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Abstract

Consider an empirical measure P𝑛 induced by 𝑛 iid samples from a 𝑑-dimensional
𝐾-subgaussian distribution P. We show that when 𝐾 < 𝜎, the Wasserstein distance
𝑊 2

2 (P𝑛*𝒩 (0, 𝜎2𝐼𝑑),P*𝒩 (0, 𝜎2𝐼𝑑)) converges at the parametric rate 𝑂(1/𝑛), and when
𝐾 > 𝜎, there exists a 𝐾-subgaussian distribution P such that 𝑊 2

2 (P𝑛 *𝒩 (0, 𝜎2𝐼𝑑),P*
𝒩 (0, 𝜎2𝐼𝑑)) = 𝜔(1/𝑛). This resolves the open problems in[7], closes the gap between
where we get parametric rate and where we do not have parametric rate. Our result
provides a complete characterization of the range of parametric rates for subgaussian
𝑃 .

In addition, when 𝜎 < 𝐾, we establish more delicate results about the convergence
rate of W2 distance squared. Assuming the distribution is one dimensional, we provide
both the lower bound and the upper bound, demonstrating that the rate changes
gradually from Θ(1/

√
𝑛) to Θ(1/𝑛) as 𝜎/𝐾 goes from 0 to 1. Moreover, we also

establish that 𝐷𝐾𝐿(P𝑛 *𝒩 (0, 𝜎2𝐼𝑑)‖P *𝒩 (0, 𝜎2𝐼𝑑)) = 𝒪̃(1/𝑛). These results indicate
a dichotomy of the convergence rate between the W2 distance squared and the KL
divergence, resulting in the failure of 𝑇2-transportation inequality when 𝜎 < 𝐾, hence
also resolving the open problem in [17] about whether 𝐾 < 𝜎 is necessary in proving
whether the log-Sobolev inequality holds for P * 𝒩 (0, 𝜎2).
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Title: Associate Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Sasha Rakhlin
Title: Professor of Statistics and Data Science Center
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Chapter 1

Introduction

Given 𝑛 iid samples 𝑋1, . . . , 𝑋𝑛 from a probability measure P on R𝑑 let us denote by

P𝑛 = 1
𝑛

∑︀𝑛
𝑖=1 𝛿𝑋𝑖

the empirical distribution. As 𝑛 → ∞ it is well known that P𝑛 → P

according to many different notions of convergence. The literature on the topic is

very large even if one restricts to convergence in Wasserstein 𝑊𝑝-distances, cf. [16,

Chapter 1], defined for 𝑝 ≥ 1 as

𝑊𝑝(P,Q)𝑝 = inf
𝑃𝑋,𝑌

{E[‖𝑋 − 𝑌 ‖𝑝] : 𝑃𝑋 = P, 𝑃𝑌 = Q} ,

where ‖ · ‖ is Euclidean norm. Indeed, already in [4] it was shown that

𝑊1(P𝑛,P) = Θ(𝑛−1/𝑑) ,

for 𝑑 ≥ 2 and compactly supported P absolutely continuous with respect to Lebesgue

measure. Dudley’s technique relied on the characterization (special to 𝑝 = 1) of 𝑊1

as suprema over expectations of Lipschitz functions. However, his idea of recursive

partitioning was cleverly adapted to the realm of couplings in [1], recovering Dudley’s

convergence rate of 𝑛−1/𝑑 also for 𝑝 > 1. See [3, 5, 18] for more on this line of work,

and also for a thorough survey of the recent literature.

We see that while P𝑛 → P in 𝑊𝑝-distance, the convergence rate slows down as

dimension 𝑑 increases. Unfortunately, the rate of 𝑛−1/𝑑 is impractically slow already
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for moderate 𝑑. It turned out [7], however, that the rate of convergence improves all

the way to (dimension-independent) 𝑛−1/2 if one merely regularizes both P𝑛 and P by

convolving with the Gaussian density. More precisely, let 𝜙𝜎2𝐼𝑑(𝑥) , (2𝜋𝜎2)−𝑑/2𝑒−
‖𝑥‖2

2𝜎2

be the density of 𝒩 (0, 𝜎2𝐼𝑑) (if 𝑑 = 1, we simply write 𝜙𝜎2𝐼𝑑(·) as 𝜙𝜎(·)), and for any

probability measure P on R𝑑 we define the convolved measure via

P * 𝒩 (0, 𝜎2𝐼𝑑)(𝐸) =

∫︁
𝐸

𝑑𝑧E [𝜙𝜎2𝐼𝑑(𝑋 − 𝑧)] , 𝑋 ∼ P,

where 𝐸 is any Borel set. Then [7, Prop. 6] shows

E[𝑊 2
2 (P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))] ≤

𝐶(𝑑, 𝜎,𝐾)

𝑛
, (1.1)

whenever P is 𝐾-subgaussian and 𝐾 < 𝜎
2
. We recall that 𝑋 ∼ P is 𝐾-subgaussian if

E[𝑒(𝜆,𝑋−E[𝑋])] ≤ 𝑒
1
2
𝐾2‖𝜆‖2 ∀𝜆 ∈ R𝑑 .

Note that in (1.1) constant 𝐶 does not depend on P. The (1.1) is most exciting

for large 𝑑, but even for 𝑑 = 1 and P = 𝒩 (0, 1) it is non-trivial as E[𝑊 2
2 (P𝑛,P)] ≍

log log𝑛
𝑛

. Another surprising feature is [7, Corollary 2]: for 𝐾 ≥
√

2𝜎 there exists a

𝐾-subgaussian distribution P in R1 such that

lim
𝑛→∞

𝑛E[𝑊 2
2 (P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))] = ∞, (1.2)

where the expectation is with respect to 𝑛 samples according to P. We say that

the rate of convergence is “parametric” if (1.1) holds and otherwise call it “non-

parametric”. Thus, the results of [7] shows that parametric rate for smoothed-𝑊2 is

only attained by sufficiently light-tailed distributions P as measured by subgaussian

constant.

In this paper we prove three principal results:

1. Theorem 1 resolves the gap between the location of the parametric and non-

parametric region: it turns out that for 𝐾 < 𝜎 we always have (1.1), while

12



for 𝐾 > 𝜎 we have (1.2) for some 𝐾-subgaussian distribution P in R1. (We

remark that for 𝑊1 we always have parametric rate 𝑛−1/2 for all 𝐾, 𝜎 > 0, cf [7,

Proposition 1].)

2. In the region of non-parametric rates (𝐾 > 𝜎) a natural question arises: what

rates of convergence are possible? In other words, what is the value of

𝜌 = 𝜌(𝐾, 𝜎, 𝑑) , lim
𝑛→∞

sup
P−𝐾-subgaussian

− logE[𝑊2(P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))]

log 𝑛
(1.3)

Previously, it was only known that 1
4
≤ 𝜌 ≤ 1

2
for all 𝐾 > 𝜎 (note that (1.2)

strongly suggests but does not formally imply 𝜌 < 1
2
). Theorem 2 shows new

upper and lower bounds for 𝑑 = 1, which, albeit non-matching, demonstrate

that 𝜌 ↑ 1/2 as 𝐾 ↑ 𝜎 and 𝜌 ↓ 1/4 as 𝐾 ↓ 0.

3. So we can see that for a class of 𝐾-subgaussian distributions convergence rate

of 𝑊2(P𝑛*𝒩 (0, 𝜎2𝐼𝑑),P*𝒩 (0, 𝜎2𝐼𝑑)) changes from 𝑛−1/4 to 𝑛−1/2 as 𝜎 increases

from 0 to 𝐾, after which the rate remains 𝑛−1/2. Our final result (Theorem 3)

shows that, despite being intimately related to 𝑊2 the Kullback-Leibler (KL)

divergence behaves rather differently: For all 𝐾-subgaussian P we have

E[𝐷(P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑)‖P * 𝒩 (0, 𝜎2𝐼𝑑))] ≤

⎧⎪⎨⎪⎩
𝐶(𝜎,𝐾,𝑑) log𝑑+1 𝑛

𝑛
, 𝐾 > 𝜎

𝐶(𝜎,𝐾,𝑑)
𝑛

, 𝐾 < 𝜎

, (1.4)

where 𝐷(𝜇‖𝜈) =
∫︀
𝑑𝜈𝑓(𝑥) log 𝑓(𝑥), 𝑓 , 𝑑𝜇

𝑑𝜈
whenever 𝜇 is absolutely continuous

with respect to 𝜈. Now from the proof of Theorem 1 we also know that for

𝐾 > 𝜎 KL-divergence is 𝜔( 1
𝑛
). Thus, while at 𝐾 > 𝜎 both 𝑊2 and KL switch

to non-parametric regime, the 𝑊2 distance experiences a polynomial slow-down

in rate, while KL only gets hit by (at most) poly-logarithmic penalty.

To better understand relationship between the 𝑊2 results and the KL one, let

us recall an important result of Talagrand (known as 𝑇2-transportation inequality).

A probability measure 𝜈 is said to satisfy the 𝑇2 inequality if there exists a finite

13



constant 𝐶 such that

∀Q : 𝑊 2
2 (Q, 𝜈) ≤ 𝐶 ·𝐷(Q‖𝜈) .

The infimum over all such constants is denoted by 𝑇2(𝜈). Talagrand originally demon-

strated that 𝑇2(𝜙𝜎) < ∞. It turns out that 𝑇2(P * 𝜙𝜎) < ∞ as well. This was first

shown by [19] for compactly supported P and extended to 𝐾-subgaussian P with

𝐾 < 𝜎 in [17] (in fact, both papers establish a stronger log-Sobolev inequality (LSI)).

Now comparing (1.4) and the lower bound for all 𝐾 > 𝜎 established in Theorem 2

we discover the following.

Corollary 1. For any 𝐾 > 𝜎 there exists a 𝐾-subgaussian P on R1 such that P *

𝜙𝜎 does not satisfy 𝑇2-transportation inequality (and hence does not satisfy the LSI

either), that is 𝑇2(P * 𝜙𝜎) = ∞.

We remark that it is straightforward to show that

sup{𝑇2(P * 𝜙𝜎) : P – 𝐾-subgaussian} = ∞

by simply considering P = (1 − 𝜖)𝛿0 + 𝜖𝛿𝑁 for 𝜖 → 0 and 𝑁 → ∞ (cf. Appendix B).

However, each of these measures has 𝑇2 < ∞. Evidently, our corollary proves a

stronger claim.

Incidentally, this strengthening resolves an open question stated in [17], who

proved the LSI (and 𝑇2) for P * 𝜙𝜎 assuming E[𝑒𝑎𝑋
2
] < ∞ holds for some 𝑎 > 1

2𝜎2 .

They raised a question whether this threshold can be reduced, and our Corollary

shows the answer is negative. Indeed, one only needs to noticed that whenever 𝑋 ∼ P

is 𝐾-subgaussian it satisfies

E
[︁
𝑒𝑎𝑋

2
]︁
< ∞ ∀𝑎 <

1

2𝐾2
, (1.5)

which is proved in [2, p. 26].

14



1.1 Main results and proof ideas

Our first result is the following

Theorem 1. If 𝐾 < 𝜎, then for any 𝐾-subgaussian distribution P, we have

E
[︀
𝑊 2

2 (P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))
]︀

= 𝒪
(︂

1

𝑛

)︂
,

where P𝑛 is the empirical measure of P with 𝑛 samples, and the expectation is over

these 𝑛 samples. If 𝐾 > 𝜎, then there exists a 𝐾-subgaussian distribution P such that

E
[︀
𝑊 2

2 (P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))
]︀

= 𝜔

(︂
1

𝑛

)︂
.

Previous results. [7] shows when 𝐾 < 𝜎/2, E [𝑊 2
2 (𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑), 𝑃 * 𝒩 (0, 𝜎2𝐼𝑑))]

converges with rate 𝒪
(︀
1
𝑛

)︀
; when 𝐾 >

√
2𝜎, E [𝑊 2

2 (𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑), 𝑃 * 𝒩 (0, 𝜎2𝐼𝑑))]

converges with rate 𝜔
(︀
1
𝑛

)︀
. Here is an obvious gap between 𝐾 < 𝜎/2 and 𝐾 >

√
2𝜎, and our results close this gap between these two. Moreover, [11] shows that

E [𝑊2(𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑), 𝑃 * 𝒩 (0, 𝜎2𝐼𝑑))] converges with rate 𝒪
(︀

1
𝑛1/4

)︀
for any 𝐾 and

𝜎 > 0.

Proof idea. In order to prove the convergence rate of smoothed empirical measures,

we consider the following quantity: The mutual information

𝐼𝜒2(𝑆;𝑌 )

where 𝑆 ∼ P, 𝑌 = 𝑆 + 𝑍 with 𝑍 ∼ 𝒩 (0, 𝜎2) independent to 𝑆. Actually for this

𝐼𝜒2(𝑆;𝑌 ) we have the following closed-form definition:

𝐼𝜒2(𝑆;𝑌 ) = E
[︁
𝜒2
(︁
𝒩 (𝑆, 𝜎2𝐼𝑑)

⃦⃦
E𝒩 (𝑆, 𝜎2𝐼𝑑)

)︁]︁
,

where the first and second expectation are in terms of 𝑆 ∼ P and 𝑆 ∼ P respectively,

with 𝑆 ⊥⊥ 𝑆.w

According to [7], the convergence rate of smoothed empirical measure under 𝑊2,
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KL-divergence and the 𝜒2-divergence is closely related to this 𝐼𝜒2(𝑆;𝑌 ):

(Proposition 6 in [7]) If P is 𝐾-subgaussian where 𝐾 < 𝜎 and 𝐼𝜒2(𝑆;𝑌 ) < ∞, then

E
[︀
𝑊 2

2 (P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))
]︀

= 𝒪
(︂

1

𝑛

)︂
.

(Corollary 2 in [7]) If 𝐼𝜒2(𝑆;𝑌 ) = ∞, then for any 𝜏 < 𝜎,

E
[︀
𝑊 2

2 (𝑃𝑛 * 𝒩 (0, 𝜏 2𝐼𝑑), 𝑃 * 𝒩 (0, 𝜏 2𝐼𝑑))
]︀

= 𝜔

(︂
1

𝑛

)︂
.

Hence our results follow from the following main technical propositions.

Proposition 1. When 𝐾 < 𝜎, for any 𝐾-subgaussian 𝑑-dimensional distribution P,

we have 𝐼𝜒2(𝑆;𝑌 ) < ∞, where 𝑆 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2𝐼𝑑), 𝑆 ⊥⊥ 𝑍 and 𝑌 = 𝑆 + 𝑍.

Proposition 2. When 𝐾 > 𝜎, there exists some 𝐾-subgaussian 1D distribution P

such that 𝐼𝜒2(𝑆;𝑌 ) = ∞ for 𝑆 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2), 𝑆 ⊥⊥ 𝑍 and 𝑌 = 𝑆 + 𝑍.

We will prove these two propositions in the following two sections separately.

Other implications. Results from [7] and the first item of our Proposition 1 also

imply that E[𝐷𝐾𝐿(𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑)‖𝑃 * 𝒩 (0, 𝜎2𝐼𝑑))] and E[𝜒2(𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑)‖𝑃 *

𝒩 (0, 𝜎2𝐼𝑑))] both converge with rate 𝑂
(︀
1
𝑛

)︀
; and the second item of our Proposition 2

implies that E[𝐷𝐾𝐿(𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑)‖𝑃 * 𝒩 (0, 𝜎2𝐼𝑑))] converges with rate 𝜔
(︀
1
𝑛

)︀
, and

E𝜒2(𝑃𝑛 * 𝒩 (0, 𝜎2𝐼𝑑)‖𝑃 * 𝒩 (0, 𝜎2𝐼𝑑)) = ∞.

If we suppose the distribution P is 1D, then we have the following delicate esti-

mation on the convergence of W2 distance:

Theorem 2. If we know that the distribution P is 1D in prior, then we have the

following two propositions:

1. (Lower Bound) For any 𝐾 > 𝜎 > 0 and 𝜖 > 0, there exists some 𝐾-subgaussian

distribution P such that

lim inf
𝑛→∞

E [𝑊2(P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))]

𝑛(𝜎2+𝐾2)2/(4(𝜎4+𝐾4))+𝜖
> 0.
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2. (Upper Bound) Suppose P is a 1D 𝐾-subgaussian random variable (P(|𝑥| ≥

𝑡|𝑥 ∼ P) ≤ 𝐶 exp
(︁
− 𝑡2

2𝐾2

)︁
with 𝐶 ≥ 1), and P𝑛 to be an empirical measure of

generated from 𝑛 samples of P. Then for any 𝜎 < 𝐾, 𝜖 > 0 we have

E
[︀
𝑊 2

2 (P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))2
]︀

= 𝒪̃
(︂
𝑛
− 𝐾2

2𝐾2−𝜎2+𝜖

)︂
. (1.6)

Remark 1. According to Cauchy-Schwarz inequality, we have

E
[︀
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))

]︀
≤
√︁

E [𝑊 2
2 (P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))].

Therefore, the lower bound part in Theorem 2 indicates that for any 𝐾 and 𝜖 > 0,

there exists some 𝐾-subgaussian distribution P and 𝜎 > 0 such that

lim inf
𝑛→∞

E [𝑊 2
2 (P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑),P * 𝒩 (0, 𝜎2𝐼𝑑))]

𝑛(𝜎2+𝐾2)2/(2(𝜎4+𝐾4))+𝜖
> 0. (1.7)

and upper bound part in Theorem 2 indicates that

E
[︀
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))

]︀
= 𝒪̃

(︂
𝑛
− 𝐾2

2(2𝐾2−𝜎2)
+𝜖
)︂
.

Previously in [7], an upper bound 𝒪(𝑛−1/2) and also a lower bound 𝜔(𝑛−1) are demon-

strated for cases where 𝐼𝜒2(𝑆;𝑌 ) = ∞. We compare our upper bound and lower bound

in (1.6) and (1.7). The relationship among these bounds are shown in Figure 1. The

𝑥-axis is 𝜅 = 𝜎2

𝐾2 and the 𝑦-axis is the convergence rate (the convergence rate is 𝛼 if

we proved a convergence upper or lower bound at 𝑛𝛼±𝜖 for any 𝜖 > 0).

Finally we provide an upper bound on the convergence of smoothed empirical

measures under KL divergence:

Theorem 3. Suppose P is a 𝑑-dimensional 𝐾-subgaussian distribution, then for any

𝜎 > 0, we have

E
[︀
𝐷𝐾𝐿

(︀
P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑)

⃦⃦
P * 𝒩 (0, 𝜎2𝐼𝑑

)︀
)
]︀

= 𝒪
(︂

(log 𝑛)𝑑+1

𝑛

)︂
.
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Figure 1-1: Relationship of Upper and Lower Bounds of Convergence Rate of E [𝑊 2
2 ]

(for 0 < 𝜅 < 1)
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Remark 2. From Proposition 1 and 2 and also results from [7], we know that for

when 𝜎 > 𝐾, the convergence rate is of 𝒪
(︀
1
𝑛

)︀
. From the above theorem, we know that

when 𝜎 > 𝐾, the convergence rate is between 𝜔
(︀
1
𝑛

)︀
and 𝒪

(︁
(log𝑛)𝑑

𝑛

)︁
. Hence there is

a separation of convergence rate at 𝜎
𝐾

< 1 and 𝜎
𝐾

> 1.

Remark 3. Notice that from Theorem 3, we see a dichotomy between the conver-

gence rate of smoothed measures under the W2 distance and under the KL distance.

From the lower bound part of Theorem 2 we observe that when 0 < 𝜎 < 𝐾, the

convergence rate under W2 distance must be worse than under KL distance, e.g.

Ω
(︁
𝑛−(𝜎2+𝐾2)2/(4(𝜎4+𝐾4))−𝜖)

)︁
versus 𝒪̃

(︀
1
𝑛

)︀
. This is mainly due to the failure of log-

Sobolev inequality for distribution P *𝒩 (0, 𝜎2) when the subgaussian constant 𝐾 of P

is greater than 𝜎. (Theorem 1.2 in [17] only applies to cases where 𝐾 < 𝜎.)

1.2 Organization of this Paper

In Section 2 we will present the proof of Proposition 1. In Section 3 we will present

the proof of Proposition 2. The proof of the lower upper part and the upper bound

part of Theorem 2. Finally in Section 6, we will present the proof of Theorem 3.
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1.3 Notations

Throughout this paper, we use * to denote convolutions of two random variables, 𝑖.𝑒.

for 𝑋 ∼ P, 𝑌 ∼ Q, 𝑋 ⊥⊥ 𝑌 , we have 𝑋 + 𝑌 ∼ P *Q; we use ⊗ to denote the product

of two random variables, 𝑖.𝑒. for 𝑋 ∼ P, 𝑌 ∼ Q, 𝑋 ⊥⊥ 𝑌 , we have (𝑋, 𝑌 ) ∼ P ⊗ Q;

we use ∘ to denote the composition between a Markov kernel 𝑃𝑌 |𝑋 and a distribution

𝑃𝑋 , 𝑒.𝑔. for 𝑌 generated according to 𝑃𝑌 |𝑋 with 𝑋’s prior distribution to be 𝑃𝑋 , then

𝑌 ∼ 𝑃𝑌 |𝑋 ∘ 𝑃𝑋 .

Furthermore, we use P(𝐸) to denote the probability of event 𝐸, E𝑃 [·] to denote

the expectation with respect to distribution 𝑃 . We use 𝐴𝑛 = 𝒪(𝐵𝑛), 𝐴𝑛 = Ω(𝐵𝑛) to

denote that 𝐴𝑛 ≤ 𝐶𝐵𝑛 and 𝐴𝑛 ≥ 𝐶𝐵𝑛 for some positive constant 𝐶 independent of

𝑛. We use 𝐴 = 𝑂̃(𝐵) to denote that 𝐴𝑛 ≤ 𝐶𝐵𝑛 · log𝑙 𝑛 for some positive constant

𝐶, 𝑙. We further use ‖ · ‖2 to denote Euclidean norm, and use 𝐼𝑑 to denote the 𝑑× 𝑑

identity matrix.
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Chapter 2

Proof of Proposition 1

In this section, we provide proof for Proposition 1. The proof idea is to decompose

the integral domain into three subdomains, and we prove that the integral within

each subdomain is finite.

Proof. We suppose distribution P is 𝑑-dimensional, and use 𝒩 (0, 𝜎2𝐼𝑑) to denote the

𝑑-dimensional mean-zero multivariate Gaussian distribution with covariance matrix

𝜎2𝐼𝑑, and 𝜙𝜎2𝐼𝑑(x) = (
√

2𝜋𝜎)−𝑑 exp
(︁
−‖x‖22

2𝜎2

)︁
to denote its PDF x ∈ R𝑑. Then with

𝑆 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2𝐼𝑑), 𝑆 ⊥⊥ 𝑍 and 𝑌 = 𝑆 + 𝑍, we have

𝐼𝜒2(𝑆;𝑌 ) = E
[︁
𝜒2
(︁
𝒩 (𝑆, 𝜎2𝐼𝑑)‖E𝒩 (𝑆, 𝜎2𝐼𝑑)

)︁]︁
= E

[︂∫︁
R𝑑

𝜙𝜎2𝐼𝑑(z− 𝑆)2

E𝜙𝜎2𝐼𝑑(z− 𝑆)
𝑑z− 1

]︂

= (
√

2𝜋𝜎)−𝑑

⎡⎣∫︁
R𝑑

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦− 1,

(2.1)

where 𝑆, 𝑆 ∼ P are 𝑖.𝑖.𝑑. Hence we only need to prove that when 𝑃 is a 𝐾-subgaussian

distribution with 𝐾 < 𝜎,

E

⎡⎣∫︁
R𝑑

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ =

∫︁
R𝑑

∫︁
R𝑑

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑𝑃 (𝑆)𝑑𝑧 < ∞.

We decompose the integral domain of (𝑆, z) into three sets:
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1. 𝐴 = {‖𝑆‖2 ≤ 1};

2. 𝐵 = {‖𝑆‖2 > 1 and ‖z− 𝑆‖2 ≥ 𝛿‖𝑆‖2};

3. 𝐶 = {‖z− 𝑆‖2 < 𝛿‖𝑆‖2}.

Since 𝐴 ∪ 𝐵 ∪ 𝐶 = R𝑑 × R𝑑, and the integrand
exp(−‖z−𝑆‖22/𝜎2)

E exp(−‖z−𝑆‖22/(2𝜎2))
is always positive,

we have

E

⎡⎣∫︁
R𝑑

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ ≤ E

⎡⎣∫︁
R𝑑

1(𝑆,𝑧)∈𝐴
exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

+ E

⎡⎣∫︁
R𝑑

1(𝑆,𝑧)∈𝐵
exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

+ E

⎡⎣∫︁
R𝑑

1(𝑆,𝑧)∈𝐶
exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

We will proves the finiteness of these three integrals separately.

1. Part 1: In this part, we will prove that

E

⎡⎣∫︁
R𝑑

1(𝑆,𝑧)∈𝐴
exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

= E1‖𝑆‖2≤1

⎡⎣∫︁
R𝑑

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ < ∞.

(2.2)

We let

𝑝0 = P(‖𝑆‖2 ≤ 1) = E
[︀
1‖𝑆‖2≤1

]︀
, 𝑆 ∼ P.

WLOG assume that 𝑝0 > 0 (if 𝑝0 = 0 then the above formula equals to 0, hence

less than infinity). First of all, the denominator in (2.2) has the following lower
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bound:

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁
≥ E

[︁
1‖𝑆‖2≤1 exp

(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁]︁
≥
(︁
E1‖𝑆‖≤1

)︁
· exp

(︂
−(‖z‖2 + 1)2

2𝜎2

)︂
= 𝑝0 exp

(︂
−(‖z‖2 + 1)2

2𝜎2

)︂

When ‖𝑆‖2 ≤ 1, we can further upper bound the numerator exp (−‖z− 𝑆‖22/𝜎2)

by

exp

(︂
−‖z− 𝑆‖22

𝜎2

)︂
≤

⎧⎪⎨⎪⎩exp (−(‖z‖2 − 1)2/𝜎2) ‖z‖ ≥ 1,

1 ‖z‖ < 1.

Therefore,

LHS of (2.2)

≤ E

⎡⎣1‖𝑆‖2≤1

⎛⎝∫︁
‖z‖2≥1

exp (−(‖z‖2 − 1)2/𝜎2)

𝑝0 exp
(︁
− (‖z‖2+1)2

2𝜎2

)︁ 𝑑z +

∫︁
‖z‖2<1

1

𝑝0 exp
(︁
− (‖z‖2+1)2

2𝜎2

)︁𝑑z
⎞⎠⎤⎦

=

∫︁
‖z‖2≥1

exp

(︂
−‖z‖22

2𝜎2
+

3‖z‖2
𝜎2

− 1

2𝜎2

)︂
𝑑𝑧 +

∫︁
‖z‖2<1

exp

(︂
(‖z‖2 + 1)2

2

)︂
𝑑𝑧

< ∞,

which proves that inequality (2.2) holds.

2. Part 2: In this part, we will prove that for any 𝛿 > 0,

E

⎡⎣∫︁
R𝑑

1(𝑆,z)∈𝐵
exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

= E

⎡⎣1‖𝑆‖2>1

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ < ∞.

(2.3)

First notice that

{‖𝑆‖2 > 1} ⊂ ∪∞
𝑘=1𝐴𝑘,

where 𝐴𝑘 = {𝑆|‖𝑆‖2 ∈ (𝑘, 𝑘+1]}. Let 𝑙𝑘 to be smallest number of R𝑑 balls with
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diameter 2 which can cover the set 𝐴𝑘. Then we have 𝑙𝑘 = 𝒪(𝑘𝑑) (note that here

we only need to prove that the integral is finite, hence we ignore the constants).

We denote these 𝑙𝑘 balls using 𝐴𝑘,1, · · · , 𝐴𝑘,𝑙𝑘 , where we have 𝐴𝑘 ⊂ ∪𝑙𝑘
𝑖=1𝐴𝑘,𝑖.

For each 𝑘 ≥ 1 and 1 ≤ 𝑖 ≤ 𝑙𝑘, we use 𝑝𝑘,𝑖 to denote the probability of 𝑆 in 𝐴𝑘,𝑖:

𝑝𝑘,𝑖 = P(𝑆 ∈ 𝐴𝑘,𝑖) = E1𝑆∈𝐴𝑘,𝑖
, 𝑆 ∼ P.

We notice that for any 𝑆, 𝑆 ∈ 𝐴𝑘,𝑖 we have ‖𝑆 − 𝑆‖2 ≤ 2, hence

E exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃
≥ E

[︃
1𝑆∈𝐴𝑘,𝑖

exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃]︃

≥ 𝑝𝑘,𝑖 min
𝑆∈𝐴𝑘,𝑖

exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃
= 𝑝𝑘,𝑖 min

𝑆∈𝐴𝑘,𝑖

exp

(︃
−‖z− 𝑆 + (𝑆 − 𝑆)‖22

2𝜎2

)︃

≥ 𝑝𝑘,𝑖 exp

(︂
−(‖z− 𝑆‖2 + 2)2

2𝜎2

)︂
.

We obtain the following upper bound on the expectation in (2.3) specifically for
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𝑆 ∈ 𝐴𝑘,𝑖:

E

⎡⎣1𝑆∈𝐴𝑘,𝑖

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

≤ E

⎡⎣1𝑆∈𝐴𝑘,𝑖

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

𝑝𝑘,𝑖 exp
(︁
− (‖z−𝑆‖2+2)2

2𝜎2

)︁𝑑z
⎤⎦

≤ E
[︂
1𝑆∈𝐴𝑘,𝑖

𝑝𝑘,𝑖

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp

(︂
−‖z− 𝑆‖22

𝜎2
+

(‖z− 𝑆‖2 + 2)2

2𝜎2

)︂
𝑑z

]︂
= E

[︂
1𝑆∈𝐴𝑘,𝑖

𝑝𝑘,𝑖

∫︁
‖u‖2≥𝛿‖𝑆‖2

exp

(︂
−‖u‖2

𝜎2
+

(‖u‖2 + 2)2

2𝜎2

)︂
𝑑u

]︂
≤ E

[︂
1𝑆∈𝐴𝑘,𝑖

𝑝𝑘,𝑖

∫︁
‖u‖2≥𝑘𝛿

exp

(︂
−‖u‖2

𝜎2
+

(‖u‖2 + 2)2

2𝜎2

)︂
𝑑u

]︂
=

∫︁
‖u‖2≥𝑘𝛿

exp

(︂
−‖u‖2

𝜎2
+

(‖u‖2 + 2)2

2𝜎2

)︂
𝑑u

≤
∫︁
‖u‖2≥𝑘𝛿

exp

(︃
−‖u‖22

𝜎2
+

‖u‖22 +
‖u‖22
2

+ 8 + 4

2𝜎2

)︃
𝑑u

= exp(6/𝜎2)

∫︁
‖u‖2≥𝑘𝛿

exp

(︂
−‖u‖22

4𝜎2

)︂
𝑑u

= 2𝜎 exp(6/𝜎2)

∫︁
‖u‖2≥𝑘𝛿/(2𝜎)

exp
(︀
−‖u‖22

)︀
𝑑u,

(2.4)

where we use the fact that ‖𝑆‖2 ≥ 𝑘 for 𝑆 ∈ 𝐴𝑘, and E1𝑆∈𝐴𝑘,𝑖
= 𝑝𝑘,𝑖. Moreover,

according to changing of variables in integration, there exists some constants

𝐶0 such that ∫︁
‖u‖2≥𝑘𝛿/(2𝜎)

exp
(︀
−‖u‖22

)︀
𝑑u

= 𝐶0

∫︁ ∞

𝑘𝛿/(2𝜎)

𝑟𝑑−1 exp
(︀
−𝑟2

)︀
𝑑𝑟

≤ 𝐶0

∫︁ ∞

𝑘𝛿/(2𝜎)

exp((𝑑− 1)𝑟) exp
(︀
−𝑟2

)︀
𝑑𝑟

When 𝑘 ≤ 2𝜎𝑑
𝛿

, since the integrand in the above RHS has exponentially decay,

there exists a constant 𝐶1 not depending on 𝑘, 𝑖 such that

𝐶0

∫︁ ∞

𝑘𝛿/(2𝜎)

exp((𝑑− 1)𝑟) exp
(︀
−𝑟2

)︀
𝑑𝑟 ≤ 𝐶1
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When 𝑟 ≥ 𝑘 > 2𝜎𝑑
𝛿

, we have (𝑑− 1)𝑟 − 𝑟2 ≤ −𝑟 ≤ −𝑘, which indicates that

𝐶0

∫︁ ∞

𝑘𝛿/(2𝜎)

exp((𝑑−1)𝑟) exp
(︀
−𝑟2

)︀
𝑑𝑟 ≤ 𝐶0

∫︁ ∞

𝑘𝛿/(2𝜎)

exp(−𝑟)𝑑𝑟 = 𝐶0 exp

(︂
−𝑘𝛿

2𝜎

)︂
.

Therefore, we obtain that

E

⎡⎣1𝑆∈𝐴𝑘,𝑖

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ ≤ 2𝜎 exp(6/𝜎2)𝐶1

for 𝑘 ≤ 2𝜎𝑑
𝛿

, and

E

⎡⎣1𝑆∈𝐴𝑘,𝑖

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ ≤ 2𝜎 exp(6/𝜎2)𝐶0 exp

(︂
−𝑘𝛿

2𝜎

)︂

for 𝑘 > 2𝜎𝑑
𝛿

. Next noticing that 𝑙𝑘 ≤ (2𝑘 + 3)𝑑 and 𝐴𝑘 ⊂ ∪𝑙𝑘
𝑖=1𝐴𝑘,𝑖, summing up

these expectations for 1 ≤ 𝑖 ≤ 𝑙𝑘, we obtain that for 1 ≤ 𝑘 ≤ 2𝜎𝑑
𝛿

,

E

⎡⎣1𝑆∈𝐴𝑘

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ ≤ 2𝜎 exp(6/𝜎2)𝐶1(2𝑘+3)𝑑,

and for 𝑘 > 2𝜎𝑑
𝛿

,

E

⎡⎣1𝑆∈𝐴𝑘

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

≤ 2𝜎 exp(6/𝜎2)𝐶0 exp

(︂
−𝑘𝛿

2𝜎

)︂
(2𝑘 + 3)𝑑.
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Finally summing up for all 𝑘 ≥ 1, we obtain that

E

⎡⎣1‖𝑆‖2≥1

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

=
∞∑︁
𝑘=1

E

⎡⎣1𝑆∈𝐴𝑘

∫︁
‖z−𝑆‖2≥𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

≤
∑︁

1≤𝑘≤ 2𝜎𝑑
𝛿

2𝜎 exp(6/𝜎2)𝐶1(2𝑘 + 3)𝑑 +
∑︁

𝑘> 2𝜎𝑑
𝛿

2𝜎 exp(6/𝜎2)𝐶0 exp

(︂
−𝑘𝛿

2𝜎

)︂
(2𝑘 + 3)𝑑

< ∞,

which proves inequality (2.3).

3. Part 3: In this part, we will prove that there exists some 𝛿 > 0 (depending

on 𝐾 and P), we have

E

⎡⎣∫︁
R𝑑

1(𝑆,𝑧)∈𝐶
exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ < ∞, (2.5)

which is equivalent to

E

⎡⎣∫︁
‖z−𝑆‖2<𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦ < ∞.

Given the distribution P, first we find constants 𝑡, 𝜖 such that P
(︁
‖𝑆‖2 ≤ 𝑡

)︁
≥ 𝜖

for 𝑆 ∼ P. This indicates that for any 𝛿′ > 0, the following inequality holds for
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∀𝑧 ∈ R𝑑:

E

[︃
exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃]︃
≥ E

[︃
1‖𝑆‖2≤𝑡 exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃]︃

≥
(︁
E1‖𝑆‖2≤𝑡

)︁
· min
‖𝑆‖2≤𝑡

exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃
≥ 𝜖 · exp

(︃
−(‖z‖2 + 𝑡)2

2𝜎2

)︃

≥ 𝜖 · exp

(︃
−‖z‖22 + 𝑡2

2𝜎2
−

𝛿′‖z‖22 + 𝑡2

𝛿′

2𝜎2

)︃

= 𝜖 exp

(︂
−(1 + 𝛿′)𝑡2

2𝛿′𝜎2

)︂
· exp

(︂
−(1 + 𝛿′)‖z‖22

2𝜎2

)︂
.

We let

𝜖′ = 𝜖 exp

(︂
−(1 + 𝛿′)𝑡2

2𝛿′𝜎2

)︂
,

then given that ‖z− 𝑆‖2 ≤ 𝛿‖𝑆‖2, we have ‖z‖2 ≤ (1 + 𝛿)‖𝑆‖2, and hence

E

[︃
exp

(︃
−‖z− 𝑆‖22

2𝜎2

)︃]︃
≥ 𝜖′ exp

(︂
−(1 + 𝛿′)‖z‖22

2𝜎2

)︂
≥ 𝜖′·exp

(︂
−(1 + 𝛿′)(1 + 𝛿)2‖𝑆‖22

2𝜎2

)︂
,

This leads to the following estimation on the LHS of (2.5):

LHS of (2.5) = E

⎡⎣∫︁
‖z−𝑆‖2<𝛿‖𝑆‖2

exp (−‖z− 𝑆‖22/𝜎2)

E exp
(︁
−‖z− 𝑆‖22/(2𝜎2)

)︁𝑑z
⎤⎦

≤ 1

𝜖′
E
[︂∫︁

‖z−𝑆‖2<𝛿‖𝑆‖2
exp

(︂
−‖z− 𝑆‖22

𝜎2
+

(1 + 𝛿′)(1 + 𝛿)2‖𝑆‖22
2𝜎2

)︂
𝑑z

]︂
≤ 1

𝜖′
E
[︂
exp

(︂
(1 + 𝛿′)(1 + 𝛿)2

2𝜎2
‖𝑆‖22

)︂∫︁
R𝑑

exp

(︂
−‖𝑧 − 𝑆‖22

𝜎2

)︂
𝑑𝑧

]︂
=

1

𝜖′(
√
𝜋𝜎)𝑑

E
[︂
exp

(︂
(1 + 𝛿′)(1 + 𝛿)2

2𝜎2
‖𝑆‖22

)︂]︂
.

Since 𝐾 < 𝜎, we have 𝐾
𝜎

< 1. Hence we can choose 𝛿, 𝛿′ > 0 close to 0 such

that √︃
1

(1 + 𝛿)2(1 + 𝛿′)
>

𝐾

𝜎
.

Then applying Lemma 1 with 𝜉 = 𝜎
√︁

1
(1+𝛿)2(1+𝛿′)

> 𝐾 we obtain that LHS of (2.5) <

∞. Hence inequality (2.5) is proved.
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Finally, combining these three parts of proof, we obtain that the integral in (2.1) is

less than infinity, which indicates that 𝐼𝜒2(𝑆;𝑌 ) < ∞. The proof of Proposition 1 is

completed.

In the next, we will present the proof of Lemma 1. This lemma can also be viewed

from [2, p. 26].

Lemma 1. If 𝑆 ∼ P is 𝐾-subgaussian, we have for any 𝜉 > 𝐾,

E
[︂
exp

(︂
‖𝑆‖2

2𝜉2

)︂]︂
< ∞.

Proof. Assume 𝑍 ∼ 𝒩 (0, 𝜉2𝐼𝑑) independent to 𝑆. Then we have

E
[︂
exp

(︂
‖𝑆‖22
2𝜉2

)︂]︂
=

1(︀√
2𝜋𝜉
)︀𝑑E [︂exp

(︂
−‖𝑍 − 𝑆‖22

2𝜉2

)︂
exp

(︂
‖𝑆‖22
2𝜉2

)︂]︂
=

1(︀√
2𝜋𝜉
)︀𝑑E [︂exp

(︂
−‖𝑍‖22

2𝜉2

)︂
exp

(︂
𝑆𝑇𝑍

𝜉2

)︂]︂
= E

[︂
exp

(︂
𝑆𝑇𝑍

𝜉2

)︂]︂
≤ E

[︂
exp

(︂
𝐾2‖𝑍‖22

𝜉4

)︂]︂
=

1(︀√
2𝜋𝜉
)︀𝑑 ∫︁

R𝑑

exp

(︂
−𝜉2 −𝐾2

𝜉4
‖z‖22

)︂
𝑑z =

(︂
𝜉2

𝜉2 −𝐾2

)︂ 𝑑
2

< ∞,

(2.6)

which completes the proof of this lemma.
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Chapter 3

Proof of Proposition 2

In this section, we will present a proof of Proposition 2.

Proof. With loss of generality, we assume 𝜎 = 1, and we only need to prove the

proposition for 𝐾 > 1. (Otherwise we consider 𝑆 ′ = 𝑆/𝜎, 𝑍 ′ = 𝑍/𝜎 and 𝑌 ′ = 𝑌/𝜎,

and we will have 𝑆 ′ is a 𝐾/𝜎-Subgaussian distribution, 𝑍 ′ ∼ 𝒩 (0, 1) and 𝐼𝜒2(𝑆, 𝑌 ) =

𝐼𝜒2(𝑆 ′, 𝑌 ′). Hence we only need to consider 𝑆 ′, 𝑍 ′ and 𝑌 ′, which has the property

that 𝑍 ′ ∼ 𝒩 (0, 1).)

We construct 1D distribution P as follows:

P =
∞∑︁
𝑘=0

𝑝𝑘𝛿𝑟𝑘 ,

where we choose 𝑟0 = 0, 𝑝0 = 1 −
∑︀∞

𝑘=1 𝑝𝑘 and for some positive constant 𝑐1 to be

determined we choose

𝑝𝑘 = 𝑐1 exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
, 𝑘 ≥ 1. (3.1)

Here we let 𝑟𝑖 be a geometrical sequence:

𝑟1 = 1, 𝑟𝑖+1 = 𝑐𝑟𝑖, ∀𝑖 ≥ 1,

where 𝑐 > 2 is a constant to be specified later. We restrict that 𝑐1 only depends on
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𝐾 and

𝑐1 ·
∞∑︁
𝑘=1

exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
< 1.

Then we will have 𝑝0 = 1 −
∑︀∞

𝑘=1 𝑝𝑘 > 0, hence P is a distribution on N. also 𝑃

is a 𝐾-subgaussian. We can also prove that there exists some 𝑐1 > 0 such that for

any constant 𝑐 > 2, distribution P is a 𝐾-Subgaussian distribution. The proof of the

existence of 𝑐1 is deferred to Section A in appendix.

Remark 4. If we switch the definition of 𝐾-subgaussian of distribution P from

∀𝛼 : E
[︁
exp

(︁
𝛼
(︁
𝑆 − E[𝑆]

)︁)︁]︁
≤ exp

(︂
𝛼2𝐾2

2

)︂
, 𝑆, 𝑆 ∼ P, 𝑆 ⊥⊥ 𝑆

to

∀𝛼 : E[exp (𝛼𝑆)] ≤ 2 exp

(︂
𝛼2𝐾2

2

)︂
, 𝑆 ∼ P,

then the proof of subgaussian property would be much easier. We notice that

E[exp (𝛼𝑆)] = 𝑝0 + 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2)︂
exp

(︂
𝐾2𝛼2

2

)︂
.

We suppose 𝑘0 to be the smallest 𝑘 such that 𝑟𝑘−𝛼𝐾2 to be positive. Since 𝑟𝑘+1−𝑟𝑘 ≥ 1

for every 𝑘, we have for 𝑘 ≥ 𝑘0, 𝑟𝑘 − 𝛼𝐾2 ≥ 𝑘 − 𝑘0 + 𝑟𝑘0 − 𝛼𝐾2 ≥ 𝑘 − 𝑘0, and for

𝑘 < 𝑘0, 𝑟𝑘 − 𝛼𝐾 ≤ 𝑟𝑘0−1 − 𝛼𝐾 + (𝑘0 − 1 − 𝑘) ≤ 𝑘0 − 1 − 𝑘 since 𝑟𝑘0−1 ≤ 0. Hence,

we have

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2)︂

=

𝑘0−1∑︁
𝑘=1

exp

(︂
−(𝑟𝑘 − 𝛼𝐾2)2

2𝐾2

)︂
+

∞∑︁
𝑘=𝑘0

exp

(︂
−(𝑟𝑘 − 𝛼𝐾2)2

2𝐾2

)︂

≤
𝑘0−1∑︁
𝑘=1

exp

(︂
−𝑘0 − 1 − 𝑘

2𝐾2

)︂
+

∞∑︁
𝑘=𝑘0

exp

(︂
−𝑘 − 𝑘0

2𝐾2

)︂

≤
∞∑︁
𝑘=0

exp

(︂
− 1

2𝐾2

)︂𝑘

+
∞∑︁
𝑘=0

exp

(︂
− 1

2𝐾2

)︂𝑘

=
2

1 − exp
(︀
− 1

2𝐾2

)︀ .
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Therefore, if we choose 𝑐1 =
1−exp(− 1

2𝐾2 )
2

, and notice that 𝑝0 ≤ 1 ≤ exp
(︁

𝐾2𝛼2

2

)︁
, we

would have

E[exp (𝛼𝑆)] ≤ exp

(︂
𝐾2𝛼2

2

)︂
+ exp

(︂
𝐾2𝛼2

2

)︂
= 2 exp

(︂
𝐾2𝛼2

2

)︂
.

We first choose 𝑐1 such that for any 𝑐, P is a 𝐾-subgaussian distribution. Then we

will specify constant 𝑐 such that 𝐼𝜒2(𝑆;𝑌 ) = ∞. In the following, we will use 𝜙𝜎(𝑥)

to denote the density of 1D Gaussian distribution 𝒩 (0, 𝜎2) at 𝑥. According to the

definition of 𝐼𝜒2 , we have

𝐼𝜒2(𝑆;𝑌 ) =

∫︁
R

E𝜙2
1(𝑧 − 𝑆)

E𝜙1(𝑧 − 𝑆)
𝑑𝑧 − 1.

Hence 𝐼𝜒2(𝑆;𝑌 ) = ∞ is equivalent to

∫︁
R

E𝜙 1√
2
(𝑧 − 𝑆)

E𝜙1(𝑧 − 𝑆)
𝑑𝑧 =

∫︁
R

∑︀∞
𝑘=0 𝑝𝑘𝜙 1√

2
(𝑧 − 𝑟𝑘)∑︀∞

𝑘=1 𝑝𝑘𝜙1(𝑧 − 𝑟𝑘)
𝑑𝑧 = ∞.

We rewrite the above as

∫︁
R

∑︀∞
𝑘=0 𝑝𝑘𝜙 1√

2
(𝑧 − 𝑟𝑘)∑︀∞

𝑘=1 𝑝𝑘𝜙1(𝑧 − 𝑟𝑘)
𝑑𝑧 =

∞∑︁
𝑘=0

∫︁
R

𝜙 1√
2
(𝑧 − 𝑟𝑘)

𝜙1(𝑧 − 𝑟𝑘)
· 1

1 +
∑︀

𝑗 ̸=𝑘
𝑝𝑗
𝑝𝑘

𝜙1(𝑧−𝑟𝑗)

𝜙1(𝑧−𝑟𝑘)

𝑑𝑧. (3.2)

Next, we are going to analyze second term’s denominator 1 +
∑︀

𝑗 ̸=𝑘
𝑝𝑗
𝑝𝑘

𝜙1(𝑧−𝑟𝑗)

𝜙1(𝑧−𝑟𝑘)
for 𝑧

close to 𝑟𝑘 (when |𝑧 − 𝑟𝑘| ≤ 𝛿 for some 𝛿 < 1).

When 𝑗 = 0 and |𝑧 − 𝑟𝑘| ≤ 𝛿, we have

𝑝𝑗
𝑝𝑘

𝜙1(𝑧 − 𝑟𝑗)

𝜙1(𝑧 − 𝑟𝑘)
≤ 𝜙1(𝑧)

𝑝𝑘𝜙1(𝑧 − 𝑟𝑘)
≤ 1

𝑐1
exp

(︂
−𝑧2

2
+

𝑟2𝑘
2𝐾2

+
(𝑧 − 𝑟𝑘)2

2

)︂
≤ 1

𝑐1
exp

(︂
−(𝑟𝑘 − 𝛿)2

2
+

𝑟2𝑘
2𝐾2

+
𝛿2

2

)︂

≤ 1

𝑐1
exp

⎛⎝−(𝑟𝑘 − 𝛿)2

2
+

(︁
(𝑟𝑘 − 𝛿)2 + 𝐾2𝛿2

1−𝐾2

)︁(︁
1 + 1−𝐾2

𝐾2

)︁
2𝐾2

+
𝛿2

2

⎞⎠
=

1

𝑐1
exp

(︂
𝐾2𝛿2

2(1 −𝐾2)
+

𝛿2

2

)︂
, 𝐶.
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For 𝑗 ≥ 1 and |𝑧−𝑟𝑘| ≤ 𝛿, we have by bounding 𝑧(𝑟𝑗−𝑟𝑘) ≤ −𝑟2𝑘 +𝑟𝑘𝑟𝑗 +𝛿|𝑟𝑘−𝑟𝑗|

the following chain

𝑝𝑗
𝑝𝑘

𝜙1(𝑧 − 𝑟𝑗)

𝜙1(𝑧 − 𝑟𝑘)
= exp

(︂(︂
1

2𝐾2
+

1

2

)︂
(𝑟2𝑘 − 𝑟2𝑗 ) − 𝑧(𝑟𝑘 − 𝑟𝑗)

)︂
≤ exp

(︂(︂
1

2𝐾2
+

1

2

)︂
(𝑟2𝑘 − 𝑟2𝑗 ) − 𝑟2𝑘 + 𝑟𝑘𝑟𝑗 + 𝛿|𝑟𝑘 − 𝑟𝑗|

)︂
≤ exp

(︂(︂
1

2𝐾2
+

1

2
− 1

)︂
𝑟2𝑘 −

(︂
1

2𝐾2
+

1

2

)︂
𝑟2𝑗 + 𝑟𝑘𝑟𝑗 + 𝛿𝑟𝑘 + 𝛿𝑟𝑗

)︂
= exp(𝐴 + 𝐵 + 𝐶 − 𝑟2𝑗/4)

where we denoted

𝐴 ,
𝑙

2
𝑟2𝑘 −

1

2𝐾2
𝑟2𝑗 + 𝑟𝑘𝑟𝑗 ℓ ,

1

2𝐾2
− 1

2

𝐵 ,
ℓ

2
𝑟2𝑘 + 𝛿𝑟𝑘

𝐶 , −1

4
𝑟2𝑗 + 𝛿𝑟𝑗 .

Note that 𝐾 > 1 and, thus, ℓ < 0. We show that by choosing 𝑐 and 𝛿 it is possible

to make sure 𝐴,𝐵,𝐶 ≤ 0 for all 𝑘, 𝑗. First, notice that because 𝑟𝑘 ≥ 1 or 𝑟𝑘 = 0 by

setting 𝛿 = min
(︀
− ℓ

2
, 1
4

)︀
we have 𝐵,𝐶 ≤ 0.

Second, we have 𝐴 = 𝑟2𝑗𝑓(𝑟𝑘/𝑟𝑗) where 𝑓(𝑧) = ℓ
2
𝑧2 + 𝑧 − 1

2𝐾2 . Since 𝑓(0) < 0 and

𝑓(+∞) = −∞ (recall ℓ < 0) we must have that for some sufficiently large 𝑐 > 0 we

have 𝑓(𝑧) < 0 if 𝑧 ≤ 1/𝑐 or 𝑧 ≥ 𝑐. For convenience we take this 𝑐 > 2 as well. Since

𝑟𝑘/𝑟𝑗 is always either ≤ 1/𝑐 or ≥ 𝑐 we conclude 𝐴 ≤ 0.

Continuing, we obtained that with our choice of 𝑐, for 𝑗 ̸= 𝑘, 𝑗 ≥ 1 and |𝑧−𝑟𝑘| ≤ 𝛿

we have
𝑝𝑗
𝑝𝑘

𝜙1(𝑧 − 𝑟𝑗)

𝜙1(𝑧 − 𝑟𝑘)
≤ exp

(︂
𝐴 + 𝐵 + 𝐶 −

𝑟2𝑗
4

)︂
≤ exp

(︂
−
𝑟2𝑗
4

)︂
≤ exp

(︂
−𝑐𝑗

4

)︂
≤ exp

(︂
−2𝑗

4

)︂
≤ exp(−𝑗/2),

which indicates that ∃𝐶 ′ such that

1 +
∑︁
𝑗 ̸=𝑘

𝑝𝑗
𝑝𝑘

𝜙1(𝑧 − 𝑟𝑗)

𝜙1(𝑧 − 𝑟𝑘)
≤ 𝐶 +

∞∑︁
𝑗=1,𝑗 ̸=𝑘

exp(−𝑗/2) < 𝐶 ′.
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Therefore,
∞∑︁
𝑘=0

∫︁
R

𝜙 1√
2
(𝑧 − 𝑟𝑘)

𝜙1(𝑧 − 𝑟𝑘)
· 1

1 +
∑︀

𝑗 ̸=𝑘
𝑝𝑗
𝑝𝑘

𝜙1(𝑧−𝑟𝑗)

𝜙1(𝑧−𝑟𝑘)

𝑑𝑧

≥
∞∑︁
𝑘=0

∫︁ 𝑟𝑘+𝛿

𝑟𝑘−𝛿

𝜙 1√
2
(𝑧 − 𝑟𝑘)

𝜙1(𝑧 − 𝑟𝑘)
· 1

1 +
∑︀

𝑗 ̸=𝑘
𝑝𝑗
𝑝𝑘

𝜙1(𝑧−𝑟𝑗)

𝜙1(𝑧−𝑟𝑘)

𝑑𝑧

≥

(︃∫︁ 𝛿

−𝛿

𝜙 1√
2
(𝑧)

𝜙1(𝑧)

)︃
·

∞∑︁
𝑘=0

1

𝐶 ′

= ∞

(3.3)

And we have proved that 𝐼𝜒2(𝑆;𝑌 ) = ∞.
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Chapter 4

Proof of the Lower Bound Part in

Theorem 2

To begin with, we consider a simple Bernoulli distribution case, which shares lots

properties in common with the counter example we construct in order to prove the

lower bound of Theorem 2.

4.1 A Simple Bernoulli Distribution Case

We consider Bernoulli distribution Pℎ = (1 − 𝑝)𝛿0 + 𝑝𝛿ℎ with 𝑝 = exp
(︁
− ℎ2

2𝐾2

)︁
. The

behavior of the lower bound of

sup
ℎ

E
[︀
𝑊2(Pℎ * 𝒩 (0, 𝜎2),Pℎ,𝑛 * 𝒩 (0, 𝜎2))

]︀
shares the same rate as the lower bound in Theorem 2.

Proposition 3. For some ℎ > 0, we define Pℎ = (1− 𝑝)𝛿0 + 𝑝𝛿ℎ, with 𝑝 = 𝑒−ℎ2/(2𝐾2),

then for any 𝐾, 𝜎 > 0 and 𝜖 > 0,

sup
ℎ

E
[︀
𝑊𝑞(Pℎ * 𝒩 (0, 𝜎2),Pℎ,𝑛 * 𝒩 (0, 𝜎2))

]︀
= Ω

(︂
𝑛
− (1+𝜎2/𝐾2)2

2𝑞(1+𝜎4/𝐾4)
−𝜖
)︂
,

where Pℎ,𝑛 is the empirical measure constructed from 𝑛 𝑖.𝑖.𝑑. samples from Pℎ.
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Lemma 2. Suppose two 1D distribution 𝜇, 𝜈 with probability density function 𝐹𝜇, 𝐹𝜈

satisfy 𝐹𝜇(𝑡) ≥ 𝐹𝜈(𝑡 + 2), then we have

𝑊𝑝(𝜇, 𝜈) ≥ P(𝑌 ∈ [𝑡 + 1, 𝑡 + 2])
1
𝑝 , 𝑌 ∼ 𝜈.

Proof. We consider any coupling (X, Y) between 𝜇 and 𝜈 under the 𝑊𝑝 distance,

where 𝑋 ∼ 𝜇, 𝑌 ∼ 𝜈. Then we have

P(|𝑋 − 𝑌 | ≥ 1) ≥ P(𝑋 ≤ 𝑡, 𝑌 ≥ 𝑡 + 1) ≥ 1 −P(𝑋 > 𝑡) −P(𝑌 < 𝑡 + 1)

= 𝐹𝜇(𝑡) −P(𝑌 < 𝑡 + 1) ≥ 𝐹𝜈(𝑡 + 2) −P(𝑌 < 𝑡 + 1) = P(𝑌 ≤ 𝑡 + 2) −P(𝑌 < 𝑡 + 1)

= P(𝑌 ∈ [𝑡 + 1, 𝑡 + 2]).

Therefore, we have

𝑊𝑝(𝜇, 𝜈)𝑝 = inf
(𝑋,𝑌 )∈Γ(𝜇,𝜈)

E[‖𝑋 − 𝑌 ‖𝑝]

≥ inf
(𝑋,𝑌 )∈Γ(𝜇,𝜈)

E[|𝑋 − 𝑌 |𝑝1|𝑋−𝑌 |≥1]

≥ inf
(𝑋,𝑌 )∈Γ(𝜇,𝜈)

[P(|𝑋 − 𝑌 | ≥ 1)]

≥ P(𝑌 ∈ [𝑡 + 1, 𝑡 + 2]).

Therefore, we have 𝑊𝑝(𝜇, 𝜈) ≥ P(𝑌 ∈ [𝑡 + 1, 𝑡 + 2])
1
𝑝 .

Proof of Proposition 3. Given ℎ > 0, we assume Pℎ,𝑛 = (1 − 𝑝ℎ)𝛿0 + 𝑝ℎ𝛿ℎ, where

𝑝ℎ = 1
𝑛

(
∑︀𝑛

𝑘=1 1𝑋𝑘=ℎ), and 𝑋1, · · · , 𝑋𝑛 ∼ Pℎ are i.i.d.

We use 𝐹𝑛,𝜎, 𝐹𝜎 to denote the distribution function of Pℎ,𝑛*𝒩 (0, 𝜎2),Pℎ*𝒩 (0, 𝜎2).

Then for 0 < 𝑡 < ℎ,

𝐹𝑛,𝜎(𝑡) − 𝐹𝜎(𝑡) = (𝑝ℎ − 𝑝ℎ)(Φ𝜎(𝑡− ℎ) − Φ𝜎(𝑡)),

where Φ𝜎 is the distribution function of 𝒩 (0, 𝜎2). We let 𝑈𝑖 = 1𝑋𝑘=ℎ, then according
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to Berry-Esseen Theorem, for 𝑉 ∼ 𝒩 (0, 1), we have

sup
𝑥

⃒⃒⃒⃒
⃒P
(︃

1√︀
𝑛Var[𝑈1]

𝑛∑︁
𝑙=1

[𝑈𝑙 − E𝑈1] ≤ −𝑥

)︃
−P(𝑉 ≤ −𝑥)

⃒⃒⃒⃒
⃒ ≤ E|𝑈1 − E[𝑈1]|3

2
√
𝑛
√︀

Var[𝑈1]
3 .

When 𝑝ℎ < 1/2, we have

E[𝑈1] = 𝑝ℎ,

Var[𝑈1] = 𝑝ℎ(1 − 𝑝ℎ) ≥ 1

2
𝑝ℎ,

E|𝑈1 − E[𝑈1]|3 ≤ E|𝑈1|3 = E[𝑈1] = 𝑝ℎ.

We choose 𝑥 = 1, and noticing that 𝑃 (𝑉 > 1) ≥ 1
8

we obtain

P

(︂
𝑝ℎ − 𝑝ℎ ≤ −

√︂
𝑝ℎ
2𝑛

)︂
= P

(︃
1

𝑛

𝑛∑︁
𝑙=1

𝑈𝑙 − E[𝑈1] ≤ −
√︂

𝑝

2𝑛

)︃

≥ 1

8
− E|𝑈1 − E[𝑈1]|3

2
√
𝑛
√︀

Var[𝑈1]
3

≥ 1

8
− 1√

2𝑛𝑝ℎ
.

This indicates that

𝑝ℎ − 𝑝ℎ ≤ − 1√
2𝑛

exp

(︂
− ℎ2

4𝐾2

)︂
holds with probability at least 1

8
− 1√

2𝑛𝑝
. Then due to the fact that when 0 < 𝑡 < ℎ−2

and ℎ > 𝜎, Φ𝜎(𝑡 − ℎ) − Φ𝜎(𝑡) ≤ Φ𝜎(0) − Φ𝜎(ℎ) ≤ −1
3
, we have with probability at

least 1
8
− 1√

2𝑛𝑝ℎ
,

𝐹𝑛,𝜎(𝑡) − 𝐹𝜎(𝑡) ≥ 1√
18𝑛

exp

(︂
− ℎ2

4𝐾2

)︂
.

Moreover, we have the following estimation of the probability of Pℎ * 𝒩 (0, 𝜎2)
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within the intervals [𝑡, 𝑡 + 2] and [𝑡 + 1, 𝑡 + 2]: for 𝑋 ∼ Pℎ * 𝒩 (0, 𝜎2), we have

P(𝑋 ∈ [𝑡, 𝑡 + 2])

≤ 2 · max
𝑡′∈[𝑡,𝑡+2]

[︂
1 − 𝑝ℎ√

2𝜋𝜎
exp

(︂
− 𝑡′2

2𝜎2

)︂
+

𝑝ℎ√
2𝜋𝜎

exp

(︂
−(ℎ− 𝑡′)2

2𝜎2

)︂]︂
≤ 2√

2𝜋𝜎
·
[︂
exp

(︂
− 𝑡2

2𝜎2

)︂
+ exp

(︂
− ℎ2

2𝐾2
− (ℎ− 𝑡− 2)2

2𝜎2

)︂]︂
,

P(𝑋 ∈ [𝑡 + 1, 𝑡 + 2])

≥ min
𝑡′∈[𝑡+1,𝑡+2]

[︂
1 − 𝑝ℎ√

2𝜋𝜎
exp

(︂
− 𝑡′2

2𝜎2

)︂
+

𝑝ℎ√
2𝜋𝜎

exp

(︂
−(ℎ− 𝑡′)2

2𝜎2

)︂]︂
≥ 1√

2𝜋𝜎
·
[︂
exp

(︂
−(𝑡 + 2)2

2𝜎2

)︂
+ exp

(︂
− ℎ2

2𝐾2
− (ℎ− 𝑡)2

2𝜎2

)︂]︂
,

(4.1)

where we have use the fact that 𝑡 ∈ (0, ℎ− 2). Therefore, choosing

𝑡 =
ℎ

2
+

𝜎2ℎ

2𝐾2
,

we notice that ∃ℎ̄ > 0 such that for ℎ > ℎ̄, we have 𝑡 ∈ (0, ℎ − 2). Moreover, with

this choice of 𝑡, we have

− ℎ2

2𝐾2
− (ℎ− 𝑡)2

2𝜎2
= − 𝑡2

2𝜎2
.

Notice that when ℎ goes to infinity, both 𝑡 and also ℎ − 𝑡 goes to infinity as well.

Hence for any 0 < 𝛿 < 1 there exists 𝐶1, 𝐶ℎ only depending on 𝐾, 𝜎 and 𝛿 such that

when ℎ > 𝐶ℎ, we have

(ℎ− 𝑡− 2)2

2𝜎2
≤ (1 − 𝛿)(ℎ− 𝑡− 2)2

2𝜎2
and

(𝑡 + 2)2

2𝜎2
≤ (1 + 𝛿)𝑡2

2𝜎2
,
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which indicates that

P(𝑋 ∈ [𝑡, 𝑡 + 2])

≤ 4√
2𝜋𝜎

· exp

(︂
−(1 − 𝛿)𝑡2

2𝜎2

)︂
=

4√
2𝜋𝜎

exp

⎛⎜⎝−
(1 − 𝛿)

(︁
1
2

+ 𝜎2

2𝐾2

)︁2
ℎ2

2𝜎2

⎞⎟⎠ ,

P(𝑋 ∈ [𝑡 + 1, 𝑡 + 2])

≥ 4√
2𝜋𝜎

· exp

(︂
−(1 + 𝛿)𝑡2

2𝜎2

)︂
=

4√
2𝜋𝜎

exp

⎛⎜⎝−
(1 + 𝛿)

(︁
1
2

+ 𝜎2

2𝐾2

)︁2
ℎ2

2𝜎2

⎞⎟⎠
(4.2)

holds for all ℎ > 𝐶ℎ. We let 𝐶1 , 4√
2𝜋𝜎

. Then for ℎ > max{𝐶ℎ, ℎ̄, 𝜎}, and

𝑛ℎ =

⎢⎢⎢⎢⎣ 1

18𝐶2
1

exp

⎛⎜⎝(1 − 𝛿)
(︁

1
2

+ 𝜎2

2𝐾2

)︁2
ℎ2

𝜎2
− ℎ2

2𝐾2

⎞⎟⎠
⎥⎥⎥⎥⎦ , (4.3)

we have with probability at least 1
8
− 1√

2𝑛ℎ𝑝ℎ
, 𝐹𝑛,𝜎(𝑡)−𝐹𝜎(𝑡) ≥ P(𝑋 ∈ [𝑡, 𝑡+2]) holds,

and this indicates that

𝐹𝑛,𝜎(𝑡) ≥ 𝐹𝜎(𝑡 + 2).

According to Lemma 2, for any 𝑝 ≥ 1 we have with probability at least 1
8
− 1√

2𝑛ℎ𝑝ℎ
,

𝑊𝑞(Pℎ * 𝒩 (0, 𝜎2),Pℎ,𝑛ℎ
* 𝒩 (0, 𝜎2))𝑞

≥ P(𝑋 ∈ [𝑡 + 1, 𝑡 + 2])

≥ 𝐶1 · exp

⎛⎜⎝−
(1 + 𝛿)

(︁
1
2

+ 𝜎2

2𝐾2

)︁2
ℎ2

2𝜎2

⎞⎟⎠

Moreover, we notice that the coefficient of ℎ2 in the exponential term of (4.3)

(1 − 𝛿)
(︁

1
2

+ 𝜎2

2𝐾2

)︁2
𝜎2

− 1

2𝐾2
= (1 − 𝛿)

(︂
1

4𝜎2
+

𝜎2

4𝐾4

)︂
− 𝛿

2𝐾2
(4.4)

is greater than 0 for 0 < 𝛿 < 𝛿0 given the fact that 𝜎 < 𝐾. Hence there exists some
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ℎ0 (only depending on 𝐾 and 𝜎) such that for ℎ > ℎ0, according to (4.3) we have

𝑛ℎ ≥ 1

20𝐶2
1

exp

⎛⎜⎝(1 − 𝛿)
(︁

1
2

+ 𝜎2

2𝐾2

)︁2
ℎ2

𝜎2
− ℎ2

2𝐾2

⎞⎟⎠ .

Also since 𝜎 < 𝐾, we have
1

4𝜎2
+

𝜎2

4𝐾4
>

1

2𝐾2
,

which indicates that there exists some 𝛿1 (only depending on 𝐾 and 𝜎) such that the

coefficient in (4.4) satisfies

(1 − 𝛿)
(︁

1
2

+ 𝜎2

2𝐾2

)︁2
𝜎2

− 1

2𝐾2
>

1

2𝐾2
.

And hence there exists some ℎ1 (only depending on 𝐾, 𝜎) such that for all ℎ > ℎ1

and 𝛿 < 𝛿1
2
, we have

1
√
𝑛ℎ𝑝ℎ

<
1

16
.

Therefore, for all 𝛿 < min{𝛿0, 𝛿1/2} and ℎ > max{ℎ0, ℎ1}, we have with probability
1
8
− 1

16
= 1

16
,

𝑊𝑞(Pℎ * 𝒩 (0, 𝜎2),Pℎ,𝑛 * 𝒩 (0, 𝜎2))𝑞

≥ 𝐶2 · exp

⎛⎜⎝−
1
2
(1 + 𝛿)

(︁
1
2

+ 𝜎2

2𝐾2

)︁2
ℎ2

2𝜎2

⎞⎟⎠
≥ 𝐶2 ·

(︀
20𝑛𝐶2

1

)︀− (1+𝛿)

(︂
1
2+ 𝜎2

2𝐾2

)︂2

2(1−𝛿)( 1
4+ 𝜎4

4𝐾4 )− 𝛿𝜎2

𝐾2 .

Therefore, for any 𝜖 > 0, we have

E
[︀
𝑊𝑞(Pℎ * 𝒩 (0, 𝜎2),Pℎ,𝑛 * 𝒩 (0, 𝜎2))

]︀
= Ω

(︂
𝑛
− (1+𝜎2/𝐾2)2

2𝑞(1+𝜎4/𝐾4)
−𝜖

)︂
.

This completes the proof of Proposition 3.
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4.2 Proof of the Lower Bound Part of Theorem 2

In this section, we present the proof of the lower bound part of Theorem 2. The proof

idea is similar to the above proof of Proposition 3. We summarize the properties

of Pℎ for all ℎ > 0 into one 𝐾-subgaussian distribution, such that this subgaussian

distribution is a hard example for smoothed empirical W2 convergence.

We construct the following discrete distribution

P =
∞∑︁
𝑘=1

𝑝𝑘𝛿𝑟𝑘 , 𝑝𝑘 ≥ 0,
∞∑︁
𝑘=1

𝑝𝑘 = 1, (4.5)

where we choose 𝑟𝑘 = 𝑐𝑘−1 for 𝑘 ≥ 1 for some positive constant 𝑐 ≥ 3 to be determined

later, and

𝑝𝑘 =
𝐶√
2𝜋𝐾

exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
, 𝑘 ≥ 1, (4.6)

where 𝐶 is a constant between 1 and
√

2𝐾2𝜋 exp (1/2𝐾2) such that
∑︀∞

𝑘=1 𝑝𝑘 = 1.

Then for 𝑋 ∼ P we have

E [exp(𝛼𝑋)] =
∞∑︁
𝑘=1

𝑝𝑘 exp(𝛼𝑟𝑘) =
∞∑︁
𝑘=1

𝐶√
2𝜋𝐾

exp

(︂
− 𝑟2𝑘

2𝐾2
+ 𝛼𝑟𝑘

)︂
=

∞∑︁
𝑘=1

𝐶√
2𝜋𝐾

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2)︂
exp

(︂
𝛼2𝐾2

2

)︂
.

(4.7)

Therefore, this distribution is a 𝐾-subgaussian.

We let 𝜅 = 𝜎2

𝐾2 ∈ (0, 1), and

𝑡 =
1

2
(𝑐 + 1) (1 + 𝜅) ≥ 1

2
(𝑐 + 1) ≥ 2.

First we will provide two propositions, which upper and lower bound the probability

of P * 𝒩 (0, 𝜎2) near 𝑡𝑟𝑘.

Proposition 4 (Probability Lower Bound). There exists some positive constant 𝐶𝑙
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only depending on 𝜎 and 𝐾 such that

P(𝑋 ∈ [𝑡𝑟𝑘 + 1, 𝑡𝑟𝑘 + 2]) ≥ 𝐶𝑙 exp

(︂
−
(︀
𝑡2 − 𝜅𝑐− 𝑐

)︀
· (𝑟𝑘 + 2)2

2𝜎2

)︂
, 𝑋 ∼ P *𝒩 (0, 𝜎2).

Proof. We let 𝑋 = 𝑌 + 𝑍, where 𝑌 ∈ P, 𝑍 ∼ 𝒩 (0, 𝜎2) are independent. Then we

have

P(𝑋 ∈ [𝑡𝑟𝑘 + 1, 𝑡𝑟𝑘 + 2]) ≥ P(𝑌 = 𝑟𝑘, 𝑍 ∈ [(𝑡− 1)𝑟𝑘 + 1, (𝑡− 1)𝑟𝑘 + 2])

≥ 𝑝𝑘 ·P(𝑍 ∈ [(𝑡− 1)𝑟𝑘 + 1, (𝑡− 1)𝑟𝑘 + 2])

=
1√
2𝜋𝜎

𝑝𝑘 exp

(︂
−((𝑡− 1)𝑟𝑘 + 2)2

2𝜎2

)︂
=

𝐶

2𝜋𝜎𝐾
exp

(︂
− 𝑟2𝑘

2𝐾2
− (𝑡− 1)2(𝑟𝑘 + 2)2

2𝜎2

)︂
≥ 𝐶

2𝜋𝜎𝐾
exp

(︂
−
(︀
𝜅 + (𝑡− 1)2

)︀
· (𝑟𝑘 + 2)2

2𝜎2

)︂
=

𝐶

2𝜋𝜎𝐾
exp

(︂
−
(︀
𝑡2 − 𝜅𝑐− 𝑐

)︀
· (𝑟𝑘 + 2)2

2𝜎2

)︂
≥ 1

2𝜋𝜎𝐾
exp

(︂
−
(︀
𝑡2 − 𝜅𝑐− 𝑐

)︀
· (𝑟𝑘 + 2)2

2𝜎2

)︂
,

where we use the fact that 𝐶 ≥ 1. Therefore, if we choose 𝐶𝑙 = 1
2𝜋𝜎𝐾

, we have the

desired lower bound in this proposition.

Proposition 5 (Probability Upper Bound). When 𝑐 ≥ max
{︁√︁

2
𝜅
, 𝜅+3
1−𝜅

}︁
, there exists

some constant 𝐶𝑢 only depending on 𝐾 and 𝜎 such that

P(𝑋 ∈ [𝑡𝑟𝑘, 𝑡𝑟𝑘 + 2]) ≤ 𝐶𝑢 exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · (𝑟𝑘 − 2)2

2𝜎2

)︂
, 𝑋 ∼ P * 𝒩 (0, 𝜎2).

Proof. We let 𝑋 = 𝑌 + 𝑍, where 𝑌 ∈ P, 𝑍 ∼ 𝒩 (0, 𝜎2) are independent. And we

44



notice that

P(𝑋 ∈ [𝑡𝑟𝑘, 𝑡𝑟𝑘 + 2])

=
∞∑︁
𝑗=1

P(𝑌 = 𝑟𝑗, 𝑍 ∈ [𝑡𝑟𝑘 − 𝑟𝑗, 𝑡𝑟𝑘 − 𝑟𝑗 + 2])

=
∞∑︁
𝑗=1

𝑝𝑗 ·P(𝑍 ∈ [𝑡𝑟𝑘 − 𝑟𝑗, 𝑡𝑟𝑘 − 𝑟𝑗 + 2])

≤ 1√
2𝜋𝜎

∞∑︁
𝑗=1

2𝑝𝑗 max

{︂
exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
, exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗 + 2)2

2𝜎2

)︂}︂

≤ 2√
2𝜋𝜎

𝑘∑︁
𝑗=1

𝑝𝑗 exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
+

2√
2𝜋𝜎

∞∑︁
𝑗=𝑘+1

𝑝𝑗 exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗 + 2)2

2𝜎2

)︂

≤
𝑘−1∑︁
𝑗=1

2𝐶

𝜋𝜎𝐾
exp

(︂
−

𝑟2𝑗
2𝐾2

− (𝑡𝑟𝑘 − 𝑟𝑗)
2

2𝜎2

)︂
+

2𝐶

𝜋𝜎𝐾
exp

(︂
− 𝑟2𝑘

2𝐾2
− (𝑡𝑟𝑘 − 𝑟𝑘)2

2𝜎2

)︂

+
∞∑︁

𝑗=𝑘+1

2𝐶

𝜋𝜎𝐾
exp

(︂
−

𝑟2𝑗
2𝐾2

− (𝑡𝑟𝑘 − 𝑟𝑗 + 2)2

2𝜎2

)︂
.

Then we upper bound these three terms in the sum separately:

1. For 𝑗 > 𝑘, we have 𝑟2𝑗 ≥ 𝑟2𝑘+1 + 𝑗 − (𝑘 + 1) and also

(𝑡𝑟𝑘 − 𝑟𝑗 + 2)2

2𝜎2
≥ (𝑟𝑘+1 − 𝑡𝑟𝑘 − 2)2

2𝜎2
=

((𝑐− 𝑡)𝑟𝑘 − 2)2

2𝜎2

≥ (𝑐− 𝑡)2(𝑟𝑘 − 2)2

2𝜎2
= (𝑡2 − 𝑐𝜅− 𝑐− 𝑐2𝜅) · (𝑟𝑘 − 2)2

2𝜎2
,

after noticing that 𝑐 ≥ 𝜅+3
1−𝜅

and hence 𝑐− 𝑡 ≥ 1. Therefore, choosing constant

𝐶1 =
∞∑︁
𝑗=0

2
√

2𝐾2𝜋 exp (1/2𝐾2)

𝜋𝜎𝐾
exp

(︂
− 𝑗

2𝐾2

)︂
< ∞
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and noticing that 𝐶 ≤
√

2𝐾2𝜋 exp (1/2𝐾2), we will obtain:

∞∑︁
𝑗=𝑘+1

2𝐶

𝜋𝜎𝐾
exp

(︂
−

𝑟2𝑗
2𝐾2

− (𝑡𝑟𝑘 − 𝑟𝑗 + 2)2

2𝜎2

)︂

≤
∞∑︁

𝑗=𝑘+1

2𝐶

𝜋𝜎𝐾
exp

(︂
−
𝑗 − (𝑘 + 1) + 𝑟2𝑘+1

2𝐾2
− (𝑡2 − 𝑐𝜅− 𝑐− 𝑐2𝜅)(𝑟𝑘 − 2)2

2𝜎2

)︂

≤

(︃
∞∑︁

𝑗=𝑘+1

2𝐶

𝜋𝜎𝐾
exp

(︂
−𝑗 − (𝑘 + 1)

2𝐾2

)︂)︃
· exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · 𝑟2𝑘

2𝜎2

)︂

≤

(︃
∞∑︁

𝑗=𝑘+1

2
√

2𝐾2𝜋 exp (1/2𝐾2)

𝜋𝜎𝐾
exp

(︂
−𝑗 − (𝑘 + 1)

2𝐾2

)︂)︃
· exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · 𝑟2𝑘

2𝜎2

)︂
= 𝐶1 exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · 𝑟2𝑘

2𝜎2

)︂
.

2. For 𝑗 < 𝑘, noticing that 𝑟𝑗 ≤ 𝑟𝑘
𝑐

and also 𝑐 ≥
√︁

2
𝜅
, we have

(𝑡𝑟𝑘 − 𝑟𝑗)
2 ≥

(︂
𝑡− 1

𝑐

)︂2

𝑟2𝑗 ≥ (𝑡2 − 𝜅𝑐− 𝑐)𝑟2𝑗 .

Therefore, choosing constant 𝐶2 =
∑︀∞

𝑗=1

2
√
2𝐾2𝜋 exp(1/2𝐾2)

𝜋𝜎𝐾
exp

(︀
− 𝑗

2𝐾2

)︀
< ∞, we

will obtain:

𝑘−1∑︁
𝑗=1

2𝐶

𝜋𝜎𝐾
exp

(︂
−

𝑟2𝑗
2𝐾2

− (𝑡𝑟𝑘 − 𝑟𝑗)
2

2𝜎2

)︂

≤
𝑘−1∑︁
𝑗=1

2𝐶

𝜋𝜎𝐾
exp

(︂
− 𝑗

2𝐾2
− (𝑡2 − 𝜅𝑐− 𝑐)𝑟2𝑘

2𝜎2

)︂

=

(︃
𝑘−1∑︁
𝑗=1

2𝐶

𝜋𝜎𝐾
exp

(︂
− 𝑗

2𝐾2

)︂)︃
exp

(︂
−(𝑡2 − 𝜅𝑐− 𝑐)𝑟2𝑘

2𝜎2

)︂
≤ 𝐶2 exp

(︂
−(𝑡2 − 𝜅𝑐− 𝑐)𝑟2𝑘

2𝜎2

)︂
≤ 𝐶2 exp

(︂
−(𝑡2 − 𝜅𝑐− 𝑐)(𝑟𝑘 − 2)2

2𝜎2

)︂
.
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3. For 𝑗 = 𝑘, choosing 𝐶3 =
2
√
2𝐾2𝜋 exp(1/2𝐾2)

𝜋𝜎𝐾
, we will obtain:

2𝐶

𝜋𝜎𝐾
exp

(︂
− 𝑟2𝑘

2𝐾2
− (𝑡𝑟𝑘 − 𝑟𝑘)2

2𝜎2

)︂
≤ 𝐶𝑙 exp

(︂
−
(︀
𝑡2 − 𝜅𝑐− 𝑐

)︀
· 𝑟2𝑘

2𝜎2

)︂
≤ 𝐶𝑙 exp

(︂
−
(︀
𝑡2 − 𝜅𝑐− 𝑐

)︀
· (𝑟𝑘 − 2)2

2𝜎2

)︂
.

Therefore, choosing 𝐶𝑢 = 𝐶1 + 𝐶2 + 𝐶3, we obtain:

P(𝑋 ∈ [2𝑟𝑘, 2𝑟𝑘 + 2]) ≤ 𝐶𝑢 exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · (𝑟𝑘 − 2)2

2𝜎2

)︂
.

We next present the following proposition, indicating that with positive probabil-

ity the difference of CDFs of 𝑃 * 𝒩 (0, 𝜎2) and 𝑃𝑛 * 𝒩 (0, 𝜎2) is larger than 1
2

√︁
𝑝𝑘+1

𝑛
,

therefore will be larger than P * 𝒩 (0, 𝜎2)([2𝑟𝑘, 2𝑟𝑘 + 2]) under some assumptions.

Proposition 6. Suppose 𝑐 ≥ 𝜅+3
1−𝜅

. We use 𝐹𝜎 and 𝐹𝑛,𝜎 to denote the CDF of 𝑃 *

𝒩 (0, 𝜎2) and 𝑃𝑛*𝒩 (0, 𝜎2) respectively. Then ∃𝑘0 = 𝑘0(𝜎,𝐾,𝐶) > 0 such that ∀𝑘 ≥ 𝑘0

and 𝑛 with 𝑛𝑝𝑘+1 ≥ 2048, with probability at least 1
64

we have

𝐹𝑛,𝜎(𝑡𝑟𝑘) − 𝐹𝜎(𝑡𝑟𝑘) ≥ 1

2

√︂
𝑝𝑘+1

𝑛
.

Proof. First we can write

𝐹𝜎(𝑡𝑟𝑘) =
∞∑︁
𝑗=1

𝑝𝑗Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗),

𝐹𝑛,𝜎(𝑡𝑟𝑘) =
∞∑︁
𝑗=1

𝑝𝑗Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗),

where Φ𝜎 is CDF of 𝒩 (0, 𝜎2), and 𝑝𝑗 is the empirical estimation of 𝑝𝑗 with these 𝑛
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samples. Then we have

𝐹𝑛,𝜎(𝑡𝑟𝑘) − 𝐹𝜎(𝑡𝑟𝑘)

=
∞∑︁
𝑗=1

(𝑝𝑗 − 𝑝𝑗)Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗)

=
𝑘∑︁

𝑗=1

(𝑝𝑗 − 𝑝𝑗)(1 − (1 − Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗))) +
∞∑︁

𝑗=𝑘+1

(𝑝𝑗 − 𝑝𝑗)Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗)

≥
𝑘∑︁

𝑗=1

𝑝𝑗 −
𝑘∑︁

𝑗=1

𝑝𝑗 −
𝑘∑︁

𝑗=1

|𝑝𝑗 − 𝑝𝑗|(1 − Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗)) −
∞∑︁

𝑗=𝑘+1

|𝑝𝑗 − 𝑝𝑗|Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗)

From assumption 𝑐 ≥ 𝜅+3
1−𝜅

we know that 𝑐 ≥ 𝑡 + 1. Hence for any 𝑗 ≥ 𝑘 + 1 we have

|𝑡𝑟𝑘−𝑟𝑗| ≥ |(𝑐−𝑡)𝑟𝑘| ≥ 𝑟𝑘 ≥ 1 and for any 𝑗 ≤ 𝑘 we have |𝑡𝑟𝑘−𝑟𝑗| ≥ (𝑡−1)𝑟𝑗 ≥ 𝑟𝑗 ≥ 1.

According to the upper bound of Gaussian tail function (Proposition 2.1.2 in [15]),

when 𝑡𝑟𝑘 − 𝑟𝑗 > 0 we have

1 − Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗) ≤
1√
2𝜋

· 𝜎

|𝑡𝑟𝑘 − 𝑟𝑗|
exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
≤ 𝜎 exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂

and when 𝑡𝑟𝑘 − 𝑟𝑗 < 0 we have

Φ𝜎(𝑡𝑟𝑘 − 𝑟𝑗) ≤
1√
2𝜋

· 𝜎

|𝑡𝑟𝑘 − 𝑟𝑗|
exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
≤ 𝜎 exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
.

We further notice that

E
[︂
max
𝑗≥1

|𝑝𝑗 − 𝑝𝑗|2
]︂
≤ E

[︃
∞∑︁
𝑗=1

|𝑝𝑗 − 𝑝𝑗|2
]︃

=
∞∑︁
𝑗=1

Var(𝑝𝑗) =
∞∑︁
𝑗=1

𝑝𝑗(1 − 𝑝𝑗)

𝑛
≤ 1

𝑛
.

Hence adopting Markov inequality we obtained that

P

(︂
max
𝑗≥1

|𝑝𝑗 − 𝑝𝑗| ≤
4√
𝑛

)︂
≥ 15

16
. (4.8)

In the next, given that 𝑛𝑝𝑘+1 ≥ 2048, we will provide both a lower bound to∑︀𝑘
𝑗=1 𝑝𝑗−

∑︀𝑘
𝑗=1 𝑝𝑗 and also an upper bound to |𝑝𝑘+1−𝑝𝑘+1|. As for

∑︀𝑘
𝑗=1 𝑝𝑗−

∑︀𝑘
𝑗=1 𝑝𝑗,
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we can write it as
𝑘∑︁

𝑗=1

𝑝𝑗 −
𝑘∑︁

𝑗=1

𝑝𝑗 =
1

𝑛

(︃
𝑛∑︁

𝑙=1

𝑈𝑙

)︃
− E[𝑈1],

where 𝑈𝑙 ∼ Bern(
∑︀∞

𝑗=𝑘+1 𝑝𝑗) are i.i.d. Bernoulli random variables. According to

Berry-Esseen Theorem we have⃒⃒⃒⃒
⃒P
(︃

1√︀
𝑛Var[𝑈1]

𝑛∑︁
𝑙=1

[𝑈𝑙 − E𝑈1] ≥ 1

)︃
−P(𝑉 ≥ 1)

⃒⃒⃒⃒
⃒ ≤ E|𝑈1 − E[𝑈1]|3

2
√
𝑛
√︀

Var[𝑈1]
3

where 𝑉 ∼ 𝒩 (0, 1). It is easy to check that
∑︀∞

𝑗=𝑘+1 𝑝𝑗 ≤ 2𝑝𝑗+1 < 1/2 for 𝑘 ≥ 2.

Hence we have

Var[𝑈1] =

(︃
∞∑︁

𝑗=𝑘+1

𝑝𝑗

)︃(︃
1 −

∞∑︁
𝑗=𝑘+1

𝑝𝑗

)︃
≥ 1

2

(︃
∞∑︁

𝑗=𝑘+1

𝑝𝑗

)︃
≥ 1

2
𝑝𝑘+1

E|𝑈1 − E[𝑈1]|3 ≤ E|𝑈1|3 = E[𝑈1] =
∞∑︁

𝑗=𝑘+1

𝑝𝑗 ≤ 2𝑝𝑘+1.

Noticing that for standard Gaussian random variable 𝑉 ∼ 𝒩 (0, 1) we have 𝑃 (𝑉 >

1) ≥ 1/8, we obtain that

P

(︃
𝑘∑︁

𝑗=1

𝑝𝑗 −
𝑘∑︁

𝑗=1

𝑝𝑗 ≥
√︂

𝑝𝑘+1

2𝑛

)︃

= P

(︃
1

𝑛

𝑛∑︁
𝑙=1

𝑈𝑙 − E[𝑈1] ≥
√︂

𝑝𝑘+1

2𝑛

)︃

≥ P

(︃
1√︀

𝑛Var[𝑈1]

𝑛∑︁
𝑙=1

𝑈𝑙 − E[𝑈1] ≥ 1

)︃

≥ 1

8
− E|𝑈1 − E[𝑈1]|3

2
√
𝑛
√︀

Var[𝑈1]
3 ≥ 1

8
−

√
2

√
𝑛𝑝𝑘+1

≥ 1

16
,

where we use the fact that 𝑛𝑝𝑘+1 ≥ 2048. As for |𝑝𝑘+1−𝑝𝑘+1|, according to Bernstein
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inequality and also noticing that 𝑛𝑝𝑘+1 ≥ 1, we obtain that

P

(︂
|𝑝𝑘+1 − 𝑝𝑘+1| ≥ 8

√︂
𝑝𝑘+1

𝑛

)︂
≤ 2 exp

(︂
− 64𝑛𝑝𝑘+1

2
3
· 8
√
𝑛𝑝𝑘+1 + 2𝑛𝑝𝑘+1(1 − 𝑝𝑘+1)

)︂
≤ 2 exp

(︂
− 64

16/3 + 2

)︂
≤ 2 exp(−8) ≤ 1

64
.

Therefore, if 𝑛 ≥ 2048/𝑝𝑘+1, according to (4.8), with probability at least 1
64

we

have

𝐹𝑛,𝜎(2𝑟𝑘) − 𝐹𝜎(2𝑟𝑘)

≥
√︂

𝑝𝑘+1

2𝑛
− 4𝜎√

𝑛

𝑘∑︁
𝑗=1

exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
− 4𝜎√

𝑛

∞∑︁
𝑗=𝑘+2

exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂

− 8𝜎

√︂
𝑝𝑘+1

𝑛
exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑘+1)

2

2𝜎2

)︂
.

(4.9)

Additionally, we have

𝑘∑︁
𝑗=1

exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
≤ 𝑘 exp

(︂
−(𝑡− 1)2𝑟2𝑘

2𝜎2

)︂

and since for any 𝑗 ≥ 𝑘+2, 𝑟𝑗 − 𝑡𝑟𝑘 ≥ 𝑗− (𝑘+2)+ 𝑟𝑘+2− 𝑡𝑟𝑘 ≥ 𝑗− (𝑘+2)+(𝑡−1)𝑡𝑘,

we have
∞∑︁

𝑗=𝑘+2

exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂

≤

(︃
∞∑︁

𝑗=𝑘+2

exp

(︂
−𝑗 − (𝑘 + 2)

2𝜎2

)︂)︃
· exp

(︂
−(𝑡− 1)2𝑟2𝑘

2𝜎2

)︂
≤ 𝐶4 exp

(︂
−(𝑡− 1)2𝑟2𝑘

2𝜎2

)︂
,

where 𝐶4 is a constant only depending on 𝜎,𝐾 and 𝑐. We also notice that (𝑡𝑟𝑘−𝑟𝑘+1)
2

2𝜎2 ≥
𝑟2𝑘
2𝜎2 using the fact that 𝑐 ≥ 𝑡 + 1, and that

exp

(︂
−(𝑡− 1)2𝑟2𝑘

2𝜎2

)︂
≤ exp

(︂
− 𝑐2𝑟2𝑘

4𝐾2
− 𝑐2𝑟2𝑘𝜅

2

8𝜎2

)︂
=

√
𝑝𝑘+1 · exp

(︂
−𝑐2𝜅2𝑟2𝑘

8𝜎2

)︂
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using the fact that

2𝑐2𝜅 + 𝑐2𝜅2 ≤ 𝑐2𝜅2 + 𝑐2 + 𝜅2 + 1 − 2𝑐− 2𝜅 + 2𝑐2𝜅 = (2𝑡− 2)2.

Hence we have

4𝜎√
𝑛

𝑘∑︁
𝑗=1

exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂
+

4𝜎√
𝑛

∞∑︁
𝑗=𝑘+2

exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑗)

2

2𝜎2

)︂

+ 8𝜎

√︂
𝑝𝑘+1

𝑛
exp

(︂
−(𝑡𝑟𝑘 − 𝑟𝑘+1)

2

2𝜎2

)︂
≤ 4

√︂
𝑝𝑘+1

𝑛
· 𝜎
(︂

(𝐶4 + 𝑘) exp

(︂
−𝑐2𝜅2𝑟2𝑘

8𝜎2

)︂
+ exp

(︂
− 𝑟2𝑘

2𝜎2

)︂)︂
.

Since 𝑟𝑘 = 𝑐𝑘−1 with 𝑐 ≥ 2, there exists some constant 𝑘0 only depending on 𝐾, 𝜎

and 𝑐 such that for any 𝑘 ≥ 𝑘0, we have

𝜎

(︂
(𝐶4 + 𝑘) exp

(︂
−𝑐2𝜅2𝑟2𝑘

8𝜎2

)︂
+ exp

(︂
− 𝑟2𝑘

2𝜎2

)︂)︂
≤ 1

4
√

2
− 1

8

Bringing this result to (4.9), we will obtain that for any 𝑘 ≥ 𝑘0,

𝐹𝑛,𝜎(𝑡𝑟𝑘) − 𝐹𝜎(𝑡𝑟𝑘) ≥ 1

2

√︂
𝑝𝑘+1

𝑛

holds. This completes the proof of this proposition.

With the above propositions, we are now ready to prove the lower bound part of

Theorem 2.

Proof of the Lower Bound Part of Theorem 2. We choose

𝑛 =

⌊︂
1

4𝐶2
𝑢

exp

(︂
(𝑡2 − 𝑐𝜅− 𝑐) · (𝑟𝑘 − 2)2

𝜎2
− 𝑐2𝑟2𝑘

2𝐾2

)︂⌋︂
. (4.10)

Then there exists some constant 𝑘′
0 only depending on 𝑘, 𝜎 and 𝑐 such that for any

𝑘 ≥ 𝑘′
0, we would have

𝑛𝑝𝑘+1 ≥ 2048.
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Hence according to Proposition 6 we would have when 𝑘 ≥ max{𝑘0, 𝑘′
0},

𝐹𝑛,𝜎(2𝑟𝑘) − 𝐹𝜎(2𝑟𝑘) ≥ 1

2

√︂
𝑝𝑘+1

𝑛

holds with probability at least 1
64

. Moreover, with our choice of 𝑛, it is easy to check

that
1

2

√︂
𝑝𝑘+1

𝑛
≥ 𝐶𝑢 exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · (𝑟𝑘 − 2)2

2𝜎2

)︂
.

Hence according to Proposition 5, with probability at least 1
64

we have for 𝑋 ∼

P * 𝒩 (0, 𝜎2),

𝐹𝑛,𝜎(2𝑟𝑘) − 𝐹𝜎(2𝑟𝑘) ≥ 𝐶𝑢 exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · (𝑟𝑘 − 2)2

2𝜎2

)︂
≥ P(𝑋 ∈ [2𝑟𝑘, 2𝑟𝑘 + 2])

Therefore we have

𝐹𝑛,𝜎(2𝑟𝑘) ≥ 𝐹𝜎(2𝑟𝑘 + 2).

According to Lemma 2 and Proposition 4, this indicates that with probability at least
1
64

,

𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2)) ≥
√︀
P(𝑋 ∈ [2𝑟𝑘 + 1, 2𝑟𝑘 + 2])

≥

√︃
𝐶𝑙 exp

(︂
−(𝑡2 − 𝑐𝜅− 𝑐) · (𝑟𝑘 + 2)2

2𝜎2

)︂
.

Since we have

lim
𝑘→∞

𝑟𝑘 + 2

𝑟𝑘 − 2
= lim

𝑘→∞

𝑟𝑘 + 2

𝑟𝑘
= 1

we would obtain that for any 𝜖′, 𝑐 > max
{︁√︁

2
𝜅
, 𝜅+3
1−𝜅

}︁
,

lim inf
𝑛→∞

E[𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))]

𝑛
(𝑡2−𝑐𝜅−𝑐)/(4𝜎2)

(𝑡2−𝑐𝜅−𝑐)/𝜎2−𝑐2/(2𝐾2)
+𝜖

> 0.

Choosing 𝑐 larger enough, and remembering that 𝑡 = 1
2
(1+𝜅)(1+𝑐), we would obtain
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that for any 𝜖 > 0,

lim inf
𝑛→∞

E[𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))]

𝑛
(1+𝜅)2

4(1+𝜅2)
+𝜖

= lim inf
𝑛→∞

E[𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))]

𝑛
(1+𝜅)2𝑐2/16

(1+𝜅)2𝑐2/4−4·𝜅2𝑐2
+𝜖

> 0.

Replacing 𝜅 with 𝜎2

𝐾2 , the proof of the lower bound part of Theorem 2 is completed.
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Chapter 5

Proof of the Upper Bound Part of

Theorem 2

We divide the proof into four parts.

In the first part, we provide some useful propositions regarding the distribution

after convolving with Gaussian:

1. The PDF of the distribution after convolving with Gaussian can be uniformly

upper bounded and strictly lower bounded by 0 (Proposition 7);

2. The PDF of the distribution after convolving with Gaussian does not deviate

too much in the neighborhood (Proposition 8);

3. The distribution after convolving with Gaussian is still a sub-Gaussian distri-

bution if the original distribution is a sub-Gaussian distribution (Proposition

9).

In the second part, we provide some propositions regarding the bounds on PDFs,

CDFs and Wasserstein distance of distributions:

1. For 1D sub-Gaussian distribution P, the CDF of P*𝒩 (0, 𝜎2) can be lower/upper

bounded using the PDF of P * 𝒩 (0, 𝜎2) (Proposition 10).

2. Considering two 1D-distributions P,Q with PDFs 𝜌𝑝, 𝜌𝑞 and CDFs 𝐹𝑝, 𝐹𝑞. Then
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the 2-Wasserstein distribution between P and Q can be written as an integral

of 𝜌𝑝(𝑡)
⃒⃒
𝐹−1
𝑞 (𝐹𝑝(𝑡) − 𝑡)

⃒⃒2 (Proposition 11).

3. Considering two 1D-distributions P,Q. If the ratio between the supreme of the

difference between CDFs of P,Q and the infimum of PDF of P in the neigh-

borhood of 𝑡 can be upper bounded, then we can obtain an upper bound on⃒⃒
𝐹−1
𝑞 (𝐹𝑝(𝑡) − 𝑡)

⃒⃒
(Proposition 12).

4. Considering two 1D-distributions P,Q. Suppose CDFs of P * 𝒩 (0, 𝜎2),Q *

𝒩 (0, 𝜎2) to be 𝐹𝑝,𝜎, 𝐹𝑞,𝜎. Then if distribution P,Q are both sub-Gaussian distri-

butions, then for any 𝑅 > 0,
⃒⃒
𝐹−1
𝑞,𝜎 (𝐹𝑝,𝜎(𝑡)) − 𝑡

⃒⃒
can be uniformly upper bounded

for those 𝑡 ∈ [−𝑅,𝑅] (Proposition 13).

In the third part, we provide some useful propositions with respect to the empirical

measures after smoothing:

1. For 1D-distribution P and its empirical version P𝑛, we use 𝐹𝜎, 𝐹𝑛,𝜎 to denote the

CDFs of P *𝒩 (0, 𝜎2),P𝑛 *𝒩 (0, 𝜎2). We provide a strong uniform upper bound

for
⃒⃒⃒
𝐹𝜎(·) − 𝐹𝑛,𝜎(·)

⃒⃒⃒
(Proposition 14). If without smoothing, we can also provide

such a strong uniform upper bound for difference between CDFs of original and

empirical measures (Lemma 5).

2. For 1D-distribution P and its empirical version P𝑛, we use 𝐹𝜎, 𝐹𝑛,𝜎 to denote

the CDFs of P *𝒩 (0, 𝜎2),P𝑛 *𝒩 (0, 𝜎2). Then if distribution P is sub-Gaussian,

with high probability for any 𝑅 > 0,
⃒⃒
𝐹−1
𝑞,𝜎 (𝐹𝑝,𝜎(𝑡)) − 𝑡

⃒⃒
can be uniformly upper

bounded for those 𝑡 ∈ [−𝑅,𝑅] (Proposition 15).

Finally in the last part, to upper bound the squared 2-Wasserstein distance be-

tween P*𝒩 (0, 𝜎2) and P𝑛*𝒩 (0, 𝜎2), we write it as an integral 𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡) − 𝑡)

⃒⃒⃒2
,

where 𝜌𝜎 is the PDF of P * 𝒩 (0, 𝜎2). We define 𝑎(𝑡) ,
√︁

2𝜎2 log 1√
2𝜋𝜎𝜌𝜎(𝑡)

∈ [0,∞)

and we divide the integral domain of 𝑡 into three parts based on the value of 𝑎(𝑡).

And we will bound the integral within each part individually.
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Proposition 7. Suppose 𝜌𝜎 is the PDF of P * 𝒩 (0, 𝜎2) for some 1D distribution P,

then for ∀𝑡 ∈ R we have

0 < 𝜌𝜎(𝑡) ≤ 1√
2𝜋𝜎

.

Proof. Suppose 𝜂𝜎(·) = 1√
2𝜋𝜎

exp
(︁
− (·)2

2𝜎2

)︁
to be the PDF of 𝒩 (0, 𝜎2), and let 𝑋 ∼ P.

Then for any 𝑡 ∈ R we have

𝜌𝜎(𝑡) = E [𝜂𝜎(𝑡−𝑋)] = E
[︂

1√
2𝜋𝜎

exp

(︂
−(𝑋 − 𝑡)2

2𝜎2

)︂]︂
≤ E

[︂
1√
2𝜋𝜎

]︂
=

1√
2𝜋𝜎

.

Moreover, since lim𝐾→∞P(|𝑋| ≤ 𝐾) = P(𝑋 ∈ R) = 1, there exists some 𝐾 such

that P(|𝑋| ≤ 𝐾) > 0. Hence,

𝜌𝜎(𝑡) = E [𝜂𝜎(𝑡−𝑋)] ≥ E
[︀
1|𝑋|≤𝐾𝜂𝜎(𝑡−𝑋)

]︀
≥ P(|𝑋| ≤ 𝐾) · exp

(︂
−(|𝑋| + 𝑡)2

2𝜎2

)︂
> 0.

Proposition 8. Suppose 𝜌𝜎 to be the density function of P * 𝒩 (0, 𝜎2). If for some 𝑡

and 𝑎 ≥ 0 we have 𝜌𝜎(𝑡) = 1√
2𝜋𝜎

exp
(︁
− 𝑎2

2𝜎2

)︁
, then for any 𝛿 we have

1√
2𝜋𝜎

exp

(︂
−(𝑎 + |𝛿| + 4𝜎)2

2𝜎2

)︂
≤ 𝜌𝜎(𝑡+ 𝛿) ≤ 1√

2𝜋𝜎
exp

(︂
−max{0, 𝑎− |𝛿| − 4𝜎}2

2𝜎2

)︂
.

Proof. We first prove the upper bound. WLOG, we assume 𝑡 = 0 and 𝛿 ≥ 0. Then

according to the assumption we have

𝜌𝜎(0) =
1√
2𝜋𝜎

exp

(︂
− 𝑎2

2𝜎2

)︂
.

We use 𝜂𝜎(·) = 1√
2𝜋𝜎

exp
(︁
− (·)2

2𝜎2

)︁
to denote the PDF of 𝒩 (0, 𝜎2), and let 𝑋 ∼ P.

Then noticing that 𝜂𝜎(·) is symmetric with respect to 0, we have for ∀0 ≤ 𝑟 ≤ 𝑎,

𝜌𝜎(0) = E [𝜂𝜎(−𝑋)] = E [𝜂𝜎(𝑋)] ≥ E
[︀
𝜂𝜎(𝑋)1|𝑋|≤𝑟

]︀
≥ P(|𝑋| ≤ 𝑟) · min

|𝑥|≤𝑟
𝜂𝜎(𝑥) = P(|𝑋| ≤ 𝑟) · 1√

2𝜋𝜎
exp

(︂
− 𝑟2

2𝜎2

)︂
.
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Therefore, we obtain that

P(|𝑋| ≤ 𝑟) ≤ exp

(︂
−𝑎2 − 𝑟2

2𝜎2

)︂
.

Substituting 𝑟 with 𝑟 + 𝛿 and noticing that
{︀
𝑥
⃒⃒
|𝑥− 𝛿| ≤ 𝑟

}︀
⊂
{︀
𝑥
⃒⃒
|𝑥| ≤ 𝑟 + 𝛿

}︀
, we

have

P(|𝑋 − 𝛿| ≤ 𝑟) ≤ P(|𝑋| ≤ 𝑟 + 𝛿) ≤ exp

(︂
−𝑎2 − (𝑟 + 𝛿)2

2𝜎2

)︂
.

Next, we notice that

𝜌𝜎(𝛿) = E[𝜂𝜎(𝛿 −𝑋)] = E[𝜂𝜎(𝑋 − 𝛿)]

= E
[︀
𝜂𝜎(𝑋 − 𝛿)1|𝑋−𝛿|≤𝑎−𝛿

]︀
+ E

[︀
𝜂𝜎(𝑋 − 𝛿)1|𝑋−𝛿|>𝑎−𝛿

]︀
=

∫︁ 𝑎−𝛿

0

𝜂𝜎(𝑟)𝑑P(|𝑋 − 𝛿| ≤ 𝑟) + E
[︀
𝜂𝜎(𝑋 − 𝛿)1|𝑋−𝛿|>𝑎−𝛿

]︀
≤
∫︁ 𝑎−𝛿

0

𝜂𝜎(𝑟)𝑑P(|𝑋 − 𝛿| ≤ 𝑟) + sup
|𝑥−𝛿|>1−𝛿

𝜂𝜎(𝑥− 𝛿)

=

∫︁ 𝑎−𝛿

0

𝜂𝜎(𝑟)𝑑P(|𝑋 − 𝛿| ≤ 𝑟) +
1√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
,

where 𝑑P(|𝑋 − 𝛿| ≤ 𝑟) denotes the differential form with respect to 𝑟. Adopting

integration by part to the first item, we obtain that

∫︁ 𝑎−𝛿

0

𝜂𝜎(𝑟)𝑑P(|𝑋 − 𝛿| ≤ 𝑟)

≤ 𝜂𝜎(𝑎− 𝛿)P(|𝑋 − 𝛿| ≤ 𝑎− 𝛿) − 𝜂𝜎(0)P(|𝑋 − 𝛿| ≤ 0) −
∫︁ 𝑎−𝛿

0

P(|𝑋 − 𝛿| ≤ 𝑟)𝑑𝜂𝜎(𝑟)

≤ 𝜂𝜎(𝑎− 𝛿) +

∫︁ 𝑎−𝛿

0

P(|𝑋 − 𝛿| ≤ 𝑟) · 1√
2𝜋𝜎

· 𝑟

𝜎2
exp

(︂
− 𝑟2

2𝜎2

)︂
𝑑𝑟

=
1√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
+

∫︁ 𝑎−𝛿

0

P(|𝑋 − 𝛿| ≤ 𝑟) · 1√
2𝜋𝜎

· 𝑟

𝜎2
exp

(︂
− 𝑟2

2𝜎2

)︂
𝑑𝑟.
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Hence we have

𝜌𝜎(𝛿)

≤
∫︁ 𝑎−𝛿

0

P(|𝑋 − 𝛿| ≤ 𝑟) · 1√
2𝜋𝜎

𝑟

𝜎2
exp

(︂
− 𝑟2

2𝜎2

)︂
𝑑𝑟 +

2√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
=

1√
2𝜋𝜎

∫︁ 𝑎−𝛿

0

𝑟

𝜎2
exp

(︂
−𝑎2 − (𝑟 + 𝛿)2 + 𝑟2

2𝜎2

)︂
𝑑𝑟 +

2√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
≤ 1√

2𝜋𝜎

∫︁ 𝑎−𝛿

0

𝑟

𝜎2
exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
𝑑𝑟 +

2√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
,

where in the last inequality we use the fact that

𝑎2 − (𝑟 + 𝛿)2 + 𝑟2 = 𝑎2 − 2𝑟𝛿 + 𝛿2 ≥ 𝑎2 − 2𝑎𝛿 + 𝛿2 = (𝑎− 𝛿)2, ∀0 ≤ 𝑟 ≤ 𝑎− 𝛿.

Further we notice

1√
2𝜋𝜎

∫︁ 𝑎−𝛿

0

𝑟

𝜎2
exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
𝑑𝑟 +

2√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
=

1√
2𝜋𝜎

(︂
(𝑎− 𝛿)2

2𝜎2
+ 2

)︂
exp

(︂
−(𝑎− 𝛿)2

2𝜎2

)︂
=

1√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2
+ log

(︂
1 +

(𝑎− 𝛿)2

4𝜎2

)︂
+ log 2

)︂
.

If we let 𝜉 = 𝑎−𝛿
𝜎

and assume 𝜉 ≥ 4, we have

− (𝑎− 𝛿)2

2𝜎2
+ log

(︂
1 +

(𝑎− 𝛿)2

4𝜎2

)︂
+ log 2 = −𝜉2

2
+ log

(︂
1 +

𝜉2

4

)︂
+ log 2

≤ −𝜉2

2
+ log

(︂
1 +

𝜉

2

)︂2

+ 1 ≤ −𝜉2

2
+ 2 · 𝜉

2
+ 1 = −𝜉2

2
+ 𝜉 + 1 ≤ −(𝜉 − 4)2

2
.

Hence we obtain that

𝜌𝜎(𝛿) ≤ 1√
2𝜋𝜎

exp

(︂
−(𝑎− 𝛿)2

2𝜎2
+ log

(︂
1 +

(𝑎− 𝛿)2

4𝜎2

)︂
+ log 2

)︂
≤ exp

(︂
−(𝜉 − 4)2

2

)︂
= exp

(︂
−(𝑎− 𝛿 − 4𝜎)2

2𝜎2

)︂

Moreover, when 𝛼 − 𝛿 ≤ 4𝜎, Proposition 7 indicates that 𝜌𝜎(𝛿) ≤ 1√
2𝜋𝜎

. Therefore,
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we obtain the upper bound

𝜌𝜎(𝛿) ≤ 1√
2𝜋𝜎

exp

(︂
−max{0, 𝑎− 𝛿 − 4𝜎}2

2𝜎2

)︂
.

Next, we consider the lower bound. Proposition 7 indicates that 𝜌𝜎(𝑡+ 𝛿) ≤ 1√
2𝜋𝜎

,

hence we can let 𝜌𝜎(𝑡 + 𝛿) = 1√
2𝜋𝜎

exp
(︁
− 𝑏2

2𝜎2

)︁
with 𝑏 ≥ 0. Then the upper bound we

just proved indicates that

1√
2𝜋𝜎

exp

(︂
− 𝑎2

2𝜎2

)︂
= 𝜌𝜎(𝑡) ≤ 1√

2𝜋𝜎
exp

(︂
−max{0, 𝑏− 𝛿 − 4𝜎}2

2𝜎2

)︂
,

which indicates that max{0, 𝑏− 𝛿 − 4𝜎} ≤ 𝑎. Hence we have 𝑏 ≤ 𝑎 + 𝛿 + 4𝜎, and

𝜌𝜎(𝑡 + 𝛿) ≥ 1√
2𝜋𝜎

exp

(︂
−(𝑎 + |𝛿| + 4𝜎)2

2𝜎2

)︂
.

Proposition 9. Suppose 𝜎 < 𝐾, and for 𝑋 ∼ P we have

P(|𝑋| ≥ 𝑡) ≤ 𝐶 exp

(︂
− 𝑡2

2𝐾2

)︂
,

then for 𝑌 ∼ P * 𝒩 (0, 𝜎2), we have

P(|𝑌 | ≥ 𝑡) ≤
(︂
𝐶 +

1√
2𝜋𝜎

)︂
exp

(︂
− 𝑡2

8𝐾2

)︂

Proof. First we notice that for 𝑌 ∼ P * 𝒩 (0, 𝜎2), we can write it as

𝑌 = 𝑋 + 𝑍, 𝑋 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2), 𝑋 ⊥⊥ 𝑍
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Since 𝜎 < 𝐾 and P(|𝑋| ≥ 𝑡) ≤ 𝐶 exp
(︁
− 𝑡2

2𝐾2

)︁
, we obtain

P(|𝑌 | ≥ 𝑡) = P(|𝑋 + 𝑍| ≥ 𝑡)

≤ P(|𝑋| ≤ 𝑡/2) + P(|𝑍| ≤ 𝑡− 𝑡/2)

≤ 𝐶 exp

(︂
− 𝑡2

8𝐾2

)︂
+

1√
2𝜋𝜎

exp

(︂
− 𝑡2

8𝜎2

)︂
≤
(︂
𝐶 +

1√
2𝜋𝜎

)︂
exp

(︂
− 𝑡2

8𝐾2

)︂
.

Proposition 10. We denote the CDF, PDF of P * 𝒩 (0, 𝜎2) as 𝐹𝜎, 𝜌𝜎 respectively.

Suppose there exist constants 𝐶,𝐾 > 0 such that for ∀𝑟 ≥ 0,

P(|𝑋| ≥ 𝑟) ≤ 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
.

Then for any 𝜀 > 0, ∃𝑀 = 𝑀(𝜀, 𝜎,𝐾,𝐶) such that

1 − 𝐹𝜎(𝑟) ≤ 𝑀𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 , ∀𝑟 ≥ 0,

𝐹𝜎(𝑟) ≤ 𝑀𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 , ∀𝑟 < 0.

First we present the following lemma:

Lemma 3. Suppose Φ𝜎 to be the CDF of Gaussian distribution 𝒩 (0, 𝜎2), then we

have
1 − Φ𝜎(𝑙) ≤ exp

(︂
− 𝑙2

2𝜎2

)︂
, ∀𝑙 ≥ 0

Φ𝜎(𝑙) ≤ exp

(︂
− 𝑙2

2𝜎2

)︂
, ∀𝑙 < 0

Proof. Since we have Φ𝜎(𝑙) = 1 − Φ𝜎(𝑙) for any 𝑙 ≥ 0, we only need to prove the

results for 𝑙 ≥ 0. According to the upper bound on the tail of Gaussian distributions

(Proposition 2.1.2 in [15]), we have for 𝑙 ≥ 𝜎,

1 − Φ𝜎(𝑙) ≤ 𝜎

𝑙
· 1√

2𝜋
exp

(︂
− 𝑙2

2𝜎2

)︂
≤ 1√

2𝜋
exp

(︂
− 𝑙2

2𝜎2

)︂
≤ exp

(︂
− 𝑙2

2𝜎2

)︂
.
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For 0 ≤ 𝑙 ≤ 𝜎, we have

1 − Φ𝜎(𝑙) ≤ 1 − 1

2
=

1

2
, exp

(︂
− 𝑙2

2𝜎2

)︂
≥ exp(−1/2) ≥ 1

2
,

which indicates that

1 − Φ𝜎(𝑙) ≤ 1

2
≤ exp

(︂
− 𝑙2

2𝜎2

)︂
.

Hence for ∀𝑙 ≥ 0,

1 − Φ𝜎(𝑙) ≤ exp

(︂
− 𝑙2

2𝜎2

)︂
.

Proof of Proposition 10. We only prove this results for 𝑟 ≥ 0, as the proof of 𝑟 ≤ 0 is

similar. In the following, we use 𝜌 to denote the PDF of P (which can be a generalized

function on R), and Φ𝜎 to denote the CDF of 𝒩 (0, 𝜎2). Then we can write

1 − 𝐹𝜎(𝑟) =

∫︁ ∞

−∞
𝜌(𝑡)(1 − Φ𝜎(𝑟 − 𝑡))𝑑𝑡,

𝜌𝜎(𝑟) =

∫︁ ∞

−∞
𝜌(𝑡) · 1√

2𝜋𝜎
exp

(︂
−(𝑟 − 𝑡)2

2𝜎2

)︂
𝑑𝑡.

(5.1)

Noticing that P(|𝑋| ≥ 𝑟) ≤ 𝐶 exp
(︁
− 𝑟2

2𝐾2

)︁
, If we choose

𝑅0 = 𝐾
√︀

2(log𝐶 + 1),

we will obtain that

P(|𝑋| ≥ 𝑅0) ≤ 𝐶 exp(− log𝐶 − 1) =
1

𝑒
<

1

2

and hence P(|𝑋| ≤ 𝑅0) ≥ 1
2
. In the following, we will discuss cases where 0 ≤ 𝑟 ≤ 𝑅0

and 𝑟 > 𝑅0 separately.
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If 0 ≤ 𝑟 ≤ 𝑅0, then we have

𝜌𝜎(𝑟) ≥
∫︁ 𝑅0

−𝑅0

𝜌(𝑡) · 1√
2𝜋𝜎

exp

(︂
−(𝑟 − 𝑡)2

2𝜎2

)︂
𝑑𝑡

≥ 1√
2𝜋𝜎

P(|𝑋| ≤ 𝑅0) · min
0≤𝑟≤𝑅0,𝑡∈[−𝑅0,𝑅0]

exp

(︂
−(𝑟 − 𝑡)2

2𝜎2

)︂
=

1

2
√

2𝜋𝜎
exp

(︂
−2𝑅2

0

𝜎2

)︂
.

We further notice that 1 − 𝐹𝜎(𝑟) ≤ 1. Hence for any 𝜀 > 0, if choosing 𝑀1 =(︁
1

2
√
2𝜋𝜎

exp
(︁
−2𝑅2

0

𝜎2

)︁)︁− 𝜎2

𝐾2+𝜀 , we will have

1 − 𝐹𝜎(𝑟) ≤ 1 ≤ 𝑀1𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 , ∀𝑟 ∈ [0, 𝑅0].

Next, we consider cases where 𝑟 > 𝑅0. According to the assumption, we have

P(𝑋 ≥ 𝑟) ≤ 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
,

which indicates that

1 − 𝐹𝜎(𝑟) =

∫︁ 𝑟

−∞
𝜌(𝑡)(1 − Φ𝜎(𝑟 − 𝑡))𝑑𝑡 +

∫︁ ∞

𝑟

𝜌(𝑡)(1 − Φ𝜎(𝑟 − 𝑡))𝑑𝑡

≤
∫︁ 𝑟

−∞
𝜌(𝑡)(1 − Φ𝜎(𝑟 − 𝑡))𝑑𝑡 +

∫︁ ∞

𝑟

𝜌(𝑡)𝑑𝑡

≤
∫︁ 𝑟

−∞
𝜌(𝑡)(1 − Φ𝜎(𝑟 − 𝑡))𝑑𝑡 + P(𝑋 ≥ 𝑟)

≤
∫︁ 𝑟

−∞
𝜌(𝑡)(1 − Φ𝜎(𝑟 − 𝑡))𝑑𝑡 + 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
.

For 𝑟 > 𝑡, according to Lemma 3, we have 1 − Φ𝜎(𝑟 − 𝑡) ≤ exp
(︁
− (𝑟−𝑡)2

2𝜎2

)︁
, which

indicates that

1 − 𝐹𝜎(𝑟)

≤
∫︁ 𝑟

−∞
𝜌(𝑡) exp

(︂
−(𝑟 − 𝑡)2

2𝜎2

)︂
𝑑𝑡 + 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
≤
∫︁ ∞

−∞
𝜌(𝑡) exp

(︂
−(𝑟 − 𝑡)2

2𝜎2

)︂
𝑑𝑡 + 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
=

√
2𝜋𝜎 · 𝜌𝜎(𝑟) + 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
.
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Moreover, since P(|𝑋| ≤ 𝑅0) ≥ 1
2

we also have

𝜌𝜎(𝑟) ≥
∫︁ 𝑅0

−𝑅0

𝜌(𝑡) · 1√
2𝜋𝜎

exp

(︂
−(𝑟 − 𝑡)2

2𝜎2

)︂
𝑑𝑡 ≥ 1

2
√

2𝜋𝜎
· exp

(︂
−(𝑟 + 𝑅0)

2

2𝜎2

)︂
.

Given any 𝜀 > 0, according to AM-GM inequality, we have

(𝑟 + 𝑅0)
2

2𝜎2
=

𝑟2

2𝜎2
+

𝑅2
0

2𝜎2
+

2𝑟𝑅0

2𝜎2
≤ 𝑟2

2𝜎2
· 𝐾

2 + 𝜖

𝐾2
+

𝑅2
0

2𝜎2
· 𝜖 + 𝐾2

𝜖
,

which indicates that

exp

(︂
−(𝑟 + 𝑅0)

2

2𝜎2

)︂
≥ exp

(︂
− 𝑅2

0

2𝜎2
· 𝜖 + 𝐾2

𝜖

)︂
· exp

(︂
− 𝑟2

2𝜎2
· 𝐾

2 + 𝜖

𝐾2

)︂
.

Therefore, choosing

𝑀2 = 𝑀2(𝜀, 𝜎,𝐾,𝐶) = 𝐶
(︁

2
√

2𝜋𝜎
)︁ 𝜎2

𝐾2+𝜀
exp

(︂
𝑅2

0

2𝜖

)︂
,

we will have

𝑀2 · 𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀

≥ 𝑀2 ·
(︂

1

2
√

2𝜋𝜎
· exp

(︂
−(𝑟 + 𝑅0)

2

2𝜎2

)︂)︂ 𝜎2

𝐾2+𝜀

≥ 𝐶 exp

(︂
𝑅2

0

2𝜖

)︂
·
(︂

exp

(︂
− 𝑅2

0

2𝜎2
· 𝜖 + 𝐾2

𝜖

)︂
· exp

(︂
− 𝑟2

2𝜎2
· 𝐾

2 + 𝜖

𝐾2

)︂)︂ 𝜎2

𝐾2+𝜀

= 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂

When 𝜌𝜎(𝑟) ≤ 1, since 𝜎2

𝐾2+𝜀
< 1 due to 𝜎 < 𝐾 and 𝜀 > 0, we have

√
2𝜋𝜎 · 𝜌𝜎(𝑟) ≤

√
2𝜋𝜎 · 𝜌𝜎(𝑟)

𝜎2

𝐾2+𝜀 .

Therefore,

1 − 𝐹𝜎(𝑟) ≤ (𝑀2 +
√

2𝜋𝜎) · 𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 .
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When 𝜌𝜎(𝑟) > 1, we will also have 𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 > 1. Hence the following inequality

holds

1 − 𝐹𝜎(𝑟) ≤ 1 < 𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 .

Above all, if we choose 𝑀 = max{𝑀1,𝑀2 +
√

2𝜋𝜎, 1}, then we have

1 − 𝐹𝜎(𝑟) ≤ 𝑀𝜌𝜎(𝑟)
𝜎2

𝐾2+𝜀 , ∀𝑟 ≥ 0.

Proposition 11. For two distribution P,Q on R with PDF 𝜌𝑝(𝑥), 𝜌𝑞(𝑥) and CDF

𝐹𝑝(𝑥), 𝐹𝑞(𝑥). Suppose 𝜌𝑝(𝑥), 𝜌𝑞(𝑥) > 0 for every 𝑥 ∈ R, then

𝑊2(P,Q)2 =

∫︁ ∞

−∞
𝜌𝑝(𝑥)

⃒⃒
𝐹−1
𝑞 (𝐹𝑝(𝑥)) − 𝑥

⃒⃒2
𝑑𝑥,

where 𝐹−1
𝑞 (·) is the inverse function of 𝐹𝑞(·).

Remark 5. Here the map 𝑥 → 𝐹−1
𝑞 (𝐹𝑝(𝑥)) is also the explicit form of the Brenier

map 𝑇𝑝,𝑞 between 1D distributions P and Q. The Brenier map 𝑥 → 𝑇𝑝,𝑞(𝑥) denotes

the optimal coupling between P and Q.

Proof. According to [10], we have

𝑊2(P,Q)2 =

∫︁ 1

0

(︀
𝐹−1
𝑞 (𝑧) − 𝐹−1

𝑝 (𝑧)
)︀2

𝑑𝑧.

Since distribution P has PDF 𝜌𝑝(𝑥), we have 𝑑𝐹𝑝(𝑥)

𝑑𝑥
= 𝜌𝑝(𝑥). We let 𝑧 = 𝐹𝑝(𝑥) in the

above equation. Then adopting changing of variables, we obtain that

𝑊2(P,Q)2 =

∫︁ 1

0

(︀
𝐹−1
𝑞 (𝑧) − 𝐹−1

𝑝 (𝑧)
)︀2

𝑑𝑧 =

∫︁ ∞

−∞
𝜌𝑝(𝑥)

⃒⃒
𝐹−1
𝑞 (𝐹𝑝(𝑥)) − 𝑥

⃒⃒2
𝑑𝑥.

Proposition 12. Consider two 1D-distributions P,Q. Distribution Q is with always-

positive PDF. We denote the PDF of P as 𝜌𝑝(·), and the CDFs of P,Q as 𝐹𝑝, 𝐹𝑞
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respectively. If for some 𝜎 > 0 we have

sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝑝(𝑥) − 𝐹𝑞(𝑥)|
inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝑝(𝑥)

≤ 𝜎,

then ⃒⃒
𝐹−1
𝑞 (𝐹𝑝(𝑡)) − 𝑡

⃒⃒
≤

sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝑝(𝑥) − 𝐹𝑞(𝑥)|
inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝑝(𝑥)

.

To prove this proposition, we first provide a lemma.

Lemma 4. Consider two 1D-distributions P,Q. Distribution Q is with always-

positive PDF. Suppose the CDFs of P,Q are 𝐹𝑝, 𝐹𝑞, and let 𝑋 ∼ P. Then if

P(𝑋 ∈ (𝑟 − 𝛼, 𝑟]) ≥ |𝐹𝑝(𝑟 − 𝛼) − 𝐹𝑞(𝑟 − 𝛼)|

P(𝑋 ∈ (𝑟, 𝑟 + 𝛼]) ≥ |𝐹𝑝(𝑟 + 𝛼) − 𝐹𝑞(𝑟 + 𝛼)|

both hold, we will have

|𝐹−1
𝑞 (𝐹𝑝(𝑟)) − 𝑟| ≤ 𝛿,

where 𝐹−1
𝑞 is the inverse function of 𝐹𝑞.

Proof. We notice that

𝐹𝑞(𝑟 − 𝛼) ≤ 𝐹𝑝(𝑟 − 𝛼) + |𝐹𝑝(𝑟 − 𝛼) − 𝐹𝑞(𝑟 − 𝛼)|

= 𝐹𝑝(𝑟) −P(𝑋 ∈ (𝑟 − 𝛼, 𝑟]) + |𝐹𝑝(𝑟 − 𝛼) − 𝐹𝑞(𝑟 − 𝛼)|

≤ 𝐹𝑝(𝑟).

Similarly, we also obtain that

𝐹𝑝(𝑟) ≤ 𝐹𝑞(𝑟 + 𝛼).

Therefore, 𝐹𝑞(𝑟 − 𝛼) ≤ 𝐹𝑝(𝑟) ≤ 𝐹𝑞(𝑟 + 𝛼).

Moreover, noticing that Q is with always-positive PDF, for any 𝜖 > 0 we have

𝐹𝑞(𝑟 − 𝛿 − 𝜖) < 𝐹𝑞(𝑟 − 𝛿) ≤ 𝐹𝑝(𝑟) ≤ 𝐹𝑞(𝑟 + 𝛼) < 𝐹𝑞(𝑟 + 𝛿 + 𝜖).
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Since 𝐹𝑞 and 𝐹𝑝 are both non-decreasing functions, we have

|𝐹−1
𝑞 (𝐹𝑝(𝑟)) − 𝑟| ≤ 𝛿 + 𝜖.

Choosing 𝜖 → 0, we obtain that

|𝐹−1
𝑞 (𝐹𝑝(𝑟)) − 𝑟| ≤ 𝛿.

Equipped with this lemma, we are ready to prove Proposition 12.

Proof of Proposition 12. We let random variable 𝑋 ∼ P and

𝛼 =
sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝑝(𝑥) − 𝐹𝑞(𝑥)|

inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝑝(𝑥)
.

Then the assumption indicates that 0 < 𝛼 ≤ 𝜎. Hence we obtain that

P(𝑋 ∈ (𝑡− 𝛼, 𝑡])) ≥ 𝛼 · inf
𝑥∈[𝑡−𝛼,𝑡+𝛼]

𝜌𝑝(𝑥) ≥ 𝛼 · inf
𝑥∈[𝑡−𝜎,𝑡+𝜎]

𝜌𝑝(𝑥),

P(𝑋 ∈ (𝑡, 𝑡 + 𝛼])) ≥ 𝛼 · inf
𝑥∈[𝑡−𝛼,𝑡+𝛼]

𝜌𝑝(𝑥) ≥ 𝛼 · inf
𝑥∈[𝑡−𝜎,𝑡+𝜎]

𝜌𝑝(𝑥).

Therefore,

|𝐹𝑝(𝑡− 𝛼) − 𝐹𝑞(𝑡− 𝛼)| ≤ sup
𝑥∈[𝑡−𝜎,𝑡+𝜎]

|𝐹𝑝(𝑥) − 𝐹𝑞(𝑥)|

= 𝛼 · inf
𝑥∈[𝑡−𝜎,𝑡+𝜎]

𝜌𝑝(𝑥) ≤ P(𝑋 ∈ (𝑡− 𝛼, 𝑡])),

|𝐹𝑝(𝑡 + 𝛼) − 𝐹𝑞(𝑡 + 𝛼)| ≤ sup
𝑥∈[𝑡−𝜎,𝑡+𝜎]

|𝐹𝑝(𝑥) − 𝐹𝑞(𝑥)|

= 𝛼 · inf
𝑥∈[𝑡−𝜎,𝑡+𝜎]

𝜌𝑝(𝑥) ≤ P(𝑋 ∈ (𝑡 + 𝛼, 𝑡]))

Therefore, according to Lemma 4, we obtain that

⃒⃒
𝐹−1
𝑞 (𝐹𝑝(𝑡)) − 𝑡

⃒⃒
≤ 𝛼 =

sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝑝(𝑥) − 𝐹𝑞(𝑥)|
inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝑝(𝑥)

.
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Proposition 13. Suppose distribution P,Q satisfies that for any 𝑟 ≥ 0,

P(|𝑋| ≥ 𝑟) ≤ 𝐶1 exp

(︂
− 𝑟2

2𝐾2
1

)︂
, P(|𝑌 | ≥ 𝑞) ≤ 𝐶2 exp

(︂
− 𝑞2

2𝐾2
2

)︂
,

where 𝑋 ∼ P, 𝑌 ∼ Q. We use 𝐹𝑝,𝜎, 𝐹𝑞,𝜎 to denote the CDFs of distribution P *

𝒩 (0, 𝜎2),Q * 𝒩 (0, 𝜎2) separately. Then for any 𝑅 ≥ 0 and 𝑥 ∈ [−𝑅,𝑅] we have

⃒⃒
𝐹−1
𝑞,𝜎 (𝐹𝑝,𝜎(𝑥)) − 𝑥

⃒⃒
≤ 2𝑅 + 2𝜎 +

𝐾2𝑅

𝜎
+ 𝐾1

√︀
2 log(2𝐶1) + 𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂
.

Proof. First we notice that the PDFs of distribution P *𝒩 (0, 𝜎2),Q *𝒩 (0, 𝜎2) at any

real number is positive, hence 𝐹𝑝,𝜎, 𝐹𝑞,𝜎 are monotonically increasing in the entire real

line. In the following, we use Φ𝜎 to denote the CDF of distribution 𝒩 (0, 𝜎2). We

have

P
(︁
|𝑋| ≥ 𝐾1

√︀
2 log(2𝐶1)

)︁
≤ 𝐶1 exp (− log(2𝐶1)) =

1

2
.

Therefore, we obtain that

P
(︁
|𝑋| ≤ 𝐾1

√︀
2 log(2𝐶1)

)︁
≥ 1 − 1

2
=

1

2
.

We further notice that if 𝑋 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2) are independent, 𝑋+𝑍 ∼ P*𝒩 (0, 𝜎2).

And also for any 𝑅 ≥ 0,

{|𝑋| ≤ 𝐾1

√︀
2 log(2𝐶1)} ∩ {𝑍 ≤ −𝐾1

√︀
2 log(2𝐶1) −𝑅} ⊂ {𝑋 + 𝑍 ≤ −𝑅}

{|𝑋| ≤ 𝐾1

√︀
2 log(2𝐶1)} ∩ {𝑍 ≥ 𝐾1

√︀
2 log(2𝐶1) + 𝑅} ⊂ {𝑋 + 𝑍 ≥ 𝑅} .

Hence noticing that Φ𝜎(−𝑅 − 𝐾1

√︀
2 log(2𝐶1)) = 1 − Φ𝜎(𝑅 + 𝐾1

√︀
2 log(2𝐶1)) =
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P(𝑍 ≤ −𝐾1

√︀
2 log(2𝐶1) −𝑅) = P(𝑍 ≥ 𝐾1

√︀
2 log(2𝐶1) + 𝑅), we have

1

2
Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1))

≤ P
(︁
|𝑋| ≥ 𝐾1

√︀
2 log(2𝐶1)

)︁
P(𝑍 ≤ −𝐾1

√︀
2 log(2𝐶1) −𝑅)

≤ P(𝑋 + 𝑍 ≤ −𝑅) = 𝐹𝑝,𝜎(−𝑅)

1

2
Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1))

≤ P
(︁
|𝑋| ≥ 𝐾1

√︀
2 log(2𝐶1)

)︁
P(𝑍 ≥ 𝐾1

√︀
2 log(2𝐶1) + 𝑅)

≤ P(𝑋 + 𝑍 ≥ 𝑅) = 1 − 𝐹𝑝,𝜎(𝑅),

which indicates that

1

2
Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1)) ≤ 𝐹𝑝,𝜎(−𝑅) ≤ 𝐹𝑝,𝜎(𝑅) ≤ 1− 1

2
Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1))

after noticing that 𝐹𝑝,𝜎(−𝑅) ≤ 𝐹𝑝,𝜎(𝑅) due to the monotonicity of 𝐹𝑝,𝜎.

Next, if 𝑌 ∼ Q, 𝑍 ∼ 𝒩 (0, 𝜎2) are independent, we have 𝑌 + 𝑍 ∼ Q * 𝒩 (0, 𝜎2).

Noticing that for ∀𝑅, 𝑞 ≥ 0, we have

{𝑌 + 𝑍 ≤ −𝑅− 𝑞} ⊂ {𝑍 ≤ −𝑅} ∪ {𝑌 ≤ −𝑞},

{𝑌 + 𝑍 ≥ 𝑅 + 𝑞} ⊂ {𝑍 ≥ 𝑅} ∪ {𝑌 ≥ 𝑞},

we obtain that

𝐹𝑞,𝜎(−𝑅− 𝑞) ≤ Φ𝜎(−𝑅) + P(|𝑌 | ≥ 𝑞),

1 − 𝐹𝑞,𝜎(𝑅 + 𝑞) ≤ 1 − Φ𝜎(𝑅) + P(|𝑌 | ≥ 𝑞) = Φ𝜎(−𝑅) + P(|𝑌 | ≥ 𝑞).

According to Proposition 2.1.2 in [15], we have

Φ𝜎(−𝑅) ≥
(︂
𝜎

𝑅
− 𝜎3

𝑅3

)︂
· 1√

2𝜋
exp

(︂
− 𝑅2

2𝜎2

)︂
.
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Hence when 𝑅 ≥ 2𝜎, we will have

Φ𝜎(−𝑅) ≥ 3𝜎

4𝑅
· 1√

2𝜋
exp

(︂
− 𝑅2

2𝜎2

)︂
≥ 𝜎

4𝑅
exp

(︂
− 𝑅2

2𝜎2

)︂
.

We further notice that

P(|𝑌 | ≥ 𝑞) ≤ 𝐶2 exp

(︂
− 𝑞2

2𝐾2
2

)︂
.

Therefore, when

𝑞 ≥ 𝐾2𝑅

𝜎
+ 𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂
,

we would have

P(|𝑌 | ≥ 𝑞) ≤ 𝐶2 exp

(︂
− 𝑞2

2𝐾2
2

)︂
≤ 𝜎

4𝑅
exp

(︂
− 𝑅2

2𝜎2

)︂
≤ Φ𝜎(−𝑅),

which indicates that

𝐹𝑞,𝜎(−𝑅− 𝑞) ≤ 2Φ𝜎(−𝑅), 1 − 𝐹𝑞,𝜎(𝑅 + 𝑞) ≤ 2Φ𝜎(−𝑅).

Additionally, since for any 𝑥 ≤ 0, we have

exp

(︂
−(𝑥− 2𝜎)2

2𝜎2

)︂
≤ exp

(︂
− 𝑥2

2𝜎2
− 4𝜎2

2𝜎2

)︂
= exp(−2)·exp

(︂
− 𝑥2

2𝜎2

)︂
≤ 1

4
exp

(︂
− 𝑥2

2𝜎2

)︂
.

This indicates that

1

4
Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1))

=
1

4
· 1√

2𝜋𝜎2

∫︁ −𝑅−𝐾1

√
2 log(2𝐶1)

−∞
exp

(︂
− 𝑥2

2𝜎2

)︂
𝑑𝑥

≥ 1√
2𝜋𝜎2

∫︁ −𝑅−𝐾1

√
2 log(2𝐶1)

−∞
exp

(︂
−(𝑥− 2𝜎)2

2𝜎2

)︂
𝑑𝑥

=
1√

2𝜋𝜎2

∫︁ −𝑅−𝐾1

√
2 log(2𝐶1)−2𝜎

−∞
exp

(︂
− 𝑥2

2𝜎2

)︂
𝑑𝑥

= Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1) − 2𝜎).
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Therefore, we obtain that

𝐹𝑞,𝜎

(︃
−𝑅−𝐾1

√︀
2 log(2𝐶1) − 2𝜎 − 𝐾2𝑅

𝜎
−𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂)︃
≤ 2Φ𝜎

(︁
−𝑅−𝐾1

√︀
2 log(2𝐶1) − 2𝜎

)︁
≤ 1

2
Φ𝜎(−𝑅−𝐾1

√︀
2 log(2𝐶1)) ≤ 𝐹𝑝,𝜎(−𝑅).

Similarly, we can also obtain that

1 − 𝐹𝑞,𝜎

(︃
𝑅 + 𝐾1

√︀
2 log(2𝐶1) + 2𝜎 +

𝐾2𝑅

𝜎
+ 𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂)︃
≤ 1 − 𝐹𝑝,𝜎(𝑅).

Hence using the monotonicity of 𝐹𝑝,𝜎 and 𝐹𝑞,𝜎, we obtain that for any 𝑅 ≥ 0 and

𝑥 ∈ [−𝑅,𝑅],

𝐹𝑞,𝜎

(︃
−𝑅−𝐾1

√︀
2 log(2𝐶1) − 2𝜎 − 𝐾2𝑅

𝜎
−𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂)︃

≤ 𝐹𝑝,𝜎(𝑥) ≤ 𝐹𝑞,𝜎

(︃
𝑅 + 𝐾1

√︀
2 log(2𝐶1) + 2𝜎 +

𝐾2𝑅

𝜎
+ 𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂)︃
,

which indicates that

−𝑅−𝐾1

√︀
2 log(2𝐶1) − 2𝜎 − 𝐾2𝑅

𝜎
−𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂

≤ 𝐹−1
𝑞,𝜎 (𝐹𝑝,𝜎(𝑥)) ≤ 𝑅 + 𝐾1

√︀
2 log(2𝐶1) + 2𝜎 +

𝐾2𝑅

𝜎
+ 𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂
.

Hence we have

⃒⃒
𝐹−1
𝑞,𝜎 (𝐹𝑝,𝜎(𝑥)) − 𝑥

⃒⃒
≤ 2𝑅 + 𝐾1

√︀
2 log(2𝐶1) + 2𝜎 +

𝐾2𝑅

𝜎
+ 𝐾2

√︃
2 log

(︂
4𝑅𝐶2

𝜎

)︂
.

Proposition 14. Suppose 𝐹𝜎, 𝐹𝑛,𝜎 are CDFs of distribution P * 𝒩 (0, 𝜎2) and P𝑛 *
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𝒩 (0, 𝜎2) respectively. We define

𝐺(𝑡) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1
𝑛

0 ≤ 𝑡 ≤ 1
𝑛

𝑛−1
𝑛

≤ 𝑡 ≤ 1,

𝑡 1
𝑛
≤ 𝑡 ≤ 1

2
,

1 − 𝑡 1
2
≤ 𝑡 ≤ 𝑛−1

𝑛
.

Then with probability at least 1 − 𝛿, we have the following inequality:

sup
𝑡∈R

|𝐹𝜎(𝑡) − 𝐹𝑛,𝜎(𝑡)|√︀
𝐺(𝐹 (𝑡))

≤ 16√
𝑛

log

(︂
2𝑛

𝛿

)︂
.

To prove this proposition, we first present a lemma indicating a similar result

without Gaussian smoothing:

Lemma 5. For a given distribution P on real numbers with always-positive PDF,

we denote its empirical measure with 𝑛 data points to be P𝑛 (P𝑛 = 1
𝑛

∑︀𝑛
𝑖=1 𝛿𝑋𝑖

where

𝑋𝑖 ∼ P are 𝑖.𝑖.𝑑.). We further use 𝐹, 𝐹 to denote the CDF of P,P𝑛 respectively. Then

with probability at least 1 − 𝛿, we have

sup
𝑡∈R

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝐹 (𝑡))

≤ 8

√︂
1

𝑛
log
(︁𝑛
𝛿

)︁
.

Remark 6. This lemma follows directly from Theorem 2.1 of [6], if we choose

𝑟 = 1
𝑛
, 𝛿 = 1

2
, 𝑠𝑗 = 𝐾 log

(︀
2𝐾
𝛿′

)︀
.

Remark 7. If we would like to obtain a uniform bound without truncation, then we

have to pay an additional factor
√︀

1/𝛿. This is summarized in the following results:

with probability at least 1 − 𝛿, we have

sup
𝑡∈R

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐹 (𝑡) ∧ (1 − 𝐹 (𝑡))

≤ 16

√︂
1

𝛿𝑛
log

(︂
4𝑛

𝛿

)︂
.

Also we have a lower bound to the LHS in the above inequality, indicating that the
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factor
√︀

1/𝛿 is necessary: with probability at least 𝛿, we have

sup
𝑡∈R

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐹 (𝑡) ∧ (1 − 𝐹 (𝑡))

≥
√︂

1

2𝛿𝑛
.

Proof of Lemma 5. Since P has positive PDF at every points on R, its CDF 𝐹 has

inverse function 𝐹−1. We consider the distribution Q on [0, 1] such that Q(·) =

P(𝐹−1(·)). Then Q matches the uniform distribution on [0, 1]. We let Q𝑛(·) =

P𝑛(𝐹−1(·)). Then the distribution of P𝑛 is equivalent to the distribution of 𝑛-point

empirical measure of Q. Therefore, we only need to prove this lemma under the

assumption that Q is the uniform distribution on [0, 1].

In the next, we assume P to be the uniform distribution [0, 1], and will have

𝐹 (𝑡) = 𝑡 for any 0 ≤ 𝑡 ≤ 1. We only need to prove that with probability at least

1 − 𝛿,

sup
𝑡∈R

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤
√︂

log 𝑛

𝑛
.

According to Bernstein inequality, for any 1 ≤ 𝑘 ≤ 𝑛
2
, if we let 𝑡 = 𝑘

𝑛
, then we

have

P

(︃⃒⃒⃒
𝐹 (𝑡) − 𝐹 (𝑡)

⃒⃒⃒
≤ 4

√︂
𝑡

𝑛
log

(︂
1

𝛿

)︂)︃
≤ 1

𝛿
.

Therefore, applying union bound for 1 ≤ 𝑘 ≤ 𝑛
2
, we obtain that

P

(︃⃒⃒⃒⃒
𝐹

(︂
𝑘

𝑛

)︂
− 𝐹

(︂
𝑘

𝑛

)︂⃒⃒⃒⃒
≤ 4

√︂
(𝑘/𝑛)

𝑛
log
(︁𝑛
𝛿

)︁
, ∀1 ≤ 𝑘 ≤ 𝑛

2

)︃
≤ 𝛿

2
.

We further notice that for any 𝑘
𝑛
≤ 𝑡 ≤ 𝑘+1

𝑛
, we have

|𝐹 (𝑡)−𝐹 (𝑡)| = |𝑡−𝐹 (𝑡)| ≤ 1

𝑛
+max

{︂⃒⃒⃒⃒
𝐹

(︂
𝑘

𝑛

)︂
− 𝐹

(︂
𝑘

𝑛

)︂⃒⃒⃒⃒
,

⃒⃒⃒⃒
𝐹

(︂
𝑘 + 1

𝑛

)︂
− 𝐹

(︂
𝑘 + 1

𝑛

)︂⃒⃒⃒⃒}︂
.

When 𝑘 ≥ 1 and 2𝑘
𝑛

≤ 𝑘+1
𝑛

. Therefore, if for every 1 ≤ 𝑘 ≤ 𝑛
2

we all have⃒⃒⃒
𝐹
(︀
𝑘
𝑛

)︀
− 𝐹

(︀
𝑘
𝑛

)︀⃒⃒⃒
≤ 4
√︁

(𝑘/𝑛)
𝑛

log
(︀
𝑛
𝛿

)︀
, then for every 0 ≤ 𝑡 ≤ 1

𝑛
, we have

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤ 1/𝑛 + |𝐹 (1/𝑛) − 𝐹 (1/𝑛)|√︀
1/𝑛

≤ 5

√︂
1

𝑛
log
(︁𝑛
𝛿

)︁
,

73



and for every 𝑘
𝑛
≤ 𝑡 ≤ 𝑘+1

𝑛
with 𝑘 ≤ 𝑛

2
, we have

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤
1
𝑛

+ max
{︁⃒⃒⃒

𝐹
(︀
𝑘
𝑛

)︀
− 𝐹

(︀
𝑘
𝑛

)︀⃒⃒⃒
,
⃒⃒⃒
𝐹
(︀
𝑘+1
𝑛

)︀
− 𝐹

(︀
𝑘+1
𝑛

)︀⃒⃒⃒}︁√︀
𝑘/𝑛

≤
√︂

1

𝑛
+
√

2 · max

⎧⎨⎩
⃒⃒⃒
𝐹
(︀
𝑘
𝑛

)︀
− 𝐹

(︀
𝑘
𝑛

)︀⃒⃒⃒√︀
𝑘/𝑛

,

⃒⃒⃒
𝐹
(︀
𝑘+1
𝑛

)︀
− 𝐹

(︀
𝑘+1
𝑛

)︀⃒⃒⃒√︀
(𝑘 + 1)/𝑛

⎫⎬⎭
≤
√︂

1

𝑛
+ 4

√
2 ·
√︂

1

𝑛
log
(︁𝑛
𝛿

)︁
≤ 8

√︂
1

𝑛
log
(︁𝑛
𝛿

)︁
.

Therefore, we have proved that with probability at least 1 − 𝛿
2
,

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤ 8

√︂
1

𝑛
log
(︁𝑛
𝛿

)︁

holds for every 0 ≤ 𝑡 ≤ 1
2
. Similarly, we can prove that with probability at least 1− 𝛿

2
,

the above inequality holds for 1
2
≤ 𝑡 ≤ 1. Therefore, with probability at least 1 − 𝛿,

we have

sup
0≤𝑡≤1

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤ 8

√︂
1

𝑛
log
(︁𝑛
𝛿

)︁
.

This completes the proof of this lemma.

Proof of Proposition 14. Suppose random variables 𝑋 ∼ P, 𝑌 ∼ 𝒩 (0, 𝜎2) are inde-

pendent. Then 𝑋 + 𝑌 ∼ P * 𝒩 (0, 𝜎2). We generate 𝑛 i.i.d. samples 𝑋1, · · · , 𝑋𝑛;

𝑌1, · · · , 𝑌𝑛. Then 𝑋𝑖 + 𝑌𝑖 are 𝑛 i.i.d. samples of P * 𝒩 (0, 𝜎2). We use 𝐹 to denote

the PDF of empirical measure P̂ = 1
𝑛

∑︀𝑛
𝑖=1 𝛿𝑋𝑖+𝑌𝑖

. Then according to Lemma 5, we

have with probability 1 − 𝛿,

sup
𝑡∈R

|𝐹 (𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤ 8

√︂
1

𝑛
log
(︁𝑛
𝛿

)︁
.

Hence Markov inequality indicates that

P

(︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹 (𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

)︃
≥ 1

𝛿

)︃
≤ 𝛿2.
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Therefore, we have

E

[︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹 (𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

)︃]︃

= 1 +

∫︁ ∞

1

P

(︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹 (𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

)︃
≥ 𝑟

)︃
𝑑𝑟

≤ 1 +

∫︁ ∞

1

1

𝑟2
𝑑𝑟

= 2.

Moreover, we notice that

E
[︁
𝐹 (𝑡)

⃒⃒⃒
𝑋1, · · · , 𝑋𝑛

]︁
= P

(︃
1

𝑛

𝑛∑︁
𝑖=1

(𝑋𝑖 + 𝑌𝑖) ≤ 𝑡
⃒⃒⃒
𝑋1, · · · , 𝑋𝑛

)︃
= 𝐹𝑛,𝜎(𝑡),

where 𝐹𝑛,𝜎 is the CDF of P𝑛 * 𝒩 (0, 𝜎2) with P𝑛 = 1
𝑛

∑︀𝑛
𝑖=1 𝛿𝑋𝑖

. Hence according to

the Jensen’s inequality and the convexity of function | · | and exp(·), we have

E

[︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹𝑛,𝜎(𝑡)|√︀

𝐺(𝑡)
− log 𝑛

)︃]︃

≤ E

[︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹𝑛,𝜎(𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

)︃]︃

= E

[︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − E𝑌𝑖,1≤𝑖≤𝑛[𝐹 (𝑡)]|√︀

𝐺(𝑡)
− log 𝑛

2

)︃]︃

≤ E

[︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· E𝑌𝑖,1≤𝑖≤𝑛|𝐹 (𝑡) − 𝐹 (𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

)︃]︃

≤ E

[︃
exp

(︃
E

[︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹 (𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

⃒⃒⃒⃒
⃒𝑋1, · · · , 𝑋𝑛

]︃)︃]︃

≤ E

[︃
E

[︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹 (𝑡)|√︀

𝐺(𝑡)
− log 𝑛

2

)︃]︃ ⃒⃒⃒⃒
⃒𝑋1, · · · , 𝑋𝑛

]︃
≤ 2.
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And according to Markov inequality, we have

P

(︃
exp

(︃
sup
𝑡∈R

√
𝑛

16
· |𝐹 (𝑡) − 𝐹𝑛,𝜎(𝑡)|√︀

𝐺(𝑡)
− log 𝑛

)︃
≥ 2

𝛿

)︃
≤ 𝛿.

Therefore, with probability at least 1 − 𝛿 we have

sup
𝑡∈R

|𝐹𝑛,𝜎(𝑡) − 𝐹 (𝑡)|√︀
𝐺(𝑡)

≤ 16√
𝑛

log

(︂
2𝑛

𝛿

)︂
.

Proposition 15. Suppose distribution P is a 𝐾-subgaussian distribution, 𝑒.𝑔.

P(|𝑋| ≥ 𝑟) ≤ 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂
, 𝑋 ∼ P,

and distribution P𝑛 is the empirical distribution obtained through 𝑛 𝑖.𝑖.𝑑. samples from

P. We suppose 𝐹𝜎, 𝐹𝑛,𝜎 to be the CDFs of distribution P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2).

Then for any 0 < 𝛿 < 1, with probability at least 1 − 𝛿, we have for any 𝑅 ≥ 0 and

𝑥 ∈ [−𝑅,𝑅],

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑥)) − 𝑥

⃒⃒⃒
≤ 2𝑅 + 2𝜎 +

𝐾𝑅

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑅𝑛

𝛿𝜎

)︂
.

Proof. Since P(|𝑋| ≥ 𝑟) ≤ 𝐶 exp
(︁
− 𝑟2

2𝐾2

)︁
, with probability at least

(︂
1 − 𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂)︂𝑛

≥ 1 − 𝑛𝐶 exp

(︂
− 𝑟2

2𝐾2

)︂

we have supp(P𝑛) ⊂ [−𝑟, 𝑟]. Choosing

𝑟 = 𝐾

√︃
2 log

(︂
𝐶𝑛

𝛿

)︂
,
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we obtain that with probability at least 1 − 𝛿,

supp(P𝑛) ⊂ [−𝑟, 𝑟] =

[︃
−𝐾

√︃
2 log

(︂
𝐶𝑛

𝛿

)︂
, 𝐾

√︃
2 log

(︂
𝐶𝑛

𝛿

)︂]︃
.

Therefore, choosing 𝐾2 = 𝐾 and 𝐶2 = 𝐶𝑛
𝛿

and letting 𝑌 ∼ P𝑛, with probability at

least 1 − 𝛿 we have

P(|𝑌 | ≥ 𝑞) ≤ 𝐶2 exp

(︂
− 𝑞2

2𝐾2

)︂
, ∀𝑞 ≥ 0.

Adopting Proposition 13 with

P = P,Q = P𝑛, 𝐾1 = 𝐾2 = 𝐾,𝐶1 = 𝐶,𝐶2 =
𝐶𝑛

𝛿
,

we obtain that with probability at least 1 − 𝛿, for any 𝑅 ≥ 0 and 𝑥 ∈ [−𝑅,𝑅], we

have

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑥)) − 𝑥

⃒⃒⃒
≤ 2𝑅 + 2𝜎 +

𝐾𝑅

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑅𝑛

𝛿𝜎

)︂
.

Equipped with these propositions, we are ready to prove the upper bound part of

Theorem 2.

Proof of Upper Bound Part of Theorem 2. We use 𝜌𝜎 to denote the PDF of P*𝒩 (0, 𝜎2),

and use 𝐹𝜎, 𝐹𝑛,𝜎 to denote the CDF of P * 𝒩 (0, 𝜎2) and P𝑛 * 𝒩 (0, 𝜎2) respectively.

Then according to the Proposition 14, we have

sup
𝑡≤0

|𝐹𝜎(𝑡) − 𝐹𝑛,𝜎(𝑡)|√︀
𝐺(𝑡)

≤ 16√
𝑛

log
(︀
2𝑛2
)︀

holds with probability at least 1 − 1/𝑛. In the main part of the proof, we assume

that this event holds, and scenarios where this event does not hold will be discussed

at the end of this proof.
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According to Proposition 10, for any positive 𝜀 > 0 (the value of 𝜀 will be specified

later), we have ⎧⎪⎨⎪⎩𝐹𝜎(𝑡) ≤ 𝑀𝜌𝜎(𝑡)
𝜎2

𝐾2+𝜀 , 𝑡 ≤ 0,

1 − 𝐹𝜎(𝑡) ≤ 𝑀𝜌𝜎(𝑡)
𝜎2

𝐾2+𝜀 , 𝑡 > 0,

where we write 𝑀 = 𝑀(𝜀, 𝜎,𝐾,𝐶) in Proposition 10. Therefore noticing that

𝐺(𝑡) = min{max{𝑡, 1/𝑛},max{1 − 𝑡, 1/𝑛}},

we have ∀𝑡 ∈ R,

|𝐹𝜎(𝑡) − 𝐹𝑛,𝜎(𝑡)| ≤ max

{︃
16

𝑛
log
(︀
2𝑛2
)︀
,
16
√
𝑀√
𝑛

log
(︀
2𝑛2
)︀
𝜌𝜎(𝑡)

𝜎2

2𝐾2+2𝜀

}︃
.

In the following, we first assume the above inequality holds. In order to analyze

the behavior of |𝐹𝜎(𝑥) − 𝐹𝑛,𝜎(𝑥)| for 𝑥 ∈ [𝑡− 𝜎, 𝑡 + 𝜎], we let

𝐿𝑛(𝑡) = max

{︃
16

𝑛
log
(︀
2𝑛2
)︀
, sup
𝑡−𝜎≤𝑥≤𝑡+𝜎

16
√
𝑀√
𝑛

log
(︀
2𝑛2
)︀
𝜌𝜎(𝑥)

𝜎2

2𝐾2+2𝜀

}︃
,

then ∀𝑡 ∈ R, 𝑥 ∈ [𝑡− 𝜎, 𝑡 + 𝜎], we have

|𝐹𝜎(𝑥) − 𝐹𝑛,𝜎(𝑥)| ≤ 𝐿𝑛(𝑡). (5.2)

According to Proposition 7 we have 0 < 𝜌𝜎(𝑡) ≤ 1√
2𝜋𝜎

for every 𝑡 ∈ R. Hence

leting

𝑎(𝑡) =

√︃
2𝜎2 log

1√
2𝜋𝜎𝜌𝜎(𝑡)

,

we will have

𝑎(𝑡) ∈ [0,∞), 𝜌𝜎(𝑡) =
1√
2𝜋𝜎

exp

(︂
−𝑎(𝑡)2

2𝜎2

)︂
, ∀𝑡 ∈ R.

Based on the value of 𝑎(𝑡) for 𝑡 ∈ R, we divide R into the following three non-
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intersected measurable sets:

𝐴 = {𝑡|𝑎(𝑡) ≤ 5𝜎} ,

𝐵 =

{︃
𝑡

⃒⃒⃒⃒
⃒5𝜎 < 𝑎(𝑡) ≤ ∆𝑛 , min

{︂√
2𝜎2 ·

√︂
log 𝑛− log

(︁
16
√

2𝜋 log(2𝑛2)
)︁
− 5𝜎,√︃(︂

1

2𝜎2
− 1

4𝐾2 + 4𝜀

)︂−1

log

(︂
𝜎
√
𝑛√

2𝜋𝜎𝑀 ′
log(2𝑛2)−1 exp

(︂
−25

2

)︂)︂
− 𝜎2 + 2𝐾2 + 2𝜀

2𝐾2 + 2𝜀− 𝜎2
· (5𝜎)

}︃
𝐶 = {𝑡|𝑎(𝑡) > ∆𝑛}.

Then R = 𝐴 ∪𝐵 ∪ 𝐶.

We let

𝜌𝜎(𝑡) = inf
𝑡−𝜎≤𝑥≤𝑡+𝜎

𝜌𝜎(𝑥), 𝜌𝜎(𝑡) = sup
𝑡−𝜎≤𝑥≤𝑡+𝜎

𝜌𝜎(𝑥).

According to Proposition 8, for every 𝑡− 𝜎 ≤ 𝑥 ≤ 𝑡 + 𝜎 we have

1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
≤ 𝜌𝜎(𝑥) ≤ 1√

2𝜋𝜎
exp

(︂
−max{0, 𝑎(𝑡) − 5𝜎}2

2𝜎2

)︂
.

Hence we have

𝜌𝜎(𝑡) ≥ 1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
, 𝜌𝜎(𝑡) ≤ 1√

2𝜋𝜎
exp

(︂
−max{0, 𝑎(𝑡) − 5𝜎}2

2𝜎2

)︂
.

Therefore, we can obtain an upper bound on 𝐿𝑛(𝑡):

𝐿𝑛(𝑡) = max

{︃
16

𝑛
log
(︀
2𝑛2
)︀
,
16
√
𝑀√
𝑛

log
(︀
2𝑛2
)︀
𝜌𝜎(𝑥)

𝜎2

2𝐾2+2𝜀

}︃

≤ max

{︂
16

𝑛
log
(︀
2𝑛2
)︀
,
16
√
𝑀√
𝑛

log
(︀
2𝑛2
)︀ (︁√

2𝜋𝜎
)︁− 𝜎2

2𝐾2+2𝜀
exp

(︂
−max{0, 𝑎(𝑡) − 5𝜎}2

4𝐾2 + 4𝜀

)︂}︂
.

If we let 𝑀 ′ = 16 + 16
√
𝑀 ·

(︀√
2𝜋𝜎

)︀ 𝜎2

2𝐾2+2𝜀 > 16, then we will have

𝐿𝑛(𝑡) ≤ max

{︂
16

𝑛
log
(︀
2𝑛2
)︀
,
𝑀 ′
√
𝑛

log
(︀
2𝑛2
)︀

exp

(︂
−max{0, 𝑎(𝑡) − 5𝜎}2

4𝐾2 + 4𝜀

)︂}︂
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For 𝑡 ∈ 𝐴, we have 𝑎(𝑡) ≤ 5𝜎. Since

exp

(︂
−max{0, 𝑎(𝑡) − 5𝜎}2

4𝐾2 + 4𝜀

)︂
≤ 1,

16

𝑛
≤ 16√

𝑛
≤ 𝑀 ′

√
𝑛
,

we have

𝐿𝑛(𝑡) ≤ max

{︂
16

𝑛
log(2𝑛2),

𝑀 ′
√
𝑛

log(2𝑛2)

}︂
≤ 𝑀 ′

√
𝑛

log
(︀
2𝑛2
)︀
.

Moreover, we have

𝜌𝜎(𝑡) ≥ 1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
≥ 1√

2𝜋𝜎
exp

(︂
−(10𝜎)2

2𝜎2

)︂
=

exp(−50)√
2𝜋𝜎

.

When 𝑛 is large enough such that

𝑀 ′
√
𝑛

log
(︀
2𝑛2
)︀
≤ exp(−50)√

2𝜋
= 𝜎 · exp(−50)√

2𝜋𝜎
≤ 𝜎 · 𝜌𝜎(𝑡),

∀𝑡 ∈ 𝐴 we have
sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝜎(𝑥) − 𝐹𝑛,𝜎(𝑥)|

inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝜎(𝑥)
≤ 𝐿𝑛(𝑡)

𝜌𝜎(𝑡)
≤ 𝜎.

We further notice that distribution P,P𝑛 are both with always-positive PDFs (Propo-

sition 7). Hence Proposition 12 indicates that

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒
≤

sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝜎(𝑥) − 𝐹𝑛,𝜎(𝑥)|
inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝜎(𝑥)

≤ 𝐿𝑛(𝑡)

𝜌𝜎(𝑡)
≤ 𝑀 ′

√
2𝜋𝜎√

𝑛 exp(−50)
log
(︀
2𝑛2
)︀
.

This indicates that ∫︁
𝐴

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

≤
∫︁
𝐴

𝜌𝜎(𝑡)𝑑𝑡 ·

(︃
16
√

2𝜋𝜎√
𝑛 exp(−50)

(1 + 𝐶) log
(︀
2𝑛2
)︀)︃2

= 𝒪̃
(︂

1

𝑛

)︂
.
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For 𝑡 ∈ 𝐵, we have 𝑎(𝑡) ≥ 5𝜎, which indicates that

𝐿𝑛(𝑡) ≤ max

{︂
16

𝑛
log
(︀
2𝑛2
)︀
,
𝑀 ′
√
𝑛

log
(︀
2𝑛2
)︀

exp

(︂
−(𝑎(𝑡) − 5𝜎)2

4𝐾2 + 4𝜀

)︂}︂
.

Noticing that

𝑎(𝑡) ≤ ∆𝑛 ≤

√︃(︂
1

2𝜎2
− 1

4𝐾2 + 4𝜀

)︂−1

log

(︂
𝜎
√
𝑛√

2𝜋𝜎𝑀 ′
log(2𝑛2)−1 exp

(︂
−25

2

)︂)︂
− 𝜎2 + 2𝐾2 + 2𝜀

2𝐾2 + 2𝜀− 𝜎2
· (5𝜎),

we obtain

exp

(︂
−(𝑎(𝑡) − 5𝜎)2

4𝐾2 + 4𝜀
+

(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
= exp

(︂
− 𝑎(𝑡)2

4𝐾2 + 4𝜀
+

5𝑎(𝑡)𝜎

2𝐾2 + 2𝜀
− 25𝜎2

4𝐾2 + 4𝜀
+

𝑎(𝑡)2

2𝜎2
+

5𝑎(𝑡)𝜎

𝜎2
+

25𝜎2

2𝜎2

)︂
≤ exp

(︂(︂
1

2𝜎2
− 1

4𝐾2 + 4𝜀

)︂
𝑎(𝑡)2 +

(︂
1

2𝐾2 + 2𝜀
+

1

𝜎2

)︂
· (5𝑎(𝑡)𝜎) +

25

2

)︂
≤ exp

(︂
25

2

)︂
· exp

(︃(︂
1

2𝜎2
− 1

4𝐾2 + 4𝜀

)︂(︂
𝑎(𝑡) +

𝜎2 + 2𝐾2 + 2𝜀

2𝐾2 + 2𝜀− 𝜎2
· (5𝜎)

)︂2
)︃

≤ 𝜎
√
𝑛√

2𝜋𝜎𝑀 ′
log(2𝑛2)−1.

Hence we have

𝑀 ′
√
𝑛
· exp

(︂
−(𝑎(𝑡) − 5𝜎)2

4𝐾2 + 4𝜀

)︂
log
(︀
2𝑛2
)︀
≤ 𝜎 · 1√

2𝜋𝜎
exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
.

Moreover, according to the definition of the set 𝐵, we also notice that

𝜎 · 1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
≥ 16

𝑛
log
(︀
2𝑛2
)︀
.
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Therefore, we obtain that

𝜎 · 1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
≥ max

{︂
16

𝑛
log
(︀
2𝑛2
)︀
,
𝑀 ′
√
𝑛

log
(︀
2𝑛2
)︀

exp

(︂
−(𝑎(𝑡) − 5𝜎)2

4𝐾2 + 4𝜀

)︂}︂
= 𝐿𝑛(𝑡)

Moreover, according to Proposition 8 we have

𝜌𝜎(𝑡) ≥ 1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
,

which indicates that

sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝜎(𝑥) − 𝐹𝑛,𝜎(𝑥)|
inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝜎(𝑥)

≤ 𝐿𝑛(𝑡)

𝜌𝜎(𝑡)
≤ 𝜎.

Therefore, according to Proposition 12, we have

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒
≤

sup𝑥∈[𝑡−𝜎,𝑡+𝜎] |𝐹𝜎(𝑥) − 𝐹𝑛,𝜎(𝑥)|
inf𝑥∈[𝑡−𝜎,𝑡+𝜎] 𝜌𝜎(𝑥)

≤ 𝐿(𝑡)

𝜌𝜎(𝑡)
.

According to our choice of 𝑎, we have for ∀𝑡 ∈ 𝐵,

𝜌𝜎(𝑡) ≥ 1√
2𝜋𝜎

exp

(︂
−(𝑎(𝑡) + 5𝜎)2

2𝜎2

)︂
= Ω̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2

)︂

and also

𝐿𝑛(𝑡) = 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2

)︂
.

We further notice that for any 𝜖 > 0,

𝜌𝜎(𝑡)

𝜌𝜎(𝑡)
≤

exp
(︁
−𝑎(𝑡)2

2𝜎2

)︁
exp

(︁
− (𝑎(𝑡)+5𝜎)2

2𝜎2

)︁ = exp

(︂
5𝑎(𝑡)

𝜎
+

25

2

)︂
= 𝒪̃ (𝑛𝜖) .
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Therefore, we have for ∀𝑡 ∈ 𝐵,

𝜌𝜎(𝑡)·
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
≤ 𝜌𝜎(𝑡)·𝜌𝜎(𝑡)

𝜌𝜎(𝑡)
·
(︂
𝐿(𝑡)

𝜌𝜎(𝑡)

)︂2

=
𝜌𝜎(𝑡)

𝜌𝜎(𝑡)
·𝐿(𝑡)2

𝜌𝜎(𝑡)
= 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
.

Additionally, we notice that for any 𝑡 ∈ 𝐵, we have 𝑎(𝑡) ≤ ∆, hence for any 𝜖 > 0,

𝜌𝜎(𝑡) = Ω

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
.

According to Proposition 9, we have

𝜌𝜎(𝑡) ≤
(︂
𝐶 +

1√
2𝜋𝜎

)︂
exp

(︂
− 𝑡2

8𝐾2

)︂
.

This together with the above lower bound on 𝜌𝜎(𝑡) provides a uniform upper bound

Λ for ∀𝑡 ∈ 𝐵:

|𝑡| ≤ Λ,

where we have

Λ = 𝒪

(︃
2
√

2𝐾

√︃
log

(︂(︂
𝐶 +

1√
2𝜋𝜎

)︂
𝑛

𝐾2+𝜀

2𝐾2+2𝜀−𝜎2−𝜖

)︂)︃
= 𝒪̃(1).

Hence, 𝐵 ⊂ [−Λ,Λ]. Therefore, with probability at least 1 − 1/𝑛, for any 𝜖 > 0, we

have ∫︁
𝐵

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

≤
∫︁ Δ1

−Δ1

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

≤ 2∆ · 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
= 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂

Finally we consider 𝑡 ∈ 𝐶, and hence 𝑎(𝑡) ≥ ∆, which indicates that for any 𝜖 > 0,

𝜌𝜎(𝑡) = 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
.
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We define

𝑅0 , 2
√

2𝐾

√︃
log

(︂
𝑛

(︂
𝐶 +

1√
2𝜋𝜎

)︂)︂
= 𝒪̃(1).

Then for 𝑋 ∼ P * 𝒩 (0, 𝜎2), we have

P(|𝑋| ≤ 𝑅0, 𝑋 ∈ 𝐶) ≤ 2𝑅0 · 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
= 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
.

Moreover, according to Proposition 9, we have for any 𝑙 ∈ Z+,

P(|𝑋| ≥ 𝑙𝑅0) ≤
(︂
𝐶 +

1√
2𝜋𝜎

)︂
exp

(︂
− 𝑙2𝑅2

0

8𝐾2

)︂
≤ 1

𝑛𝑙2
.

And according to Proposition 15, with probability at least 1 − 1
𝑛
, we have for any

𝑅 ≥ 0 and 𝑡 ∈ [−𝑅,𝑅],

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒
≤ 2𝑅 + 2𝜎 +

𝐾𝑅

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑅𝑛2

𝜎

)︂
.

Hence, we obtain the following upper bound on the integral over 𝐶: with probability

at least 1 − 1/𝑛, for any 𝜖 > 0 we have∫︁
𝐶

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

=

∫︁
𝐶∩{|𝑡|≤𝑅0}

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡 +

∞∑︁
𝑙=1

∫︁
𝐶∩{𝑙𝑅0≤|𝑡|≤(𝑙+1)𝑅0}

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

≤ P(|𝑋| ≤ 𝑅0, 𝑋 ∈ 𝐶) ·

(︃
2𝑅0 + 2𝜎 +

𝐾𝑅0

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑅0𝑛2

𝜎

)︂)︃2

+
∞∑︁
𝑙=2

P(|𝑋| ≥ 𝑙𝑅0, 𝑋 ∈ 𝐶) ·

(︃
2𝑙𝑅0 + 2𝜎 +

𝐾𝑙𝑅0

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑙𝑅0𝑛2

𝜎

)︂)︃2

= 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
· 𝒪̃(1)2 +

∞∑︁
𝑙=1

𝑛−𝑙2 · 𝑙2 · 𝒪̃(1)2

= 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
+ 𝒪̃

(︀
𝑛−1
)︀

= 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
.

Therefore, according to Proposition 11, combining these upper bounds on the integral
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over 𝐴,𝐵,𝐶 together, we obtain that with probability at least 1−2/𝑛, for any 𝜖 > 0,

𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))2 =

∫︁ ∞

−∞
𝜌𝜎(𝑡)

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡,

=

∫︁
𝐴

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡 +

∫︁
𝐵

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

+

∫︁
𝐶

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

= 𝒪̃
(︂

1

𝑛

)︂
+ 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
+ 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
= 𝒪̃

(︂
𝑛
− 𝐾2

2𝐾2+2𝜀−𝜎2+𝜖

)︂
.

We denote the event that the above inequality holds to be 𝑀 . Then we have P(𝑀) ≥

1 − 2
𝑛
. And hence we have P(𝑀 𝑐) ≤ 2

𝑛
.

Moreover, we also proved that

P(|𝑋| ≥ 𝑙𝑅0) ≤ 𝑛−𝑙2 , 𝑙 ∈ Z+.

Noticing that according to Proposition 15, with probability at least 1 − 𝛿, we have

for any 𝑅 ≥ 0 and 𝑡 ∈ [−𝑅,𝑅],

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒
≤ 2𝑅 + 2𝜎 +

𝐾𝑅

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑅𝑛2

𝜎

)︂
.

We denote the event that the above inequality holds to be 𝑁𝛿. Then we have P (𝑁𝛿) ≥
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1 − 𝛿. Hence assuming that event 𝑁𝛿 holds, we notice that Proposition 11 indicates

𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))2 =

∫︁ ∞

−∞
𝜌𝜎(𝑡)

⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡,

≤
∫︁
|𝑡|≤𝑅0

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡 +

∞∑︁
𝑙=1

∫︁
𝐶∩{𝑙𝑅0≤|𝑡|≤(𝑙+1)𝑅0}

𝜌𝜎(𝑡)
⃒⃒⃒
𝐹−1
𝑛,𝜎(𝐹𝜎(𝑡)) − 𝑡

⃒⃒⃒2
𝑑𝑡

≤

(︃
2𝑅0 + 2𝜎 +

𝐾𝑅0

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑅0𝑛

𝜎𝛿

)︂)︃2

+
∞∑︁
𝑙=2

𝑛−𝑙2 ·

(︃
2𝑙𝑅0 + 2𝜎 +

𝐾𝑙𝑅0

𝜎
+ 𝐾

√︀
2 log(2𝐶) + 𝐾

√︃
2 log

(︂
4𝐶𝑙𝑅0𝑛

𝜎𝛿

)︂)︃2

= 𝒪̃
(︂

log

(︂
1

𝛿

)︂)︂
.

Here we use 𝒪̃ to abbreviate the log-items of only 𝑛.

Therefore, after concluding all previous upper bounds, we obtain the upper bound

on the expectation of 𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))2: for any 𝜖 > 0,

E
[︀
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))2

]︀
≤ P(𝑀) · 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
+ E

[︀
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))21𝑀𝑐

]︀
≤ 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
+

∞∑︁
𝑗=1

E
[︁
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))21𝑀𝑐∩(𝑁1/𝑛𝑗+1∖𝑁1/𝑛𝑗)

]︁
+ E

[︁
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))21𝑀𝑐∩𝑁1/𝑛

]︁
≤ 𝒪̃

(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
+

∞∑︁
𝑗=1

P
(︀
𝑀 𝑐 ∩

(︀
𝑁1/𝑛𝑗+1∖𝑁1/𝑛𝑗

)︀)︀
· 𝒪̃
(︀
log
(︀
𝑛𝑗+1

)︀)︀
+ P

(︀
𝑀 𝑐 ∩𝑁1/𝑛

)︀
· 𝒪̃ (log (𝑛))

≤ 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
+

∞∑︁
𝑗=1

(︂
1

𝑛
∧ 1

𝑛𝑗

)︂
· 𝒪̃
(︀
log
(︀
𝑛𝑗+1

)︀)︀
+

(︂
1

𝑛
∧ 1

𝑛𝑗

)︂
· 𝒪̃ (log (𝑛))

= 𝒪̃
(︂
𝑛
− 𝐾2+𝜀

2𝐾2+2𝜀−𝜎2+𝜖

)︂
According to the arbitraity of positive constants 𝜀 and 𝜖, we can let them both goes
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to 0, and hence obtain that for any 𝜖 > 0, we have

E
[︀
𝑊2(P * 𝒩 (0, 𝜎2),P𝑛 * 𝒩 (0, 𝜎2))2

]︀
= 𝒪̃

(︂
𝑛
− 𝐾2

2𝐾2−𝜎2+𝜖

)︂

Therefore, the proof of the upper bound part of Theorem 2 is completed.
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Chapter 6

Proof of Theorem 3

First we start with the definition of Rényi divergence:

Definition 1 (Rényi Divergence and Rényi Mutual Information [12]). Assume ran-

dom variables (𝑋, 𝑌 ) have joint distribution 𝑃𝑋,𝑌 . For any 𝜆 > 1, the Rényi diver-

gence and Rényi Mutual Information of order 𝜆 are defined as

𝐷𝜆(𝑃‖𝑄) ,
1

𝜆− 1
logE𝑄

[︃(︂
𝑑𝑃

𝑑𝑄

)︂𝜆
]︃
,

𝐼𝜆(𝑋;𝑌 ) , 𝐷𝜆(𝑃𝑋,𝑌 ‖𝑃𝑋 ⊗ 𝑃𝑌 ),

where we use 𝑃𝑋 , 𝑃𝑌 to denote the marginal distribution with respect to 𝑋 and 𝑌 ,

and 𝑃𝑋 ⊗ 𝑃𝑌 denotes the joint distribution of (𝑋 ′, 𝑌 ′) where 𝑋 ′ ∼ 𝑃𝑋 , 𝑌
′ ∼ 𝑃𝑌 are

independent to each other.

Lemma 6. We suppose (𝑋, 𝑌 ) ∼ 𝑃𝑋,𝑌 , and its marginal distribution to be 𝑃𝑋 , 𝑃𝑌 ,

respectively. We let 𝑃𝑛 to be an empirical version of 𝑃𝑋 generated with 𝑛 samples.

Then for every 1 < 𝜆 ≤ 2, we have

E[𝐷𝐾𝐿(𝑃𝑌 |𝑋 ∘ 𝑃𝑛‖𝑃𝑌 )] ≤ 1

𝜆− 1
log(1 + exp{(𝜆− 1)(𝐼𝜆(𝑋;𝑌 ) − log 𝑛)}) . (6.1)

Proof. According to [14], for any distribution 𝑃,𝑄, the function 𝐷𝜆(𝑃‖𝑄) with re-

spect to 𝜆 ∈ (1, 2] is non-decreasing. Hence noticing from [14] that for any distribution
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𝑃,𝑄, lim𝜆→1𝐷𝜆(𝑃‖𝑄) = 𝐷𝐾𝐿(𝑃‖𝑄), we have

𝐷𝐾𝐿(𝑃𝑌 |𝑋 ∘ 𝑃𝑛‖𝑃𝑌 ) ≤ 𝐷𝜆(𝑃𝑌 |𝑋 ∘ 𝑃𝑛‖𝑃𝑌 ).

Therefore, it is sufficient to prove that for any 1 < 𝜆 ≤ 2,

E[𝐷𝜆(𝑃𝑌 |𝑋 ∘ 𝑃𝑛‖𝑃𝑌 )] ≤ 1

𝜆− 1
log(1 + exp{(𝜆− 1)(𝐼𝜆(𝑋;𝑌 ) − log 𝑛)}).

We suppose the 𝑛 samples obtained in 𝑃𝑛 to be 𝑋1, · · · , 𝑋𝑛, which satisfies that

(𝑋1, · · · , 𝑋𝑛) ⊥⊥ 𝑌 . According to the definition of Rényi divergence, Rényi mutual

information and also the Jensen’s inequality, we see that

E[𝐷𝜆(𝑃𝑌 |𝑋 ∘ 𝑃𝑛‖𝑃𝑌 )] =
1

𝜆− 1
E

⎡⎣logE

⎡⎣{︃𝑑(𝑃𝑌 |𝑋 ∘ 𝑃𝑛)(𝑌 )

𝑑𝑃𝑌 (𝑌 )

}︃𝜆
⎤⎦ ⃒⃒⃒⃒⃒𝑋1:𝑛

⎤⎦ (6.2)

≤ 1

𝜆− 1
logE

⎡⎣(︃𝑑(𝑃𝑌 |𝑋 ∘ 𝑃𝑛)(𝑌 )

𝑑𝑃𝑌 (𝑌 )

)︃𝜆
⎤⎦ .

Then we introduced the channel 𝑃𝑌 |𝑋1:𝑛
= 1

𝑛

∑︀𝑛
𝑖=1 𝑃𝑌 |𝑋=𝑋𝑖

and we let 𝑃𝑋1:𝑛,𝑌 =

𝑃𝑌 |𝑋1:𝑛
∘ 𝑃𝑋1:𝑛 , where 𝑃𝑋1:𝑛 = 𝑃⊗𝑛

𝑋 is the probability law of 𝑋1:𝑛. We notice that the

marginal distribution of 𝑃𝑋1:𝑛,𝑌 with respect to 𝑌 is exactly 𝑃𝑌 . If we let (𝑋1:𝑛, 𝑌 ) ∼

𝑃𝑋1:𝑛 ⊗ 𝑃𝑌 , then we obtain that

𝐼𝜆(𝑋1:𝑛;𝑌 ) =
1

𝜆− 1
logE

[︃(︂
𝑑𝑃𝑋1:𝑛,𝑌 (𝑋1:𝑛, 𝑌 )

𝑑 [𝑃𝑋1:𝑛 ⊗ 𝑃𝑌 (𝑋1:𝑛, 𝑌 )]

)︂𝜆
]︃

=
1

𝜆− 1
logE

[︃{︂
𝑑𝑃𝑌 |𝑋1:𝑛(𝑌 |𝑋1:𝑛)

𝑑𝑃𝑌 (𝑌 )

}︂𝜆
]︃

=
1

𝜆− 1
logE

⎡⎣E
⎡⎣{︃𝑑(𝑃𝑌 |𝑋 ∘ 𝑃𝑛)(𝑌 )

𝑑𝑃𝑌 (𝑌 )

}︃𝜆 ⃒⃒⃒⃒
⃒𝑋1:𝑛

⎤⎦⎤⎦
=

1

𝜆− 1
logE

⎡⎣(︃𝑑(𝑃𝑌 |𝑋 ∘ 𝑃𝑛)(𝑌 )

𝑑𝑃𝑌 (𝑌 )

)︃𝜆
⎤⎦ ≥ E[𝐷𝜆(𝑃𝑌 |𝑋 ∘ 𝑃𝑛‖𝑃𝑌 )].
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Hence we only need to analyze 𝐼𝜆(𝑋1:𝑛;𝑌 ). And we need to upper bound

E

[︃{︂
𝑑𝑃𝑌 |𝑋1:𝑛(𝑌 |𝑋1:𝑛)

𝑑𝑃𝑌 (𝑌 )

}︂𝜆
]︃

= E

⎡⎣{︃ 1

𝑛

𝑛∑︁
𝑖=1

𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )

}︃𝜆
⎤⎦ . (6.3)

Moreover, noticing that (𝑎 + 𝑏)𝜆−1 ≤ 𝑎𝜆−1 + 𝑏𝜆−1 holds for 𝑎, 𝑏 > 0 and 1 < 𝜆 ≤ 2,

we have that for any 𝑛 𝑖.𝑖.𝑑. non-negative random variables 𝐵𝑖 (1 ≤ 𝑖 ≤ 𝑛),

E

⎡⎣𝐵𝑖

(︃
𝐵𝑖 +

∑︁
𝑗 ̸=𝑖

𝐵𝑗

)︃𝜆−1
⎤⎦ ≤ E[𝐵𝑖 ·𝐵𝜆−1

𝑖 ] + E

⎡⎣𝐵𝑖 ·

(︃∑︁
𝑗 ̸=𝑖

𝐵𝑗

)︃𝜆−1
⎤⎦

= E[𝐵𝜆
1 ] + E[𝐵𝑖] · E

⎡⎣(︃∑︁
𝑗 ̸=𝑖

𝐵𝑗

)︃𝜆−1
⎤⎦

≤ E[𝐵𝜆
1 ] + E[𝐵1] ·

(︃∑︁
𝑗 ̸=𝑖

E[𝐵𝑗]

)︃𝜆−1

= E[𝐵𝜆
1 ] + E[𝐵1] · ((𝑛− 1)E[𝐵1])

𝜆−1 ,

where in the second inequality we use the Jensen’s inequality. Therefore, summing

up the above inequality for 1 ≤ 𝑖 ≤ 𝑛, we have

E

⎡⎣{︃ 𝑛∑︁
𝑖=1

𝐵𝑖

}︃𝜆
⎤⎦ ≤ 𝑛E[𝐵𝜆

1 ] + 𝑛 · (𝑛− 1)𝜆−1 (E[𝐵1])
𝜆 ≤ 𝑛E[𝐵𝜆

1 ] + 𝑛𝜆 (E[𝐵1])
𝜆 .

Next, since 𝑌 ⊥⊥ (𝑋1, · · · , 𝑋𝑛), for every fixed 𝑌 , random variables 𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )

are 𝑖.𝑖.𝑑. Hence choosing 𝐵𝑖 =
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )
, we obtain that

E

⎡⎣{︃ 1

𝑛

∑︁
𝑖

𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )

}︃𝜆 ⃒⃒⃒⃒
⃒𝑌
⎤⎦ ≤ 𝑛−𝜆 · E

⎡⎣{︃∑︁
𝑖

𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )

}︃𝜆 ⃒⃒⃒⃒
⃒𝑌
⎤⎦

≤ 𝑛−𝜆 ·

(︃
𝑛 · E

[︃{︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

}︂𝜆 ⃒⃒⃒⃒
𝑌

]︃
+ 𝑛𝜆 ·

(︂
E
[︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

⃒⃒⃒⃒
𝑌

]︂)︂𝜆
)︃

≤ 𝑛1−𝜆E

[︃{︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

}︂𝜆 ⃒⃒⃒⃒
𝑌

]︃
+

(︂
E
[︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

⃒⃒⃒⃒
𝑌

]︂)︂𝜆

.
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Using the fact that 𝑋 ⊥⊥ 𝑌 and hence E[𝑃𝑌 |𝑋(𝑌 |𝑋)|𝑌 ] =
∫︀
𝑋
𝑃𝑌 |𝑋(𝑌 |𝑋)𝑑𝑃𝑋(𝑋) =∫︀

𝑋
𝑑𝑃𝑋,𝑌 (𝑋, 𝑌 ) = 𝑃𝑌 (𝑌 ), we notice that for any given 𝑌 ,

E
[︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

⃒⃒⃒⃒
𝑌

]︂
=

𝑑E[𝑃𝑌 |𝑋(𝑌 |𝑋)]

𝑑𝑃𝑌 (𝑌 )

⃒⃒⃒⃒
𝑌

=
𝑑𝑃𝑌 (𝑌 )

𝑑𝑃𝑌 (𝑌 )

⃒⃒⃒⃒
𝑌

= 1.

Therefore, we can upper bound (6.3) as

E

⎡⎣{︃ 1

𝑛

𝑛∑︁
𝑖=1

𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )

}︃𝜆
⎤⎦ = E

⎡⎣E
⎡⎣{︃ 1

𝑛

𝑛∑︁
𝑖=1

𝑑𝑃𝑌 |𝑋(𝑌 |𝑋𝑖)

𝑑𝑃𝑌 (𝑌 )

}︃𝜆
⎤⎦ ⃒⃒⃒⃒⃒𝑌

⎤⎦
≤ 𝑛1−𝜆E

[︃
E

[︃{︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

}︂𝜆 ⃒⃒⃒⃒
𝑌

]︃ ⃒⃒⃒⃒
𝑌

]︃
+ E

[︃(︂
E
[︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

⃒⃒⃒⃒
𝑌

]︂)︂𝜆 ⃒⃒⃒⃒
𝑌

]︃

≤ 𝑛1−𝜆E

[︃{︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

}︂𝜆
]︃

+ 1

= 𝑛1−𝜆 · exp ((𝜆− 1)𝐼𝜆(𝑋;𝑌 )) + 1.

This implies that

𝐼𝜆(𝑋1:𝑛;𝑌 ) ≤ 1

𝜆− 1
log
(︀
1 + 𝑛1−𝜆 exp{(𝜆− 1)𝐼𝜆(𝑋;𝑌 )}

)︀
,

which together with (6.2) recovers (6.1).

Remark 8. Hayashi [9] upper bounds the LHS of (6.1) with

𝜆

𝜆− 1
log

(︂
1 + exp

{︂
𝜆− 1

𝜆
(𝐾𝜆(𝑋;𝑌 ) − log 𝑛)

}︂)︂
,

where 𝐾𝜆(𝑋;𝑌 ) = inf𝑄𝑌
𝐷𝜆(𝑃𝑋,𝑌 ‖𝑃𝑋𝑄𝑌 ) is the so-called Sibson-Csiszar informa-

tion, cf. [13]. This bound, however, does not have the right rate of convergence as

𝑛 → ∞, at least for 𝜆 = 2 as comparison with Prop. 5 in [7]. We note that [9, 8]

also contain bounds on E[TV(𝑃𝑌 |𝑋 ∘𝑃𝑛, 𝑃𝑌 )] which do not assume existence of 𝜆 > 1

moment of 𝑃𝑌 |𝑋
𝑃𝑌

and instead rely on the distribution of log
𝑑𝑃𝑌 |𝑋
𝑑𝑃𝑌

.

Lemma 7. Suppose P is a 𝑑-dimensional 𝐾-subgaussian distribution and random

variables 𝑋 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2𝐼𝑑) are independent to each other. We let 𝑌 = 𝑋 + 𝑍.

92



Then for any 𝜎 > 0 and 1 < 𝜆 < 2, there exists a positive constant 𝐶 only depending

on P and 𝐾, 𝜎 such that

𝐼𝜆(𝑋;𝑌 ) ≤ 1

𝜆− 1
log

(︂
𝐶

(2 − 𝜆)𝑑+1

)︂
.

Proof. We use 𝑃𝑋 , 𝑃𝑌 and 𝑃𝑋,𝑌 , 𝑃𝑌 |𝑋 to denote the marginal distributions with re-

spect to 𝑋, 𝑌 , the joint distribution of (𝑋, 𝑌 ) and conditional distribution of 𝑌 given

𝑋. According to the definition of Rényi mutual information, we have

𝐼𝜆(𝑋;𝑌 ) =
1

𝜆− 1
log

(︃
E𝑃𝑋⊗𝑃𝑌

[︃(︂
𝑑𝑃𝑋,𝑌

𝑑(𝑃𝑋 ⊗ 𝑃𝑌 )

)︂𝜆
]︃)︃

.

Denoting the PDFs of distributions 𝑃𝑌 , 𝑃𝑌 |𝑋 as 𝜌𝑌 (·), 𝜌𝑌 |𝑋(·), we have

𝜌𝑌 |𝑋(𝑦|𝑋) = 𝜙𝜎2𝐼𝑑(𝑦 −𝑋), 𝜌𝑌 (𝑦) = E[𝜙𝜎2𝐼𝑑(𝑦 − 𝑋̃)].

If we choose 𝑋̃ ∼ P, 𝑋̃ ⊥⊥ 𝑋, then we have

E𝑃𝑋⊗𝑃𝑌

[︃(︂
𝑑𝑃𝑋,𝑌

𝑑(𝑃𝑋 ⊗ 𝑃𝑌 )

)︂𝜆
]︃

=E

[︃(︂
𝑑𝑃𝑋,𝑌 (𝑋, 𝑌 )

𝑑𝑃𝑋 ⊗ 𝑃𝑌 (𝑋, 𝑌 )

)︂𝜆
]︃

=E

[︃
E

[︃(︂
𝑑𝑃𝑌 |𝑋(𝑌 |𝑋)

𝑑𝑃𝑌 (𝑌 )

)︂𝜆
⃒⃒⃒⃒
⃒𝑋
]︃]︃

=E

[︃
E

[︃(︂
𝜌𝑌 |𝑋(𝑌 |𝑋)

𝜌𝑌 (𝑌 )

)︂𝜆
⃒⃒⃒⃒
⃒𝑋
]︃]︃

=E

[︃∫︁
R𝑑

𝜌𝑌 (𝑦)

(︂
𝜌𝑌 |𝑋(𝑦|𝑋)

𝜌𝑌 (𝑦)

)︂𝜆

𝑑𝑦

]︃

=E

[︃∫︁
R𝑑

𝜙𝜎2𝐼𝑑(𝑦 −𝑋)𝜆

(E[𝜙𝜎2𝐼𝑑(𝑦 − 𝑋̃)])𝜆−1
𝑑𝑦

]︃
.

Moreover, Noticing that

𝜙𝜎2𝐼𝑑(𝑥) =
1

(
√

2𝜋𝜎)𝑑
exp

(︂
−‖𝑥‖22

2𝜎2

)︂
, ∀𝑥 ∈ R𝑑,
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we have

E

[︃∫︁
R𝑑

𝜙𝜎2𝐼𝑑(𝑦 −𝑋)𝜆

(E[𝜙𝜎2𝐼𝑑(𝑦 − 𝑋̃)])𝜆−1
𝑑𝑦

]︃
=

1

(
√

2𝜋𝜎)𝑑
· E
[︂∫︁

R𝑑

exp (−𝜆‖𝑦 −𝑋‖22/2)

(E exp(−‖𝑦 − 𝑋̃‖22/2))𝜆−1
𝑑𝑦

]︂

Therefore, we only need to prove that there exist positive constant 𝐶 = 𝐶(P, 𝐾, 𝜎)

such that

E
[︂∫︁

R𝑑

exp (−𝜆‖𝑦 −𝑋‖22/2)

(E exp(−‖𝑦 − 𝑋̃‖22/2))𝜆−1
𝑑𝑦

]︂
≤ 𝐶

(2 − 𝜆)𝑑+1
· (
√

2𝜋𝜎)𝑑 (6.4)

WLOG, we assume 𝜎 = 1 (otherwise we substitute 𝐾 with 𝐾/𝜎 and let 𝜎 = 1).

We let 𝐴𝑘 = {𝑋|‖𝑋‖2 ∈ [𝑘, 𝑘 + 1)} ⊂ R𝑑. Then we have

R𝑑 =
∞⋃︁
𝑘=0

𝐴𝑘,

Let 𝑚𝑘 to be smallest number of 𝑙2-balls with diameter 2 in R𝑑 which can cover the

set 𝐴𝑘. Then we have

𝑚𝑘 = 𝐶1(𝑘 + 1)𝑑

for some positive constant 𝐶1 (note that here we only need to prove that the inte-

gral is finite, hence we ignore the constants). We use 𝐴𝑘,1, · · · , 𝐴𝑘,𝑚𝑘
to denote the

intersection between each of these 𝑚𝑘 balls with 𝐴𝑘. Then we have

𝐴𝑘 =

𝑚𝑘⋃︁
𝑖=1

𝐴𝑘,𝑖, and diam(𝐴𝑘,𝑖) ≤ 2, ∀1 ≤ 𝑖 ≤ 𝑚𝑘.

Assuming 𝑋 ∼ P, we denote

𝑝𝑘,𝑖 = P(𝑋 ∈ 𝐴𝑘,𝑖), 𝑝𝑘 = P(𝑋 ∈ 𝐴𝑘).
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Since for any 𝑋, 𝑋̃ ∈ 𝐴𝑘,𝑖 we have ‖𝑋 − 𝑋̃‖2 ≤ 2, we obtain that ∀𝑘, 𝑖 and 𝑋 ∈ 𝐴𝑘,𝑖,

E exp

(︃
−‖𝑦 − 𝑋̃‖2

2

)︃
≥ E

[︃
1𝑋̃∈𝐴𝑘,𝑖

exp

(︃
−‖𝑦 − 𝑋̃‖2

2

)︃]︃

≥ 𝑝𝑘,𝑖 min
𝑋̃∈𝐴𝑘,𝑖

exp

(︃
−‖𝑦 − 𝑋̃‖2

2

)︃
= 𝑝𝑘,𝑖 min

𝑋̃∈𝐴𝑘,𝑖

exp

(︃
−‖𝑦 −𝑋 + (𝑋 − 𝑋̃)‖2

2

)︃

≥ 𝑝𝑘,𝑖 exp

(︂
−(‖𝑦 −𝑋‖ + 2)2

2

)︂
.

Noticing the fact that 𝜆 < 2, we have

E
[︂
1𝑋∈𝐴𝑘,𝑖

∫︁
R𝑑

exp(−𝜆‖𝑦 −𝑋‖2/2)

(E exp(−‖𝑦 − 𝑋̃‖2/2))𝜆−1
𝑑𝑦

]︂
≤ E

[︃
1𝑋∈𝐴𝑘,𝑖

∫︁
R𝑑

exp(−𝜆‖𝑦 −𝑋‖2/2)

𝑝𝜆−1
𝑘,𝑖 exp (−(‖𝑦 −𝑋‖ + 2)2/2)𝜆−1

𝑑𝑦

]︃

≤ E

[︃
1𝑋∈𝐴𝑘,𝑖

𝑝𝜆−1
𝑘,𝑖

∫︁
R𝑑

exp

(︂
−𝜆‖𝑦 −𝑋‖2

2
+

(𝜆− 1)(‖𝑦 −𝑋‖ + 2)2

2

)︂
𝑑𝑦

]︃

= E

[︃
1𝑋∈𝐴𝑘,𝑖

𝑝𝜆−1
𝑘,𝑖

∫︁
R𝑑

exp

(︂
−1

2
‖𝑢‖2 + 2(𝜆− 1)‖𝑢‖ + 2(𝜆− 1)

)︂
𝑑𝑢

]︃

≤ E

[︃
1𝑋∈𝐴𝑘,𝑖

𝑝𝜆−1
𝑘,𝑖

∫︁
R𝑑

exp

(︂
−1

2
‖𝑢‖2 + 2‖𝑢‖ + 2

)︂
𝑑𝑢

]︃

= 𝑝2−𝜆
𝑘,𝑖 ·

∫︁
R𝑑

exp

(︂
−1

2
‖𝑢‖2 + 2‖𝑢‖ + 2

)︂
𝑑𝑢.

Let constant 𝐶2 =
∫︀
R𝑑 exp

(︀
−1

2
‖𝑢‖2 + 2‖𝑢‖ + 2

)︀
𝑑𝑢 < ∞, and noticing that 𝐴𝑘,𝑖 ⊂ 𝐴𝑘

for each 𝑖, we obtain that

E
[︂
1𝑋∈𝐴𝑘,𝑖

∫︁
R𝑑

exp(−𝜆‖𝑦 −𝑋‖2/2)

(E exp(−‖𝑦 − 𝑋̃‖2/2))𝜆−1
𝑑𝑦

]︂
≤ 𝐶2𝑝

2−𝜆
𝑘,𝑖 ≤ 𝐶2𝑝

2−𝜆
𝑘 .

Hence,

E
[︂
1𝑋∈𝐴𝑘

∫︁
R𝑑

exp(−𝜆‖𝑦 −𝑋‖2/2)

(E exp(−‖𝑦 − 𝑋̃‖2/2))𝜆−1
𝑑𝑦 ≤ 𝐶2𝑚𝑘𝑝

2−𝜆
𝑘

]︂
≤ 𝐶1𝐶2(𝑘 + 1)𝑑𝑝2−𝜆

𝑘 .
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Since P is a 𝐾-subgaussian random variable, we have

𝑝𝑘 = P(‖𝑋‖2 ∈ [𝑘, 𝑘 + 1)) ≤ P(‖𝑋‖2 ≥ 𝑘) ≤ 𝐶0 exp

(︂
− 𝑘2

2𝐾2

)︂
.

Therefore, we obtain that

E
[︂
1𝑋∈𝐴𝑘

∫︁
R𝑑

exp(−𝜆‖𝑦 −𝑋‖2/2)

(E exp(−‖𝑦 − 𝑋̃‖2/2))𝜆−1
𝑑𝑦

]︂
≤ 𝐶0𝐶1𝐶2(𝑘 + 1)𝑑 exp

(︂
−(2 − 𝜆)𝑘2

2𝐾2

)︂
,

and hence

E
[︂∫︁

R𝑑

exp(−𝜆‖𝑦 −𝑋‖2/2)

(E exp(−‖𝑦 − 𝑋̃‖2/2))𝜆−1
𝑑𝑦

]︂
≤

∞∑︁
𝑘=0

𝐶0𝐶1𝐶2(𝑘 + 1)𝑑 exp

(︂
−(2 − 𝜆)𝑘2

2𝐾2

)︂
≤

∞∑︁
𝑘=0

𝐶0𝐶1𝐶2(𝑘 + 1)𝑑 exp

(︂
−(2 − 𝜆)𝑘

2𝐾2

)︂

≤ 𝐶0𝐶1𝐶2𝑑! ·
(︂

1 − exp

(︂
−2 − 𝜆

2𝐾2

)︂)︂−𝑑−1

.

Here in the second inequality we use the fact that
∑︀∞

𝑘=0(𝑘+ 1)𝑑𝑐−𝑘 ≤ 𝑑!𝑐−𝑘−1 for any

0 < 𝑐 < 1. Next noticing that 1 − exp(−𝑥) ≤ 1 − (1 − 𝑥) = 𝑥 holds for all 𝑥 ∈ R, we

obtain that

E
[︂∫︁

R𝑑

exp (−𝜆‖𝑦 −𝑋‖2/2)

(E exp(−‖𝑦 − 𝑋̃‖2/2))𝜆−1
𝑑𝑦

]︂
≤ 𝐶0𝐶1𝐶2𝑑!

(︂
2𝐾2

2 − 𝜆

)︂𝑑+1

≤ 𝐶

(2 − 𝜆)𝑑+1
·(
√

2𝜋𝜎)𝑑

with 𝐶 = 𝐶0𝐶1𝐶2𝑑!(2𝐾2)𝑑+1/(
√

2𝜋𝜎)𝑑. Hence (6.4) is verified.

Equipped with the above lemmas, we are ready to prove Theorem 3.

Proof of Theorem 3. We consider 𝑋 ∼ P, 𝑍 ∼ 𝒩 (0, 𝜎2𝐼𝑑), 𝑋 ⊥⊥ 𝑍 and 𝑌 = 𝑋 + 𝑍.

Then we have 𝑃𝑌 |𝑋 ∼ 𝒩 (𝑋, 𝜎2𝐼𝑑), which indicates that 𝑃𝑌 |𝑋 ∘ P𝑛 ∼ P𝑛 *𝒩 (0, 𝜎2𝐼𝑑).
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Therefore, adopting Lemma 6 and Lemma 7, we obtain that for any 1 < 𝜆 < 2,

E[𝐷𝐾𝐿(P𝑛 * 𝒩 (0, 𝜎2)‖P * 𝒩 (0, 𝜎2))]

≤ 1

𝜆− 1
log(1 + exp((𝜆− 1)(𝐼𝜆(𝑋;𝑌 ) − log 𝑛)))

≤ 1

𝜆− 1
· exp((𝜆− 1)(𝐼𝜆(𝑋;𝑌 ) − log 𝑛))

≤ 𝐶

(𝜆− 1)𝑛𝜆−1(2 − 𝜆)𝑑+1
.

Choosing 𝜆 = 2 − 1
log𝑛

, and noticing that

𝑛𝜆−1 = 𝑛− 1
log𝑛

+1 = 𝑥 · exp

(︂
− log 𝑛 · 1

log 𝑛

)︂
=

𝑛

𝑒
,

we have

E[𝐷𝐾𝐿(P𝑛 * 𝒩 (0, 𝜎2)‖P * 𝒩 (0, 𝜎2))] ≤ 𝐶𝑒(log 𝑛)𝑑+1

(1 − 1/ log 𝑛)𝑛
= 𝒪

(︂
(log 𝑛)𝑑+1

𝑛

)︂
.
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Chapter 7

Conclusion

As the convergence from the empirical measure P̂𝑛 to the population measure P under

Wasserstein distance always suffers from the curse of dimensionality. People seek to

resolve this problem using the convergence from the smoothed empirical measure

P̂𝑛 * 𝒩 (0, 𝜎2𝐼𝑑) to the smoothed population measure P𝑛 * 𝒩 (0, 𝜎2𝐼𝑑). However, the

exact convergence rate of the smoothed empirical measure is not perfectly understood

till this paper.

Suppose P is a 𝐾-subGaussian distribution, we prove a dichotomy of the conver-

gence rate under W2 distance squared when 𝐾 < 𝜎 and when 𝐾 > 𝜎, i.e. when

𝐾 < 𝜎 the convergence rate is at 𝒪(1/𝑛) and when 𝐾 > 𝜎 there exists a case such

that the convergence rate is of 𝜔(1/𝑛). Moreover, for 1D cases, we provide detailed

analysis on the convergence rate when 𝐾 > 𝜎, which is always the case when the

convolution with Gaussian been viewed as adding a noise of small scale. Specifically,

we prove that the convergence rate changes gradually from 1/
√
𝑛 to 1/𝑛 as 𝜎/𝐾 goes

from zero to one.

Beyond W2 distance, we also proved that the convergence rate under KL diver-

gence is always 𝒪(1/𝑛), as long as 𝜎 > 0. This indicates that the convergence rate

of 𝐾𝐿 divergence is faster than the convergence rate of W2 distance when 𝜎 < 𝐾,

indicating a failure of T2 inequality for P * 𝒩 (0, 𝜎2) when 𝐾 > 𝜎.
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Appendix A

Proof of Subgaussianity in Section 3

Proposition 16. Given positive constant 𝑐 > 2, 𝑐1 > 0, we consider distribution

P =
∑︀∞

𝑘=0 𝑝𝑘𝛿𝑟𝑘 , with 𝑟0 = 0, 𝑟1 = 1, 𝑟𝑖+1 = 𝑐𝑟𝑖, ∀𝑖 ≥ 1, and also

𝑝𝑘 = 𝑐1 exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
, 𝑘 ≥ 1,

𝑝𝑘 = 1 −
∞∑︁
𝑘=1

𝑝𝑘, 𝑘 = 0.

Then there exists some 𝑐1 > 0 such that for any constant 𝑐 > 2, we have 𝑐1 ·∑︀∞
𝑘=1 exp

(︁
− 𝑟2𝑘

2𝐾2

)︁
< 1, and also distribution P is a 𝐾-SubGaussian distribution,

i.e. for 𝑆, 𝑆 ∼ P, 𝑆 ⊥⊥ 𝑆,

E
[︁
exp

(︁
𝛼
(︁
𝑆 − E[𝑆]

)︁)︁]︁
≤ exp

(︂
𝐾2𝛼2

2

)︂
, ∀𝛼 ∈ R.

Proof. We let

𝑆1 = E[𝑆] =
∞∑︁
𝑘=0

𝑘𝑝𝑘 ≥ 0.

(Here 𝑆1 is only a real number, not a random variable.) Then we have

∞∑︁
𝑘=1

𝑝𝑘 ≤ 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 𝑘

2𝐾2

)︂
≤ 𝑐1

1 − exp
(︀
− 1

2𝐾2

)︀
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and also

𝑆1 = 𝑐1

∞∑︁
𝑘=1

𝑘 exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
≤ 𝑐1

∞∑︁
𝑘=1

𝑘 exp

(︂
− 𝑘

2𝐾2

)︂
= 𝑐1 ·

exp
(︀
− 1

2𝐾2

)︀(︀
1 − exp

(︀
− 1

2𝐾2

)︀)︀2
In order to prove the subgaussian property, we define

𝑓(𝛼) , exp

(︂
−𝐾2𝛼2

2

)︂
· E [exp(𝛼(𝑆 − 𝑆1))]

= exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
·

(︃
𝑝0 +

∞∑︁
𝑘=1

𝑝𝑘 exp(𝛼𝑟𝑘)

)︃

= exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
·

(︃
𝑝0 + 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 𝑟2𝑘

2𝐾2
+ 𝛼𝑟𝑘

)︂)︃

= exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
·

(︃
𝑝0 + 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2)︂
exp

(︂
𝐾2𝛼2

2

)︂)︃

= 𝑝0 exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
+ 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2 − 𝛼𝑆1

)︂
.

To prove that 𝑓(𝛼) ≤ 1 for every 𝛼 ∈ R, we consider cases where 𝛼𝐾2 ≥ 1
4

and

𝛼𝐾2 ≤ −2𝑆1 and −1 ≤ 𝛼𝐾2 < 1
4

respectively (if we can choose 𝑐1 such that 2𝑆1 ≤ 1

holds for every 𝑐, then these three cases cover all the situations).

1. When 𝛼𝐾2 ≤ −2𝑆1, we have

𝑓(𝛼) = 𝑝0 exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
+ 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2 − 𝛼𝑆1

)︂
≤ 𝑝0 exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
+ 𝑐1

∞∑︁
𝑘=1

exp

(︂
−𝑟2𝑘 + 𝛼2𝐾4

2𝐾2
− 𝛼𝑆1

)︂

=

(︃
𝑝0 +

∞∑︁
𝑘=1

𝑝𝑘

)︃
· exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
≤ exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
≤ 1.
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2. When 𝛼𝐾2 ≥ 1
4
, we have

𝑝0 exp

(︂
−𝐾2𝛼2

2
− 𝛼𝑆1

)︂
≤ 𝑝0 exp

(︂
− 1

8𝐾2

)︂
≤ exp

(︂
− 1

8𝐾2

)︂

Moreover, we suppose 𝑘0 to be the smallest 𝑘 such that 𝑟𝑘−𝛼𝐾2 to be positive.

Since 𝑟𝑘+1 − 𝑟𝑘 ≥ 1 for every 𝑘, we have for 𝑘 ≥ 𝑘0, 𝑟𝑘 − 𝛼𝐾2 ≥ 𝑘 − 𝑘0 + 𝑟𝑘0 −

𝛼𝐾2 ≥ 𝑘−𝑘0, and for 𝑘 < 𝑘0, 𝑟𝑘−𝛼𝐾 ≤ 𝑟𝑘0−1−𝛼𝐾 + (𝑘0−1−𝑘) ≤ 𝑘0−1−𝑘

since 𝑟𝑘0−1 ≤ 0. Therefore, we have

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2 − 𝛼𝑆1

)︂
≤

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2

(︀
𝑟𝑘 − 𝛼𝐾2

)︀2)︂

=

𝑘0−1∑︁
𝑘=1

exp

(︂
−(𝑟𝑘 − 𝛼𝐾2)2

2𝐾2

)︂
+

∞∑︁
𝑘=𝑘0

exp

(︂
−(𝑟𝑘 − 𝛼𝐾2)2

2𝐾2

)︂

≤
𝑘0−1∑︁
𝑘=1

exp

(︂
−𝑘0 − 1 − 𝑘

2𝐾2

)︂
+

∞∑︁
𝑘=𝑘0

exp

(︂
−𝑘 − 𝑘0

2𝐾2

)︂

≤
∞∑︁
𝑘=0

exp

(︂
− 1

2𝐾2

)︂𝑘

+
∞∑︁
𝑘=0

exp

(︂
− 1

2𝐾2

)︂𝑘

=
2

1 − exp
(︀
− 1

2𝐾2

)︀ .
Hence if

𝑐1 ≤
1

2

(︂
1 − exp

(︂
− 1

8𝐾2

)︂)︂(︂
1 − exp

(︂
− 1

2𝐾2

)︂)︂
,

we would have

𝑝0 exp

(︂
−𝐾2𝛼2

2

)︂
+ 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 1

2𝐾2
(𝑟𝑘 − 𝛼𝐾)2

)︂
≤ exp

(︂
− 1

8𝐾2

)︂
+ 𝑐1 ·

2

1 − exp
(︀
− 1

2𝐾2

)︀ ≤ 1.
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3. When −1 ≤ 𝛼𝐾2 < 1
4
, we calculate that

ℎ(𝛼) , exp

(︂
𝐾2𝛼2

2
+ 𝛼𝑆1

)︂
· 𝑓 ′(𝛼)

= −𝑝0(𝛼𝐾
2 + 𝑆1) + 𝑐1

∞∑︁
𝑘=1

(︀
𝑟𝑘 − 𝛼𝐾2 − 𝑆1

)︀
exp

(︂
− 𝑟2𝑘

2𝐾2
+ 𝛼𝑟𝑘

)︂

and

ℎ′(𝛼) = −𝑝0𝐾
2 + 𝑐1

∞∑︁
𝑘=1

(︀
𝑟2𝑘 − 𝛼𝐾2𝑟𝑘 − 𝑆1𝑟𝑘 −𝐾2

)︀
exp

(︂
− 𝑟2𝑘

2𝐾2
+ 𝛼𝑟𝑘

)︂
≤ −𝑝0𝐾

2 + 𝑐1

∞∑︁
𝑘=1

(︀
𝑟2𝑘 − 𝛼𝐾2𝑟𝑘

)︀
exp

(︂
− 𝑟2𝑘

2𝐾2
+ 𝛼𝑟𝑘

)︂
≤ −𝑝0𝐾

2 + 𝑐1

∞∑︁
𝑘=1

(︀
𝑟2𝑘 − 𝛼𝐾2𝑟𝑘

)︀
exp

(︂
− 𝑟2𝑘

2𝐾2
+

𝑟𝑘
4𝐾2

)︂
≤ −𝑝0𝐾

2 + 2𝑐1

∞∑︁
𝑘=1

𝑟2𝑘 exp

(︂
− 𝑟2𝑘

4𝐾2

)︂
,

where we use the fact that 𝑟𝑘 ≥ 1 for any 𝑘 ≥ 1. We then notice that function

𝑔(𝑥) = 𝑥2 exp
(︁
− 𝑥2

4𝐾2

)︁
is monotonically decreasing when 𝑥 ≥ 2𝐾. Hence for

𝑘 ≥ 2𝐾 + 1 we have 𝑟𝑘 ≥ 2𝐾 + 1 and

∞∑︁
𝑘≥2𝐾+1

𝑟2𝑘 exp

(︂
− 𝑟2𝑘

4𝐾2

)︂
≤
∫︁ ∞

2𝐾

𝑥2 exp

(︂
− 𝑥2

4𝐾2

)︂
𝑑𝑥 ≤ 3𝐾3.

For those 𝑘 < 2𝐾 + 1, there are at most 2𝐾 + 1 number of such 𝐾, and for

each of such 𝑘 we have

𝑟2𝑘 exp

(︂
− 𝑟2𝑘

4𝐾2

)︂
= 𝐾2 ·

(︁𝑟𝑘
𝐾

)︁2
exp

(︂
−1

4

(︁𝑟𝑘
𝐾

)︁2)︂
≤ 2𝐾2.

Therefore, we have

∞∑︁
𝑘=1

𝑟2𝑘 exp

(︂
− 𝑟2𝑘

4𝐾2

)︂
≤ 3𝐾3 + (2𝐾 + 1)𝐾2 ≤ 6𝐾3.
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Hence when 𝑐1 < 1
24

and 𝑝0 ≥ 1
2
, we have ℎ′(𝛼) ≤ 0 for every −1 ≤ 𝛼𝐾2 ≤ 1

4
.

Moreover, we can calculate that

ℎ(0) = 𝑝0𝑆1+𝑐1

∞∑︁
𝑘=1

(𝑟𝑘 − 𝑆1) exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
= 𝑝0𝑆1+

∞∑︁
𝑘=1

𝑝𝑘(𝑟𝑘−𝑆1) = E[𝑆]−𝑆1 = 0.

This indicates that for −1/𝐾2 ≤ 𝛼 ≤ 0, we have ℎ(𝛼) ≥ 0 hence 𝑓 ′(𝛼) ≥ 0,

and for 0 ≤ 𝛼 ≤ 1/(4𝐾2), we have ℎ(𝛼) ≤ 0 hence 𝑓 ′(𝛼) ≤ 0. This leads to

𝑓(𝛼) ≤ 𝑓(0) = 𝑝0 + 𝑐1

∞∑︁
𝑘=1

exp

(︂
− 𝑟2𝑘

2𝐾2

)︂
=

∞∑︁
𝑘=0

𝑝𝑘 = 1

holds for every −1/𝐾2 ≤ 𝛼 ≤ 1/(4𝐾2).

Above all, if we choose 𝑐1 such that the following items hold, then we will have

𝑓(𝛼) ≤ 1 for all 𝛼 ∈ R:

1. 2𝑆1 ≤ 1, which can be obtained from 𝑐1 ≤
(1−exp(− 1

2𝐾2 ))
2

2 exp(− 1
2𝐾2 )

;

2. 𝑐1 ≤ 1
24

;

3. 𝑐1 ≤ 1
2

(︀
1 − exp

(︀
− 1

8𝐾2

)︀)︀ (︀
1 − exp

(︀
− 1

2𝐾2

)︀)︀
;

4. 1 − 𝑝0 =
∑︀∞

𝑘=1 𝑝𝑘 ≤
1
2
, which can be obtained from 𝑐1 ≤

1−exp(− 1
2𝐾2 )

2
.

Hence if we choose

𝑐1 = min

{︃
1

24
,

(︀
1 − exp

(︀
− 1

2𝐾2

)︀)︀2
2 exp

(︀
− 1

2𝐾2

)︀ ,

1

2

(︂
1 − exp

(︂
− 1

8𝐾2

)︂)︂(︂
1 − exp

(︂
− 1

2𝐾2

)︂)︂
,
1 − exp

(︀
− 1

2𝐾2

)︀
2

}︃
,

and 𝑝𝑘 in (3.1), we would have 𝑓(𝛼) ≤ 1 for all 𝛼 ∈ R. Therefore, we have

E [exp(𝛼(𝑆 − 𝑆1))] ≤ exp

(︂
𝐾2𝛼2

2

)︂
, ∀𝛼 ∈ R,

which indicates that distribution 𝑃 is a 𝐾-subgaussian.
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Appendix B

LSI and 𝑇2 constants for

Bernoulli-Gaussian mixtures

B.0.1 Proof of the Non-Existence of Uniform Bound of LSI

Constants for Bernoulli Distributions in 4.1

In this subsection, we will prove that for the Bernoulli distribution class in Section 4.1,

there constants in the corresponding log-Sobolev inequalities do not have a uniform

bound.

Theorem 4. Suppose 𝜎 is a given constant which is smaller than 𝐾. Consider the

following Bernoulli distributions:

Pℎ = (1 − 𝑝ℎ)𝛿0 + 𝑝ℎ𝛿ℎ, 𝑝ℎ = exp

(︂
− ℎ2

2𝐾2

)︂
.

We use 𝐶ℎ to denote the constant of LSI of distribution 𝜇ℎ = Pℎ * 𝒩 (0, 𝜎2): 𝐶ℎ is

the smallest constant such that for any smoothed, compact supported function 𝑓 such

that
∫︀
R 𝑓

2𝑑𝜇ℎ = 1, we have

∫︁
R
𝑓 2 log 𝑓 2𝑑𝜇ℎ ≤ 𝐶ℎ

∫︁
R
|𝑓 ′|2𝑑𝜇.
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Then we have

sup
ℎ∈R+

𝐶ℎ = ∞.

Proof of Theorem 4. We choose 𝑥1 < −1 < 0 < 𝑥2 < ℎ − 1, where 𝑥1 and 𝑥2 are

determined later, and we let

𝑓ℎ(𝑥) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 𝑥 ≤ 𝑥1,

𝑡(𝑥− 𝑥1) 𝑥1 ≤ 𝑥 ≤ 𝑥1 + 1,

𝑡 𝑥1 + 1 ≤ 𝑥 ≤ 𝑥2,

−𝑡(𝑥− 𝑥2 − 1) 𝑥 ≥ 𝑥2,

where 𝑡 is the constant chosen such that
∫︀
R 𝑓

2
ℎ𝑑𝜇ℎ = 1. Then 𝑓ℎ is a continuous

function on R, and |𝑓 ′
ℎ(𝑥)| ≤ 𝑡 for any 𝑥 ∈ R. (Notice here 𝑓ℎ is not a smooth

function, but it has only finite points which are not smoothed. Hence after some

simple smoothing procedure near these points, e.g. convolved with some mollifier,

we can construct a sequence of functions converging to 𝑓ℎ such that if the LSI works

for functions in this sequence, the LSI also works for 𝑓ℎ.) Next, we will calculate the

lower bound of 𝐶ℎ such that the LSI works for function 𝑓ℎ. We denote

𝑞ℎ,1 = 𝜇ℎ((−∞, 𝑥1]), 𝑞ℎ,2 = 𝜇ℎ((𝑥1, 𝑥1 + 1]), 𝑞ℎ,3 = 𝜇ℎ((𝑥1 + 1, 𝑥2]),

𝑞ℎ,4 = 𝜇ℎ((𝑥2, 𝑥2 + 1]), 𝑞ℎ,5 = 𝜇ℎ((𝑥2 + 1,∞)).

Then we have

𝑞ℎ,1 + 𝑞ℎ,2 + 𝑞ℎ,3 + 𝑞ℎ,4 + 𝑞ℎ,5 = 1.

According to the definition of 𝑓 , we have

1 =

∫︁
R
𝑓 2
ℎ𝑑𝜇ℎ ≤ (𝑞ℎ,2 + 𝑞ℎ,3 + 𝑞ℎ,4)𝑡

2,

which indicates that 𝑡2 ≥ 1
𝑞ℎ,2+𝑞ℎ,3+𝑞ℎ,4

≥ 1. Since for any 𝑎 ≥ 0, we have 𝑎 log 𝑎 ≥ −1,

108



we also have

∫︁
R
𝑓 2
ℎ log 𝑓 2

ℎ𝑑𝜇ℎ ≥ 𝑞ℎ,3𝑡
2 log 𝑡2 − (𝑞ℎ,2 + 𝑞ℎ,4) ≥ 𝑓 2

ℎ𝑑𝜇ℎ ≥ 𝑞ℎ,3𝑡
2 log 𝑡2 − (𝑞ℎ,2 + 𝑞ℎ,4)𝑡

2.

Moreover, we also notice that |𝑓 ′
ℎ(𝑥)|2 = 𝑡2 if 𝑥 ∈ (𝑥1, 𝑥1 + 1) ∪ (𝑥2, 𝑥2 + 1), while

|𝑓 ′
ℎ(𝑥)|2 = 0 for other 𝑥. Therefore, we obtain that

∫︁
R
|𝑓 ′

ℎ|2𝑑𝜇ℎ = (𝑞ℎ,2 + 𝑞ℎ,4)𝑡
2.

Hence if we require the LSI with constant 𝐶ℎ holds for 𝑓ℎ, we will have

𝑞ℎ,3𝑡
2 log 𝑡2 − (𝑞ℎ,2 + 𝑞ℎ,4)𝑡

2 ≤ 𝐶ℎ(𝑞ℎ,2 + 𝑞ℎ,4)𝑡
2,

which indicates that

𝐶ℎ ≥ 𝑞ℎ,3 log 𝑡2

𝑞ℎ,2 + 𝑞ℎ,4
− 1 ≥ −𝑞ℎ,3 log(𝑞ℎ,2 + 𝑞ℎ,3 + 𝑞ℎ,4)

𝑞ℎ,2 + 𝑞ℎ,4
− 1

=
−𝑞ℎ,3 log(1 − 𝑞ℎ,1 − 𝑞ℎ,5)

𝑞ℎ,2 + 𝑞ℎ,4
− 1 ≥ 𝑞ℎ,3(𝑞ℎ,1 + 𝑞ℎ,5)

𝑞ℎ,2 + 𝑞ℎ,4
− 1 ≥ 𝑞ℎ,3𝑞ℎ,5

𝑞ℎ,2 + 𝑞ℎ,4
− 1.

We use 𝜙𝜎(𝑥) to denote the PDF of 𝒩 (0, 𝜎2) at point 𝑥. According to the definition

of 𝜇ℎ, and also noticing that 0 < 𝑥1 < ℎ− 1, we have

𝑞ℎ,4 =

∫︁ 𝑥1+1

𝑥1

(1 − 𝑝ℎ)𝜙𝜎(𝑥) + 𝑝ℎ𝜙𝜎(𝑥− ℎ)𝑑𝑥 ≤ 𝜙𝜎(𝑥) + 𝑝ℎ𝜙𝜎(ℎ− 𝑥− 1),

and also

𝑞ℎ,5 =

∫︁ ∞

𝑥1+1

(1−𝑝ℎ)𝜙𝜎(𝑥)+𝑝ℎ𝜙𝜎(𝑥−ℎ)𝑑𝑥 ≥
∫︁ ∞

𝑥1+1

𝑝ℎ𝜙𝜎(𝑥−ℎ)𝑑𝑥 ≥
∫︁ ∞

ℎ

𝑝ℎ𝜙𝜎(𝑥−ℎ)𝑑𝑥 =
𝑝ℎ
2
.

We further notice that lim𝑥1→−∞ 𝑞ℎ,1 = lim𝑥1→−∞ 𝑞ℎ,2 = 0. Hence letting 𝑥1 → −∞,

we will obtain that 𝐶ℎ satisfies

𝐶ℎ ≥ lim
𝑥1→−∞

𝑞ℎ,3𝑞ℎ,5
𝑞ℎ,2 + 𝑞ℎ,4

− 1 = lim
𝑥1→−∞

𝑞3𝑞5
𝑞4

− 1 =
(1 − 𝑞4 − 𝑞5)𝑞5

𝑞4
− 1 ≥ (1 − 𝑞5)𝑞5

𝑞4
− 2.
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When 𝜎 < 𝐾, we will choose 𝑥 = ℎ
√︀

𝜎/𝐾, then we will have limℎ→∞ 𝑥− ℎ− 1 = ∞,

which indicates that

0 ≤ lim
ℎ→∞

𝑞ℎ,4
𝑝ℎ

= lim
ℎ→∞

𝜙𝜎(ℎ
√︀
𝜎/𝐾) + 𝑝ℎ exp𝜙(ℎ(1 −

√︀
𝜎/𝐾))

𝑝ℎ
= 0,

and also

0 ≤ lim
ℎ→∞

𝑞ℎ,5 ≤ lim
ℎ→∞

∫︁ ∞

ℎ
√

𝜎/𝐾+1

𝜙𝜎(𝑥)𝑑𝑥 + lim
ℎ→∞

𝑝ℎ = 0,

which indicates that limℎ→∞(1 − 𝑞ℎ,5) = 1. Above all, we obtain that

lim
ℎ→∞

(1 − 𝑞5)𝑞5
𝑞4

− 2 = ∞,

which indicates that limℎ→∞ 𝐶ℎ = ∞, and the uniform bound for 𝐶ℎ does not exists.

B.0.2 Proof of the Transportation-Entropy Inequality Con-

stant

Theorem 5. Suppose 𝜎 is a given constant which is smaller than 𝐾. Consider the

following Bernoulli distributions:

Pℎ = (1 − 𝑝ℎ)𝛿0 + 𝑝ℎ𝛿ℎ, 𝑝ℎ = exp

(︂
− ℎ2

2𝐾2

)︂
.

We use 𝐶 ′
ℎ to denote the constant of transportation-entropy inequality : 𝐶ℎ is the

smallest constant such that

𝑊2(Pℎ * 𝒩 (0, 𝜎2),Q) ≤ 𝐶 ′
ℎ𝐷𝐾𝐿(Pℎ * 𝒩 (0, 𝜎2)‖Q) ∀ distribution Q. (B.1)

Then we have

sup
ℎ∈R+

𝐶 ′
ℎ = ∞.

Proof. We let Qℎ = (1−𝑞ℎ)𝛿0 +𝑞ℎ𝛿ℎ with 𝑞ℎ = 𝑝ℎ−exp
(︁
− (1−𝛿)(1+𝜎2/𝐾2)2ℎ2

8𝜎2

)︁
for some

𝛿 smaller enough such that (1−𝛿)(1+𝜎2/𝐾2)2ℎ2 > 4𝜎2/𝐾2, and Q𝜎
ℎ = Qℎ *𝒩 (0, 𝜎2).
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According to data-processing inequality we have

𝐷𝐾𝐿(Pℎ * 𝒩 (0, 𝜎2)‖Q𝜎
ℎ) ≤ 𝐷𝐾𝐿(Pℎ‖Qℎ) = 𝑝ℎ log

𝑝ℎ
𝑞ℎ

+ (1 − 𝑝ℎ) log
1 − 𝑝ℎ
1 − 𝑞ℎ

= −𝑝ℎ log

(︂
1 +

𝑞ℎ − 𝑝ℎ
𝑝ℎ

)︂
− (1 − 𝑝ℎ) log

(︂
1 +

𝑝ℎ − 𝑞ℎ
1 − 𝑝ℎ

)︂
≤ −𝑝ℎ ·

𝑞ℎ − 𝑝ℎ
𝑝ℎ

+ 𝑝ℎ ·
(𝑞ℎ − 𝑝ℎ)2

𝑝2ℎ
− (1 − 𝑝ℎ) · 𝑝ℎ − 𝑞ℎ

1 − 𝑝ℎ
+ (1 − 𝑝ℎ) · (𝑞ℎ − 𝑝ℎ)2

(1 − 𝑝ℎ)2

≤ 2 exp

(︂
ℎ2

2𝐾2

)︂
(𝑝ℎ − 𝑞ℎ)2,

where in the second inequality we use the fact that − log(1 + 𝑥) ≤ −𝑥 + 𝑥2 for

𝑥 ≥ −1/2 and 𝑞ℎ−𝑝ℎ
𝑝ℎ

≥ −1/2. Similar to the proof of Proposition 3, and noticing that

𝐹𝑞(𝑡) − 𝐹𝑝(𝑡) = (𝑞 − 𝑝)(Φ𝜎(𝑡) − Φ𝜎(𝑡− ℎ)) where 𝐹𝑞, 𝐹𝑝,Φ𝜎 are CDFs of distribution

Q * 𝒩 (0, 𝜎2),P * 𝒩 (0, 𝜎2),𝒩 (0, 𝜎2). We can prove that

𝑊2(P * 𝒩 (0, 𝜎2),Q * 𝒩 (0, 𝜎2))2 = Ω

(︂
exp

(︂
−(1 − 𝛿)(1 + 𝜎2/𝐾2)2ℎ2

8𝜎2

)︂)︂

while

𝐷𝐾𝐿(Pℎ * 𝒩 (0, 𝜎2)‖Q𝜎
ℎ) = 𝒪

(︂
ℎ2

2𝐾2
− (1 − 𝛿)(1 + 𝜎2/𝐾2)2ℎ2

4𝜎2

)︂
.

Since (1 − 𝛿)(1 + 𝜎2/𝐾2)2ℎ2 > 4𝜎2/𝐾2, letting ℎ → ∞ we obtain that supℎ∈R+
𝐶 ′

ℎ =

∞.
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