
A Novel Statistical Procedure Towards the
Discovery of the Higgs Boson

by

Fadi Atieh

B.S. Mathematics and Computer Science and Engineering
Massachusetts Institute of Technology, 2020

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

December 9, 2021

Certified by. .
Yury Polyanskiy

Associate Professor
Thesis Supervisor

Accepted by .
Katrina LaCurts

Chair, Master of Engineering Thesis Committee

2

A Novel Statistical Procedure Towards the Discovery of the

Higgs Boson

by

Fadi Atieh

Submitted to the Department of Electrical Engineering and Computer Science
on December 9, 2021, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

For years, physicists hypothesized the existence of the Higgs Boson; a fundamental
particle in the standard model of physics playing a crucial role in the understanding of
the electroweak force. However, it took almost 50 years of technological advancements
until its discovery was empirically announced in 2012 [6]. The discovery was statistical
in nature and relied on analyzing huge amounts of data provided by the LHC (Large
Hadron Collider) at CERN. In this thesis, we propose a novel hypothesis testing
approach leading to the rejection of the null hypothesis that the Higgs Boson doesn’t
exist. We use real data recorded at the LHC, provide theoretical build, and back it
with implementation/experimentaion. Finally, we contrast our approach with the one
used in the Higgs ML Challenge [3].

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor

3

4

Acknowledgments

I have received great support throughout the entire process of building my thesis.

I would first like to thank my research supervisor professor Yury Polyanskiy. His

mentorship was crucial in bringing this thesis from its initial infant stages to full

completion. The discovery of the Higgs Boson is an extremely complicated proce-

dure, and without an expert like professor Yury, one could get easily lost. Beyond

this thesis, absorbing minute fractions of his technical ability and expertise through-

out the discussions we had significantly upped my technical competence in statistics

and mathematical analysis in general. Finally, his emphasis on independence and self-

reliance proved, and will continue to prove, instrumental to my confidence in facing

difficult challenges, professionally and personally, going forward.

I would also like to thank my mother whose moral support was invaluable to my

mental stability and motivation. Leading up to this thesis, my journey from the war-

torn Syria to MIT wouldn’t have been possible without my mother’s encouragement.

Early on in high school, having no confidence to compete on the school level, she

pushed me to participate in the Mathematics Olympiad. Unexpected was that I would

reach the national level and participate internationally later on. In retrospect, this

came as an almost-necessary requirement for an international student to get admitted

at MIT.

Finally, I’d like to thank my uncle, who proved a host, a friend, and a father when

all three were so much needed in the midst of the COVID isolation, which dominated

my experience throughout my master’s.

5

6

Contents

1 Introduction 11

2 Role of the Higgs Boson in the Standard Model of Physics 13

2.1 Post-Discovery Experimentation . 14

3 The Higgs Boson Machine Learning Challenge 15

3.1 Higgs Decay Channel . 15

3.2 Data . 16

3.2.1 Features . 17

3.2.2 Weights . 17

3.3 Statistical Procedure . 18

3.4 Critique . 20

4 Proposed Alternative Methodology 21

4.1 Data . 22

4.1.1 Features . 22

4.1.2 Weights . 22

4.2 Model Assumptions . 23

4.3 Choices for Statistical Tests . 23

4.3.1 CLT Test . 24

4.3.2 Wilcoxon Test . 25

4.3.3 GLRT Test . 25

4.4 Results . 26

7

4.4.1 Test Outcomes . 26

4.4.2 Detection Capability . 27

4.4.3 Visual Proof for the accuracy of L̂LR(𝑋) 27

4.4.4 Impact of Derived Features 29

5 Concluding Remarks 31

5.1 Summary . 31

5.2 Future Research Questions . 32

A Code Implementation 33

A.1 Utility Functions . 33

A.2 Statistical Tests . 39

A.3 Adding Derived Features . 44

A.4 Detection Capability . 48

8

List of Figures

2-1 Standard Model of Elementry Particles 14

4-1 Early (High L̂LR(𝑋)) . 28

4-2 Late (Averaged L̂LR(𝑋)) . 28

4-3 No Enhanced Features Used . 28

4-4 Early (High L̂LR(𝑋)) . 29

4-5 Late (Averaged L̂LR(𝑋)) . 29

4-6 Enhanced Features Added . 29

9

10

Chapter 1

Introduction

For a long time, the Standard Model of Physics had a missing component; the Higgs

Boson. The existence of the Higgs Boson was theoretically predicted as a crucial

puzzle piece in understanding the electroweak force and its associated force-carrying

particles. It took half a century, nonetheless, from the theoretical establishment of

the Higgs Boson until its empirical discovery was announced on the 4th of July, 2012

by the ATLAS and CMS collaborations [6].

The Higgs Boson discovery was unique and non-traditional. In particular, the pro-

cess didn’t merely rely on expertise in theoretical physics. In fact, it was, to a large

extent, a statistical procedure. This is by the nature of the experiments leading to its

discovery. The experiments were conducted at the LHC (Large Hadron Collider) at

CERN, where protons were collided at incredible speeds. The collision would generate

sub-atomic particles which would then decay to further particles and radiation. The

final products of this decay, including the products of the Higgs Boson decay, were

then recorded.

Because of the highly unstable nature of the Higgs Boson, it was never measured

directly; only its decay products. This left the statistical analysis of such products as

the only possible way to conclude its existence. In particular, the statistical method-

ology, in its essence, is nothing but a hypothesis test.

11

In this thesis, we begin with an elaboration on the significance of the Higgs Boson

as a crucial component in the Standard Model of Physics (chapter 2). We then intro-

duce the statistical procedure used in the Higgs Boson Machine Learning challenge

[3], which is a famous collaboration intended to enhance the significance level of the

Higgs Boson discovery (chapter 3). Then, we introduce a novel non-parametric statis-

tical approach, contrast it with the approach in the previous chapter, and highlight

why ours might be preferable (chapter 4). The approach is backed by theory and is

also implemented successfully using real data from the LHC in 2012. Finally, we’ll

end with a summary and a list of open research questions that remain to be answered

(chapter 5).

12

Chapter 2

Role of the Higgs Boson in the

Standard Model of Physics

The Standard Model of Physics describes matter and the forces of matter interactions

through fundamental particles. There are two types of fundamental particles: matter

particles and force particles. Matter particles constitute matter and they can either

be leptons or quarks. On the other hand, force particles carry forces between matter

particles explaining their interactions.

There are four types of fundamental forces through which matter interacts: the

electromagnetic force, the strong force, the weak force, and gravity. For the first three

of these forces, the force particles have been experimentally verified. Namely, photons

for the electromagnetic force, gluons for the strong force, and W and Z bosons for the

weak force. Gravitons have been hypothesized for gravity but haven’t been discovered

yet [8]. The standard model of elementry particles is shown in figure 2-1

Despite the discovery of the 𝑊,𝑍 bosons in 1983 [2], the mechanism through which

these bosons obtained mass was still rather mysterious. In particular, translating the

methods of Quantum Electro-Dyanamics used to explain electromagnetic interac-

tions at that time to weak-force interactions produced massless W, Z boson which

contradicted what physcists knew through experimentation. One proposed theoretical

13

Figure 2-1: Standard Model of Elementry Particles

fix came through the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism, which

predicted the existence of the Higgs Boson [7].

Even though the Higgs Mechanism was conceived in the 1960s, experimentally

verifying the existence of the Higgs Boson required huge amounts of energy, sophisti-

cated technology, and analysis tools that only came 50 years later. It was until 2012

when the discovery of the Higgs Boson was officially announced thanks to the CMS

and ATLAS experiments done at the LHC (Large Hadron Collider) [4, 5].

2.1 Post-Discovery Experimentation

Beyond the initial discovery of the Higgs Boson, post-discovery efforts were initiated

to study the various properties and decay pathways of this new particle. These efforts

are crucial in increasing confidence in the initial discovery and validating the theory

surrounding the Higgs Boson. For example, the Higgs ML challenge we describe in the

next chapter studies a different channel than the one analyzed for the initial discovery.

14

Chapter 3

The Higgs Boson Machine Learning

Challenge

The Higgs Boson Machine Learning Challenge was hosted at https://www.kaggle.

com/c/higgs-boson as a competition to “explore the potential of advanced classifica-

tion methods to improve the statistical significance of the [Higgs Boson discovery]”[3].

The challenge was a huge success in terms of participation with 1785 teams partici-

pating and 35772 solutions submitted. It also demonstrated the potential benefits of

large scale collaborations between high-energy physicists and data scientists.

In this chapter, we go over the Higgs ML challenge looking, in some detail, into

the data used, the winning models, and - most importantly - the statistical testing

methodology. We end this chapter with a critique highlighting potential flaws within

the methodology. This serves as a motivation for the alternative statistical testing

procedure we propose in the next chapter.

3.1 Higgs Decay Channel

The Higgs Boson can decay in many different ways. Every path of decay is called

a channel by physicists. Broadly speaking, the Higgs Boson can either decay into

15

https://www.kaggle.com/c/higgs-boson
https://www.kaggle.com/c/higgs-boson

further bosons or fermions. Contrary to the channels studied in the initial discovery

of the Higgs Boson and the channel we study in chapter 4, the Higgs ML challenge

studies the decay of the Higgs Boson into two tau leptons:

𝐻 → 𝜏𝜏

Recall that leptons are a subset of fermions (or matter particles). This is significant,

from a physics point of view, as validating the existence of the Higgs Boson through

this channel further confirms the theory surrounding it and increases confidence in

the knowledge of its properties.

3.2 Data

The purpose of the challenge is to integrate machine learning techniques into the

process of the Higgs Boson discovery. Data, in this case, is composed of collision

events. Every event contains information on the final decay products of a simulated

collision. Some simulated events, which are called signal events, come from Higgs

Boson decays. While others, which are called background events, come from non-

Higgs decays but produced final products that could have come from Higgs.

The simulated data used in the Higgs ML challenge comes from the ATLAS sim-

ulator. Access to such data became possible after it was released by the ATLAS

collaboration in 2013 [4].

Simulated data is used by the participants to build machine learning models. In

particular, it is split into three samples: a sample of size 250K for training, a sample

of size 100K for validation, and a sample of size 450K for testing. The validation

sample is used to construct a public leader board, while the testing sample is used

to construct a private leader board which determines the ranking of the participants.

About one third of the events in each set are signals.

16

3.2.1 Features

Each of the data sets has 𝑑 = 30 features to be inputted to the classifier. The features

are broadly divided into two categories: those prefixed with PRI_ which stands for

primitive features directly observed by the detector, and those prefixed with DER_

which stands for derived features chosen by physicists to enhance the detection capa-

bility and are computed from primitive features.

Primitive features describe the momenta of particles in 3D space as well as their

energy. Examples include the transverse momentum and the azimuth angle of various

decay particles. Derived features, on the other hand, are mostly computed using

algebraic formulae from primitive features. Examples include the invariant mass and

the vector sum of momenta for various combinations of decay particles.

3.2.2 Weights

As mentioned above, about one third of each data set are signals. Of course, this is

far from the frequency of signal decays relative to background decays occurring in

experiments which is on the order of 10−5. To account for this discrepancy, the sim-

ulated samples are weighted appropriately when training the classifiers. The weights

are computed according to the following formula:

𝑤𝑖 ∼

⎧⎪⎨⎪⎩𝑝𝑠(𝑥𝑖)/𝑞𝑠(𝑥𝑖), if 𝑦𝑖 = 1,

𝑝𝑏(𝑥𝑖)/𝑞𝑏(𝑥𝑖), if 𝑦𝑖 = 0

where 𝑥𝑖 is the feature vector, 𝑦𝑖 ∈ {0, 1} is the label (signal or background), 𝑝𝑠(·), 𝑝𝑏(·)

are the natural conditional distributions of feature vectors given signal/background,

and 𝑞𝑠(·), 𝑞𝑏(·) are the simulated conditional distributions of feature vectors given sig-

nal/background, respectively.

The sum of weights across each class (signal/background), and across each set is

17

kept fixed: ∑︁
𝑖∈𝒮

𝑤𝑖 = 𝑁𝑠,
∑︁
𝑖∈ℬ

𝑤𝑖 = 𝑁𝑏

where 𝒮,ℬ are the index sets for signal/background, and 𝑁𝑠, 𝑁𝑏 are the expected

total numbers of signal/background events observed in experiments during the time

of data taking.

3.3 Statistical Procedure

The purpose of the Higgs ML challenge is to enhance the significance of the Higgs

Boson discovery. From a hypothesis-testing point of view, the Higgs Boson is discov-

ered by rejecting the null hypothesis that it doesn’t exist. We describe the hypothesis

testing procedure on a high level in the following paragraphs.

Given a weighted training set:

𝒟 = {(𝑥1, 𝑦1, 𝑤1), . . . , (𝑥𝑛, 𝑦𝑛, 𝑤𝑛)},

a binary classifier is trained. Assume for now that 𝑥𝑖 ∈ R𝑑. For a given binary classifier

𝑔 : R𝑛 → {0, 1}, a selection region 𝒢 is defined to be:

𝒢 = {𝑥 : 𝑔(𝑥) = 1}

Choosing the learning the algorithm for the training is at the heart of the com-

petition. Skipping the training step, assume we have a binary classifier 𝑔 with an

associated selection region 𝒢, one obtains an unlabeled experimental sample 𝒯 =

(𝑥′
1, . . . , 𝑥

′
𝑚) independent of 𝒟. One then computes the following statistic:

𝑇 =
∑︁
𝑖

1𝑥′
𝑖∈𝒢

Under the null hypothesis that the Higgs Boson doesn’t exist, 𝑇 is approximated to

18

follow a Poisson distribution Poiss(𝜇𝑏) for some 𝜇𝑏. Under the alternative, however,

Higgs decay adds some abundance giving distribution Poiss(𝜇𝑏 + 𝜇𝑠) for some 𝜇𝑠.

Expressing 𝑇 ∼ Poiss(𝜇𝑏+𝜇𝑠) where 𝜇𝑠 ∈ [0,∞), the problem then reduces to testing

the null hypothesis ℋ0 : 𝜇𝑠 = 0 vs. the alternative ℋ1 : 𝜇𝑠 > 0.

In the paper, they consider the likelihood ratio:

𝜆 = inf
𝜇𝑠

𝑃 (𝑇 |ℋ0)

𝑃 (𝑇 |ℋ1)

then they use Wilks’s theorem to argue that:

𝑞 =

⎧⎪⎨⎪⎩−2ln(𝜆) if 𝑇 > 𝜇𝑏

0 otherwise

approaches a 𝜒2
1 distribution as 𝑛 → ∞. Doing some algebra, they reach the quantity:

𝑍 =

√︃
2
(︁
𝑇 ln
(︁ 𝑇
𝜇𝑏

)︁
− 𝑇 + 𝜇𝑏

)︁

Which measures the significance of the test in terms of standard deviations. The

goal, then, is to find a selection region 𝒢 maximizing 𝑍. In practice, however, given

a trained classifier 𝑔, we don’t know 𝜇𝑏 and 𝑇 . So all we can hope for is an approxi-

mation. This is what the training objective AMS𝑐 defined as:

AMS𝑐 :=

√︂
2
(︁
(𝑠+ 𝑏+ 𝑏reg)ln

(︀
1 +

𝑠

𝑏+ 𝑏𝑟𝑒𝑔

)︀
− 𝑠
)︁

aims to do, where

𝑠 :=
∑︁

𝑥𝑖:𝑥𝑖∈𝒢,𝑦𝑖=1

𝑤𝑖, 𝑏 :=
∑︁

𝑥𝑖:𝑥𝑖∈𝒢,𝑦𝑖=0

𝑤𝑖

and 𝑏reg = 10 is a regularization constant.

Each participant is evaluated based on their test set AMS𝑐 classifier performance.

19

3.4 Critique

Although the challenge turned out to be a huge success, we discovered two potential

flaws in the statistical methodology summarized as follows:

1. The test statistic used in the Higgs ML challenge is a count of the number of

events in some specified region 𝐸. Note that this test is “crude" in the sense

that it loses information on the likelihood of a given data point to have come

from Higgs decay vs. background.

2. The discriminant function 𝑔 leading to the region 𝐸 above is trained using a

0/1 loss before the threshold is selected using the AMS𝑐 objective. There is no

obvious theoretical reason for using the 0/1 loss in the training.

We treat both of these in concerns in the proposed methodology described in the next

chapter.

20

Chapter 4

Proposed Alternative Methodology

In the previous chapter, we went over the Higgs ML challenge. The challenge was

intended to enhance the significance of the Higgs Boson discovery. And it was a huge

success in terms of collaboration between high-energy physicists and machine learning

enthusiasts.

At the end of the chapter, however, we pointed out two potential flaws within the

statistical methodology used in the challenge. As an attempt to address these con-

cerns, we propose an alternative methodology. We dedicate this chapter to go over it.

On a high-level, our new methodology is different from the the one used in the Higgs

ML challenge in two crucial ways:

1. Instead of counting the number of events within a specified region 𝐸 as the test

statistic, we use the Log-Likelihood-Ratio (LLR):

LLR(𝑋) := log
(︁𝑑𝑄
𝑑𝑃

(𝑋)
)︁

directly, which expresses the likelihood of a given data point to have come from

Higgs decay vs. background.

2. To obtain an approximation of LLR(𝑋), we train a binary classifier on cross-

entropy loss instead of 0/1 loss which provably converges to LLR(𝑋).

21

4.1 Data

The data we use in our study differs from the data used in the Higgs ML challenge

in a fundamental way. In particular, it describes a different decay channel. Instead of

decaying into 𝜏 leptons, the Higgs Boson decays into a pair of 𝑍 bosons which further

decay into 4 leptons in what is called the Golden Channel:

𝐻 → 𝑍𝑍 → 4𝑙

4.1.1 Features

The data set contains a data point for every system of 4 leptons. For each lepton,

scalar features are recorded such as the kinetic energy and the momentum in 3D

space. In addition to scalar features, qualitative features are recorded such as the

lepton type. This resembles primitive features using the terminology of the previous

chapter. Three additional derived features are used, whose impact on detection capa-

bility we measure and find significant. In total, we have 𝑑 = 35 features.

The majority of the data is generated using a simulator. Simulated data is used in

training and is labeled. In addition to the labels, appropriate weights are appended to

reflect the discrepancy between the frequency of signal events within the training data

set and the natural frequency of Higgs Boson decay relative to background decay. In

addition to simulated data, we have real-world data recorded at the LHC during the

year 2012, which we use to verify our procedure and obtain a statistically significant

𝑝-value.

4.1.2 Weights

Appending weights to the training data serves multiple purposes in our study com-

pared to the Higgs ML challenge. In particular, in addition to the discrepancy between

the natural and simulated signal-to-background frequencies, there is also a discrep-

ancy between simulated and natural frequencies for background components them-

22

selves. That’s because the background process in our dataset is actually a mixture of

several sub-processes. In particular, let 𝑃 be the background distribution, then:

𝑃 =
∑︁
𝑖

𝛼𝑖𝑃𝑖

for some sub-components 𝑃𝑖 and mixing ratios 𝛼𝑖. The compuation of the weights is

detailed in the attached code.

4.2 Model Assumptions

The model is simple. Let 𝑃 be the distribution of events resulting from background

decay. Let 𝑄 be the distribution of events resulting from Higgs decay. Let 𝑋 be the

random variable describing the feature vector in 𝑑 = 35 dimensions. We can write,

𝑋 ∼ 𝜋𝑄+ (1− 𝜋)𝑃

We can then formulate the following hypothesis testing problem:

𝐻0 : 𝜋 = 0, 𝐻1 : 𝜋 ∈ (0, 1]

4.3 Choices for Statistical Tests

Suppose we have a sample of size 𝑛 = 1, then the uniformly most powerful test for

mixture distributions of 𝑃,𝑄 relies on the log-likelihood-ratio statistic:

LLR(𝑋) = log
(︁𝑑𝑄
𝑑𝑃

(𝑋)
)︁

by the Neyman-Pearson lemma. This suggests using LLR(𝑋) in our statistical tests.

The problem is that we don’t have access to LLR directly as we don’t have an explicit

expression for 𝑃,𝑄. The solution is to estimate it from the simulated data. In par-

ticular, any algorithm trained with cross-entropy loss should approximate LLR(𝑥).

23

More precisely, define the log-loss as usual

𝑙(𝑦, 𝑝) = 𝑦 · log(1
𝑝
) + (1− 𝑦) · log(1

1− 𝑝
), 𝑦 ∈ {0, 1}, 𝑝 ∈ [0, 1].

Now, given 𝑛0 = 𝜈0𝑛 samples with label 𝑦𝑖 = 0 and 𝑋𝑖 ∼ 𝑃 and 𝑛1 = 𝜈1𝑛 samples

with label 𝑦𝑖 = 1 and 𝑋𝑖 ∼ 𝑄 we have as 𝑛 = 𝑛0 + 𝑛1 → ∞:

log
(︁ 𝑓𝑛(𝑋)

1− 𝑓𝑛(𝑋)

)︁
→ log

(︁𝜈1
𝜈0

)︁
+ LLR(𝑋)

Thus, training a binary classifier on log-loss can be used to obtain an approxima-

tion ̂︂LLR(𝑋).

Given an estimate ̂︂LLR(𝑋) of LLR(𝑋), there are three statistical tests that come

to mind: the CLT test, the Wilcoxon Rank Sum Test, and the GLRT test. We dedicate

the next three sections to describe each one of them in detail.

4.3.1 CLT Test

Given ̂︂LLR(𝑥), one can estimate 𝑎 := E[̂︂LLR(𝑋)], 𝑏 := Var(̂︂LLR(𝑋)), where 𝑋 ∼ 𝑃

from simulated data. Then, given estimates 𝑎̂, 𝑏̂, we use the Central Limit Theorem

(CLT) to compute the approximate 𝑝-value:

𝑝 = 1− Φ

(︃√︂
𝑛

𝑏̂

(︁ 1
𝑛

∑︁
𝑖

̂︂LLR(𝑋𝑖)− 𝑎̂
)︁)︃

where Φ is the CDF of 𝒩 (0, 1). Of course, for this test to be meaningful, 𝑛 should be

sufficiently large of for the Central Limit Theorem to kick-in. The requirement on 𝑛

becomes less stringent if the distribution of ̂︂LLR(𝑋) under 𝑃 is well-approximated by

a Gaussian to begin with. To that end, we employ the Kolmogorov–Smirnov goodness

of fit test.

24

4.3.2 Wilcoxon Test

Given two samples, 𝑋𝑖
𝑖.𝑖.𝑑∼ 𝑃 from simulated data, and 𝑋̃𝑗

𝑖.𝑖.𝑑∼ 𝜋𝑄 + (1 − 𝜋)𝑃 from

experimental data, we compute the statistic 𝑈 defined:

𝑈 :=
∑︁
𝑖,𝑗

1̂︂LLR(𝑋𝑖)> ̂︂LLR(𝑋𝑗)
.

Under the null, 𝑋𝑖, 𝑋̃𝑗
𝑖.𝑖.𝑑∼ 𝑃 . Thus, each of the indicators in the previous sum follow

a Bern(1/2) and the distribution approaches a Gaussian for large 𝑛,𝑚 [1]. We use

this approximation in the computation of the 𝑝-value.

One important thing to note here is that, unlike the CLT test, the Wilcoxon

Test is non-parametric in the sense that it doesn’t require any assumptions on the

distribution of ̂︂LLR(𝑋) under 𝑃 . What’s even better, one can obtain exact 𝑝−values

for every 𝑛,𝑚. Although, in our study we calculate approximate 𝑝-values assuming

the distribution is close to a Gaussian.

4.3.3 GLRT Test

The third test is the GLRT (Generalized Likelihood Ratio Test) 𝑇 defined as follows.

First define:

obj(𝜋) :=
𝑛∑︁

𝑖=1

log(1 + 𝜋 · (𝑒̂︂LLR(𝑥𝑖) − 1)) 𝜋 ∈ [0, 1]

Then,

𝑇 (𝑋𝑛) := sup
𝜋∈[0,1]

obj(𝜋)

Note as 𝑛 → ∞, the distribution of 𝑇 approaches that of |𝒩 (0, 1)|+ where | · |+ =

max(0, ·).

Among all three test choices presented so far, the GLRT test requires the strongest

assumptions. In particular, in addition to requiring that 𝑛 is large enough to approx-

imate the 𝑝-value using |𝒩 (0, 1)|+, we also need ̂︂LLR(𝑋) to be close to the true

25

LLR(𝑋) for the test to be meaningful. We didn’t verify this assumption in the study

but it might be an interesting point to work on in future studies.

Technical Note: To approximate 𝑇 ∼ |𝒩 (0, 1)|+, we use Wilks’ theorem. This

is in contrast to the 𝜒2
1 approximation. The reason is that the value of 𝜋 = 0 under

the null is at the boundary of the parameter space [0, 1]. Note that this technical

mistake was made in the Higgs ML challenge where the AMS𝑐 was derived assuming

an asymptotic 𝜒2
1 instead of |𝒩 (0, 1)|+.

4.4 Results

4.4.1 Test Outcomes

From the attached code, you can see that all three statistical tests mentioned in sec-

tion 4.3 are implemented. However, only one test, namely the Wilcoxon rank sum

test, proves to be useful. The CLT test fails to be meaningful because we are able to

reject the null hypothesis that the distribution of ̂︂LLR(𝑋) under 𝑋 ∼ 𝑃 follows a

Gaussian distribution with extreme statistical significance. This removes all guaran-

tees on the quality of the Central Limit Theorem approximation. The GLRT test, on

the other hand, depends on the fact that ̂︂LLR(𝑋) is a good enough approximation

of LLR. As this hasn’t been verified, the GLRT test is also unreliable.

The beauty of the Wilcoxon rank sum test is that it doesn’t require any as-

sumptions on the accuracy of ̂︂LLR(𝑋). Moreover, and most importantly, it’s non-

parametric. So the asymptotic distribution of 𝑈 is independent of the distribution of̂︂LLR(𝑋) under 𝑃 .

The 𝑝-value obtained through the Wilcoxon rank sum test is 𝑝 = 0.000318190.

26

4.4.2 Detection Capability

For a given testing procedure, we define the detection capability to be the following

random variable: given a resolution 𝜖 > 0, iterate over the mixing ratios 𝜋 from 0 to

1 along increments of 𝜖. For every such 𝜋 execute the testing procedure. Define the

detection capability random variable 𝐷 to be the smallest 𝜋 such that the majority

of tests reject the null hypothesis in the interval [𝜋 − 5𝜖, 𝜋 + 5𝜖].

Without using the derived features, we obtain a detection capability of 0.102.

4.4.3 Visual Proof for the accuracy of ̂︂LLR(𝑋)

Even though we don’t verify the accuracy of ̂︂LLR quantitatively, we do have a visual

proof. The visualization boils down to a GIF (Graphics Interchange Format) file. We

next explain how this GIF is generated.

First, we sort the experimental samples {𝑋̃𝑗, 1 ≤ 𝑗 ≤ 𝑚} according to their ̂︂LLR
values. In other words, such that ̂︂LLR(𝑋̃(1)) ≥ ̂︂LLR(𝑋̃(2)) ≥ . . . ̂︂LLR(𝑋̃(𝑛)). If ̂︂LLR
were to be a good approximation of LLR, we would expect sorting 𝑋̃𝑗 according to

their ̂︂LLR values to correspond to sorting them according to the likelihood that they

have come from Higgs.

Next, for every 𝑋̃(𝑖) we compute the invariant 4-mass, 𝑚̃(𝑖), for the lepton system.

Finally, we plot a histogram of 𝑚̃(𝑖) in batches of 100 for every frame producing a GIF.

On the same figure, we also plot the histogram of the invariant 4-mass of 4-lepton

systems that have come from Higgs Decay as well as background decay.

What you can see clearly through the GIF is the following: at the beginning, for

experimental samples with high ̂︂LLR(𝑋) values, the histogram closely matches that

of the Higgs decay. As more batches are added, or as the GIF progresses, we can

see that this pattern gets diluted, approaching that of the background decay. This

27

matches what we would expect if ̂︂LLR(𝑋) were to serve as a good approximation for

LLR(𝑋).

Figure 4-3 has two plots, the one on the left (figure 4-1) is a frame early in the

GIF where selected data samples have high ̂︂LLR(𝑋) values. While the plot on the

right (figure 4-2) is a frame late in the GIF where it includes almost all samples.

As you can see, early in the GIF, the invariant 𝑚4𝑙 histogram of experimental samples

closely matches that of Higgs. Whereas late in the GIF, the pattern gets diluted.

Figure 4-1: Early (High ̂︂LLR(𝑋)) Figure 4-2: Late (Averaged ̂︂LLR(𝑋))

Figure 4-3: No Enhanced Features Used

28

4.4.4 Impact of Derived Features

As we mentioned at the beginning of this chapter, the data contains three derived

features engineered by physicists to enhance the statistical significance of the discov-

ery even further.

To test how much improvement these additional features provide, we repeat the

entire experiment of obtaining ̂︂LLR(𝑋) through the training of a binary classifier

and then executing the Wilcoxon rank sum test. The 𝑝-value obtained drops to

2.42350242 · 10−6, an improvement of two orders of magnitude.

As for the detection capability, it enhances to 0.076

By re-generating the same GIF as we did without the enhanced features, we can

see a much more pronounced effect for early frames of the GIF compared to before.

(See Figure 4-6)

Figure 4-4: Early (High ̂︂LLR(𝑋)) Figure 4-5: Late (Averaged ̂︂LLR(𝑋))

Figure 4-6: Enhanced Features Added

29

30

Chapter 5

Concluding Remarks

We end this thesis by summarizing the main content and contemplating interesting

future research questions.

5.1 Summary

After almost half a century of its theoretical establishment, the Higgs Boson was

empirically verified in 2012 by the ATLAS and CMS collaborations [6]. Shortly af-

ter the discovery, the Higgs ML challenge [3], representing a collaboration between

high-energy-physicists and ML experts, successfully produced novel statistical test-

ing methodologies enhancing the statistical significance of the Higgs Boson discovery.

Moreover, it helped increase the confidence in Higgs theory by studying a different

decay channel than the one originally analyzed by physicists.

Our contribution in this thesis is the introduction of a novel ML-based approach

for the discovery of the Higgs Boson. The main differences between our approach and

the approach taken in the Higgs ML challenge include:

1. using the Log-Likelihood Ratio (LLR) instead of a hard-threshold in the test

statistic.

2. training a neural net on log-loss to obtain an approximation of LLR instead of

31

the two-stage training in the Higgs ML challenge using 0/1 penality followed

by AMS𝑐

Using the new approach, we are able to reject the null hypothesis with 𝑝 ≈ 2.4·10−6

using derived features engineered by high-energy physicists. A crucial step is estimat-

ing the Log-Likelihood Ratio (LLR) of the signal vs. background distribution through

the training of a neural net. The quality of this estimation is verified visually in what

boils down to a GIF (Graphics Interchange Format).

Finally, our analysis was stress-tested by introducing it as a final project for the

class 6.401 (Introduction to Statistical Data Analysis) at MIT during Spring 2021.

The class included 30 students. The majority of students were capable of reproducing

the analysis in what was a fantastic learning experience for everyone.

5.2 Future Research Questions

While high-energy physicists use hard-thresholding, we take the opposite approach

and use LLR directly. While hard-thresholding loses a lot of information, it is robust

against inaccuracies in the simulator of 𝑃,𝑄. This can be a valid concern considering

that simulating the distribution of the background/noise distributions is extremely

complicated. Thus, an interesting idea is to combine both ideas in some hybrid ap-

proach. We leave this to future research.

Also, please note that throughout the analysis, we didn’t impose put any assump-

tions on 𝑃,𝑄. A natural next step is constraint 𝑃,𝑄 to belong to some - possibly

non-parametric - class, and see what enhanced guarantees one might get.

32

Appendix A

Code Implementation

A.1 Utility Functions

Listing A.1: Util.py

import pandas as pd

import numpy as np

from s k l e a rn . p r ep ro c e s s i ng import OneHotEncoder

from s k l e a rn . mode l_se lect ion import t r a i n_te s t_sp l i t

def l oad_processes () :

read MClist o f each proces s and each year

mc_higgs = pd . read_csv (’ . . / data/MC/higgs2012 . csv ’ , index_col=None , header=0)

ZZ∗

mc_zz4mu = pd . read_csv (’ . . / data/MC/zzto4mu2012 . csv ’ , index_col=None , header=0)

mc_zz2mu2e = pd . read_csv (’ . . / data/MC/zzto2mu2e2012 . csv ’ , index_col=None , header=0)

mc_zz4e = pd . read_csv (’ . . / data/MC/ zzto4e2012 . csv ’ , index_col=None , header=0)

Dre l l−Yan

mc_dy10 = pd . read_csv (’ . . / data/MC/dy1050_2012 . csv ’ , index_col=None , header=0)

mc_dy50 = pd . read_csv (’ . . / data/MC/dy50_2012 . csv ’ , index_col=None , header=0)

t t b a r

mc_ttbar = pd . read_csv (’ . . / data/MC/ ttbar2012 . csv ’ , index_col=None , header=0)

p r o c e s s e s = [mc_higgs , mc_zz4mu , mc_zz2mu2e , mc_zz4e , mc_dy10 , mc_dy50 , mc_ttbar]

33

Add s i g n a l (s i g n a l vs . background)

for i in range (len (p r o c e s s e s)) :

i f i ==0:

p r o c e s s e s [i] = p ro c e s s e s [i] . a s s i gn (s i g n a l=np . ones (p r o c e s s e s [i] . shape [0]))

else :

p r o c e s s e s [i] = p ro c e s s e s [i] . a s s i gn (s i g n a l=np . z e r o s (p r o c e s s e s [i] . shape [0]))

return p ro c e s s e s

def load_expr_data () :

return pd . read_csv (’ . . / data/data/clean_data_2012 . csv ’ , index_col=None , header=0)

"""

Return OH_encoder f o r c a t e g o r i a l v a r i a b l e s based on en t i r e t r a i n i n g data .

Input :

processes_mc : en t i r e mc t r a i n i n g data

ob j e c t_co l s : c a t e g o r i a l v a r i a b l e s

Output :

OH_encoder based on t r a i n i n g data .

"""

def encoder (processes_mc , ob j ec t_co l s) :

re f e rence_data = pd . concat (processes_mc , ax i s=0)

OH_encoder = OneHotEncoder (handle_unknown=’ i gnore ’ , spa r s e=False)

OH_encoder . f i t (re f e rence_data [ob j ec t_co l s])

return OH_encoder

"""

Remove i r r e v e l a n t p r e d i c t o r s and One−Hot encode c a t e g o r i a l v a r i a b l e s .

OH_encoder : one−Hot encoder to transform c a t e g o r i a l v a r i a b l e s .

o b j e c t_co l s : c a t e g o r i a l p r e d i c t o r s

i r r e l e v an t_co l s : i r r e l e v a n t p r e d i c t o r s to drop

34

processes_mc : MC data to be transformed

expr_data : r e a l exper imenta l data to transform

Output :

expr_data , processes_mc a f t e r be ing modi f ied

"""

def tr im (OH_encoder , ob ject_co l s , i r r e l e van t_co l s , processes_mc , expr_data) :

expr_data = expr_data . drop (i r r e l e van t_co l s , ax i s=1)

OH_cols_data = pd . DataFrame (OH_encoder . trans form (expr_data [ob j ec t_co l s]))

One−hot encoding removed index ; put i t back

OH_cols_data . index = expr_data . index

Remove c a t e g o r i c a l columns (w i l l r e p l a c e wi th one−hot encoding)

num_data = expr_data . drop (object_co l s , ax i s=1)

Add one−hot encoded columns to numerical f e a t u r e s

expr_data = pd . concat ([num_data , OH_cols_data] , ax i s=1)

for i in range (len (processes_mc)) :

processes_mc [i] = processes_mc [i] . drop (i r r e l e van t_co l s , ax i s=1)

OH_cols_mc = pd . DataFrame (OH_encoder . trans form (processes_mc [i] [ob j e c t_co l s]))

One−hot encoding removed index ; put i t back

OH_cols_mc . index = processes_mc [i] . index

Remove c a t e g o r i c a l columns (w i l l r e p l a c e wi th one−hot encoding)

num_mc = processes_mc [i] . drop (object_co l s , ax i s=1)

Add one−hot encoded columns to numerical f e a t u r e s

processes_mc [i] = pd . concat ([num_mc, OH_cols_mc] , ax i s=1)

return expr_data , processes_mc

35

"""

Compute the we i gh t s needed f o r t r a i n i n g / sampling . These we i gh t s account f o r the

d i screpancy between the expec ted r e l a t i v e f requency o f background proce s s e s and

the r e l a t i v e s i z e s o f mc background proce s s e s we have at our d i s p o s a l .

"""

def compute_weights () :

Luminosity o f each year

lumi = 11580.

cros s s e c t i on o f each proces s

xsecZZ4 = 0.107

xsecZZ2mu2e = 0.249

xsecTTBar = 200 .

xsecDY50 = 2955 .

xsecDY10 = 10.742

scalexsecHZZ = 0.0065

Number o f MC Events generated f o r each proces s

nevtZZ4mu = 1499064

nevtZZ4e = 1499093

nevtZZ2mu2e = 1497445

nevtHZZ = 299973

nevtTTBar = 6423106

nevtDY50 = 29426492

nevtDY10 = 6462290

Compute t r a i n i n g we i gh t s

weights = lumi∗np . array ([scalexsecHZZ/nevtHZZ , xsecZZ4/nevtZZ4mu ,\

xsecZZ2mu2e/nevtZZ2mu2e , xsecZZ4/nevtZZ4e , \

xsecDY10/nevtDY10 , xsecDY50/nevtDY50 , \

xsecTTBar/nevtTTBar])

36

weights [0] = sum(weights [1 :])

return weights

"""

Produce a mixture sample from background proce s s e s .

Input :

p roce s s e s : background proce s s e s to sample from

f r e qu enc i e s : r e l a t i v e f requency at which to sample each background process

sample_size : s i z e o f sample to be re turned

Output :

r e que s t ed sample

"""

def sample (proce s s e s , f r e quenc i e s , sample_size) :

process_cho ice = pd . S e r i e s (np . random . cho i c e (a=np . arange (len (f r e qu en c i e s)) , \

s i z e=sample_size , p=f r e qu en c i e s))

sample_sizes = process_cho ice . value_counts ()\

. r e index (np . arange (len (f r e qu en c i e s)) , f i l l _ v a l u e =0). sort_index ()

sample = pd . DataFrame ()

for i in range (len (p r o c e s s e s)) :

try :

mixing_sample = pro c e s s e s [i] . sample (sample_sizes [i] , r e p l a c e=True)

except :

mixing_sample = pd . DataFrame ()

sample = pd . concat ([sample , mixing_sample] , ax i s=0)

return sample

37

def s p l i t (p r o c e s s e s) :

t r a in_proce s s e s = []

s im_processes = []

synth_processes = []

for i in range (len (p r o c e s s e s)) :

t ra in_process , s im_process = t r a i n_te s t_sp l i t (p r o c e s s e s [i] , \

t e s t_s i z e =.2 , random_state=0)

try :

t ra in_process , synth_process = t r a i n_te s t_sp l i t (t ra in_process , \

t e s t_s i z e =.1 , random_state=0)

except :

synth_process = pd . DataFrame ()

t ra in_proce s s e s . append (t ra in_proces s)

s im_processes . append (sim_process)

synth_processes . append (synth_process)

return t ra in_proces se s , s im_processes , synth_processes

38

A.2 Statistical Tests

Listing A.2: Data Loading and Munging

Experimental data Loading (LHC 2012)

data = u t i l . load_expr_data ()

Simulated data l oad ing

mc_processes = u t i l . l oad_processes ()

Qua l t i t a t i v e f e a t u r e s

ob j ec t_co l s = [’PID1 ’ , ’PID2 ’ , ’PID3 ’ , ’PID4 ’]

Features to be d i s carded (note de r i v ed f e a t u r e s ‘mass ‘ , ‘mass_z1 ‘ , ‘mass_z2 ‘

are i n i t i a l l y d i s ca rded)

i r r e l e v an t_co l s = [’Unnamed : ␣0 ’ , ’Run ’ , ’ Event ’ , ’Q1 ’ , ’Q2 ’ , ’Q3 ’ , ’Q4 ’ , ’mass ’ ,

’mass_z1 ’ , ’mass_z2 ’]

data munging

OH_encoder = u t i l . encoder (mc_processes , ob j e c t_co l s)

data , mc_processes = u t i l . tr im (OH_encoder , ob ject_co l s , i r r e l e van t_co l s , mc_processes ,

data)

compute we i gh t s f o r t r a i n i n g

weights = u t i l . compute_weights ()

counts = np . array ([p roce s s . shape [0] for proce s s in mc_processes])

used f o r genera t ing samples from P_0

P0_frequencies = weights [1 :] ∗ counts [1 :]

P0_frequencies = P0_frequencies /np .sum(P0_frequencies)

Sp l i t s imu la ted data to t h r ee s e c t i o n s :

− t r a i n i n g data : used in o b t a i n i n t \ hat {LLR(X)}

− s imu la t i on data : used in approximating t e s t i n g parameters (i . e . E[\ hat {LLR}(X)]

under P)

− syn t h e t i c data : used in measuring the d e t e c t i on c a p a b i l i t y o f the t e s t s

39

t ra in_proces se s , s im_processes , synth_processes = u t i l . s p l i t (mc_processes)

Append we i gh t s to t r a i n i n g data

for i in range (len (t r a in_proce s s e s)) :

t r a in_proce s s e s [i] = t ra in_proce s s e s [i] . a s s i gn (weight=weights [i] ∗ np . ones (\

t ra in_proce s s e s [i] . shape [0]))

X = pd . concat (t ra in_proces se s , ax i s=0)

t ra in ing_weights = X. pop (’ weight ’)

y = X. pop (’ s i g n a l ’)

Listing A.3: Obtaining ̂︂LLR
from keras . models import Sequent i a l

from keras . l a y e r s import Dense

Train b inary c l a s s i f i e r on cross−entropy l o s s to ob ta in \ hat {LLR}(X)

def DNN_training (input_dim) :

Construct the model

model = Sequent i a l ()

model . add (Dense (10 , input_dim=input_dim , a c t i v a t i o n=’ r e l u ’))

model . add (Dense (10 , a c t i v a t i o n=’ r e l u ’))

model . add (Dense (10 , a c t i v a t i o n=’ r e l u ’))

model . add (Dense (1 , a c t i v a t i o n=’ s igmoid ’))

compi le the model

model . compile (l o s s=’ b inary_crossentropy ’ , opt imize r=’adam ’ , met r i c s =[’ accuracy ’])

return model

training_model = DNN_training (X. shape [1])

training_model . f i t (X, y , sample_weight=tra in ing_weights , epochs=10, batch_size=64)

Output

40

F i t t i n g model

Epoch 1/10

4432/4432 [==============================] − 7 s 1ms/ step

− l o s s : 0 .0129 − accuracy : 0 .0980

Epoch 2/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0064 − accuracy : 0 .0985

Epoch 3/10

4432/4432 [==============================] − 5 s 1ms/ step

− l o s s : 0 .0057 − accuracy : 0 .14

Epoch 4/10

4432/4432 [==============================] − 5 s 1ms/ step

− l o s s : 0 .0053 − accuracy : 0 .1898

Epoch 5/10

4432/4432 [==============================] − 5 s 1ms/ step

− l o s s : 0 .0050 − accuracy : 0 .2446

Epoch 6/10

4432/4432 [==============================] − 5 s 1ms/ step

− l o s s : 0 .0051 − accuracy : 0 .2339

Epoch 7/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0050 − accuracy : 0 .2621

Epoch 8/10

4432/4432 [==============================] − 5 s 1ms/ step

− l o s s : 0 .0048 − accuracy : 0 .2966

Epoch 9/10

4432/4432 [==============================] − 5 s 1ms/ step

− l o s s : 0 .0047 − accuracy : 0 .2997

Epoch 10/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0049 − accuracy : 0 .2763

The p r e d i c t i on neura l net uses l i n e a r a c t i v a t i o n in f i n a l l a y e r in s t ead o f s igmoid

def DNN_predict (input_dim) :

model = Sequent i a l ()

41

model . add (Dense (10 , input_dim=input_dim , a c t i v a t i o n=’ r e l u ’))

model . add (Dense (10 , a c t i v a t i o n=’ r e l u ’))

model . add (Dense (10 , a c t i v a t i o n=’ r e l u ’))

model . add (Dense (1))

model . compile (l o s s=’ b inary_crossentropy ’ , opt imize r=’adam ’ , met r i c s =[’ accuracy ’])

return model

temp_weights = [l ay e r . get_weights () for l a y e r in training_model . l a y e r s]

predict ion_model = DNN_predict (X. shape [1])

for i in range (len (temp_weights)) :

predict ion_model . l a y e r s [i] . set_weights (temp_weights [i])

Generate a s imu la ted background sample

P0_processes = sim_processes [1 :]

process_cho ice = pd . S e r i e s (np . random . cho i c e (a=np . arange (len (P0_frequencies)) , \

s i z e=int (1 e5) , p=P0_frequencies))

sample_sizes = process_cho ice . value_counts () . r e index (np . arange (len (P0_frequencies)) , \

f i l l _ v a l u e =0). sort_index ()

P0_sample = pd . DataFrame ()

for i in range (len (P0_processes)) :

P0_sample = pd . concat ([P0_sample , P0_processes [i] . sample (sample_sizes [i] , \

r ep l a c e=True)] , ax i s=0)

h_sim = predict ion_model . p r ed i c t (P0_sample)

h_data = predict ion_model . p r ed i c t (data)

mu_hat = np .mean(h_sim)

sigma_hat = np . std (h_sim)

42

Listing A.4: CLT Test

from s c ipy . s t a t s import norm , k s t e s t

Apply the Kolmogorov−Smirnov t e s t to t e s t whether $\ hat {LLR}(X)$ cou ld

have come from a Gaussian under the n u l l

gaus s i an_f i t = norm(l o c=mu_hat , s c a l e=sigma_hat)

_, p_value = k s t e s t (rvs=h_sim [: 1 0 0 0 0] , cd f=gaus s i an_f i t . cd f)

print ("P−value ␣ f o r ␣ gauss ian ␣ f i t : ␣{}" . format (p_value))

P−va lue f o r gauss ian f i t : 0 .0

We r e j e c t the n u l l in the Komogornov−Smirnov t e s t to we s top pursuing the CLT

t e s t and move on to Wilcoxon sum−rank rank sum t e s t

Listing A.5: Wilcoxon Rank Sum Test

from s c ipy . s t a t s import mannwhitneyu

_, p_value = mannwhitneyu (h_data , h_sim , a l t e r n a t i v e=’ g r e a t e r ’)

print ("P−value : ␣{}" . format (p_value))

P−va lue : 0.0003181904979632733

Listing A.6: GLRT Test

GLRT Test

def obj (x) :

return −2∗np . nansum(np . l og (1 + x∗(np . exp (h_data) − 1)))

from s c ipy . opt imize import minimize_scalar

from s c ipy . s t a t s import halfnorm

r e s u l t = minimize_scalar (obj , method=’ bounded ’ , bounds=(0 , 1))

print ("P−value : ␣" , 1−halfnorm . cd f (− r e s u l t . fun))

P−va lue : 0 .0

43

A.3 Adding Derived Features

Listing A.7: Integrating Derived Features

Repeat e n t i r e experiment f o r wi th enhanced der i v ed f e a t u e r s

Important f o r re−product ion

t en so r f l ow . random . set_seed (0)

np . random . seed (0)

re−load data here

data = u t i l . load_expr_data ()

mc_processes = u t i l . l oad_processes ()

munge data here

ob j ec t_co l s = [’PID1 ’ , ’PID2 ’ , ’PID3 ’ , ’PID4 ’]

i r r e l e v an t_co l s = [’Unnamed : ␣0 ’ , ’Run ’ , ’ Event ’ , ’Q1 ’ , ’Q2 ’ , ’Q3 ’ , ’Q4 ’]

OH_encoder = u t i l . encoder (mc_processes , ob j e c t_co l s)

data , mc_processes = u t i l . tr im (OH_encoder , ob ject_co l s , i r r e l e van t_co l s , \

mc_processes , data)

t ra in_proces se s , s im_processes , synth_processes = u t i l . s p l i t (mc_processes)

for i in range (len (t r a in_proce s s e s)) :

t r a in_proce s s e s [i] = t ra in_proce s s e s [i] . a s s i gn (weight=weights [i] ∗ np . ones (\

t ra in_proce s s e s [i] . shape [0]))

re−t ra i n

X = pd . concat (t ra in_proces se s , ax i s=0)

t ra in ing_weights = X. pop (’ weight ’)

y = X. pop (’ s i g n a l ’)

training_model = DNN_training (X. shape [1])

print (’ F i t t i n g ␣model ’)

44

training_model . f i t (X, y , sample_weight=tra in ing_weights , epochs=10, batch_size=64)

re−compute h_sim , h_data

P0_processes = sim_processes [1 :]

process_cho ice = pd . S e r i e s (np . random . cho i c e (a=np . arange (len (P0_frequencies)) ,

s i z e=int (1 e5) , p=P0_frequencies))

sample_sizes = process_cho ice . value_counts ()\

. r e index (np . arange (len (P0_frequencies)) , f i l l _ v a l u e =0). sort_index ()

P0_sample = pd . DataFrame ()

for i in range (len (P0_processes)) :

P0_sample = pd . concat ([P0_sample , P0_processes [i] \

. sample (sample_sizes [i] , r ep l a c e=True)] , ax i s=0)

P0_sample . pop (’ s i g n a l ’)

temp_weights = [l ay e r . get_weights () for l a y e r in training_model . l a y e r s]

predict ion_model = DNN_predict (X. shape [1])

for i in range (len (temp_weights)) :

predict ion_model . l a y e r s [i] . set_weights (temp_weights [i])

h_sim = predict ion_model . p r ed i c t (P0_sample)

h_data = predict ion_model . p r ed i c t (data)

Output

F i t t i n g model

Epoch 1/10

4432/4432 [==============================] − 7 s 1ms/ step

− l o s s : 0 .0196 − accuracy : 0 .1053

Epoch 2/10

4432/4432 [==============================] − 8 s 2ms/ step

− l o s s : 0 .0068 − accuracy : 0 .1007

Epoch 3/10

45

4432/4432 [==============================] − 9 s 2ms/ step

− l o s s : 0 .0050 − accuracy : 0 .2498

Epoch 4/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0041 − accuracy : 0 .3945

Epoch 5/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0034 − accuracy : 0 .4735

Epoch 6/10

4432/4432 [==============================] − 8 s 2ms/ step

− l o s s : 0 .0045 − accuracy : 0 .3294

Epoch 7/10

4432/4432 [==============================] − 8 s 2ms/ step

− l o s s : 0 .0040 − accuracy : 0 .3875

Epoch 8/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0029 − accuracy : 0 .5059

Epoch 9/10

4432/4432 [==============================] − 6 s 1ms/ step

− l o s s : 0 .0031 − accuracy : 0 .4907

Epoch 10/10

4432/4432 [==============================] − 7 s 1ms/ step

− l o s s : 0 .0034 − accuracy : 0 .4807

Wilcoxon Sum−Rank

_, p_value = mannwhitneyu (h_data , h_sim , a l t e r n a t i v e=’ g r e a t e r ’)

print ("Wilcoxon␣P−value : ␣{}" . format (p_value))

GLRT

def obj (x) :

return −2∗np . nansum(np . l og (1 + x∗(np . exp (h_data) − 1)))

r e s u l t = minimize_scalar (obj , method=’ bounded ’ , bounds=(0 , 1))

print ("GLRT␣P−value : ␣{}\n\n" . format(1−norm . cd f (np . s q r t (− r e s u l t . fun))))

46

Wilcoxon P−va lue : 2.4235024235388715e−06

GLRT P−va lue : 0 .0

47

A.4 Detection Capability

Listing A.8: P-value computation

from s c ipy . s t a t s import norm , mannwhitneyu

def compute_p_value (data , h_sim , h_hat) :

n = len (data)

h_data = h_hat . p r ed i c t (data)

Wilcoxon Sum−Rank

_, p_value = mannwhitneyu (h_data , h_sim , a l t e r n a t i v e=’ g r e a t e r ’)

return p_value

Listing A.9: Detection Capability Computation

def de t e c t i on_capab i l i t y (synth_processes , P0_proportions , h_hat , h_sim ,\

p_threshold =.01 , accuracy =500):

r e c en t = np . array ([f loat (’ nan ’)] ∗ 1 0)

synth_P0_sample = u t i l . sample (synth_processes [1 :] , P0_proportions , int (2 e4))

for i in range (0 , accuracy) :

mixing_ratio = i / accuracy

noise_bkg_choice = pd . S e r i e s (np . random . cho i c e ([0 , 1] , s i z e =300 ,\

p=[1−mixing_ratio , mixing_ratio]))

sample_sizes = noise_bkg_choice . value_counts () . \

re index (np . arange (2) , f i l l _ v a l u e =0). sort_index ()

synth_data = pd . DataFrame ()

synth_data = pd . concat ([synth_data , synth_P0_sample . \

sample (sample_sizes [0] , r ep l a c e=True)] , ax i s=0)

synth_data = pd . concat ([synth_data , synth_processes [0] \

. sample (sample_sizes [1] , r ep l a c e=True)] , ax i s=0)

synth_data . pop (’ s i g n a l ’)

synth_data . pop (’ weight ’)

48

p_value = compute_p_value (synth_data , h_sim , h_hat)

r e c en t = np . d e l e t e (recent , len (r e c en t)−1)

r e c ent = np . i n s e r t (a r r=recent , obj=0, va lue s=p_value<p_threshold)

i f np . nanmean(r e c ent) >.5:

return mixing_ratio − 5/ accuracy

return

Listing A.10: Vanilla Detection Capability

print (’ Detect ion ␣Capab i l i ty : ␣ ’ , d e t e c t i on_capab i l i t y (synth_processes , \

P0_frequencies , h_hat , h_sim))

Output

Detect ion Capab i l i ty : 0.10200000000000001

Listing A.11: Detection Capability with Derived Features Added

with open(’ . . / exper iment_assets /enhanced_h . npy ’ , ’ rb ’) as f :

h_sim = np . load (f)

_ = np . load (f)

P0_frequencies = np . load (f)

h_hat = keras . models . load_model (’ . . / exper iment_assets /enhanced_model ’)

synth_processes = []

for i in range (len (P0_frequencies)) :

synth_processes . append (pd . read_pick le (’ . . / exper iment_assets /enhanced_synth_process_ ’ \

+ str (i) + ’ . pkl ’))

print (’ Detect ion ␣Capab i l i ty : ␣ ’ , d e t e c t i on_capab i l i t y (synth_processes , \

P0_frequencies , h_hat , h_sim))

Output

Detect ion Capab i l i ty : 0 .076

49

50

Bibliography

[1] Marylise Julien Carine A. Bellera and James A. Hanely. Journal of Statistics
Education, 2017.

[2] UA1 Collaboration CERN (Geneva, Switzerland). Archives of the ua1 collabo-
ration, underground area 1 collaboration. CERN Scientific Information Service,
1978-1993.

[3] et al. Claire Adam-Bourdarios. NIPS 2014 Workshop on High-energy Physics and
Machine Learning, 2015.

[4] ATLAS Collaboration. Observation of a new particle in the search for the standard
model higgs boson with the atlas detector at the LHC. Science Direct, 2012.

[5] CMS Collaboration. Observation of a new boson at a mass of 125 gev with the
cms experiment at the LHC. Science Direct, 2012.

[6] Karl Jakobs and Chris Seez. The higgs boson discovery. Scholarpedia, 2015.

[7] Tom W B Kibble. Englert-brout-higgs-guralnik-hagen-kibble mechanism. Schol-
arpedia, 2009.

[8] Christoph Paus. Jlab experiments. https://github.com/JLabMit/JLabExperiments,
2020.

51

	Introduction
	Role of the Higgs Boson in the Standard Model of Physics
	Post-Discovery Experimentation

	The Higgs Boson Machine Learning Challenge
	Higgs Decay Channel
	Data
	Features
	Weights

	Statistical Procedure
	Critique

	Proposed Alternative Methodology
	Data
	Features
	Weights

	Model Assumptions
	Choices for Statistical Tests
	CLT Test
	Wilcoxon Test
	GLRT Test

	Results
	Test Outcomes
	Detection Capability
	Visual Proof for the accuracy of LLR"055BLLR(X)
	Impact of Derived Features

	Concluding Remarks
	Summary
	Future Research Questions

	Code Implementation
	Utility Functions
	Statistical Tests
	Adding Derived Features
	Detection Capability

