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ABSTRACT

The empirical Bayes estimator for the Poisson mixture model in [1]|, [2] has been an
important problem studied for the past 70 years. In this thesis, we investigate extensions of
this problem to estimating polynomial functions of the Poisson parameter rather than just
the parameter itself. We generalize three different algorithms for estimation, specifically the
Robbins estimator from [2], the NPMLE method from [3], and the ERM method from [4].
For each of these algorithms, we prove upper bounds on the minimax regret. We also prove
a general lower bound that applies to any estimation algorithm for this setup. In addition
to the theoretical bounds, we empirically simulate the performance of all three algorithms in
relation to both the number of sample and the degree of the polynomial function we estimate.
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Chapter 1

Introduction

The empirical Bayes estimator is a classic and very powerful technique used in statistics,
inference, and machine learning. Such an estimator can be useful in a wide variety of models,
and there are also many different techniques to calculate the Bayes estimate in these models.
In this thesis, we will examine algorithms for finding an estimator which makes excess loss
approach 0 when the sample size increases.

1.1 Model

We focus on mixture models with a known channel but an unknown prior as shown in Fig. 1.1.
In particular, there is some unknown prior distribution 7 from which hidden parameters

0,...,0, %0 7 and a known channel ~ such that observations are generated according to

Figure 1.1: Hlustration of a Mixture Model

We focus mainly on the mixture model with a Poisson channel, that is, X; ~ Poi(6;).
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1.2 Estimation on Poisson Mixture Model

In this thesis, we focus on the Poisson model. Past work has focused on the goal of estimating
f given sample data points X1, ..., X,,. We would like to extend this goal further: given any
smooth function r, estimate 7(#). Over the rest of this thesis, we will focus on functions of
the form r(0) = 6% for integers k > 1.

We can compute the marginal distribution of X to be

pa(z) = /6_90—7(17?(9). (1.1)

Z:

For any given x, the Bayes estimator for % that minimizes the squared error is the posterior
mean, which we calculate using (1.1) to be

Definition 1 (Bayes Estimator). The Bayes estimator of % for a prior « is
fr(@) = E[0"]X = af
B [ 0" (670%) dm ()

- (1.2)

where we let P(N,j) = % be the permutation number. If N —j41 is a nonpositive
integer, define P(NV, 7) = 0. This notation will be useful as it appears in the Bayes estimator
and thus in many of our equations. Unfortunately, we do not have access to the true
distribution 7(-) so we cannot calculate the exact value of f*(x), but we do have access to
training samples x1, ..., x,. Our goal is to learn an approximation fof the Bayes estimator.
There are many metrics by which we can measure the accuracy of an estimator, but we will
focus on the regret, which captures the difference between the mean squared error of the
estimator f and the true Bayes estimator f*. Furthermore, the mean squared error of the
Bayes estimator will be important in our bounds later, so we call it the mmse. The two
definitions are below.

Definition 2 (mmse). Let the mmse of a prior distribution 7 be the expected squared error
of the Bayes estimator of 0%, specifically

mmse;(r) 2 min E-[(f(X) = 69)%] = E[(/*(X) - 6")7].
Definition 3 (Regret). The regret of an estimator f is

Regret, ,(f) = E [(f(X) - ek)Q] “E [(f*(X) - ek)z} ~E [(f(X) - ek)Q] — mmse (7).
Ezpanding, we can also obtain

Regret, ,(f) = E [f(X)* — 20" f(X) — f*(X)* + 20" f*(X)] .

14



Since E[0F|X] = f*(X), the Tower rule of Ezpectation tells us that

Regret, ;,(f) = E [E [f(X)* — 20" f(X) — f*(X)? + 20" f*(X)|X]]
E [f(X)? = 2f(X)f*(X) + f*(X)?]
Z]E[(f(X)—f*(X))Q]-

All three forms of the regret will be useful later in this thesis.

1.3 Literature Review

Empirical Bayes estimators on these mixture models have been studied for many years now.
As mentioned previously, all of the related works focus on the & = 1 case. One of the earliest
papers also studying the Poisson mixture model was introduced by Robbins|1], [2], where it
was shown that the true Bayes estimator is

(x + Dpa(x+1)
pw(l‘)

[H(x) =
and is monotonic. Note that this matches Definition 1 with £ = 1.

1.3.1 Robbins Estimator

Robbins|2] first proposed an estimator

(x+1)N(x+1)
N(x)

J?Rob(%) =

where N(z) represents the number of occurrences of x in the data set xy,...,z,. This
essentially approximates p, with the empirical distribution. Such an approach has been
called f-modeling[5|, and it has been shown that the Robbins estimator achieves optimal
regret for 7 that is bounded or subexponential[6], [7]. However, the Robbin’s estimator can
be very unstable (e.g. when z is large and the counts are small, small changes in counts
greatly affect the estimated values)[8|. Furthermore, the Robbin’s estimator may not be
monotonic, which is a desired property of the empirical Bayes estimator|9]. However, there
have been modified versions of this algorithm where monotonicity can be imposed without
increasing its regret|10].

1.3.2 Non-parametric Maximum Likelihood Estimation

A different approach first proposed in [3| is to approximate 7 rather than p,. To do this, a
maximum likelihood estimator (MLE) is used. Specifically, we approximate

= argmax HPQ(%)
Q 4

15



and then calculate f: %. Since no parametric form of () is assumed, this prior is
determined through Non—palfametric Maximum Likelihood Estimation, which we refer to as
NPMLE for the rest of the thesis. This approach has been termed g-modeling|5|, and the
resulting estimator has been shown to achieve optimal regret for bounded and subexponential
distributions|11]. In addition, g-modeling achieves optimal regret on polynomial tailed prior
distributions 7, while the Robbin’s estimator has been proven to be suboptimal[12].

Due to the Bayesian structure of ﬁ\]pMLE, the desired property of monotonicity is still
preserved. Furthermore, the estimated values are more stable than those in f-modeling, and
optimality is satisfied even for heavy polynomial tailed distributions while it is not satisfied
with f-modeling. Experiments have also shown that the NPMLE estimator can also be
useful as a preprocessing method for data analysis. However, there are tradeoffs to using
this method. The optimization problem to be solved is very difficult and computationally
expensive, especially when the dimensions increase as the time is exponential in d.

1.3.3 Empirical Risk Minimizer

The newest methodology proposed is an estimator proposed by [4] based on the Empirical
Risk Minimizer, which we refer to as ERM in the remainder of this thesis. The ERM is
an idea in statistical learning theory first introduced in [13] where an optimal hypothesis is
learned by finding the hypothesis with the smallest loss over the empirical data.

Motivated by this idea, rather than approximating the prior or the posterior distribution,
we can directly solve for the Bayes estimator. This is done by first noticing that the Bayes
estimator minimizes the mean squared error. This naturally leads to finding the estimator
which minimizes the empirical mean squared error, which is the ERM solution. Since we are
minimizing over a set of estimators, we can impose constraints on the set we search over.
This leads to [4, (Equation 6)], where

ﬁrm € argmin IE[f(X) —2Xf(X —1)].

fefmonotone

In this way, the ERM estimator maintains the desired monotonicity of the Bayes estimator
similar to g-modeling. The framework for calculating function is also very flexible and
extra constraints or different function classes can easily be implementable. Performance
guarantees in the bounded and subexponential prior case match those of both f and g-
modeling. Moreover, this minimization problem can be solved using isotonic regression, so
the computational cost is much lower. However, regret in the heavier tailed prior case is still
unknown.

Furthermore, |4] investigated the d-dimensional version of this problem. We formulate
the problem as follows: an unknown set of vector parameters 64, ..., 8, are independently
sampled from a multidimensional distribution 7. Then, samples @; are generated such that
x;; ~ Poi(6;;). We similarly aim to achieve an estimator f(x) to minimize the regret, which
is

Regret, (£) 2 & | fla) - o] | ~ E[17°(@) - 61

The generalization of the one dimensional monotonicity condition becomes the following.

16



For each i,

f(x+e) > f(x) (1.3)

where e; is the vector with 1 in the ¢th coordinate and 0 everywhere else. The ERM estimator
can now be written as

d
Ferm(@) = arjgrr;in@ IF @) =2) i fi(@—e)
€ i=1

and the class of functions F is all functions Z¢ — R? satisfying the generalized monotonicity
constraint in Equation (1.3). In this setup, the time complexity of ERM will be polynomial
in n and d while NPMLE can take up to n®@ [14], making erm the much more scalable
algorithm.

Regret bounds on the multidimensional Poisson case has also been calculated for priors
with bounded supports and subexponential marginals in [4]. It is not yet known if these
match the lower bound, but it is conjectured that a better lower bound can be calculated
and this algorithm has nearly optimal regret. Experiments in 2 dimensions have also been
run showing that the multidimensional ERM estimator runs many times faster than the
g-modeling approach, and the regret is also significantly lower than f-modeling.

1.3.4 Lower Bounds

In addition to the above three algorithms, lower bounds have also been investigated for
estimation on the Poisson mixture model. In fact, [15] proved a lower bound matching the
regret upper bounds of all three algorithms mentioned above in the case of a bounded and
subexponential prior. The general idea for lower bounding is to start with a gamma prior,
consider the set of distributions which are close to this prior, and show that it is difficult to
learn significant information within this set of distributions.

1.3.5 Other Mixture Distributions

Although a lot of the work in this field has been focused on the Poisson case, there have
been multiple papers on the normal location model. Both the f[16] and g-modeling|[17]
approaches have been shown to obtain a nearly optimal fast rate of regret. However, the
analogous ERM estimator has only been proven to achieve a slow rate for regret in [18|, and
it is still unknown whether a faster rate can be achieved.

1.4 Optimal Minimax Regret

This thesis will examine the estimation of % in a Poisson mixture model given two different
regimes of priors: bounded and subexponential.

Definition 4 (Bounded Distribution). We use P([0, h]) to denote the set of all probability
distributions that can only achieve values in the range [0, h].

17



Definition 5 (Subexponential Distribution). We use SubE(s) to denote the set of all prob-
ability distributions that satisfy the tail bound P(x > t) < 2e~%* for all t > 0.

Over the course of this thesis, we will describe multiple different estimators of 6% by gen-
eralizing the three different algorithms (f-modeling, g-modeling, and erm). We will also prove
regret bounds for each along with optimal minimax regret bounds to see which algorithms
can attain them.

Theorem 1. The minimaz regrets are as follows:

1. For any bounded prior m € P([0, h]), the optimal minimaz regret is
1 logn ol
Oni | = T—7—
n \ loglogn
2. For any bounded prior m € SubE(s), the optimal minimax regret is
1
Ous (o).
n

The three algorithms from Section 1.3.1, Section 1.3.2, and Section 1.5.3 achieve the regrets
shown in Table 1.1

Algorithm Bounded Prior Subexponential Prior
k1
Robbins | Op | £ <lolg°ign> O, s, (£ (log n)?++1)

k+1
NPMLE | Oy l( log n ) O (£(logn)?*+1)

n \ loglogn

2k
B | Ou (3 () ) | Ous (Rtogn)

Table 1.1: Minimax Regrets of each algorithm.

The optimal rate on the bounded priors can be achieved by a generalized version of the Rob-
bins and NPMLE estimator, while the optimal rate on subexponential priors can be achieved
by all three algorithms.

Proof. All upper bounds and the lower bound will be established in the later sections. [
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Chapter 2

Upper Bound on Polynomial Robbins
Regret

2.1 Modified Robbins Estimator

In this section, we introduce a natural extension to the original version of Robbin’s estimator
for . From Definition 1, we know the form of the true Bayes Estimator. Motivated by the
Robbin’s estimator for the estimation of 6, we can again estimate p,(z) using the empirical
distribution, giving us the estimator

Pz + k,k)N(z + k)

JRobke = N(z) (2.1)

Theorem 2. The Robbins estimator for 0 defined in (2.1) satisfies the following regret
bounds:

1.

~ 1 logn bt
sup Regret, ;(frobk) < Onp | —

7eP([0,h]) n \loglogn

. 1
sup  Regret, ;. (frob) < Os (—(log n)%H) )
mESubE(s) n

2.2 General Regret Upper Bound via Robbins

We first start with the following lemma, which we use to bound the regret on a prior bounded

by [0, A].
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Lemma 1. For a prior in P([0,h]) (here h may depend on n), the regret satisfies for some

constant ¢ = c(k),

Regret, ;(fRob.k)

n

< (max{hzk, 1} + Z P(z + k, k)h* min {n’p.(z)? 1} + h** min {np,(z), 1}) :

z>1

Proof. Using the last definition in Definition 3, we have

n- Regretmk(fRob,k) =K

=K

S s (X,) f*<xi>>2]

=1

> N(z)P(z + k. k)?

N@+k)  pelz+k))
( N(x) p=(z) ) 1””’]
> e B8R (e 4y - A2 DT ] RER)

Similar to [4, (P1)-(P4)], we have

(P1) N(x) ~ Binom(n, p,(z)) and for some absolute constants ¢, ¢y > 0 [15, Lemma 16]

1n@)>o ;. 1 1n@)>o
]E < T sy T N ) ]E
[ } < ' min < np,(x) ) N ()

N(z)

(P2) Conditioned on N(z), N(x + k) ~ Binom (n — N(z)

(P3) f*(z) =

pr(z)

(P4) Stirling’s method entails

o (r+k
Let ¢ = 11)—(]37::8;

E

—(n— N(z))a(l - ) + ((n ~N@)g

<np7r($ + k)

P(z+k,k)px (z+k)

(N(:L" k) -

(N(z) - npm»?} <o

Y (x+k)
? 1—pr (z)

= E[0%|x] < h¥ for all x > 0,

Ypo—T
xr’e <

yYe Y 1
— <

< Ja > 1.

Therefore, p,(y) < \/Qlw—yy Yy

P2 Then by (P2) and the bias variance decomposition,

pa(x + k)N (x)
pw(x)

)2 |N<x>]

B el + /{:)N(x)>2
pﬂ-(ib’)

pr(T+ k)

-1 _‘]%T(x)

((1 — pw(ﬁ))pﬂ(x)>2 (npx(z) — N(2))*.

20



Now by (P4), we see that for z > 1, #ﬂ(a;) < ¢ for the constant ¢ £ \/‘2/%7:1. Then using

(2.3), we can continue (2.2) to get

n - Regret, ;.(frob,k)

_ In@)soP(z + k, k)? np,r(:v+k) pr(x + k) 2 ) N (a2
=F ; N(z) ( —po(e) <(1_pﬂ(x))pﬂ<x>> (npr(z) — N(x)) >]
[ Lroni* _pe() B\ ) o)

=25 i (o) 70 N<0>>)

N Z 1N(x)>0§((i)+ k,k) <C7”Lp7r(£€ + k) + 2 (M) (npﬂ(x) — N(:c)>2) ]

Ppr()
2 C/pﬂ(lf) pw(k) 2
= ((1 — e (0))pa(0) ((1 —pw<0>>pw<0>> )

+ch'P(m—l—k,k)f*( ) min {n*pr ()%, 1} 4+ Pco f*(z)* min {np,(z),1} . (2.4)

r>1
Note that

Pr u
Px(k) ax {pw(ow == (0) {h’“ } K
= < 2max ,1p < 2max{h”, 1 2.5

1 pe0)p0) ~ malpn (0,1~ pe0)] = 2\ v
where (a) is due to (P3) (’;“(’83 <k ) pr(k) = 1=, Px(z) < 1—p(0), and max{p,(0), 1 —
p=(0)} > 1. Substituting (2.5) and (P3) back into (2.4) and then dividing by n, we obtain
for some constant c3 = c3(k), the desired inequality

Regret, 1 (frob,k)

s% (max{h%,l}JrZP(erk,k)h min {n’px(2)*, 1} + 2" min {npr(2), 1}>-

z>1

[]

To allow us to further bound the RHS of Lemma 1, we prove the following tail bounds
on p, to bound the min using p,(z) for large z.

Lemma 2. We prove tail bounds on p, for the two types of distributions.

o Let m € P([0,h]). Then for some constant ¢ = c(h) and xy = max <2h coan ) :

’ “loglogn
ok+1pk
Z pr(x)° Pz + K, k) < — (2.6)
r>x0+k n
o Let m € subE(s). Then for some constant ¢ = c(s) and x; = clogn,
Z pr(2)? Pz + k, k) < 3 (2.7)

r>x1+k

A proof of this lemma can be found in Appendix A.
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2.3 Regret of Truncated Prior

Lemma 1 is sufficient for any bounded distributions. However, to obtain regret bounds on
subexponential distributions, we need to relate its regret to the regret of a truncated version
of this prior. For any distribution 7, let 7, be 7 restricted to the range [0, h]. We first begin
with a helpful lemma regarding the mmse of a truncated prior.

mmsey, ()
Fr(B<h)

Proof. Let E be the event that 6 < h under m. Then
mmsey, () = mfin E-[(f(X) — 6% > mfin E.[(f(X) — 6%)? EJP[E] = mmsey,(7,)P(E).

Lemma 3. For any m and h, mmsey, (7)) <

]

In addition, we prove the following lemma which bounds the moments of 6 and X ., =
max(Xy,...,X,) for a subexponential prior. These results will help us in bounding the
regrets in the tails of subexponential distributions.

Lemma 4. Let m € SubE(s) and X ~ p,. There exists some constant C(k,s) such that
E.[0%] < 8k(4k — 1)1s* E[X¢..] < C(k,s)(logn)" (2.8)

for all £ < 4k.

A proof of this lemma relies mainly on rewriting the expectation using tail probabilities
and bounding those values. The exact proof is given in Appendix A.

Recall the notation of the truncated prior 7, defined before Lemma 3. With these lemmas,
we are now ready to show that the regret over the truncated prior 7., 510 €xceeds the regret
over m by at most o, ,(1/n).

-~

Lemma 5. For any estimator f such that E[f(X)Y] = Osx(n*(logn)*), there exists con-
stants ¢y, co,c3 > 0 such that

~ ~ 1
Regret, ,.(f) < Regretﬂqslogmk(f) + 05k (ﬁ) )

Proof. Let m € SubE(s), then there exists a constant c(s) 2 11s by Definition 5 such that

1
e =P[O > ¢(s)logn| < o 6~ m.

Let E be the event {6; < ¢(s)logn,Vi =1,...,n}. By union bounding, P[E¢] < n~?. Recall
the regret from Definition 3. We obtain the following series of equations:
Regret, ,.(f) = E[(f(x) — 0%)?] — mmsey(r)
< E[(f(2) — 605)2| B] — mmsey,(Teysiogn) + MMSer(Teysiog n)
— mmsey(7) + B [(f(z) — 6%)?1 5]

~ ~

k(f) + mmsey (¢, slogn) — Mmsey () + E[(f(z) — Qk)21EC]'
(2.9)

= Regret

Tcyslogns
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For the last term of (2.9), applying Cauchy-Schwarz gives

E.[(F(a) — 00)%1] < \BLEJEL(F(X) — 04)1] < /B () — 0y < S0
since E[f(X)] = sk(n*(logn)*™) and E,[0"] = O,x(1) by Lemma 4. For the middle two

terms of (2.9), Lemma 3 tells us that
mmsey, () > mmseg (e s1ogn) (1 — 1)

so we have

n—9

mmsey, (e, slogn) — Mmsey () < gmmse () < 2¢(k)s*n™ = 0,1 (n1)

1—n~
by n7? < % and Lemma 4. Combining these inequalities together, we obtain the desired
result. O

2.4 Proof of Theorem 2

Now we are ready to apply Lemma 1 to prove the original result.

Proof. Let us first deal with the bounded prior case. Split up the summation in Lemma 1
at xo + k from Lemma 2 and upper bound the min’s to obtain

zo+k
n - Regret, ,(f) < max{h*, 1} + Z (P(z + k, k)h* + h?*)

+ Z P(x + k, k)W n’pe(2)* + h¥*np.(2))
x>xo+k

(a)

max{h® 1} 4+ h** (zo + k) + h¥(xo + k) P(20 + 2k, k) + 281 h2F 4 p2*

(b) 0 logn i
= Uk
log logn

where (a) is from (2.6) and [15, (Equation 122)|, and (b) is from plugging in zy. Dividing
by n yields the desired result.

Now we move onto the subexponential case. By Lemma 5, it suffices to take h = ¢yslogn
and bound the regret on 7. Split up the summation in Lemma 1 at z; + k from Lemma 2
(where z; = ¢(s) logn is as defined in Lemma 2) and upper bound the min’s to obtain

x1+k

n - Regret, ( h?* 4 Z (z + K, k)h" + hgk)

+ Z P(x + k, k)W n’pe(2)* + h¥*np.(z))

r>x1+k
(a)
< B 4+ B (2 + k) + BF (v + k) Pz + 2k, k) + BF + B
b
(b) O <(10g n)2k+1>
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where (a) is from (2.7) and [15, (Equation 124)], and (b) is from plugging in z;. Dividing
by n yields the desired result. ]
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Chapter 3

Upper Bound on Polynomial NPMLE
Regret

3.1 NPMLE Algorithm

In this section, we extend the NPMLE algorithm first introduced in [3] to estimate 6*. This
extension is very natural, as the estimation of the prior distribution remains the same. Using
this estimated prior, we calculate its empirical Bayes estimator by applying Definition 1.

Before proving the main results, we first discuss how the the prior estimation via NPMLE.
This method is a specific instance of the more general class of minimum distance estimators.
These estimators are defined by a measure of distance between two distributions. There are
many possibilities of distance functions, so we will focus on a specific set of functions which
we call Generalized distance functions.

Definition 6 (generalized distance functions). A function d : P(Zy) x P(Zy) — Ry such
that d(p || q) > 0 with equality true if and only if p = q.

Note that this includes any metrics and divergence. Then a minimum distance estimator
with respect to d over a set of distributions G is

7 € argmind(p™ || px)-
Teg

In [11], they describe some specific examples of these distance functions correspond with well
known estimators, including the NPMLE estimator we focus on:

e The NPMLE estimator corresponds to the KL-divergence d(p || ¢) = KL(p || ¢q) =
E [log p(z) ]
e The Minimum-Hellinger estimator corresponds to the squared Hellinger distance d(p ||
q) = H*(p.q (\/ —Va( )

e The Minimum-y? estimator corresponds to the y?-divergence d(p || q) = x*(p || q) =
S (p(r)zq)(w))Q'
q(x
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It turns out that we can actually prove regret bounds on our algorithm for not only
NPMLE, but any minimum distance estimator using a generalized distance function that
satisfies Assumptions 1 and 2 in [11]:

Assumption 1. There exists a map t : P(Z,) — R and £ : R* — R such that for any two
distributions p,q € P(Z.),

d(p || q) =tlp) + Y _Up(x),qlz))
x>0
where ((a,b) is strictly decreasing and convex in b for a >0 and ¢(0,b) = 0 for b > 0.

Assumption 2. There exist positive constants ¢y, ca such that for p,q € P(Zy),

o H*(p,q) < d(p || q) < cox*(p || 9)-

The KL-divergence satisfies these assumptions, so the following theorem applies to the
NPMLE estimator as well. The main result of this section is that a minimum distance
estimator satisfies the following regret bounds:

Theorem 3. Suppose d satisfies Assumptions 1 and 2. For a fized h and s, the following
regret bounds hold:

1. If © = argmin, cp(o p) A" || Pr) and f is the Bayes estimator for the prior 7, then

for anyn >3
~ 1/ 1 e
sup Regret . (f) = Oni | — <ﬂ)
7eP([0,h]) ’ n \ loglogn

emp

P || pr) and f is the Bayes estimator for the prior T, then for any

2. If 7 = argmin_d(p
n>2
~ 1

sup Regret, .(f) = Osx (— (log n)%H) :
’ n

TESUbE(s)

3.2 General Regret Upper Bound via NPMLE

To prove Theorem 3, we will use the following more general lemma bounding the regret using
the Hellinger distance. Then we can use the Hellinger distance results about the NPMLE
prior estimate to prove Theorem 3.

Lemma 6. Let 7 be a distribution such that E.[0*%] < M for some constant M. Then for
any distribution T supported on [0, h], any h > 0 with P.(6 < h) > % and any K > 1,

~

Regret, () < {12(h2k 22 4 4A8(RF + ﬁ’“)K’“} (H*(ps, pz) + 4P (0 > h))

+2(RF + 1P, (X > K — k) +2(1+ 2\/5)\/(M + hPL (0 > h)

where ]? is the Bayes estimator for the prior 7.

A proof of this lemma is provided in Appendix B. Now equipped with Lemma 6, we can
find a suitable application to prove the original result.
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3.3 Proof of Theorem 3

Proof. For any 7 € P([0, h]), we have T = argmin, cp ) APy || px). We apply Lemma 6

with 2(24 he)l
(2 + he) ogn . 4]
log logn

~

h=h, M=h K:[

As shown in the proof of [11, Theorem 2(a)|, we have

2 ~ C logn
P, (X>K—-k+1)<=, P h) = E[H?(f* ==
p7r( — + ) — n27 71—(9 > ) 07 [ (f 7f)] n (loglogn)

for some constant ;. Thus, we have

o~

Regretﬂ',k’(f)
< {24h2k + 96RE F(Q + he) logn

log logn

1 logn i
=Oni | — -
n \ loglogn
For any m € SubE(s), we have 7 = argmin_d(pc™ || pr). By [11, Lemma 8|, 7 is

supported on [O,E] where h = Xux. By the bound on E[0*] in Lemma 4, we can apply
Lemma 6 with

+k— 1} k} E[H?(px, pz)] + 2(2hF)?P, (X > K — k)

2logn

h=4slogn, M =8k(4k—1ls"* K=—">=""—_
g (4k=1) og (1+ 1)

+k-1

By [11, (Equation 44)] and Definition 5, we have

21 3 2
b (x> 2losn N3 p o2
log (1+ 5) 2n? n?

Thus, we have

= 2
Regret, ,(f) <E {{12(/12’“ + X228 ) +48(hF + XE K"} H? (pr, pr) + ﬁ}

3 9
+2(h* + XI’;M)ZW + (1 +2V2) /(M + h4k)F
)

+48(h" + X )K"} H? (e pz)] + Os ( ! ) . (3.1)

n2

=E [{12(h* + X%

max

It remains to bound the first term in (3.1). Splitting into cases by comapring X .. to 2K
and using X,.x H? < 2, we have

B ({1 + X2 + 40 + X K™} ()]

<(P*" + (2K)* + 4(h* + (2K)") K")E [H? (pr, p7)]
+2E [{h* + X2 +4(h* + XE )K"} Iy, 50k] - (3.2)
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By [11, Theorem 2(b)], we know E [H?(p., pz)] = Oy (*22). Then plugging in both h and K

tells us the first term of the RHS is O (%) By Cauchy-Schwarz, the second term
of the RHS is
2F [{n* + X0+ 4(h" + X}, ) K*} I, 0k]

<2 [ 4 X3+ 401 + XE K] By, (e 2 26)

§2\/]E (B2 1+ X264 A(hE X{;ax)Kkﬂ B, (X > 2K)

max
3

(a) r
Loy JB [Fahsh 4 a5+ 04087 1 XK s
L n

(b) ( 1)
=0sk | —
n

where (a) follows from [11, (Equation 44)| and (b) follows from the moment bounds on X,
in Lemma 4. Plugging this back into (3.2) and then (3.1), we obtain

. 1
Regret, ,.(f) = Osx (5 (log n)%“) )
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Chapter 4

Upper Bound on Polynomial ERM
Regret

4.1 ERM Algorithm

In this section, we will extend the ERM algorithm discovered in [4] to estimating 6*. Note
that the empirical Bayes estimator f* satisfies

J* = argmin e [( F(X) - ekﬂ = argmin [F(X)2 = 205 F(X) + 6] | (4.1)

If we can have this depend on just X and not 6, then we can obtain an unbiased estimate
of this expression by using the empirical samples of X. First, 82 does not depend on the
estimator, so removing it does not affect the minimization. Furthermore,

/ 26799 2)0Fdr(0)
_ /Ze_e s !P(x ke, k) f(2)dr (6)

a’/z _Q—Px k) f(z — k)dr(6)

= E[P(X, k) f(X — k)]. (4.2)

where (a) follows from shifting the summation to start at k£ and adding in the terms from
0,...,k — 1 since they are all 0. Substituting (4.2) into (4.1), we obtain

f*=argminE [f(X)* - 2P(X, k) f(X — k)] . (4.3)
f
As with the Bayes estimator for 6, we can show that f* is a monotonic nondecreasing function.

This is useful because it allows us to solve (4.3) over the class of monotonic functions and
apply isotonic regression just as in [4].

Lemma 7. f*(x) is an increasing function
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Proof. First, note that
[ e 06 dr(0)
[ e=06=dm(6)

is increasing over integer = since Cauchy-Schwartz tells us that

[ e 06" 2dr(0) - [ e 06 dm(0)
[ e 00=t1dn(0) = [e%0%dm(6)

Thus, we find

fle+1) = f(z)

(x+Ek+Dp(z+k+1) _ (z+ Dpr(x+ k)

>
pr(z +1) N pr(T)
(e +k+1) [ Eyd (e)> (z+1) [ e~ Eydn(0)
J et s (6) — et %dn(0)

(E)fe_(’H”“ldw(@) - [ e 0"t dr(6)
[e00=+1dn(0) — [e=90%dm(0)
fe—99x+k+1dﬂ.(9> - fe—eex—i—ldﬂ_(e)
[ e 00=tkdn(0) — [e00%dm(0)

O

Since f* is increasing, using this function class in (4.3) and replacing with the empirical
expectation, our ERM-based estimator is

famp(z) = argmin E[f(X)? = 2P(X, k) f(X — k)] . (4.4)

fej:monotone

Although there is no unique solution to this minimization problem since there are fis only
uniquely determined for values that appear in our empirical expectation. We choose to take
f which is a step function that can only change at values where it is determined. An explicit
solution to (4.4) may be calculated via [4, Lemma 1|. We now show that our empirical
estimator is always bounded X which will help us bound the complexity of our function
class.

max’

Lemma 8. Let ﬁ_rm,k be the estimator defined in (4.4). Then max J/‘;m,k( ) < XF

Proof. As ferm’k is monotonic, and ﬁrm,k(m) = ]/C;rm(XmaX) for all x > X .., it is sufficient to
bound ferm kx(Xmax). By [4, Lemma 1], there exists some ¢* for which

S PG+ k k)N(i+k) S0, P k)N ()

i=i*

ferm,k(Xmax) =

= < P(Xpax, k) < XE
Y N (i) RO

since N(z) =0 for all z > Xax. O

The main result of this section is the following theorem.
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Theorem 4. The ERM estimator for 6% satisfies the following regret bounds:
1.

sup Regretwk(ferm,k) <
meP([0,h]) ’ n

Cmax{1,h?} [ logn \>* L0
loglogn /) ' -

- C 1. g2k+11(] 241
sup Regret_; (fermi) < max{l, s }(logn) )
TESubE(s) ’ n

4.2 Rademacher Symmetrization

In order to prove these bounds, we use the following lemma which is a generalization of [4,
Theorem 3| that allows us to bound the regret using Rademacher random variables.

Lemma 9. Let F be a convex function class that contains the Bayes estimator f*. Let
X1,..., Xp be a training sample drawn wd from pr, €1, ..., €, an independent sequence of
id Rademacher random variables, and f the corresponding ERM solution. Then for any
function class F,, depending on the empirical distribution p,, = %Z?:l dx, that includes f
and f, we have

Regret, (f) < %Tl (n) + %n(n)
where
- I, 9
Ti(n) =E fegljg% ;(Ei = (X)) = (X)) ] (4.5)
and
T <E| w3 {2ei<f* (X (X)) — F(X)
— P(X5, k) (["(X; — k) — f(Xi — k)))

e - f(Xm?}] (46)

where Fp s defined with an independent copy of Xy,..., X,.
Proof. Define
R(f) =E[f(X)? = 2P(X,k)f(X — k)|, R(f) =E[f(X)? —2P(X k)f(X —K)]. (4.7)

Note that f is defined as the function that minimizes R(f). Since F is convex, (1— e)j?—l— eh €
F for all h € F. Thus, R(f) < R((1 — €)f + €h). This means the gradient of the RHS with
respect to € is nonnegative when evaluated at 0. Plugging into (4.7), we obtain

ﬁﬁ(u —€)f +e€h)

Oe

=2E[(A(X) = F(X))((1 = ) J(X) + eh(X)) = P(X, k) (W(X — k) = J(X —k))]
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and plugging in € = 0, we have

)

2B((h(X) — FX))T(X) = P(X, K)(A(X — k) = F(X = k)] > 0.
This can be rearranged to obtain
R(h) = R(]) = E[(h(X) - J(X))*] 2 0. (48)

~

Now since Regret, ,(f) = (f) — R(f*), using (4.7) and (4.8) gives

Regretmk(f)
<E[R(f) — R(f*) + R(f*) — R(f) — E[(f*(X) — f(X))?]
=E[R(f) — R(f*) ~ E[(f"(X) - FX))4 + g?(f ) — R(F) + E[(/*(X) — F(X))?)

+E[(f*(X)

(
[ 27 (X)((X) — F(X)) — 2P(X, R)(f*

— 4 (BI0) = FOOP)+ B — F0)) } (4.9)
+ 3Bl 00 - Fooy - B0 - Fuop (4.10)

Using the symmetrization result in [4, Lemma 3|, we can upper bound (4.9) with

n

sup_ ) {2€i(f*(Xi)(f*(Xi) — f(Xi)) = P(X3, k) (f*(Xi — k) — f(Xi — k)))
FEFonUF, 3

2
—E
n

(4.11)
by selecting
Tf() = = @ (@) () = f(2) = 2P W) = K) = (o = )
and U f(z) = 1(f*(z) — f(z))?, and (4.10) with
| e, D Z Salf ) — O - (7 () - f<Xi>>2] (112)
o i 1.11) 1613 provs tho o 11 (1)) Comtining he e
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4.3 Bounding Rademacher Complexities
Define the function class depending on the samples
F. 2 {f: f is monotone, f(Xmax) < max{Xmaxs f*(Xmax) }} -

Note that by Lemma 8, it will contain both ﬁrm and f*. Define F. analogously for an
independent set of samples. Then we will apply Lemma 9 with F,, = F, and F, = F..
Although this function class depends on f* which we do not know, we can still use it for our
theoretical analysis. For the rest of the proof, we consider a slightly generalized version of

(4.5) and (4.6):

i) =E| s Y (e~ ) (X) - f(Xz))Ql
and
) =E| swp 3 {26 (X0 (7 () - F6)

— P(Xi, k)(f"(Xs — k) — f(Xi = k)))

Next, given some tail bounds on the distribution p, and moment bounds on the maximum
sample, we prove bounds on the expressions 7} and 75.

Lemma 10. Let 7 € P[0,h| where h is a constant or slogn for some constant s. Let

M := M(n,h) > max{h, k} be such that

® SUP.cppo,n Pxeps (X > M| < #

o For X; % p. E (XL ax] < c(O)MF for £ < 2k and constant c.

max

Then
Ti(b,n) < co(b) (max{1, h**}M + M?*)

and
Ty (b,n) < co(b) (max{1, h**} M + max{1, h*}M**1).

Note that these tail bounds are satisfied by bounded and subexponential priors, which
are the ones that we consider later. The proof of this lemma is in Appendix C. Just as
in Lemma 1, Lemma 10 provides a regret bound on a bounded prior. We again require
Lemma 5 to extend our results to a subexponential prior.
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4.4 Proof of Theorem 4

Now with these lemmas, we are able to combine them to obtain bounds on the regret of our
algorithm over bounded and subexponential priors.

logn
loglogn

Proof. For the case of constant h, we may choose M = max{cy, coh} due to [4, Lemma

) 2%
10 and 12]. Then by Lemma 9 and Lemma 10, the regret is Oy, (max{l’h '} ( logn > ) for

n loglogn
k> 2. R
For subexponential 7, by Lemma 8 we have E[f(X)?] < E[X2 ] = O,x((logn)*). By
Lemma 5, it suffices to bound Regret7rc1 log ik By |4, Lemma 11 and 12|, we may choose M =

max{1,52%*1}(logn)2k+! )
- .

K

max{cy, a5} logn. Then by Lemma 9 and Lemma 10, the regret is O, (
O

Remark 1. Note that in the bounded prior case, our ERM algorithm does not use the bounds
of the prior. We conjecture that if only consider our estimator over the set of monotonic
functions within the range of the prior, then we may obtain a tight bound with exponent k—+ 1
instead of 2k. This is because the 2k exponent only appears in the bound for (C.14) due to
f(Xmax)? < X2k If we cap f, we can actually write f(Xmax)? < h?*, and we may be able
to avoid the X2*  term entirely.

max
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Chapter 5

Lower Bound on Polynomial Regret

In this section, we prove that for any algorithm, there will exist some prior for which the
regret matches the that of the NPMLE algorithm, implying that it is asymptotically optimal.
Formally, we prove the following theorem.

Theorem 5. Consider the Poisson mixture model. For any h > 0 and s > 0, the regret of
the optimal estimator satisfies the following lower bounds:

~ 1 logn \"**
inf sup Regret, ,(f) = Qs (— ( 8 ) >

7 reP([0,h) n \loglogn

1.

-~ 1
inf sup Regret, .(f) = Qs <—(log ")2k+1>
f meSubE(s) 7 n

5.1 Setup for a General Lower Bound

We first set up a generalization to |15, Proposition 7] on establishing functional (namely F')
of § (in our case, we are interested in the case F() £ 6*. Assume (for sake of simplicity)
that F' is continuously differentiable everywhere on 6 > 0.

To start with, fix a distribution Gy. We follow the recipe of [15, (Equation 21)| and define
the operation K bringing function r to Kr given by

where fo = [ foGo(df). Also fix an arbitrary bounded function r, consider the distribution
(G5 given by the small perturbation

Kr(z) 2 Eg,[r(0) | X =1] =

dGs = 146 [rdG,
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We now consider what happens as we consider Eq,[F(6)|X = z]. To start, by (5.1), we
have K F(x) = Eq,[F(0)|X = z] (i.e. the base distribution). Then similar to [15, (Equation
24)| we may obtain

1

Eq, [F(0)|X = 2] = KF(0)(x) + 0 Kpr(z) + 521+5—KT(I)

(Kr)(y) - (Kpr)(z)  (52)
where the operation K is defined as (modified from [15, (Equation 25)]).
Kpr 2 K(Fr) — (KF)(Kr)

Note also the following identity, again can be generalized from [15, (Equation 25)|

Krr(a) = 15 ls-0 B, [F(0) | X =

With this, we are ready to establish the following ‘general recipe’ of functional estimation
F(6).

Lemma 11. Fix a prior distribution G, constants o, 7,7,72,7 > 0 and m real-valued
functions rq, ..., r, on © with the following properties,

[rqllee <a Vg
IK7rellLo00) < VY Vg

2

ZUZ'KFH > T|vll; — 7 Vo€ {0,£1}"
=1 La(fo)

" 2

ZU,’KFTi <7im Vo€ {0,£1}™.

=1 La(fo)

Then the optimal regret in F(0) estimation over the class of priors G = {G : j—g) -1 <3}

satisfies
inf sup Regret,. k(f) > O (mAr —12) — 1), 6 2 !
7 neg ’ max(/ny, ma)

for some constant C' > 0.

Proof. The proof follows exactly the proof of [15, Lemma 7| but instead using T, (x) 2
Eq,[F(0)|X = z] and K in place of K;. In particular, the lattices for Assouad’s lemma
is also defined exactly as in [15, (Equation 29)|: define yu; = [r;dGo, § > 0 chosen with
0 < 15—, and for each u € {0,1}™,

r ;_1 w;T T W ;_1 Ui 5o, 0 f 5 o,

where f, is the mixture density induced by the prior G,.
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G . m : o 1 Gl 3
Let G = {Gy : u € {0,1}™}. The construction guarantees G C G, and 5 < g2+ < 5.
Then exactly like [15]:

inf sup Regret,. (T) > inf sup Regret . (T)
T neg ’ T reg ’

= i:gf sup EGuHT - THH%Q(fu)
T ue{0,1}™

(a) 1 ~
> inf sup =Eq ||T —T,|/?
= oy 2T Tl

(b) 1
> inf “Eq, |ITs - Tl
= Ge{0)™ ueqorym 8 o Iz

where (a) uses f, > % fo and (b) is due to the following triangle inequality argument: if uy, us
are such that

inf Eo ||Th — T,|I? =Ko [T, — T |2
setidyn S0 Gull z2(50) = EGuy 1 Tur — Tua 7240

then for an arbitrary estimator T

~ 1
?{10111)} Eq,||T - TUH%Q(fO) = 1 ]“flabX{H“:Gu1 |75 — TulH%%ﬁ)); EGu2|’Tﬁ - Tu2|’%2(fo)}
ueq0,1;™

Now we consider the following property of T,,, due to (5.2) and that Kr = h,

h
T,.= KF+ 0K 2 LK
u +5 FT’+51+6hu FT

and by our assumptions:

B

2
1o 1+ 0h,

1
’ KFTHQ < 252maHKFTu||2 < 2527’”3/2@7'1 < g(;a\/ETl

Again by triangle inequality:

5\/%7’1

|| Ty — Toll2 > 6||[Kp(ru —ro)ll2 — 1

Thus by using (a — b)* > 1a? — b? this translates into

1
2

#mri 1, 1 5
> — — - —
T 25 (tdy(u,v) — 72) 165 mr;

Finally, we quote directly from the proof of |15, Lemma 7| to get that for some constant C1,

1
[Ty — Tv”% > 552HKF(% - Tv)“% -

X (fallfo) < C1*[|hy = hollzy < C1d

where we used the assumption ||, — h,|[* < 7. Note that for dg(u,v) =1, [|h, — h|[* < v
by our assumption. Finally, for some constant Cs, if nd?y < 1 we have:

XS < Co,Vu,v s dy(u,v) =1
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Thus by Assouad’s lemma we have

inf  sup Eg,[dy(u,u)] > Csm
ue{0,1}™ yefo,1}m
for some constant Cj.

To summarize, by choosing § with §2 = this gives us

1 1
f Ec [||T, — T,|I%] > =6%(m(Cst — =72) —
UE%gl}muGS{})lIl)}m cull IF] 70 (m{Car 871) ™)

max(ny,m?a?)

5.2 Results on the Poisson Model

Next, we consider how to incorporate this into the Poisson model. In general the approach
is still the same as that of [15]: we consider Gy as the Gamma prior Gamma(a, ). Define,
now, Ki(r) = Kp(r) when F(z) = 2*. Here we consider the following generalization of [15,
Proposition 10]:

Lemma 12. Consider the Gamma prior with parameter («, ) PMF Go(z) = rﬁ)x
Then for a function r such that ) is bounded for j < k, Ki(r) satisfies the following

property:
k ]+1 k)
K(x"rY
=S ()

Jj=1

—lg=Bz,

This lemma allows us to relate the operator K to K. The proof is given in Appendix D.
Using this result, we can construct a suitable set of functions that gives the desired result
when used in Lemma 11. The analysis will be continued in Appendix D, but we state the
results below, which are generalizations [15, Lemma 11, Lemma 12].

Lemma 13. Fiz § > 0. Let Gy = Gamma(a, ). Then there exist absolute positive constants
C,mq such that for all m > mg, 5 > 2, > (2k 4 2)m, there exist functions r1, ..., r,, such
that

(Krj’ Kri)h(fo) = (Kij, Kkri)h(fo) =0 Vi 7& 7,

C’ﬁk
2
1751 a0) < 5

k
HTjHoo < /B_kec(mlogﬂ+a) Vi=1,---,m. (5.6)
(67

Lemma 14. Let Gy = Gamma(a, ) where o = 1 and B > 0 is fived, there exists some
constant C () > 0 such that for all m > 1 there exist functions ry,...,r,, such that (5.3),
(5.4), and for all j =1,--- ,m,

Vj=1,---,m, (5.5)

C
2
||Kr]||L2(f0) S W’ (57)
[175lloc < m'FeC™. (5.8)
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5.3 Proof of Theorem 5

Now using the functions constructed in Lemma 13 and Lemma 14 in Lemma 11, we can
finally prove a lower bound.

Proof. For the set of bounded priors P([0, h]), we apply Lemma 11 by using the functions
generated by Lemma 13 with

logn

=0 , a=clogn, [=ca.
loglogn

where ¢1,¢5 > 0 to be specified later based on h. Note that (5.3) and (5.4) ensure that

7 =7 = 1 and 7, = 0. Furthermore, (5.5) gives v = fn—c,? for some absolute constant C' as
defied in (5.5). (5.6) gives

a = Cg/zeC(aerlogB) k/26(2061+0(1))10gn _ Oh7k<n2Ccl+o(1))'
If we pick ¢; = o, then ma = Op,(n"/**°W) while \/ny = Opp(n'/*°W) so § = \/%
Applying Lemma 11, we have
R C 3 k+1 1 k+1
inf sup Regret, ,.(f) > —m = C]i ( e T ) (5.9)
J meg n’y csn \loglogn
where G = {G : ‘ 1‘ } Now we relate the regret over G to the regret over P([0, h])

using the following lemma

Lemma 15. Given h > 0, let G be a collection of priors on Rsg such that sup,cqP(6 >
h) < e < 3 for some € and sup,cg E-[0*] < M. Then

inf sup Regret,, (F) > inf sup Regret, L(F) = 63/(M + h¥)ne. (5.10)
f =eP([0,h]) o f meg

Proof. Let E be the event that 6; < h for all 6. For any estimator ftaking values in [0, h¥]
and any prior 7 € G,

~ ~

[(F(X) = 05)°] = Ex[(J(X) = 0)* 1) + B [(F(X) — 6)*1 ]
< EA[(F(X) - 0")2|E] + \/Ew[(f(X) — 0)*]Px(E€)
< EL[(F(X) = 02| E] + /8(M + h™)ne (5.11)

Since all distributions in P([0, k]) have support in [0, h], the optimal estimator will also be
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in the support. Then we get the following inequalities:

~

inf sup Regret,, (f) = inf sup E.[(f(X) — 6% — mmsey(r)

f weP([0,h)]) f€[0,h] m€P([0,h])
> inf supy, [(F(X) — 65)2] — mmsey(m)
f€[o,h] meG
> inf sup E[(f(X) — 0%)%| E] — mmsey. ()
f€[o,h] meG
(a) ~ 1
> inf supE.[(f(X) —0%)%] — /8(M + h**)ne — ——mmsey,(7)
felo,n] TG l—e¢
> inf sup Regret,. k(]/”\) —V/8(M + h**)ne — mesek(w)
f meg ’ I—e
) "
> inf sup Regret, ,.(f) — /8(M + h**)ne — 2ev M
f meg

where (a) follows from (5.11) and Lemma 3 and (b) follows from ¢ < 1 and mmse,(r) <
E,[0%*] < v/ M. We can combine the last two terms to obtain (5.10).

U

By the proof of [15, Theorem 2|, we can choose ¢, such that P(G > h) < 2n~* for G € G.
Furthermore, it is well known the moments of the Gamma distribution are

%mﬂ_%%%?xq%_mﬂm

80 Sup,eg Ex[0*] = Op1(1). Now using (5.9) and Lemma 15 with e = n™* and constant M,
we have

o gek+1 1 k+1 1 1 k+1
inf sup Regret, ,(f) > C]i ( ogn) _Oh,k(n_g/Q):Qh,k _(ﬂ) .

7 =eP(0,h) csn \loglogn n \ loglogn

Now we move onto the subexponential case. If we choose « =1 and 8 = s, Gy = Expo(s)
so Pg, (0 > t) < e ¥/*. Thus, for all G € G = {G: ‘% - 1‘ < %}, Po(f > t) < 2% s0

G C SubE(s). Now we apply Lemma 11 by using the functions generated by Lemma 14 with
m = clogn. Again, (5.3) and (5.4) ensure that 7 = 74 = 1 and 75 = 0. Furthermore, (5.7)
gives v = -5 and (5.8) gives

1—k€C(a+m log B)

a=m — (ClOg n)l—ke(C’clogslogn)-i—C _ Osk(nCclogs—i—o(l)).
If we pick ¢ = m, then ma = O, (n*/*°W) while \/ny = O, x(n*/?7°W) s0 § = \/%
Applying Lemma 11, and using G C SubE(s), we have
: N : I 3C 1 2k+1
inf sup Regret, . (f) > infsupRegret, . (f) > —m = Qs [ — (logn) :
f mESubE(s) ’ f meg ’ ny n
0
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Chapter 6

Simulations

In addition to the theoretical regret bounds we have proven in the previous sections, we also
simulated them on some sampled data sets. In particular, we calculate the regret over the
following set of priors:

e Exponential Distribution with mean 0.4 and 0.7
e Uniform distribution over [0,2] and [0, 3].
The true Bayes estimator for each is calculated as follows:
e For an exponential distribution with mean A, the Bayes estimator is
. Pz + k, k)N
@) = —F——~5—
(1+X)

e For a uniform distribution with range [0, M], the Bayes estimator is

o (@R —T@+k+1,M)
P = = =TT

where I is the incomplete Gamma function.

Since these values can be calculated explicitly, we are able to calculate the regret. We then
examine how each regret evolves with both n and k. To see the relationship with n, we fix
k = 2 and simulate n = 100, 200, ...,1000. To see the relationship with k, we fix n = 100
and simulate k = 2,3,4,5. To obtain less noisy regret estimates, we run 10000 trials for each
setup and take the mean regret over all trials. The graph of regrets is shown in Fig. 6.1.
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Figure 6.1: Regret of the three algorithms with respect to & and n across the four different
prior distributions.

In the graphs with respect to n, we see that the decrease in the regret curve resembles
a %Og(”) decay. Furthermore, it appears that NPMLE performs the best in this scenario,
then ERM, and then Robbins. This is slightly surprising since the upper bound on the ERM
regret is asymptotically worse than the other two algorithms. However, it is possible that a
better bound can be achieved. We have also only ran this simulation with a relatively small
distribution, and it is possible that the constant factors overpower the power of the log term.

In the graphs with respect to k, the log regret curve looks linear, which agrees with our
minimax regrets. It appears that in this case, the order of the algorithms’ performances
are reversed, with Robbins performing the best and NPMLE performing the worst. Again
this is possible due to constant factors of the form c*, but it is surprising that the ordering
completely reverses for larger k.

42



Chapter 7

Conclusion and Future Directions

In this thesis, we have extended the classic problem of estimating 6 on a Poisson mixture
model to estimating #%. We have extended the f-modeling, g-modeling, and ERM based
algorithms to estimate #* and proved regret bounds for each of these algorithms. In addition,
we proved a lower bound for this estimation problem to show that the algorithms for f and g-
modeling are both tight given the bounded and subexponential priors, and that ERM is tight
given a subexponential prior. Lastly, we empirically evaluated the regrets of each of these
algorithms by simulating them on various prior distributions and examining the relationship
with n and k. In the remainder of this section, we will discuss different directions in which
this research problem can be further studied.

7.1 Clipping the ERM Estimator

As mentioned in Remark 1, the ERM algorithm can be modified to take into account the
bounds on the prior, and search only for monotone functions within these bounds, that is,
we instead solve for

Fampdippea() = argmin B [f(X)? = 2P(X, k) f(X — k)] .

fE-Fmonotone7fSh

This can be useful since in practice, such a bound would usually be known. The first question
is whether or not the solution satisfies

Fermuk.clipped () = min( form (), h),

which may follow a similar proof to [4, Lemma 1]. If satisfied, we can easily modify the
existing algorithm to solve the isotonic regression and then clip the function at h. In this
case, the speed of the algorithm is not hindered. Otherwise, we will have to investigate other
algorithms to solve this problem. We may also calculate new regret bounds by modifying
the proof of Lemma 10 which may give rise to a tight bound on ERM in the bounded setting
as well.
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7.2 Smooth Functions

We have examined only monomials, but polynomials can easily be estimated as well by
doing each term separately. Given that all coefficients are bounded, note that the regret
from the leading term asymptotically overpowers all other regrets. This means the regret of
a polynomial is asymptotically the same as the regret of the leading term. This gives rise to
an interesting extension.

A useful property of polynomials is that they can be used to approximate any smooth
function on a closed interval arbitrarily closely by the Stone-Weierstrass Theorem. Specif-
ically, for any smooth function f on a range [0,h] and error ¢, there is some degree n
polynomial for which ||P,(z) — f(z)]|s < €. Thus, we may be able to further generalize our
analysis to apply to any smooth functions on an interval.

A natural approach is to approximate the function using a polynomial and then estimate
each term individually. One issue to consider carefully would be that the coefficients may
grow fast as we become more and more precise, and the scale of the coefficients will greatly
affect the overall regret.

7.3 Heavy-tailed Priors

Another interesting extension is to examine heavier tailed distributions, such as ones with
bounded p-th moment (E[|X|P] < oo). In this thesis, we have only examined bounded and
subexponential distributions, where encountering large values of @ is relatively unlikely. This
makes the process of estimating functions of # relatively more easy.

As discussed in Section 1.3.2, g-modeling has proven to be optimal in this setting whereas
f-modeling has been proven not be [12]. The performance of the ERM algorithm on such
priors is not yet known. It would be interesting to explore the following questions:

e What is the performance of the orignal ERM algorithm?
e What is the minimax lower bound?

e Can a generalized version of NPMLE or ERM can achieve optimality?

7.4 Other Mixture Models

In this thesis, we have focused on mixture models with a Poisson channel. However, real
world examples are not limited to these models. For example, other common distributions
may be Gaussian, exponential, or negative binomial.

There have been extensive research on the normal location model. Both the f[16] and
g-modeling[17] approaches have been shown to obtain a nearly optimal fast rate of regret.
However, the analogous ERM estimator has only been proven to achieve a slow rate for regret
in [18], and it is still unknown whether a faster rate can be achieved. It may be possible to
extend the framework for these upper bounds to #*. Furthermore, the method [15] used to
prove a minimax lower bound for Gaussian mixture models is very similar to the Poisson
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mixture model. It is likely that the way in which we extended the lower bound in Theorem 5
can also be applied to the Gaussian.

In addition, the ERM objective has also been extended to other distributions such as
geometric, negative binomial, and exponential as done in [4], but regret bounds for these are
still unknown. As these distributions are commonly used in the real world as well, proving
bounds in these settings will also be useful.
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Appendix A
Auxiliary Proofs for Modified Robbins

Proof of Lemma 2. For the first case, define f(x) = 2% "
Then

(x) just as in [15, Lemma 17].

> f@PPla+k k)< Y 28f(x)*Px,k)

r>xo+k z>xo+k
©S fle - )
r>xo+k
(b)
< ( Qh f(z0) Z f(x

r>x0+k

< 2(2h)} f (o)’

where (a) is by the identity « f(z) = hf(z—1), (b) is by the monotonicity of f on the domain
2R, 00), and (c) is by [15, (Equation 133)]. Our choice of z satisfies f(zy) < 1, so we obtain
(26).

By the proof of Lemma 17 in [15], we know f(z) £ 2(1+%)7® > f(x), and then the properties
of the geometric distribution give (2.7). O

Proof of Lemma 4. For the first bound, note that
E.[0%] = 4k / e IR (0 > 2)dr < 8k / el w5y = 8k (4k — 1)!s*.
0 0

For the second bound, using [11, (Equation 44)], we know P, (X > K) < %e*mog(l*?ls).
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Thus for any L,

mx_e/ 2P (X pax > 2)dz

<4ﬂ+n/ e IP(X > x)dx

<4LZ+_/ -1 7210g1+ )dx

@ e -1 —
<AL+ / Z e Fdz
(log(l + 2_3)) Llog(1+L)

(b) 3n o0
< 4L° + / c(k)e */%dz
2(log(1 + )" Llog(1+4)

(log(1 + 5;))*

where (a) follows from a change of variables with z = zlog(1 + 5) and (b) follows since
there exists some c(k) such that c(k)e*? > 2~! for all positive z and ¢ < 4k. Plugging in
L = 28" _ gives the desired bound in (2.8). O

log(l—s—%)

48



Appendix B
Auxiliary Proofs for NPMLE

Proof of Lemma 6. First note that mmsey (7)< E[0%] < /E[0%] < VM.
Let 6 ~ 7 and X0 ~ fp. Let f* and f; be the Bayes estimators for the priors 7 and my,
respectively. For 7 independent of X,

~

EL[(F(X) = 052 = EL[(F(X) = 0%)2Locs] + EL[(F(X) — 69712
EL[(F(X) — 651216 < h] + \/EL[(F(X) — 041, (6 > h)
|

|

< En, [(FX) — 09)7] + /8(h%% + B, [0])P, (0 > h)

< B, [(FX) = 09)2) + \/8(h% + M)P,(6 > h)

where the second line follows from Cauchy Schwarz and the third line follows from (a+b)?* <
8(a* + b*) for any real a,b. Then

Regret, ()
E[(f(X) = 6%)] — mmse, (r)

~

<., [(F(X) — 6%)2] — mmsey(m,) + mmseg(m,) — mmsex(r) + /8(htk + M)PL(0 > h)

<E., (00 — R0+ (g — L) mmsen(r) + /0% + AP0 > 1)
S () = Fi 0P+ g VAT + B0 + M0 > 1)

_ o (1 2v2) (4 MYP(0 > h)
<E,, () - () + £ Lk B.1)
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where (a) follows from mmsei(7) < v/ M. The second term is already in the right form, so
we bound the first term. For any K > 1,

[(FX) = fi (X)) Lxcri]

pr(z+k)  pr(z+ k))2
pz(x) P, (7)

Er

=

=Y P(z+k, k)’ps,(2) (
: bt k) ele k) N’
< P(.ﬂf"‘k, k) pﬂh('r) (3 ( pﬁ(iﬁ) B pg(l’) +p7rh($))

+3( 2pr, (v + ) pWh(x+k))2+3<2p%(x+k)—2pwh(x+k))2>

#(2) + pm () Py (2) Pz (@) + pr, (7)

pz(z)

P(SL' + k? k>p7rh($ + k))z pﬂ'h(x (pﬂh(x) - p%(l‘)
P () ?

_|_

pa(x + k) — Da,
(pz(2) + P, (7))

4P(z 4 k, kPl

where we have used (z + y + 2)? < 3(2® + y* + 2?). Since py, (¥) < pz(x) + pr, (), we can
further write

h[(f<X) Fa(X)) L <rci]
5 Z ( (P z+ k, k)pa(z + k))2 (D, () — pa(2))?

pa(a) P(@) + P (1)
+(Px+k kpﬂhxw)) (@) = 2@ b g <pﬂ<x+k>—pm<:c+k>>2>

r=

P, (T Pz (%) + Py (2) Pz (2) + pr, (2)

33 (e + ey L) 0 2 1oNS pla s g2 @@ R) = o ()
—3ZO(f()+fh()) HI2Y Pl ke

r=

” zk“phm pa(x))? R o (02 (x + k) = pr, (2 + K))?
B+ 7 3 ) T “2;”””“) @)+ pm (@)

so we have the bound

(p2() = pr, () < 2(p2() + pr (@ (\/m— Pry (T >
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We also see that P(x + k, k) < K* for z < K — k, we have

<6(0? + %) 3 (Vpr@) — yfpm (2))°
. P(x +k, k)pz(x + k) + P(x + k, k:pﬂhcc—i-lfK’C
+ 24K xrgn}&(l}fk =(2) + po (@) mZ(\/pnaH—k \/pwhx—l—k;)
(Wk F) 424K max (f(2) + i, <x>>) H2(ps, pn,)
§(Mh%+4fﬂ+24Kﬂhk+hﬂ>Eﬂummm) (B.2)

Note that by triangle inequality on Hellinger distance,

H*(pz,pr,) < (H(pz, pr) + H(pr, 0, ))? < 2H?(pz,0x) + 2H (s Py )

But
H(pr,pr,)* < 2TV (D, Dry,) < 2TV (7, 7) = 4P, (0 > h)

where TV is the total variation, the middle inequality is from the data processing inequality,
and the last equality TV (m,7,) = 2P,(0 > h) is justified in [11, Appendix B|. Combining
this with (B.2),

~

B [(FOX) = Fi(X) Lena] < (1200 +R%) +48K* (1 + 1)) (H2(pr, ) + 4Bo(0 > ).

We can also bound

o~

E., [(F(X) = fi (X)) 1xsxs) < (BF + 15y (X > K — k) = (B* +ﬁk>2PfW(X > K — k)

P, (0 < h)

Using P,(# < h) > 3, summing these two inequalities, and combining with (B.1) gives the
desired bound. ]
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Appendix C
Auxiliary Proofs for ERM

Proof of Lemma 10. Recall N(x) is the sample frequency and define the quantity

n

e(x) = Z €ilx,—p-

i=1
We first prove the bound on T5(b,n). Defining f(z) = f*(x) = 0 for x < 0, we have

n

Y26 (X)(f7(X0) = F(X0) = P(Xi, k) (f*(Xs = k) = f(Xi = k) — %(f*(Xi) - f(X2)*

=1

We substitute (C.1) back into T5(b,n) and then split it into two terms

n) =E{ s |3 (20 @) ~ Pla+ kRl D)) — )

T @) - 5@ ) twnol } (©2)

to(n) =E{ sup [E —2P<a:+k,k>e<x+k><f*<x>—f(x))lmx):o]} (C3)

fEFUF!, 20
We start with the ¢;(n) term. Since N(z) > 0 and 2az — bx? < %, (C.2) becomes

Z (e(x)f*(x) — P(x + k, k)e(x + k))?

ti(n) <b-E N(z) ]—N(:v)>0] : (C.4)

x>0
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Plugging in Ele(z)|X7,. .., X,] = 0 and E[(e(z))?| X7, ..., X,] = N(z) into (C.4), we get

() <b-E Z (e) (o) = o+ el + B)’ lN(M]
. E ; ((f*(if))Q | P+ k]\l;zil)\f(x + k)) 1N(x)>0] ' (C.5)
We now split up the Summ:t_ion in (C.5) to get
500 SB[ 1] + ek e e ]
%)h%E[l + Xonaz] + ”1(16_!);2 7{((]]; )k [1%(08;0}
+ _"%27 ; Pz +k, k)?ps(z + k)E {1;:[((50}

(b)
<SHPE[L 4 Xnao] + 2¢ max{h¥, 1} + ¢'B* Y~ P(x + k, k) min{(np.(2))*,1} (C.6)

r>1

where (a) follows since the first summation is 0 for anything over X,,,, and the summand is
at most h?* and (b) follows from (P1), (P3), and (2.5). For the third term of (C.6), we have

W " P(a+ k, k) min{ (npx(2))*, 1} < BEM* 4 08> " P+ k, k) min{ (np-(x))*, 1}

z>1 >M

(a) (b)
< BEMPT 4 2070E Y P k) (pa(2))? < BEMAT 4 25070y, [X > M)

z>M

2k
< 2F <hkMk+1 + h—> (C.7)

nd

where (a) we used the crude inequality P(z + k, k) < 2¥P(z, k) for x > M > k, and (b) is
because

P($7 k)pﬂ(x) = f*<l’ - k?)pw([)? - k) < hk
The %k term disappears asymptotically, so substituting (C.7) back into (C.6), we obtain

1
gtl(n) < WM + 2max{h"* 1} + 2FpF MFHL (C.8)

Now we bound t5(n). We know |e(x + k)| < N(z + k) =0 for 2 > Xpax — k + 1. Thus

to(n) <E ZQP(J:—I—k,k)N(a:—i-k) sup |f*(:r;)—f(:z:)\1N(x)0]

| 2>0 fEFLUF!
_Xmaxfk

<E| > 2P@+k k) (f* () + X + Ximo )N (2 + k’)lN(:c)=0] (C.9)
| x=0
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Let A = {Xpmax < M, X}, < M}. Then P[A°] < 2 by union bounding. Thus for some
absolute constant ¢ > 0:

MXinax—k

B S 2P+ k(@) + XE 4 XE N+ k)lN@)-olAc]

=0

B Xmax—k
<E | Xpoo (W + XE o+ X000 ) N(a:—kk)lN(w)OlAc]

= max max
=0

(a)
<nE [ X}, (B" + XE. + XIh )1ac]

(b) M2k
<ny/E[X2E_(hF + Xk + X% 2] /P[AC] < &

max max

s (C.10)
where (a) follows from 3.2 7% N(z + k) < 32°° N(z) = n, and (b) follows from Cauchy-
Schwarz.
For each © < M, define ¢, p(z) = Wg{)gl\ﬂ' Note that P[N(z) = 0|A] = (1 — gz (2))"
)

Qr M (x+E

and conditioned on A and N(x) = 0, the random variable N(x + k) ~ Binom (n, — (x)>.
Then

_Xmax—k
E| Y 2P+ kk)(f(2) + Xpa + Xira) N (@ + k) In)=ola
L z=0 |
_Xmax_k

<E| Y 2P(z+kk)(f*(x) + XEoe + XN (@ + E)Ln()=o

=0 .

Ed

IN
<

2P(z + k, k)(h* + 2M*)E [N (z + k)1n()—o|A]

i
Tl

2P(x + k, k) (h* + 2M*")E [N (z + k)|N(z) = 0, A|P[N (2) = 0|A]

I
g

ngrm(x + k)

2P(x + k, k)(h* 4+ 2M*
( ) ) 1= grnt(@)

(1 = gre(2))"

IN
|
o

= 8
=

a

= 2(hF 4 2Mk)f*(x)nq,r,M(:v)(1 — qe ()"

=0
<2MR*(h* 4+ 2M%) (C.11)
where (a) is because f*(z) < h for all z and nw(1 —w)" ' < (1—-2)""! < 1forall w € [0, 1].
Summing (C.10) and (C.11) and continuing (C.9), we have
2%

=

to(n) < + 2MhF(hF + 2M%)

n

and combining with (C.8), we obtain the desired bound

2k

—— = max{1, P} M4max{1, W*} M T* 4o, (1),

Ty(b,n) < max{1, h*} M+max{1, ¥} M+ >
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Next we bound Ti(b,n). Let my = b+ 1. Given two sets of samples X;,..., X, for any
f e F.UF, define
v(f) = min{max{x : f(x) < mph*}, Xiax}-

Then for each f, conditional on the samples,

e %)(f(xn — FH (X))
S (e(x)—ll)N( N(f(@) - (@)
zN( )>0
_ Z ) )~ S N@) ()~ (@)
=v(f)+
<mbh2k maxmax{ ——N 0}

+sup{ sup {f(d@—§N<x>><f<x>—f*<x>>2.}} (€.12)

v20 | mphP<f<Xmax | zoo

By [4, Lemma 5|, the first term of (C.12) is bounded by

X,
max 1
E (mih® ) max{ (v) = 7N (z) } ‘X”] < Nym2h? E[1 + Xiax] < Nom2h2F(1 + M).
=0
(C.13)
where N, £ %
eD(5E 1)

Note that for f with values in [myh*, X*_ ], we have m&—;lf < f—f*<fso

max

mb—l

(e(r) — TN (@)(F() — f*(2))* < mas {e(x) - N (@) < ) (e(x) — %N(x))} F(@)?.

mp

Since —N(x) < e(xz) < N(z), dividing by N(x),

function

) € [~1,1]. Now consider the

oo -me{(+5).(55) (1)}

Since it is the max of two linear functions, it is convex and thus upper bounded by the line
connecting the two endpoints (—1, — bf;l) and (1, 21), which is 2b(b+i) (z — 37— ) - Thus, the
second term of (C.12) satisfies

sup{ sup {f@(x)—%N(az»(f(x)—f*(x))?}}

v20 mbhkaSXmax

SCQ(b)iglg{ P {f(e(x)—Qbf_lN(x))f(x)?}} (C.14)
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This can be viewed as an X, + 1 dimensional linear programming problem with unknowns
being the values f(0), ..., f(Xmax). The set of solutions m2h?* < f(0)? < -+ < f(Xpax)? <
X2k is convex, so the optimum value must occur at one of the corners. Thus, we can further

upper bound (C.14) by

m2h2* Xf: max {e(x) — 2521— N (@), 0} + (Xinax) ™ sup {sz: (e(w) - szl_ N (w)) }

=0 v=20 >v

Again by [4, Lemma 5|, the first term is at most Nym2h?**(1 + Xypax). Now by [4, Lemma 6],
we have

sup { iﬂx (e(x) — 2[)21_ 1N(aj)> } ‘X?] < sup (€pp1t-- .+€n)_#<n_w) < ¢(b)

v>0 w:0<w<n
T>v

E

for some constant ¢(b). Thus

E

(Ko sup {XZ (c0) - gz Vo)) } \X?] < ()1 + X

v20 | sy

Substituting these bounds back into (C.14), we get

sup { sup {fw) — SN@)(f() - f*(:c))2-}} ]X?]

'UZO mthfSXmax >0

E

<es () (W™ (1 + Xinax) + (1 + Xinax) ™)
and combining with (C.13) and (C.12), we have the desired bound

Tl(b, n) S Cg(b) (hzk(l + M) + MQk) .
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Appendix D

Auxiliary Proofs for the Lower Bound

Proof of Lemma 12. As per [15] we introduce the kernel K (z,y), defined as (and also satis-
fies)
Go(x) _ ¥
K(x,y) = ——¢e *— and Kr(y :/ der(x)K(x,y
(z,y) IR () . (2)K(z,y)
Motivated by the paper, we first consider the following identity that holds true for all
integers N > m and real c:

xNeca: — % ( - )Cm_]P(N, j)l’N_j.
ox™ o \J

To show this, we use induction on m: base case m = 0 is clear; for induction step,

m—+1
a Necas o a (ecx

—7 —
Oxmtl Oz

note the use of (N — j)P(N,j) = P(N,j+1) for j < N, and that (T]”) ()= (™).

J—1 Jj+1
Now going back to our computation, we first consider the LHS, Kj(r). First, we can

easily see that
_ Joly+ k)

KW =250

Py + k. k)Kr(y + k).
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Thus
foly + k)

Kyr = WP(y +kk)(Kr(y+k)— Kr(y))
_ Joly+k)
) == Py +k,k) /R+ der(z)(K(z,y + k) — K(z,y)). (D.1)

K(zy+k) _ foly+k) ok
K(z,y) — foly) Ply+kk)’

In addition, by the definition of K(x,y), we have
aforementioned term as

(xk foly + k)
fo(y)

If Go = Gamma(a, §), then fj is Negative binomial, and satisfies (c.f. [15, (Equation 54)|)

won= (") (755) (753)

Thus (D.1) now becomes

. B 1\ B _amert
(f’f Ply+a+k 1’k)<1+ﬁ))/wdxr(x)l“(a)fo(y)e ' yho

= (xk —Ply+oa+k—1k) <ﬁ)k> /R+ drK (z,y)r(x)

Now onwards to the RHS. We first consider the general form of K (z™r")). Again, applying
[15, (Equation 58)] iteratively for m times, we get for any function g we have

giving the

JoWHK) by i g k:)) /R der(@)K (2,)

Jo(y +m)
fo(y)

and for j < m, we see that (0x)K(0,y+m) = 0 for all y > 0. We know ) is bounded for
j < m, and for the Gamma distribution, we also know (0z)’ K (cc,y + m) = 0, giving rise
the following (applying integration by parts as per [15] for j times)

K(z™g)(y) = (y+1)---(y+m)Kg(y +m)

K(9)0) = (-1 [ dor(@)(@.)Ke.y)

We now focus on the case where the prior Gy is Gamma function. For y > j, we have

I K (1 _ 1 J e TY) = pe J(e= Bz pa—1ty
= ( )i:( (= Z (Z) )] lP(Of —1 + Y, i)x(a—l-i-y)—i
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i() (B+ 1)V Pla—1+y,i)a

=0

i.e. for all m > j we have
. Ny » .
(O K (z,y+m) = K(z,y+m) ) (Z) (=(B+1)) " Pla=1+y+mi)z™"

=0

fo(y)
(y+1)---(y+m)foly +m)

= K(z,y) zj:(z) (B+ 1) Pl —1+y+m,i)z™

1=

Thus to summarize:

Km0 ) = P 1)t m) Oy )
_ foly+tm) _1y j
- w0 [ dor@)@. Ky +m)
= (—1)’ /R+ drr(x)K(z,y) Zz:; (‘Z) (—(B+ 1) "Pla—1+y+m,i)z™"
Note that when m = k, 3% -1 Jr);;lK (*r9))(y) has the following as the coefficient of

r(z)K (z,y)dz:

) (B Q)cno e i)
— :0 (1) (1 +B) 2" "Pla—1+y+k,i) j:ré:(l’i)(_l)j (’;’) (Z) (D2)

When i = k, the inner summation is just (—1)¥. When i < k, we can rearrange (l;) (Z) =

(k) (J Z) Using this, k£ > ¢ > 1 implies max(1,7) =7 so
(k=i
-1 . ) =0.

S ()0)- (5 () (o

J=t J=1

o

Il
=)

When ¢ = 0, we instead have
k
(kK
Z<—1>J(.) =1
=1 J
Substituting back into (D.2), we obtain

—(1+8) 7 "Pla—1+y+kk)
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which agrees with the form Kj(r). This implies that

k .
o G (R e
= 2 T (j)K(x ™)

O

We now construct the functions to be used in Lemma 11. Like [15, Appendix B| we define
S 2 K*K and S, £ K} Ky, satisfying the following as per [15, (Equation 89)|:

(Kf7 Kg)Lz(Z+,fo) = (Sfa g)LQ(R+,Leb)‘

Next we define the same set of functions as [15, (Equation 100)| using the generalized La-
guerre polynomials LY:

Lp(z) =e ML (yax), z=(/1+p0— \/3)2, Y2 =24/ 6(1+ \/B) =2v, v=a-—1
(D.3)
which satisfy

F(n—i—oz).

(Srna Fm) = bn]-n:ma bn = 02(0576)271 n

(D.4)

We first develop some properties of these generalized Laguerre polynomials. These polyno-
mials grow exponentially [19, p. 22.14.13], specifically

L4 < 2 (”jl‘ ) D5)

They also follow two recurrence relations.

Lemma 16. For alli > 0,

id i i : ,
v L) = ;(—1% (e) P(n—{,i—0)P(n+v,0)L"_,(z).

Proof. We proceed with induction. First, ¢+ = 0 is trivially true and ¢+ = 1 is just the
recurrence relation from [19, p. 22.8]. Now suppose the statement is true for i. Taking the
derivative on both sides and multiplying by x, we obtain

i+1 di+1 LV ) d’L LV
) n(7) + iz I n(2)
i . d
— (—1)K (Z) Pn—{i—0)Pn+v,0)x—L;_,(x)
— 14 dx

=Y (=1) (2) Pn—"{i—0)P(n+wv,/) ((n —OL? J(x)—(n—0+V) 2471@)) (D.6)
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Plugging in '+ 417 () and subtracting, (D.6) becomes

dz+1

+1
T —— LY (x)
d{L‘H'l

1) (Z)p yi—OP(n+v,0) ((n—0—14)L,_,(x) — (n—C+v)Lh_, ()
(z

14

a)z g

— Z(—N—l( ! )P(n 0+ 1,i— L+ DPn+v,l—1)(n—L+v+1)L" ()

)P n—~0i—0Pn+uvl)(n—0—1i)L_,(z)

_~ (-1

= g(_mp(n — i —0)P(n+uv,0)L)_,(x) ((Z) (n—€—1i)+ <£ j 1) (n—£+ 1)>

® g(_nfp(n —li—0O)P(n+uv,0) LY ,(x) (7’ Z 1> (n —1)

S @D(%V)Hn—&ﬂ&—ﬁpm+u@%em) (D.7)
=0

where (a) comes from splitting up the summation and shifting ¢ by 1, and (b) follows from
properties of binomial coefficients. More specifically:

(Z)(n_g_iH<€j1)(n_€+1):<n_£_i)<(z) +(€j1)>+(£i1)<”1)
:(n—f—z’)(i—;l)+ (e;1>€_( _Z.)(Hf)

This proves the inductive step since (D.7) matches the desired statement with 7 + 1. O]

The recurrence relation of 2L (z) is trickier. Nevertheless, we will see later that we only
need the coefficient of LY . (x).

Lemma 17. For alli > 0,

%

LY (x) = Z c(p,i,n,v)Ly ()

p=—1
for some function c that satisfies c(—i,i,n,v) = (—=1)'P(n + v,1).

Proof. We again proceed with induction. First, ¢ = 0 is trivially true and ¢+ = 1 follows
from the recurrence relations from [19, p. 22.7]. Now suppose the statement is true for i.
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Multiplying by x on both sides, we obtain

xi“L,,”L(x)

= elp,isn,v)aly, (@)

p=—1i

= clpinv)(@n+2p+ v+ 1LY, (2) = (n+p+ 1LY (x) = (n+p+ ) Lup)

p=—1
i+l
= Y cpi+lnvall(z) (D.8)
p=—1i—1
where the last equality is because the only L terms in (D.8) are Ly ; ,,..., LV ;. | and
we can define ¢(p,7 + 1,n,v) as needed. Furthermore, the only L” , | term happens when
p = —i, so substituting the value of ¢(—i,1,p,v) gives

c(—i—1,i+1,nv)=(=1)"Pn+v,i)(—(n—i+v)=(-1)""Pn+vi+1)
as desired. ]

For the rest of this paper, we will use v = 91 = %, so I'y(x) = e Ly (2yx). Now we
prove a generalization of [15, Lemma 15]. This will allow us to construct a set of functions
that are orthogonal and have bounded magnitude.

Lemma 18. The functions I'y(x) satisfy

Ty (@)l < (q“‘) (D.9)

q
b -
(SkTq,Tg) > 22k5k_1<f+5)k+1p(q+ v, k)P(q,k)z"" (D.10)
(Silg,Tgs) =0 Vg1 —qo| > 2k +1 (D.11)

Proof. First, (D.9) follows directly from (D.3) and (D.5), so it remains to show the identities
with Si. The functions I' all have bounded jth derivatives for j < k, so by Lemma 12, we

have
(Sl ):<Z(1—1FJ+1() ’“F”aiuglﬁ <’fréz>>>

- (Z iy () s Z () kFg)) (D12
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To evaluate CEkF((Ij ), we apply the recurrence relations Lemma 16 and Lemma 17.

xkféj )

= (2y) { ) () (_W_Z.W(LZ)@} (212)

(—%) xk-ix%L;)@} (22)

(_g) g’;(_l) (E) P(q—t.i—0)P(g+v, £>L;z<x>} (2y2)
e Y () (—%) 1( ) Plati = 0P+ 0.0

cp,k—i,qg—1¢, V)LZ_HP(m)}(Zym). (D.13)

Note that ¢ — £ + p can only be in the range [¢ — k, ¢ + k]. Furthermore, for each i, Ly, ()

is only achieved when ¢ =i and p = —(k — i), so the coefficient of it in the summation is
I/ 1\’ . ,
S (1) (53) O PP ik
i=0
¢ ~ () (LY
~corann Y (1) (43)
i=0

=(—1)*P(q+v,k)277.

Plugging this back into (D.13), for some function ¢/, we can write

g+
xkfgj) —e { Z (i, 7,k q, V)L’;(x)} (2yx)

i=q—k
q+k
= Z d(i,7,k,q,v)Ti(x) (D.14)
i=q—k

where ¢ (q—k, j, k,q,v) = (29) ¥ (= 1)k P(q+v, k)277 = (=27) I P(q+v, k). Clearly when
|1 — go| > 2k + 1, none of the I" terms in the expansion will intersect, so the orthogonality
of I' makes (SyI'y,,T'y,) = 0, satisfying (D.11). Now using (D.14), for some ¢”, we have

(-1 (k . Gtk o ) .
;(1+B)j(j)$ d —i:zq:kC(Z, ,q,v)[i(z) (D.15)
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where

b(—1)

(k) —27) " P(q + v, k)

J=1

— —(=29)*P(g+, k),zi; (I;) (_ﬁ)j

= (=29) " P(g + v, k) ( (1 - ﬁ)v

Therefore, plugging (D.15) back into (D.12) gives

(SkT4,Ty) = < > ik qv)STi(x), c"(i,k,q,y)ry(x))

i:q—k i:q—k
q+k

@ Z (i, k,q,v)*b

i=q—k

> (- %)%P@+uk)< Q 11 )vz%k

© (29)"*P(q+ v, k)P(q, k)2~ ( ( N +5) > by

@ b,
>
- 22k5k—1(1+5)k+1

(b)

P(q+ p, k)P(q,k)z""

where (a) follows from the orthogonality of KT, (b) follows by consiering only the case
i = q—k, (c) uses the closed form of b, from (D.4) and the (d) follows from plugging in

k
v = +/B(1 + B) and using the fact that 1 — (1 — 1+,8) > ﬁ (note also v < 14 8 given
our choice of v) when k& > 1. Thus, we satisfy (D.10). O

With Lemma 18, we are able to prove Lemma 13 and Lemma 14.

Proof of Lemma 13. Fix m and let

Fq
rg=—F————, q€Q={mm+2k+1,...,(2k+2)m}.
! (Squ,Fq)
Note that this deﬁnition guarantees (5.3) and (5.4). Since z = ( ﬁ EIRV/EE and 8 > 2, we
have /o’ <z< ,6’ . Then

SF ,F 22k5k—1 1 + ,6 k+1zk 5k
K7l 7,00 = BTy Ty 1+5) € Or(——)
(Skl'g,Ty) = Plg+v,k)P(q, k) arm
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where the last line follows since z¥ = ©4(57%), ¢ = ©x(m), and ¢ + v = Q(«). This proves
(5.5).

From the proof of [15, Lemma 11|, we know (qza)2bq_1 < exp{C’(a+mlog )} for some
absolute constant C’. Using (D.9),

max [|7g[lee < 4 [ =5 < —kec( +mlogf)
q€Q akghb, q Q@

thus proving (5.6). O

Proof of Lemma 14. We choose the same 7, as in the previous proof. We know v = a—1 =0
and 3 is a constant, so

2k nk—1 k+1 K
STl (B (1)

Kroll7, 0 = mk
KTl L o) (ST Ty) — P(q. k)? mt

From the proof of [15, Lemma 12|, we know b, =< 2%, so using (D.9) with o = 1, we also have
for some constant ¢ = ¢(k) and C' = C(k),

r
17qllo0 = Wolle o cm i

V(SkLg.Ty) — /m?0,

since z < 1. N

kz—(2k+2)m l—kBCm‘

=1m
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