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Abstract

Consider an empirical measure P, induced by n iid samples from a d-dimensional
K-subgaussian distribution P. We show that when K < o, the Wasserstein distance
W3 (P, +«N(0,0%1;), PxN(0,0%1,;)) converges at the parametric rate O(1/n), and when
K > o, there exists a K-subgaussian distribution P such that W2 (P, * N'(0, 021,), P
N(0,021;)) = w(1/n). This resolves the open problems in|7], closes the gap between
where we get parametric rate and where we do not have parametric rate. Our result
provides a complete characterization of the range of parametric rates for subgaussian
P.

In addition, when o < K, we establish more delicate results about the convergence
rate of W2 distance squared. Assuming the distribution is one dimensional, we provide
both the lower bound and the upper bound, demonstrating that the rate changes
gradually from ©(1/4/n) to ©(1/n) as 0/K goes from 0 to 1. Moreover, we also
establish that D (P, * N'(0,021,)||P « N'(0,021;)) = O(1/n). These results indicate
a dichotomy of the convergence rate between the W2 distance squared and the KL
divergence, resulting in the failure of T5-transportation inequality when o < K, hence
also resolving the open problem in [17] about whether K < ¢ is necessary in proving
whether the log-Sobolev inequality holds for P AV/(0, 0?).
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Chapter 1

Introduction

Given n iid samples X1, ..., X, from a probability measure P on R? let us denote by
P, = 23", dx, the empirical distribution. As n — oo it is well known that P,, — PP
according to many different notions of convergence. The literature on the topic is
very large even if one restricts to convergence in Wasserstein W),-distances, cf. [16,

Chapter 1], defined for p > 1 as
W,(P.QF = juf {EIIX — YIF]: Px =P,y =@},
where || - || is Euclidean norm. Indeed, already in [4] it was shown that
Wi(P,,P) = ©(n~ %),

for d > 2 and compactly supported P absolutely continuous with respect to Lebesgue
measure. Dudley’s technique relied on the characterization (special to p = 1) of W}
as suprema over expectations of Lipschitz functions. However, his idea of recursive
partitioning was cleverly adapted to the realm of couplings in [1], recovering Dudley’s

1/d

convergence rate of n=/® also for p > 1. See [3, 5, 18| for more on this line of work,

and also for a thorough survey of the recent literature.

We see that while P,, — P in W-distance, the convergence rate slows down as

d

dimension d increases. Unfortunately, the rate of n='/¢ is impractically slow already
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for moderate d. It turned out [7], however, that the rate of convergence improves all

the way to (dimension-independent) n~"/2 if one merely regularizes both P,, and P by
ll=||?
convolving with the Gaussian density. More precisely, let ¢ 27, () £ (270%)~%2e™ 202

be the density of N'(0,0%1,;) (if d = 1, we simply write p,27,(-) as ¢,(+)), and for any

probability measure P on R? we define the convolved measure via

P x N(0,0%1,)(E) = /EdzE [Po2r,(X —2)], X ~P,

where F is any Borel set. Then [7, Prop. 6] shows

E[W2(P, * N(0,0°1,),P * N(0,0%1,))] < M (1.1)

whenever P is K-subgaussian and K < §. We recall that X ~ P is K-subgaussian if
]E[e(’\’X_]E[X])] < e2K?IAIP VA e RY.

Note that in (1.1) constant C' does not depend on P. The (1.1) is most exciting
for large d, but even for d = 1 and P = N(0,1) it is non-trivial as E[WZ(P,,P)] <
bgl%. Another surprising feature is [7, Corollary 2|: for K > V20 there exists a
K-subgaussian distribution P in R! such that

lim nE[W3 (P, x N(0,0%1,), P * N(0,0%1,))] = oo, (1.2)

n—oo

where the expectation is with respect to n samples according to P. We say that
the rate of convergence is “parametric” if (1.1) holds and otherwise call it “non-
parametric”. Thus, the results of [7] shows that parametric rate for smoothed-W5 is
only attained by sufficiently light-tailed distributions P as measured by subgaussian
constant.

In this paper we prove three principal results:

1. Theorem 1 resolves the gap between the location of the parametric and non-

parametric region: it turns out that for X' < o we always have (1.1), while
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for K > o we have (1.2) for some K-subgaussian distribution P in R'. (We
remark that for W, we always have parametric rate n='/2 for all K,o > 0, cf |7,

Proposition 1].)

2. In the region of non-parametric rates (K > o) a natural question arises: what

rates of convergence are possible? In other words, what is the value of

log E[W,(PP 21,), P 2y
p=p(K,o,d) = lim sup _log E[Ws (P, * N'(0,0°14), P N(0,0°14))]

n—00 pP_ K-subgaussian log n

(1.3)
Previously, it was only known that § < p < 1 for all K > o (note that (1.2)
strongly suggests but does not formally imply p < %) Theorem 2 shows new

upper and lower bounds for d = 1, which, albeit non-matching, demonstrate

that p11/2as K toand p | 1/4as K | 0.

3. So we can see that for a class of K-subgaussian distributions convergence rate
of Wa(P, *N(0,0%1;),PxN(0,021,)) changes from n~'/4 to n~'/? as ¢ increases
from 0 to K, after which the rate remains n~/2. Our final result (Theorem 3)
shows that, despite being intimately related to W5 the Kullback-Leibler (KL)
divergence behaves rather differently: For all K-subgaussian P we have

C(o,K,d)log?t!n K>o

Y

E[D(P, * N(0, 0% 1) ||P x N(0, 0%1,))] < " . (1.4
C(0,K,d) K<o

n )

where D(u|lv) = [dvf(z)log f(x), f £ 3—5 whenever p is absolutely continuous
with respect to v. Now from the proof of Theorem 1 we also know that for
K > o KL-divergence is w(+). Thus, while at K > ¢ both W, and KL switch
to non-parametric regime, the Wy distance experiences a polynomial slow-down

in rate, while KL only gets hit by (at most) poly-logarithmic penalty.

To better understand relationship between the W5 results and the KL one, let
us recall an important result of Talagrand (known as Tp-transportation inequality).

A probability measure v is said to satisfy the T3 inequality if there exists a finite
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constant C such that
VQ: WF(Q,v) <C-D(Qlv).

The infimum over all such constants is denoted by T5(v). Talagrand originally demon-
strated that T5(¢,) < co. It turns out that T5(P % ¢,) < oo as well. This was first
shown by [19] for compactly supported P and extended to K-subgaussian P with
K < o in [17] (in fact, both papers establish a stronger log-Sobolev inequality (LSI)).

Now comparing (1.4) and the lower bound for all K > ¢ established in Theorem 2

we discover the following.

Corollary 1. For any K > o there exists a K-subgaussian P on R such that P *
v, does not satisfy To-transportation inequality (and hence does not satisfy the LSI
either), that is To(P x @ ) = 0.

We remark that it is straightforward to show that
sup{T5(P x ¢, ) : P — K-subgaussian} = oo

by simply considering P = (1 — €)dg + €dy for ¢ = 0 and N — oo (cf. Appendix B).
However, each of these measures has T, < oo. Evidently, our corollary proves a

stronger claim.

Incidentally, this strengthening resolves an open question stated in [17], who
proved the LSI (and T3) for P ¢, assuming E[e*X’] < oo holds for some a > ot
They raised a question whether this threshold can be reduced, and our Corollary
shows the answer is negative. Indeed, one only needs to noticed that whenever X ~ P

is K-subgaussian it satisfies

E [6@(2} <oo Va< (1.5)

2K2’
which is proved in [2, p. 26].
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1.1 Main results and proof ideas

Our first result is the following

Theorem 1. If K < o, then for any K-subgaussian distribution PP, we have

E [W3 (B, x N(0,0%1,),P x N(0,0%1;))] = O (l) ,

n

where P,, is the empirical measure of P with n samples, and the expectation is over

these n samples. If K > o, then there exists a K-subgaussian distribution P such that

E [W2(P, * N(0,0%1,), B % (0, 0°1,))] = w (1) |

n

Previous results. [7] shows when K < ¢ /2, E[W3 (P, * N(0,021), P * N(0,021,))]
converges with rate O (1); when K > 20, E[WZ(P, * N'(0,021,), P« N(0,0%1,))]
converges with rate w (%) Here is an obvious gap between K < ¢/2 and K >
V20, and our results close this gap between these two. Moreover, [11] shows that
E [Wa(P, * N(0,0°14), P+ N'(0,0%14))] converges with rate O (=) for any K and

o> 0.

Proof idea. In order to prove the convergence rate of smoothed empirical measures,

we consider the following quantity: The mutual information
1,2(S;Y)

where S ~ P, Y = S + Z with Z ~ N(0,0?) independent to S. Actually for this

I,2(S;Y’) we have the following closed-form definition:
La(8:Y) = E [\* (N(8,0° L) [EN (S, 0L,) )|

where the first and second expectation are in terms of S ~ P and S ~ P respectively,
with S 1L S.w

According to [7], the convergence rate of smoothed empirical measure under W,
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KL-divergence and the x*-divergence is closely related to this I,2(S;Y):
(Proposition 6 in [7]) If P is K-subgaussian where K < ¢ and 1,2(S;Y") < oo, then

E [W3 (P, « N(0,0%1,),P « N(0,0%1,))] = O (1) .

n
(Corollary 2 in [7]) If 1,2(S;Y") = oo, then for any 7 < o,

E [W3(P, « N(0,7°1,), P« N'(0,7°1y))] = w (1) :

n
Hence our results follow from the following main technical propositions.

Proposition 1. When K < o, for any K-subgaussian d-dimensional distribution P,

we have L,2(S;Y) < 0o, where S ~ P, Z ~ N(0,0°14),S L Z andY = S+ Z.

Proposition 2. When K > o, there exists some K-subgaussian 1D distribution P

such that [2(S;Y) = o0 for S ~P,Z ~ N(0,02),S IL Z andY =S + Z.

We will prove these two propositions in the following two sections separately.

Other implications. Results from [7] and the first item of our Proposition 1 also
imply that E[Dgr(P, * N(0,0%1,)||P * N(0,0%1;))] and E[x?*(P, * N(0,0%1;)||P *
N(0,021,))] both converge with rate O (1); and the second item of our Proposition 2
implies that E[Dg (P, * N(0,021,)|| P * N'(0,021;))] converges with rate w (<), and
Ex?(P, * N(0,021,)||P * N(0,0%1;)) = cc.

If we suppose the distribution P is 1D, then we have the following delicate esti-

mation on the convergence of W2 distance:

Theorem 2. If we know that the distribution P is 1D in prior, then we have the

following two propositions:

1. (Lower Bound) For any K > o > 0 and € > 0, there ezists some K -subgaussian

distribution P such that

tim i B V2 (Pr # N (0, 0%1a), P+ N(0, 02 1a))]

n—00 n(o?+K2)2 /(4o +K*))+e

> 0.
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2. (Upper Bound) Suppose P is a 1D K-subgaussian random variable (P(|z| >
tlz ~ P) < Cexp (—%) with C' > 1), and P, to be an empirical measure of

generated from n samples of P. Then for any o < K,e > 0 we have

E [W3(PxN(0,0%),P, « N(0,0%))?] = O (n_2KK+> : (1.6)

Remark 1. According to Cauchy-Schwarz inequality, we have

E [Wa(P x N(0,0%), B, N(0,0%))] < \/E [WE(P « A(0,0%). B, % (0, 02)].

Therefore, the lower bound part in Theorem 2 indicates that for any K and ¢ > 0,

there exists some K -subgaussian distribution P and o > 0 such that

lim inf E [WZZ(]P)n * N(O, 02Id), P x N(O’ gzjd))]

n—00 n(o?+K2)2/(2(c*+K*))+e

> 0. (1.7)
and upper bound part in Theorem 2 indicates that
~ [ K> .
E [Wa(P x« N(0,07),P, * N(0,0%))] = O (n 22K2-57) ) :

Previously in [7], an upper bound O(n=*/2) and also a lower bound w(n™') are demon-

strated for cases where 1,2(S;Y) = co. We compare our upper bound and lower bound

in (1.6) and (1.7). The relationship among these bounds are shown in Figure 1. The
0.2

r-axis is kK = 7z and the y-awis is the convergence rate (the convergence rate is o if

we proved a convergence upper or lower bound at n®*¢ for any € > 0).

Finally we provide an upper bound on the convergence of smoothed empirical

measures under KL divergence:

Theorem 3. Suppose P is a d-dimensional K -subgaussian distribution, then for any

o > 0, we have

E [Dicr (P, + N(0,0%1,)||P + N(0,0%1,))] = O ((log_")“l) |

n
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Figure 1-1: Relationship of Upper and Lower Bounds of Convergence Rate of E [W7]
(for 0 <k < 1)
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Remark 2. From Proposition 1 and 2 and also results from [7], we know that for
when o > K, the convergence rate is of O (%) From the above theorem, we know that
when 0 > K, the convergence rate is between w (1) and O <M>. Hence there is

n n

a separation of convergence rate at Z <1 and & > 1.

Remark 3. Notice that from Theorem 3, we see a dichotomy between the conver-
gence rate of smoothed measures under the W2 distance and under the KL distance.
From the lower bound part of Theorem 2 we observe that when 0 < o < K, the
convergence rate under W2 distance must be worse than under KL distance, e.g.
Q (n_(”2+K2)2/(4(”4+K4))_E)> versus O (1). This is mainly due to the failure of log-
Sobolev inequality for distribution Px N (0, 0?) when the subgaussian constant K of P
is greater than o. (Theorem 1.2 in [17] only applies to cases where K < ¢.)

1.2 Organization of this Paper

In Section 2 we will present the proof of Proposition 1. In Section 3 we will present
the proof of Proposition 2. The proof of the lower upper part and the upper bound

part of Theorem 2. Finally in Section 6, we will present the proof of Theorem 3.
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1.3 Notations

Throughout this paper, we use % to denote convolutions of two random variables, i.e.
for X ~PY ~Q, X 1LY, we have X +Y ~ PxQ; we use ® to denote the product
of two random variables, i.e. for X ~ P,Y ~ Q, X 1l Y, we have (X,Y) ~ P ® Q;
we use o to denote the composition between a Markov kernel Py |x and a distribution
Px, e.g. for Y generated according to Py|x with X’s prior distribution to be Py, then
Y ~ Py|x o Px.

Furthermore, we use P(E) to denote the probability of event F, Ep[-] to denote
the expectation with respect to distribution P. We use A,, = O(B,,), A, = Q(B,) to
denote that A, < CB, and A, > CB, for some positive constant C' independent of
n. We use A = O(B) to denote that A, < CB, -log'n for some positive constant
C, 1. We further use || - ||2 to denote Euclidean norm, and use I, to denote the d x d

identity matrix.
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Chapter 2

Proof of Proposition 1

In this section, we provide proof for Proposition 1. The proof idea is to decompose
the integral domain into three subdomains, and we prove that the integral within

each subdomain is finite.

Proof. We suppose distribution P is d-dimensional, and use A (0, 0%I;) to denote the
d-dimensional mean-zero multivariate Gaussian distribution with covariance matrix
021y, and @,er,(x) = (V270) Yexp ( ”x”2> to denote its PDF x € R%. Then with
S~P, Z~N(0,0%;),S 1L Z and Y = S + Z, we have

Lo(8Y) = E [y* (N(S,0° L) [EN (S, 0°1,) )|
B 021d<z - 5)2
- Uuw ISEé%m(z —5™ 1} (2.1)

Wy | [ e Clam s
J. Eesxp (-2 - 5]3/(20%))

where S, S ~ PP are i.i.d. Hence we only need to prove that when P is a K-subgaussian

distribution with K < o,

exp (—||z — S||2/0?) exp (=llz = Sll3/7?) - oo,
: /R E exp (—HZ—SH /( 202 /R /R E exp —Hz—SH /(202>)dp(5>d )

We decompose the integral domain of (S, z) into three sets:
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Lo A=A{[[S]2 <1}

2. B= {52 > 1 and ||z = S>> 6| 5l2};

3. € ={llz = 5ll2 <[ 5ll2}-

exp(—lz—S|[3/0?)
oxp(—[|z—33/(202)

Since AUBUC = R? x R, and the integrand o j is always positive,

we have

el exp (<llz=Sl3/0®) | o [ e exp (<llz = SI3/o*)
w Eexp (~|lz - SIB/(20%) |~ /e T Eexp (=2 - SIB/(202)

exp (—||z — S|3/0?
8| [t b (-l SlE/o")
T Eexp (<l - SJ3/(207))

dz

_ - S 2 2
vB | [t SRl S,
T Eexp (|2 - S3/(20%))

We will proves the finiteness of these three integrals separately.

1. Part 1: In this part, we will prove that

exp (—||z — S|3/0?
Y- == S1B/o%)
T Eexp (—llz - SIB/(20%))

exp (—||z — S|3/0?
- o (<lla =S/ |
% Eexp (—|lz — SI3/(20%))

(2.2)

We let
po=P(|S]l2 <1) =E [Ljg,<1], S~P.

WLOG assume that py > 0 (if pg = 0 then the above formula equals to 0, hence

less than infinity). First of all, the denominator in (2.2) has the following lower

22



bound:

Eexp (2 = SI3/(20%)) > E |15, exp (-2 — S|3/(20% )|

= <]E1||5||§1> - exp (_W)

When [|S||2 < 1, we can further upper bound the numerator exp (—||z — S||3/0?)
by
( |z — 5||g) exp (—([lzll — 1)?/0?)  lz[| > 1,
exp (| ————=

2 <
0 1 |z < 1.
Therefore,
LHS of (2.2)
_ -1 2 2 1
SE | 1sa< / o (~(Jlzll: ~ 1)°/o7) z+/ _da
l2ll:>1  po exp (—”'ﬂ%”) lela<1 pg exp <__(”zg§1> )
213 , 3lizlle 1 ) (lells + 1)?
/ZIlzzl 20? o? 2072 |22 <1 2
< 00,

which proves that inequality (2.2) holds.

2. Part 2: In this part, we will prove that for any é > 0,

exp (—||z — S||%/o?
o\ [ tiner Pl =SB/ _,
T Eexp (— |z - SI3/(202)

exp (—||z — S|%/0?
. pllo- s/t |
lz—Sl2231Sl2 E exp (—Hz - SH%/(%?))

First notice that
ISz > 1} C UpZ, Ag,

where A;, = {S|||S||2 € (k,k+1]}. Let I}, to be smallest number of R? balls with
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diameter 2 which can cover the set A;. Then we have [, = O(k?) (note that here
we only need to prove that the integral is finite, hence we ignore the constants).
We denote these [, balls using Ay, -, Ak, , where we have Ay C Ué’;lAk,i.

For each £ > 1 and 1 <1 <[, we use py; to denote the probability of S in Ay ;:
Pri = P(S & Akﬂ) = E]-SEAk,u S ~ P.

We notice that for any S, S € Ay, we have ||S — S||» < 2, hence

z — 5|2 z — S|
]Eexp <—%) Z E 1561416,1- exp <—%>]

_ g2 B a2
> Pr; Min exp (_M> = Pk, min exp (—HZ S+(S S)HQ)

SeAy,; 202 SeAy,; 202
- S 2)?
oo (=Sl 2P
’ 202

We obtain the following upper bound on the expectation in (2.3) specifically for
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S e A,Iw'l

exp (—|z = S|3/0?)
E | 1sea,, -
Jo-Sl2>51S]2 Eexp (—Hz — 3|2 /(202))

<E |1 exp (=||z = SlE/o*)
= S AR (lz—S|[2+2)?
lo=Sll2>8l1S1l2 py ; exp (—Uz=Slz2?

1 — 5|2 — S|y + 2)2
<E SEA;H/ exp (_HZ : ||2+(||Z 2||22+ ) )dz]
L Pri Jiz—Sl226]S]2 o 7
1 2 2)2
_E SEAIH/ (_Iluy +(||u||z-; ))du}
L Phii u||z>6||S||z o 20 04
1 2 92)2 24
E SeA,m/ exp (_||u|2| +(“u“2j ))du}
L Dk, llull2>ké o 20
ua)? N (hallz +2)? Ju
u||2>k5 o? 202
2
/ R SR AP
u||2>k§ o? 202
= exp(6/02)/ exp (—M) d
lulla>ks 4o?

~200xp(6/0°) | exp (—[[ul) du,

[all2>kd/(20)

dz

IN

IN

where we use the fact that ||S|| > & for S € Ay, and Elgea, , = pr,. Moreover,

according to changing of variables in integration, there exists some constants

/ exp (~ ) du
lull2>kd/(20)

oo
= Cy / riexp (—7"2) dr

ko /(20)

< C’O/ exp((d — 1)r) exp (—r?) dr
k) (20)

Cy such that

When £ < 2"d , since the integrand in the above RHS has exponentially decay,

there exists a constant C; not depending on k, ¢ such that

CO/ exp((d — 1)r)exp (—r?) dr < C4
k5/(20)

25



When r > k > %i, we have (d — 1)r — r? < —r < —k, which indicates that

o0

Co /k T ep((d=1)r)exp (=) dr < G /

exp(—r)dr = Cyexp (—k—é) .
5/(20) ks /(20)

20

Therefore, we obtain that

_ o 2 2
E ISGA,W./ exp (|2 :9||2/U ) dz| < 20exp(6/0°)C,
lz—Sl2231l> B exp <—Hz - Sy|§/(2a2))

for k < %, and

_ _ 2 2 LS
E 1SGAM / exp( ||Z ~S||2/U ) dz| < 20 eXp(6/U2)C’0 exp <_2_>
lz—Sl22015]2  exp <—Hz - Sy\g/(zcﬂ)) o

for k > 2%. Next noticing that [, < (2k +3)? and A, C Ué’;lAk,i, summing up

these expectations for 1 < i <[, we obtain that for 1 < k < 2%1,

Ay — QU2 /2
E 1SeAk/ exp (=12 ?HQ/U ) dz| < 20 exp(6/0®)Cy(2k+3)4,
lz—Sll2>6]1S]l2 E exp (—||z - S||§/(202))

20d
I

e Q242
e 1o | exp (|2 SB/o)
Jo-Sl:>31S]2 B exp <—||z iy /(202))

and for k >

< 20 exp(6/0%)Cyexp (—I;—(S) (2k +3)%.
o
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Finally summing up for all £ > 1, we obtain that

exp (—||z — S||2/0?
o [ bl Slfet)
lz—S22a1Sl2 E exp (—Hz - SHg/(za?))

e}

- . 2 2
S|, exp (“|lz = SIE/*)
Jo-Slz>31S]2 B exp (—Hz ~ 3|2 /(202))

< 20 exp(6/0%)C1(2k + 3)* + Z 20 exp(6/0*)Cy exp (—];—5) (2k + 3)¢
o

1<k< 294 k> 224

which proves inequality (2.3).

3. Part 3: In this part, we will prove that there exists some 6 > 0 (depending

on K and P), we have

_ _ 2 2
E /1(572)60 exp (~z 19”2/‘” dz| < oo, (2.5)
o Eexp (—|lz - S513/(20%)

which is equivalent to

< 0Q.

Ay — Q2 /2
o[/ o (o= SI3/e%)_,
lz—Sll2<4]ISll2 E exp <—||z - SH%/(202)>

Given the distribution P, first we find constants ¢, € such that P <||§ |2 < t> > €

for S ~ P. This indicates that for any & > 0, the following inequality holds for
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Yz € R%:

E >E

|z — 5|3 Il — 5|3
exp <_ 252 1||§||2St exp | — 252
: Iz — 5|3 (llzll2 + )*
> (E1,¢ > —= | > € _
= ( 1S||l2<t IIgIlliI%t exp ( 902 2 €-€exp 952

2 2 5 2, t?
- <_quz+t _ Flalg+ )

202 202

_ (1+ )t L+ 0)l=ll5
= eexp ( 7502 exp 552 .

We let

, (1+ 8t
€ = eexp —W s

then given that ||z — S||2 < d[|S||2, we have ||z|]2 < (14 6)||S||2, and hence
_ Q2 1 / 2 1 (1 2 2
. (_HQ_SH> s Conp (~CEEUERY 5 o (0O LDISIE),
o

202 202
This leads to the following estimation on the LHS of (2.5):

E

i, Q|2 /2
LHSof(2.5):]E/ exp (=llz = Sla/o7)
I

2-Sll2<61152 E exp (—||z ~ 3|2 /(20—2))

— SII? / 2 2
e|[ o (2= S CLHONLEOPISIE) )
Jz—Sll><a1|S]l2 o 20

1

6/

1 1+6)(1+6)2 2z — S|

_IE |:6Xp (( )(2 ) ||S||%)/ exp (_H : ”2) d2:|
€ 20 Rd o

)

VAN

VAN

Since K < o, we have % < 1. Hence we can choose §,0" > 0 close to 0 such

that

1 K
T+0)2(1+0) o

Then applying Lemma 1 with £ = o, /Wl(l%’) > K we obtain that LHS of (2.5) <

oo. Hence inequality (2.5) is proved.
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Finally, combining these three parts of proof, we obtain that the integral in (2.1) is
less than infinity, which indicates that 1,2(5;Y") < co. The proof of Proposition 1 is
completed. O

In the next, we will present the proof of Lemma 1. This lemma can also be viewed

from [2, p. 26].
Lemma 1. If S ~ P is K-subgaussian, we have for any £ > K,
15112
E [exp (2—52 < 00
Proof. Assume Z ~ N(0,£21,;) independent to S. Then we have
1513
E {exp < 262

)

1 ALE: STz
g o ()0 ()
()
. [ p (1C12E8)]
52 _ K2 ) _ 52 %
(\/ﬁé—) \/Rd €exXp (_ 54 ||Z||2> dz = (52 _ KQ) < 00,
which completes the proof of this lemma. n
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Chapter 3

Proof of Proposition 2

In this section, we will present a proof of Proposition 2.

Proof. With loss of generality, we assume ¢ = 1, and we only need to prove the
proposition for K > 1. (Otherwise we consider " = S/0, 2" = Z/o and Y' = Yo,
and we will have S’ is a K/o-Subgaussian distribution, Z’ ~ N (0, 1) and I,2(S,Y) =
I1,2(5",Y"). Hence we only need to consider S’,Z" and Y”’, which has the property
that Z' ~ N(0,1).)

We construct 1D distribution P as follows:

P= Z pk5Tk7
k=0

where we choose 79 = 0, po = 1 — ;- pr, and for some positive constant ¢; to be

determined we choose
2
Tk
Pr = C1 €Xp (-m) s k 2 1. (31)

Here we let r; be a geometrical sequence:
7“1:1, Ti+t1 = CTy, VZZI,

where ¢ > 2 is a constant to be specified later. We restrict that ¢; only depends on
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K and

cy - ZleXp <_W) < 1.

Then we will have pg = 1 — > 72 pr > 0, hence P is a distribution on N. also P
is a K-subgaussian. We can also prove that there exists some ¢; > 0 such that for

any constant ¢ > 2, distribution P is a K-Subgaussian distribution. The proof of the

existence of ¢ is deferred to Section A in appendix.

Remark 4. If we switch the definition of K-subgaussian of distribution P from

Vo E[exp (04 (S—E[S]))} < exp <o¢2§(2)7 S, S~P,S1 S

to

2 72
Vo : Elexp (aS)] < 2exp (a2K > , S~P,

then the proof of subgaussian property would be much easier. We notice that

K?a?
Elexp (a.5)] po—i—chexp( Ve k—aK))exp( 5 )

We suppose kg to be the smallest k such that r,—aK? to be positive. Since rj1—ry > 1
for every k, we have for k > ko, r, — aK?* > k — ko + ry, — aK? > k — ko, and for
k<ko g —aK <rgq—aK 4+ (kg—1—k) <ky—1—Fk since rp,_1 < 0. Hence,

we have

ko—1 [e'e]
(ry — aK?)? (rp — aK?)
=S e (O e e (<0
k=1 k=ko
ko—1 00
ko—1—Fk k—k
< exp (— 02K2 >+Zexp (— 2K20)
k=1 k=ko
> 1\ & 1 \* 2
< exp (——> + exp (— ) = .
2ovae) v ae) S en)



l—exp(——1
Therefore, if we choose ¢ = M, and notice that py < 1 < exp <K22a2>) we

would have

K2 2 K2 2 KQ 2
Elexp (a5)] §exp< ; ) —I—exp( ; ) :2exp( 2a )

We first choose ¢; such that for any ¢, P is a K-subgaussian distribution. Then we

will specify constant ¢ such that 1,2(S5;Y) = co. In the following, we will use ¢, (z)
to denote the density of 1D Gaussian distribution AV(0,0?) at x. According to the

definition of 1,2, we have

oy [ Epi(z—9)
[XZ(S,Y)—\/Rde—l

Hence 1,2(S;Y) = oo is equivalent to

dz = dz = 0.

Epo (z-95) 2kmo P2 (2 = 1)
/R Epi(z - S) Zk 1pk‘P1<Z — )

We rewrite the above as

Zk; okaD L (Z_Tk

Zkzl pkipl(z - Tk Z/R 901 z— rk 1 + z Pj wl(z r5)

7k pr e1(z—7%)

1 Z—Tk 1

dz. (3.2

pj Lpl(Z TJ

J#k pr p1(z—rk) for 2

Next, we are going to analyze second term’s denominator 1+ >

close to ry (when |z — rg| < 6 for some 6 < 1).

When j =0 and |z — | < 0, we have

pipilz—ry) o ¢l L e (_22 ry G rk)2>
pepr(z—1k) T prpr(z—rE) T o 2 2K?2 2
| (e —8) 12 &
< = — i
S a ¢ < 2 + 2K? * 2
1 re—op (=0 +855) (1+58)
<—exp |- &
=7 exp 5 + 772 + 5
1 K262 8%\ .
= —exp (g + 5 | 2 C.
o P (2(1 K% 3 )
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For j > 1 and |z —ry| < 4, we have by bounding z(r; —rg) < —ri+rgr;+0|re — 1]

the following chain

ST ERE

1
< exp (— + —) (rg —73) — ri + 1y + 8y, — rj|)

1 1 1 1
(ﬁ+§_1> T — <2K2+2> r?+rkrj+(5rk+(5rj)

l 1 1 1
A 2 A
A ST gt T
l
Bé§7’2+57’k
1
Cé—zlr?+5r]

Note that K > 1 and, thus, £ < 0. We show that by choosing ¢ and ¢ it is possible
to make sure A, B,C < 0 for all k, 7. First, notice that because r, > 1 or r, = 0 by

setting § = min (—g, Z) we have B,C < 0.

Second, we have A = 72 f(ry/r;) where f(z) = §2° + 2 — 533. Since f(0) < 0 and
f(+00) = —o0 (recall ¢ < 0) we must have that for some sufficiently large ¢ > 0 we
have f(z) < 01if 2 < 1/cor z > ¢. For convenience we take this ¢ > 2 as well. Since
/7 is always either < 1/c or > ¢ we conclude A < 0.

Continuing, we obtained that with our choice of ¢, for j # k,j > 1 and |z—rg| < §

pj p1(z —1;) v} r}
LI Il <exp <A+B+C_Z]) < exp (_Z])

we have

Pk o1(2 — 1)

which indicates that 3C” such that

1+Zp“01

= Pepr(z =)

|/\
><
’U
h
~
N
A
Q



Therefore,

Z/ = Z—Tk) ! dz
I =
T‘k+5(10%(2—7’k) 1

> dz
kzzo/rk_d gpl(z_T'k:) 1 +Z Dbj 501 z— 7‘])

J#k p 01(z—r1)

And we have proved that 1,2(S;Y) =

35
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Chapter 4

Proof of the Lower Bound Part in

Theorem 2

To begin with, we consider a simple Bernoulli distribution case, which shares lots
properties in common with the counter example we construct in order to prove the

lower bound of Theorem 2.

4.1 A Simple Bernoulli Distribution Case

We consider Bernoulli distribution P, = (1 — p)dg + pd,, with p = exp (—%) The

behavior of the lower bound of
sup E [Wa (P, * N (0, 0%), Py N(0,0%))]
h
shares the same rate as the lower bound in Theorem 2.

Proposition 3. For some h > 0, we define P, = (1—p)dy + pop, with p = e "*/2K*)

then for any K,o0 >0 and € > 0,
_(4o?/K%)?
sup E [W,(Py, * N'(0,0°), Py, x N'(0,0°))] = Q (n 2¢(1+oT/KT) ) :
h

where Py, ,, 1s the empirical measure constructed from n i.i.d. samples from Py,.
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Lemma 2. Suppose two 1D distribution p,v with probability density function F),, F,
satisfy F,(t) > F,(t + 2), then we have

3=

Wy(p,v) >PY et+1,t+2))r, Y ~u.

Proof. We consider any coupling (X, Y) between p and v under the W, distance,
where X ~ p,Y ~ v. Then we have

PIX-Y|>1)>P(X<t,Y>t+1)>1-P(X>t)—-P(Y <t+1)
=F,t)-PY<t+1)>F(t+2)-PY <t+1)=PY <t+2)-PY <t+1)

=P e[t+1,t+2]).
Therefore, we have

Wonvy = i E[IX - Y]

(X, Y)erl(u,v

> o inf o CE[X - YP1x yi>]
(X, Y)el'(p,v)

> if [P(X - Y|> 1)

T (X,Y)el (u,w)

>P(Y eft+1,t+2).

Therefore, we have W,(u,v) > P(Y € [t +1,t + 2])% O

Proof of Proposition 3. Given h > 0, we assume Pp,, = (1 — pp)do + Prop, where
prn==2("r1 1x,=n), and Xy, -+, X, ~ P, are i.id.

We use F), ,, F,, to denote the distribution function of P, , * (0, 02), P, * N (0, 02).
Then for 0 <t < h,

Fn,a(t) - Fa(t) = (ﬁh - ph)(q)a(t - h) - (I)J(t))>

where @, is the distribution function of A(0,0?%). We let U; = 1x,—p, then according
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to Berry-Esseen Theorem, for V ~ N(0, 1), we have

E|U, — E[U,]?
sup < 3-
z 2y/ny/ Var[U;]

1 n
P (m;[m —EU,] < —:1;) —P(V < —2)

When pj, < 1/2, we have

E[Ul] = Ph,
1
Var[Ui] = pp(1 — pr) > 5P,

E|U; — E[U4]]* < E|UL° = E[Ui] = py.

We choose z = 1, and noticing that P(V > 1) > £ we obtain

S 1 E|U, — E[U;])?

8 aun Var[U1]3
1 1

> — — .

-8  2np,

This indicates that

. < 1 h?
Pn —DPh > NG p AK2

holds with probability at least % — \/%Tp. Then due to the fact that when 0 <t < h—2
and h > 0, ®,(t — h) — P,(t) < ®,(0) — Py(h) < —3, we have with probability at

1 1

~ 1 h?
F,.(t)— F,(t) > —— .
A0 =)= e (1)

Moreover, we have the following estimation of the probability of P, x N(0,0?)
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within the intervals [t,¢ + 2] and [t + 1, + 2]: for X ~ P}, * N'(0, 0?), we have

P(X € [t,t +2])

1 — Ph t12 Dh (h _ t/)?
<92. - _nZrr
a t’g[}f,%f?] [ 2no P ( 202 i V2oro P 202
2 . t? e h? (h—t—2)?2

. X —_— X — J—
oo | P\ T 902 P\ 7oKz 202 ’
P(X e[t+1,t+2)])

: 1 —pn (h—t)?
> -~ 7
B t’e[ﬂllr,}f-m] |: 27‘(‘0 P < > \/_a P ( 202
- 1 . (h —t)?

. X J—

= Voro |5P 2K2 202 )|

where we have use the fact that ¢ € (0, h — 2). Therefore, choosing

<

t_h+02h
2 2K?’

we notice that 3k > 0 such that for h > h, we have t € (0,h — 2). Moreover, with

this choice of ¢, we have
o (b=t

QK2 202 202

Notice that when h goes to infinity, both ¢ and also h — ¢ goes to infinity as well.
Hence for any 0 < § < 1 there exists C, C}, only depending on K, ¢ and ¢ such that
when h > C}, we have

(h—t —2)?

202

(1+0)t?

202

(L-0)(h—t=27  (t+2)

202 202

<

<
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which indicates that

P(X € [t,t+2])

2
0.2
_ 4 ( (1—5)t2) 4 (1—5)(%+m> h?
. ex — = ex - ’
~ V270 P 20?2 V2o P 207
(4.2)
P(X e[t+1,t+2)
1 a? 2 2
1 ( (1+5)t2) 4 (1+9) <§+m> h
- €X — = ex —
~ V270 P 207 V2o P 207
holds for all h > Cj,. We let C; £ ﬁ. Then for h > max{C},, h,c}, and
1 o2 \? 2
1 (1—5)<§+m> h o p2 A
= 1802 P o2 ToR? || (4:3)

we have with probability at least § — \/ﬁ, E,,(t)—F,(t) > P(X € [t,t+2]) holds,

and this indicates that

Foo(t) > F,(t +2).

According to Lemma 2, for any p > 1 we have with probability at least % — m,

W, (P, + N(0,0°), Py, * N(0,0%))*

>P(X e[t+1,t+2])

2

(1+0) (§+;ﬁ)2h2

202

> C’l-exp -

Moreover, we notice that the coefficient of h? in the exponential term of (4.3)

o2

(1-0) (3 + %) R :(1_5)<L+0_2)_L (4.4)

o? 2K? 402  4AK*
is greater than 0 for 0 < § < dg given the fact that o < K. Hence there exists some
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ho (only depending on K and o) such that for h > hg, according to (4.3) we have

2\ 2
-0 (S+5=) 1
2002 P = T 2K?

ny >

Also since o < K, we have
1 L o? - 1
40?2 = 4K* T 2K?’

which indicates that there exists some d; (only depending on K and o) such that the

coefficient in (4.4) satisfies

2
1-0(3+5) 1 1
> .
o? 2K?2 ~ 2K?

And hence there exists some h; (only depending on K, o) such that for all A > hy

and § < %, we have

1 1
< —.

Vnpn 16

Therefore, for all § < min{dy, d1/2} and h > max{hg, h1}, we have with probability

1 1

16 167

oo |

WQ(]P)h * N(Oa 0-2)’ th * N(07 0.2))q

Therefore, for any € > 0, we have
2 9 _O4e?/K?
E [Wy(P + N(0,0°), Py x N(0,0%))] = Q (n 2121 /KT) ) ,

This completes the proof of Proposition 3. n
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4.2 Proof of the Lower Bound Part of Theorem 2

In this section, we present the proof of the lower bound part of Theorem 2. The proof
idea is similar to the above proof of Proposition 3. We summarize the properties
of Py, for all A > 0 into one K-subgaussian distribution, such that this subgaussian

distribution is a hard example for smoothed empirical W2 convergence.

We construct the following discrete distribution
P = Zpk(s'rka Pk 2 07 Zpk = ]-7 (45>
k=1 k=1

where we choose r, = ¢*~! for k > 1 for some positive constant ¢ > 3 to be determined

later, and

—Lex —i k>1 (4.6)
pk_\/%K p 2K2 )7 = 4 .

where C' is a constant between 1 and v2K?mexp (1/2K?) such that Y ;- pr = 1.
Then for X ~ P we have

o0 o0

E[exp(aX)] = prexp(ary) = Y \/%K exp (—% + ozm)

k=1 k
=~ C 2\ 2 a?K?
;mKexp(—W(rk—aK)>exp< 5 )

1

|

Therefore, this distribution is a K-subgaussian.

We let k = ;'(—22 € (0,1), and

(c+1)>2.

N | —

t:%(c+1)(1+/€)2

First we will provide two propositions, which upper and lower bound the probability

of P* N(0,0?) near try.

Proposition 4 (Probability Lower Bound). There exists some positive constant C,
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only depending on o and K such that

Tk+2)2

P(XG[trk—l—l,trk—f—Z])ZCzeXp<—(t2—lic—C)~( 57 ), X ~PxN(0,0?%).

Proof. We let X =Y + Z, where Y € P, Z ~ N(0,0%) are independent. Then we

have
PXeltri+Ltry+2) >PY =r,, Ze[(t—Drg+1,(t—Drg +2])
>pp - P(Z €[t —1rp+1,(t = 1)ry, +2])
1 o ( ((t — l)rk+2)2)
pu— X JE—
/_27rapk p 952
C 2 (t —1)%(ry +2)?
T ook P <_2K2 a 202
C (Tk + 2)2
> - t—1)%) . 22
~ 2roK P ( (H + ) ) 202
e
1 (Tk + 2)2
> (2 — ke —)
g — exp ( (t KC c) 952 ;
where we use the fact that C' > 1. Therefore, if we choose C; = ﬁ, we have the
desired lower bound in this proposition. O

k! 1—K

Proposition 5 (Probability Upper Bound). When ¢ > max {\/5 ﬂ?’}, there exists

some constant C,, only depending on K and o such that

(ry —2)

P(X € [try, tri, +2]) < Cyexp (—(t2 —Cck—c¢)- 52
o

), X ~PxN(0,0%).

Proof. We let X =Y + Z, where Y € P,Z ~ N(0,0%) are independent. And we
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notice that

P

—~

X € [tTk,tTk + 2])

[
NE

PY =r;,Z €try—rj,tr, —r; +2])

<.
Il
—

I
NE

p; - P(Z € [try —rj, try, —r; +2])

1 (try — 7j)? (try —rj + 2)?
SN Z 2p; max {exp ( TQJ cexp | — 2;2

(tr, —rj)? C(trg =1 +2)?
210 “ ij P ( 202 \/ Z Py &P 202

<.
Il
-

IA

] k+1
k—1 2 2 2 2
2C T3 (try, — 1)) 2C r (try — 1)
< _g j Tk
- ; Tok P ( 2K? 202 * rok CP\ T2k 202
> 2C 7"]2' (tTk—Tj+2)2
* Z oK © p( 2K? 202 '
j=k+1

Then we upper bound these three terms in the sum separately:

1. For j > k, we have r? > 7, + j — (k+ 1) and also

(try —7r; +2)% _ (rhp —trg —2)*  ((c—t)r, — 2)?

> —
202 - 202 202
—1)2(r), — 2)2 —2)?
R LS RN
202 202

n+3

after noticing that ¢ > and hence ¢ —t > 1. Therefore, choosing constant

= 2V2K 2 exp (1/2K2 '
Cy = Z 7;;{;? / ) exp (—L> < 00

J=0
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and noticing that C' < V2K?mexp (1/2K?), we will obtain:

= 2C ( rs (m%-m-+2f)
2. P\ 7oz T 2
Pt ToK 2K 20

< Z 2C exp<_J—(’f+1)+7“i+1 (t2—0/<;—c—02/1)(rk—2)2>

Pt oK 2K7? 2072
= 2C j—(k+1
< ( Z — ¢ &XP (—%)) - exp (—(t2 — Ck —
j=k+1
o 2 2 s
< Z 2V2K2?mexp (1/2K7) exp <_] (k;l—l)) ‘
vt oK 2K

202

2
= C1exp (—(t2 —ck—c)- i) )

2. For j < k, noticing that r; < ™ and also ¢ > \/%, we have

1\ 2
(try — ;) > (t - —) 3> (= ke —o)r?.

C

. 0o  2V2K271ex K2
Therefore, choosing constant Cy = ijl 2v2 m;(l/ 2K?)
will obtain:

k-
Z—C (try ;27“])2
o o)
Z

—I{C—CT2
o (-5 —

exp( QKQ) < 00, we

(’“z =8 (_#»m (-
< Cuosp (-0
(-

< Cyexp 2 —ke—c)(rp —2)? )

202
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2V2K?7 exp(1/2K?)

woK

2C re o (trg —ry)? 5 3
oK P <_2K2 Y < Crexp | = (£ —re—c) - 575

< Crexp (— (tQ—KC—C)-M>.

202

3. For 7 =k, choosing C5 = , we will obtain:

Therefore, choosing C,, = Cy + Cs + C3, we obtain:

P(X € [2ry,2r, +2]) < Cyexp (—(t2 —CcKk —c¢) - M) :

202

We next present the following proposition, indicating that with positive probabil-
ity the difference of CDFs of P x N'(0,0?) and P, * N'(0,0?) is larger than %, [BEEL

therefore will be larger than P x N'(0, 02)([2rg, 27 + 2]) under some assumptions.

Proposition 6. Suppose ¢ > ”+3. We use F, and Fn,o to denote the CDF of P %
N(0,0?) and P,*N (0, 02) respectively. Then ko = ko(o, K,C) > 0 such that Vk > kg

and n with npy > 2048, with probability at least = 51 we have

4

N 1
Fooltry) = Fyltr) = 5y /p’““.

Proof. First we can write

Fy(try) = Z ;o (try, — 1)),
o(try) = Z ;o (try, — 1),

where @, is CDF of N(0,0?), and p; is the empirical estimation of p; with these n
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samples. Then we have

n,o (t?”k> Fg (t?“k>

[
Mg

(Dj — i) Pq (try — 1)

j=1
k 0o
= (B —p) (L= (L= Dutri —r))) + > (B — pj)Poltri — 1))
Jj=1 j=k+1
k k k [e%s)
> P Z = 1By = pil (L= ®otr —13)) = > 1D — p;| @ (try —1;)
=1 j=1 j=1 j=k+1

”“+3 we know that ¢ > ¢ + 1. Hence for any j > k + 1 we have

From assumption ¢ >
[tr—r;j| > |(c—=t)rg| > 1 > 1 and for any j < k we have |try—r;| > (t—1)r; > r; > 1.
According to the upper bound of Gaussian tail function (Proposition 2.1.2 in [15]),

when tr, —r; > 0 we have

1 o (try — 1;)? (try, — ;)2
1=, (try —r;) < . R V) < S DA
(b = m5) < V2or  |trg — 1y P ( 202 =D 202

and when tr;, —r; < 0 we have

1 o (try, —rj)? (tr, —rj)?
O, (tr, — ;) < - L VA TR
(b = 75) < Vor |tk — 1y oXp ( 202 = oexp 202

We further notice that

N 2 <
E{Iygglpg p]} =

P 01— s 1
Z|p] pj] Z\/arp] ;MSE

Hence adopting Markov inequality we obtained that

4 15
> . .
P (maxlsy -pl< ) = (1.

In the next, given that npy,; > 2048, we will provide both a lower bound to

Z?:l D; —Zle p; and also an upper bound to |pg41 —pr+1|. As for Z?:l D; _25:1 Dy,
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we can write it as i i
. 1
Z j ij = (Z Ul) — E[U4],

where U; ~ Bern(3_ 72, ., p;) are i.i.d. Bernoulli random variables. According to

Berry-Esseen Theorem we have

<

‘P (# i[Ul _EU > 1) _p > 1| < B —EGF

varl] & 2/m\/Var[Uy]’

where V' ~ N(0,1). It is easy to check that > 22, p; < 2pj11 < 1/2 for k > 2.

Hence we have
Var[U;] = f: pi][1— i D, >1 i p; | > lpkﬂ
. ! . =2\ T2
j=k+1 j=k+1 j=k+1

E|Uy — B[O\ <E|UL[* =E[Uh] = ) p; < 211

j=k+1

Noticing that for standard Gaussian random variable V' ~ A (0,1) we have P(V >
1) > 1/8, we obtain that

7=1 7=1
n 2n
=1
1 n

>P| —— U —-E[U] >1

vnVar|Ui] 7=
S E|U, — E[U]? S V2 .
8 o /mNa[lh] 8 Vb1 167

where we use the fact that npyy; > 2048. As for |pri1 — pry1|, according to Bernstein
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inequality and also noticing that npg.; > 1, we obtain that

R Pr+1 64npr11
P |Dk+1 — Prg1| = 8 ) §2exp<— )
<| +1 11 % - 8y/NPr+1 + 2npp11(1 — pry1)

64 1
) < 2exp(—8) < —.
)_ exp( )_64

Therefore, if n > 2048/py41, according to (4.8), with probability at least 6—14 we

have

t _ 2
8oy [Pt e (e )7
2072

Additionally, we have

k
(try — rj)2 (t—1)2r?
VR ) ) <k Tk
; exp ( 52 < kexp 57

and since for any j > k+2, r; —tr, > j— (k+2) +rp0—try > j— (k+2)+ (t — 1)y,

> e (<)

j=k+2

(Sm (8 ()
(t - 1)%%) |

202

we have

< Cyexp (—

where C} is a constant only depending on o, K and c¢. We also notice that % >

r

2
525 using the fact that ¢ > t 4+ 1, and that

2
(t—1)%r3 Ario Arik? Ar*r?
exp| ———— ) <exp| ——=% — = -exXp | —
P ( 252 ) =P\ Tur2 T 802 Phet P\ 77552
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using the fact that
2%k 4+ AP < AR+ A RP 1 — 20— 26 + 22k = (2t — 2)%

Hence we have

k o0
4o (try — 1;)? do (try —15)°
=S e (<) 4 T S e (U
J=1 j=k+2

t _ 2
4 80 Pk+1 exp _( Tk = Tht1)
n 202

2,.2,.2 2
< 4 0 e ((04 + k) exp <— 302 > + exp (_ﬁ)) .

k—

Since r, = ¢*7! with ¢ > 2, there exists some constant kq only depending on K, o

and c¢ such that for any k& > kg, we have

Ar2r? r2 1 1
(e (S5 ()=

Bringing this result to (4.9), we will obtain that for any &k > ko,

~ 1 P
Fog(tre) = Fo(tr) 2 5 ’:1
holds. This completes the proof of this proposition. n

With the above propositions, we are now ready to prove the lower bound part of

Theorem 2.

Proof of the Lower Bound Part of Theorem 2. We choose

1 5 (ry —2)*  Ari
n= {405 exp ((t —cKk —c) - = o) | (4.10)

Then there exists some constant k| only depending on &, and ¢ such that for any
k > ki, we would have

npg+1 > 2048.
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Hence according to Proposition 6 we would have when k& > max{ko, k{},

N 1
Fro(2r) = Fo(2r) = 5 /7%

holds with probability at least &. Moreover, with our choice of n, it is easy to check

that

1 —2)?
3 pl;:—l > C, exp (—(tQ—cn—c)~%).

Hence according to Proposition 5, with probability at least 6—14 we have for X ~

P+ N(0,0%),

_ 2
Fn,a(2Tk) — Fg(2’l”k) > Cu exp (—(t2 — CK — C) . M

202

> 2 P(X < [2Tk,2Tk+2])

Therefore we have

Fn,a(QTk) Z FU(QTk + 2)

According to Lemma 2 and Proposition 4, this indicates that with probability at least

L
64°

Wy (P + N (0,0%), Py ¥ N(0,0%)) > /P(X € [2r4 + 1,275 + 2))

> ere (<@ -on o 002,

Since we have

we would obtain that for any €, ¢ > max {\/E "‘—*'3},

Kk’ 1—k

E[Ws(P x N(0,02), P, + N'(0,02))]

(t2—cr—c)/(402)
n (t2—cr—c)/o2—c2/(2K?2)

lim inf > 0.
n—0o0

+e€

Choosing ¢ larger enough, and remembering that ¢ = 3(1+k)(1+¢), we would obtain

52



that for any € > 0,

fin i EV2(P = N (0, 0%), P+ N (0, 0%))]

n—oo (14k)2 Te
n4(1+m2)
E P 2 P 2
i juf EV2(B* N(0,0%). By« N (0, 0%))]
n—00 (14+r)2c2/16

nFn2ja—anZZ e

> 0.

Replacing x with ;(—22, the proof of the lower bound part of Theorem 2 is completed
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Chapter 5

Proof of the Upper Bound Part of

Theorem 2

We divide the proof into four parts.
In the first part, we provide some useful propositions regarding the distribution

after convolving with Gaussian:

1. The PDF of the distribution after convolving with Gaussian can be uniformly

upper bounded and strictly lower bounded by 0 (Proposition 7);

2. The PDF of the distribution after convolving with Gaussian does not deviate

too much in the neighborhood (Proposition 8);

3. The distribution after convolving with Gaussian is still a sub-Gaussian distri-
bution if the original distribution is a sub-Gaussian distribution (Proposition

9).

In the second part, we provide some propositions regarding the bounds on PDFs,

CDFs and Wasserstein distance of distributions:

1. For 1D sub-Gaussian distribution P, the CDF of PxN (0, ¢%) can be lower /upper
bounded using the PDF of P x A/(0,0?) (Proposition 10).

2. Considering two 1D-distributions P, Q with PDFs p,, p, and CDFs F,, F,. Then
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the 2-Wasserstein distribution between P and Q can be written as an integral

of p,(t) |F H(Fy(t) — t)‘Q (Proposition 11).

3. Considering two 1D-distributions P, Q. If the ratio between the supreme of the
difference between CDFs of P,Q and the infimum of PDF of P in the neigh-
borhood of ¢t can be upper bounded, then we can obtain an upper bound on

|E 1 (Fy(t) — t)| (Proposition 12).

4. Considering two 1D-distributions P, Q. Suppose CDFs of P x N (0,02),Q *
N(0,0?%) to be F,,, F,,. Then if distribution P, Q are both sub-Gaussian distri-

butions, then for any R > 0,

F, }(F,o(t)) — t| can be uniformly upper bounded
for those ¢t € [—R, R] (Proposition 13).

In the third part, we provide some useful propositions with respect to the empirical

measures after smoothing:

1. For 1D-distribution IP and its empirical version P,,, we use F, Fma to denote the
CDFs of Px AN (0,0?),P, * N(0,0?). We provide a strong uniform upper bound
for | F,(-) — F, ,(-)| (Proposition 14). If without smoothing, we can also provide
such a strong uniform upper bound for difference between CDFs of original and

empirical measures (Lemma 5).

2. For 1D-distribution P and its empirical version P,, we use F, Fn,g to denote
the CDFs of P+ N (0, 02), P, * N(0,0%). Then if distribution P is sub-Gaussian,
with high probability for any R > 0, |F o (Fpo(t)) — t| can be uniformly upper
bounded for those ¢t € [-R, R] (Proposition 15).

Finally in the last part, to upper bound the squared 2-Wasserstein distance be-
. 2
Foo(Fs(t) — 1)

n,o

where p, is the PDF of P x N(0,0%). We define a(t) = \/202 log m;p @ < [0, 00)

and we divide the integral domain of ¢ into three parts based on the value of a(t).

tween P+ N (0, 0%) and P, * N (0, 02), we write it as an integral p,(t)

And we will bound the integral within each part individually.
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Proposition 7. Suppose p, is the PDF of P x N'(0,0?) for some 1D distribution P,

then for Vt € R we have
1

0 < ps(t) < .
po(t) G

Proof. Suppose 1,(-) = QM exp (—%) to be the PDF of N (0,0?), and let X ~ P.

Then for any ¢t € R we have

po(t) = Eln(t — X)] = | ﬂl_mexp(—%ﬂﬂ[ |-

Moreover, since limg ., P(|X] < K) = P(X € R) = 1, there exists some K such
that P(|.X| < K) > 0. Hence,

po(t) =E[ne(t — X)] = E [1x1<xo(t — X)]

> P(IX]| < K) - exp (—M> > 0.

202
O

Proposition 8. Suppose p, to be the density function of P N(0,02). If for some t

and a > 0 we have p,(t) = exp (—%), then for any 6 we have

27ro'

\/;_WUGXP(_(@+|§(|;4U)2> ol d) < Fa p( max/{0, a2—al5|—4a})

Proof. We first prove the upper bound. WLOG, we assume ¢t = 0 and 6 > 0. Then

according to the assumption we have

1 a?
ps(0) = 5o exp (—ﬁ) .

We use 1,(-) = —— exp (—%) to denote the PDF of N(0,0?), and let X ~ P.

2mo

Then noticing that 7,(-) is symmetric with respect to 0, we have for V0 <r < q,

pU(O) =E [ncf(_X)] =E [%(X)] > E [T/a 1|X|<r}

> P(IX] <) i n(o) = P(X] <) e (—g)
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Therefore, we obtain that

o — 2
P(IX] < 1) < exp (— - )

Substituting  with 7 + § and noticing that {z||lz —é| <r} C {z|lz| <r+4}, we
have

P(|X — 0| <7) <P(|X| <r+6) < exp <—M> :

202

Next, we notice that

po(0) = E[1s(6 — X)] = Elne(X —9)]

=E [n,(X — 8)11x—s<as] + E [1:(X — 0)11x_s/50—s)

_ /0 U (P AP(X — 8] < 1) 4 E [ (X — 6)Lix—sioas]

a—0
< / o (MAP(X — 6| < 1)+ sup  mo(x — 0)
0

|lx—d|>1—0
a—0 1 (a o 5)2
= P(lX -4 < —
/0 Mo (1)dP (| o) <r)+ NG exp ( 252 ) )

where dP(|X — 6| < r) denotes the differential form with respect to r. Adopting

integration by part to the first item, we obtain that

/Oa 0o (F)AP (X — 5] < 1)

a—0
< mola— §YP(X — 8 < a— )~y (O)P(X — 5 <0) - / P(1X — 8] < r)dn, (r)

a0 1 r r?
< — P(lX -6 <r)- p— ———|d
< ny(a 5)+/0 (1 ol <r) NG exp( 202) "

1 (a—95)? a0 1 r r?
= - P(X -9 <r)- - = —— | dr.
Voo P ( 20 ) Jr/o ( <) Vore o2 P\ T2 )
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Hence we have

Po(0)

a—0 2 2
1 r r 2 (a—0)

<[ PIx-6<r—TLexp(-——2)a -

= (| | <) o o exp ( 202) r+ n exp ( 57 )

1 /a_éﬁex @t = (r+6)?+0? i 2 (a—0)?

210 Jo  OF P 207 \2mo P 202

1 a0y (a— )2 2 (a—9d)?

< T exp (= d _

S /0 2 exp ( 952 ) T+ ey exp ( 552 ,

where in the last inequality we use the fact that

az—(r+5)2+r2:a2—2r(5+(522&2—2a5+52:(a—5)2, VO<r<a-—9.

Further we notice

L /a_éﬁex _(a—5)2 dr + 2 ex _(a—5)2

ono Jo 02 P 202 V2ro P 202
1 (a —6)? (a— )2

2Qmo ( 202 + 2) P (_ 202

1 (a— )2 (a—9)?

5 exp <—T‘2 + log (1 + 107 +log2 | .

If we let & = “7_5 and assume & > 4, we have

(a —9)? (a —9)* _ & £
557 +log | 1+ 15? +log2 = 2+10g 1+4 + log 2

2 2 2 .
S—%+log(1+g> +1§—%2+2-§+1:—%+§+1§—(5 24)2.

Hence we obtain that

po(6) < ;m exp (—(@2_025)2 +log (1 n (@4_025)2) +log 2)
< exp (_(E —24)2) exp (_@%‘—240)3

Moreover, when o« — 6 < 40, Proposition 7 indicates that p,(d) < ﬁ Therefore,
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we obtain the upper bound

+(0) <
po0) < 2mo

s 42
1 eXp(_maX{O,a o 40}).

202

Next, we consider the lower bound. Proposition 7 indicates that p,(t+0) < ﬁ,
hence we can let p,(t +0) = ﬁ exp (—%) with b > 0. Then the upper bound we

just proved indicates that

1 a? 1 max{0,b — § — 4o }?
exp (=53 )= po(t) < exp | — ;

2mo T\ 27o 202

which indicates that max{0,b — é — 40} < a. Hence we have b < a + ¢ + 40, and

1 40)?
po(t+6) > exp _lat Pl ;i_ o) :
2mo 20

Proposition 9. Suppose o0 < K, and for X ~ P we have

t2

then for Y ~Px N(0,0?%), we have

P(lY|>1) < (C+ \/2170) o (_875_;2)

Proof. First we notice that for Y ~ P * N(0,0?), we can write it as

Y=X+27, X~P, Z~N0,06%), X1Z
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Since 0 < K and P(|X| > t) < Cexp (—%), we obtain

P(lY|>t)=P(X+Z| >1)

<P(X|<t/2) + P(|Z] <t —1/2)
t2

< Cexp (— ) + = exp (—i)
- 8K2 \/%0 80’2
< (C’ + ! ) exp (—i> )

- V2o SK?

m
Proposition 10. We denote the CDF, PDF of P x N'(0,0?%) as F,, p, respectively.
Suppose there exist constants C, K > 0 such that for Vr > 0,

2
P(|X|>7) < Cexp (—%)

Then for any € > 0, IM = M (e, 0, K,C) such that

o2

1 —F,(r) < Mpy(r)&*+, ¥r >0,
2

Fy(r) < Mp,(r)=<=, Vr <O0.
First we present the following lemma:

Lemma 3. Suppose ®, to be the CDF of Gaussian distribution N(0,0?), then we

have

lQ
1-— (I)U(l) < exXp <—F) s ) >0
g

l2
(I)U(l) S exXp <_ﬁ) y Vi<0

Proof. Since we have ®,(l) = 1 — ®,(I) for any [ > 0, we only need to prove the
results for [ > 0. According to the upper bound on the tail of Gaussian distributions
(Proposition 2.1.2 in [15]), we have for [ > o,

1—9,() < L e —ZQ < 1 e —l2 <e —l2
TN = o *P 202 ) — \/2r *P 9252 ) = P 202 )"

o
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For 0 <[ < o, we have

1 1
1—@msv5:@emC%Q2mwwmz

Y

N —

which indicates that

Hence for VI > 0,

Proof of Proposition 10. We only prove this results for » > 0, as the proof of r < 0 is
similar. In the following, we use p to denote the PDF of P (which can be a generalized

function on R), and ®, to denote the CDF of A/(0,0?). Then we can write

1—Emv=/wMM1—@v—wMa
o (5.1)

po (1) = /_: p(t) - \/21_7ra exp (— <T2;2t)2) dt.

_r?
2K?

Noticing that P(|X| > r) < Cexp < ), If we choose
Ry = K+/2(log C' + 1),

we will obtain that

P(|X]| > Ry) < Cexp(—logC —1) =

Q|
N | —

and hence P(|X| < Ry) > £. In the following, we will discuss cases where 0 < 7 < Ry

and r > Ry separately.
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If 0 <r < Ry, then we have

)2 [ o) e (U

Ro P V2o 202

1 (r —t)? 1 2R2
> P(|X| < Rp) - i _ — _ 2o
T \2mo (1X] < Ro) ogrSRoI,rtlér[l—Ro,Ro] P < 207 ) 2V 2o P ( o?

We further notice that 1 — F,(r) < 1. Hence for any ¢ > 0, if choosing M; =

<2 L exp (—2%3)>_K " we will have

2wo

2

1— F,(r) <1< Myp,(r)®+=, Vr €0, Ry).

Next, we consider cases where r > Rj. According to the assumption, we have

9
P(X >7r) < Cexp <—2T@) :

which indicates that

1—F,(r)= /_T p(t)(1 — @, (r —t))dt + /OO p(t)(1 — @, (r —t))dt
< [ o —antr—mar+ [ o
< / p(O)(1 — By (r — 1))t + P(X > 1)

< /_Oo p(E)(1 = B, (r — £))dt + Cexp <_%) |

For r > t, according to Lemma 3, we have 1 — ®,(r —t) < exp <—(T2;t2)2>, which

indicates that

1—F,(r)

S /_Oo o(t) exp (_ (7’2;;‘)2) dt + C exp (—%)
- /_‘: o(t) exp <_(7~2;2t)2> dt + Cexp (_27”_;2)

2
= V210 - po(r) + Cexp <_W) :
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Moreover, since P(|X| < Ry) > 1 we also have

)2 [t e (< a2 e (S,

Given any € > 0, according to AM-GM inequality, we have

(r+Ro)?* 1  RY 2rRo _ r? K’+e¢ Ry ¢+ K?

202 202 202 202 — 202 K2 202 e

which indicates that

(r + Ro)? R? e+ K? 2 K?+e
exp |~ ) Zexp (5 b (5 T )

Therefore, choosing

2
_o” R2
My = My(e,0,K,C) = C (2\/27?0) KT oxp (2—0> ,
€

we will have

o2
1 (7” + R0)2 K24e
> M. —_—
= (2\/_ FexP ( 202
o2
R2 R2 2 2 2 ®re
0 Ry e K re K4 e\ 5+

K

When p,(r) < 1, since - <1lduetoo <K and ¢ > 0, we have

52

V270 - p,(r) < V2m0 - p, (r) K.

Therefore,
2

L= Fy(r) < (My + v270) - pg (r) 575,
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o2
When p,(r) > 1, we will also have p,(r)%*+< > 1. Hence the following inequality
holds

2

1-F,(r)<1< pg(r)KgiJre.

Above all, if we choose M = max{M;, My + /270, 1}, then we have

-2

1—F,(r) < Mpy(r)x*+, ¥r > 0.

]

Proposition 11. For two distribution P,Q on R with PDF p,(x), py(z) and CDF

F,(x), Fy(x). Suppose p,(x), py(x) > 0 for every x € R, then

wp.QF - [ " o) |F (Fy()) — o e,

where F;7'(+) is the inverse function of Fy(-).

Remark 5. Here the map x — F, '(Fy(x)) is also the explicit form of the Brenier
map T, , between 1D distributions P and Q. The Brenier map v — T, ,(z) denotes

the optimal coupling between P and Q.

Proof. According to [10], we have

Wy(P,Q)? = /0 (F(2) — F\(2))* de.

dFp(x)
dx

Since distribution P has PDF p,(z), we have = pp(x). We let z = F,(x) in the

above equation. Then adopting changing of variables, we obtain that

Wa.Q) = [ (R = ) = [ o) [B (B - af

]

Proposition 12. Consider two 1D-distributions P, Q. Distribution Q is with always-
positive PDF. We denote the PDF of P as p,(-), and the CDFs of P,Q as F,, F,
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respectively. If for some o > 0 we have

SUPgzelt—o,t+0] |Fp(x) — Fy(z)] <

inf,c [t—o,t+0] Pp ($)

then

SUPze(t—a,t+0] |Fp(x) — Fy(2))|

F Y F(t) —t| < -
| ( p( )) ‘ lnfwe[t—o,t—‘ro] pp(m)

q

To prove this proposition, we first provide a lemma.

Lemma 4. Consider two 1D-distributions P, Q. Distribution Q is with always-
positive PDF. Suppose the CDFs of P,Q are F,, F,, and let X ~ P. Then if

P(X € (r—a,r]) > |F,(r —a) — F,(r —a)|
P(X € (r,r+a]) 2 |[F(r +a) — Fy(r + o)
both hold, we will have
[EH(F(r) =] <0,

q

where F;l is the inverse function of Fy.

Proof. We notice that

Fy(r —a) < Fy(r—a) + [F(r —a) = Fy(r — o)
= Fy(r) —P(X € (r— a,1]) + |y — @) — Ey(r — a)
< Fy(r).

Similarly, we also obtain that

F,(r) < Fy(r+ ).

Therefore, F,(r —a) < Fy(r) < F,(r + a).

Moreover, noticing that Q is with always-positive PDF, for any ¢ > 0 we have

F(r—0—¢€) < Fy(r—9) <F,(r) < F(r+a) < F)(r+0+e).
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Since Fj, and F,, are both non-decreasing functions, we have

[Fy (Fp(r)) =7l < d +e.

Choosing € — 0, we obtain that

|F, (By(r) — 1] < 6.

q

Equipped with this lemma, we are ready to prove Proposition 12.

Proof of Proposition 12. We let random variable X ~ P and

_ SUPge[t—o,t+0] |Fp(x) — Fy(z)]

o inf,cli—o40) pp(T)

Then the assumption indicates that 0 < a < 0. Hence we obtain that

PXe(t—at])>a- inf pz)>a- inf p,(2),

zEt—at+a) zEt—o,t+0]
P(Xe(t,t+a]))>a- inf p(z)>a- inf pylx).

r€[t—a,t+al TE[t—0o,t+0]

Therefore,

[Fo(t—a) = Fy(t—a)| < sup |F,(z) — Fy(z)|

TE€[t—0o,t+0o]

—a- inf p,(z) <P(X € (t—a,t]),

z€[t—o,t+0o]

[Fp(t+a) = Fyt+ )| < sup  [Fy(x) — Fy(x)]

z€[t—o,t+0]

—a- inf py(z) <PX € (t+a,t])

z€[t—o,t+0]

Therefore, according to Lemma 4, we obtain that

SUPge(t—0,t+0] |Fp(z) — Fy(z))

FIUE() —t| <a= i
‘ (Fp(1)) | inf,ci—gi40] Pp(T)

q
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Proposition 13. Suppose distribution P, Q satisfies that for any r > 0,

2

2
. q

where X ~ P, Y ~ Q. We use F,,, I,, to denote the CDF's of distribution P x
N(0,0?),Q * N(0,0?) separately. Then for any R >0 and x € [—R, R] we have

KR 4RC
o) o] <22 T s ().

Proof. First we notice that the PDFs of distribution Px N (0, 0?), Q * NV (0, 0?) at any
real number is positive, hence F}, ,, I} , are monotonically increasing in the entire real
line. In the following, we use @, to denote the CDF of distribution N'(0,0?%). We

have

1
P (|X| > K, 210g(201)> < Crexp (—log(2Ch)) = 5.
Therefore, we obtain that

11
3 (|Xy <K, 210g(201)> >1-;=7.

We further notice that if X ~ P, Z ~ N(0, 0?) are independent, X + 7 ~ PxN (0, ?).
And also for any R > 0,

{IX] < K1y/210g(2C1)} N{Z < —K14/210g(2C,) — R} C{X + Z < —R}
{IX] < K1v/21og(2C)} N{Z > Kiy/2log(2C,) + R} C {X + Z > R} .

Hence noticing that ®,(—R — Kj4/2log(2C})) = 1 — ®,(R + Ki4/2log(2C})) =
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P(Z < —Kj\/2log(2C)) — P(Z > Ki+/21log(2C,) + R), we have

1
éq)a(_R — K1v/2log(2C1))

<P (1X] > K1v/210g(2Ch) ) P(Z < —K1/21og(2C7) -

<P(X+Z<—R)=F,,(—R)

%(ba(_R — K1+/2log(2C1))

<P (|X\ > K1\/210g(20)) ) (Z > K1\/210g(2Cy) + R)

<P(X+Z>R)=1-F,,(R),

which indicates that
1 1
5(1)0(—R—K1 210g(201)) S Fpﬁ(—R) S FpU<R) < 1— 5(1) ( R-Kl 210g(201))

after noticing that F, ,(—R) < F, ,(R) due to the monotonicity of F},,

Next, if Y ~ Q, Z ~ N(0,0?) are independent, we have Y + Z ~ Q x N'(0, 0?).
Noticing that for VR, q > 0, we have

{Y+Z<-R-q¢} c{Z<-RtU{Y <—q},
{(Y+Z>R+q}Cc{Z>R}u{Y >q},

we obtain that

Fro(~R —q) < ,(~R) + P(|Y] > q).
L~ Fo(R+q) < 1-0,(R) + P(Y] > q) = ,(~R) + P()Y| > q).

According to Proposition 2.1.2 in [15], we have

oim2(5-52) den ()
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Hence when R > 20, we will have
30 1 R? o R?
O, (—R) > —  —— > = —— .
=R 27 7o eXp( 202) = IR eXp( 202)
We further notice that

2
q
P([Y| = q) < Coexp (—2—[(22) :

, 5 KR +K,2\/210£_J; (4R(JQ>’
o o

Therefore, when

we would have

q2 o RQ
P(|Y|>q) < Coexp (_W) < 1R &P (—T‘Q) < @, (—R),
5

which indicates that

F,.(—R—q) <2®,(—R), 1—-F,,(R+q) <20,(—R).

Additionally, since for any z < 0, we have

(x —20)2 < x> 4o? (~2) x? 1 x?
exp [ ————" exp | —=— — — | = exp(—2)-exp | —=— —exp|—=—|.
P 202 =OP 7952 T 902 P PAl7o52 ) = 4P\ "o

This indicates that

1
1 8o (=R — Ki1/210(2C1))

) 1 —R—K14/210g(2C1) 2 d
v )
] /—R—Kn/m (x — 20)2 d

ex T 5.2 X
Norra A b 202

1 *R*Kl 210g(201)720' I'Q
= Voot /_oo P (‘ﬂ) e

:(I)U(—R—Kl 210g(201) —20')

>

o0
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Therefore, we obtain that

o o

1
<20, (—R — K1\/21og(2C) — 20> < 380 (—R = K1y/210(2Ch)) < Fyo(—R).

Similarly, we can also obtain that

1— qo<R+K1 2log(2Ch)

\/2log (4}202)) <1-F,,(R).

Hence using the monotonicity of F,, and Fj,, we obtain that for any R > 0 and

€ [-R, R],
K 4
( R — Ky+/2log(2C)) — 2 2 \/210g( RCQ))
o o
Ky 4
< F, <R—|—K1\/210g (2CY) +20+—R+KQ\/210g( RCQ)),
o
which indicates that
K 4
— R— K1\/2log(2C}) — 2l \/2 1og< RCQ)
o o
KR 4RC:
< F M (Fyolx) < R+ Kyy/210g(2Cy) 4 20 + —— —l—KQ\/Qlog ( i 2).

Hence we have

|E N (Fp0(2) — 2| < 2R+ Ki/2log(2C))

q,0

\/2 log (4R02) .
o

Proposition 14. Suppose F,, F,, are CDFs of distribution P N'(0,0?) and P, x
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N(0,0?%) respectively. We define

(

. 0<t<, mH<t<l,
G(t) =<t 1<y
A R

\

Then with probability at least 1 — 9§, we have the following inequality:

Folt) ~ Fuol®)] _ 16, (20
o VGO \Flg( )

To prove this proposition, we first present a lemma indicating a similar result

without Gaussian smoothing;:

Lemma 5. For a given distribution P on real numbers with always-positive PDF,
we denote its empirical measure with n data points to be P, (P, = %Z?:l dx, where
X; ~Parei.i.d.). We further use F, F' to denote the CDF of P, P, respectively. Then
with probability at least 1 — &, we have

(1) — F(t)] L. (n
ey <*Va e )

Remark 6. This lemma follows directly from Theorem 2.1 of [6], if we choose
5 = % ;= Klog ( )

Remark 7. If we would like to obtain a uniform bound without truncation, then we
have to pay an additional factor \/1/6. This is summarized in the following results:
with probability at least 1 — 9, we have

F(t) — F(t)| 1 in
ek JED A (L- F(D) = 16\/%1Og (7) '

Also we have a lower bound to the LHS in the above inequality, indicating that the
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factor \/1/0 is necessary: with probability at least §, we have

FO) -Fol  _ [1
sup > .
tek /F(t) A (1— F(t)) 26m

Proof of Lemma 5. Since P has positive PDF at every points on R, its CDF F' has
inverse function F~!. We consider the distribution @ on [0, 1] such that Q(:) =
P(F~!(-)). Then @ matches the uniform distribution on [0,1]. We let Q,(-) =
P, (F~1(+)). Then the distribution of P, is equivalent to the distribution of n-point
empirical measure of Q. Therefore, we only need to prove this lemma under the
assumption that Q is the uniform distribution on [0, 1].

In the next, we assume P to be the uniform distribution [0, 1], and will have

F(t) =t for any 0 < ¢t < 1. We only need to prove that with probability at least

1-9, A
g [P = FOI _ flogm
teR G(t) n

According to Bernstein inequality, for any 1 < k < 7, if we let ¢t = %, then we

P (‘F(t) — ﬁ(t)} < 4\/%10g (%)) < %.

Therefore, applying union bound for 1 < & < 7, we obtain that

k ~ [k (k/n) n n
PlIF|-)—-F|—-])|<4 1 — 1<k< =
(‘ (n> (n)‘_ n og((S),V _k_Q
We further notice that for any % <t< k—:l, we have
. . 1 . 1 n 1
P —F(1)] = [—F(1)] < ——f—max{‘F (5> P (E)HF (’” ) _ (“ )‘}
n n n n n

When k£ >

> 1
ORI

have

and % < % Therefore, if for every 1 < k < 4 we all have

<4 (’“T/l—") log (%), then for every 0 <t < %, we have

|F(t) = F(t)| _ 1/n+|F(1/n) — F(1/n)] 1 n
oo J1/n 35\/;1%(5)’

73



and for every % <t <k with k < 5, we have

n

Therefore, we have proved that with probability at least 1 — g,

IF(t)(—;(l:)(t)\ §8\/glog (%)

1 . . .- 5
holds for every 0 < ¢ < 5. Similarly, we can prove that with probability at least 1— £,

the above inequality holds for % <t < 1. Therefore, with probability at least 1 — ¢,

o, PO sy e (7).

This completes the proof of this lemma.

we have

]

Proof of Proposition 14. Suppose random variables X ~ P, Y ~ N(0,0?) are inde-
pendent. Then X +Y ~ P x N(0,0%). We generate n i.i.d. samples Xy, , X;
Yy, -+, Y, Then X; +Y; are n i.i.d. samples of P * N(0,0?). We use F to denote
the PDF of empirical measure P = %2?21 0x,+v;- Then according to Lemma 5, we

have with probability 1 — 9,

P < e (5).

Hence Markov inequality indicates that

Vi |F(t) - F()] logn
P (exp (S%EE" au 2 )Z
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Therefore, we have

E

exp (sup\/_ﬁ |F(t) - F(t)| logn>]

wr 16 \/G(t) 2

= Vi IF() = Pl logn
:1+/1 P(exp(stlelﬂgl—ﬁ- 0 5 >2r>dr

1
/ —Qd']”
1 T

Moreover, we notice that

n

E [F(t)(X1,~-- ,Xn] =P (1 Zn:(XﬁYi) < tjxl,--- ,Xn> = F,, (1),

i=1

where F),, is the CDF of P, * N(0,0?) with P, = L3 dx,. Hence according to

the Jensen’s inequality and the convexity of function | - | and exp(-), we have

exp (sup v F®) = Fue(®)] log n)]

E

<E

E

ek 16 G(t)

sup ——
ek 16 G 2

. ( Vit |F() = Fuo(t)] 1ogn>]

sup —— - -
ex 16 €0 2

_exp ( vn [F'(t) — EYi,lSiSn[F(t)“ log n)]

exp | sup \/_ﬁ . EY}JS’S”MW(t) - F(t)| B logn
L teR 16 G(t) 9

exp (E

VO =P logn|

er 16 €0 R
o (¥ EO = E@] _toen\] |
Pk 16 €0 2 b

1)



And according to Markov inequality, we have

\/ﬁ |F(t) — Fna(t” 2
P (exp (s;elﬂg)E . D) — log n) > S) < 4.

Therefore, with probability at least 1 — d we have

sup < —log

ur |Fn7g(t)Gzt)F(t)\ 1(1 (Zn)

Proposition 15. Suppose distribution P is a K-subgaussian distribution, e.q.

2
> < e ~
P(|X|_r)_C’eXp( 2K2>’ X ~ P,

and distribution P, 1s the empirical distribution obtained through n i.i.d. samples from
P. We suppose Fy, F,, to be the CDFs of distribution P * N'(0,02),P, * N(0,02).

Then for any 0 < § < 1, with probability at least 1 — &, we have for any R > 0 and
x € [-R,R],

K 4
o (Folz)) — x‘ < 2R+ 20 + TR + K+/210g(20) —i—K\/Qlog( CRn)'

oo

Proof. Since P(|X| > r) < Cexp (—%), with probability at least

2\ \" 7

we have supp(PP,) C [—r,r]. Choosing

r = Ky/2log <%>,
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we obtain that with probability at least 1 — 9,

Therefore, choosing Ky = K and Oy = % and letting Y ~ P,,, with probability at

supp(P,) C [-r,7] =

least 1 — & we have

2

P(|Y]| > ¢q) < Cyexp <—2qﬁ) , Vg>0.

Adopting Proposition 13 with

C
IED:]P)’Q:]P)n7K1:K2:K,Cl:C,CQZTna

we obtain that with probability at least 1 — ¢, for any R > 0 and = € [—R, R], we

have

caFa(@) —a] 2R+ 20+ Z R4 K 2log(20)+K\/2log (4(:;]%”).
| - L

]

Equipped with these propositions, we are ready to prove the upper bound part of

Theorem 2.

Proof of Upper Bound Part of Theorem 2. We use p, to denote the PDF of PxN (0, o),
and use F,, F, , to denote the CDF of P x A(0,0?) and P, * N'(0,0?) respectively.

Then according to the Proposition 14, we have

sup ’Fﬂ(t) - Fn,a@)’ < E log (2712)
<0 G(t) n

holds with probability at least 1 — 1/n. In the main part of the proof, we assume
that this event holds, and scenarios where this event does not hold will be discussed

at the end of this proof.
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According to Proposition 10, for any positive € > 0 (the value of & will be specified
later), we have
0_2
F,(t) < Mp,(t)x%+e, t <0,

2

1= F,(t) < Mp, ()75, t>0,

where we write M = M (e, 0, K, C') in Proposition 10. Therefore noticing that
G(t) = min{max{t,1/n}, max{l —¢,1/n}},

we have Vt € R,

16
’Fa(t) - Fn,a@)’ < max {_ log <2n2) )
n

16v M o
NG log (2n°) ps(t) 2K2+2s} .

In the following, we first assume the above inequality holds. In order to analyze

the behavior of |F,(x) — Fy,,(z)| for z € [t — 0,t + o], we let

log (2n2) pa (I’) 2K242¢

16 16V M o2
L, (t) = max {— log (2n®), sup } ,
n t—o<z<t+o \/ﬁ

then Vt € R, x € [t — 0,t + o], we have

|Fy(z) — Fop(x)] < Lp(t). (5.2)

According to Proposition 7 we have 0 < p,(t) < ﬁ for every t € R. Hence

leting

) 1
a(t) = \/20 log m,

we will have

a(t) € 0,00),  polt) = — exp(—a(t>2), Ve R,

o2mo 202

Based on the value of a(t) for ¢t € R, we divide R into the following three non-
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intersected measurable sets:

A= {tla(t) < 50},

B:{t

1 1 - oy/n 25 0% +2K? 4 2
———— ) log [ ——log(2n2)"! ~=) ) - (5
\/(202 4K2—|—4e> o8 (\/_QWUM/ og(2n?) eXp( 2 >> KT 2e — o7 )

O = {tla(t) > A},

50 < a(t) < A, = min {\/202 : \/1ogn — log (16\/ 27 log(2n2)> — 5o,

Then R=AUBUC.

We let

Po(t) = inf  po(z), Ps(t)= sup po(z).

— t—o<z<t+o t—o<z<lt+o
According to Proposition 8, for every t — o < x <t + o we have

L o (_ M) o) € e <_max{0,a(t) —50}2)

2ro 202 Qo 202

Hence we have

Therefore, we can obtain an upper bound on L, (%):

16v/M UZ}

L,(t) = max {1”—6 log (2n?), 7 log (2n°) pg(z)2K7 2

16 16v/M e max{0, a(t) — 502
< max {? log (2n2) T log (2n2) <\/ 27m> T exp | — 1K 4 42 .

2
If we let M' =16+ 16v/M - (v/2mo)?**+> > 16, then we will have

!/
L,(t) < max {% log (2n?) , M log (2n?) exp (—

- max{0, a(t) — 50}2) }

4K? + 4e
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For t € A, we have a(t) < bo. Since

max{0, a(t) — 5o }? <1 16 _ 16 _ M’
exp | — —<—=<—=
P AK? § 4e =

we have

16 o M’ 9 ! 9
L,(t) <max < —log(2n®), —=log(2n*) p < log (2n?) .
n n

vn

Moreover, we have

Po(t) =

— T \/2no 202 o2mo 202 o2mo

. (_(a(t) —|—50)2) L (_(100)2> _ exp(=50)

When n is large enough such that

M . -
log (2n?) < exp(—50) _ . exp(—50) <o pold).
Vn V2 2o —

Vt € A we have ~
SUPge(t—a,t+0] |F€T (I) - Fn70<x>| L, (t) <o
infreft—otto] Po(T) T ope(t) T

We further notice that distribution IP, P, are both with always-positive PDFs (Propo-

sition 7). Hence Proposition 12 indicates that

Supxe[t—a,t+cr] |Fo'(x) - Fn,a(-r)’ Ln(t) < MI 2mo
infoci—otto] Po() = po(t) T /nexp(—50)

(1) — 1| <

This indicates that
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For t € B, we have a(t) > 50, which indicates that

La(t) < max {%6 log (2n?) % log (2n) exp G%) }

Noticing that

1 1 - oy/n 25
D<A, <tf/[==——) log | X" log(2n2)-1 St
alt) < _\/(202 mrr) o (A s e (-3

0%+ 2K?% + 2¢
- ’ (50)7
2K? + 2¢ — o2
we obtain
—50)%  (a(t) + 50)?
P ( 4K2 —|— 4e * 202
Sa(t)o 2502 a(t)?  ba(t)o  250?
= exp bt +
4K2 + 4e 2[(2 +2  4K2+4e 202 o2 202
1 1 25
< — t)? S 5 e
—eXp(<2a2 4K2+45)a(> + (2K2+2 + > (5a(t)o) + 2)

25 1 1 02 + 2K% + 2 ?
< — - .
= &P ( 2 ) P <( 202 AK?+ 45) (a(t) KT 2 o2 (50)) )

<—lo on?
S ool g(2n*)~!

Hence we have

M o (_ (alt) - 5?2)

= exp (_M> |

2mo 202

Moreover, according to the definition of the set B, we also notice that

1 (a(t) + bo)? 16
o- o exp (_T> > glog (2n )
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Therefore, we obtain that

Moreover, according to Proposition 8 we have

palt) > exp (—M) |

2mo 202

which indicates that

SUPze(t—a,t+0] |FCT (l’) - Fn70<x>|
infocp—oit0] Po() = pol(t)

Therefore, according to Proposition 12, we have

SUPge(t—o,t+0] | Fo(z) — Fn,a(x)’
infxe[tfa,t+tﬂ po(T) N &(t)

(Fu(t)) ~ 1] <

—1
n,o
According to our choice of a, we have for Vt € B,

polt) > —— exp (—M> o) (nm’f;z)

202

and also
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Therefore, we have for Vt € B,

I’ e 0 (DY pn®) LOP (ot
po (D) | Fra(Fo(0)) =] < po(t) 75 (&<t>) MONX0 O( )

Additionally, we notice that for any ¢t € B, we have a(t) < A, hence for any ¢ > 0,

K2+€

po(t) = Q (n%%ze—a?*e) .
According to Proposition 9, we have
)< (c+r—— t*
o\t) = exp | ——— | .
’ V2o p SK?2

This together with the above lower bound on p,(t) provides a uniform upper bound

A for Vt € B:

| < A,

where we have

A=0 (2\/§K\/1og ((0 + \/2170) nKIir+)) = O(1).

Hence, B C [—A, A]. Therefore, with probability at least 1 — 1/n, for any € > 0, we

/B Pa(t)

< /_z Pa(t)

. K24 Te
S QA . (9 n 2K2+2E—c72
- K24e
=0 (n_ 2K242e—o2 +E)

Finally we consider ¢ € C', and hence a(t) > A, which indicates that for any € > 0,

have

(F, (1)) — tfdt

-1
n,o

FL(E, (1) — tfdt

n,o

2 £
pe(t) =0 (n_2K2K+2Jga2 +E) :
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We define

Ry & 2\/§K\/10g (n (C + ;ﬂg)) = O(1).

Then for X ~ P x N(0,0?), we have
~ K2+s ~ K2+e
P(|X| < Ry, X € C) < 2Ry - O (Mm*) ~0 <n_K++> .

Moreover, according to Proposition 9, we have for any [ € Z,,

P(|X|>1Ry) < (C+ = e i < L
= 0) = \/%O' XPp 8K2 —nl2'

And according to Proposition 15, with probability at least 1 — %, we have for any

R>0andt € [—R,R],

KR 4C Rn?
L, () —t §2R—|—2a+—+K\/210g(20)—|—K\/210g( n>
’ o

Hence, we obtain the following upper bound on the integral over C': with probability

at least 1 — 1/n, for any € > 0 we have

~ 2
[ o] FubEn ) o a
c
~ 2 ° ~ 2

— / Po(t) | Fra(Fy (1) — t‘ dt + Z/ Po(t) [Fra(Fy(t) —t| dt

C{[t|<Ro} 1—1 J CN{lRo<[t|<(I+1)Ro}

2
2

<P(X| <Ry, X e€C)- <2Ro +20 + Kfo + K+/2log(2C) + K\/Qlog (40](;20” >)

2

+ 3 P(IX| >Ry, X € C) - <2ZR0 + 20+
=2

2
Kio | e\ /oToa(a0) + K\/2 log (Mﬂ))
g g

o (n_z’ffi;aﬁe) 012+ w120
=1

- _ K24¢ - - _ K24¢
O (n 2K242e—02 +€) + O (n_l) =0 (n 2K242e—02 +€> .

Therefore, according to Proposition 11, combining these upper bounds on the integral
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over A, B, C together, we obtain that with probability at least 1 —2/n, for any € > 0,

[e.9]

WWMN&ﬂmwNmfwz/pw>

= [ pe0|E2E0) =] dt+ [ ot

+ /C Pa(t)

2 2
=0 (l) +0 n_Z‘KQKJr;E—vQ%) +0 (TL_2K2K+;;E—U2 +€>

FYE, () — trdt,

n,o

FL(E, () — trdt

n,o

- 2
F;;(Fg(t)) —t| dt

We denote the event that the above inequality holds to be M. Then we have P(M) >
1 — 2. And hence we have P(M¢) < 2.

Moreover, we also proved that

l2

P(IX|>1Ry) <n™", l€Z;.

Noticing that according to Proposition 15, with probability at least 1 — §, we have
forany R >0 and t € [-R, R],

[ 2
n_;(Fa(t))_t §2R+20+@+K 210g(20)+K\/210g (4CR7I )
; . .

We denote the event that the above inequality holds to be Ns. Then we have P () >

85



1 — 4. Hence assuming that event Ns holds, we notice that Proposition 11 indicates

o0

WQ(P*N(O,UZ),Pn*N(O,UQ))Q:/_ oo (t)

(e 9]

FL(E (1) — o dt.

2 > - 2

<[ nolEiEo - ary | polt) [ 2o 1)) — o at

[t|<Ro 1—1 Y CN{{Ro<|t|<(I+1)Ro}

2
ofd)

G Kl AC1

+ Zn’lz . <2lR0 + 20 + Hh + K+/2log(2C) + K\/Qlog ( ¢ ROn))
o
1=2

ofun(}) 05

Here we use O to abbreviate the log-items of only n.

KRy

2log(2C)

S <2R0 + 20'

2

Therefore, after concluding all previous upper bounds, we obtain the upper bound

on the expectation of W5 (P x N (0, 02), P, x N'(0,0?))?: for any € > 0,

E [Wa(P * N(0,0%), P, * N(0,0%))?]

<P(M). O (n—méit:z +e> +E [Wa(P + N(0,02), P, + N(0,02))215.]

K2+s

< (5 (TL 2K2+42e—02 ) —|—ZE [Wg ]P*N 0,0 ),Pn*N(O,O‘Q))QlMCQ(

Nl/nj+1\N1/nj)}

+E [WQ(P*N(O,U ), P, % N(0,07%)) 1Mcle/n}

<0 <n_2K§+22t502 +E) + Y P (M0 (Nyjet\Nijns)) - O (log (n/*))
j=1
+P (M°N Ny - O (log (n))
< Ke /1 1\ ~x 1 1\ ~
<0 () 1 3 (24 5) 0 (log () + (24 ) O log o)

n nl
Jj=1
~ _ K2+e
=0 <n 2K212c— o2 +6>

According to the arbitraity of positive constants € and €, we can let them both goes
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to 0, and hence obtain that for any € > 0, we have
- 2
E [Wa(P + N0, 0%), B, % N(0,0%))2] = O (nKK +e)

Therefore, the proof of the upper bound part of Theorem 2 is completed.
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Chapter 6

Proof of Theorem 3

First we start with the definition of Rényi divergence:

Definition 1 (Rényi Divergence and Rényi Mutual Information [12]). Assume ran-
dom variables (X,Y') have joint distribution Pxy. For any A > 1, the Rényi diver-

gence and Rényi Mutual Information of order A are defined as

(ia)

L(X;Y) £ DA(PX,YHPX ® Py),

1
DA(P|Q) & —— logEq ,

where we use Px, Py to denote the marginal distribution with respect to X and Y,
and Px ® Py denotes the joint distribution of (X',Y") where X' ~ Px,Y' ~ Py are

idependent to each other.

Lemma 6. We suppose (X,Y) ~ Pxy, and its marginal distribution to be Px, Py,
respectively. We let B, to be an empirical version of Px generated with n samples.

Then for every 1 < XA < 2, we have

A 1
E[Drr(Pyix o Bl Py)] < 5

| log(1 +exp{(A — 1)(In(X;Y) —logn)}). (6.1)

Proof. According to [14], for any distribution P, @, the function Dy (P]|Q) with re-

spect to A € (1, 2] is non-decreasing. Hence noticing from [14] that for any distribution
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P,Q, limy_,; D\(P||Q) = Dkr(P||Q), we have
Dgr(Pyix o P,||Py) < Dy (Py|x o P,||Py).

Therefore, it is sufficient to prove that for any 1 < A < 2,

E[Dy(Py|x o Po||Py)] < log(1 + exp{(A = )(I\(X;Y) — logn)}).

A—1

We suppose the n samples obtained in P, to be Xi,---,X,, which satisfies that
(X1, -+, Xp) 1L Y. According to the definition of Rényi divergence, Rényi mutual

information and also the Jensen’s inequality, we see that

~ 1
]E[D)\(PY|X OPnHPYH = HE IOgE {

d(Pyx o B)(Y)\
logIE ( dPy(Y) )

d(Py)x o P,)(Y) '
e } ‘le (6.2)

<
—A-1

Then we introduced the channel Py, == %Z?:l Pyix—x, and we let Py, ¢ =
Py‘ X1 © Px1.,» where Py, = Pf?" is the probability law of X7.,. We notice that the

marginal distribution of Py,  y with respect to Y is exactly Py. If we let (Xi,,,Y) ~
Px,. ® Py, then we obtain that

3 1 [ dPX . ?(Xlznay) g
[ X 'n. Y — 1 E 1in,
)\( lins ) A —1 ) _(d[Ple ®PY(X1:n7Y>]
1 [ [ dPyix,,, (VI X1a)
= logE
A —1 dPY(Y)
l ) A
1 d(PY|X o Pn)(y)
_ logE |E Xi.
o8 { dPy(Y) o

_ 1 log E (d(PYX o Pn)<Y)) > IE[D,\(PY\X o anPY)]-

A—1 dPy(Y)
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Hence we only need to analyze Iy(X1.,;Y). And we need to upper bound

E

()Y

. {%;dpgg%;m} | (63)

Moreover, noticing that (a + b)*~! < @' + v*! holds for a,b > 0 and 1 < \ < 2,

we have that for any n i.i.d. non-negative random variables B; (1 <i < n),

A—1 A-1
E | B; (BZ-JFZBJ-) <E[B;-B'|+E |B;- (ZB)

J#i J#i

=E[B}] +E[B; (ZB) _

J#1
< E[B}] + E[B,] - (ZE ) _
J#i
=E[B}] + E[B] - (n — DE[B))* ",

where in the second inequality we use the Jensen’s inequality. Therefore, summing

up the above inequality for 1 <1i < n, we have

{Z Bl} < nE[BY] +n- (n = 1)*E[BI])" < nE[B)] +n* (E[B1])”

Next, since Y 1 (Xi,---,X,), for every fixed Y, random variables —dng/((};l)x 2
dPyx (Y|X;)

dPy (Y)

A
1 < dPyx(Y|X))
£ {ﬁz dPy (Y) }

are ¢.¢.d. Hence choosing B; = , we obtain that

A
_A dPy x(Y]X;)
Y| <n ™ E {;T(Y)} Y

o (2[R o R
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Using the fact that X 1Y and hence E[Pyx(Y|X)|Y] = [, Pyix(Y|X)dPx(X) =
Jx dPxy(X,Y) = Py(Y), we notice that for any given Y,

_dPy(Y)

= =1.
Y dPy(Y)

Y

dPyix(YIX)|,] _ dE[Pyx(Y|X)]
E{ dPy(Y) M_ dPy(Y)

Therefore, we can upper bound (6.3) as

=n'exp (A= 1)L(X;Y)) + 1.
This implies that

])\(Xl:n; Y) S

3 i . log (1 + n' = exp{(A — 1)I,(X; )},

which together with (6.2) recovers (6.1). O

Remark 8. Hayashi [9] upper bounds the LHS of (6.1) with

A A—1
] log <1 —|—exp{T(K,\(X,Y) —logn)}> ,

where K\(X;Y) = infg, Dy(Pxy||PxQy) is the so-called Sibson-Csiszar informa-
tion, cf. [13]. This bound, however, does not have the right rate of convergence as
n — oo, at least for A = 2 as comparison with Prop. 5 in [7]. We note that [9, 8]

also contain bounds on E[TV(Pyx o P,, Py)] which do not assume ezistence of A > 1

dPy

Py x

moment of B

and instead rely on the distribution of log

Lemma 7. Suppose P is a d-dimensional K-subgaussian distribution and random

variables X ~ P, Z ~ N(0,0%1;) are independent to each other. We let Y = X + Z.

92



Then for any o > 0 and 1 < X\ < 2, there exists a positive constant C' only depending
on P and K, o such that

1 C
. < X
L(X;Y) < 1 log ( o wl)

Proof. We use Px, Py and Pxy, Py|x to denote the marginal distributions with re-
spect to X, Y, the joint distribution of (X,Y") and conditional distribution of Y given

X. According to the definition of Rényi mutual information, we have

() |):

Denoting the PDFs of distributions Py, Py|x as py(-), py|x(+), we have

1
]A(X,Y) = Y1 10g (EPX®PY

py|x (Y1 X) = @o2r,(y — X),  py(y) = Elpser, (y — X)].
If we choose X ~ P, X 1 X, then we have

( dPxy )A dPx y(X,Y)
d(Px ® Py)

- (dPX & Py (X, Y))A

dP A
—F | | 2 Y|X
APy (Y
N
X]

| (55

Epyory

(Y]X)
_E|E (pYX |

Moreover, Noticing that

Vo21,(T) = ;exp _l=ll Vo € R?
d ( 27T0')d 20_2 ) )



we have

pony=XP 11 LT[ en(Aly-XI32)
J. (Eliporr, (y — D) y] (Vo) L Eexp(—lly — XIB/2)1

Therefore, we only need to prove that there exist positive constant C' = C(P, K, o)

E

such that

exp (—Ally — X|[3/2) O
: U (Ecxp(— |y - Xn%/m)%—ldy} Sgoym Vet (6

WLOG, we assume o = 1 (otherwise we substitute K with K /o and let o = 1).
We let Ay = {X||| X||2 € [k, k+ 1)} C R%. Then we have

W:G%
k=0

Let my to be smallest number of l5-balls with diameter 2 in R? which can cover the
set A;. Then we have

mp = Cl<k' + 1)d

for some positive constant C; (note that here we only need to prove that the inte-
gral is finite, hence we ignore the constants). We use Ag1,- -+, Agm, to denote the

intersection between each of these m;, balls with Aj,. Then we have

my
A, = UA’“" and diam(A;,;) <2, V1 <i<my.

=1

Assuming X ~ P, we denote

pei = P(X € Ayy), pe=P(X € Ay).
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Since for any X, X € Ay, we have | X — X||, < 2, we obtain that Vk,i and X € Ay,

S (_Hy—fﬂP)_ o (_uy—m(x—ff)w)
_p;m min exp e — = Pk,; IMin exp 9

XeAk,i XEA]QYZ'
(ly — X| + 2)2)

Noticing the fact that A < 2, we have
exp(—\|ly — X||?/2
£ e, [ CUED) )
ke (Eexp(—[ly — X|?/2))

S gy .. VRS B
| S e (—(ly — X+ 2)2/2)

xen,, — X|? —D)(|ly — X|| +2)?
< [Bet [ o (_Auy 12, =1y =X + >)dy]
R4

! 2 2

1 _ 1
— [ | / exp (—-||u||2 + 200 — D)|ul| + 2(\ — 1)) du]
I pk,i Rd 2

1 _ 1
<B |2 [ o (——||u||2+2||u||+2) du
i pk,i Rd 2

_ 1
= [ oo (=gl + 2l + 2) o
Rd

Let constant Cy = [, exp (—1[Jul|* + 2|ju|| + 2) du < oo, and noticing that Ay; C Ay

for each i, we obtain that

E |:1X6A / exp(—)\Hy - XH2/2) dy:| < 02292_‘)\ < CQpi—A
k,i < _ — N — :
re (Eexp(—[ly — X|?/2))*!

Hence,

exp(—Ally — X|*/2) H} o
B Lxea, S dy < Cam < O Cy(k +1 .
[ e /R (Eexp(—Jly — X2/t - = b 1Co(k + 1) p;
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Since P is a K-subgaussian random variable, we have

k2
=PIl € b+ 1) < PO 2 0) < Coewp (=55 )

Therefore, we obtain that

exp(=Ally — X||*/2) d o, [ (2= MK
E{b@mnédmkmx_mr_Xﬂyzwhﬁw}S(%Cﬁk“r%b p( —7ﬁ57—>,

and hence
exp(—Ally — X|*/2) S d o (2= VF
]qkmmwm—mwwﬂﬁgg%qwmﬂ p( M?)
@—Am)

S Z Cochg(k‘ + 1)d exp (— 92

k=0
2\ —d—1
S C(]ClOQd! . (1 — exXp (—W>) .

Here in the second inequality we use the fact that >~ (k+1)%c* < dle™*~! for any
0 < ¢ < 1. Next noticing that 1 —exp(—z) < 1— (1 —z) = x holds for all z € R, we
obtain that

exp (—Ally — X|*/2) 9K2 \ C sy
* {/Rd (Eexp(—|ly — X||2/2))A_1dy] < GGGl (2 — /\) = (2 — \)d+1 (\/2_ )

with C' = CyC1Cod!(2K%)41 /(v/2ma)?. Hence (6.4) is verified. O

Equipped with the above lemmas, we are ready to prove Theorem 3.

Proof of Theorem 3. We consider X ~ P, Z ~ N(0,0%1;),X 1L Zand Y = X + Z.
Then we have Py|x ~ N (X, 0?1,), which indicates that Py|x o P, ~ P, * N'(0,0°1,).
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Therefore, adopting Lemma 6 and Lemma 7, we obtain that for any 1 < A < 2,

E[Dgr (P, * N(0,0%)||P * N(0,0°))]

1
<
A

: log(1 + exp((A — 1)(I\(X;Y) —logn)))

<

-exp((A = 1)(In(X;Y) —logn))

§ C
SO = D 12— A

A—1

Choosing A = 2 — @, and noticing that

1 1 n
1 = e ! =T -exp <—logn- ) =—,
logn e

we have

N o2 “ o2 Ce(logn)™! _ (logn)™!
EIDis (P, « 0,02 [P A0, 09)] < CO o (22,
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Chapter 7

Conclusion

As the convergence from the empirical measure P, to the population measure P under
Wasserstein distance always suffers from the curse of dimensionality. People seek to
resolve this problem using the convergence from the smoothed empirical measure
P, * N(0,0%1,) to the smoothed population measure P,, x N'(0,021;). However, the
exact convergence rate of the smoothed empirical measure is not perfectly understood
till this paper.

Suppose P is a K-subGaussian distribution, we prove a dichotomy of the conver-
gence rate under W2 distance squared when K < ¢ and when K > o, i.e. when
K < o the convergence rate is at O(1/n) and when K > o there exists a case such
that the convergence rate is of w(1/n). Moreover, for 1D cases, we provide detailed
analysis on the convergence rate when K > o, which is always the case when the
convolution with Gaussian been viewed as adding a noise of small scale. Specifically,
we prove that the convergence rate changes gradually from 1/y/n to 1/n as o/ K goes
from zero to one.

Beyond W2 distance, we also proved that the convergence rate under KL diver-
gence is always O(1/n), as long as ¢ > 0. This indicates that the convergence rate
of KL divergence is faster than the convergence rate of W2 distance when o < K,

indicating a failure of T2 inequality for P * A(0, %) when K > 0.
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Appendix A

Proof of Subgaussianity in Section 3

Proposition 16. Given positive constant ¢ > 2,¢; > 0, we consider distribution

P =737 prlr, withro=0,r1 =1,r;41 = cr, Vi > 1, and also

Pr = C1 €Xp 5K ) kE>1,

pr=1-> p, k=0.
k=1

Then there exists some c¢; > 0 such that for any constant ¢ > 2, we have ¢ -

> ore exp <—%> < 1, and also distribution P is a K-SubGaussian distribution,

i.e. for S,S~P,S 1 S,

2.2

E [exp (o (5~ E[3]))] < exp (K a

), Va € R.

Proof. We let
k=0

(Here S; is only a real number, not a random variable.) Then we have

Zpkﬁclzexp <_2K2) < ] — )
k=1 k=1

— eXpP (—m
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and also

s=n e () <o St ) 2
=1

In order to prove the subgaussian property, we define

fla) £ exp - KZO‘Q) E[exp(a(S - 5)]

K2a? -
= exp (— 5~ 0451) | po+ Zpk exp(ary)
k=1
K2%a? - r?
= exp (— 5~ aSl) | po+c1 Zexp (—m + ark)>
KQ 2 K2 2
:exp(— 2a —ole)- po+clzexp<—— rk—aK) )exp( 2a ))

= poe —KQaz—S +cZe 1(—K)—S
= Do €Xp 9 a1 1k:1 Xp T oK Ty — & Qo1 | -

To prove that f(a) < 1 for every o € R, we consider cases where aK? > ; and
aK? < =28, and —1 < aK? < i respectively (if we can choose ¢; such that 25, <1

holds for every ¢, then these three cases cover all the situations).

1. When aK? < —25;, we have

K2a? = 1 2
fla) = poexp (— 5~ ozsl) +a ;eXp (_W (re — aK?)” — a51>

K2 2 2 2K4
< po exp (— 2a — 0451) + Z exp (—w - ole>
k=1

2K?
00 K2042
= (po +Zpk> - exp (— 7~ aSl)
k=1
K2 2
< exp <— ; — a51> <1
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2. When aK? > i, we have

K2052 1 1
Po€Xp | — 9 - OéSl S Po €XP —@ S exp _W

Moreover, we suppose kg to be the smallest & such that 7, — aK? to be positive.

Since 1,1 — 7 > 1 for every k, we have for k > ko, r), — aK? >k — ko + g, —
aK? > k—kg, and for k < ko, rp —aK <1y —aK +(kg—1—k) <kg—1—k

since rg,—1 < 0. Therefore, we have

Hence if

103



3. When —1 < aK? < }1, we calculate that

h(a) & exp (K;oﬂ + ole) ()

i 2
= —po(aK?+S1) + e Z (rk — aK? — Sp) exp <—% + ocrk)
k=1
and
h/(a) = —p0K2 + ¢ Z (Ti — aKQTk — Siry — KQ) exp (—2—[];2 + oz?“k)
k=1

< —poK? + ¢4 Z (r,% — OéKQT’k) exp (——k + om“k)
k=1

- 2 r
< —p0K2+clz(r£—aK2rk) exp (——k+ . )
k=1

00 2
2 2 Tk
< —poK* +2¢¢ kgl T}, €XP <_4K2) ,

where we use the fact that r, > 1 for any k£ > 1. We then notice that function
g(z) = 2% exp <—%> is monotonically decreasing when x > 2K. Hence for

k>2K +1 we have r, > 2K + 1 and

- 2 rh
Z T €Xp (-m)

k>2K+1

[e’e) 2
< 2 ~ ) dr < 3K
_/QK:C exp( 4K2> Tz <

For those k < 2K + 1, there are at most 2K + 1 number of such K, and for

each of such k£ we have

r2 i\ 2 1 /rp)2
7 exp (‘R) =K% (%) e <—1 (%) ) < 2K°
Therefore, we have
2 ") < BKP 4 (2K 4 1)K < 6K
; T exXp “akz) S + (2K +1)K* < .
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N

Hence when ¢; < 2 and py > 5, we have h'(a) < 0 for every —1 < aK? <

Moreover, we can calculate that
1(0) = poSite1 Y (ri — S1) exp (——k) = poSi+ Y pr(re—51) = E[S]-8; = 0.
k=1

This indicates that for —1/K? < a < 0, we have h(a) > 0 hence f'(a) > 0,
and for 0 < a < 1/(4K?), we have h(a) < 0 hence f'(«) < 0. This leads to

10 250 =Y ew (k) =Y n=

holds for every —1/K? < a < 1/(4K?).

Above all, if we choose ¢; such that the following items hold, then we will have

fla) <1foralla e R:

(1—exp(—52))°
1. 25; <1, which can be obtained from ¢; < ~—73—282 -

o ak)
2. q < i;
5. 1 < (1 exp (~gh2)) (1 — exp (—5ha)):
exo(~ )
4. 1—=po=> 4 1Pk < 5, which can be obtained from ¢; < ——25~.

Hence if we choose

! (1 e (_8%)) (1 ~exp <_2[1(2)> B —exp2( 52) }

and py in (3.1), we would have f(a) <1 for all & € R. Therefore, we have

2042

E [exp(a(S — 51))] < exp ( ) . VaeR

which indicates that distribution P is a K-subgaussian. O]
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Appendix B

LSI and 75 constants for

Bernoulli-Gaussian mixtures

B.0.1 Proof of the Non-Existence of Uniform Bound of LSI

Constants for Bernoulli Distributions in 4.1

In this subsection, we will prove that for the Bernoulli distribution class in Section 4.1,
there constants in the corresponding log-Sobolev inequalities do not have a uniform

bound.

Theorem 4. Suppose o is a given constant which is smaller than K. Consider the

following Bernoulli distributions:
h2
Fr = o, = e (‘w) '

We use Cy, to denote the constant of LSI of distribution p, = P, * N (0,0%): C, is
the smallest constant such that for any smoothed, compact supported function f such

that [ f2dun = 1, we have

[ #2108 P < & [ 117a
R R
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Then we have

sup C}, = oo.
heR,

Proof of Theorem 4. We choose 1 < —1 < 0 < 29 < h — 1, where z; and z, are

determined later, and we let

.
0 r <z,
t(x — xq) r <x <z +1,
fu(z) =
t 1+ 1< x < o,
\—t(x—@ —1) T > T,

where t is the constant chosen such that fR fdu, = 1. Then f, is a continuous
function on R, and |f;(z)| < t for any x € R. (Notice here f, is not a smooth
function, but it has only finite points which are not smoothed. Hence after some
simple smoothing procedure near these points, e.g. convolved with some mollifier,
we can construct a sequence of functions converging to f; such that if the LSI works
for functions in this sequence, the LSI also works for f;,.) Next, we will calculate the

lower bound of (', such that the LSI works for function f;,. We denote
qna = (=00, 1)), qn2 = pn((z1, 21 + 1)), gz = pa((z1 + 1, 29)),
qha = pn((r2, 22 +1]),  qns = pn((22 + 1,00)).

Then we have

Gni + Gn2 + qn3 + qua + qns = 1.

According to the definition of f, we have

1= / frdp, < (qn2 + qns + %,4)152,
R

which indicates that t> > ———— > 1. Since for any a > 0, we have aloga > —1,
qh,2+qn,3+qh 4

108



we also have

/ filog fidun > qust*logt® — (qna + qua) > frdun > qnst®logt® — (qna + qua)t’.
R

Moreover, we also notice that |f;(x)]*> = t? if z € (x1, 71 + 1) U (29,22 + 1), while

|f7(z)]? = 0 for other x. Therefore, we obtain that
/R ’f}lz|2dﬂh = (qn2 + %,4)252-
Hence if we require the LSI with constant C}, holds for f;,, we will have
gnat’logt® — (qna + qua)t® < Ch(gna + qna)t?,

which indicates that

gn3logt® | > —n3 log(gn2 + qn3 + ana)

C, > > -1
qn2 + qna qn2 + qna
a2 log(1 — _
_ “ns og(l — gn1 — aqns) 1> r3(qn1 + ans) 1> n3dns
Gn2 + qna qn2 + Qna qn2 + qna

We use @, () to denote the PDF of N'(0,0?) at point . According to the definition

of up, and also noticing that 0 < z; < h — 1, we have

x1+1
= [ (U= i)ea@) + pugale = W) < (o) + pagalh =~ 1),

1
and also

Prpe(r—h)dr > / Prhpe(z—h)dr = iy
h

w5 = [ Qmealo)tmgalo-hde > [ !

1+1 r1+1

We further notice that lim,, o gn1 = lim,, o g2 = 0. Hence letting 1 — —oo0,

we will obtain that C), satisfies

1—q4— 1 —
C, > lim M—I: lim %_1:( qa Q5)Q5_1>( q5)q5_2.

21==00 qp 2 + Qna T1=—00 (4 44 44

109



When o < K, we will choose z = hy/o /K, then we will have limj, ;.o 2 —h —1 = o0,
which indicates that

0 < lim %4 _ iy Lo VOB +prexpp(h(l - Vo/K))

" h—oo ph h—o00 ph -

Y

and also

0< lim g5 < lim Yo (x)dx + lim p, =0,
h—o00 h—o00 hy/o/K+1 h—o0
which indicates that limj_,.(1 — gn5) = 1. Above all, we obtain that

1 _
lim (1—g5)q5

— 2 =00,
h—o00 q4

which indicates that lim,_.., C}, = 00, and the uniform bound for (', does not exists.

]

B.0.2 Proof of the Transportation-Entropy Inequality Con-

stant

Theorem 5. Suppose o is a given constant which is smaller than K. Consider the
following Bernoulli distributions:

h2
Ph = (1 - ph)50 +ph(5h, Pp = €xp (_ﬁ> )

We use C}, to denote the constant of transportation-entropy inequality : Cj, is the

smallest constant such that
Wa(Py, * N(0,0%),Q) < C) Dicr, (P * N(0,0%)||Q) V distribution Q.  (B.1)

Then we have

sup C} = 00.
heRy

PTOOf. We let @h = (1 —Qh>50+qh(5h W]th qn = Pn — €Xp (_ (176)(1;‘;'22/K2)2h2

& smaller enough such that (1—4§)(1+02/K?)?h* > 40%/K?, and QF = Qp,*N (0, 0?).

) for some
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According to data-processing inequality we have

1 _
Drr(Pr* N(0,0%)QF) < Drr(Pr||Qn) = pa log% + (1 —py) log 1 Pn
h

—dqn
= —pp log (1 + dn — Ph _ph) — (1 —py)log (1 + Pr Qh>

Dh 1 —pn
qn — Ph (Qh - ph)2 Ph — Qqn (qh - Ph)2
< =P +ph s —(L—=pn)- (=) =7
Dh i 1—px (1 —pn)?

2

h
< 2exp <m) (pn — qn)?,

where in the second inequality we use the fact that —log(l + z) < —z + 2? for
x> —1/2 and % > —1/2. Similar to the proof of Proposition 3, and noticing that
E,(t) — Fy(t) = (q — p)(P4(t) — D, (t — h)) where Fq, Fp, ®, are CDFs of distribution
Q*N(0,0%),P*N(0,02),N(0,0%). We can prove that

(B N (0. 0%), @ x A(0,02)? — (exp (_(1 —0)(1+ 02/K2)2h2>)

802

while

h2 1_5 1 2 K2 2h2
DKL(Ph*N(0702)||@Z):O(2K2_( X IUZ/ ) )

Since (1 —0)(1 + 0?/K?)*h* > 40/ K?, letting h — oo we obtain that sup,cp, C}, =
00. [
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