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Abstract

For years, physicists hypothesized the existence of the Higgs Boson; a fundamental
particle in the standard model of physics playing a crucial role in the understanding of
the electroweak force. However, it took almost 50 years of technological advancements
until its discovery was empirically announced in 2012 [6]. The discovery was statistical
in nature and relied on analyzing huge amounts of data provided by the LHC (Large
Hadron Collider) at CERN. In this thesis, we propose a novel hypothesis testing
approach leading to the rejection of the null hypothesis that the Higgs Boson doesn’t
exist. We use real data recorded at the LHC, provide theoretical build, and back it
with implementation /experimentaion. Finally, we contrast our approach with the one
used in the Higgs ML Challenge [3].
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Chapter 1

Introduction

For a long time, the Standard Model of Physics had a missing component; the Higgs
Boson. The existence of the Higgs Boson was theoretically predicted as a crucial
puzzle piece in understanding the electroweak force and its associated force-carrying
particles. It took half a century, nonetheless, from the theoretical establishment of
the Higgs Boson until its empirical discovery was announced on the 4** of July, 2012

by the ATLAS and CMS collaborations [6].

The Higgs Boson discovery was unique and non-traditional. In particular, the pro-
cess didn’t merely rely on expertise in theoretical physics. In fact, it was, to a large
extent, a statistical procedure. This is by the nature of the experiments leading to its
discovery. The experiments were conducted at the LHC (Large Hadron Collider) at
CERN, where protons were collided at incredible speeds. The collision would generate
sub-atomic particles which would then decay to further particles and radiation. The
final products of this decay, including the products of the Higgs Boson decay, were

then recorded.

Because of the highly unstable nature of the Higgs Boson, it was never measured
directly; only its decay products. This left the statistical analysis of such products as
the only possible way to conclude its existence. In particular, the statistical method-

ology, in its essence, is nothing but a hypothesis test.
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In this thesis, we begin with an elaboration on the significance of the Higgs Boson
as a crucial component in the Standard Model of Physics (chapter 2). We then intro-
duce the statistical procedure used in the Higgs Boson Machine Learning challenge
[3], which is a famous collaboration intended to enhance the significance level of the
Higgs Boson discovery (chapter 3). Then, we introduce a novel non-parametric statis-
tical approach, contrast it with the approach in the previous chapter, and highlight
why ours might be preferable (chapter 4). The approach is backed by theory and is
also implemented successfully using real data from the LHC in 2012. Finally, we’ll
end with a summary and a list of open research questions that remain to be answered

(chapter 5).
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Chapter 2

Role of the Higgs Boson in the
Standard Model of Physics

The Standard Model of Physics describes matter and the forces of matter interactions
through fundamental particles. There are two types of fundamental particles: matter
particles and force particles. Matter particles constitute matter and they can either
be leptons or quarks. On the other hand, force particles carry forces between matter

particles explaining their interactions.

There are four types of fundamental forces through which matter interacts: the
electromagnetic force, the strong force, the weak force, and gravity. For the first three
of these forces, the force particles have been experimentally verified. Namely, photons
for the electromagnetic force, gluons for the strong force, and W and Z bosons for the
weak force. Gravitons have been hypothesized for gravity but haven’t been discovered

yet [8]. The standard model of elementry particles is shown in figure

Despite the discovery of the W, Z bosons in 1983 [2], the mechanism through which
these bosons obtained mass was still rather mysterious. In particular, translating the
methods of Quantum Electro-Dyanamics used to explain electromagnetic interac-
tions at that time to weak-force interactions produced massless W, Z boson which

contradicted what physcists knew through experimentation. One proposed theoretical

13



Standard Model of Elementary Particles
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Figure 2-1: Standard Model of Elementry Particles

fix came through the Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism, which
predicted the existence of the Higgs Boson [7].

Even though the Higgs Mechanism was conceived in the 1960s, experimentally
verifying the existence of the Higgs Boson required huge amounts of energy, sophisti-
cated technology, and analysis tools that only came 50 years later. It was until 2012
when the discovery of the Higgs Boson was officially announced thanks to the CMS
and ATLAS experiments done at the LHC (Large Hadron Collider) [4} [5].

2.1 Post-Discovery Experimentation

Beyond the initial discovery of the Higgs Boson, post-discovery efforts were initiated
to study the various properties and decay pathways of this new particle. These efforts
are crucial in increasing confidence in the initial discovery and validating the theory
surrounding the Higgs Boson. For example, the Higgs ML challenge we describe in the

next chapter studies a different channel than the one analyzed for the initial discovery.

14



Chapter 3

The Higgs Boson Machine Learning
Challenge

The Higgs Boson Machine Learning Challenge was hosted at https://www.kaggle.
com/c/higgs-boson as a competition to “explore the potential of advanced classifica-
tion methods to improve the statistical significance of the [Higgs Boson discovery|”[3].
The challenge was a huge success in terms of participation with 1785 teams partici-
pating and 35772 solutions submitted. It also demonstrated the potential benefits of

large scale collaborations between high-energy physicists and data scientists.

In this chapter, we go over the Higgs ML challenge looking, in some detail, into
the data used, the winning models, and - most importantly - the statistical testing
methodology. We end this chapter with a critique highlighting potential flaws within
the methodology. This serves as a motivation for the alternative statistical testing

procedure we propose in the next chapter.

3.1 Higgs Decay Channel

The Higgs Boson can decay in many different ways. Every path of decay is called
a channel by physicists. Broadly speaking, the Higgs Boson can either decay into
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further bosons or fermions. Contrary to the channels studied in the initial discovery
of the Higgs Boson and the channel we study in chapter 4, the Higgs ML challenge
studies the decay of the Higgs Boson into two tau leptons:

H— 717

Recall that leptons are a subset of fermions (or matter particles). This is significant,
from a physics point of view, as validating the existence of the Higgs Boson through
this channel further confirms the theory surrounding it and increases confidence in

the knowledge of its properties.

3.2 Data

The purpose of the challenge is to integrate machine learning techniques into the
process of the Higgs Boson discovery. Data, in this case, is composed of collision
events. Every event contains information on the final decay products of a simulated
collision. Some simulated events, which are called signal events, come from Higgs
Boson decays. While others, which are called background events, come from non-

Higgs decays but produced final products that could have come from Higgs.

The simulated data used in the Higgs ML challenge comes from the ATLAS sim-
ulator. Access to such data became possible after it was released by the ATLAS
collaboration in 2013 [4].

Simulated data is used by the participants to build machine learning models. In
particular, it is split into three samples: a sample of size 250K for training, a sample
of size 100K for validation, and a sample of size 450K for testing. The validation
sample is used to construct a public leader board, while the testing sample is used
to construct a private leader board which determines the ranking of the participants.

About one third of the events in each set are signals.
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3.2.1 Features

Each of the data sets has d = 30 features to be inputted to the classifier. The features
are broadly divided into two categories: those prefixed with PRI which stands for
primitive features directly observed by the detector, and those prefixed with DER
which stands for derived features chosen by physicists to enhance the detection capa-

bility and are computed from primitive features.

Primitive features describe the momenta of particles in 3D space as well as their
energy. Examples include the transverse momentum and the azimuth angle of various
decay particles. Derived features, on the other hand, are mostly computed using
algebraic formulae from primitive features. Examples include the invariant mass and

the vector sum of momenta for various combinations of decay particles.

3.2.2 Weights

As mentioned above, about one third of each data set are signals. Of course, this is
far from the frequency of signal decays relative to background decays occurring in
experiments which is on the order of 1075, To account for this discrepancy, the sim-
ulated samples are weighted appropriately when training the classifiers. The weights

are computed according to the following formula:

ps<xz)/QS(xz)> if Yi = 17
w; ~

po(wi)/qp(z;), ify; =0

where z; is the feature vector, y; € {0, 1} is the label (signal or background), ps(-), ps(-)
are the natural conditional distributions of feature vectors given signal/background,
and ¢s(+), gp(+) are the simulated conditional distributions of feature vectors given sig-

nal /background, respectively.

The sum of weights across each class (signal/background), and across each set is
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kept fixed:

Zwi:N57 Zwi:Nb

€S €8
where S, B are the index sets for signal/background, and Ny, N, are the expected
total numbers of signal /background events observed in experiments during the time

of data taking.

3.3 Statistical Procedure

The purpose of the Higgs ML challenge is to enhance the significance of the Higgs
Boson discovery. From a hypothesis-testing point of view, the Higgs Boson is discov-
ered by rejecting the null hypothesis that it doesn’t exist. We describe the hypothesis

testing procedure on a high level in the following paragraphs.

Given a weighted training set:

D = {<x17y17w1)7 SR (l’n,yn,wn)},

a binary classifier is trained. Assume for now that z; € R?. For a given binary classifier

g : R — {0, 1}, a selection region G is defined to be:
G=A{z:g(x) =1}

Choosing the learning the algorithm for the training is at the heart of the com-
petition. Skipping the training step, assume we have a binary classifier g with an
associated selection region G, one obtains an unlabeled experimental sample 7 =

(x7,...,2) ) independent of D. One then computes the following statistic:

T = Z loreg

Under the null hypothesis that the Higgs Boson doesn’t exist, 1" is approximated to
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follow a Poisson distribution Poiss(u;) for some . Under the alternative, however,
Higgs decay adds some abundance giving distribution Poiss(u, + us) for some pis.
Expressing T' ~ Poiss(up + 115) where ps € [0,00), the problem then reduces to testing
the null hypothesis Hg : us = 0 vs. the alternative H; : pus > 0.

In the paper, they consider the likelihood ratio:

A = it Do)

Hs P(T’,}—ll)

then they use Wilks’s theorem to argue that:

—2ln(A) i T >
q g
0 otherwise

approaches a x? distribution as n — oo. Doing some algebra, they reach the quantity:

7= \/2<Tln<£> —T+ub)

Which measures the significance of the test in terms of standard deviations. The
goal, then, is to find a selection region G maximizing Z. In practice, however, given
a trained classifier g, we don’t know p;, and 7. So all we can hope for is an approxi-

mation. This is what the training objective AMS, defined as:

S
AMS, := \/2<(s + b+ breg)In (1 + - bmg) — s>

aims to do, where

§:= Z w;, b:= Z w;

i €G,yi=1 x;:x;€G,y;=0

and by = 10 is a regularization constant.

Each participant is evaluated based on their test set AMS, classifier performance.
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3.4 Critique

Although the challenge turned out to be a huge success, we discovered two potential

flaws in the statistical methodology summarized as follows:

1. The test statistic used in the Higgs ML challenge is a count of the number of
events in some specified region E. Note that this test is “crude" in the sense
that it loses information on the likelihood of a given data point to have come

from Higgs decay vs. background.

2. The discriminant function g leading to the region E above is trained using a
0/1 loss before the threshold is selected using the AMS, objective. There is no

obvious theoretical reason for using the 0/1 loss in the training.

We treat both of these in concerns in the proposed methodology described in the next

chapter.
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Chapter 4

Proposed Alternative Methodology

In the previous chapter, we went over the Higgs ML challenge. The challenge was
intended to enhance the significance of the Higgs Boson discovery. And it was a huge
success in terms of collaboration between high-energy physicists and machine learning
enthusiasts.

At the end of the chapter, however, we pointed out two potential flaws within the
statistical methodology used in the challenge. As an attempt to address these con-
cerns, we propose an alternative methodology. We dedicate this chapter to go over it.
On a high-level, our new methodology is different from the the one used in the Higgs

ML challenge in two crucial ways:

1. Instead of counting the number of events within a specified region E as the test

statistic, we use the Log-Likelihood-Ratio (LLR):

LLR(X) := 10g<%(){)>

directly, which expresses the likelihood of a given data point to have come from

Higgs decay vs. background.

2. To obtain an approximation of LLR(X), we train a binary classifier on cross-

entropy loss instead of 0/1 loss which provably converges to LLR(X).
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4.1 Data

The data we use in our study differs from the data used in the Higgs ML challenge
in a fundamental way. In particular, it describes a different decay channel. Instead of
decaying into 7 leptons, the Higgs Boson decays into a pair of Z bosons which further

decay into 4 leptons in what is called the Golden Channel:

H— 77 — 4l

4.1.1 Features

The data set contains a data point for every system of 4 leptons. For each lepton,
scalar features are recorded such as the kinetic energy and the momentum in 3D
space. In addition to scalar features, qualitative features are recorded such as the
lepton type. This resembles primitive features using the terminology of the previous
chapter. Three additional derived features are used, whose impact on detection capa-

bility we measure and find significant. In total, we have d = 35 features.

The majority of the data is generated using a simulator. Simulated data is used in
training and is labeled. In addition to the labels, appropriate weights are appended to
reflect the discrepancy between the frequency of signal events within the training data
set and the natural frequency of Higgs Boson decay relative to background decay. In
addition to simulated data, we have real-world data recorded at the LHC during the
year 2012, which we use to verify our procedure and obtain a statistically significant

p-value.

4.1.2 Weights

Appending weights to the training data serves multiple purposes in our study com-
pared to the Higgs ML challenge. In particular, in addition to the discrepancy between
the natural and simulated signal-to-background frequencies, there is also a discrep-

ancy between simulated and natural frequencies for background components them-
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selves. That’s because the background process in our dataset is actually a mixture of

several sub-processes. In particular, let P be the background distribution, then:

P:ZC%Pl

for some sub-components P; and mixing ratios «;. The compuation of the weights is

detailed in the attached code.

4.2 Model Assumptions

The model is simple. Let P be the distribution of events resulting from background
decay. Let () be the distribution of events resulting from Higgs decay. Let X be the

random variable describing the feature vector in d = 35 dimensions. We can write,
X~mQ+(1—-mP
We can then formulate the following hypothesis testing problem:

Hy:m=0, H :me(0,1]

4.3 Choices for Statistical Tests

Suppose we have a sample of size n = 1, then the uniformly most powerful test for

mixture distributions of P, Q) relies on the log-likelihood-ratio statistic:

dQ)
LLR(X) =1 <— X))
(X) = log (5£(X)
by the Neyman-Pearson lemma. This suggests using LLR(X) in our statistical tests.
The problem is that we don’t have access to LLR directly as we don’t have an explicit

expression for P, (). The solution is to estimate it from the simulated data. In par-

ticular, any algorithm trained with cross-entropy loss should approximate LLR(z).

23



More precisely, define the log-loss as usual
1 1
Wy,p) =y 10g(];) +(1-y)- 10%(?29)7 y €{0,1}, p€0,1].

Now, given ny = vgn samples with label y; = 0 and X; ~ P and n; = vyn samples

with label y; = 1 and X; ~ @) we have as n = ng + n; — oc:

k%%) — log(2) + LLR(X)

140

Thus, training a binary classifier on log-loss can be used to obtain an approxima-

tion LLR(X).

Given an estimate LE\R(X ) of LLR(X), there are three statistical tests that come
to mind: the CLT test, the Wilcoxon Rank Sum Test, and the GLRT test. We dedicate

the next three sections to describe each one of them in detail.

4.3.1 CLT Test

Given L/LT%(x), one can estimate a := E[L/L\R(X)], b= Var(ﬁ(X)), where X ~ P
from simulated data. Then, given estimates a, 5, we use the Central Limit Theorem

(CLT) to compute the approximate p-value:

p:1—q><\/%(%ZL/L§(Xi)—a))

where ® is the CDF of A/(0,1). Of course, for this test to be meaningful, n should be
sufficiently large of for the Central Limit Theorem to kick-in. The requirement on n
becomes less stringent if the distribution of L/L\R(X ) under P is well-approximated by
a Gaussian to begin with. To that end, we employ the Kolmogorov—Smirnov goodness

of fit test.
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4.3.2 Wilcoxon Test

Given two samples, X; P from simulated data, and X j i 7Q + (1 — 7)P from

experimental data, we compute the statistic U defined:

U= liinxsiireg,)

1,

Under the null, X;, X j p. Thus, each of the indicators in the previous sum follow

a Bern(1/2) and the distribution approaches a Gaussian for large n,m [I]. We use

this approximation in the computation of the p-value.

One important thing to note here is that, unlike the CLT test, the Wilcoxon
Test is non-parametric in the sense that it doesn’t require any assumptions on the
distribution of IE\R(X ) under P. What’s even better, one can obtain exact p—values
for every n,m. Although, in our study we calculate approximate p-values assuming

the distribution is close to a Gaussian.

4.3.3 GLRT Test

The third test is the GLRT (Generalized Likelihood Ratio Test) 7" defined as follows.
First define:
obj(m) := Y log(1+ - (™) 1)) 7€ [0,1]
i=1

Then,
T(X"™):= sup obj(m)

m€[0,1]
Note as n — oo, the distribution of T" approaches that of [N (0,1)|" where | - [T =

max (0, -).

Among all three test choices presented so far, the GLRT test requires the strongest
assumptions. In particular, in addition to requiring that n is large enough to approx-

imate the p-value using |A(0,1)|", we also need L/L\R(X) to be close to the true
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LLR(X) for the test to be meaningful. We didn’t verify this assumption in the study

but it might be an interesting point to work on in future studies.

Technical Note: To approximate 7' ~ |N(0,1)|*, we use Wilks’ theorem. This
is in contrast to the x? approximation. The reason is that the value of 7 = 0 under
the null is at the boundary of the parameter space [0,1]. Note that this technical
mistake was made in the Higgs ML challenge where the AMS, was derived assuming

an asymptotic x? instead of |A(0,1)|".

4.4 Results

4.4.1 Test Outcomes

From the attached code, you can see that all three statistical tests mentioned in sec-
tion 4.3 are implemented. However, only one test, namely the Wilcoxon rank sum
test, proves to be useful. The CLT test fails to be meaningful because we are able to
reject the null hypothesis that the distribution of IE\R(X ) under X ~ P follows a
Gaussian distribution with extreme statistical significance. This removes all guaran-
tees on the quality of the Central Limit Theorem approximation. The GLRT test, on
the other hand, depends on the fact that L/L\R(X ) is a good enough approximation
of LLR. As this hasn’t been verified, the GLRT test is also unreliable.

The beauty of the Wilcoxon rank sum test is that it doesn’t require any as-
sumptions on the accuracy of L/L\R(X ). Moreover, and most importantly, it’s non-
parametric. So the asymptotic distribution of U is independent of the distribution of

IE\R(X) under P.

The p-value obtained through the Wilcoxon rank sum test is p = 0.000318190.

26



4.4.2 Detection Capability

For a given testing procedure, we define the detection capability to be the following
random variable: given a resolution € > 0, iterate over the mixing ratios 7 from 0 to
1 along increments of €. For every such 7 execute the testing procedure. Define the
detection capability random variable D to be the smallest m such that the majority

of tests reject the null hypothesis in the interval [m — 5e, m + 5e].

Without using the derived features, we obtain a detection capability of 0.102.

4.4.3 Visual Proof for the accuracy of L/L\R(X )

Even though we don’t verify the accuracy of LLR quantitatively, we do have a visual
proof. The visualization boils down to a GIF (Graphics Interchange Format) file. We

next explain how this GIF is generated.

First, we sort the experimental samples {f(j, 1 < j < m} according to their LLR
values. In other words, such that IE\R(X(U) > L/L\R(f((z)) > ...IE\R(X(H)). If LLR
were to be a good approximation of LLR, we would expect sorting X ; according to
their LLR values to correspond to sorting them according to the likelihood that they

have come from Higgs.

Next, for every X (i) we compute the invariant 4-mass, m;, for the lepton system.
Finally, we plot a histogram of 1) in batches of 100 for every frame producing a GIF.
On the same figure, we also plot the histogram of the invariant 4-mass of 4-lepton

systems that have come from Higgs Decay as well as background decay.

What you can see clearly through the GIF is the following: at the beginning, for
experimental samples with high IE\R(X ) values, the histogram closely matches that
of the Higgs decay. As more batches are added, or as the GIF progresses, we can

see that this pattern gets diluted, approaching that of the background decay. This
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matches what we would expect if L/L\R(X ) were to serve as a good approximation for

LLR(X).

Figure has two plots, the one on the left (figure is a frame early in the
GIF where selected data samples have high L/L\R(X ) values. While the plot on the
right (figure is a frame late in the GIF where it includes almost all samples.

As you can see, early in the GIF, the invariant my; histogram of experimental samples

closely matches that of Higgs. Whereas late in the GIF, the pattern gets diluted.

> VE=7TeV,L=23ML;v5=8TeV,L=116"! > VE=7TeV,L=23MmL;vE=8TeV,L=11.6"!
Ouw - O 4 -
m tt fia] tt
=~ * =~ *
nwn Zly" + X ne Zly" + X
§ mm 77 > 4l Em . 77 - 4l
w8 I my = 125 GeV w my = 125 GeV
+ Data @

60 180 200 200

my [GeV] my [GeV]
Figure 4-1: Early (High L/IE(X)) Figure 4-2: Late (Averaged L/IE{(X))

Figure 4-3: No Enhanced Features Used
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4.4.4 Impact of Derived Features

As we mentioned at the beginning of this chapter, the data contains three derived
features engineered by physicists to enhance the statistical significance of the discov-

ery even further.

To test how much improvement these additional features provide, we repeat the
entire experiment of obtaining L/IE(X ) through the training of a binary classifier
and then executing the Wilcoxon rank sum test. The p-value obtained drops to

2.42350242 - 1075, an improvement of two orders of magnitude.
As for the detection capability, it enhances to 0.076
By re-generating the same GIF as we did without the enhanced features, we can

see a much more pronounced effect for early frames of the GIF compared to before.

(See Figure {4-6))

a VE=7TeV,L=23f"1;v5=8TeV,L=11.67"" a VS=7TeV,L=23f1;v5=8TeV,L=11.61M""
G} B O, B
m tt m tt
:_,-H I ZIy' + X L-H & ZIy' + X
§a mm 77 > 4l ém mm 77 > 4l
0 | my = 125 GeV 0 my = 125 GeV
6 +  Data @
30
r
20
2
10
o4 ol
80 100 120 140 160 180 200 180 200
my [GeV] my [GeV]
Figure 4-4: Early (High LLR(X)) Figure 4-5: Late (Averaged LLR(X))

Figure 4-6: Enhanced Features Added
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Chapter 5

Concluding Remarks

We end this thesis by summarizing the main content and contemplating interesting

future research questions.

5.1 Summary

After almost half a century of its theoretical establishment, the Higgs Boson was
empirically verified in 2012 by the ATLAS and CMS collaborations [6]. Shortly af-
ter the discovery, the Higgs ML challenge [3], representing a collaboration between
high-energy-physicists and ML experts, successfully produced novel statistical test-
ing methodologies enhancing the statistical significance of the Higgs Boson discovery.
Moreover, it helped increase the confidence in Higgs theory by studying a different
decay channel than the one originally analyzed by physicists.

Our contribution in this thesis is the introduction of a novel ML-based approach
for the discovery of the Higgs Boson. The main differences between our approach and

the approach taken in the Higgs ML challenge include:

1. using the Log-Likelihood Ratio (LLR) instead of a hard-threshold in the test

statistic.

2. training a neural net on log-loss to obtain an approximation of LLR instead of
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the two-stage training in the Higgs ML challenge using 0/1 penality followed
by AMS.

Using the new approach, we are able to reject the null hypothesis with p ~ 2.4-107°
using derived features engineered by high-energy physicists. A crucial step is estimat-
ing the Log-Likelihood Ratio (LLR) of the signal vs. background distribution through
the training of a neural net. The quality of this estimation is verified visually in what

boils down to a GIF (Graphics Interchange Format).

Finally, our analysis was stress-tested by introducing it as a final project for the
class 6.401 (Introduction to Statistical Data Analysis) at MIT during Spring 2021.
The class included 30 students. The majority of students were capable of reproducing

the analysis in what was a fantastic learning experience for everyone.

5.2 Future Research Questions

While high-energy physicists use hard-thresholding, we take the opposite approach
and use LLR directly. While hard-thresholding loses a lot of information, it is robust
against inaccuracies in the simulator of P, (). This can be a valid concern considering
that simulating the distribution of the background/noise distributions is extremely
complicated. Thus, an interesting idea is to combine both ideas in some hybrid ap-

proach. We leave this to future research.
Also, please note that throughout the analysis, we didn’t impose put any assump-

tions on P, (). A natural next step is constraint P, to belong to some - possibly

non-parametric - class, and see what enhanced guarantees one might get.
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Appendix A

Code Implementation

A.1 Utility Functions

Listing A.1: Util.py

import pandas as pd
import numpy as np
from sklearn.preprocessing import OneHotEncoder

from sklearn.model selection import train test split

def load processes():

# read MClist of each process and each year
mc__higgs =
E YA

mc_zz4mu

pd.read csv(’../data/MC/higgs2012.csv’ ,index col=None, header=0)

pd.read csv(’../data/MC/zzto4dmu2012.csv’,index col=None, header=0)
mc_zz2mu2e = pd.read csv(’../data/MC/zzto2mu2e2012.csv’,index col=None, header=0)
mc_zzde = pd.read csv(’../data/MC/zzto4e2012.csv’,index col=None, header=0)

## Drell—Yan

mc_dyl0 = pd.read csv(’../data/MC/dy1050 2012.csv’,index col=None, header=0)
mc_dyb50 = pd.read csv(’../data/MC/dy50 2012.csv’,index col=None, header=0)

#4 ttbar

mc_ttbar

pd.read csv(’../data/MC/ttbar2012.csv’,index col=None, header=0)

processes = [mec_higgs, mc_zzdmu, mc_zz2mu2e, mc_zzde, mc_dyl0, mc_dy50, mc_ttbar]
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# Add signal (signal vs. background)
for i in range(len(processes)):
if i==0:
processes[i] = processes|[i].assign(signal=np.ones(processes|[i].shape[0]))
else:

processes [ 1] processes|[i].assign(signal=np.zeros(processes|[i].shape[0]))

return processes

def load expr data():

return pd.read csv(’../data/data/clean data 2012.csv’, index col=None, header=0)

nnn

Return OH_encoder for categorial wvariables based on entire training data.

Input:
processes_mc : entire mc training data
object cols : categorial wvariables
Output :

OH encoder based on training data.

nnn

def encoder (processes _mc, object cols):

reference data = pd.concat(processes mc, axis=0)

OH_encoder = OneHotEncoder (handle unknown=’ignore’, sparse=False)
OH encoder. fit (reference data[object cols])

return OH encoder

nnn

Remove irrevelant predictors and One—Hot encode categorial wvariables.

OH _encoder : one—Hot encoder to transform categorial variables.
object cols : categorial predictors
irrelevant cols : irrelevant predictors to drop
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processes_mc : MC data to be transformed

expr_data : real experimental data to transform

Output:

expr_data, processes_mc after being modified

nnn

def trim (OH_encoder, object cols, irrelevant cols, processes mc, expr_ data):

expr data = expr data.drop(irrelevant cols, axis=1)
OH cols_data = pd.DataFrame(OH encoder.transform (expr data[object cols]))

# One—hot encoding removed index; put it back

OH cols data.index = expr data.index

# Remove categorical columns (will replace with one—hot encoding)

num_data = expr data.drop(object cols, axis=1)

# Add one—hot encoded columns to numerical features

expr data = pd.concat ([num_ data, OH cols data], axis=1)

for i in range(len(processes_mc)):

processes _mc|[i] = processes _mc[i].drop(irrelevant cols, axis=1)
OH_cols mc = pd.DataFrame(OH _encoder. transform (processes _mc[i]|[object cols]))

# One—hot encoding removed index; put it back

OH cols mc.index = processes mc|[i].index

# Remove categorical columns (will replace with one—hot encoding)

num_mc = processes_mc|[i].drop(object cols, axis=1)

# Add one—hot encoded columns to numerical features

processes_mc[i] = pd.concat ([num_mc, OH cols mc], axis=1)

return expr data, processes mc
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nnn

Compute the weights needed for training/sampling. These weights account for the
discrepancy between the expected relative frequency of background processes and
the relative sizes of mc background processes we have at our disposal.
nnn
def compute weights():

## Luminosity of each year

lumi = 11580.

## cross section of each process
xsecZZ4 = 0.107
xsecZZ2mu2e = 0.249

xsecTTBar = 200.

xsecDY50 = 2955.
xsecDY10 10.742

scalexsecHZZ = 0.0065

## Number of MC FEvents generated for each process
nevtZZ4mu = 1499064

nevtZZ4e = 1499093

nevtZZ2mu2e = 1497445

nevtHZZ = 299973

nevtTTBar = 6423106

nevtDY50 = 29426492

nevtDY10 = 6462290

# Compute training weights

weights = lumixnp.array ([scalexsecHZZ /nevtHZZ, xsecZZ4 /nevtZZ4mu,\
xsecZZ2mu2e /nevtZZ2mu2e, xsecZZ4 /nevtZZ4e ,\
x8ecDY10/nevtDY10, xsecDY50/nevtDY50,\
xsecTTBar /nevtTTBar])
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weights [0] = sum(weights[1:])

return weights

nnn

Produce a mizture sample from background processes.

Input:

processes : background processes to sample from

frequencies : relative frequency at which to sample each background process
sample size : size of sample to be returned

Output :

requested sample

nnn
def sample(processes, frequencies, sample size):
process choice = pd. Series (np.random. choice (a=np.arange (len(frequencies)),\
size=sample size, p=frequencies))
sample sizes = process choice.value counts()\

.reindex (np.arange (len(frequencies)), fill value=0).sort_index()

sample = pd.DataFrame ()
for i in range(len(processes)):
try:
mixing sample = processes|[i].sample(sample sizes[i], replace=True)
except:

mixing sample = pd.DataFrame ()
sample = pd.concat ([sample, mixing sample], axis=0)

return sample
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def split(processes):

train _processes = []

[

synth processes = []

sim processes

for i in range(len(processes)):

train _process, sim_ process = train_test split(processes|[i],\

try:

test size=.2, random state=0)

train _process, synth process = train_ test split(train_process,)\

test size=.1, random state=0)

except:

synth process = pd.DataFrame ()

train_processes.append (train_process)
sim _processes.append(sim_process)

synth processes.append(synth process)

return train processes, sim_processes, synth processes
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A.2 Statistical Tests

Listing A.2: Data Loading and Munging

# Ezxzperimental data Loading (LHC 2012)
data = util.load expr data()

# Simulated data loading

mc_processes = util.load processes()

# Qualtitative features
object cols = ['PID1’, ’PID2’, ’PID3’, ’'PID4’]

# Features to be discarded (note derived features ‘mass‘, ‘mass_zl‘, ‘mass_z2°
are initially discarded)
irrelevant cols = [’Unnamed:_0’, ’Run’, 'Event’, 'Ql1’, ’Q2’, 'Q3’, ’Q4’, ’'mass’,

‘mass_zl1’, ’mass_ z2’|

# data munging

OH _ encoder = util.encoder(mc_processes, object cols)
data, mc_processes = util.trim (OH_ encoder, object cols, irrelevant cols, mc_ processes,
data)

# compute weights for training

weights = util.compute weights()

counts = np.array ([ process.shape|[0] for process in mc_ processes])

# used for generating samples from P_0
PO _frequencies = weights|[1:] * counts[1:]

PO _frequencies = PO _frequencies/np.sum(P0_frequencies)

# Split simulated data to three sections:

# — training data: used in obtainint |hat{LLR(X)}

# — simulation data: used in approximating testing parameters (i.e. E[|hat{LLR}(X)]
under P)

# — synthetic data: used in measuring the detection capability of the tests

39



train _processes, sim_processes, synth processes = util.split (mc_processes)

# Append weights to training data

for i in range(len(train_ processes)):

train _processes[i] = train_ processes|[i]. assign (weight=weights[i]*np.ones(\

train_processes|[i].shape[0]))

X = pd.concat(train_processes, axis=0)
training weights = X.pop(’weight )
y = X.pop(’signal’)

Listing A.3: Obtaining LLR

from keras.models import Sequential

from keras.layers import Dense

# Train binary classifier on cross—entropy loss to obtain |hat{LLR}(X)
def DNN training(input dim):
# Construct the model
model = Sequential ()
model.add (Dense (10, input dim=input dim, activation=’relu’))
model . add

Dense activation="relu’))

model . add

( (10
model.add (Dense (10, activation="relu’))
(Dense (1,

activation="sigmoid "))

# compile the model

model.compile(loss=’binary crossentropy’, optimizer=’adam’, metrics=[’accuracy’])

return model

training _model = DNN _training(X.shape[1])

training model. fit (X, y, sample weight=training weights, epochs=10, batch size=64)

# Output
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Fitting model

Epoch 1/10

4432/4432 | ] — 7s lms/step
— loss: 0.0129 — accuracy: 0.0980

Epoch 2/10

4432/4432 | ] — 6s lms/step
— loss: 0.0064 — accuracy: 0.0985

Epoch 3/10

4432/4432 | ] — 5s 1ms/step
— loss: 0.0057 — accuracy: 0.14

Epoch 4/10

4432/4432 | ] — 5s 1ms/step
— loss: 0.0053 — accuracy: 0.1898

Epoch 5/10

4432/4432 | ] — 5s 1lms/step
— loss: 0.0050 — accuracy: 0.2446

Epoch 6/10

4432/4432 | ] — 5s 1ms/step
— loss: 0.0051 — accuracy: 0.2339

Epoch 7/10

4432/4432 | ] — 6s lms/step
— loss: 0.0050 — accuracy: 0.2621

Epoch 8/10

4432/4432 | ] — 5s 1ms/step
— loss: 0.0048 — accuracy: 0.2966

Epoch 9/10

4432/4432 | ] — 5s 1lms/step
— loss: 0.0047 — accuracy: 0.2997

Epoch 10/10

4432/4432 | ] — 6s 1lms/step
— loss: 0.0049 — accuracy: 0.2763

# The prediction mneural net uses linear activation in final layer instead of sigmoid
def DNN _predict(input dim):
model = Sequential ()
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model . add
model . add
model . add
model . add

Dense (10, input dim=input dim, activation="relu’))
Dense (10, activation=’'relu’))
Dense (10, activation=’relu’))

(1

(
(
(
( )

Dense
model.compile(loss="binary crossentropy’, optimizer="adam’, metrics=["accuracy’])
return model

temp weights = [layer.get weights() for layer in training model.layers|

prediction _model = DNN_predict (X. shape[1])

for i in range(len(temp weights)):

prediction model.layers[i].set_ weights(temp weights[i])

# Generate a simulated background sample
PO _ processes = sim_processes [1:]
process choice = pd. Series (np.random.choice (a=np.arange (len (PO _frequencies)),\
size=int (le5), p=P0 frequencies))
sample sizes = process_choice.value counts().reindex (up.arange(len(P0_frequencies)),\
fill _value=0).sort_index ()

PO _sample = pd.DataFrame ()

for i in range(len(P0_processes)):
P0_sample = pd.concat ([PO_sample, PO _processes[i].sample(sample sizes[i],)\

replace=True)], axis=0)
h sim = prediction model.predict (PO_sample)

h data = prediction model.predict (data)

mu_hat = np.mean(h_sim)

sigma_hat = np.std(h_sim)
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Listing A.4: CLT Test

from scipy.stats import norm, kstest

# Apply the Kolmogorov—Smirnov test to test whether $|hat{LLR}(X)$ could
# have come from a Gaussian under the null

gaussian fit = norm(loc=mu_hat, scale=sigma hat)

_, p_value = kstest(rvs=h_sim[:10000], cdf=gaussian_fit.cdf)

print ("P—value_for_gaussian_fit:_{}".format(p value))

# P—value for gaussian fit: 0.0

# We reject the null in the Komogornov—Smirnov test to we stop pursuing the CLT

# test and move on to Wilcoron sum—rank rank sum test

Listing A.5: Wilcoxon Rank Sum Test

from scipy.stats import mannwhitneyu

_, p_value = mannwhitneyu(h data, h sim, alternative=’greater’)
print ("P—value:_{}".format (p_value))
# P—value: 0.0003181904979632733

Listing A.6: GLRT Test

# GLRT Test
def obj(x):
return —2snp.nansum(np.log(l + xx(np.exp(h _data) — 1)))

from scipy.optimize import minimize scalar

from scipy.stats import halfnorm

result = minimize scalar (obj, method=’bounded’, bounds=(0, 1))

print ("P—value:_", 1-halfnorm.cdf(—result.fun))
# P—value: 0.0

43



A.3 Adding Derived Features

Listing A.7: Integrating Derived Features

# Repeat entire experiment for with enhanced derived featuers

# Important for re—production
tensorflow .random. set seed (0)

np.random. seed (0)
# re—load data here

data = util.load expr data()

mc_processes = util.load processes|()

# munge data here

object cols = ['PID1’, ’PID2’, ’PID3’, ’PID4’|

irrelevant cols = [’Unnamed:_0’, ’Run’, ’'Event’, 'Ql’, ’Q2’, ’Q3°, "Q4’]
OH encoder = util.encoder(mc_processes, object cols)

data, mc_processes = util.trim (OH_ encoder, object cols, irrelevant cols,\

mc_processes, data)

train processes, sim_processes, synth processes = util.split(mc_processes)

for i in range(len(train_ processes)):
train _processes|[i]| = train_ processes|[i].assign(weight=weights|[i]|*np.ones(\

train _processes|[i].shape[0]))

# re—train
X = pd.concat(train_processes, axis=0)
training weights = X.pop(’weight’)

y = X.pop(’signal’)

training model = DNN _training (X. shape[1])

print (’Fitting_model”)
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training model. fit (X, y, sample weight=training weights, epochs=10, batch size=64)

# re—compute h_sim, h_data
PO _processes = sim_processes[1:]
process choice = pd. Series (np.random. choice (a=np.arange(len(P0_frequencies)),
size=int (le5), p=P0 frequencies))
sample sizes = process choice.value counts()\
.reindex (np.arange (len(P0_frequencies)), fill value=0).sort_ index ()

PO _sample = pd.DataFrame ()

for i in range(len(P0_ processes)):
P0_sample = pd.concat ([PO_sample, PO _processes[i])\

.sample (sample sizes[i], replace=True)|, axis=0)

P0_sample.pop(’signal’)

temp weights = [layer.get weights() for layer in training model.layers|

prediction _model = DNN_predict (X. shape[1])

for i in range(len(temp weights)):

prediction model.layers[i].set weights(temp weights[i])

h sim = prediction model.predict (PO _sample)
h data = prediction model. predict (data)

# Output

Fitting model

Epoch 1/10

4432/4432 | ] — 7s 1lms/step
— loss: 0.0196 — accuracy: 0.1053

Epoch 2/10

4432/4432 | ] — 8s 2ms/step
— loss: 0.0068 — accuracy: 0.1007

Epoch 3/10
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4432/4432 | ] — 9s 2ms/step
— loss: 0.0050 — accuracy: 0.2498

Epoch 4/10

4432/4432 | ] — 6s lms/step
— loss: 0.0041 — accuracy: 0.3945

Epoch 5/10

4432/4432 | ] — 6s lms/step
— loss: 0.0034 — accuracy: 0.4735

Epoch 6/10

4432/4432 | ] — 8s 2ms/step
— loss: 0.0045 — accuracy: 0.3294

Epoch 7/10

4432/4432 | ] — 8s 2ms/step
— loss: 0.0040 — accuracy: 0.3875

Epoch 8/10

4432/4432 | ] — 6s 1lms/step
— loss: 0.0029 — accuracy: 0.5059

Epoch 9/10

4432/4432 | ] — 6s 1lms/step
— loss: 0.0031 — accuracy: 0.4907

Epoch 10/10

4432/4432 | ] — 7s lms/step
— loss: 0.0034

accuracy: 0.4807

# Wilcoxon Sum—Rank
_, p_value = mannwhitneyu(h data, h_sim, alternative=’greater’)

print ("Wilcoxon_P—value:_{}".format(p value))
# GLRT
def obj(x):
return —2*np.nansum(np.log(l + x*(np.exp(h_data) — 1)))

result = minimize scalar (obj, method=’bounded’, bounds=(0, 1))

print ("GLRT_P—value:_{}\n\n".format(l—norm. cdf(np.sqrt(—result.fun))))
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# Wilcoxon P—value: 2.4285024235388715e¢—06
# GLRT P—value: 0.0
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A.4 Detection Capability

Listing A.8: P-value computation

from scipy.stats import norm, mannwhitneyu
def compute p value(data, h _sim, h_ hat):

n = len(data)

h data = h_hat.predict (data)

# Wilcoxon Sum—Rank
_, p_value = mannwhitneyu(h data, h sim, alternative=’greater’)

return p_ value

Listing A.9: Detection Capability Computation

def detection capability (synth processes, P0_proportions, h hat, h sim,\
p_threshold=.01, accuracy=500):
recent = np.array ([ float(’nan’)]%10)

synth PO sample = util.sample(synth processes|[l:], PO _ proportions, int(2e4))

for i in range(0, accuracy):

mixing ratio = i/accuracy

noise bkg choice = pd. Series (np.random.choice ([0, 1], size=300,\
p=[l—mixing ratio, mixing ratio]))
sample sizes = noise bkg choice.value counts().\

reindex (up.arange (2), fill value=0).sort index()

synth data = pd.DataFrame ()
synth data = pd.concat ([synth data, synth PO sample.\

sample (sample sizes|[0], replace=True)|, axis=0)
synth data = pd.concat ([synth data, synth processes[0]\

.sample (sample sizes[1], replace=True)|, axis=0)

synth data.pop(’signal’)
synth data.pop(’weight’)
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p_value = compute p_ value(synth data, h sim, h_ hat)

recent = np.delete(recent, len(recent)—1)

recent = np.insert (arr=recent, obj=0, values=p value<p threshold)
if np.nanmean(recent) >.5:

return mixing ratio — 5/accuracy

return

Listing A.10: Vanilla Detection Capability

)

print (’Detection_Capability:_’, detection capability (synth processes,\

PO frequencies, h hat, h sim))

# Output
Detection Capability: 0.10200000000000001

Listing A.11: Detection Capability with Derived Features Added

with open(’../experiment assets/enhanced h.npy’, ’'rb’) as f:
h sim = np.load (f)
_ = np.load(f)
PO frequencies = np.load (f)

h_ hat = keras.models.load model(’../experiment assets/enhanced model”)
synth processes = []
for i in range(len(PO_frequencies)):

../ experiment assets/enhanced synth process ’\

4 ostr(i) + '.pkl?))

synth processes.append(pd.read pickle(

)

print (’Detection_Capability:_’, detection capability (synth processes,\
PO frequencies, h_hat, h_ sim))
# Output

Detection Capability: 0.076
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