can mostly be applied for
8-bit quantization and has noticeable performance drop when doing lower bitrate compression.

3.1.3 AWQ

The per-channel scaling can also benefit weight-only quantization, as shown by [13]. The
authors develop a heuristic for the importance of the weight (input) channel, which is based
on the average magnitude of the input activation in this channel. By setting si > 1 for
important channels and si = 1 on other channels in decomposition 3.1, we reduce the error
on these important channels at the cost of potentially increasing the error on other channels.
This is because when quantizing row r of weight, the vector we are quantizing (using uniform
scalar quantization) contains numbers Wr1s1, . . . ,Wrnsn. The quantization error depends on
the bit rate and the maximum of the magnitudes among row elements. If si ̸= 1, this error
will be scaled down by si; however, setting large si can make per-row maximums larger and
jeopardize the quantization of other channels.

The authors of [13] propose to calculate the average magnitude of per-channel activations
b1, . . . , bn, and set si = bαi , and perform a grid search over α with respect to end-to-end
performance. This technique enables extreme low-bit compression of weights, with a perplexity
gap from unquantized Llama-2-7B of 0.13 for 4-bit compression and 0.77 for 3-bit compression.

3.2 Optimized rotations

The idea of using random/orthogonal rotations for suppressing outliers (described in subsection
2.3.2) has been used in QuIP [14] for weight-only quantization and QuaRot [15] for W+KV+A
quantization. QuIP uses random orthogonal matrices that are merged with the weights,
while QuaRot uses random Hadamard matrices applied online. However, some approaches go
further, using the rotation matrices as one of the optimization parameters. We describe these
methods in this section.

3.2.1 SpinQuant

In SpinQuant [16], there are four rotation matrices that parametrize the transformation of the
network: R1, R2, R3, and R4. The matrices R1 and R2 are fused into weights, so they can be
arbitrary orthogonal matrices. The matrices R3 and R4 need to be applied to the activations
online, so they need to admit special structure (the authors use Hadamard matrices).

The main idea of the paper is to use gradient descent to optimize R1 and R2. However,
the optimization needs to be constrained to orthogonal R1 and R2. To do this, the authors
employ Cayley SGD.

The gradient descent operates on full-precision weights and computes argminR1,R2
LQ(R1, R2),

where LQ is the end-to-end cross-entropy loss of the entire network. The question is how
to perform gradient descent over the Stiefel manifold of orthogonal matrices. The following

28

formulas describe one update step from an old matrix R to a new matrix R′:

G = ∇RLQ

Ĝ = GRT − 1

2
RRTGRT

Y = Ĝ− ĜT

R→
(
I − α

2

)−1 (
I +

α

2
Y
)
R

After the rotations are optimized, the method also applies GPTQ for the quantization of the
weights.

3.2.2 FlatQuant

FlatQuant [17] optimizes the transformation but drops the condition of it being orthogonal.
If P is an arbitrary transformation, observe that XW T = (XP)(WP−T)T . So, the MSE
between outputs Y = XW T becomes:

|Y − Ŷ |2 = |Y −Q(XP)Q(WP−T)|2 (3.2)

We can optimize this objective directly over arbitrary P using a calibration dataset of X.
However, an arbitrary P would be impractical: while P−T can be merged with W offline,
multiplying the activation X by P will not be efficient at runtime. So, the authors choose P
to be represented as a Kronecker product of two matrices P1 and P2 of size O(

√
n), and P1

and P2 are optimized via gradient descent with loss from equation 3.2. The multiplication of
a vector by a matrix P = P1⊗P2 can be done at runtime in O(n

√
n), which is asymptotically

faster than multiplication by the (quantized) weight.
Both FlatQuant and SpinQuant target 4-bit quantization of weights, KV cache, and

activations. FlatQuant achieves perplexity 6.90 on Llama-3-8B, while SpinQuant achieves
7.3. The perplexity of the unquantized model is 6.14.

3.3 Using vector quantization

The works that we have mentioned so far use uniform scalar quantization (see Section 2.3.1),
which is a suboptimal method for compressing Gaussian data. Some LLM quantization
works use more sophisticated vector quantization methods. Most such methods have complex
encoding procedures but simple decoding. Because of this, these methods are used mostly for
weight-only quantization.

3.3.1 QuIP#

QuIP# [18] is a weight-only quantization method targeting 2-, 3-, and 4-bit regimes. One of
its innovations is a codebook named E8P. This codebook quantizes 8-dimensional vectors
and has size 216 (so the bitrate is 2 bits per dimension). The codebook is constructed in the
following way:

29

• Let D8 = {z ∈ Z8 | z1 + . . .+ z8 is even}.

• Construct a set S of size 28 = 256 from elements of D8 +
1
2

with positive signs and
norm ≤

√
10, as well as 29 extra elements with norm

√
12.

• Let S ′ contain all elements of S with arbitrary ± signs, such that the number of −
signs is even.

• The final codebook is S ′ + 1
4
∪ S ′ − 1

4
.

Thus, the size of the codebook is 216. The authors describe an efficient decoding algorithm
from 16 bits to the corresponding codebook element, requiring only a lookup table of size
28: the first 8 bits encode an element of S, the next 7 bits encode the signs (the last sign is
inferred from parity), and the final bit encodes whether to add or subtract 1

4
.

This codebook achieves good distortion and outperforms uniform scalar quantization. It
can be extended to 3- and 4-bit rates via Residual Vector Quantization (RVQ) [19].

Another idea in QuIP# is a fine-tuning method that works in two stages:

• Before quantizing a layer, fine-tune it to compensate for the error introduced by
previously quantized layers.

• After all layers are quantized, fine-tune the set of non-quantized parameters.

3.3.2 AQLM

AQLM is another work concurrent to QuIP# that quantizes vectors as sums of codebook
entries. It also targets weight-only quantization and achieves better performance than QuIP#.
AQLM uses a vector quantization method that represents vectors as sums of codebook
elements.

Let us have a set of d-dimensional vectors to quantize, and m codebooks C1, . . . , Cm, each
containing 2B vectors. Using Bm bits in the representation p, we can represent a vector as
v =

∑
i Ci,pi — i.e., our vector is encoded as a sum of codebook entries. A natural question

is how to find good codebooks for a given set of vectors.
A good initialization strategy is as follows: First, run the K-means algorithm on the

vectors to obtain codebook C1. Then, subtract the cluster center from each vector and
run K-means on the residuals to obtain C2. Repeating this process on residuals yields the
remaining codebooks. However, we can further optimize them.

For encoding, we can generalize RVQ to beam search: we keep the k best candidates for
approximating our vector as a sum of elements from the first l codebooks, then add a new
codebook by considering all possible new candidates and selecting the k best again. This
produces the code for each vector.

After finding the codes, we can update the codebooks using simple least-squares opti-
mization to minimize the reconstruction MSE loss. We alternate between (beam search) and
(codebook update) until convergence.

30

3.3.3 QTIP

QTIP [20] uses a high-dimensional trellis code. This code has very slow encoding but fast
decoding, and as the dimension of trellis vector quantizers grows, the performance approaches
the theoretical rate–distortion bound.

A trellis is a directed graph on 2L nodes, where each node has exactly 2R incoming edges
and 2R outgoing edges. Each node corresponds to a value. We define a mapping between
L + (n − 1)R-bit sequences and sequences of n real numbers: the first L bits encode the
initial node, and the next (n− 1)R bits encode the edge IDs for transitions. Then, a sequence
of n nodes is mapped to a sequence of n real numbers.

The closest sequence can be found via dynamic programming (too slow for runtime but
fine for weights). Decoding can be done in O(n) by following the edges. However, storing the
trellis explicitly is infeasible, as it would not fit in cache.

The authors propose two tricks for efficient decoding:

• The trellis structure is based on bit shifts: if the current node ID is represented by L
bits v0v1 . . . vL−1 and the edge is represented by k bits e0 . . . ek−1, then the new node is
vkvk+1 . . . vL−1e0 . . . ek−1.

• The value function of a node is a pseudorandom function of its ID, computable in just
a few instructions.

QTIP outperforms QuIP# and AQLM due to its highly efficient, high-dimensional
codebook.

3.4 A better objective function

The works mentioned above use the objective from GPTQ (see subsection 2.3.3). Some
quantization methods gain an advantage by using a better objective function. In particular,
the GPTQ objective is just MSE between layer outputs, so it’s constrained to only one layer,
while some objective functions can leverage inter-layer connections.

In theory, we are interested in using a second-order approximation of our final loss with
respect to the weights. However, the full information would have to contain the second
partial derivative with respect to all pairs of weights. Since the number of weights is nm,
this would be an nm× nm matrix, which is infeasible to store for real LLMs. If this matrix
was computed (we call it F), the objective becomes:

vec(∆W)F vec(∆W)T (3.3)
The following two works explore the possibility of using some approximations of this

matrix which are more computationally feasible.

3.4.1 GuidedQuant

GuidedQuant [21] proposes to use weighted MSE between layer outputs as the objective. The
weight depends on the squared gradient of the final loss with respect to the output neuron.
The loss formula is:

31

L = E

[
m∑
i=1

(X(∆Wi)
T)2

(
∂l

∂zi

)2
]

In this formula, ∆Wi is the error in the i-th row of the weight matrix, ∂l
∂zi

is the derivative
of the final loss with respect to the i-th output unit.

One can show that minimizing this loss is equivalent to minimizing loss 3.3, but with
elements of F corresponding to pairs of weights not in the same row set to zero.

Note that minimizing this loss is still computationally infeasible. When we are minimizing
the regular GPTQ loss, the only information we need from the activation distribution is the
n × n matrix H = E[xxT]. However, since the coefficients for each x are different in each
output channel, we now need an n × n-size H matrix for each of the rows of W , which is
of size O(n2m), which is too large to store. Instead, the authors group the output units
into g groups (by naively placing consecutive channels into each group). Then, we average
the squared gradient of the loss with respect to the output in each group, thus requiring
only g n× n matrices to be stored. If the decomposition of the weight matrix into groups is

W =


W1

W2

. . .
Wg

, the loss can be expressed as:

g∑
i=1

(∆W)iHi(∆W)Ti

This method can be paired with any codebook, as well as an optimization algorithm for
the loss of the form (∆W)H(∆W)T (such as GPTQ). The authors found that this per-group
loss benefits the final performance of quantization.

3.4.2 YAQA

In YAQA [22], another approach to approximating F is chosen. The authors decompose F
as Hr ⊗Hc, where Hr is an m×m matrix capturing mixed partial derivatives with respect
to pairs of rows, and Hc is an n× n matrix capturing mixed partial derivatives with respect
to pairs of columns.

To optimize the objective induced by this approximation of F , the authors use a two-
dimensional generalization of GPTQ. In GPTQ, for every pair of columns (i, j) (i < j) we
have a feedback matrix U from the error in column i to the value we are quantizing in column
j. In the version of GPTQ from [22], there are two feedback matrices: U r for rows and U c for
columns. When quantizing the value at position (i, j), all the other values in the rectangle
(0, 0) . . . (i, j) are already quantized, and the feedback from the error at position (i′, j′) in
this rectangle is U r

i′iU
c
j′j (if i = i′ or j = j′, we set the corresponding value of U to be 1, even

though the matrices are upper triangular). In other words, the following equation holds (Q
is the quantization operator):

Ŵ = Q(W + (U r)T (∆W)U c + (∆W)U c + (U r)T (∆W))

32

Similar to GuidedQuant, this objective outperforms GPTQ for various design choices of
the quantizer.

3.5 Our work

In the next chapters, we will present our quantization scheme named NestQuant. It has
contributions across two dimensions. Its primary component is a vector quantization codebook
based on Voronoi codes [1]. Our codebook is competitive with other weight-only quantization
methods presented in 3.3. But it has an additional property: both the encoding and decoding
algorithms are simple and can be done at runtime. Therefore, NestQuant can be used for
KV cache quantization and activation quantization. In these setups, our method achieves
state-of-the-art results for 4-bit quantization. NestQuant’s codebook can also be built in a
systematic manner for any rate R = log2(q) where q is an integer.

Another contribution of NestQuant is a modified GPTQ objective function that takes into
account the quantization noise of activations (QA-LDLQ). Using this objective function is
particularly important for quantizing LLMs that contain layers with a significant amplification
ratio, such as Llama-3-70B.

The description of NestQuant is structured as follows:

• Chapter 4 describes the NestQuant codebook.

• Chapter 5 contains the motivation and details of the QA-LDLQ objective and optimiza-
tion method.

• Chapter 6 gives an overview of the NestQuant method with all the pieces put together.

• Chapter 7 summarizes the experimental results of NestQuant, as well as ablation studies.

• Chapter 8 shows the steps necessary to make NestQuant run fast (GPU kernels and
hardware simulations).

33

34

Chapter 4

Codebook design

In this chapter, we describe a vector codebook that performs well on Gaussian source data
and has efficient encoding and decoding algorithms. We can get near-Gaussian data by
applying rotations to the weights and activations, as described in subsection 2.3.2.

4.1 Motivation for the codebook choice

Figure 4.1: Demonstrating the advantage of NestQuant in 2D. Typical weights and activations
are vectors inside the black circle. Uniform quantization wastes about 32% of allocated
bitstrings for vectors outside of the circle, while nested hexagonal lattices only waste 15%
(explicitly enumerating points inside the circle to avoid the waste is too slow to do at runtime).
This allows NestQuant to use a finer grid while quantizing to the same rate R. The gain
becomes much more dramatic in higher dimensions.

Uniform scalar quantization with L∞ scaling, as described in section 2.3.1, is suboptimal
for two reasons. First, that uniform quantization induces error that is distributed uniformly
on the small cube, which is suboptimal from the MSE point of view. The second reason,
much more serious, is known as the shaping gain and is demonstrated in Fig. 4.1. When

35

entries of the vector are Gaussian, it will typically lie inside the black circle. Thus those grid
elements outside of it will almost never be used, wasting bitspace.

Instead, we use normalization by the L2-norm (see Algorithm 4) and then use points
inside the Voronoi region of a Gosset lattice, as shown in Fig. 4.1 (right), which results in far
fewer wasted bitstrings for rare vectors, thus allowing us to use finer grids.

Lattices

A lattice Λ ⊂ Rd is a discrete subgroup of Rd. Any lattice Λ ⊂ Rd has a (non-unique)
generating matrix G ∈ Rd×d, such that Λ = GZd (that is, Λ is the integer span of the columns
of G). We define the nearest neighbor quantizer QΛ : Rd → Λ as

QΛ(x) = argmin
λ∈Λ

∥x− λ∥, (4.1)

where ties are broken arbitrarily, but in a systematic manner. The Voronoi region VΛ is
defined as the set of all points in Rd that are closer to 0 than to any other lattice point:

VΛ =
{
x ∈ Rd : QΛ(x) = 0

}
. (4.2)

The covolume of a lattice is defined as covol(Λ) = | detG| = vol(VΛ). We say that a lattice
Λc ⊂ Rd is nested in the lattice Λf ⊂ Rd if Λc ⊂ Λf . Note that for any integer q ≥ 2 we have
that qΛ ⊂ Λ, and that Λ/qΛ ∼= (Z/qZ)d. For an introduction to lattices and their role in
quantization, see [23].

Lattice quantizer design

In a lattice quantizer, the codebook elements are placed at the lattice points. We cannot
choose the entire lattice Λ as a codebook, since its size is infinite. So, we need to choose a
region S, and the codebook will be the intersection Λ ∩ S.

Granular and overload error

S

egr

eov VΛ

Figure 4.2: The blue point experiences granular quantization error, while the green point has
an overload error

36

There are two different sources of errors in lattice quantizers. The first is called granular
quantization error egr, and it occurs when the closest lattice element to the point we are
quantizing is in S. Otherwise, we encounter an overload error eov, which is typically larger in
magnitude than granular errors. These two errors are illustrated in figure 4.2.

The granular error is related to the second moment of the lattice Voronoi region. A
common way to measure the granular error corresponding to a lattice Λ ⊂ Rd is via the
normalized second moment (NSM) defined as

G(Λ) =
1

vol(VΛ)1+
2
d

1

d

∫
x∈VΛ

∥x∥2dx. (4.3)

This quantity corresponds to the MSE when Λ is normalized to have unit covolume and
is then used as a quantizer. It is well known that the optimal (smallest) NSM among all
lattices in Rd approaches 1

2πe
from above as d increases [23]. Furthermore, for d = 1 we get

G(Z) = 1
12

. Consequently, in terms of granular error, by replacing the simple scalar quantizer
based on Z with high-dimensional lattices, we can already gain a factor of 2πe

12
≈ 1.42329 in

performance (the Gosset lattice achieves 1.16 gain).
Generally speaking, in order to achieve a small quantization error, one must keep the

probability of overload very small. This can be achieved by scaling up the codebook to
βC = βΛ ∩ βS with a large enough β > 0 such that overload becomes very rare. However,
increasing β also increases the squared granular error by a factor of β2. Thus, one would like
to use the smallest possible β for which overload is rare. In order to allow for smaller β, we
would like to choose S ⊂ Rn such that βS captures as much Gaussian mass as possible.

Denote by µ = N (0, Id) the standard Gaussian measure. Since we need 2dR = |Λ ∩ S| ≈
vol(S)
covol(Λ)

, a good shaping region S maximizes µ(S), which in turn minimizes the overload
probability that is approximated by 1−µ(S), under a volume constraint. Clearly, the optimal
S under this criterion is rB where B = {x ∈ Rd : ∥x∥ ≤ reff(1)} is a Euclidean ball with
radius reff(1) chosen such that vol(B) = 1, and r is chosen such that vol(rB) = rd satisfies the
required volume constraint. Unfortunately, for d > 1 the codebook C = Λ ∩ rB loses much of
the lattice structure, and does not allow efficient enumeration, and consequently encoding
and decoding require using a lookup table (LUT).

Voronoi codes

In Voronoi codes [1] the same lattice Λ is used for both quantization and shaping. In
particular, the shaping region is taken as S = qVΛ, where q = 2R is an integer. As elaborated
below, if QΛ(x) admits an efficient implementation, one can efficiently perform encoding
and decoding to the codebook C = Λ ∩ (2RVΛ) ∼= Λ/2RΛ. Moreover, in stark contrast to
ball-based shaping, the encoding and decoding complexity does not depend on R.

Lattice choice

A good choice of lattice Λ should satisfy: 1) an efficient lattice decoding algorithm; 2) small
NSM; 3) large µ(VΛ); 4) be a subset of the standard integer lattice Zd.

In this work, we use the Gosset lattice (E8) that satisfies all these properties. It has
a fast decoding algorithm (Algorithm 6), its NSM is ≈ 0.0716821 ≈ 1.2243 1

2πe
[24], and

37

its Gaussian mass µ(rVE8) is very close to µ(rB) (the Gosset lattice has unit covolume, so
vol(rVE8) = vol(rB)). The last point is illustrated in Figure 4.3, where the large loss for
cubic shaping with respect to lattice shaping is also evident.

Figure 4.3: Complement Gaussian measure of an 8-dimensional cube (corresponding to
shaping using an ℓ∞ ball), a Voronoi region of the Gosset lattice E8 (corresponding to shaping
using Voronoi codes with base lattice E8), and a Euclidean ball (corresponding to shaping
with a ball, which does not admit efficient implementation)

Overload avoidance via union of Voronoi codes

Because we rely on lattice quantizers of relatively small dimension (d = 8), even if µ(rVΛ) is
very close to µ(rB), overload events are unavoidable. This follows because in small dimensions
the norm of an i.i.d. Gaussian vector is not sufficiently concentrated. Thus, if one is restricted
to C = β(Λ∩(2RVΛ)), the parameter β must be taken quite large in order to keep the overload
probability small. This, in turn, incurs a significant penalty in the obtained distortion. As a
remedy, rather than using a Voronoi code, we take C as a union of (a small number of) Voronoi
codes in different scales. Namely, we take C = ∪kt=1βt(Λ ∩ (2RVΛ)), where β1 < · · · < βk.
The smallest values of βt are set such that overload is not too common but not extremely
rare, such that for most realizations of a Gaussian vector X ∈ Rd the distortion is close
to the fundamental limit D(R). Whenever X is atypically large, there will be overload in
βt(Λ ∩ (2RVΛ)) for small t, but not for large t, such that the quantization error will lie in
βtVΛ for one of the larger values of {βt}.

4.2 Codebook details

In this section, we describe the construction for a Vector Quantization (VQ) codebook of size
qd for quantizing a d-dimensional vector, where q is an integer parameter. This construction is

38

based on Voronoi codes [1] and admits efficient encoding and decoding algorithms, whenever
the base lattice has an efficient closest lattice vector algorithm. Another appealing feature of
Voronoi codes is that the encoding/decoding complexity is independent of the quantization
rate R = log2(q).

Definition 4.2.1 (Voronoi code [1]). The Voronoi codebook with base lattice Λ ⊂ Rd and
nesting ratio q ∈ N, corresponding to rate R = log2(q) bits/entry, is defined as C = Λ∩VqΛ =
Λ ∩ (qVΛ) ⊂ Rd. In particular, λ ∈ Λ belongs to codebook C iff λ ∈ VqΛ, and |C| = qd.

The Voronoi code consists of the minimum energy representative of each coset in Λ/qΛ ∼=
(Z/qZ)d. Consequently, we can represent each coset, and hence each codeword in C, as an
element of Zd

q [1].
Assuming we have access to an oracle QΛ(x), which maps x ∈ Rd to its closest point in

Λ, quantization (encoding) and dequantization (decoding) for a Voronoi code are described
in Algorithm 1 and Algorithm 2, respectively. Here, G ∈ Rd×d is a generator matrix of Λ.
The encoder first maps x ∈ Rd to its nearest lattice point p = QΛ(x). Since it only has a
budget of dR bits for describing p, it only describes the coset of Λ/qΛ it belongs to. This is
done by sending v mod q, where v ∈ Zd is the integer vector for which p = Gv, referred to as
p’s coordinates. Upon receiving v mod q, the decoder knows that QΛ(x) ∈ p+ qΛ, and must
choose one point in this coset as the reconstruction x̂ ∈ Rd. It chooses x̂ as the minimum
energy vector in p+ qΛ, corresponding to the unique point in p+ qΛ ∩ VqΛ. We have that
x̂ = QΛ(x) iff QΛ(x) ∈ VqΛ = qVΛ. When QΛ(x) /∈ qVΛ, the quantizer is in overload.

Algorithm 1 Encode

Input: x ∈ Rd, QΛ

p← QΛ(x)
v ← G−1p ▷ coordinates of p
return v mod q ▷ quantized representation of p

Algorithm 2 Decode

Input: c ∈ Zd
q , QΛ

p← Gc ▷ equivalent to answer modulo qΛ
return p− q QΛ

(
p
q

)
In our experiments for this paper, we used the Gosset (E8) lattice as Λ with d = 8. This

lattice is a union of D8 and D8 +
1
2
, where D8 contains elements of Z8 with an even sum of

coordinates. There is a simple algorithm for finding the closest point in the Gosset lattice,
first described in [25]. We provide the pseudocode for this algorithm in section 8.1.

4.3 Optimal scaling coefficients

One of the important parts of the algorithm is finding the optimal set of βi. Given the
distribution of d-dimensional vectors quantized via a Voronoi codebook, we can determine
the optimal set of a given size exactly using dynamic programming.

39

Recall that instead of using one instance of a lattice codebook C, we use a union of
codebooks C, each scaled by a different coefficient. Specifically, our final codebook C is
parameterized by coefficients β1 ≤ β2 ≤ . . . ≤ βk, and is equal to:

C = β1C ∪ β2C ∪ . . . ∪ βkC

When quantizing a vector to the i-th scaled codebook, we could either get a small granular
error when the vector is in VβiΛ(0), or a large overload error otherwise. If we use a codebook
with smaller β, the probability of an overload error increases, but the expected magnitude of
the granular error decreases due to the volume of the Voronoi region being smaller (Figure
4.4). We can have two strategies for encoding:

1. First-β: Use the smallest β which does not result in an overflow error.

2. Opt-β: Try all the values of β, and choose the one that has the smallest reconstruction
MSE.

2 4 6 8 10
beta

0.0

0.2

0.4

0.6

0.8

1.0

P
[o

ve
rlo

ad
]

(a) Overload error probability

2 3 4 5 6 7 8 9 10
beta

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

rm
se

vector 1
vector 2
vector 3
vector 4
vector 5

(b) Granular RMSE for five sampled vectors

Figure 4.4: Granular and overload error for standard Gaussian vectors, q = 16

k 2 4 6 8 10

Opt-β 0.0878 0.0795 0.0708 0.0669 0.0646
First-β 0.0878 0.0798 0.0712 0.0676 0.0656

Table 4.1: Mean RMSE for reconstructed i.i.d. standard Gaussian 8-vectors, q = 16, k betas
are uniform on [0, 10].

Even though Opt-β should provide smaller error, the definition of First-β will be useful
for us. The difference in error between Opt-β and First-β is small (Table 4.1). Moreover,
First-β can be used to determine the optimal set of βi to use.

40

Let us have n samples v1, v2, . . . , vn from the distribution of vectors we are quantizing,
and a large set of betas B, containing β1 < β2 < . . . < βm, from which we want to take the
optimal subset of size k which minimizes the loss under the First-β strategy. For each vector
vi and beta βj we compute mseij — the MSE if we use βj to quantize vi — and overloadij
— whether an overload error occurs in this scenario.

We solve this optimization problem using dynamic programming. Let’s define dpij to be
the minimum sum of MSE we can get if we have to quantize all the vectors which do not yield
an overload error for βi, using βi and j− 1 smaller betas and the First-β strategy. If i is large
enough so that no vector has an overflow error on βi, dpik has the answer to the problem. To
compute the value of dpij, we can iterate over s — the index of the second-largest beta in
the set (the largest being βi). Then, the recalculation works in the following way:

dpij ← min

dpij, dps,j−1 +
∑

p,condp

msepi


where condp = overloadps ∧ ¬overloadpi

Following the DP transitions yields the optimal set of β.

Algorithm 3 Dynamic programming for finding the set of β
1: Input: vectors vi, beta set B, mseij, overloadij
2: dpi,j =∞ for i in 0 . . .m, j in 0 . . . k
3: fromi,j = null for i in 0 . . .m, j in 0 . . . k
4: dp0,0 = 0
5: for i = 1 to m do
6: for j = 1 to k do
7: for s = 0 to i− 1 do
8: condp = overloadps ∧ ¬overloadpi for p ∈ 1 . . . n
9: cost =

∑
p condp ·msepi

10: if dpij > dps,j−1 + cost then
11: dpij ← dps,j−1 + cost
12: fromij ← s
13: end if
14: end for
15: end for
16: end for
17: Let pos be chosen so that βpos has no overflow errors
18: result = []
19: for j = k downto 1 do
20: result.append(pos)
21: pos← frompos,j

22: end for

41

42

Chapter 5

QA-LDLQ

5.1 Summary

In this section, “GPTQ” and “LDLQ” are used interchangeably to refer to the adaptive
rounding algorithm described in Section 2.3.3.

We note that in the presence of activation quantization, the LDLQ and GPTQ algorithms
for weight quantization become significantly suboptimal 1, thus necessitating a correction
(QA-LDLQ) that we describe here.

Let W be the weight (shape a × n), X be a random original (unquantized) activation
vector (shape n× 1), and Z be the quantization error of X, modeled as zero-mean random
noise (shape n × 1) independent of X. Then, if U is the quantized weight, the output
quantization error becomes δ(U) := WX − U(X + Z), so that the loss to be minimized is
E[∥δ(U)∥2] instead of E[∥(W − U)X∥2] that LDLQ and GPTQ minimize.

Lemma 5.1.1. Suppose Z is independent from X, E[Z] = 0, and let H = E[XX⊤] and
J = E[ZZ⊤]. Then for any set CQ ⊂ Ra×n

U∗ = argmin
U∈CQ

E[∥δ(U)∥2]

= argmin
U∈CQ

(W̃ − U)(H + J)(W̃ − U)⊤, (5.1)

where W̃ = WH(H + J)−1.

Thus, QA-LDLQ involves: (a) computing W̃ , and (b) running the standard LDLQ using
W̃ as input with the Hessian set to H + J .

Proof of Lemma 5.1.1. Recalling the definition of W̃ = WH(H + J)−1, that X and Z are
statistically independent, and Z has zero mean, and that H, J are positive semi-definite
symmetric matrices, we have

E∥δ(U)∥2 = E∥(W − U)X − UZ∥2 = (W − U)H(W − U)⊤ + UJU⊤ (5.2)

= (W̃ − U)(H + J)(W̃ − U) + C(W,H, J), (5.3)

1In fact, using original LDLQ on Llama-3-70B produces ∼ 104 perplexity at W4A4 setting due to significant
outliers in layer 0.

43

where

C(W,H, J) = W (H −H(H + J)−1H)W⊤, (5.4)

is independent of U , and therefore does not affect the minimization.

5.2 Motivation

When quantizing Llama-3-70B with original LDLQ, we have noticed very poor (ppl ∼ 104)
performance. We have observed that the reason for this is quantization of activations for a
small subset of linear layers (4 out of 560), and if they are left in full precision, the perplexity
becomes more reasonable (less than 4). We have found them by choosing the layers with the
largest amplification ratio — a concept we define next.

Consider a weight W (shape a× n), where n is the number of in-features, and a is the
number of out-features. We define amplification of a random vector X (n × 1) by W as
α(W,X) :=

E[∥WX∥2]
E[∥X∥2]

. Then, if X is the distribution of input activations, and Z is a random

Gaussian vector, we define the amplification ratio for W as α(W,Z)
α(W,X)

. A large amplification
ratio makes a layer’s activations harder to quantize because it amplifies quantization noise
far more than the activations themselves. One extreme example of this issue is the value
projection of the attention of the first transformer block in Llama-3-70B. This layer has an
amplification ratio of ∼ 157, as computed from 10 wikitext2 sequences of length 2048. This
makes naive 4-bit quantization of activations nearly impossible, as even small perturbations
of the input of the layer are greatly amplified in the output.

We have developed QA-LDLQ to mitigate the issue of large amplification ratio. We
model quantization noise as a random Gaussian vector with mean 0 and covariance matrix
J = ε2I, where ε2 depends on the quantization rate and the statistics of X. Larger ε2 makes
W̃ = WH(H + ε2I)−1 more robust to input perturbations (reducing the amplification ratio)
but also increases bias, as expressed in C(W,H, J). Figure 5.1 demonstrates this tradeoff for
the value projection layer mentioned earlier.

44

10 7 10 6 10 5 10 4 10 3 10 2 10 1

1-R^2 for outputs

0

20

40

60

80

100

120

140

No
ise

 a
m

pl
ifi

ca
tio

n

10 3 10 2

1-R^2 for outputs

0

2

4

6

8

10

No
ise

 a
m

pl
ifi

ca
tio

n

Figure 5.1: We run QA-LDLQ for value projection layer of the first transformer block of
Llama-3-70B. We try different values of ε on logarithmic scale from 10−5 to 1. For each ε, we
find modified weight W̃ , and plot the amplification ratio for W̃ in y-axis, as well as how close
the outputs of the weight W̃ to the outputs of weight W . The value on x axis is defined as
1−R2 := E∥WX−W̃X∥2

Var(WX)
, where X contains activation inputs from 10 sequences of length 2048

from wikitext2. The right plot is bottom right corner of the left plot, zoomed in. We note
that by paying a small price in the accuracy of the weight, we can reduce the amplification
ratio dramatically.

45

46

Chapter 6

NestQuant overview

6.1 Matrix quantization

When quantizing a matrix, we normalize its rows and quantize each block of d entries using
the codebook. Algorithm 4 describes the quantization procedure for each row of the matrix.

Algorithm 4 NestQuant
Input: A — a vector of size n = db, q, array of k scaling coefficients β1, . . . , βk

QA — n integers in {0, 1, . . . , q − 1} ▷ quantized representation
B — b integers in {1, . . . , k} ▷ scaling coefficient indices
s← ∥Ai∥2 ▷ normalization coefficient
A← A

√
n

s

for j = 0 to b− 1 do
err =∞
for p = 1 to k do

v ← A[dj + 1..dj + d]

enc← Encode
(

v
βp

)
recon← Decode(enc) · βp

if err > |recon− v|22 then
err ← |recon− v|22
QA[dj + 1..dj + d]← enc
Bj ← p

end if
end for

end for
Output: QA, B, s

We can take dot products of quantized vectors without complete dequantization using
Algorithm 5. We use it in the generation stage on linear layers and for querying the KV
cache.

47

Algorithm 5 Dot product
Input: QA1, B1, s1 and QA2, B2, s2 — representations of two vectors of size n = db from
Algorithm 4, array β
ans← 0
for j = 0 to b− 1 do

p1 ← Decode(QA1[dj + 1..dj + d])
p2 ← Decode(QA2[dj + 1..dj + d])
ans← ans+ (p1 · p2)βB1[j]βB2[j]

end for
return ans

6.2 LLM quantization

𝑊𝑘𝐻

𝜎

𝑊𝑣𝐻

𝒬

𝑊𝑞𝐻 𝐻

𝐻 𝒬

𝒬

KV Cache

Keys

Values

𝒬

𝒬

𝒬

𝑊𝑂𝐻

𝒬

𝐻 𝒬

𝐻

Figure 6.1: The quantization scheme of multi-head attention. H is the Hadamard rotation
described in 6.2. Q is the quantization function described in 6.1

Recall that we apply a rotation matrix H to every weight–activation pair of a linear layer
without changing the output of the network. Let n be the number of input features to the
layer. Following [16, 18, 26]:

• If n = 2k, we set H to be the Hadamard matrix obtained by Sylvester’s construction.

• Otherwise, we decompose n = 2km, such that m is small and there exists a Hadamard
matrix H1 of size m. We construct a Hadamard matrix H2 of size 2k using Sylvester’s
construction and set U = H1 ⊗H2.

Note that it is possible to multiply an r × n matrix by H in O(rn log n) in the first case
and O(rn(log n+m)) in the second case, which is negligible compared to other computational
costs and can be done online.

In NestQuant, we quantize all weights, activations, keys, and values using Algorithm 4.
We merge the Hadamard rotation with the weights and quantize them. We also apply the
Hadamard rotation and quantization to the activations before linear layers. We also apply
rotation to keys and queries since it does not change the attention scores, and we quantize
keys and values before putting them in the KV cache. Figure 6.1 illustrates the procedure
for multi-head attention layers.

When quantizing a weight, we modify the NestQuant algorithm by introducing corrections
to unquantized weights when a certain vector piece is quantized via the QA-LDLQ mechanism,
described in Chapter 5. It is based on the LDLQ algorithm described in Section 4.1 of [18].

48

6.3 Algorithm summary

Here we describe the main steps of NestQuant.

1. Collect the statistics for LDLQ via calibration data. For each linear layer with in-
dimension d, we compute a d× d “Hessian” matrix H.

2. We choose an initial set of scaling coefficients β̂, and for each weight we simulate LDLQ
quantization with these coefficients, obtaining a set of 8-dimensional vectors to quantize.

3. We run a dynamic programming algorithm described in Section 4.3 on the 8-vectors to
find the optimal β values for each weight matrix.

4. We also run the dynamic programming algorithm for activations, keys, and values for
each layer. To get the distribution of 8-vectors, we run the model on a small set of
examples.

5. We quantize the weights using QA-LDLQ and precomputed β.

6. During inference, we quantize any activation before it is passed to the linear layer and
any KV cache entry before it is saved.

Note that we do not undertake any expensive (but surely useful) fine-tuning, such as optimizing
rotation matrices or post-quantization training, as described in [16] and [18], since our goal is
demonstrating the basic primitive, not obtaining the absolute SOTA numbers.

49

50

Chapter 7

Experimental results

7.1 Simulated Data

Figure 7.1: RMSE for quantized matrix multiplication for i.i.d.
N (0, 1) matrices. The NestQuant algorithm is optimized over q
and multiple β’s. Also shown is the information-theoretic lower
bound from (2.1).

We compared the mean
L2 loss per entry of Spin-
Quant to the uniform L∞-
scaling quantizer (used
in SpinQuant and other
methods). The mean L2

loss per entry for the prod-
uct of two matrices A ∈
Rn×k, B ∈ Rm×k is com-
puted as ∥ABT−ÂB̂T ∥2

nm
. We

set n = k = m =
4096 and sampled two
matrices A,B from the
standard normal distribu-
tion Aij, Bij ∼ N (0, 1).
We compare to the lower
bound from (2.1).

For NestQuant, we do
a grid search over (q, k).
For a given q and k, we
find the best subset in 1

2
·

{1, 2, . . . , 50} of scaling coefficients β of size k using the algorithm from 4.3. Then we calculate
the expected bits per entry computed as log2 q +

1
8

∑k
i=1 p(βi) log2 p(βi) where p(βi) is the

probability that the ith β value is used in quantization. In Figure 7.1, we plot the efficient
frontier of bits per entry vs. root mean L2 loss.

51

Bits (W-A-KV) Method Llama-2-7B Llama-2-13B Llama-2-70B Llama-3-8B Llama-3-70B

16-16-16 Floating point 5.47 4.88 3.32 6.14 2.86

4-16-16 QuaRot 5.60 5.00 3.41 - -
QuIP# 5.56 4.95 3.38 - -
OstQuant 5.64 4.94 3.41 6.53 3.19
NestQuant 5.53 4.93 3.38 6.31 3.14
NestQuantM 5.55 4.95 - 6.35 -

4-16-4 NestQuant 5.57 4.96 3.39 6.37 3.19
NestQuantM 5.59 4.99 - 6.49 -

4-4-16 SpinQuant 5.9 5.2 3.8 7.1 -
OstQuant 5.60 5.14 3.57 7.24 3.97
DuQuant 6.08 5.33 3.76 8.06 -

4-4-4 QuaRot 6.10 5.40 3.79 8.16 6.66
SpinQuant 5.9 5.3 3.8 7.3 -
OstQuant 5.91 5.25 3.59 7.29 4.01
NestQuant 5.67 5.03 3.49 6.63 3.61
NestQuantM 5.73 5.07 - 6.82 -

Table 7.1: The wikitext2 perplexity with a context window of 2048 for various quantization
methods of Llama models.

7.2 Llama results

7.2.1 Experimental design

We choose the train split of the Wikitext2 [27] dataset as a calibration dataset for computing
H, and evaluate the model on the validation split, computing the perplexity metric. For step
2 in the algorithm (Section 6.3), we select β̂ = [3.5, 4.5, 6.0, 14.5, 25.0]/q, because it is the β
we get when optimizing them for weight quantization without consideration of LDLQ. The
overall universe of β values contains values from 1 to 40 with spacing ranging from 0.25 to 2.
For running DP on activations, keys, and values, we run the model on a batch of 6 full-length
sequences, which is sufficient for this low-dimensional hyperparameter.

When choosing the maximum β for a given distribution, we add a margin of 3.0
q

for weights
and 4.0

q
to the maximum β needed to have 0 overload errors on known data to account for

potential overload errors in unknown data. While a small number of overload errors does not
affect perplexity significantly, we still aim to minimize their probability.

When computing perplexity for Wikitext2 with a given context length, we average the
perplexities for all positions, which is standard practice in other works on LLM quantization.

7.2.2 Results for 4-bit quantization

In comparisons to other methods, we focus on the 4-bit setup, choosing q = 14 and k = 4.
We show the wikitext2 perplexity comparisons for multiple Llama models in Table 7.1, and
other benchmark comparisons (for Llama-3-8B) in Table 7.4. The methods included in these
tables are SpinQuant [16], QuIP# [18], QuaRot [15], DuQuant [26], and OstQuant [28]. On
the wikitext2 dataset, we computed the perplexity scores of the quantized models with a
context size of 2048.

NestQuant consistently achieves better perplexity metrics across different models for both

52

q Bits Bits (no zstd) W W + KV W + KV + A

14 3.99 4.06 6.308 6.379 6.633
12 3.76 3.83 6.376 6.475 6.841
10 3.50 3.57 6.486 6.640 7.251
8 3.18 3.25 6.700 6.968 7.989

Table 7.2: Wikitext2 perplexity of NestQuant quantization of Llama-3-8B at different rates.
The "bits" column is the bit rate per entry with zstd compression of scaling coefficients, and
"bits (no zstd)" is the bit rate without compression. The "W", "W+KV", and "W+KV+A"
describe the quantization regime (whether weights, KV cache, or activations are quantized).
The perplexity of non-quantized model is 6.139

the weight-only regime and full quantization. For all models we tested—except Llama-2-
7B—NestQuant with W4A4KV4 (4-bit weights, activations, and KV-cache) quantization even
outperforms previous works using W4A4KV16. For W4KV4A4 (4-bit weights, KV-cache,
and activations) quantization of Llama-3-8B, we achieve a perplexity score of 6.6, compared
to approximately 7.3 for SpinQuant and OstQuant. Even without LDLQ, we achieve a
perplexity score of 6.8, which is still better. Finally, NestQuant outperforms QuIP# for
weight-only Llama-2 quantization.

In addition, we evaluate a simpler version of the algorithm, easier to implement in
hardware, called NestQuantM. More details on this variant can be found in Section 8.2.

7.2.3 LLM quantization scaling

We quantize the Llama-3-8B model [9] using different values of q. We choose the number
of scaling coefficients (k) to be 4; Section 7.3.1 explains the rationale behind this choice.
More details on the hyperparameter choice of the experiments are in Section 7.2.1. For
each experiment, we compute the number of bits per entry similar to Section 7.1, but for
the configuration with compressed β indices, we apply the Zstandard (zstd) compression
algorithm instead of using the entropy of the distribution. As our evaluation metric, we use
the perplexity on the validation split of wikitext2 with context length 2048.

7.2.4 Results for Llama3.2-1B

Here, we show the results of NestQuant on the newer 1B-parameter Llama3.2-1B model. We
do experiments in the same configurations as the Llama-3-8B model, computing the wikitext2
perplexity.

q Bits Bits (no zstd) W W + KV W + KV + A

14 3.99 4.06 10.061 10.529 11.197
12 3.76 3.837 10.178 10.862 11.910
10 3.50 3.57 10.377 11.552 14.191
8 3.18 3.25 10.850 13.309 18.710

Table 7.3: Wikitext2 perplexity of NestQuant quantization of Llama-3.2-1B. The format of
the table is the same as in Table 7.2. The perplexity of non-quantized model is 9.749

53

7.2.5 Results for 3-bit model quantization

We present the results for 3-bit quantization of weights and activations on small models
(Llama-3-8B and Llama-2-7B). We use q = 7 and k = 4, which results in 2.98 bits per entry.

Bits (W-A-KV) Method Llama-2-7B Llama-3-8B

16-16-16 Floating point 5.47 6.14
4-4-16 NestQuant 5.64 6.56
3-3-16 NestQuant 6.33 8.25

7.2.6 Zero shot benchmarks

We also perform the evaluation of NestQuant on various zero-shot benchmarks: ARC-Easy
and ARC-Challenge [29], Hellaswag [30], [31], and Winogrande [32]. The results on 4-bit
models with comparisons to other models are summarized in Table 7.4.

Model Bits ↓ Bits (no zstd) ↓ ARC-C ↑ ARC-E ↑ Hellaswag ↑ PIQA ↑ Winogrande ↑ Zero-shot Avg ↑ Wikitext2 ppl ↓

Baseline (FP16) 16 16 0.54 0.78 0.79 0.81 0.74 0.73 6.1

Weights only
LLM-QAT 4.00 - 0.51 0.77 0.48 0.79 0.72 0.65 7.7
GPTQ 4.00 - 0.47 0.72 0.74 0.77 0.71 0.68 7.2
SpinQuant 4.00 - 0.54 0.77 0.78 0.80 0.72 0.72 6.5
NestQuant q = 14, k = 4 (ours) 3.99 4.06 0.53 0.78 0.79 0.80 0.73 0.72 6.3

Weights + KV cache
SpinQuant 4.00 - 0.51 0.77 0.77 0.78 0.69 0.70 6.6
NestQuant q = 14, k = 4 (ours) 3.99 4.06 0.53 0.78 0.79 0.79 0.74 0.72 6.4

Weights, KV cache, activations
LLM-QAT 4.00 - 0.27 0.41 0.38 0.60 0.53 0.44 52.5
Quarot 4.00 - 0.44 0.67 0.75 0.75 0.66 0.67 8.4
SpinQuant 4.00 - 0.51 0.75 0.75 0.77 0.66 0.68 7.3
NestQuant q = 14, k = 4 (ours) 3.99 4.06 0.51 0.75 0.78 0.79 0.72 0.71 6.6

Table 7.4: 4-bit quantization of Llama-3-8B. The bits column for NestQuant corresponds
to actually measured average number of bits per entry (when a vector of auxiliary scaling
coefficients β is compressed via zstd) and the second column shows quantization rate when
no compression step is used.

7.3 Ablation studies

We found LDLQ to be useful in improving the quality of quantized model. In table 7.5, we
compare the wikitext2 perplexity of models with and without LDLQ.

Algorithm W W + KV W + KV + A

NestQuant 6.308 6.379 6.633
NestQuant (no LDLQ) 6.528 6.605 6.849

Table 7.5: Effect of LDLQ on NestQuant (q = 14 and k = 4) wikitext2 perplexity

While Hadamard matrices from Sylvester construction are commonly used in other works
(QuIP#, Quarot), there are multiple ways to construct a fast rotation for the case when
dimension is not a power of 2 (such as the down projection in MLP of Llama-3). We tested
three possible options for rotation on q = 14, k = 4, W + KV + A quantization.

54

Algorithm W + KV + A

Fourier 6.773
S ⊗H, S — orthogonal, H — Sylvester Hadamard 6.770
H1 ⊗H, H1 — hardcoded Hadamard, H — Sylvester Hadamard 6.663

Table 7.6: Effect of rotation on NestQuant (q = 14 and k = 4) wikitext2 perplexity

7.3.1 Choosing the number of scaling coefficients

2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2
bits

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

10.0

wi
ki

2
pp

l

k=3
k=4
k=5
k=8
Full precision (FP16)

Figure 7.2: The perplexity-bitrate scaling of NestQuant with different values of k, all
components of the model (weights, KV cache, activations) are quantized

The value of k, i.e., the number of scaling coefficients, is an important hyperparameter
of the algorithm. Increasing k decreases the quantization error by allowing each vector to
be quantized to the lattice point with a more suitable scaling. However, it also increases
the bitrate and makes the encoding slower, since we need to try a larger number of scaling
coefficients.

We used k ∈ {3, 4, 5, 8} to quantize Llama-3-8B across different values of q, plotting the
resulting perplexity against bitrate in Figure 7.2. We can see that using k = 3 leads to
suboptimal performance of the quantization scheme, while the performances of k = 4, 5, 8 are
comparable. In our experiments, we use k = 4 because a lower k results in faster encoding.

55

56

Chapter 8

Algorithm efficiency

8.1 Gosset oracle

In this section, we discuss the algorithm for finding the nearest neighbour in the E8 lattice
and estimate its performance in FLOPs (Floating Point Operations). We note that

E8 = D8 ∪
(
D8 +

1

2

)
,

where D8 contains vectors in Z8 with an even sum of coordinates. To compute VE8(x), we
compute two candidate points: x1 = VD8(x) and x2 = VD8+

1
2
(x), and choose the one that has

the smaller L2 distance to x.
To get VD8(x), we can round each coordinate to the nearest integer. If the sum of rounded

coordinates is odd, we need to "flip" the rounding direction of the coordinate for which the
flip would cost the least. Note that finding the closest point in VD8+

1
2

works the same, but
the rounding grid now contains half-integers, not integers.

In Algorithm 6, we first round our vector down (getting d) and compute the mask (g) of
whether it’s optimal to round up for D8. We note that the optimal rounding for D8 +

1
2

is
d+ 0.5, while the optimal rounding for D8 is d+ g.

We want to understand whether rounding to D8 or D8 +
1
2

is better. Let disti be the
absolute distance from the i-th entry xi ∈ [di, di + 1] to the middle of this integer segment
di+0.5 = x2,i. We note that the contribution of this point to the MSE for D8 is (0.5−disti)

2,
while for D8 +

1
2

it is dist2i . The difference is:

0.25− disti +���dist2i −���dist2i = 0.25− disti.

If the sum of this value over i is negative (i.e.
∑

disti > 2), it’s optimal to quantize to D8,
otherwise to D8 +

1
2
. In pseudocode, we store

∑
disti as ∆.

We must check the constraint that the sum of coordinates in D8 is even, and if it is
not, “flip" one of the rounding directions. The optimal coordinate to flip can be determined
through dist. The new value of the flipped coordinate can then be determined through g.
We also need to update ∆ given that the MSE difference changes.

The full pseudocode of the algorithm is in Algorithm 6.

57

Algorithm 6 Oracle for the Gosset lattice
1: Input: x ∈ R8

2: d← floor(x)
3: x2 ← d+ 0.5
4: g ← (x > x2)
5: s← 2 · g − 1
6: x1 ← d+ g
7: dist← (x− x2) · s
8: ∆←

∑
i disti

9: if
∑

i x1,i is odd then
10: pos = argmin dist
11: x1,pos ← x1,pos − s1,pos
12: ∆← ∆+ 2 · distpos − 1
13: end if
14: if

∑
i x2,i is odd then

15: pos = argmax dist
16: x2,pos ← x2,pos + g2,pos
17: ∆← ∆+ 1− 2 · distpos
18: end if
19: if ∆ > 2 then
20: return x1

21: else
22: return x2

23: end if

8.2 NestQuantM algorithm

Due to the high complexity of argmin and argmax operations in Algorithm 6 for fast hardware
implementation, we propose a different, simpler version of NestQuant decoding. Instead of
using argmax and argmin on lines 10 and 15, we always assign pos to be equal to 1 (thus,
indicating that we always "flip" the rounding direction of the first coordinate to fix the
parity). Note that this change is only applied in the decoding stage, while during encoding we
use the full version of the algorithm, which keeps the granular error the same. Let’s denote
our modified Gosset oracle as f : R8 → R8.

Lemma 8.2.1. For a vector x ∈ R8 and a vector v ∈ E8, f(x+ v) = f(x) + v.

Proof. Recall that D8 ⊂ Z8 contains all the integer vectors with an even sum of coordinates.
The modified Gosset oracle f uses the modified D8 oracle g, and at input x constructs two
candidate points c1(x) ∈ D8 and c2(x) ∈ D8 +

1
2
. Then, the algorithm chooses the closest

point among these candidates to x. Note that c1(x) = g(x) and c2(x) = g
(
x− 1

2

)
+ 1

2
.

We will prove that for u ∈ D8, g(x+ u) = g(x) + u for any x ∈ R8. Now, let’s show the
original lemma. Note that since we are choosing the closest candidate point, if the condition
on candidate sets {c1(x+ v), c2(x+ v)} = {c1(x), c2(x)}+ v holds, then f(x+ v) = f(x) + v.
Now, consider two cases:

58

1. v ∈ D8. Then:

c1(x+ v) = g(x+ v) = g(x) + v = c1(x) + v

c2(x+ v) = g

(
x+ v − 1

2

)
+

1

2
= g

(
x− 1

2

)
+

1

2
+ v = c2(x) + v

2. v ∈ D8 +
1
2
. Then, we say that

v =

(
u− 1

2

)
=

(
w +

1

2

)
for u,w ∈ D8.

c1(x+ v) = g(x+ v) = g

(
x+ u− 1

2

)
= g

(
x− 1

2

)
+ u = g

(
x− 1

2

)
+

1

2
+ v = c2(x) + v

c2(x+ v) = g

(
x− 1

2
+ v

)
+

1

2
= g(x+ w) +

1

2
= g(x) + w +

1

2
= g(x) + v = c1(x) + v

Thus, in both cases the condition on candidate sets holds, and we get f(x+ v) = f(x)+ v.
Now we show that if u ∈ D8, g(x+ u) = g(x) + u. Note that when evaluating g(x+ u),

we will get the same rounding directions as in g(x), since u is an integer vector. Since u has
an even sum of coordinates, the parity will also be the same. Then, our decision to flip the
rounding of the first coordinate will also match. Therefore, the vector between the original
and rounded coordinates will be the same:

g(x)− x = g(x+ u)− x− u⇒ g(x+ u) = g(x) + u

Let v be the vector we obtain after rounding to E8, c be the lattice coordinates of v,
and G be the generating matrix of the lattice. The compressed representation is c mod q,
which corresponds to a point v′ = G(c mod q). The reconstructed point v̂ is defined to
be v′ − qf(v′/q) by the decoding algorithm. Note that v − v′ ∈ qE8. Let’s assume that
f(v/q) = 0. Then:

v̂ = v′ − qf

(
v′

q

)
= v′ − qf

(
v

q
+

v′ − v

q

)
= v′ − q

(
f

(
v

q

)
+

v′ − v

q

)
= v′ − q · v

′ − v

q
= v

We have used Lemma 8.2.1 in the third equality and our assumption in the fourth equality.
Given this fact, we conclude that when using NestQuantM for decoding, the composition of
encoding and decoding functions (for a fixed β) is similar to the original NestQuant, except
the shaping region has changed to the set of points v ∈ E8 such that f(v/q) = 0. Since f is
close to the original Gosset oracle, we expect this region to still capture Gaussian probability
density well. In the case of overload errors, we are still able to choose a larger value of β due
to the multi-β strategy.

59

8.3 CUDA Kernel Implementation

The decoding algorithm 2 consists of a basis change p← Gc and a subsequent computation
of the coset of p

q
,

p

q
−QΛ

(
p

q

)
.

We leverage the asymmetry between encoding and decoding choosing G which is fast to
decode. In particular we use

G =



1 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 0 0 2 0
1 4 2 2 2 2 2 2
1 0 0 2 0 0 0 0
1 0 0 0 0 2 0 0
1 0 0 0 0 0 0 2


G is not a basis for E8 but for 2E8. We use G because we want to work in integer-lattice as
half-integers cannot be represented with integers. Moreover, we represent 8-vector x⃗ as two
32 bit integers each representing the two parts of the vector x0, x1, x2, x3 and x4, x5, x6, x7.

For reference, the CUDA implementation of the implementation of p← Gc.

1 __device__ void G_q_fast(
2 const uint32_t enc, uint32_t* out0, uint32_t* out1
3)
4 {
5 uint32_t even = enc & 0x0F0F0F0F;
6 uint32_t odd = (enc & 0xF0F0F0F0) >> 4;
7

8 uint32_t two_even = even << 1;
9 uint32_t two_odd = odd << 1;

10 uint32_t x0 = even & 0xFF;
11 uint32_t concatenator = (1 << 24) | (1 << 16) | (1 << 8) | 1;
12 uint32_t x0_concat = x0 * concatenator;
13

14 uint32_t temp_even = __vadd4(two_even & 0xFFFFFF00, x0_concat);
15 uint32_t temp_odd = __vadd4(two_odd, x0_concat);
16

17 uint32_t s1 = __dp4a(two_even, (uint32_t)0x01010100, (uint32_t)0);
18 uint32_t s2 = __dp4a(two_odd, (uint32_t)0x01010101, s1);
19

20 *out0 = temp_even;
21 *out1 = temp_odd + s2;
22 }

60

The computation is done by decomposing G into a sum of different matrices.

G =



1 0 0 0 0 0 0 0
1 0 2 0 0 0 0 0
1 0 0 0 2 0 0 0
1 0 0 0 0 0 2 0
1 4 2 2 2 2 2 2
1 0 0 2 0 0 0 0
1 0 0 0 0 2 0 0
1 0 0 0 0 0 0 2


=



1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0


+



0 0 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 0 0 0 0 2 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



+



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 0 2 0 0 0 0
0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 2


+



0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


The next step is to compute p

q
and the coset of p

q
we merge both operations into one

function.

1 __device__ void decode_nestquant(
2 uint32_t *enc, int *B_local_decode, const int N = 8
3)
4 {
5 uint32_t inp0, inp1;
6 unsigned int dist[2];
7

8 const uint32_t MASK_FRACPART = 0x1F1F1F1F;
9 const uint32_t MASK_INTPART = 0xE0E0E0E0;

10 const int HALF_CONCAT = 0x10101010;
11 const int TWO = 0x40;
12 const int ONE = 0x20;
13 const int HALF = 0x10;
14

15 G_q_fast(enc[0], &inp0, &inp1);
16

17 int32_t fracPart0 = inp0 & MASK_FRACPART;
18 int32_t fracPart1 = inp1 & MASK_FRACPART;
19

20 int32_t integerPart0 = inp0 & MASK_INTPART;
21 int32_t integerPart1 = inp1 & MASK_INTPART;
22

23 int g0 = (fracPart0 & HALF_CONCAT) << 1;
24 int g1 = (fracPart1 & HALF_CONCAT) << 1;
25

61

26 int32_t change = ((g0 & ONE) - HALF);
27 int32_t sum1 = get_sum(integerPart0, integerPart1);
28 int32_t two_parity_1 = (sum1 & ONE) >> 4;
29 int32_t fracPart0_1 = __vsub4(fracPart0, (int32_t)(two_parity_1 * change) & 0xFF);
30

31 int32_t sum2 = get_sum(g0, g1) + sum1;
32 int32_t two_parity_2 = (sum2 & ONE) >> 4;
33 int32_t fracPart0_2 = __vadd4(fracPart0, (int32_t)(two_parity_2 * change) & 0xFF);
34

35 dist[0] = __vabsdiffs4(fracPart0, HALF_CONCAT);
36 dist[1] = __vabsdiffs4(fracPart1, HALF_CONCAT);
37 int Delta = get_sum(dist[0], dist[1]);
38

39 int32_t dist00 = (dist[0] & 0xFF);
40 Delta -= (two_parity_1 + two_parity_2) * dist00;
41 Delta += two_parity_1 << 4;
42

43 if (Delta <= TWO) {
44 B_local_decode[0] = __vsub4(fracPart0_1, HALF_CONCAT);
45 B_local_decode[1] = __vsub4(fracPart1, HALF_CONCAT);
46 } else {
47 B_local_decode[0] = __vsub4(fracPart0_2, g0);
48 B_local_decode[1] = __vsub4(fracPart1, g1);
49 }
50 }

For q = 16, p must be divided by 16. We used a basis for 2E8, and not E8, so every
element is doubled. This is why in our code 1

2
is represented by 16, 1 is represented by 32, and

2 is represented by 64. To avoid using the round function explicitly (which is not parallelized
in hardware), we compute the integer and fractional parts of the vector using masks (as can
be seen in lines 17–21), and then determine g in two parts, g0 and g1 (see lines 23 and 24).
This is done by checking that the fractional part is greater than or equal to 1

2
(equivalently,

in our scaled basis, that the fractional part has the fourth LSB set to one). We leverage the
fact that

x− (⌊x⌋+ 0.5) = {x} − 0.5

(lines 44 and 45) and

x− round(x) = ⌊x⌋+ {x} − (⌊x⌋+ g) = {x} − g

(lines 47 and 48). To compute the bit flip, we compute 2g1 − 1 (corresponding to the first
element in the vector; see line 26 for reference). We add (or subtract) it from the fractional
part based on the parity check we compute in lines 28 and 32, respectively.

To decode β parameters in the kernel, we encode them as indices to a predefined dictionary
(of size 4). Thus, each β can be represented using 2 bits.

1 int beta1 = (beta_packed >> shift) & 0x3;
2 int beta2 = (beta_packed >> (shift + 2)) & 0x3;
3 int decoded_beta1 = beta_dict[beta1];

62

4 int decoded_beta2 = beta_dict[beta2];

Encoding and decoding kernels share the same logical structure so that the complex mapping
defined for β is shared (this allows fast contiguous reads of multiple βs at once).

8.3.1 Runtime comparison of GEMV

Table 8.1: Runtime comparison of GEMV kernels on an 8192× 8192 matrix using an NVIDIA
A100 GPU.

Method Time (µs)

Baseline (16 bits) 97
NestQuantM (4.25 bits) 60
QuIP# (2 bits) 38
QuIP# (4 bits) ∼75
int4 uniform 31

The QuIP# computation involves invoking two calls to QuIP# (2 bits), so we extrapolate
the running time based on QuIP# (2 bits).

8.4 Dequantization circuit

In this section, we develop a pipelined, efficient circuit for NestQuant dequantization. Dequan-
tization consists of two stages: first, perform a matrix multiplication between the generating
matrix G and the coordinates. Then, find the closest point in the E8 lattice scaled by q and
subtract it.

We make the circuit for 4-bit quantization with q = 16. The matrix G is equal to the
following:

G =



2 1 1 1 1 1 1 1
2

0 1 0 0 0 0 0 1
2

0 0 1 0 0 0 0 1
2

0 0 0 1 0 0 0 1
2

0 0 0 0 1 0 0 1
2

0 0 0 0 0 1 0 1
2

0 0 0 0 0 0 1 1
2

0 0 0 0 0 0 0 1
2


Instead of multiplying by G, we will multiply by 2G to keep integer values; then we need

to subtract the closest value in 32E8. Note that if f(x) = x−V32E8(x), then f(x+64t) = f(x)
for all t ∈ Z8. This means that we can keep only 6 bits of the matrix multiplication result,
interpreting it as an unsigned number. We don’t need to do any multiplications due to the
sparsity of the matrix; the fixed bit shifts for multiplying by 2 and 4, as well as 6-bit sums,
are sufficient.

63

Now, let’s describe the circuit for computing f(x). To round the point x to the closest
element of 32E8, we consider two candidates: the closest x1 in 32D8 (recall that this set
contains all integer 8-vectors with coordinates divisible by 32 such that their sum is divisible
by 64) and the closest x2 in 32D8 + 16 (equal to 32D8 with 16 added to every coordinate).
Then, the answer is x minus the best candidate among x1 and x2 by Euclidean distance to x.

We describe the procedure for obtaining x1. If we drop the requirement for the sum of
coordinates being divisible by 64, we simply have to round each coordinate to the closest
value divisible by 32. There are two ways to round each number: floor and ceil. We should
choose the best rounding for each component. However, if the sum of coordinates of the
optimal rounding fails the divisibility by 64, we need to "flip" one of the rounding directions.
In the full algorithm, we need to choose the optimal component to flip; however, always
flipping the first component is close to optimal in the end-to-end quantization benchmarks
(see Section 8.2), and we will use this approach.

Figure 8.1: Circuit diagram of NestQuant dequantization circuit

Let xi denote the ith component of vector x and y[k] denote the kth least significant bit
of y. Let Li be xi with the last 5 bits set to 0. We denote x̃1 and x̃2 to be x1 and x2 before
flipping rounding. Then, x̃i

1 is equal to Li or Li + 32 depending on xi[4], and x̃i
2 is Li + 16.

Let di be the absolute distance between xi and Li + 16. The MSE between x̃1 and x is∑
i(16− di)

2, and the MSE between x̃2 and x is
∑

i d
2
i .

x̃1 is better ⇔
∑

d2i ≥
∑

(16− di)
2 ⇔∑

d2i −
(
�
�d2i + 256− 32di + �

�d2i

)
≥ 0⇔

(
32

∑
di

)
− 2048 ≥ 0⇔

∑
di ≥ 64

64

use_x2 vi[4] flip value target out rep
0 0 0 p 0 p 00p
1 0 0 p 16 p− 16 11p
0 1 0 16 + p 32 p− 16 11p
1 1 0 16 + p 16 p 00p
0 0 1 p 32 p− 32 10p
1 0 1 p −16 p+ 16 01p
0 1 1 16 + p 0 p+ 16 01p
1 1 1 16 + p 48 p− 32 10p

Table 8.2: 6-bit two complement representation of the result depending on the parameters.
We denote 4 least significant bits of vi as p

We set ∆ =
∑

di, and we compare ∆ with 64 to select the candidate. Note that we are
choosing between x1 and x2, not between x̃1 and x̃2, so we need to update ∆ accordingly.
One can show that if we flip the first coordinate of x̃1, we need to subtract 2d1, and if we flip
x̃2, we add 32− 2d1, and the comparison between ∆ and 64 will become the valid criterion.

Using this information, we design the dequantization circuit with the following variables:

• coords: The input coordinates.

• v: The coordinates of the point after matmul.

• anti: The i-th value is equal to 16− vi[3 : 0].

• d: di is computed with a MUX between vi and antii, based on vi[4], padded to 8 bits.

• dsum: The sum of di; dist0 is d1.

• flip1 and flip2: Indicate whether the rounding direction of the first component in x̃1

and x̃2 needs to be flipped. One can show that flip2 =
⊕

i v
i[5], flip1 = flip2 ⊕

⊕
i v

i[4].

• fsum: The updated ∆ to account for flips.

• use_x2: True when we choose x2; otherwise we choose x1. flip is true when the
candidate we chose has a flip.

• out: The final result. Table 8.2 shows that the 6-bit two’s-complement form of outi is
the concatenation of (flip ∧ (i = 1))⊕ use_x2⊕ vi[4], use_x2⊕ vi[4], and vi[3 : 0].

The dashed red lines in the circuit figure indicate the places where pipelines are separated.
We have synthesized two versions of the circuit: with 3 pipeline stages and with 2 pipeline
stages (without the second separation). We have implemented the circuit using Minispec.
The synthesis results (area, critical path delay, and gate count) are presented in Table 8.3.
The area is computed for 45 nm technology.

65

Pipeline stages Area Delay Gate count
2 1117.47 um2 549.62 ps 903
3 1350.48 um2 354.59 ps 963

Table 8.3: Simulation results

66

Chapter 9

Tokenization

In the previous chapters, we used quantization to compress the components of a transformer
model and improve its efficiency. In this chapter, we will look at quantization from a different
angle.

Transformer models operate on sequences of discrete tokens. Language data is inherently
discrete: each character has a finite number of values. The process of encoding the data
into tokens is performed using a combinatorial algorithm (such as Byte Pair Encoding) and
is typically lossless. For the case of a continuous-valued data domain, such as images and
audio, encoding the data into discrete tokens necessarily loses information and is referred to
as tokenization. The task of tokenization shares similarities with the task of quantization:
in both cases, we are minimizing the distortion between the original data and the data
reconstructed from a discrete representation.

In tokenization, the data is typically not quantized directly. This process typically consists
of three stages: first, a trained encoder network processes the data and extracts the most
important features from it, which are then passed through a vector quantizer. Finally, the
decoder reconstructs the data object from the quantized features.

While quantization of model parameters is done primarily for efficiency, discretizing data
can enhance the capabilities of generative models for the corresponding data domain. In [33],
the vector quantizer is represented by an explicit vector codebook that is trained together
with the weights of the encoder and decoder with a VAE objective to produce an image
generation model. The authors of [34] use a vector quantizer based on RVQ to create a codec
for audio compression. Finally, [35] is a work in the domain of music generation, which trains
an autoregressive model on the discretized representations of music.

Our goal is to demonstrate the benefit of tokenization in the task of source separation in
RF signals. We present a tokenized transformer architecture trained to remove signal inter-
ference by predicting the discrete tokens of its compressed representation. Our architecture
outperforms the baselines that only use a continuous representation of data and are trained
on an MSE objective.

67

9.1 Digital systems preliminaries

Digital communications involve transmitting bits by modulating a continuous carrier waveform.
Prior to modulation, a digital communication signal can be represented in its complex
baseband form as

u(t) =
∞∑

p=−∞

L−1∑
ℓ=0

cp,ℓ g(t− pTs, ℓ) exp {j2πℓt/L}. (9.1)

Groups of bits are mapped to symbols cp ∈ C using a digital constellation, which assigns bit
patterns to a finite set of complex values. These symbols are then combined into a continuous
complex-valued waveform via (9.1), using a pulse shaping filter g(·) to limit bandwidth and
reduce inter-symbol interference [36, Sec 4.4.3]. Although the waveform appears continuous,
it still bears underlying discrete structures due to the finite constellation and deterministic
filtering.

The number of bits per symbol largely determines the constellation. Common schemes
include modulating two bits at a time (Quadrature Phase Shift Keying, or QPSK) or one bit
at a time (Binary Phase Shift Keying, or BPSK). Additionally, multiple groups of bits can
be transmitted in parallel by considering orthogonal sub-carrier waveforms, represented by
multiplication with multiple orthogonal complex sinusoids in (9.1). This is representative of
Orthogonal Frequency Division Multiplexing (OFDM), inherent to many popular wireless
standards such as 5G and Wi-Fi.

To recover the bits at the receiver, one may adopt matched filtering (MF) [37, Sec 5.8]
before the estimation of the underlying symbols, and thereafter decode them back to bits. For
commonly used pulse shaping functions, such as the root-raised cosine (RRC), the matched
filter and pulse shaping filter coincide. We refer readers to [36–38] for a more thorough
exposition of the topic.

9.1.1 Problem setup

We consider a QPSK signal of interest (SOI) mixed with a single interference source, modeled
as

y = s+ κb, (9.2)

where s represents the SOI and b is the interfering signal. In this setting, assuming unit-power
signals, we can quantify the relative levels of SOI power to interference power through the
signal-to-interference ratio,

SIR(κ) :=
1

κ2
. (9.3)

9.2 Proposed architecture

Convolutional architectures are the dominant approach for RF source separation, leveraging
inductive biases inherent to digital communication signals. While effective, these models rely
on large receptive fields and struggle with variable-length mixtures and real-time processing.

68

Motivated by the success of transformers in language and vision tasks, we propose a
transformer-based architecture for RF source separation that enables large-scale learning
and autoregressive decoding. We first provide an overview of our architecture, followed by a
detailed description of each component.

Downsamler

Upsampler
1 2

1 2s

Encoder

Autoregressive decoder
discrete
tokens

Linear

Window size

Upsampler

vectors

hidden
rep

SOI

reconstructed SOI

cross attn

mixture

Tokenizer Transformer

clean SOI

Figure 9.1: Schematic overview of the proposed architecture

9.2.1 Architecture Overview

As shown in Figure 9.1, our architecture consists of two components: a tokenizer that learns
discrete representations of the SOI and a transformer that predicts a tokenized encoding of
the SOI from a mixture. The tokenizer is implemented with an encoder-decoder architecture,
where the encoder maps the SOI s ∈ CN to a discrete-valued sequence c ∈ {1, 2, . . . , k}L and
the decoder learns the reverse mapping back to the SOI. Here k is the alphabet size defined
by the total number of possible tokens. The encoded sequence length is L = ⌈N/w⌉, where
w is the window size that controls the number of SOI samples that are compressed into one
token. The tokenizer is trained by minimizing the MSE loss between the reconstructed and
ground-truth SOI waveforms.

For the transformer, we adopt an encoder-decoder architecture [39], where the mixture is
processed by the encoder and the decoder predicts the tokenized SOI waveform autoregressively.
Following this, the pre-trained tokenizer’s decoder converts the SOI tokens into a continuous
waveform, from which the underlying bits can be recovered using matched filtering.

Next, we describe these two components in more detail, starting with the tokenizer.

69

SOI
MLP

Patchify

Downsample
Block
×3

Transformer
Block
×4

FSQ
6 bits

Transformer
Block
×4

Upsample
Block
×3

MLP
Reconstruct Reconstruction

Encoder Decoder

Figure 9.2: Overview of the SOI Tokenizer architecture. The main differences from the
SoundStream architecture are: (i) additional transformer blocks after downsampling and
before upsampling; (ii) the use of FSQ instead of RVQ for discretization; and (iii) the omission
of the discriminator network.

9.2.2 The SOI Tokenizer

Our tokenizer builds on the SoundStream encoder–decoder architecture originally developed
for neural audio compression [40], which uses a residual vector quantization (RVQ) module
to produce discrete representations of input waveforms. However, directly applying this
design to RF signals is suboptimal. To better capture the unique structure and statistical
properties of RF data, we introduce several key modifications tailored specifically for RF
signal tokenization.

Given the inherent discreteness of RF signals and to aid in training the transformer
on practical sequence lengths, we aim to further compress the underlying information and
therefore consider an extremely low-bitrate setting for tokenization. To achieve this, we
substituted RVQ with finite scalar quantization (FSQ) [41], which we found to work better
for this low-bitrate setup. Additionally, we found that for the QPSK SOI, adding extra
transformer blocks before and after FSQ in the encoder and decoder, respectively, also leads
to better validation loss. The full architecture of our tokenizer is illustrated in Figure 9.2.
We train it using an MSE reconstruction loss and backpropagate through the FSQ module as
in [41].

9.2.3 The RF Transformer

With a trained tokenizer for the signal of interest (SOI) in place, we can proceed to implement
our source separation model. The proposed architecture is an encoder-decoder transformer
trained to predict the tokenized representation of the SOI s from a given input mixture
waveform y.

The first step embeds the mixture signal y ∈ CN into a sequence of continuous-valued
vectors. The signal is divided into non-overlapping windows of length w, with additional
context of cL samples to the left and cR to the right of each window. Each windowed segment
is linearly projected into a d-dimensional embedding, resulting in an embedding matrix
Z ∈ RL×d, where L = ⌈N/w⌉ is the number of segments. Specifically, the i-th embedding
zi is computed from the segment spanning positions w · i− cL to w · (i+ 1) + cR, with zero
padding applied when indices exceed the signal bounds. Real and imaginary components of
the complex-valued input are treated as separate input dimensions during projection.

The mixture embeddings are processed by a stack of encoder blocks, while the discrete
tokens corresponding to the (partially) decoded SOI are fed through a stack of decoder
blocks. Each block follows the standard transformer architecture, comprising self-attention,

70

Table 9.1: Summary of the interference datasets used in our experiments.

Interference Dataset Type Description # Recordings Recording Length

CommSignal2 Recorded Unknown 100 43560
CommSignal3 Recorded Unknown 139 260000
CommSignal5G1 Synthetic 5G OFDM signal 149 230000
EMISignal1 - Microwave emission 530 230000

normalization layers, a feedforward network, and residual connections. Additionally, each
decoder block includes a cross-attention mechanism that conditions the SOI representation
on the encoder’s final output. Instead of standard sinusoidal positional embeddings, we adopt
rotary positional embeddings [42].

The RF transformer is trained via teacher forcing with cross-entropy loss. The training
dataset is composed of mixture-SOI pairs, where the SOI is tokenized. When running inference
on a new mixture, we decode the tokens of the SOI autoregressively and then use the SOI
tokenizer’s decoder to reconstruct the signal in the waveform domain.

9.3 Experimental results

9.3.1 Experimental Setup

We evaluated our proposed architecture using four distinct mixture scenarios. Each mixture
includes a QPSK SOI and is corrupted by a different real-world interference signal from the
MIT RF Challenge dataset: EMISignal1, CommSignal2, CommSignal3, and CommSignal5G1.
Table 9.1 summarizes the characteristics of these interference signals. Our training setup
closely followed the protocol outlined in the ICASSP 2024 SP Grand Challenge on RF source
separation [43].

Both the tokenizer and transformer were trained on waveform segments of length Ntrain.
During training, we randomly sampled independent SOI and interference signals, cropping
each to length Ntrain. This is representative of an unsynchronized setting, where the start of
the SOI waveform may not align with the start of a QPSK symbol. As a result, direct MF
decoding without compensating for symbol offset fails. Compared to the synchronized setup
used in the ICASSP SP Grand Challenge, this setting is more challenging but also aids in
augmenting the training data, which is vital for transformer training.

To create the mixture, we selected a random SIR from which we computed κ to define
the mixture as in (9.2). In practice, we also augmented the interference signal by multiplying
it with a random phase offset. Due to the limited dataset size of CommSignal2, we also
applied additional transformations to the interference for this dataset, which we describe in
the Appendices.

When testing, we used the signal length Ntest = 40960, which could be larger than Ntrain.
To deal with this scenario, we selected a set of overlapping windows of size Ntrain with stride
s. We obtained an SOI estimate after decoding the tokens using the tokenizer’s decoder, and
the final prediction for each sample in the predicted waveform is the average of all predictions

71

from overlapping windows. In our experiments, we typically choose Ntrain = 2560.

9.3.2 Results

We tested the models on a separate test set with 50 SOI-interference pairs. We evaluated
performance at 11 SIR levels, ranging from −30 dB to 0 dB with a step size of 3 dB. For
each SIR, we computed the average MSE of model predictions and the BER. We compared
against the WaveNet and existing baselines from the ICASSP 2024 SP Grand Challenge.

30 25 20 15 10 5 0
SIR [dB]

50

40

30

20

10

M
SE

 [d
B]

30 25 20 15 10 5 0
SIR [dB]

10 5

10 4

10 3

10 2

10 1

100

BE
R

Wavenet baseline RF transformer OneInAMillion TUB KU-TII

(a) Performance of various methods for separating QPSK and CommSignal5G1 interference.

30 25 20 15 10 5 0
SIR [dB]

60

50

40

30

20

10

M
SE

 [d
B]

30 25 20 15 10 5 0
SIR [dB]

10 5

10 4

10 3

10 2

10 1

100

BE
R

RF transformer KU-TII OneInAMillion TUB Wavenet

(b) Performance of various methods for separating QPSK and EMISignal1 interference.

Figure 9.3: Source separation performance for separating mixtures with CommSignal5G1 and
EMISignal1 interference using different methods. In both cases, our proposed architecture is
highly competitive and surpasses most baselines across a wide range of SIRs.

Table 9.2 summarizes the average performance of our proposed method and baselines
across the datasets. For MSE, we take the average result in dB across SIRs, capping the
MSE at −50 dB. We take the geometric mean of BER values, capping BER at 10−5.

72

Table 9.2: The performance of source separation methods on all datasets

MSE (dB) BER (log10)

Method or team CS2 CS3 CS5G1 EMI CS2 CS3 CS5G1 EMI

RF transformer (ours) -27.22 -6.18 -46.32 -33.01 -2.92 -0.83 -4.91 -3.52
WaveNet -24.14 - -39.43 -28.92 -3.05 - -4.23 -3.33
KU-TII -38.44 -6.04 -30.17 -29.07 -4.18 -1.10 -3.41 -3.33
OneInAMillion -23.54 -4.41 -37.11 -28.92 -3.03 -0.86 -3.94 -2.97
TUB -25.54 -4.97 -28.85 -26.88 -2.95 -0.92 -3.41 -3.23

Our method delivers strong performance across diverse interference types. As shown in
Figure 9.3a, it substantially outperforms baseline models on CommSignal5G1 and achieves
state-of-the-art results for EMISignal1 (Figure 9.3b). For mixtures with CommSignals 2
and 3, it remains on par with the best-performing methods. In the 5G interference case,
our RF transformer attains an average BER of 9.59× 10−6—a 122× reduction compared to
1.17× 10−3 for the WaveNet baseline. KU-TII achieves the highest score on CommSignal2
using additional synthetic training data, whereas our model, like most others, is trained solely
on the provided dataset.

73

74

Chapter 10

Conclusion

10.1 RF transformer

We conclude that using a tokenized representation of the target (signal of interest) improves
source separation performance. In future work, we could investigate a causal RF transformer,
which can perform interference cancellation in real time.

10.2 NestQuant

NestQuant consists of two main innovations: an optimized codebook based on Voronoi
codes and a new optimization objective (QA-LDLQ) with an optimization algorithm that
reduces it to the regular LDLQ objective. NestQuant outperforms state-of-the-art methods
for KV-cache and activation quantization and is competitive with weight-only quantization
methods. We also introduce NestQuantM — a simplified algorithm for which it is possible to
implement a fast GPU kernel, and we design a circuit that performs NestQuantM decoding
efficiently.

For future work, it is important to investigate the following extensions of NestQuant:

• It might be beneficial to apply MMSE scaling and dithering to the codebook to improve
robustness

• NestQuant can be integrated with a more advanced objective from Section 3.4 or with
optimized rotation matrices from Section 3.2

• More research is needed to understand the performance of GPU kernels with NestQuant,
as well as of specialized hardware that supports vector quantization

• Integrating vector quantization into accelerators is a promising direction for Deep
Learning hardware, but designing chips for a specific quantization protocol is a significant
commitment. Further research is needed to identify a universal and efficient codebook
for integration. While the current version of NestQuant is not proposed as the definitive
standard, it provides a strong baseline for future work.

75

76

References

[1] J. Conway and N. Sloane. “A Fast Encoding Method for Lattice Codes and Quantizers”.
In: IEEE Transactions on Information Theory 29.6 (1983), pp. 820–824. doi: 10.1109/
TIT.1983.1056761.

[2] S. Savkin, E. Porat, O. Ordentlich, and Y. Polyanskiy. “NestQuant: Nested Lattice
Quantization for Matrix Products and LLMs”. In: arXiv preprint arXiv:2502.09720
(2025).

[3] C. E. Shannon. “Coding Theorems for a Discrete Source with a Fidelity Criterion”. In:
IRE National Convention Record 4 (1959), pp. 142–163.

[4] S. P. Lloyd. “Least Squares Quantization in PCM”. In: IEEE Transactions on Infor-
mation Theory 28.2 (1982). Originally published as Bell Laboratories Technical Note,
1957, pp. 129–137. doi: 10.1109/TIT.1982.1056489.

[5] M. W. Marcellin and T. R. Fischer. “Trellis Coded Quantization of Memoryless and
Gauss–Markov Sources”. In: IEEE Transactions on Communications 38.1 (Jan. 1990).
Presented in part at the 1988 ISIT, Kobe, Japan; NSF Grant NCR-8821764, pp. 82–93.
doi: 10.1109/26.46532.

[6] R. Zamir and M. Feder. “On Universal Quantization by Randomized Uniform/Lattice
Quantizers”. In: IEEE Transactions on Information Theory 38.2 (1992), pp. 428–436.
doi: 10.1109/18.119699.

[7] O. Ordentlich and Y. Polyanskiy. Optimal Quantization for Matrix Multiplication. 2024.
arXiv: 2410.13780 [cs.IT]. url: https://arxiv.org/abs/2410.13780.

[8] R. Sennrich, B. Haddow, and A. Birch. “Neural machine translation of rare words
with subword units”. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers). Association for Computational
Linguistics. 2016, pp. 1715–1725.

[9] Llama Team, AI @ Meta. The Llama 3 Herd of Models. 2024. arXiv: 2407.21783
[cs.AI]. url: https://arxiv.org/abs/2407.21783.

[10] E. Frantar, S. P. Singh, and D. Alistarh. “Optimal Brain Compression: A Framework for
Accurate Post-Training Quantization and Pruning”. In: Advances in Neural Information
Processing Systems 36 (NeurIPS 2022). 2022.

[11] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer. “LLM.int8(): 8-Bit Matrix
Multiplication for Transformers at Scale”. In: Advances in Neural Information Processing
Systems 35 (NeurIPS 2022). 2022, pp. 29498–29512.

77

https://doi.org/10.1109/TIT.1983.1056761
https://doi.org/10.1109/TIT.1983.1056761
https://doi.org/10.1109/TIT.1982.1056489
https://doi.org/10.1109/26.46532
https://doi.org/10.1109/18.119699
https://arxiv.org/abs/2410.13780
https://arxiv.org/abs/2410.13780
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783

[12] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han. “SmoothQuant: Accurate
and Efficient Post-Training Quantization for Large Language Models”. In: Proceedings
of the 40th International Conference on Machine Learning (ICML 2023). Vol. 202.
Proceedings of Machine Learning Research. 2023, pp. 3732–3754.

[13] J. Lin, J. Tang, H. Tang, S. Yang, W.-M. Chen, W.-C. Wang, G. Xiao, X. Dang, C.
Gan, and S. Han. “AWQ: Activation-Aware Weight Quantization for On-Device LLM
Compression and Acceleration”. In: Proceedings of Machine Learning and Systems 6
(2024), pp. 87–100.

[14] J. Chee, Y. Cai, V. Kuleshov, and C. D. Sa. QuIP: 2-Bit Quantization of Large Language
Models with Guarantees. See entry chee2024 for archival details. 2024. arXiv: 2307.13304
[cs.LG]. url: https://arxiv.org/abs/2307.13304.

[15] S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, P. Cameron, M. Jaggi, D. Alistarh,
T. Hoefler, and J. Hensman. “QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs”.
In: Advances in Neural Information Processing Systems 38 (NeurIPS 2024). 2024.

[16] Z. Liu, C. Zhao, I. Fedorov, B. Soran, D. Choudhary, R. Krishnamoorthi, V. Chandra,
Y. Tian, and T. Blankevoort. SpinQuant: LLM Quantization with Learned Rotations.
2024. arXiv: 2405.16406 [cs.LG]. url: https://arxiv.org/abs/2405.16406.

[17] Y. Sun et al. “FlatQuant: Flatness Matters for LLM Quantization”. In: arXiv preprint
arXiv:2410.09426 (2024). Submitted to ICLR 2025; poster at ICML 2025.

[18] A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. D. Sa. “QuIP#: Even Better LLM
Quantization with Hadamard Incoherence and Lattice Codebooks”. In: Proceedings
of the 41st International Conference on Machine Learning (ICML 2024). Vol. 235.
Proceedings of Machine Learning Research. 2024, pp. 48630–48656.

[19] A. Défossez, J. Copet, G. Synnaeve, and Y. Adi. “High Fidelity Neural Audio Com-
pression”. In: Proceedings of the 40th International Conference on Machine Learning
(ICML). PMLR, 2023, pp. 7480–7512. url: https://proceedings.mlr.press/v202/
defossez23a.html.

[20] A. Tseng, Q. Sun, D. Hou, and C. D. Sa. “QTIP: Quantization with Trellises and
Incoherence Processing”. In: Advances in Neural Information Processing Systems 38
(NeurIPS 2024). 2024.

[21] J. Kim, M. El Halabi, W. Park, C. J. Schaefer, D. Lee, Y. Park, J. W. Lee, and H. O.
Song. “GuidedQuant: Large Language Model Quantization via Exploiting End Loss
Guidance”. In: arXiv preprint arXiv:2505.07004 (May 2025). Submitted May 11, 2025,
available at arXiv.

[22] A. Tseng, Z. Sun, and C. De Sa. “Model-Preserving Adaptive Rounding”. In: arXiv
preprint arXiv:2505.22988 (2025). Introduces YAQA: Yet Another Quantization Algo-
rithm. doi: 10.48550/arXiv.2505.22988. url: https://arxiv.org/abs/2505.22988.

[23] R. Zamir. Lattice Coding for Signals and Networks: A Structured Coding Approach to
Quantization, Modulation, and Multiuser Information Theory. Cambridge University
Press, 2014.

78

https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2307.13304
https://arxiv.org/abs/2405.16406
https://arxiv.org/abs/2405.16406
https://proceedings.mlr.press/v202/defossez23a.html
https://proceedings.mlr.press/v202/defossez23a.html
https://doi.org/10.48550/arXiv.2505.22988
https://arxiv.org/abs/2505.22988

[24] E. Agrell and B. Allen. “On the Best Lattice Quantizers”. In: IEEE Transactions on
Information Theory (2023).

[25] J. Conway and N. Sloane. “Fast Quantizing and Decoding Algorithms for Lattice
Quantizers and Codes”. In: IEEE Transactions on Information Theory 28.2 (1982),
pp. 227–232. doi: 10.1109/TIT.1982.1056484.

[26] H. Lin, H. Xu, Y. Wu, J. Cui, Y. Zhang, L. Mou, L. Song, Z. Sun, and Y. Wei. “DuQuant:
Distributing Outliers via Dual Transformation Makes Stronger Quantized LLMs”. In:
Advances in Neural Information Processing Systems 38 (NeurIPS 2024). 2024.

[27] S. Merity, C. Xiong, J. Bradbury, and R. Socher. “Pointer Sentinel Mixture Models”.
In: International Conference on Learning Representations (ICLR 2017). 2017.

[28] X. Hu, Y. Cheng, D. Yang, Z. Xu, Z. Yuan, J. Yu, C. Xu, Z. Jiang, and S. Zhou.
“OstQuant: Refining Large Language Model Quantization with Orthogonal and Scaling
Transformations for Better Distribution Fitting”. In: International Conference on
Learning Representations (ICLR 2025). 2025.

[29] P. Clark, I. Cowhey, O. Etzioni, T. Khot, A. Sabharwal, C. Schoenick, and O. Tafjord.
Think You Have Solved Question Answering? Try ARC, the AI2 Reasoning Challenge.
2018. arXiv: 1803.05457 [cs.AI]. url: https://arxiv.org/abs/1803.05457.

[30] R. Zellers, A. Holtzman, Y. Bisk, A. Farhadi, and Y. Choi. “HellaSwag: Can a Machine
Really Finish Your Sentence?” In: Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics (ACL 2019). 2019, pp. 4791–4800.

[31] Y. Bisk, R. Zellers, R. L. Bras, J. Gao, and Y. Choi. “PIQA: Reasoning about Physical
Commonsense in Natural Language”. In: Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI 2020). 2020, pp. 7432–7439.

[32] K. Sakaguchi, R. L. Bras, C. Bhagavatula, and Y. Choi. “WinoGrande: An Adversarial
Winograd Schema Challenge at Scale”. In: Proceedings of the 34th AAAI Conference
on Artificial Intelligence (AAAI 2020). 2020, pp. 8732–8740.

[33] A. van den Oord, O. Vinyals, and K. Kavukcuoglu. “Neural discrete representation
learning”. In: Advances in neural information processing systems 30 (2017).

[34] A. Defossez, J. Copet, G. Synnaeve, and Y. Adi. “High fidelity neural audio compression”.
In: Proceedings of the 39th International Conference on Machine Learning. PMLR.
2022, pp. 5370–5380.

[35] A. Agostinelli et al. “MusicLM: Generating Music From Text”. In: IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2023, pp. 1–5.

[36] R. W. Heath Jr. Introduction to wireless digital communication: a signal processing
perspective. Prentice Hall, 2017.

[37] A. Lapidoth. A foundation in digital communication. Cambridge University Press, 2017.

[38] A. Goldsmith. Wireless communications. Cambridge University Press, 2005.

[39] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. “Attention is all you need”. In: Advances in neural information processing
systems 30 (2017).

79

https://doi.org/10.1109/TIT.1982.1056484
https://arxiv.org/abs/1803.05457
https://arxiv.org/abs/1803.05457

[40] N. Zeghidour, A. Luebs, A. Omran, J. Skoglund, and M. Tagliasacchi. “Soundstream:
An end-to-end neural audio codec”. In: IEEE/ACM Transactions on Audio, Speech,
and Language Processing 30 (2021), pp. 495–507.

[41] F. Mentzer, D. Minnen, E. Agustsson, and M. Tschannen. “Finite scalar quantization:
Vq-vae made simple”. In: arXiv preprint arXiv:2309.15505 (2023).

[42] J. Su, M. Ahmed, Y. Lu, S. Pan, W. Bo, and Y. Liu. “Roformer: Enhanced transformer
with rotary position embedding”. In: Neurocomputing 568 (2024), p. 127063.

[43] T. Jayashankar, B. Kurien, A. Lancho, G. Lee, Y. Polyanskiy, A. Weiss, and G.
Wornell. “The Data-Driven Radio Frequency Signal Separation Challenge”. In: 2024
IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops
(ICASSPW). 2024, pp. 53–54. doi: 10.1109/icasspw62465.2024.10627554. url: https:
//doi.org/10.1109/icasspw62465.2024.10627554.

80

https://doi.org/10.1109/icasspw62465.2024.10627554
https://doi.org/10.1109/icasspw62465.2024.10627554
https://doi.org/10.1109/icasspw62465.2024.10627554

	Title page
	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Thesis structure

	2 Background
	2.1 Quantization overview
	2.1.1 Gaussian data
	2.1.2 Matrix multiplication quantization

	2.2 Language models overview
	2.2.1 Autoregressive text generation
	2.2.2 Transformer model architecture
	2.2.3 Quantization of transformer LLMs

	2.3 LLM quantization techniques
	2.3.1 Uniform scalar quantization
	2.3.2 Outliers and random rotation
	2.3.3 GPTQ

	3 Related works
	3.1 Outlier avoidance
	3.1.1 LLM.int8()
	3.1.2 SmoothQuant
	3.1.3 AWQ

	3.2 Optimized rotations
	3.2.1 SpinQuant
	3.2.2 FlatQuant

	3.3 Using vector quantization
	3.3.1 QuIP#
	3.3.2 AQLM
	3.3.3 QTIP

	3.4 A better objective function
	3.4.1 GuidedQuant
	3.4.2 YAQA

	3.5 Our work

	4 Codebook design
	4.1 Motivation for the codebook choice
	4.2 Codebook details
	4.3 Optimal scaling coefficients

	5 QA-LDLQ
	5.1 Summary
	5.2 Motivation

	6 NestQuant overview
	6.1 Matrix quantization
	6.2 LLM quantization
	6.3 Algorithm summary

	7 Experimental results
	7.1 Simulated Data
	7.2 Llama results
	7.2.1 Experimental design
	7.2.2 Results for 4-bit quantization
	7.2.3 LLM quantization scaling
	7.2.4 Results for Llama3.2-1B
	7.2.5 Results for 3-bit model quantization
	7.2.6 Zero shot benchmarks

	7.3 Ablation studies
	7.3.1 Choosing the number of scaling coefficients

	8 Algorithm efficiency
	8.1 Gosset oracle
	8.2 NestQuantM algorithm
	8.3 CUDA Kernel Implementation
	8.3.1 Runtime comparison of GEMV

	8.4 Dequantization circuit

	9 Tokenization
	9.1 Digital systems preliminaries
	9.1.1 Problem setup

	9.2 Proposed architecture
	9.2.1 Architecture Overview
	9.2.2 The SOI Tokenizer
	9.2.3 The RF Transformer

	9.3 Experimental results
	9.3.1 Experimental Setup
	9.3.2 Results

	10 Conclusion
	10.1 RF transformer
	10.2 NestQuant

	References

