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ABSTRACT

The empirical Bayes estimator for the Poisson mixture model in [1], [2] has been an
important problem studied for the past 70 years. In this thesis, we investigate extensions of
this problem to estimating polynomial functions of the Poisson parameter rather than just
the parameter itself. We generalize three different algorithms for estimation, specifically the
Robbins estimator from [2], the NPMLE method from [3], and the ERM method from [4].
For each of these algorithms, we prove upper bounds on the minimax regret. We also prove
a general lower bound that applies to any estimation algorithm for this setup. In addition
to the theoretical bounds, we empirically simulate the performance of all three algorithms in
relation to both the number of sample and the degree of the polynomial function we estimate.
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Chapter 1

Introduction

The empirical Bayes estimator is a classic and very powerful technique used in statistics,
inference, and machine learning. Such an estimator can be useful in a wide variety of models,
and there are also many different techniques to calculate the Bayes estimate in these models.
In this thesis, we will examine algorithms for finding an estimator which makes excess loss
approach 0 when the sample size increases.

1.1 Model

We focus on mixture models with a known channel but an unknown prior as shown in Fig. 1.1.
In particular, there is some unknown prior distribution π from which hidden parameters
θ1, . . . , θn

iid∼ π and a known channel γ such that observations are generated according to
Xi ∼ γ(θ).

Figure 1.1: Illustration of a Mixture Model

We focus mainly on the mixture model with a Poisson channel, that is, Xi ∼ Poi(θi).
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1.2 Estimation on Poisson Mixture Model

In this thesis, we focus on the Poisson model. Past work has focused on the goal of estimating
θ given sample data points X1, . . . , Xn. We would like to extend this goal further: given any
smooth function r, estimate r(θ). Over the rest of this thesis, we will focus on functions of
the form r(θ) = θk for integers k ≥ 1.

We can compute the marginal distribution of X to be

pπ(x) =

∫
e−θ θ

x

x!
dπ(θ). (1.1)

For any given x, the Bayes estimator for θk that minimizes the squared error is the posterior
mean, which we calculate using (1.1) to be

Definition 1 (Bayes Estimator). The Bayes estimator of θk for a prior π is

f ∗(x) = E[θk|X = x]

=

∫
θk
(
e−θ θx

x!

)
dπ(θ)

pπ(x)

=
P (x+ k, k)

∫
e−θ θx+k

(x+k)!
dπ(θ)

pπ(x)

=
P (x+ k, k)pπ(x+ k)

pπ(x)
(1.2)

where we let P (N, j) = Γ(N+1)
Γ(N−j+1)

be the permutation number. If N−j+1 is a nonpositive
integer, define P (N, j) = 0. This notation will be useful as it appears in the Bayes estimator
and thus in many of our equations. Unfortunately, we do not have access to the true
distribution π(·) so we cannot calculate the exact value of f ∗(x), but we do have access to
training samples x1, . . . , xn. Our goal is to learn an approximation f̂ of the Bayes estimator.
There are many metrics by which we can measure the accuracy of an estimator, but we will
focus on the regret, which captures the difference between the mean squared error of the
estimator f̂ and the true Bayes estimator f ∗. Furthermore, the mean squared error of the
Bayes estimator will be important in our bounds later, so we call it the mmse. The two
definitions are below.

Definition 2 (mmse). Let the mmse of a prior distribution π be the expected squared error
of the Bayes estimator of θk, specifically

mmsek(π)
∆
= min

f
Eπ[(f(X)− θk)2] = Eπ[(f

∗(X)− θk)2].

Definition 3 (Regret). The regret of an estimator f is

Regretπ,k(f) = E
[(
f(X)− θk

)2]− E
[(
f ∗(X)− θk

)2]
= E

[(
f(X)− θk

)2]−mmsek(π).

Expanding, we can also obtain

Regretπ,k(f) = E
[
f(X)2 − 2θkf(X)− f ∗(X)2 + 2θkf ∗(X)

]
.

14



Since E[θk|X] = f ∗(X), the Tower rule of Expectation tells us that

Regretπ,k(f) = E
[
E
[
f(X)2 − 2θkf(X)− f ∗(X)2 + 2θkf ∗(X)|X

]]
= E

[
f(X)2 − 2f(X)f ∗(X) + f ∗(X)2

]
= E

[
(f(X)− f ∗(X))2

]
.

All three forms of the regret will be useful later in this thesis.

1.3 Literature Review

Empirical Bayes estimators on these mixture models have been studied for many years now.
As mentioned previously, all of the related works focus on the k = 1 case. One of the earliest
papers also studying the Poisson mixture model was introduced by Robbins[1], [2], where it
was shown that the true Bayes estimator is

f ∗(x) =
(x+ 1)pπ(x+ 1)

pπ(x)

and is monotonic. Note that this matches Definition 1 with k = 1.

1.3.1 Robbins Estimator

Robbins[2] first proposed an estimator

f̂Rob(x) =
(x+ 1)N(x+ 1)

N(x)

where N(x) represents the number of occurrences of x in the data set x1, . . . , xn. This
essentially approximates pπ with the empirical distribution. Such an approach has been
called f -modeling[5], and it has been shown that the Robbins estimator achieves optimal
regret for π that is bounded or subexponential[6], [7]. However, the Robbin’s estimator can
be very unstable (e.g. when x is large and the counts are small, small changes in counts
greatly affect the estimated values)[8]. Furthermore, the Robbin’s estimator may not be
monotonic, which is a desired property of the empirical Bayes estimator[9]. However, there
have been modified versions of this algorithm where monotonicity can be imposed without
increasing its regret[10].

1.3.2 Non-parametric Maximum Likelihood Estimation

A different approach first proposed in [3] is to approximate π rather than pπ. To do this, a
maximum likelihood estimator (MLE) is used. Specifically, we approximate

π̂ = argmax
Q

n∏
i=1

pQ(xi)

15



and then calculate f̂ =
(x+1)pπ̂(x+1)

pπ̂(x)
. Since no parametric form of Q is assumed, this prior is

determined through Non-parametric Maximum Likelihood Estimation, which we refer to as
NPMLE for the rest of the thesis. This approach has been termed g-modeling[5], and the
resulting estimator has been shown to achieve optimal regret for bounded and subexponential
distributions[11]. In addition, g-modeling achieves optimal regret on polynomial tailed prior
distributions π, while the Robbin’s estimator has been proven to be suboptimal[12].

Due to the Bayesian structure of f̂NPMLE, the desired property of monotonicity is still
preserved. Furthermore, the estimated values are more stable than those in f -modeling, and
optimality is satisfied even for heavy polynomial tailed distributions while it is not satisfied
with f -modeling. Experiments have also shown that the NPMLE estimator can also be
useful as a preprocessing method for data analysis. However, there are tradeoffs to using
this method. The optimization problem to be solved is very difficult and computationally
expensive, especially when the dimensions increase as the time is exponential in d.

1.3.3 Empirical Risk Minimizer

The newest methodology proposed is an estimator proposed by [4] based on the Empirical
Risk Minimizer, which we refer to as ERM in the remainder of this thesis. The ERM is
an idea in statistical learning theory first introduced in [13] where an optimal hypothesis is
learned by finding the hypothesis with the smallest loss over the empirical data.

Motivated by this idea, rather than approximating the prior or the posterior distribution,
we can directly solve for the Bayes estimator. This is done by first noticing that the Bayes
estimator minimizes the mean squared error. This naturally leads to finding the estimator
which minimizes the empirical mean squared error, which is the ERM solution. Since we are
minimizing over a set of estimators, we can impose constraints on the set we search over.
This leads to [4, (Equation 6)], where

f̂erm ∈ argmin
f∈Fmonotone

Ê[f(X)− 2Xf(X − 1)].

In this way, the ERM estimator maintains the desired monotonicity of the Bayes estimator
similar to g-modeling. The framework for calculating function is also very flexible and
extra constraints or different function classes can easily be implementable. Performance
guarantees in the bounded and subexponential prior case match those of both f and g-
modeling. Moreover, this minimization problem can be solved using isotonic regression, so
the computational cost is much lower. However, regret in the heavier tailed prior case is still
unknown.

Furthermore, [4] investigated the d-dimensional version of this problem. We formulate
the problem as follows: an unknown set of vector parameters θ1, . . . ,θn are independently
sampled from a multidimensional distribution π. Then, samples xi are generated such that
xij ∼ Poi(θij). We similarly aim to achieve an estimator f̂(x) to minimize the regret, which
is

Regretπ(f)
∆
= E

[∥∥∥f̂(x)− θ
∥∥∥2]− E

[
∥f ∗(x)− θ∥2

]
.

The generalization of the one dimensional monotonicity condition becomes the following.

16



For each i,

f ∗(x+ ei) ≥ f ∗(x) (1.3)

where ei is the vector with 1 in the ith coordinate and 0 everywhere else. The ERM estimator
can now be written as

f̂erm(x) = argmin
f∈F

Ê

[
∥f(x)∥2 − 2

d∑
i=1

xjfj(x− ei)

]

and the class of functions F is all functions Zd
+ → Rd

+ satisfying the generalized monotonicity
constraint in Equation (1.3). In this setup, the time complexity of ERM will be polynomial
in n and d while NPMLE can take up to nΘ(d) [14], making erm the much more scalable
algorithm.

Regret bounds on the multidimensional Poisson case has also been calculated for priors
with bounded supports and subexponential marginals in [4]. It is not yet known if these
match the lower bound, but it is conjectured that a better lower bound can be calculated
and this algorithm has nearly optimal regret. Experiments in 2 dimensions have also been
run showing that the multidimensional ERM estimator runs many times faster than the
g-modeling approach, and the regret is also significantly lower than f -modeling.

1.3.4 Lower Bounds

In addition to the above three algorithms, lower bounds have also been investigated for
estimation on the Poisson mixture model. In fact, [15] proved a lower bound matching the
regret upper bounds of all three algorithms mentioned above in the case of a bounded and
subexponential prior. The general idea for lower bounding is to start with a gamma prior,
consider the set of distributions which are close to this prior, and show that it is difficult to
learn significant information within this set of distributions.

1.3.5 Other Mixture Distributions

Although a lot of the work in this field has been focused on the Poisson case, there have
been multiple papers on the normal location model. Both the f [16] and g-modeling[17]
approaches have been shown to obtain a nearly optimal fast rate of regret. However, the
analogous ERM estimator has only been proven to achieve a slow rate for regret in [18], and
it is still unknown whether a faster rate can be achieved.

1.4 Optimal Minimax Regret

This thesis will examine the estimation of θk in a Poisson mixture model given two different
regimes of priors: bounded and subexponential.

Definition 4 (Bounded Distribution). We use P([0, h]) to denote the set of all probability
distributions that can only achieve values in the range [0, h].

17



Definition 5 (Subexponential Distribution). We use SubE(s) to denote the set of all prob-
ability distributions that satisfy the tail bound P(x ≥ t) ≤ 2e−t/s for all t > 0.

Over the course of this thesis, we will describe multiple different estimators of θk by gen-
eralizing the three different algorithms (f-modeling, g-modeling, and erm). We will also prove
regret bounds for each along with optimal minimax regret bounds to see which algorithms
can attain them.

Theorem 1. The minimax regrets are as follows:

1. For any bounded prior π ∈ P([0, h]), the optimal minimax regret is

Θh,k

(
1

n

(
log n

log log n

)k+1
)

2. For any bounded prior π ∈ SubE(s), the optimal minimax regret is

Θs,k

(
1

n
(log n)2k+1

)
.

The three algorithms from Section 1.3.1, Section 1.3.2, and Section 1.3.3 achieve the regrets
shown in Table 1.1

Algorithm Bounded Prior Subexponential Prior

Robbins Oh,k

(
1
n

(
logn

log logn

)k+1
)

Os,k

(
1
n
(log n)2k+1

)
NPMLE Oh,k

(
1
n

(
logn

log logn

)k+1
)

Os,k

(
1
n
(log n)2k+1

)
ERM Oh,k

(
1
n

(
logn

log logn

)2k)
Os,k

(
1
n
(log n)2k+1

)
Table 1.1: Minimax Regrets of each algorithm.

The optimal rate on the bounded priors can be achieved by a generalized version of the Rob-
bins and NPMLE estimator, while the optimal rate on subexponential priors can be achieved
by all three algorithms.

Proof. All upper bounds and the lower bound will be established in the later sections.
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Chapter 2

Upper Bound on Polynomial Robbins
Regret

2.1 Modified Robbins Estimator

In this section, we introduce a natural extension to the original version of Robbin’s estimator
for θ. From Definition 1, we know the form of the true Bayes Estimator. Motivated by the
Robbin’s estimator for the estimation of θ, we can again estimate pπ(x) using the empirical
distribution, giving us the estimator

f̂Rob,k =
P (x+ k, k)N(x+ k)

N(x)
. (2.1)

Theorem 2. The Robbins estimator for θk defined in (2.1) satisfies the following regret
bounds:

1.

sup
π∈P([0,h])

Regretπ,k(f̂Rob,k) ≤ Oh,k

(
1

n

(
log n

log log n

)k+1
)

2.
sup

π∈SubE(s)
Regretπ,k(f̂Rob,k) ≤ Os,k

(
1

n
(log n)2k+1

)
.

2.2 General Regret Upper Bound via Robbins

We first start with the following lemma, which we use to bound the regret on a prior bounded
by [0, h].
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Lemma 1. For a prior in P([0, h]) (here h may depend on n), the regret satisfies for some
constant c = c(k),

Regretπ,k(f̂Rob,k)

≤ c

n

(
max{h2k, 1}+

∑
x≥1

P (x+ k, k)hk min
{
n2pπ(x)

2, 1
}
+ h2k min {npπ(x), 1}

)
.

Proof. Using the last definition in Definition 3, we have

n · Regretπ,k(f̂Rob,k) = E

[
n∑

i=1

(f̂Rob,k(Xi)− f ∗(Xi))
2

]

= E

[∑
x≥0

N(x)P (x+ k, k)2
(
N(x+ k)

N(x)
− pπ(x+ k)

pπ(x)

)2

1N(x)>0

]

= E

[∑
x≥0

1N(x)>0P (x+ k, k)2

N(x)

(
N(x+ k)− pπ(x+ k)N(x)

pπ(x)

)2
]
. (2.2)

Similar to [4, (P1)-(P4)], we have

(P1) N(x) ∼ Binom(n, pπ(x)) and for some absolute constants c′, c2 > 0 [15, Lemma 16]

E
[
1N(x)>0

N(x)

]
≤ c′min

{
npπ(x),

1

npπ(x)

}
, E

[
1N(x)>0

N(x)
(N(x)− npπ(x))

2

]
≤ c2.

(P2) Conditioned on N(x), N(x+ k) ∼ Binom
(
n−N(x), pπ(x+k)

1−pπ(x)

)
(P3) f ∗(x) = P (x+k,k)pπ(x+k)

pπ(x)
= E[θk|x] ≤ hk for all x ≥ 0,

(P4) Stirling’s method entails xye−x

y!
≤ yye−y

y!
≤ 1√

2πy
. Therefore, pπ(y) ≤ 1√

2πy
, y ≥ 1.

Let q = pπ(x+k)
1−pπ(x)

. Then by (P2) and the bias variance decomposition,

E

[(
N(x+ k)− pπ(x+ k)N(x)

pπ(x)

)2

|N(x)

]

=(n−N(x))q(1− q) +

(
(n−N(x))q − pπ(x+ k)N(x)

pπ(x)

)2

≤n
pπ(x+ k)

1− pπ(x)
+

(
pπ(x+ k)

(1− pπ(x))pπ(x)

)2

(npπ(x)−N(x))2 . (2.3)
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Now by (P4), we see that for x ≥ 1, 1
1−pπ(x)

≤ c for the constant c ≜
√
2π√

2π−1
. Then using

(2.3), we can continue (2.2) to get

n · Regretπ,k(f̂Rob,k)

=E

[∑
x≥0

1N(x)>0P (x+ k, k)2

N(x)

(
n
pπ(x+ k)

1− pπ(x)
+

(
pπ(x+ k)

(1− pπ(x))pπ(x)

)2

(npπ(x)−N(x))2
)]

=E

[
1N(0)>0(k!)

2

N(0)

(
n

pπ(k)

1− pπ(0)
+

(
pπ(k)

(1− pπ(0))pπ(0)

)2

(npπ(0)−N(0))2
)

+
∑
x≥1

1N(x)>0P (x+ k, k)2

N(x)

(
cnpπ(x+ k) + c2

(
pπ(x+ k)

pπ(x)

)2

(npπ(x)−N(x))2
)]

≤(k!)2

(
c′pπ(k)

(1− pπ(0))pπ(0)
+ c2

(
pπ(k)

(1− pπ(0))pπ(0)

)2
)

+
∑
x≥1

cc′P (x+ k, k)f ∗(x)min
{
n2pπ(x)

2, 1
}
+ c2c2f

∗(x)2min {npπ(x), 1} . (2.4)

Note that

pπ(k)

(1− pπ(0))pπ(0)
=

max
{

pπ(k)
pπ(0)

, pπ(k)
1−pπ(0)

}
max{pπ(0), 1− pπ(0)}

(a)

≤ 2max

{
hk

k!
, 1

}
≤ 2max{hk, 1} (2.5)

where (a) is due to (P3) (pπ(k)
pπ(0)

≤ hk

k!
), pπ(k) = 1−

∑
x ̸=k pπ(x) ≤ 1−pπ(0), and max{pπ(0), 1−

pπ(0)} ≥ 1
2
. Substituting (2.5) and (P3) back into (2.4) and then dividing by n, we obtain

for some constant c3 = c3(k), the desired inequality

Regretπ,k(f̂Rob,k)

≤c3
n

(
max{h2k, 1}+

∑
x≥1

P (x+ k, k)hk min
{
n2pπ(x)

2, 1
}
+ h2k min {npπ(x), 1}

)
.

To allow us to further bound the RHS of Lemma 1, we prove the following tail bounds
on pπ to bound the min using pπ(x) for large x.

Lemma 2. We prove tail bounds on pπ for the two types of distributions.

• Let π ∈ P([0, h]). Then for some constant c = c(h) and x0 = max
(
2h, c logn

log logn

)
,∑

x>x0+k

pπ(x)
2P (x+ k, k) ≤ 2k+1hk

n2
. (2.6)

• Let π ∈ subE(s). Then for some constant c = c(s) and x1 = c log n,∑
x>x1+k

pπ(x)
2P (x+ k, k) ≤ 1

n2
. (2.7)

A proof of this lemma can be found in Appendix A.
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2.3 Regret of Truncated Prior

Lemma 1 is sufficient for any bounded distributions. However, to obtain regret bounds on
subexponential distributions, we need to relate its regret to the regret of a truncated version
of this prior. For any distribution π, let πh be π restricted to the range [0, h]. We first begin
with a helpful lemma regarding the mmse of a truncated prior.

Lemma 3. For any π and h, mmsek(πh) ≤ mmsek(π)
Pπ(θ≤h)

.

Proof. Let E be the event that θ ≤ h under π. Then

mmsek(π) = min
f

Eπ[(f(X)− θk)2] ≥ min
f

Eπ[(f(X)− θk)2|E]P[E] = mmsek(πh)P(E).

In addition, we prove the following lemma which bounds the moments of θ and Xmax =
max(X1, . . . , Xn) for a subexponential prior. These results will help us in bounding the
regrets in the tails of subexponential distributions.

Lemma 4. Let π ∈ SubE(s) and X ∼ pπ. There exists some constant C(k, s) such that

Eπ[θ
4k] ≤ 8k(4k − 1)!s4k E[Xℓ

max] ≤ C(k, s)(log n)ℓ (2.8)

for all ℓ ≤ 4k.

A proof of this lemma relies mainly on rewriting the expectation using tail probabilities
and bounding those values. The exact proof is given in Appendix A.

Recall the notation of the truncated prior πh defined before Lemma 3. With these lemmas,
we are now ready to show that the regret over the truncated prior πc1s logn exceeds the regret
over π by at most os,k(1/n).

Lemma 5. For any estimator f̂ such that E[f̂(X)4] = Os,k(n
4(log n)4k), there exists con-

stants c1, c2, c3 > 0 such that

Regretπ,k(f̂) ≤ Regretπc1s logn,k
(f̂) + os,k

(
1

n

)
.

Proof. Let π ∈ SubE(s), then there exists a constant c(s)
∆
= 11s by Definition 5 such that

ϵ = P[θ > c(s) log n] ≤ 1

n10
, θ ∼ π.

Let E be the event {θi ≤ c(s) log n,∀i = 1, . . . , n}. By union bounding, P[Ec] ≤ n−9. Recall
the regret from Definition 3. We obtain the following series of equations:

Regretπ,k(f̂) = Eπ[(f̂(x)− θk)2]−mmsek(π)

≤ Eπ[(f̂(x)− θk)2|E]−mmsek(πc1s logn) +mmsek(πc1s logn)

−mmsek(π) + Eπ[(f̂(x)− θk)21Ec ]

= Regretπc1s logn,k
(f̂) +mmsek(πc1s logn)−mmsek(π) + Eπ[(f̂(x)− θk)21Ec ].

(2.9)
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For the last term of (2.9), applying Cauchy-Schwarz gives

Eπ[(f̂(x)− θk1)
21Ec ] ≤

√
P[Ec]Eπ[(f̂(X)− θk)4] ≤

√
n−9Eπ[(f̂(X)− θk)4] ≤ c(s, k)

n

since E[f̂(X)4] = Os,k(n
4(log n)4k) and Eπ[θ

4k] = Os,k(1) by Lemma 4. For the middle two
terms of (2.9), Lemma 3 tells us that

mmsek(π) ≥ mmsek(πc1s logn)(1− n−9)

so we have

mmsek(πc1s logn)−mmsek(π) ≤
n−9

1− n−9
mmsek(π) ≤ 2c(k)s4kn−9 = os,k(n

−1)

by n−9 ≤ 1
2

and Lemma 4. Combining these inequalities together, we obtain the desired
result.

2.4 Proof of Theorem 2

Now we are ready to apply Lemma 1 to prove the original result.

Proof. Let us first deal with the bounded prior case. Split up the summation in Lemma 1
at x0 + k from Lemma 2 and upper bound the min’s to obtain

n · Regretπ,k(f̂) ≤ max{h2k, 1}+
x0+k∑
x=1

(
P (x+ k, k)hk + h2k

)
+
∑

x>x0+k

(
P (x+ k, k)hkn2pπ(x)

2 + h2knpπ(x)
)

(a)

≤ max{h2k, 1}+ h2k(x0 + k) + hk(x0 + k)P (x0 + 2k, k) + 2k+1h2k + h2k

(b)
= Oh,k

((
log n

log log n

)k+1
)

where (a) is from (2.6) and [15, (Equation 122)], and (b) is from plugging in x0. Dividing
by n yields the desired result.
Now we move onto the subexponential case. By Lemma 5, it suffices to take h = c1s log n
and bound the regret on πh. Split up the summation in Lemma 1 at x1 + k from Lemma 2
(where x1 ≜ c(s) log n is as defined in Lemma 2) and upper bound the min’s to obtain

n · Regretπh,k
(f̂) ≤ h2k +

x1+k∑
x=1

(
P (x+ k, k)hk + h2k

)
+
∑

x>x1+k

(
P (x+ k, k)hkn2pπ(x)

2 + h2knpπ(x)
)

(a)

≤ h2k + h2k(x1 + k) + hk(x1 + k)P (x1 + 2k, k) + hk + h2k

(b)
= Os,k

(
(log n)2k+1

)
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where (a) is from (2.7) and [15, (Equation 124)], and (b) is from plugging in x1. Dividing
by n yields the desired result.
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Chapter 3

Upper Bound on Polynomial NPMLE
Regret

3.1 NPMLE Algorithm

In this section, we extend the NPMLE algorithm first introduced in [3] to estimate θk. This
extension is very natural, as the estimation of the prior distribution remains the same. Using
this estimated prior, we calculate its empirical Bayes estimator by applying Definition 1.

Before proving the main results, we first discuss how the the prior estimation via NPMLE.
This method is a specific instance of the more general class of minimum distance estimators.
These estimators are defined by a measure of distance between two distributions. There are
many possibilities of distance functions, so we will focus on a specific set of functions which
we call Generalized distance functions.

Definition 6 (generalized distance functions). A function d : P(Z+) × P(Z+) → R+ such
that d(p ∥ q) ≥ 0 with equality true if and only if p = q.

Note that this includes any metrics and divergence. Then a minimum distance estimator
with respect to d over a set of distributions G is

π̂ ∈ argmin
π∈G

d(pemp
n ∥ pπ).

In [11], they describe some specific examples of these distance functions correspond with well
known estimators, including the NPMLE estimator we focus on:

• The NPMLE estimator corresponds to the KL-divergence d(p ∥ q) = KL(p ∥ q) =

E
[
log p(x)

q(x)

]
.

• The Minimum-Hellinger estimator corresponds to the squared Hellinger distance d(p ∥
q) = H2(p, q) =

∑(√
p(x)−

√
q(x)

)2
.

• The Minimum-χ2 estimator corresponds to the χ2-divergence d(p ∥ q) = χ2(p ∥ q) =∑ (p(x)−q(x))2

q(x)
.
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It turns out that we can actually prove regret bounds on our algorithm for not only
NPMLE, but any minimum distance estimator using a generalized distance function that
satisfies Assumptions 1 and 2 in [11]:

Assumption 1. There exists a map t : P(Z+) → R and ℓ : R2 → R such that for any two
distributions p, q ∈ P(Z+),

d(p ∥ q) = t(p) +
∑
x≥0

ℓ(p(x), q(x))

where ℓ(a, b) is strictly decreasing and convex in b for a > 0 and ℓ(0, b) = 0 for b ≥ 0.

Assumption 2. There exist positive constants c1, c2 such that for p, q ∈ P(Z+),

c1H
2(p, q) ≤ d(p ∥ q) ≤ c2χ

2(p ∥ q).

The KL-divergence satisfies these assumptions, so the following theorem applies to the
NPMLE estimator as well. The main result of this section is that a minimum distance
estimator satisfies the following regret bounds:

Theorem 3. Suppose d satisfies Assumptions 1 and 2. For a fixed h and s, the following
regret bounds hold:

1. If π̂ = argminπ∈P([0,h]) d(p
emp
n ∥ pπ) and f̂ is the Bayes estimator for the prior π̂, then

for any n ≥ 3

sup
π∈P([0,h])

Regretπ,k(f̂) = Oh,k

(
1

n

(
log n

log log n

)k+1
)

2. If π̂ = argminπ d(p
emp
n ∥ pπ) and f̂ is the Bayes estimator for the prior π̂, then for any

n ≥ 2

sup
π∈SubE(s)

Regretπ,k(f̂) = Os,k

(
1

n
(log n)2k+1

)
.

3.2 General Regret Upper Bound via NPMLE

To prove Theorem 3, we will use the following more general lemma bounding the regret using
the Hellinger distance. Then we can use the Hellinger distance results about the NPMLE
prior estimate to prove Theorem 3.

Lemma 6. Let π be a distribution such that Eπ[θ
4k] ≤ M for some constant M . Then for

any distribution π̂ supported on [0, ĥ], any h > 0 with Pπ(θ ≤ h) > 1
2

and any K ≥ 1,

Regretπ,k(f̂) ≤
{
12(h2k + ĥ2k) + 48(hk + ĥk)Kk

}
(H2(pπ, pπ̂) + 4Pπ(θ > h))

+ 2(hk + ĥk)2Ppπ(X > K − k) + 2(1 + 2
√
2)

√
(M + ĥ4k)Pπ(θ > h)

where f̂ is the Bayes estimator for the prior π̂.

A proof of this lemma is provided in Appendix B. Now equipped with Lemma 6, we can
find a suitable application to prove the original result.
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3.3 Proof of Theorem 3

Proof. For any π ∈ P([0, h]), we have π̂ = argminπ∈P([0,h]) d(p
emp
n ∥ pπ). We apply Lemma 6

with
ĥ = h, M = h4, K =

⌈
2(2 + he) log n

log log n
+ k − 1

⌉
.

As shown in the proof of [11, Theorem 2(a)], we have

Ppπ (X ≥ K − k + 1) ≤ 2

n2
, Pπ(θ > h) = 0, E[H2(f ∗, f̂)] =

C1

n

(
log n

log log n

)
for some constant C1. Thus, we have

Regretπ,k(f̂)

≤

{
24h2k + 96hk

⌈
2(2 + he) log n

log log n
+ k − 1

⌉k}
E[H2(pπ, pπ̂)] + 2(2hk)2Ppπ(X > K − k)

=Oh,k

(
1

n

(
log n

log log n

)k+1
)
.

For any π ∈ SubE(s), we have π̂ = argminπ d(p
emp
n ∥ pπ). By [11, Lemma 8], π̂ is

supported on [0, ĥ] where ĥ = Xmax. By the bound on E[θ4k] in Lemma 4, we can apply
Lemma 6 with

h = 4s log n, M = 8k(4k − 1)!s4k, K =
2 log n

log
(
1 + 1

2s

) + k − 1.

By [11, (Equation 44)] and Definition 5, we have

Ppπ

(
X ≥ 2 log n

log
(
1 + 1

2s

)) ≤ 3

2n2
, Pπ(θ > h) ≤ 2

n4
.

Thus, we have

Regretπ,k(f̂) ≤ E
[{

12(h2k +X2k
max) + 48(hk +Xk

max)K
k
}
H2(pπ, pπ̂) +

2

n4

]
+ 2(hk +Xk

max)
2 3

2n2
+ (1 + 2

√
2)

√
(M + ĥ4k)

2

n4

= E
[{

12(h2k +X2k
max) + 48(hk +Xk

max)K
k
}
H2(pπ, pπ̂)

]
+Os,k

(
1

n2

)
. (3.1)

It remains to bound the first term in (3.1). Splitting into cases by comapring Xmax to 2K
and using Xmax H2 ≤ 2, we have

E
[{

h2k +X2k
max + 4(hk +Xk

max)K
k
}
H2(pπ, pπ̂)

]
≤(h2k + (2K)2k + 4(hk + (2K)k)Kk)E

[
H2(pπ, pπ̂)

]
+ 2E

[{
h2k +X2k

max + 4(hk +Xk
max)K

k
}
IXmax≥2K

]
. (3.2)
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By [11, Theorem 2(b)], we know E [H2(pπ, pπ̂)] = Os

(
logn
n

)
. Then plugging in both h and K

tells us the first term of the RHS is Os,k

(
(logn)2k+1

n

)
. By Cauchy-Schwarz, the second term

of the RHS is

2E
[{

h2k +X2k
max + 4(hk +Xk

max)K
k
}
IXmax≥2K

]
≤2

√
E
[
{h2k +X2k

max + 4(hk +Xk
max)K

k}2
]
Ppπ (Xmax ≥ 2K)

≤2

√
E
[
{h2k +X2k

max + 4(hk +Xk
max)K

k}2
]
nPpπ (X ≥ 2K)

(a)

≤2

√
E
[
{4h4k + 4X4k

max + 64(h2k +X2k
max)K

2k}2
]
n

3

2n4

(b)
=os,k

(
1

n

)
where (a) follows from [11, (Equation 44)] and (b) follows from the moment bounds on Xmax

in Lemma 4. Plugging this back into (3.2) and then (3.1), we obtain

Regretπ,k(f̂) = Os,k

(
1

n
(log n)2k+1

)
.
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Chapter 4

Upper Bound on Polynomial ERM
Regret

4.1 ERM Algorithm

In this section, we will extend the ERM algorithm discovered in [4] to estimating θk. Note
that the empirical Bayes estimator f ∗ satisfies

f ∗ = argmin
f

E
[(
f(X)− θk

)2]
= argmin

f
E
[
f(X)2 − 2θkf(X) + θ2k

]
. (4.1)

If we can have this depend on just X and not θ, then we can obtain an unbiased estimate
of this expression by using the empirical samples of X. First, θ2k does not depend on the
estimator, so removing it does not affect the minimization. Furthermore,

E
[
θkf(X)

]
=

∫ ∞∑
x=0

e−θ θ
x

x!
f(x)θkdπ(θ)

=

∫ ∞∑
x=0

e−θ θx+k

(x+ k)!
P (x+ k, k)f(x)dπ(θ)

(a)
=

∫ ∞∑
x=0

e−θ θ
x

x!
P (x, k)f(x− k)dπ(θ)

= E[P (X, k)f(X − k)]. (4.2)

where (a) follows from shifting the summation to start at k and adding in the terms from
0, . . . , k − 1 since they are all 0. Substituting (4.2) into (4.1), we obtain

f ∗ = argmin
f

E
[
f(X)2 − 2P (X, k)f(X − k)

]
. (4.3)

As with the Bayes estimator for θ, we can show that f ∗ is a monotonic nondecreasing function.
This is useful because it allows us to solve (4.3) over the class of monotonic functions and
apply isotonic regression just as in [4].

Lemma 7. f ∗(x) is an increasing function
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Proof. First, note that ∫
e−θθx+1dπ(θ)∫
e−θθxdπ(θ)

is increasing over integer x since Cauchy-Schwartz tells us that∫
e−θθx+2dπ(θ)∫
e−θθx+1dπ(θ)

≥
∫
e−θθx+1dπ(θ)∫
e−θθxdπ(θ)

.

Thus, we find

f ∗(x+ 1) ≥ f ∗(x)

⇐⇒(x+ k + 1)pπ(x+ k + 1)

pπ(x+ 1)
≥ (x+ 1)pπ(x+ k)

pπ(x)

⇐⇒
(x+ k + 1)

∫
e−θ θx+k+1

(x+k+1)!
dπ(θ)∫

e−θ θx+1

(x+1)!
dπ(θ)

≥
(x+ 1)

∫
e−θ θx+k

(x+k)!
dπ(θ)∫

e−θ θx

x!
dπ(θ)

⇐⇒
∫
e−θθx+k+1dπ(θ)∫
e−θθx+1dπ(θ)

≥
∫
e−θθx+kdπ(θ)∫
e−θθxdπ(θ)

⇐⇒
∫
e−θθx+k+1dπ(θ)∫
e−θθx+kdπ(θ)

≥
∫
e−θθx+1dπ(θ)∫
e−θθxdπ(θ)

.

Since f ∗ is increasing, using this function class in (4.3) and replacing with the empirical
expectation, our ERM-based estimator is

f̂erm,k(x) = argmin
f∈Fmonotone

Ê
[
f(X)2 − 2P (X, k)f(X − k)

]
. (4.4)

Although there is no unique solution to this minimization problem since there are f̂ is only
uniquely determined for values that appear in our empirical expectation. We choose to take
f̂ which is a step function that can only change at values where it is determined. An explicit
solution to (4.4) may be calculated via [4, Lemma 1]. We now show that our empirical
estimator is always bounded Xk

max, which will help us bound the complexity of our function
class.

Lemma 8. Let f̂erm,k be the estimator defined in (4.4). Then max f̂erm,k(x) ≤ Xk
max.

Proof. As f̂erm,k is monotonic, and f̂erm,k(x) = f̂erm(Xmax) for all x > Xmax, it is sufficient to
bound f̂erm,k(Xmax). By [4, Lemma 1], there exists some i∗ for which

f̂erm,k(Xmax) =

∑Xmax

i=i∗ P (i+ k, k)N(i+ k)∑Xmax

i=i∗ N(i)
=

∑Xmax

i=i∗+k P (i, k)N(i)∑Xmax

i=i∗ N(i)
≤ P (Xmax, k) ≤ Xk

max

since N(x) = 0 for all x > Xmax.

The main result of this section is the following theorem.
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Theorem 4. The ERM estimator for θk satisfies the following regret bounds:

1.

sup
π∈P([0,h])

Regretπ,k(f̂erm,k) ≤
Cmax{1, h2k}

n

(
log n

log log n

)2k

, k ≥ 2

2.

sup
π∈SubE(s)

Regretπ,k(f̂erm,k) ≤
Cmax{1, s2k+1}(log n)2k+1

n
.

4.2 Rademacher Symmetrization

In order to prove these bounds, we use the following lemma which is a generalization of [4,
Theorem 3] that allows us to bound the regret using Rademacher random variables.

Lemma 9. Let F be a convex function class that contains the Bayes estimator f ∗. Let
X1, . . . , Xn be a training sample drawn iid from pπ, ϵ1, . . . , ϵn an independent sequence of
iid Rademacher random variables, and f̂ the corresponding ERM solution. Then for any
function class Fpn depending on the empirical distribution pn = 1

n

∑n
i=1 δXi

that includes f̂
and f∗ we have

Regretπ,k(f̂) ≤
3

n
T1(n) +

2

n
T2(n)

where

T1(n) = E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

(ϵi −
1

6
)(f ∗(Xi)− f(Xi))

2

]
(4.5)

and

T2(n) = E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

{
2ϵi(f

∗(Xi)(f
∗(Xi)− f(Xi))

− P (Xi, k)(f
∗(Xi − k)− f(Xi − k)))

− 1

4
(f ∗(Xi)− f(Xi))

2

}]
(4.6)

where Fp′n is defined with an independent copy of X1, . . . , Xn.

Proof. Define

R(f) = E[f(X)2 − 2P (X, k)f(X − k)], R̂(f) = Ê[f(X)2 − 2P (X, k)f(X − k)]. (4.7)

Note that f̂ is defined as the function that minimizes R̂(f). Since F is convex, (1−ϵ)f̂+ϵh ∈
F for all h ∈ F . Thus, R̂(f̂) ≤ R̂((1− ϵ)f̂ + ϵh). This means the gradient of the RHS with
respect to ϵ is nonnegative when evaluated at 0. Plugging into (4.7), we obtain

∂

∂ϵ
R̂((1− ϵ)f̂ + ϵh)

=2Ê[(h(X)− f̂(X))((1− ϵ)f̂(X) + ϵh(X))− P (X, k)(h(X − k)− f̂(X − k))]
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and plugging in ϵ = 0, we have

2Ê[(h(X)− f̂(X))f̂(X)− P (X, k)(h(X − k)− f̂(X − k))] ≥ 0.

This can be rearranged to obtain

R̂(h)− R̂(f̂)− Ê[(h(X)− f̂(X))2] ≥ 0. (4.8)

Now since Regretπ,k(f̂) = R(f̂)−R(f ∗), using (4.7) and (4.8) gives

Regretπ,k(f̂)

≤E[R(f̂)−R(f ∗) + R̂(f ∗)− R̂(f̂)− Ê[(f ∗(X)− f̂(X))2]]

=E[R(f̂)−R(f ∗)− E[(f ∗(X)− f̂(X))2] + (R̂(f ∗)− R̂(f̂) + Ê[(f ∗(X)− f̂(X))2])

+ E[(f ∗(X)− f̂(X))2]− 2Ê[(f ∗(X)− f̂(X))2]]

=E
[
Ê[2f ∗(X)(f ∗(X)− f̂(X))− 2P (X, k)(f ∗(X − k)− f̂(X − k))])

− E[2f ∗(X)(f ∗(X)− f̂(X))− 2P (X, k)(f ∗(X − k)− f̂(X − k))]

− 1

4

(
E[(f ∗(X)− f̂(X))2] + Ê[(f ∗(X)− f̂(X))2]

)]
(4.9)

+

[
5

4
E[(f ∗(X)− f̂(X))2]− 7

4
Ê[(f ∗(X)− f̂(X))2]

]
. (4.10)

Using the symmetrization result in [4, Lemma 3], we can upper bound (4.9) with

2

n
E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

{
2ϵi(f

∗(Xi)(f
∗(Xi)− f(Xi))− P (Xi, k)(f

∗(Xi − k)− f(Xi − k)))

−1

4
(f ∗(Xi)− f(Xi))

2

}]
(4.11)

by selecting

Tf(x) = − (2f ∗(x)(f ∗(x)− f(x))− 2P (x, k)(f ∗(x− k)− f(x− k)))

and Uf(x) = 1
4
(f ∗(x)− f(x))2, and (4.10) with

2

n
E

[
sup

f∈Fpn∪Fp′n

n∑
i=1

3

2
ϵi(f

∗(Xi)− f(Xi))
2 − 1

4
(f ∗(Xi)− f(Xi))

2

]
(4.12)

by selecting Tf(x) = 3
2
(f ∗(x)− f(x))2 and Uf(x) = 1

4
(f ∗(x)− f(x))2. Combining the upper

bounds in (4.11) and (4.12) proves the lemma.
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4.3 Bounding Rademacher Complexities

Define the function class depending on the samples

F∗
∆
= {f : f is monotone, f(Xmax) ≤ max{Xmax, f

∗(Xmax)}} .

Note that by Lemma 8, it will contain both f̂erm and f ∗. Define F ′
∗ analogously for an

independent set of samples. Then we will apply Lemma 9 with Fpn = F∗ and Fp′n = F ′
∗.

Although this function class depends on f ∗ which we do not know, we can still use it for our
theoretical analysis. For the rest of the proof, we consider a slightly generalized version of
(4.5) and (4.6):

T1(b, n) = E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

(ϵi −
1

b
)(f ∗(Xi)− f(Xi))

2

]

and

T2(b, n) = E

[
sup

f∈F∗∪F ′
∗

n∑
i=1

{
2ϵi(f

∗(Xi)(f
∗(Xi)− f(Xi))

− P (Xi, k)(f
∗(Xi − k)− f(Xi − k)))

− 1

b
(f ∗(Xi)− f(Xi))

2

}]
.

Next, given some tail bounds on the distribution pπ and moment bounds on the maximum
sample, we prove bounds on the expressions T1 and T2.

Lemma 10. Let π ∈ P [0, h] where h is a constant or s log n for some constant s. Let
M := M(n, h) > max{h, k} be such that

• supπ∈P[0,h] PX∈pπ [X > M ] ≤ 1
n7 .

• For Xi
iid∼ pπ,E

[
Xℓ

max

]
≤ c(ℓ)M ℓ for ℓ ≤ 2k and constant c.

Then
T1(b, n) ≤ c0(b)

(
max{1, h2k}M +M2k

)
and

T2(b, n) ≤ c0(b)
(
max{1, h2k}M +max{1, hk}Mk+1

)
.

Note that these tail bounds are satisfied by bounded and subexponential priors, which
are the ones that we consider later. The proof of this lemma is in Appendix C. Just as
in Lemma 1, Lemma 10 provides a regret bound on a bounded prior. We again require
Lemma 5 to extend our results to a subexponential prior.
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4.4 Proof of Theorem 4

Now with these lemmas, we are able to combine them to obtain bounds on the regret of our
algorithm over bounded and subexponential priors.

Proof. For the case of constant h, we may choose M = max{c1, c2h} logn
log logn

due to [4, Lemma

10 and 12]. Then by Lemma 9 and Lemma 10, the regret is Ok

(
max{1,h2k}

n

(
logn

log logn

)2k)
for

k ≥ 2.
For subexponential π, by Lemma 8 we have E[f̂(X)4] ≤ E[X4k

max] = Os,k((log n)
4k). By

Lemma 5, it suffices to bound Regretπc1s logn,k
. By [4, Lemma 11 and 12], we may choose M =

max{c1, c2s} log n. Then by Lemma 9 and Lemma 10, the regret is Ok

(
max{1,s2k+1}(logn)2k+1

n

)
.

Remark 1. Note that in the bounded prior case, our ERM algorithm does not use the bounds
of the prior. We conjecture that if only consider our estimator over the set of monotonic
functions within the range of the prior, then we may obtain a tight bound with exponent k+1
instead of 2k. This is because the 2k exponent only appears in the bound for (C.14) due to
f(Xmax)

2 ≤ X2k
max. If we cap f , we can actually write f(Xmax)

2 ≤ h2k, and we may be able
to avoid the X2k

max term entirely.
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Chapter 5

Lower Bound on Polynomial Regret

In this section, we prove that for any algorithm, there will exist some prior for which the
regret matches the that of the NPMLE algorithm, implying that it is asymptotically optimal.
Formally, we prove the following theorem.

Theorem 5. Consider the Poisson mixture model. For any h > 0 and s > 0, the regret of
the optimal estimator satisfies the following lower bounds:

1.

inf
f̂

sup
π∈P([0,h])

Regretπ,k(f̂) = Ωh,k

(
1

n

(
log n

log log n

)k+1
)

2.
inf
f̂

sup
π∈SubE(s)

Regretπ,k(f̂) = Ωs,k

(
1

n
(log n)2k+1

)

5.1 Setup for a General Lower Bound

We first set up a generalization to [15, Proposition 7] on establishing functional (namely F )
of θ (in our case, we are interested in the case F (θ) ≜ θk. Assume (for sake of simplicity)
that F is continuously differentiable everywhere on θ ≥ 0.

To start with, fix a distribution G0. We follow the recipe of [15, (Equation 21)] and define
the operation K bringing function r to Kr given by

Kr(x) ≜ EG0 [r(θ) | X = x] =

∫
r(θ)fθ(x)G0(dθ)

f0(x)
(5.1)

where f0 =
∫
fθG0(dθ). Also fix an arbitrary bounded function r, consider the distribution

Gδ given by the small perturbation

dGδ ≜
(1 + δr)dG0

1 + δ
∫
rdG0
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We now consider what happens as we consider EGδ
[F (θ)|X = x]. To start, by (5.1), we

have KF (x) = EG0 [F (θ)|X = x] (i.e. the base distribution). Then similar to [15, (Equation
24)] we may obtain

EGδ
[F (θ)|X = x] = KF (θ)(x) + δKF r(x) + δ2

1

1 + δKr(x)
(Kr)(y) · (KF r)(x) (5.2)

where the operation KF is defined as (modified from [15, (Equation 25)]).

KF r
∆
= K(Fr)− (KF )(Kr)

Note also the following identity, again can be generalized from [15, (Equation 25)]

KF r(x) =
d

dδ
|δ=0 EGδ

[F (θ) | X = x]

With this, we are ready to establish the following ‘general recipe’ of functional estimation
F (θ).

Lemma 11. Fix a prior distribution G0, constants α, τ, τ1, τ2, γ ≥ 0 and m real-valued
functions r1, . . . , rm on Θ with the following properties,

∥rq∥∞ ≤ a ∀q
∥Krq∥L2(f0) ≤

√
γ ∀q∥∥∥∥∥

m∑
i=1

viKF ri

∥∥∥∥∥
2

L2(f0)

≥ τ∥v∥22 − τ2 ∀v ∈ {0,±1}m

∥∥∥∥∥
m∑
i=1

viKF ri

∥∥∥∥∥
2

L2(f0)

≤ τ 21m ∀v ∈ {0,±1}m.

Then the optimal regret in F (θ) estimation over the class of priors G = {G : | dG
dG0

− 1| ≤ 1
2
}

satisfies

inf
f̂
sup
π∈G

Regretπ,k(f̂) ≥ Cδ2(m(4τ − τ 21 )− τ2), δ
∆
=

1

max(
√
nγ,ma)

for some constant C > 0.

Proof. The proof follows exactly the proof of [15, Lemma 7] but instead using Tu(x)
∆
=

EGu [F (θ)|X = x] and KF in place of K1. In particular, the lattices for Assouad’s lemma
is also defined exactly as in [15, (Equation 29)]: define µi ≜

∫
ridG0, δ > 0 chosen with

δ ≤ 1
16ma

, and for each u ∈ {0, 1}m,

ru ≜
n∑

i=1

uiri hu ≜ Kru µu ≜
m∑
i=1

uiµi dGu ≜
1 + δru
1 + δµu

dG0 fu ≜
(1 + δhu)f0
1 + δµu

where fu is the mixture density induced by the prior Gu.
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Let G̃ = {Gu : u ∈ {0, 1}m}. The construction guarantees G̃ ⊆ G, and 1
2
≤ dGu

dG0
≤ 3

2
.

Then exactly like [15]:

inf
T̂

sup
π∈G

Regretπ,k(T̂ ) ≥ inf
T̂

sup
π∈G̃

Regretπ,k(T̂ )

= inf
T̂

sup
u∈{0,1}m

EGu ||T̂ − Tu||2L2(fu)

(a)

≥ inf
T̂

sup
u∈{0,1}m

1

2
EGu ||T̂ − Tu||2L2(f0)

(b)

≥ inf
û∈{0,1}m

sup
u∈{0,1}m

1

8
EGu||Tû − Tu||2L2(f0)

where (a) uses fu ≥ 1
2
f0 and (b) is due to the following triangle inequality argument: if u1, u2

are such that

inf
û∈{0,1}m

sup
u∈{0,1}m

EGu||Tû − Tu||2L2(f0)
= EGu2

||Tu1 − Tu2||2L2(f0)

then for an arbitrary estimator T̂ :

sup
u∈{0,1}m

EGu||T̂ − Tu||2L2(f0)
≥ 1

4
max{EGu1

||Tû − Tu1||2L2(f0)
,EGu2

||Tû − Tu2||2L2(f0)
}

Now we consider the following property of Tu, due to (5.2) and that Kr = hu

Tu = KF + δKF r + δ2
hu

1 + δhu

·KF r

and by our assumptions:

||δ2 hu

1 + δhu

·KF r||2 ≤ 2δ2ma||KF ru||2 ≤ 2δ2m3/2aτ1 ≤
1

8
δa
√
mτ1

Again by triangle inequality:

||Tu − Tv||2 ≥ δ||KF (ru − rv)||2 −
δ
√
mτ1
4

Thus by using (a− b)2 ≥ 1
2
a2 − b2 this translates into

||Tu − Tv||22 ≥
1

2
δ2||KF (ru − rv)||22 −

δ2mτ 21
16

≥ 1

2
δ2(τdH(u, v)− τ2)−

1

16
δ2mτ 21

Finally, we quote directly from the proof of [15, Lemma 7] to get that for some constant C1,

χ2(fu||fv) ≤ C1δ
2||hu − hv||22γ ≤ C1δ

where we used the assumption ||hu − hv||2 ≤ γ. Note that for dH(u, v) = 1, ||hu − hv||2 ≤ γ
by our assumption. Finally, for some constant C2, if nδ2γ ≤ 1 we have:

χ2(f⊗n
u ||f⊗n

v ) ≤ C2,∀u, v : dH(u, v) = 1
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Thus by Assouad’s lemma we have

inf
û∈{0,1}m

sup
u∈{0,1}m

EGu [dH(û, u)] ≥ C3m

for some constant C3.
To summarize, by choosing δ with δ2 = 1

max(nγ,m2a2)
this gives us

inf
û∈{0,1}m

sup
u∈{0,1}m

EGu [||Tu − Tv||2] ≥
1

2
δ2(m(C3τ − 1

8
τ 21 )− τ2)

5.2 Results on the Poisson Model

Next, we consider how to incorporate this into the Poisson model. In general the approach
is still the same as that of [15]: we consider G0 as the Gamma prior Gamma(α, β). Define,
now, Kk(r) = KF (r) when F (x) = xk. Here we consider the following generalization of [15,
Proposition 10]:

Lemma 12. Consider the Gamma prior with parameter (α, β) PMF G0(x) =
βα

Γ(α)
xα−1e−βx.

Then for a function r such that r(j) is bounded for j < k, Kk(r) satisfies the following
property:

Kkr =
k∑

j=1

(−1)j+1

(1 + β)j

(
k

j

)
K(xkr(j))

This lemma allows us to relate the operator Kk to K. The proof is given in Appendix D.
Using this result, we can construct a suitable set of functions that gives the desired result
when used in Lemma 11. The analysis will be continued in Appendix D, but we state the
results below, which are generalizations [15, Lemma 11, Lemma 12].

Lemma 13. Fix δ > 0. Let G0 = Gamma(α, β). Then there exist absolute positive constants
C,m0 such that for all m ≥ m0, β ≥ 2, α ≥ (2k + 2)m, there exist functions r1, . . . , rm such
that

∥Kkrj∥2L2(f0)
= 1 ∀j = 1, · · · ,m, (5.3)

(Krj, Kri)L2(f0) = (Kkrj, Kkri)L2(f0) = 0 ∀i ̸= j, (5.4)

∥Krj∥2L2(f0)
≤ Cβk

αkmk
∀j = 1, · · · ,m, (5.5)

∥rj∥∞ ≤
√

βk

αk
eC(m log β+α) ∀j = 1, · · · ,m. (5.6)

Lemma 14. Let G0 = Gamma(α, β) where α = 1 and β > 0 is fixed, there exists some
constant C(β) > 0 such that for all m ≥ 1 there exist functions r1, . . . , rm such that (5.3),
(5.4), and for all j = 1, · · · ,m,

∥Krj∥2L2(f0)
≤ C

m2k
, (5.7)

∥rj∥∞ ≤ m1−keCm. (5.8)
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5.3 Proof of Theorem 5

Now using the functions constructed in Lemma 13 and Lemma 14 in Lemma 11, we can
finally prove a lower bound.

Proof. For the set of bounded priors P([0, h]), we apply Lemma 11 by using the functions
generated by Lemma 13 with

m = c1
log n

log log n
, α = c1 log n, β = c2α.

where c1, c2 > 0 to be specified later based on h. Note that (5.3) and (5.4) ensure that
τ = τ1 = 1 and τ2 = 0. Furthermore, (5.5) gives γ =

Cck2
mk for some absolute constant C as

defied in (5.5). (5.6) gives

a = c
k/2
2 eC(α+m log β) = c

k/2
2 e(2Cc1+o(1)) logn = Oh,k(n

2Cc1+o(1)).

If we pick c1 = 1
8C

, then ma = Oh,k(n
1/4+o(1)) while √

nγ = Oh,k(n
1/2−o(1)) so δ = 1√

nγ
.

Applying Lemma 11, we have

inf
f̂
sup
π∈G

Regretπ,k(f̂) ≥
3C

nγ
m =

3ck+1
1

ck2n

(
log n

log log n

)k+1

(5.9)

where G =
{
G :

∣∣∣ dGdG0
− 1
∣∣∣ ≤ 1

2

}
. Now we relate the regret over G to the regret over P([0, h])

using the following lemma.

Lemma 15. Given h > 0, let G be a collection of priors on R≥0 such that supπ∈G P(θ >
h) ≤ ϵ ≤ 1

2
for some ϵ and supπ∈G Eπ[θ

4k] ≤ M . Then

inf
f̂

sup
π∈P([0,h])

Regretπ,k(f̂) ≥ inf
f̂
sup
π∈G

Regretπ,k(f̂)− 6
√
(M + h4k)nϵ. (5.10)

Proof. Let E be the event that θi ≤ h for all θ. For any estimator f̂ taking values in [0, hk]
and any prior π ∈ G ′,

Eπ[(f̂(X)− θk)2] = Eπ[(f̂(X)− θ)21E] + Eπ[(f̂(X)− θ)21EC ]

≤ Eπ[(f̂(X)− θk)2|E] +

√
Eπ[(f̂(X)− θ)4]Pπ(EC)

≤ Eπ[(f̂(X)− θk)2|E] +
√

8(M + h4k)nϵ (5.11)

Since all distributions in P([0, h]) have support in [0, h], the optimal estimator will also be
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in the support. Then we get the following inequalities:

inf
f̂

sup
π∈P([0,h])

Regretπ,k(f̂) = inf
f̂∈[0,h]

sup
π∈P([0,h])

Eπ[(f̂(X)− θk)2]−mmsek(π)

≥ inf
f̂∈[0,h]

sup
π∈G

Eπh
[(f̂(X)− θk)2]−mmsek(πh)

≥ inf
f̂∈[0,h]

sup
π∈G

Eπ[(f̂(X)− θk)2|E]−mmsek(πh)

(a)

≥ inf
f̂∈[0,h]

sup
π∈G

Eπ[(f̂(X)− θk)2]−
√

8(M + h4k)nϵ− 1

1− ϵ
mmsek(π)

≥ inf
f̂
sup
π∈G

Regretπ,k(f̂)−
√

8(M + h4k)nϵ− ϵ

1− ϵ
mmsek(π)

(b)

≥ inf
f̂
sup
π∈G

Regretπ,k(f̂)−
√

8(M + h4k)nϵ− 2ϵ
√
M

where (a) follows from (5.11) and Lemma 3 and (b) follows from ϵ ≤ 1
2

and mmsek(π) ≤
Eπ[θ

2k] ≤
√
M. We can combine the last two terms to obtain (5.10).

By the proof of [15, Theorem 2], we can choose c2 such that P(G ≥ h) ≤ 2n−4 for G ∈ G.
Furthermore, it is well known the moments of the Gamma distribution are

EG0 [θ
4k] =

Γ(α + 4k)

β4kΓ(α)
≍ c−4k

2 = Oh,k(1)

so supπ∈G Eπ[θ
4k] = Oh,k(1). Now using (5.9) and Lemma 15 with ϵ = n−4 and constant M ,

we have

inf
f̂

sup
π∈P([0,h])

Regretπ,k(f̂) ≥
3ck+1

1

ck2n

(
log n

log log n

)k+1

−Oh,k(n
−3/2) = Ωh,k

(
1

n

(
log n

log log n

)k+1
)
.

Now we move onto the subexponential case. If we choose α = 1 and β = s, G0 = Expo(s)
so PG0(θ ≥ t) ≤ e−t/s. Thus, for all G ∈ G =

{
G :

∣∣∣ dGdG0
− 1
∣∣∣ ≤ 1

2

}
, PG(θ ≥ t) ≤ 2e−t/s so

G ⊆ SubE(s). Now we apply Lemma 11 by using the functions generated by Lemma 14 with
m = c log n. Again, (5.3) and (5.4) ensure that τ = τ1 = 1 and τ2 = 0. Furthermore, (5.7)
gives γ = C

m2k and (5.8) gives

a = m1−keC(α+m log β) = (c log n)1−ke(Cc log s logn)+C = Os,k(n
Cc log s+o(1)).

If we pick c = 1
4C log s

, then ma = Os,k(n
1/4+o(1)) while √

nγ = Os,k(n
1/2−o(1)) so δ = 1√

nγ
.

Applying Lemma 11, and using G ⊆ SubE(s), we have

inf
f̂

sup
π∈SubE(s)

Regretπ,k(f̂) ≥ inf
f̂
sup
π∈G

Regretπ,k(f̂) ≥
3C

nγ
m = Ωs,k

(
1

n
(log n)2k+1

)
.
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Chapter 6

Simulations

In addition to the theoretical regret bounds we have proven in the previous sections, we also
simulated them on some sampled data sets. In particular, we calculate the regret over the
following set of priors:

• Exponential Distribution with mean 0.4 and 0.7

• Uniform distribution over [0, 2] and [0, 3].

The true Bayes estimator for each is calculated as follows:

• For an exponential distribution with mean λ, the Bayes estimator is

f ∗(x) =
P (x+ k, k)λk

(1 + λ)k
.

• For a uniform distribution with range [0,M ], the Bayes estimator is

f ∗(x) =
(x+ k)!− Γ(x+ k + 1,M)

x!− Γ(x+ 1,M)

where Γ is the incomplete Gamma function.

Since these values can be calculated explicitly, we are able to calculate the regret. We then
examine how each regret evolves with both n and k. To see the relationship with n, we fix
k = 2 and simulate n = 100, 200, . . . , 1000. To see the relationship with k, we fix n = 100
and simulate k = 2, 3, 4, 5. To obtain less noisy regret estimates, we run 10000 trials for each
setup and take the mean regret over all trials. The graph of regrets is shown in Fig. 6.1.
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Figure 6.1: Regret of the three algorithms with respect to k and n across the four different
prior distributions.

In the graphs with respect to n, we see that the decrease in the regret curve resembles
a polylog(n)

n
decay. Furthermore, it appears that NPMLE performs the best in this scenario,

then ERM, and then Robbins. This is slightly surprising since the upper bound on the ERM
regret is asymptotically worse than the other two algorithms. However, it is possible that a
better bound can be achieved. We have also only ran this simulation with a relatively small
distribution, and it is possible that the constant factors overpower the power of the log term.

In the graphs with respect to k, the log regret curve looks linear, which agrees with our
minimax regrets. It appears that in this case, the order of the algorithms’ performances
are reversed, with Robbins performing the best and NPMLE performing the worst. Again
this is possible due to constant factors of the form ck, but it is surprising that the ordering
completely reverses for larger k.
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Chapter 7

Conclusion and Future Directions

In this thesis, we have extended the classic problem of estimating θ on a Poisson mixture
model to estimating θk. We have extended the f-modeling, g-modeling, and ERM based
algorithms to estimate θk and proved regret bounds for each of these algorithms. In addition,
we proved a lower bound for this estimation problem to show that the algorithms for f and g-
modeling are both tight given the bounded and subexponential priors, and that ERM is tight
given a subexponential prior. Lastly, we empirically evaluated the regrets of each of these
algorithms by simulating them on various prior distributions and examining the relationship
with n and k. In the remainder of this section, we will discuss different directions in which
this research problem can be further studied.

7.1 Clipping the ERM Estimator

As mentioned in Remark 1, the ERM algorithm can be modified to take into account the
bounds on the prior, and search only for monotone functions within these bounds, that is,
we instead solve for

f̂erm,k,clipped(x) = argmin
f∈Fmonotone,f≤h

Ê
[
f(X)2 − 2P (X, k)f(X − k)

]
.

This can be useful since in practice, such a bound would usually be known. The first question
is whether or not the solution satisfies

f̂erm,k,clipped(x) = min(f̂erm,k(x), h),

which may follow a similar proof to [4, Lemma 1]. If satisfied, we can easily modify the
existing algorithm to solve the isotonic regression and then clip the function at h. In this
case, the speed of the algorithm is not hindered. Otherwise, we will have to investigate other
algorithms to solve this problem. We may also calculate new regret bounds by modifying
the proof of Lemma 10 which may give rise to a tight bound on ERM in the bounded setting
as well.
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7.2 Smooth Functions

We have examined only monomials, but polynomials can easily be estimated as well by
doing each term separately. Given that all coefficients are bounded, note that the regret
from the leading term asymptotically overpowers all other regrets. This means the regret of
a polynomial is asymptotically the same as the regret of the leading term. This gives rise to
an interesting extension.

A useful property of polynomials is that they can be used to approximate any smooth
function on a closed interval arbitrarily closely by the Stone-Weierstrass Theorem. Specif-
ically, for any smooth function f on a range [0, h] and error ϵ, there is some degree n
polynomial for which ∥Pn(x)− f(x)∥∞ ≤ ϵ. Thus, we may be able to further generalize our
analysis to apply to any smooth functions on an interval.

A natural approach is to approximate the function using a polynomial and then estimate
each term individually. One issue to consider carefully would be that the coefficients may
grow fast as we become more and more precise, and the scale of the coefficients will greatly
affect the overall regret.

7.3 Heavy-tailed Priors

Another interesting extension is to examine heavier tailed distributions, such as ones with
bounded p-th moment (E[|X|p] < ∞). In this thesis, we have only examined bounded and
subexponential distributions, where encountering large values of θ is relatively unlikely. This
makes the process of estimating functions of θ relatively more easy.

As discussed in Section 1.3.2, g-modeling has proven to be optimal in this setting whereas
f-modeling has been proven not be [12]. The performance of the ERM algorithm on such
priors is not yet known. It would be interesting to explore the following questions:

• What is the performance of the orignal ERM algorithm?

• What is the minimax lower bound?

• Can a generalized version of NPMLE or ERM can achieve optimality?

7.4 Other Mixture Models

In this thesis, we have focused on mixture models with a Poisson channel. However, real
world examples are not limited to these models. For example, other common distributions
may be Gaussian, exponential, or negative binomial.

There have been extensive research on the normal location model. Both the f [16] and
g-modeling[17] approaches have been shown to obtain a nearly optimal fast rate of regret.
However, the analogous ERM estimator has only been proven to achieve a slow rate for regret
in [18], and it is still unknown whether a faster rate can be achieved. It may be possible to
extend the framework for these upper bounds to θk. Furthermore, the method [15] used to
prove a minimax lower bound for Gaussian mixture models is very similar to the Poisson
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mixture model. It is likely that the way in which we extended the lower bound in Theorem 5
can also be applied to the Gaussian.

In addition, the ERM objective has also been extended to other distributions such as
geometric, negative binomial, and exponential as done in [4], but regret bounds for these are
still unknown. As these distributions are commonly used in the real world as well, proving
bounds in these settings will also be useful.
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Appendix A

Auxiliary Proofs for Modified Robbins

Proof of Lemma 2. For the first case, define f̄(x) = hxe−h

x!
≥ pπ(x) just as in [15, Lemma 17].

Then ∑
x>x0+k

f̄(x)2P (x+ k, k) ≤
∑

x>x0+k

2kf̄(x)2P (x, k)

(a)

≤ (2h)k
∑

x>x0+k

f̄(x− k)f̄(x)

(b)

≤ (2h)kf̄(x0)
∑

x>x0+k

f̄(x)

(c)

≤ 2(2h)kf̄(x0)
2

where (a) is by the identity xf̄(x) = hf̄(x−1), (b) is by the monotonicity of f̄ on the domain
[2h,∞), and (c) is by [15, (Equation 133)]. Our choice of x0 satisfies f̄(x0) ≤ 1

n
, so we obtain

(2.6).
By the proof of Lemma 17 in [15], we know f̃(x) ≜ 2(1+ 1

s
)−x ≥ f(x), and then the properties

of the geometric distribution give (2.7).

Proof of Lemma 4. For the first bound, note that

Eπ[θ
4k] = 4k

∫ ∞

0

x4k−1Pπ(θ > x)dx ≤ 8k

∫ ∞

0

x4k−1e−x/sdx = 8k(4k − 1)!s4k.

For the second bound, using [11, (Equation 44)], we know Ppπ(X ≥ K) ≤ 3
2
e−K log(1+ 1

2s
).
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Thus for any L,

E[Xℓ
max] = ℓ

∫ ∞

0

xℓ−1P(Xmax > x)dx

≤ 4Lℓ + n

∫ ∞

L

xℓ−1P(X > x)dx

≤ 4Lℓ +
3n

2

∫ ∞

L

xℓ−1e−x log(1+ 1
2s

)dx

(a)

≤ 4Lℓ +
3n

2(log(1 + 1
2s
))ℓ

∫ ∞

L log(1+ 1
2s

)

zℓ−1e−zdz

(b)

≤ 4Lℓ +
3n

2(log(1 + 1
2s
))ℓ

∫ ∞

L log(1+ 1
2s

)

c(k)e−z/2dz

≤ 4Lℓ +
3n

(log(1 + 1
2s
))ℓ

c(k)e−L log(1+ 1
2s

)/2

where (a) follows from a change of variables with z = x log(1 + 1
2s
) and (b) follows since

there exists some c(k) such that c(k)ez/2 ≥ zℓ−1 for all positive z and ℓ ≤ 4k. Plugging in
L = 2 logn

log(1+ 1
2s

)
gives the desired bound in (2.8).
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Appendix B

Auxiliary Proofs for NPMLE

Proof of Lemma 6. First note that mmsek(π)≤ E[θ2k] ≤
√

E[θ4k] ≤
√
M .

Let θ ∼ π and X|θ ∼ fθ. Let f ∗ and f ∗
h be the Bayes estimators for the priors π and πh

respectively. For π̂ independent of X,

Eπ[(f̂(X)− θk)2] = Eπ[(f̂(X)− θk)21θ≤h] + Eπ[(f̂(X)− θk)21θ>h]

≤ Eπ[(f̂(X)− θk)2|θ ≤ h] +

√
Eπ[(f̂(X)− θk)4]Pπ(θ > h)

≤ Eπh
[(f̂(X)− θk)2] +

√
8(ĥ4k + Eπ[θ4k])Pπ(θ > h)

≤ Eπh
[(f̂(X)− θk)2] +

√
8(ĥ4k +M)Pπ(θ > h)

where the second line follows from Cauchy Schwarz and the third line follows from (a+b)4 ≤
8(a4 + b4) for any real a, b. Then

Regretπ,k(f̂)

=Eπ[(f̂(X)− θk)2]−mmsek(π)

≤Eπh
[(f̂(X)− θk)2]−mmsek(πh) +mmsek(πh)−mmsek(π) +

√
8(ĥ4k +M)Pπ(θ > h)

≤Eπh
[(f̂(X)− f ∗

h(X))2] +

(
1

Pπ(θ ≤ h)
− 1

)
mmsek(π) +

√
8(ĥ4k +M)Pπ(θ > h)

(a)

≤Eπh
[(f̂(X)− f ∗

h(X))2] +
Pπ(θ > h)

Pπ(θ ≤ h)

√
M +

√
8(ĥ4k +M)Pπ(θ > h)

≤Eπh
[(f̂(X)− f ∗

h(X))2] +
(1 + 2

√
2)

√
(ĥ4k +M)Pπ(θ > h)

Pπ(θ ≤ h)
(B.1)
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where (a) follows from mmsek(π) ≤
√
M . The second term is already in the right form, so

we bound the first term. For any K ≥ 1,

Eπh
[(f̂(X)− f ∗

h(X))21X≤K−k]

=
K−k∑
x=0

P (x+ k, k)2pπh
(x)

(
pπ̂(x+ k)

pπ̂(x)
− pπh

(x+ k)

pπh
(x)

)2

≤
K−k∑
x=0

P (x+ k, k)2pπh
(x)

(
3

(
pπ̂(x+ k)

pπ̂(x)
− 2pπ̂(x+ k)

pπ̂(x) + pπh
(x)

)2

+ 3

(
2pπh

(x+ k)

pπ̂(x) + pπh
(x)

− pπh
(x+ k)

pπh
(x)

)2

+ 3

(
2pπ̂(x+ k)− 2pπh

(x+ k)

pπ̂(x) + pπh
(x)

)2
)

=3
K−k∑
x=0

((
P (x+ k, k)pπ̂(x+ k)

pπ̂(x)

)2
pπh

(x)(pπh
(x)− pπ̂(x))

2

(pπ̂(x) + pπh
(x))2

+

(
P (x+ k, k)pπh

(x+ k)

pπh
(x)

)2
pπh

(x)(pπh
(x)− pπ̂(x))

2

(pπ̂(x) + pπh
(x))2

+ 4P (x+ k, k)2
pπh

(x)(pπ̂(x+ k)− pπh
(x+ k))2

(pπ̂(x) + pπh
(x))2

)

where we have used (x + y + z)2 ≤ 3(x2 + y2 + z2). Since pπh
(x) < pπ̂(x) + pπh

(x), we can
further write

Eπh
[(f̂(X)− f ∗

h(X))21X≤K−k]

≤3
K−k∑
x=0

((
P (x+ k, k)pπ̂(x+ k)

pπ̂(x)

)2
(pπh

(x)− pπ̂(x))
2

pπ̂(x) + pπh
(x)

+

(
P (x+ k, k)pπh

(x+ k)

pπh
(x)

)2
(pπh

(x)− pπ̂(x))
2

pπ̂(x) + pπh
(x)

+ 4P (x+ k, k)2
(pπ̂(x+ k)− pπh

(x+ k))2

pπ̂(x) + pπh
(x)

)

=3
K−k∑
x=0

(f̂(x)2 + f ∗
h(x)

2)
(pπh

(x)− pπ̂(x))
2

pπ̂(x) + pπh
(x)

+ 12
K−k∑
x=0

P (x+ k, k)2
(pπ̂(x+ k)− pπh

(x+ k))2

pπ̂(x) + pπh
(x)

≤3(h2k + ĥ2k)
K−k∑
x=0

(pπh
(x)− pπ̂(x))

2

pπ̂(x) + pπh
(x)

+ 12
K−k∑
x=0

P (x+ k, k)2
(pπ̂(x+ k)− pπh

(x+ k))2

pπ̂(x) + pπh
(x)

.

Now, note that
(
√
pπ̂(x) +

√
pπh

(x))2 ≤ 2(pπ̂(x) + pπh
(x))

so we have the bound

(pπ̂(x)− pπh
(x))2 ≤ 2(pπ̂(x) + pπh

(x))

(√
pπ̂(x)−

√
pπh

(x)

)2

.
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We also see that P (x+ k, k) ≤ Kk for x ≤ K − k, we have

Eπh
[(f̂(X)− f ∗

h(X))21X≤K−k]

≤6(h2k + ĥ2k)
K−k∑
x=0

(
√

pπ̂(x)−
√

pπh
(x))2

+ 24Kk max
x≤K−k

P (x+ k, k)pπ̂(x+ k) + P (x+ k, k)pπh
(x+ k)

pπ̂(x) + pπh
(x)

K−k∑
x=0

(√
pπ̂(x+ k)−

√
pπh

(x+ k)

)2

≤
(
6(h2k + ĥ2k) + 24Kk max

x≤K−k
(fπ̂(x) + fπh

(x))

)
H2(pπ̂, pπh

)

≤
(
6(h2k + ĥ2k) + 24Kk(hk + ĥk)

)
H2(pπ̂, pπh

). (B.2)

Note that by triangle inequality on Hellinger distance,

H2(pπ̂, pπh
) ≤ (H(pπ̂, pπ) +H(pπ, pπh

))2 ≤ 2H2(pπ̂, pπ) + 2H(pπ, pπh
)2.

But
H(pπ, pπh

)2 ≤ 2TV(pπ, pπh
) ≤ 2TV(π, πh) = 4Pπ(θ > h)

where TV is the total variation, the middle inequality is from the data processing inequality,
and the last equality TV(π, πh) = 2Pπ(θ > h) is justified in [11, Appendix B]. Combining
this with (B.2),

Eπh
[(f̂(X)− f ∗

h(X))21X≤K−k] ≤
(
12(h2k + ĥ2k) + 48Kk(hk + ĥk)

) (
H2(pπ̂, pπ) + 4Pπ(θ > h)

)
.

We can also bound

Eπh
[(f̂(X)− f ∗

h(X))21X>K−k] ≤ (hk + ĥk)2Pfπh
(X > K − k) = (hk + ĥk)2

Pfπ(X > K − k)

Pπ(θ ≤ h)
.

Using Pπ(θ ≤ h) ≥ 1
2
, summing these two inequalities, and combining with (B.1) gives the

desired bound.
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Appendix C

Auxiliary Proofs for ERM

Proof of Lemma 10. Recall N(x) is the sample frequency and define the quantity

ϵ(x) =
n∑

i=1

ϵi1Xi=x.

We first prove the bound on T2(b, n). Defining f(x) = f ∗(x) = 0 for x < 0, we have

n∑
i=1

2ϵi(f
∗(Xi)(f

∗(Xi)− f(Xi))− P (Xi, k)(f
∗(Xi − k)− f(Xi − k)))− 1

b
(f ∗(Xi)− f(Xi))

2

=
∑
x≥0

2ϵ(x)(f ∗(x)(f ∗(x)− f(x))− P (x, k)(f ∗(x− k)− f(x− k)))− N(x)

b
(f ∗(x)− f(x))2

=
∑
x≥0

2(ϵ(x)f ∗(x)− P (x+ k, k)ϵ(x+ k))(f ∗(x)− f(x))− N(x)

b
(f ∗(x)− f(x))2 (C.1)

We substitute (C.1) back into T2(b, n) and then split it into two terms

t1(n) = E
{

sup
f∈F∗∪F ′

∗

[∑
x≥0

(
2(ϵ(x)f ∗(x)− P (x+ k, k)ϵ(x+ k))(f ∗(x)− f(x))

− N(x)

b
(f ∗(x)− f(x))2

)
1N(x)>0

]}
(C.2)

t0(n) = E

{
sup

f∈F∗∪F ′
∗

[∑
x≥0

−2P (x+ k, k)ϵ(x+ k)(f ∗(x)− f(x))1N(x)=0

]}
(C.3)

We start with the t1(n) term. Since N(x) > 0 and 2ax− bx2 ≤ a2

b
, (C.2) becomes

t1(n) ≤ b · E

[∑
x≥0

(ϵ(x)f ∗(x)− P (x+ k, k)ϵ(x+ k))2

N(x)
1N(x)>0

]
. (C.4)
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Plugging in E[ϵ(x)|X1, . . . , Xn] = 0 and E[(ϵ(x))2|X1, . . . , Xn] = N(x) into (C.4), we get

t1(n) ≤b · E

[∑
x≥0

(ϵ(x)f ∗(x)− P (x+ k, k)ϵ(x+ k))2

N(x)
1N(x)>0

]

=b · E

[∑
x≥0

(
(f ∗(x))2 +

P (x+ k, k)2N(x+ k)

N(x)

)
1N(x)>0

]
. (C.5)

We now split up the summation in (C.5) to get

1

b
t1(n) ≤E

[∑
x≥0

f ∗(x)21N(x)>0

]
+
∑
x≥0

P (x+ k, k)2
npπ(x+ k)

1− pπ(x)
E
[
1N(x)>0

N(x)

]
(a)

≤h2kE[1 +Xmax] +
n(k!)2pπ(k)

1− pπ(0)
E
[
1N(0)>0

N(0)

]
+

n

1− 1√
2π

∑
x≥1

P (x+ k, k)2pπ(x+ k)E
[
1N(x)>0

N(x)

]
(b)

≤h2kE[1 +Xmax] + 2c′ max{hk, 1}+ c′′hk
∑
x≥1

P (x+ k, k)min{(npπ(x))2, 1} (C.6)

where (a) follows since the first summation is 0 for anything over Xmax and the summand is
at most h2k and (b) follows from (P1), (P3), and (2.5). For the third term of (C.6), we have

hk
∑
x≥1

P (x+ k, k)min{(npπ(x))2, 1} ≤ hkMk+1 + hk
∑
x≥M

P (x+ k, k)min{(npπ(x))2, 1}

(a)

≤ hkMk+1 + 2kn2hk
∑
x≥M

P (x, k)(pπ(x))
2

(b)

≤ hkMk+1 + 2kn2h2kPX∼pπ [X > M ]

≤ 2k
(
hkMk+1 +

h2k

n5

)
(C.7)

where (a) we used the crude inequality P (x + k, k) ≤ 2kP (x, k) for x ≥ M ≥ k, and (b) is
because

P (x, k)pπ(x) = f ∗(x− k)pπ(x− k) ≤ hk.

The h2k

n5 term disappears asymptotically, so substituting (C.7) back into (C.6), we obtain

1

b
t1(n) ≤ h2kM + 2max{hk, 1}+ 2khkMk+1. (C.8)

Now we bound t0(n). We know |ϵ(x+ k)| ≤ N(x+ k) = 0 for x ≥ Xmax − k + 1. Thus

t0(n) ≤E

[∑
x≥0

2P (x+ k, k)N(x+ k) sup
f∈F∗∪F ′

∗

|f ∗(x)− f(x)|1N(x)=0

]

≤E

[
Xmax−k∑

x=0

2P (x+ k, k)(f ∗(x) +Xk
max +X ′k

max)N(x+ k)1N(x)=0

]
(C.9)
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Let A = {Xmax ≤ M,X ′
max ≤ M}. Then P[AC ] ≤ 2

n6 by union bounding. Thus for some
absolute constant c > 0:

E

[
Xmax−k∑

x=0

2P (x+ k, k)(f ∗(x) +Xk
max +X ′k

max)N(x+ k)1N(x)=01AC

]

≤E

[
Xk

max(h
k +Xk

max +X ′k
max)

Xmax−k∑
x=0

N(x+ k)1N(x)=01AC

]
(a)

≤nE
[
Xk

max(h
k +Xk

max +X ′k
max)1AC

]
(b)

≤n
√

E [X2k
max(h

k +Xk
max +X ′k

max)
2]
√
P[AC ] ≤ cM2k

n2
(C.10)

where (a) follows from
∑Xmax−k

x=0 N(x+ k) ≤
∑∞

x=0N(x) = n, and (b) follows from Cauchy-
Schwarz.

For each x ≤ M , define qπ,M(x) = pπ(x)
PX∼pπ [X≤M ]

. Note that P[N(x) = 0|A] = (1−qπ,M(x))n

and conditioned on A and N(x) = 0, the random variable N(x+ k) ∼ Binom
(
n,

qπ,M (x+k)

1−qπ,M (x)

)
.

Then

E

[
Xmax−k∑

x=0

2P (x+ k, k)(f ∗(x) +Xk
max +X ′k

max)N(x+ k)1N(x)=01A

]

≤E

[
Xmax−k∑

x=0

2P (x+ k, k)(f ∗(x) +Xk
max +X ′k

max)N(x+ k)1N(x)=0

∣∣∣∣A
]

≤
M−k∑
x=0

2P (x+ k, k)(hk + 2Mk)E
[
N(x+ k)1N(x)=0|A

]
=

M−k∑
x=0

2P (x+ k, k)(hk + 2Mk)E [N(x+ k)|N(x) = 0, A]P[N(x) = 0|A]

≤
M−k∑
x=0

2P (x+ k, k)(hk + 2Mk)
nqπ,M(x+ k)

1− qπ,M(x)
(1− qπ,M(x))n

(a)
=

M−k∑
x=0

2(hk + 2Mk)f ∗(x)nqπ,M(x)(1− qπ,M(x))n−1

≤2Mhk(hk + 2Mk) (C.11)

where (a) is because f ∗(x) ≤ h for all x and nw(1−w)n−1 ≤ (1− 1
n
)n−1 < 1 for all w ∈ [0, 1].

Summing (C.10) and (C.11) and continuing (C.9), we have

t0(n) ≤
cM2k

n2
+ 2Mhk(hk + 2Mk)

and combining with (C.8), we obtain the desired bound

T2(b, n) ≤ max{1, h2k}M+max{1, hk}M1+k+
M2k

n2
= max{1, h2k}M+max{1, hk}M1+k+oh,k(1).
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Next we bound T1(b, n). Let mb = b + 1. Given two sets of samples X1, . . . , Xn, for any
f ∈ F∗ ∪ F ′, define

v(f) = min{max{x : f(x) ≤ mbh
k}, Xmax}.

Then for each f , conditional on the samples,
n∑

i=1

(ϵi −
1

b
)(f(Xi)− f ∗(Xi))

2

=
∑

x:N(x)>0

(ϵ(x)− 1

b
N(x))(f(x)− f ∗(x))2

=

v(f)∑
x=0

+
Xmax∑

x=v(f)+1

 (ϵ(x)− 1

b
N(x))(f(x)− f ∗(x))2

≤m2
bh

2k

Xmax∑
x=0

max

{
ϵ(x)− 1

b
N(x), 0

}

+ sup
v≥0

{
sup

mbhk≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

b
N(x))(f(x)− f ∗(x))2.

}}
(C.12)

By [4, Lemma 5], the first term of (C.12) is bounded by

E

[
m2

bh
2k

Xmax∑
x=0

max

{
ϵ(x)− 1

b
N(x), 0

} ∣∣∣∣Xn
1

]
≤ Nbm

2
bh

2kE[1 +Xmax] ≤ Nbm
2
bh

2k(1 +M).

(C.13)

where Nb ≜
1− 1

b

e·D(
1+1

b
2

|| 1
2
)
.

Note that for f with values in [mbh
k, Xk

max], we have mb−1
mb

f ≤ f − f ∗ ≤ f so

(ϵ(x)− 1

b
N(x))(f(x)− f ∗(x))2 ≤ max

{
ϵ(x)− 1

b
N(x),

(
mb − 1

mb

)2

(ϵ(x)− 1

b
N(x))

}
f(x)2.

Since −N(x) ≤ ϵ(x) ≤ N(x), dividing by N(x), yields ϵ(x)
N(x)

∈ [−1, 1]. Now consider the
function

g(x) = max

{(
x− 1

b

)
,

(
mb − 1

mb

)2(
x− 1

b

)}
.

Since it is the max of two linear functions, it is convex and thus upper bounded by the line
connecting the two endpoints (−1,− b

b+1
) and (1, b−1

b
), which is 2b2−1

2b(b+1)

(
x− 1

2b2−1

)
. Thus, the

second term of (C.12) satisfies

sup
v≥0

{
sup

mbhk≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

b
N(x))(f(x)− f ∗(x))2.

}}

≤ c2(b) sup
v≥0

{
sup

mbhk≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

2b2 − 1
N(x))f(x)2.

}}
(C.14)
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This can be viewed as an Xmax+1 dimensional linear programming problem with unknowns
being the values f(0), . . . , f(Xmax). The set of solutions m2

bh
2k ≤ f(0)2 ≤ · · · ≤ f(Xmax)

2 ≤
X2k

max is convex, so the optimum value must occur at one of the corners. Thus, we can further
upper bound (C.14) by

m2
bh

2k

Xmax∑
x=0

max

{
ϵ(x)− 1

2b2 − 1
N(x), 0

}
+ (Xmax)

2k sup
v≥0

{
Xmax∑
x>v

(
ϵ(x)− 1

2b2 − 1
N(x)

)}

Again by [4, Lemma 5], the first term is at most Nbm
2
bh

2k(1+Xmax). Now by [4, Lemma 6],
we have

E

[
sup
v≥0

{
Xmax∑
x>v

(
ϵ(x)− 1

2b2 − 1
N(x)

)} ∣∣∣∣Xn
1

]
≤ sup

w:0≤w≤n
(ϵw+1+· · ·+ϵn)−

1

2b2 − 1
(n−w) ≤ c(b)

for some constant c(b). Thus

E

[
(Xmax)

2k sup
v≥0

{
Xmax∑
x>v

(
ϵ(x)− 1

2b2 − 1
N(x)

)} ∣∣∣∣Xn
1

]
≤ c(b)(1 +Xmax)

2k.

Substituting these bounds back into (C.14), we get

E

[
sup
v≥0

{
sup

mbh≤f≤Xmax

{
Xmax∑
x>v

(ϵ(x)− 1

b
N(x))(f(x)− f ∗(x))2.

}}∣∣∣∣Xn
1

]
≤c3(b)(h

2k(1 +Xmax) + (1 +Xmax)
2k)

and combining with (C.13) and (C.12), we have the desired bound

T1(b, n) ≤ c3(b)
(
h2k(1 +M) +M2k

)
.
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Appendix D

Auxiliary Proofs for the Lower Bound

Proof of Lemma 12. As per [15] we introduce the kernel K(x, y), defined as (and also satis-
fies)

K(x, y) =
G0(x)

f0(y)
e−xx

y

y!
and Kr(y) =

∫
R+

dxr(x)K(x, y)

Motivated by the paper, we first consider the following identity that holds true for all
integers N ≥ m and real c:

∂m

∂xm
xNecx = ecx

m∑
j=0

(
m

j

)
cm−jP (N, j)xN−j.

To show this, we use induction on m: base case m = 0 is clear; for induction step,

∂m+1

∂xm+1
xNecx =

∂

∂x

(
ecx

m∑
j=0

(
m

j

)
cm−jP (N, j)xN−j

)

= ecx

(
c

m∑
j=0

(
m

j

)
cm−jP (N, j)xN−j +

m∑
j=0

(
m

j

)
cm−j(N − j)P (N, j)xN−j−1

)

= ecx
m+1∑
j=0

((
m

j

)
+

(
m

j − 1

))
cm+1−jP (N, j)xN−j

= ecx
m+1∑
j=0

(
m+ 1

j

)
cm+1−jP (N, j)xN−j

note the use of (N − j)P (N, j) = P (N, j + 1) for j < N , and that
(
m
j

)
+
(

m
j−1

)
=
(

m
j+1

)
.

Now going back to our computation, we first consider the LHS, Kk(r). First, we can
easily see that

K(xkr)(y) =
f0(y + k)

f0(y)
P (y + k, k)Kr(y + k).
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Thus

Kkr =
f0(y + k)

f0(y)
P (y + k, k)(Kr(y + k)−Kr(y))

=
f0(y + k)

f0(y)
P (y + k, k)

∫
R+

dxr(x)(K(x, y + k)−K(x, y)). (D.1)

In addition, by the definition of K(x, y), we have K(x,y+k)
K(x,y)

= f0(y+k)
f0(y)

xk

P (y+k,k)
, giving the

aforementioned term as(
xk − f0(y + k)

f0(y)
P (y + k, k)

)∫
R+

dxr(x)K(x, y)

If G0 = Gamma(α, β), then f0 is Negative binomial, and satisfies (c.f. [15, (Equation 54)])

f0(y) =

(
y + α− 1

y

)(
β

1 + β

)α(
1

1 + β

)y

Thus (D.1) now becomes(
xk − P (y + α + k − 1, k)

(
1

1 + β

)k
)∫

R+

dxr(x)
βα

Γ(α)f0(y)
e−(1+β)xx

y+α−1

y!
.

=

(
xk − P (y + α + k − 1, k)

(
1

1 + β

)k
)∫

R+

dxK(x, y)r(x)

Now onwards to the RHS. We first consider the general form of K(xmr(j)). Again, applying
[15, (Equation 58)] iteratively for m times, we get for any function g we have

K(xmg)(y) =
f0(y +m)

f0(y)
(y + 1) · · · (y +m)Kg(y +m)

and for j < m, we see that (∂x)jK(0, y +m) = 0 for all y ≥ 0. We know r(j) is bounded for
j < m, and for the Gamma distribution, we also know (∂x)jK(∞, y + m) = 0, giving rise
the following (applying integration by parts as per [15] for j times)

K(r(j))(y) = (−1)j
∫
R+

dxr(x)(∂x)
jK(x, y)

We now focus on the case where the prior G0 is Gamma function. For y ≥ j, we have

(∂x)
jK(x, y) =

1

f0(y)y!
(∂x)

j(G0(x)e
−xxy) =

βα

Γ(α)f0(y)y!
(∂x)

j(e−(β+1)xxα−1+y)

=
βα

Γ(α)f0(y)y!
e−(β+1)x

j∑
i=0

(
j

i

)
(−(β + 1))j−iP (α− 1 + y, i)x(α−1+y)−i
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= K(x, y)

j∑
i=0

(
j

i

)
(−(β + 1))j−iP (α− 1 + y, i)x−i

i.e. for all m ≥ j we have

(∂x)
jK(x, y +m) = K(x, y +m)

j∑
i=0

(
j

i

)
(−(β + 1))j−iP (α− 1 + y +m, i)x−i

= K(x, y)
f0(y)

(y + 1) · · · (y +m)f0(y +m)

j∑
i=0

(
j

i

)
(−(β + 1))j−iP (α− 1 + y +m, i)xm−i

Thus to summarize:

K(xmr(j))(y) =
f0(y +m)

f0(y)
(y + 1) · · · (y +m)Kr(j)(y +m)

=
f0(y +m)

f0(y)
(y + 1) · · · (y +m)(−1)j

∫
R+

dxr(x)(∂x)
jK(x, y +m)

= (−1)j
∫
R+

dxr(x)K(x, y)

j∑
i=0

(
j

i

)
(−(β + 1))j−iP (α− 1 + y +m, i)xm−i

Note that when m = k,
∑k

j=1
(−1)j+1

(1+β)j
K(xkr(j))(y) has the following as the coefficient of

r(x)K(x, y)dx:

k∑
j=1

(−1)j+1

(1 + β)j

(
k

j

)(
(−1)j

j∑
i=0

(
j

i

)
(−(1 + β))j−iP (α− 1 + y + k, i)xk−i

)

=
k∑

i=0

(−1)i+1(1 + β)−ixk−iP (α− 1 + y + k, i)
k∑

j=max(1,i)

(−1)j
(
k

j

)(
j

i

)
(D.2)

When i = k, the inner summation is just (−1)k. When i < k, we can rearrange
(
k
j

)(
j
i

)
=(

k
i

)(
k−i
j−i

)
. Using this, k > i ≥ 1 implies max(1, i) = i so

k∑
j=i

(−1)j
(
k

j

)(
j

i

)
=

(
k

i

) k∑
j=i

(−1)j
(
k − i

j − i

)
=

(
k

i

)
(−1)i

k−i∑
j=0

(−1)j
(
k − i

j

)
= 0.

When i = 0, we instead have
k∑

j=1

(−1)j
(
k

j

)
= −1.

Substituting back into (D.2), we obtain

xk − (1 + β)−kP (α− 1 + y + k, k)
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which agrees with the form Kk(r). This implies that

Kkr =
k∑

j=1

(−1)j+1

(1 + β)j

(
k

j

)
K(xkr(j))

We now construct the functions to be used in Lemma 11. Like [15, Appendix B] we define
S

∆
= K∗K and Sk

∆
= K∗

kKk, satisfying the following as per [15, (Equation 89)]:

(Kf,Kg)L2(Z+,f0) = (Sf, g)L2(R+,Leb).

Next we define the same set of functions as [15, (Equation 100)] using the generalized La-
guerre polynomials Lν

n:

Γn(x) = e−γ1xLν
n(γ2x), z = (

√
1 + β −

√
β)2, γ2 = 2

√
β(1 +

√
β) = 2γ1, ν = α− 1

(D.3)

which satisfy

(SΓn,Γm) = bn1n=m, bn = C2(α, β)z
nΓ(n+ α)

n!
. (D.4)

We first develop some properties of these generalized Laguerre polynomials. These polyno-
mials grow exponentially [19, p. 22.14.13], specifically

|Lν
n(x)| ≤ ex/2

(
n+ ν

n

)
. (D.5)

They also follow two recurrence relations.

Lemma 16. For all i ≥ 0,

xi d
i

dxi
Lν
n(x) =

i∑
ℓ=0

(−1)ℓ
(
i

ℓ

)
P (n− ℓ, i− ℓ)P (n+ ν, ℓ)Lν

n−ℓ(x).

Proof. We proceed with induction. First, i = 0 is trivially true and i = 1 is just the
recurrence relation from [19, p. 22.8]. Now suppose the statement is true for i. Taking the
derivative on both sides and multiplying by x, we obtain

xi+1 di+1

dxi+1
Lν
n(x) + ixi d

i

dxi
Lν
n(x)

=
i∑

ℓ=0

(−1)ℓ
(
i

ℓ

)
P (n− ℓ, i− ℓ)P (n+ ν, ℓ)x

d

dx
Lν
n−ℓ(x)

=
i∑

ℓ=0

(−1)ℓ
(
i

ℓ

)
P (n− ℓ, i− ℓ)P (n+ ν, ℓ)

(
(n− ℓ)Lν

n−ℓ(x)− (n− ℓ+ ν)Lν
n−ℓ−1(x)

)
(D.6)
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Plugging in xi di

dxiL
ν
n(x) and subtracting, (D.6) becomes

xi+1 di+1

dxi+1
Lν
n(x)

=
i∑

ℓ=0

(−1)ℓ
(
i

ℓ

)
P (n− ℓ, i− ℓ)P (n+ ν, ℓ)

(
(n− ℓ− i)Lν

n−ℓ(x)− (n− ℓ+ ν)Lν
n−ℓ−1(x)

)
(a)
=

i∑
ℓ=0

(−1)ℓ
(
i

ℓ

)
P (n− ℓ, i− ℓ)P (n+ ν, ℓ)(n− ℓ− i)Lν

n−ℓ(x)

−
i+1∑
ℓ=1

(−1)ℓ−1

(
i

ℓ− 1

)
P (n− ℓ+ 1, i− ℓ+ 1)P (n+ ν, ℓ− 1)(n− ℓ+ ν + 1)Lν

n−ℓ(x)

=
i+1∑
ℓ=0

(−1)ℓP (n− ℓ, i− ℓ)P (n+ ν, ℓ)Lν
n−ℓ(x)

((
i

ℓ

)
(n− ℓ− i) +

(
i

ℓ− 1

)
(n− ℓ+ 1)

)
(b)
=

i+1∑
ℓ=0

(−1)ℓP (n− ℓ, i− ℓ)P (n+ ν, ℓ)Lν
n−ℓ(x)

(
i+ 1

ℓ

)
(n− i)

=
i+1∑
ℓ=0

(−1)ℓ
(
i+ 1

ℓ

)
P (n− ℓ, i+ 1− ℓ)P (n+ ν, ℓ)Lν

n−ℓ(x) (D.7)

where (a) comes from splitting up the summation and shifting ℓ by 1, and (b) follows from
properties of binomial coefficients. More specifically:(

i

ℓ

)
(n− ℓ− i) +

(
i

ℓ− 1

)
(n− ℓ+ 1) = (n− ℓ− i)(

(
i

ℓ

)
+

(
i

ℓ− 1

)
) +

(
i

ℓ− 1

)
(i+ 1)

= (n− ℓ− i)

(
i+ 1

ℓ

)
+

(
i

ℓ− 1

)
ℓ = (n− i)

(
i+ 1

ℓ

)
.

This proves the inductive step since (D.7) matches the desired statement with i+ 1.

The recurrence relation of xiLν
n(x) is trickier. Nevertheless, we will see later that we only

need the coefficient of Lν
n−i(x).

Lemma 17. For all i ≥ 0,

xiLν
n(x) =

i∑
p=−i

c(p, i, n, ν)Lν
n+p(x)

for some function c that satisfies c(−i, i, n, ν) = (−1)iP (n+ ν, i).

Proof. We again proceed with induction. First, i = 0 is trivially true and i = 1 follows
from the recurrence relations from [19, p. 22.7]. Now suppose the statement is true for i.
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Multiplying by x on both sides, we obtain

xi+1Lν
n(x)

=
i∑

p=−i

c(p, i, n, ν)xLν
n+p(x)

=
i∑

p=−i

c(p, i, n, ν)
(
(2n+ 2p+ ν + 1)Lν

n+p(x)− (n+ p+ 1)Lν
n+p+1(x)− (n+ p+ ν)Ln+p−1

)
=

i+1∑
p=−i−1

c(p, i+ 1, n, ν)xLν
n+p(x) (D.8)

where the last equality is because the only L terms in (D.8) are Lν
n−i−1, . . . , L

ν
n+i+1 and

we can define c(p, i + 1, n, ν) as needed. Furthermore, the only Lν
n−i−1 term happens when

p = −i, so substituting the value of c(−i, i, p, ν) gives

c(−i− 1, i+ 1, n, ν) = (−1)−iP (n+ ν, i)(−(n− i+ ν)) = (−1)−i−1P (n+ ν, i+ 1)

as desired.

For the rest of this paper, we will use γ = γ1 = γ2
2
, so Γq(x) = e−γxLν

q (2γx). Now we
prove a generalization of [15, Lemma 15]. This will allow us to construct a set of functions
that are orthogonal and have bounded magnitude.

Lemma 18. The functions Γq(x) satisfy

∥Γq(x)∥∞ ≤
(
q + α

q

)
(D.9)

(SkΓq,Γq) ≥
bq

22kβk−1(1 + β)k+1
P (q + ν, k)P (q, k)z−k (D.10)

(SkΓq1 ,Γq2) = 0 ∀|q1 − q2| ≥ 2k + 1 (D.11)

Proof. First, (D.9) follows directly from (D.3) and (D.5), so it remains to show the identities
with Sk. The functions Γ all have bounded jth derivatives for j < k, so by Lemma 12, we
have

(SkΓq1 ,Γq2) =

(
k∑

j=1

(−1)j+1

(1 + β)j

(
k

j

)
K(xkΓ(j)

q1
),

k∑
j=1

(−1)j+1

(1 + β)j

(
k

j

)
K(xkΓ(j)

q2
)

)

=

(
k∑

j=1

(−1)j+1

(1 + β)j

(
k

j

)
S(xkΓ(j)

q1
),

k∑
j=1

(−1)j+1

(1 + β)j

(
k

j

)
xkΓ(j)

q2

)
(D.12)
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To evaluate xkΓ
(j)
q , we apply the recurrence relations Lemma 16 and Lemma 17.

xkΓ(j)
q

=xk

j∑
i=0

(
j

i

)
(−γ)j−ie−γx(2γ)i(Lν

q )
(i)(2γx)

=e−γx(2γ)−k

{
xk

j∑
i=0

(
j

i

)
(−γ)j−i(2γ)i(Lν

q )
(i)

}
(2γx)

=e−γx(2γ)−k+j

{
j∑

i=0

(
j

i

)(
−1

2

)j−i

xk−ixi(Lν
q )

(i)

}
(2γx)

=e−γx(2γ)−k+j

{
j∑

i=0

(
j

i

)(
−1

2

)j−i

xk−i

i∑
ℓ=0

(−1)ℓ
(
i

ℓ

)
P (q − ℓ, i− ℓ)P (q + ν, ℓ)Lν

q−ℓ(x)

}
(2γx)

=e−γx(2γ)−k+j

{
j∑

i=0

i∑
ℓ=0

(
j

i

)(
−1

2

)j−i

(−1)ℓ
(
i

ℓ

)
P (q − ℓ, i− ℓ)P (q + ν, ℓ)

k−i∑
p=−(k−i)

c(p, k − i, q − ℓ, ν)Lν
q−ℓ+p(x)

}
(2γx). (D.13)

Note that q − ℓ+ p can only be in the range [q − k, q + k]. Furthermore, for each i, Lν
q−k(x)

is only achieved when ℓ = i and p = −(k − i), so the coefficient of it in the summation is

j∑
i=0

(
j

i

)(
−1

2

)j−i

(−1)iP (q + ν, i)(−1)k−iP (q − i+ ν, k − i)

=(−1)kP (q + ν, k)

j∑
i=0

(
j

i

)(
−1

2

)j−i

=(−1)kP (q + ν, k)2−j.

Plugging this back into (D.13), for some function c′, we can write

xkΓ(j)
q = e−γx

{
q+k∑

i=q−k

c′(i, j, k, q, ν)Lν
i (x)

}
(2γx)

=

q+k∑
i=q−k

c′(i, j, k, q, ν)Γi(x) (D.14)

where c′(q−k, j, k, q, ν) = (2γ)−k+j(−1)kP (q+ν, k)2−j = (−2γ)−kγjP (q+ν, k). Clearly when
|q1 − q2| ≥ 2k + 1, none of the Γ terms in the expansion will intersect, so the orthogonality
of Γ makes (SkΓq1 ,Γq2) = 0, satisfying (D.11). Now using (D.14), for some c′′, we have

k∑
j=1

(−1)j+1

(1 + β)j

(
k

j

)
xkΓ(j)

q =

q+k∑
i=q−k

c′′(i, k, q, ν)Γi(x) (D.15)
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where

c′′(q − k, k, q, ν) =
k∑

j=1

(−1)j+1

(1 + β)j

(
k

j

)
(−2γ)−kγjP (q + ν, k)

= −(−2γ)−kP (q + ν, k)
k∑

j=1

(
k

j

)(
− γ

1 + β

)j

= (−2γ)−kP (q + ν, k)

(
1−

(
1− γ

1 + β

)k
)

Therefore, plugging (D.15) back into (D.12) gives

(SkΓq,Γq) =

(
q+k∑

i=q−k

c′′(i, k, q, ν)SΓi(x),

q+k∑
i=q−k

c′′(i, k, q, ν)Γi(x)

)

(a)
=

q+k∑
i=q−k

c′′(i, k, q, ν)2bi

(b)

≥ (−2γ)−2kP (q + ν, k)2

(
1−

(
1− γ

1 + β

)k
)2

bq−k

(c)
= (2γ)−2kP (q + ν, k)P (q, k)z−k

(
1−

(
1− γ

1 + β

)k
)2

bq

(d)

≥ bq
22kβk−1(1 + β)k+1

P (q + µ, k)P (q, k)z−k

where (a) follows from the orthogonality of KΓk, (b) follows by consiering only the case
i = q − k, (c) uses the closed form of bq from (D.4) and the (d) follows from plugging in

γ =
√

β(1 + β) and using the fact that 1 −
(
1− γ

1+β

)k
≥ γ

1+β
(note also γ < 1 + β given

our choice of γ) when k ≥ 1. Thus, we satisfy (D.10).

With Lemma 18, we are able to prove Lemma 13 and Lemma 14.

Proof of Lemma 13. Fix m and let

rq =
Γq√

(SkΓq,Γq)
, q ∈ Q = {m,m+ 2k + 1, . . . , (2k + 2)m}.

Note that this definition guarantees (5.3) and (5.4). Since z = 1
(
√
1+β+

√
β)2

and β ≥ 2, we
have 1

6β
≤ z ≤ 1

4β
≤ 1

8
. Then

∥Krq∥2L2(f0)
=

(SΓq,Γq)

(SkΓq,Γq)
≤ 22kβk−1(1 + β)k+1zk

P (q + ν, k)P (q, k)
∈ Ok(

βk

αkmk
)
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where the last line follows since zk = Θk(β
−k), q = Θk(m), and q + ν = Ω(α). This proves

(5.5).
From the proof of [15, Lemma 11], we know

(
q+α
q

)2
b−1
q ≤ exp {C ′(α +m log β)} for some

absolute constant C ′. Using (D.9),

max
q∈Q

∥rq∥∞ ≤

√
βk

αkqkbq

(
q + α

q

)
≤
√

βk

αk
eC(α+m log β)

thus proving (5.6).

Proof of Lemma 14. We choose the same rq as in the previous proof. We know ν = α−1 = 0
and β is a constant, so

∥Krq∥2L2(f0)
=

(SΓq,Γq)

(SkΓq,Γq)
≤ 22kβk−1(1 + β)k+1zk

P (q, k)2
= Oβ,k

(
1

m2k

)
.

From the proof of [15, Lemma 12], we know bq ≍ zq, so using (D.9) with α = 1, we also have
for some constant c = c(k) and C = C(k),

∥rq∥∞ =
∥Γq∥∞√
(SkΓq,Γq)

≤ cm√
m2kbq

≤ cm1−kz−(2k+2)m = m1−keCm.

since z < 1.
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