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Abstract

A central question in information theory is to understand when and how data can be
reconstructed from noisy observations. Error correcting codes are means of adding
redundancy to the data to enable better recovery. Most commonly, codes are designed
to recover data in a regime where the statistics of the noise are kept constant. In a
number of applications, however, it is required that the quality of the reconstruction
degrade gracefully as noise statistics worsen. It was known since the early work of
Jacob Ziv (among others) that trade-offs between gracefullness and error correcting
capability exist. We focus on characterizing these trade-offs and proposing codes that
are closer to optimal than those employed today.

The information-theoretic contributions consist of three parts: combinatorial —
where we study the so called alpha-beta profile of codes over large alphabets; ge-
ometric — where we show that a linear code that spreads out nearby data vectors
must contract some far away data vectors as well; and probabilistic — where we show
that good linear codes must necessarily experience threshold effect, i.e. degrade their
performance sharply when the noise level exceeds a certain limit.

Our main coding-theoretic contribution is the introduction of a new class of non-
linear sparse-graph codes that we call Low-Density Majority Codes (LDMCs). They
admit efficient decoding via belief propagation and have provably superior perfor-
mance compared to the best-possible linear systematic codes, in particular LDGMs.
Hence, we hope that LDMCs will be able to replace LDGMs in practical applica-
tions, such as pre-coding for optical channels, tornado-raptor codes, and protograph
constructions.
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Chapter 1

Introduction

This thesis is a study of graceful degradation in the context of partial data recovery.

We start with a basic estimation problem in the presence of missing data:

Given a code [ : x — y, recover x after observing (possibly some random subset

of ) the coded data y = f(x).

Roughly speaking, anytime that the amount of available data falls short of the in-
formation theoretic requirements of full recovery, we have a partial data recovery
problem in hand. Information theoretic requirements for full recovery are easy to
describe here: the number of observations must be at least equal to the number of
unknowns. Once this requirement is met, there is hope to solve the following coding
theoretic problem: design good maps f from which any unknown vector can be recov-
ered. If however the information theoretic requirement is not met, there exist some
vectors for any design that cannot be fully recovered. Let z be an estimate for the
unknown z. To measure the quality of the estimate, we need a notion of similarity,

i.e., a metric. In this thesis, we work exclusively with the Hamming distance

dy(w, &) = My # &},

1

which simply counts the number of coordinates in which x and z differ. By a graceful
code, we mean a mapping f for which the quality of estimation varies smoothly with

the amount of available data from y = f(x).
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To construct good codes, we need to make some assumption on how the informa-
tion is generated and how the coded data is erased. Since the seminal works of Claude

Shannon [70] and Richard Hamming [28], the following models are now standard:

e Shannon’s stochastic model: Assumes that the information X, X, --- is a ran-
dom sequence (typically i.i.d uniform over some alphabet) and each coded data

Y; = f;(X) is dropped randomly (and independently) with probability e.

o Hamming’s combinatorial model: Assumes that the information is an arbitrary
vector = over a fixed base field. It bounds the number of missing coded bits in

the data y = f(x) but otherwise assumes that they are chosen adversarially.

Most commonly, codes are designed to operate efficiently in the regime of full
data recovery. This often leads to some restrictive conditions. In a communication
problem, this typically means that delay is not important, or somewhat equivalently,
that the noise statistics are known. In many modern applications these assumption
are not met. One example is that of short-packet communication [20]. In this regime,
the concentration laws of probability are not fully in play yet and the channel cannot
be treated as a stable medium that on average behaves in a predictable way. The
uncertainty in the medium can be significant enough that, for all practical purposes,
we may assume to be working with a family of channels. Hence to achieve good finite
length performance, we need graceful codes that can adapt to the medium as it shifts
from one channel to the next. Another setting where communication delay is critical
is that of control over a noisy communication channel [76, 39, 66, 50]. Control systems
are generally sensitive to delays in the feedback loop. Typically, delays in the feedback
control signal are more destabilizing than noise or other forms of disturbance. Hence,
it is often preferred to have partial feedback in real time than to have perfect delayed
feedback. It is thus important to design coding schemes that estimate the state in
real time and progressively improve when more gracedata is made available. Graceful
codes are also useful in the regime of full data recovery (delay issues notwithstanding),
since they can be used as an inner code in layered designs (or concatenated codes).

For instance a design with two layers typically uses an outer error correcting code

12



(BCH, Hamming, etc) and an inner error reducing code. Ideally, the inner code
must be graceful since it is to operate in the regime of partial data recovery. It
only produces an estimate of the source with some distortion that is within the error
correcting capability of the outer code. Even in the full recovery regime, such designs
are becoming increasingly popular. Tornado-raptor codes and its many extensions
are among such designs [8, 26, 4, 9, 45, 15, 14|. This is mainly due to the fact that
achieving small error under iterative decoding with a single layer design is difficult.
For instance, the standards in optical communication require an error rate of 10715,
much lower than what a state-of-the-art low density parity check (LDPC) code can
achieve. It has been observed that two layer deigns can achieve the required error
rate and that significant savings in complexity and power is obtained when the inner
code of the design is a graceful low density generator matrix (LDGM) code [72, 81, 5.

We have such applications in mind when we speak of graceful degradation.

This brings us to the following loose definition of a good graceful code: it is a
code that has good error correction capability and can smoothly adapt to variations
in its medium. Once we make this notion more precise, we set out to address the
same two fundamental problems discussed earlier: 1) to determine the information
theoretic limits of graceful codes, i.e., study the trade-offs between error correction
and gracefulness, and 2) to solve the corresponding coding theoretic problem of con-
structing them. Evidently, designing practical codes that can operate closer to the
fundamental trade-off than those employed in modern practice (e.g. LDGMs), can
impact all or some of the applications mentioned above. We first give an informal
overview of how this thesis plans to undertake this effort and outline the organization
of the thesis. We then dedicate the next few sections of this chapter to explain our

technical results and their connection with prior work more formally.

The trade-offs between gracefulness and error correction capability were known to
exists for analog systems since the early work of Jacob Ziv [82]. However, determining
the exact trade-offs even for the simple problem discussed at the beginning of this
chapter is an unsolved problem both in the Hamming and Shannon senses of the

definition [36, 74, 32, 60, 52, 33]. Our main information theoretic contribution is to
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study what these trade-offs are for linear codes. Our results in essence show that non-
linear codes are superior to linear codes from the perspective of graceful degradation.

This is done by
e cstablishing the information theoretic trade-offs for graceful linear codes, and
e constructing practical graceful non-linear codes that surpass these limitations.

The organization of the thesis is as follows. We first formalize the graceful degrada-
tion problem both for Hamming’s and Shannon’s models in the next few sections and
introduce our main coding theoretic contribution: a new family of sparse graph codes
called Low Density Majority Codes (LDMCs). After reviewing our technical results
we move on to Part I of the thesis, where we focus on the graceful degradation prob-
lem under Shannon’s stochastic model. In Chapter 2, we characterize the trade-offs
between error correction capability and gracefulness for linear codes. These results
can be shown to improve significantly on the best known general converses [36, 32| in
the case of linear codes. Such trade-offs are naturally related to the area theorem of
coding [53|. In Chapter 3, we study the implications of the area theorem and show
that it is not strong enough to fully characterize these trade-offs for linear codes. In
Chapter 4 we provide new tools to analyze the dynamics of belief propagation (BP)
for general non-linear codes using various notions of channel comparison in informa-
tion theory. When applied to certain special cases of LDMCs the results accurately
predict the performance. It follows from this analysis and the trade-offs of Chapter 2
that LDMCs have provably superior performance to the best possible linear system-
atic codes. We study the applications of LDMCs to code optimization in Chapter 5,
where we show that by replacing the degree 1 nodes in LDGMs, the performance (as
well as the rate of convergence) can be uniformly improved for all noise levels. In
Chapter 6, we study soft-decoding properties of LDMCs when used in a concatenated
design.

In Part II of the thesis we shift our focus to the Hamming model. Historically
speaking, this is the first model we studied. Our original motivation was to find maps

that are graceful in the Hamming sense. In §1.3.1, we breifly comment on how this
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study led to the development of LDMCs.

In Chapter 7, we characterize the trade-offs for linear codes in the Hamming sense
and show that linear codes with good distance are not graceful. It follows from these
results that LDMCs are superior to linear codes in a (weak) Hamming sense as well
whenever the bandwidth expansion factor is not an integer. In Chapter 8 we study
codes over large alphabets and prove some combinatorial results about their so called
alpha-beta profile in this regime. Chapter 9 contains some of our exhaustive attempts
at constructing graceful codes (in the Hamming sense) prior to the development of
LDMCs. We propose general methods to find the best possible short linear codes.
These methods use various structures including algebraic, symmetry, linearity, etc.

to construct graceful codes.

1.1 Shannon’s model

We start by describing more formally a version of the graceful degradation (or joint
source-channel) problem for a binary unbiased source and a memoryless erasure chan-
nel. Let X = (X, X5, -+, X;) ~ Ber(1/2)®* be information bits. An encoder
f:{0,1}* — {0,1}" maps X to a (possibly longer) sequence Y = (Y7, -- ,Y,,) where
each Y is called a coded bit and Y is a codeword. The rate of the code f is denoted
by R = k/n and its bandwidth expansion by p = n/k. A channel BEC, takes Y and
produces Z = (Zy,...,Z,) where each Z; = Y; with probability (1 —¢€) or Z; =7
otherwise. In this thesis we are interested in performance of the code simultaneously
for multiple values of €, and for this reason we denote Z by Z(¢) to emphasize the

value of the erasure probability.

Upon observing the distorted information Z(e), decoder g maps Z(e) into X (e).
We measure quality of the decoder by the data bit error rate (BER):

BER/(e) == %ZP[Xi # Xi(e)] = %E[dH(Xa X(o)].

i=1
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where dy stands for Hamming distance.!

Consider the setting of point-to-point (or many) communication where a single
user needs to transmit the information bits to interested part(ies). Suppose for now
that there is a single user who is interested in the information source, and that the
communication takes place over a fixed BEC,. As mentioned before, a central question
in information theory is to determine the amount of data needed at the user’s end to
recover the source data with some guaranteed fidelity. In this case, we are interested
in the best achievable performance for the given channel. We define the information
theoretic limit of a family F of codes for partial recovery w.r.t capacity-to-rate ratio
x = C/R as follows

wr(x) == }gjfEBERf(l —zR).

Note that at C'//R = = we have ¢ = 1 — xR. When C' = R, on average, we observe k
coded bits, i.e., the number of available observations on average matches the number
of source bits to be estimated. In other words, the ratio C'/R measures the excess (or
lack thereof) in the average number of available observations for recovering X. The
reason to define wr in terms of the ratio C'/R (as opposed to the erasure probability
€) is to have a unified way of quantifying the information theoretic limit of a family
that may contain codes of different rates. We can always restrict a family to sub-
codes of fixed rate, or block-length, and study the corresponding partial recovery limit

separately.

For linear maps L, it is easy to find a bound for w,(x). Indeed, we have a simple
counting problem in hand. To recover any m source bits, we need to observe at least
m linear equations (associated with coded bits). The remaining coordinates cannot
be guessed better than random (see Prop. 1 below). Therefore

1—=zx
5

(1.1)

we(z) >

This lower bound has a nice geometric interpretation that is worth noting. The kernel

!We remark that BERf(e) depends on the choice of the decoder as well. We specify the choice
of decoder if it is not clear from the context.
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of the linear system associated with the observed coded bits specifies the region of
uncertainty in which X lies. All points in this region are equally likely to occur
and contribute to the distortion in recovering X. We thus need to find a point (not
necessarily inside the kernel) that minimizes the average distance to all the points in
the kernel, i.e., we want to find the Chebyshev center of the kernel. The above lower
bound is tight for sub-cubes. We may thus interpret the bound as follows: among all
linear sub-spaces of the Hamming cube with the same dimension, the sub-cubes have

the smallest Chebyshev radius.

For general codes, we can again reduce the matters to a counting problem by
applying the entropy functional. Roughly speaking, since on average we observe
(1—€)n equations, we can only hope to reduce the entropy of X by (1—€)n bits upon
observing Z(e). Then it follows from Fano’s inequality (and concavity of entropy)
that for any family F

hwe(z)) > 1 -z, (1.2)

where h is the binary entropy function. We call this lower bound the information
theoretic limit of partial recovery for a general family of codes. Likewise, (1.1) is
called the information theoretic limit for linear codes. The two bounds are shown
in Fig. 1-1. It follows from Shannon’s achievability theorems for coding [70] and
rate distortion [69] that the above two bounds are tight asymptotically, i.e., there
exist encoders and decoders that operate close to the curves when n and k are large.
When C' > R, the curves for linear and non-linear codes coincide. We call this regime
the error correction regime. However, there is a gap between the two curves when
C < R. We call this regime the error reduction regime. The bounds show that

non-linear codes are more capable than linear codes in the regime of error reduction.

The gap between w, and wr for C/R < 1 has a geometric explanation. The
pre-image of a point under a linear map is an affine space, and affine spaces have
relatively large diameter (in the Hamming sense). However, the pre-image of a point
under a non-linear map can be a set with small diameter. Such sets are known as

anticodes and over the binary cube Hamming balls are the optimal anticodes. Indeed
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the general lower bound can be achieved by first packing points inside balls in the
source space and then encoding the centers optimally. We call the codes that can
achieve the information theoretic limit of partial recovery the Shannon codes.

When multiple parties are interested in the information source, we need to consider
the behavior of wr at different points. Intuitively, we want to say that a family of
codes is graceful if BERf(e) varies smoothly with € for some f, while satisfying some
required fidelity criteria by users. To formalize this notion, we can fix an erasure
probability €; and a minimum admissible recovery quality ;. Then among all the
codes (in the family) satisfying BER(e;) < d1, we look for one that has the lowest
possible BER at some €, i.e., a code that gives the best possible improvement (resp.
least possible degradation) as more (resp. less) data becomes available. We thus

introduce the two point trade-off function as follows.

Definition 1. Given a family F of codes, the two point trade-off function of f at
(€1,01) is defined as

nr(e;€1,01) = }Ielg__{BERf(GQ) : BER(e1) < 41}

where the BER functions are computed w.r.t to the optimal (bitwise MAP ) decoder.

It follows from our results in Chapter 2 (see Theorem 5) that linear codes are not
graceful, i.e., their trade-off function has a threshold like behavior. That is to say,
if a linear code is efficient for partial recovery of one user it performs poorly for the
other. For instance, consider the case with two users where user 1 is interested in
50% of the source bits and user 2 is interested in 25% of the source bits. Can we
design linear codes so that, on average, user 1 can reach his goal by observing around
0.5k coded bits and user 2 can achieve his by observing close to 0.25k coded bits?
Unfortunately, the answer is no as shown in Fig.1-1. Similarly, separation codes of
Shannon suffer from the same issue. However, we shall see that there exist non-linear
codes that can provide a graceful degradation in performance while staying close or
even below the fundamental line of linear codes. A prevalent barrier in using non-

linear codes is their decoding complexity. Indeed the idea of solving linear systems
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R=1/2

0.51 —— IT limit-general codes

—==- Shannon codes- two point converse
—— IT limit- linear codes

—=—=- sys. linear codes- two point converse
—#— LDMC-simulations
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Figure 1-1: The lower bounds for codes of rate R = 1/2 vs achievability with system-
atic LDMCs as defined in §1.3. Here C' = 1 — € is the capacity of the erasure channel
and BER is computed w.r.t the source distortion E[d(X, X)]/k, where d is the Ham-
ming distance and k is the number of source bits. We note that on average k coded
bits are returned by the channel at C/R = 1. Shannon codes that achieve the infor-
mation theoretic limit suffer from an ungraceful collapse. The two point converse for
systematic linear codes is from Theorem 5 and is computed for codes that can achieve
the point B = (0.5,0.2501), i.e., they satisfy BER < 0.2501 at ¢ = 0.75. This means
that they can, on average, recover 0.499k coordinates from 0.5k observations. The
bound is stable, i.e., a small perturbation on the location of point B cannot prevent
the step-like behavior of the code. The lower bound shows that almost no unobserved
coordinates can be recovered when C/R < 0.5. Furthermore, separation codes that
pass through point A = (0.5,0.1101) suffer from the same problem. The LDMCs can
however achieve a graceful decline while surpassing the fundamental limitations of
linear codes when C'/R < 0.5.

of equations should in general be more appealing than solving non-linear equations
with no structure. The codes that we shall present shortly are, however, efficiently
decodable and can surpass capabilities of linear codes for partial recovery. We call
these codes Low Density Majority Codes(LDMCs) and describe them in §1.3. As
shown in Fig.1-1, LDMCs can simultaneously achieve smaller error than any linear

codes for both users.

We shall be mainly interested in the trade-off function of the family £ of linear

codes in comparison with LDMCs. The following definition is relevant.

Definition 2. A code g is said to (€1, €z)-dominate F if there exists §; so that
BER,(€1) < 01 and BER,(e2) < nz(ea;€1,01). If BERy(€) < BER((€) for all € and all
f € F, then g is said to dominate F.
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The question of graceful degradation for a code over a family {BEC,}c[c, e, of
channels can now be discussed in terms of (e, €2)-domination w.r.t to F for a rich
enough family of maps F. We study the trade-off function of the family £ of sys-
tematic linear codes in Chapter 2 and show that LDMCs dominate £ in the error

reduction regime.

1.2 Hamming’s model

We now discuss some versions of graceful degradation in the Hamming sense [33, 34].

Definition 3. A code f : Fi — F? is said to be a [n,k, D(d)] combinatorial-joint-
source-channel-code (CJSCC), if

Va,le| < 6k = du(g(f(z+e)),x) < Dk.

CJSCCs can be viewed as maps that “contract” the input (noise) error ¢ to output
(decoder) error D. In particular, if the contraction is linear, i.e., if D(d) < AJ, then
the CJSCC is said to be A-error reducing [71]. In this sense, CJSCCs generalize the
notion of error reducing codes.

A related notion to CJSCC is that of the («, 5)-property [59]. A mapping of k
symbols to n symbols is said to have the («, 5)-property if it sends any two strings of

(Hamming) distance more than ak to two strings of (Hamming) distance more than

bon.

Definition 4 ([60]). A map f:F} — F7 is said to be [n, k, f(c)] if

[z —y| > ak = [f(x) = f(y)] > Bn,

where | - | denotes the Hamming weight.

The (a, §)-property can be seen as a relaxation of the CJSCC property. Indeed,
the («, §)-property is a restriction of the CJSCC property where the decoder is forced

to pick the estimate from the pre-image of f. For linear codes, and in the regime of
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large alphabets, the two notions are equivalent. Since our combinatorial results fall
in this regime, we do not distinguish between the two.

The (v, B)-property is a natural generalization of minimum distance. We think of
[ as the level of erasure noise needed to cause a relative distortion of « in the input
space (see Fig. 1-2a). A graceful code in this sense is one with a smooth (a, 3)-profile
similar to Fig.1-2b. Such a code can fully recover the input when the noise level is
below its error correcting capability and can paritialy recover it once the noise level

exceeds its error correction capabiltiy.

5

(a) The («, B)-property (b) A (fictitious) graceful code

_
/

Figure 1-2: The alpha-beta property and the corresponding notion of graceful degra-
dation. a) The («, §)-property. The images of the points along with the regions of
disturbance required to cause confusion are shown. Any two points that are more
than a-away in the input space are sent to points that are S-away in the output space.
As a result the amount of noise needed in the target space to cause a-distortion is
larger than minimum distance. b) The “ideal” profile in the Hamming sense. Such
profile would indicate that the code can fully recover the input when the noise level
is small and can partially recover it as the noise level increases. Finding codes with
such profiles is a difficult task.

For a linear map f, we can equivalently define

)= it o] > any -
and
5= - 7). (13

Note that the (relative) minimum distance of f is 3(0) + 2.

Operationally, 5* characterizes the threshold for adversarial erasure noise beyond

21



which the decoder cannot guaranteed to recover a single bit. Alternatively, 1 — 5}
is the fraction of equations needed such that f can always recover at least one input
symbol. Likewise, 1 — §(0) measures the minimum number of equations needed so
that f can fully recover the input. It is thus ideal to have a code with large minimum
distance and monotonically increasing 5(«). Such a code can fully recover the input
when the number of erasures is less than its minimum distance, and as the number of
erasures exceeds its minimum distance, it can offer some partial recovery guarantees.

It turns out that, similar to the stochastic case, there is a trade-off between error
correction and gracefulness. We study these trade-offs in detail in Chapter 7. In
particular, we show that the only linear codes that can asymptotically achieve §* = 1
are repetition like and that no such linear codes exsit when p ¢ Z. However, LDMCs
always satisfy §* = 1 in a stable way that easily extends to the asymptotic limits as
well. Thus LDMCs can dominate linear codes in the (admittedly weak) sense of g*

as well.

1.3 The LDMC ensemble

We first define the notion of a check regular code ensemble generated by a Boolean

function.

Definition 5. Let Py be a joint distribution on m-subsets of [k]. Given a Boolean
function f :{0,1}™ — {0,1}, the (check regular) ensemble of codes on {0,1}* gen-
erated by (f,Pyx) is the family of random codes fx : © — (f(xs))sex obtained by

sampling 3 ~ Pyx,.Here xg is the restriction of x to the coordinates indexed by S.

Given x € {0,1}%, we consider the d-majority function

We have the following definition:

Definition 6. Let Uy = Unif®"({d-subsets of [k]}) be the uniform product distri-

bution on the d-subsets of [k]. The ensemble of codes generated by (d-maj, Uy) is
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called the Low Density Majority Code (LDMC) ensemble of degree d and denoted by
LDMC(d). Furthermore, define the event A = {3 ¢c5 Liiesy = Dges, Lijesy}s i-€.,
the event that each i appears in the same number of d-subsets S. Then the ensemble

generated by (d-maj, Uyya) is called a regular LDMC(d) ensemble.

We shall also consider systematic LDMCs, which are codes of the form = +— (z, f(z))
where f is picked from a regular LDMC ensemble. Throughout this work, we also
refer to the check regular ensemble generated by the XOR function, known as the

Low Density Generator Matrix codes (LDGMs).

1.3.1 A comment

Before we present our technical results on LDMCs, we briefly explain what led us to
study this family of codes.

While LDMCs posses many interesting properties in the Shannon sense of grace-
ful degradation, our original motivation lied, in fact, in finding graceful codes for the
Hamming model, i.e., we wanted to construct maps with smooth (a, 3)-profiles, sim-
ilar to what is shown in Fig. 1-2b. It was however our expectation that a solution to
the latter problem would provide at least some insight on how to make progress on the
former. There seems to be a recurring theme in coding theory that codes designed on
the basis of good Hamming properties turn out to be useful for the stochastic problem
as well. A recent example is the work of [42] which shows that many families of good
error correcting codes, which were originally designed to give protection against the
combinatorial noise in the Hamming model, can achieve full recovery in the stochastic
sense as well. Further evidence will come in Chapter 9 where we shall see that some
small codes with smooth («, 3)-profile perform well against stochastic noise as well
(see Fig. 9-2). We thus set out to find codes whose profiles looked like that of Fig.
1-2b.

To design good codes in the combinatorial sense, one idea that appealed to us was
to “geometrize” the problem, i.e., to forget momentarily that we are working over the

Hamming cube and lift the problem to the Euclidean space. We then considered the
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following construction. Pick some randomly chosen triangulations points yq, -, yn
inside {0, 1}*. Given an input z, compute inner products (or alternatively distances)
between the input and the triangulation points f : = — ((z,v1), -+, (x,y,)). The
idea is shown in Fig. 1-3. This map is easily seen to preserve nearby distances. The
principle here is that when we try to triangulate a point, our estimate of where the
point is should vary smoothly with the position of the point. But there is a problem
with the points that are far away: any two typical points x, 2’ that are maximally
apart will likely land in coordinates that differ by at most O(v/k). This means that
the relative distance in the target space vanishes, and there seems to be no way to
salvage a good code of positive rate out of this. One way around this problem is to
pick our triangulation vectors to be sparse. Then the relative distance of such points
in every coordinate is of the same order as the weight of the triangulating vector.
Hence there is some hope to obtain smooth binary codes of non-vanishing rate after
quantization. The all-important question is now this: how to quantize to get back
a binary codes? In some sense if the quantization map is not itself smooth then
the overall scheme fails. It may not seem like we have made much progress at this
point since we have just reduced the task of finding smooth codes to finding smooth
quantizers, a problem that had been observed and reported before in the context of
graceful degradation [25]. After some time we learned that the right way to quantize
is to use a 1-bit quantizer, i.e., to compute majorities. This was the first idea that

enabled us to construct maps that dominated the repetition code (see Fig.1-4).

1.4 Main contributions

Our main results are as follows:

e We establish two-point lower bounds for the partial recovery trade-off function
of systematic linear codes in the stochastic setting in Chapter 2. Together
with the bounds of Chapter 4, these bounds show that systematic LDMCs are
provably more capable than any systematic linear code for partial recovery.

These bounds also improve on existing bounds (cf. [36]) for the stochastic
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(a) A triangulation code (b) High dimensional picture

X

(c) Sparse triangulation code

Figure 1-3: The notion of a random triangulation code. a) The map f : =z +—
((x,11), (x,y2), (z,y3)) is smooth, i.e., it preserves nearby distances. b) A problem
emerges in high dimensions as distances concentrate for complimentary points. In-
deed if z is the compliment of x then its (relative) inner product with a randomly
chosen point different from that = by at most O(1/4/n). ¢) The problem is resolved
once the triangulation points are chosen to be low weight vectors.

broadcast JSCC problem in the case of linear codes. They may also be used to

derive informative bounds for the finite length analysis of linear codes.

e We study the implications of the area theorem in the stochastic setting in Chap-
ter 3. We conclude that our bounds are tighter than those obtained via area
theorem. In retrospect, this is not surprising since in the case of input BER

there are no conservation laws (see Example 1 in Chapter 3).

e We use various notions of channel comparison to provide a general method for
analysis of information propagation for BP in Chapter 4. In the process, we
prove a variant of Mrs. Gerber’s Lemma, which may prove useful in convexifying

information measures for parametric distributions.

e In particular, we apply our tools to compute upper and lower bounds for BP
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error of LDMC(3) and LDMC(5). A data processing argument shows that the
lower bound is universal, i.e., it holds for the optimal (bitwise MAP) decoder
as well. In the case of LDMC(3), the lower bound is very close to our empirical
results, which means there can only be a small gap between the optimal and BP
decoder for LDMC(3) for any erasure level. In the case of systematic LDMC(3),

our upper and lower bounds match fairly well.

e We construct an asymptotic upper bound for BP error of systematic LDMC(d)
of large degrees. The bound does not depend on degree and relies on propagating
messages in just 1 iteration of BP. The bound tightly fits our simulation results,

demonstrating that asymptotics in d kicks in early.

e We show that LDGM constructions can be uniformly improved by replacing
repetition code with LDMCs in Chapter 5. A joint optimization over LDGM

and LDMC is shown to improve on partial recovery for all noise levels.

e In the combinatorial setting, we establish the trade-offs between minimum dis-
tance and the recoverability threshold g* for linear codes in Chapter 7. We
show that linear codes cannot achieve 5* = 1 when the bandwidth expansion
factor p is not an integer. It follows that no linear repetition like code exists
when p ¢ Z, answering a question asked in [60]. LDMCs on the other hand can

achieve f* = 1.

e We provide tight bounds for the (¢, 5)-limits of general codes over large alpha-
bets in Chapter 8 and present explicit (short) codes with good («, 3)-properties
in Chapter 9 .

1.5 Prior work

Rateless codes

To solve the multi-cast problem over the internet, the standard TCP protocol uses

feedback to deal with erasures, i.e., each lost packet gets re-transmitted. This scheme
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is optimal from a data recovery point of view. From any k received coded data bits,
k source bits can be recovered. Hence it can achieve every point on the fundamental
line of Fig. 1-1. However, a separate feedback line is not always available, and using
the same channel to implement feedback has other complications. For instance, when
many packets are likely to get dropped, feedback has a large overheard (or the excess
in information bits required to reconstruct the source). Alternatively, a forward error
correcting code can be used to deal with data loss. A preliminary analysis in [44]
shows that forward error correction can save up to 25% in overhead compared to a

feedback approach over a typical Internet network.

In particular, Fountain codes have been introduced to solve the problem of multi-
casting over the erasure channel [12]|. They are a family of linear error correcting codes
that can recover k source bits from any k + o(k) coded bits with small overhead. A
special class of fountain codes, called systematic Raptor codes, have been standardized
and are used for multi-casting in 3GPP 8, 26, 4, 9, 45|. Various extensions and
applications of Raptor codes are known [15, 14]. However, as observed in [67], these
codes are not able to adapt to the user demands and temporal variations in the

network.

As less data becomes available at the user’s end, it is inevitable that our abil-
ity to recover the source deteriorates. However, we may still need to present some
meaningful information about the source to the user, i.e., we want to partially recover
the source. For instance, in sensor networks it becomes important to maximize the
throughput of the network at any point in time since there is always a high risk that
the network nodes fail and become unavailable for a long time [30]. In such applica-
tions it is important for the codes to operate gracefully, i.e., to partially recover the
source and improve progressively as more data comes in. We show in Chapter 2 that
Fountain codes, and more generally linear codes, are not graceful for forward error
correction. Hence, it is not surprising that many authors have tried to develop grace-
ful linear codes by using partial feedback [30, 27, 6, 13]. However, we shall challenge
the idea that graceful degradation (or the online property) is not achievable without

feedback [13]. Indeed LDMCs give a family of efficient (non-linear) error reducing
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codes that can achieve graceful degradation and can perform better than any linear
code in the sense of partial recovery (see Fig.1-1).

Raptor codes are essentially concatenation of a rateless Tornado type error-reducing
code with an outer error correcting pre-coder. Forney [23] observed that concatena-
tion can be used to design codes that come close to Shannon limits with polynomial
complexity. Forney’s concatenated code consisted of a high rate error correcting
(pre)-coder that encodes the source data and feeds it to a potentially complicated
inner error correcting code. One special case of Raptor codes, called pre-code only
Raptor code is the concatenation of an error correcting code with the repetition code.
Recently, such constructions are becoming popular in optics. In these applications it
is required to achieve 107! ouput BER, much lower than the error floor of LDPC.
Concatenation with a pre-coder to clean up the small error left by LDPCs is one
way to achieve the required output BER [72]. It was shown recently however that
significant savings in decoding complexity (and power) can be achieved if the inner
code is replaced with a simple error reducing code and most of the error correction is
left to the outer code [81, 5].

These codes, as all currently known examples of concatenated codes, are linear.
They use an outer linear error correcting code (BCH, Hamming, etc) and an inner
error reducing LDGM. The LDGM code however operates in the regime of partial
data recovery. It only produces an estimate of the source with some distortion that
is within the error correcting capability of the outer code. To achieve good error
reduction, however, LDGMs still need rather long block-length and a minimum num-
ber of successful transmissions. In other words, they are not graceful codes (see Fig.
5-4). We shall see in Chapter 5 that LDMCs can uniformly improve on LDGMs in
this regime. Thus, we expect that LDMCs appear in applications where LDGMs are

currently used for error reduction.

Joint Source-Channel Coding

The problem discussed in this work can be viewed as an example of broadcasting with

a joint source-channel code (JSCC), which is considered one of the challenging open
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problems is network information theory [36, 35, 64, 74, 32|. In general it is known that
the users have a conflict of interests, i.e., there is a trade-off between enhancing the
experience of one user and the others. For instance, if we design the system to work
well for the less resourceful users, others suffer from significant delay. Likewise, if we
minimize the delay for the privileged users, others suffer significant loss in quality.
Naturally, there are two questions we are interested in: 1) what are the fundamental

trade-offs for partial recovery 2) how do we design codes to achieve them?

Many achievability and converse bounds are available for the two user case under
various noise models [64, 58, 2, 22, 18]. In turns out that in most cases there is a
gap between achievablity and converse bounds. In a sense, the theory and practice
of partial recovery so far are much less developed compared with the classic setting
of full recovery with one user (also known as point-to-point communication). For the
classic problem, Shannon provided a converse for full recovery and showed that it is
asymptotically tight using a non-constructive (random coding) argument. Over the
years many practical codes were developed that can achieve good performance in the
sense of full recovery and admit efficient decoding. These codes mostly rely on the idea
that linear systems of equations with proper structure (symmetry, sparsity, etc) can
be solved efficiently. However, for the two user case the best achievability results are
either non-constructive [22], or involve complicated non-linearities (e.g., compression
at different scales [24][37]). Shannon also developed the rate distortion theory of
partial recovery for one user and showed that separation is asymptotically optimal.
In practice, however, the codes are finite and it is known that in this regime separation
is not optimal (see [36] and references therein). Furthermore, lossy compression is
inherently nonlinear and separating it from coding adds another layer of complexity

to the system. This is the problem that JSCCs attempt to solve.

A classic error correction solution is not completely satisfactory here. Indeed for
error correction to work, we need to know the channel quality. If we design the code
to work well in the worst case situation, we suffer significant delay. If we assume
a best case channel, we suffer significant loss in recovery once the channel quality

drops below the design rate. This sudden drop in quality is known as the “cliff
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effect” [24] and shown in Fig.1-4 for LDPC codes. Roughly speaking, there is a phase
transition in the BER performance of LDPCs or any capacity achieving code. When
the noise level is below a certain threshold the input can be recovered with small
error. When the noise level exceeds that threshold the input cannot be recovered
with good fidelity. This is a consequence of the so called area theorem and will be
visited later. Our results show that the “cliff effect” persists in the range of partial
recovery as well. That is, any linear code that comes close to the fundamental limits
of partial recovery cannot be graceful. This latter result cannot be inferred from the

area theorem (see Chapter 3) or the general converses known for the JSCC problem.

R=1/5

0.54 —#— LDMC,k=70000,BP steps=5
—#— LDPC,k=70000,BP steps=50

repetition

0.4

0.31

BER

0.2

0.1

0.0 A

T T T T T T T T T
0.00 0.25 050 0.75 1.00 125 150 1.75 2.00
C/R

Figure 1-4: Comparing BER at different erasure channels for three codes with rate
1/5: an LDPC code with k& = 70000 data bits using 50 iterations of BP, the repetition
code, and LDMC(3) with k£ = 70000 information bits using 5 iterations of BP. The
LDMC code does not have any systematic bits. The LDPC code suffers from the cliff
effect. Here C' is the capacity of the channel and R is the rate of the code.

The repetition code, on the other hand, can recover the input bits partially at
all channel noise levels. Of course, its performance degrades as the channel capacity
drops but it does so in a graceful way.

Much work has been done recently to find graceful codes in the literature |37, 77,
24, 10, 54, 25|. Such approaches can broadly be categorized into JSCC solutions. It
was known since the early days of communication that trade-offs exist between error
correction and gracefulness of a code [82]. We characterize these trade-offs for linear
codes under erasure noise. Our bounds on the trade-off functions give new converses

for broadcasting with linear codes. These bounds are stronger than those inferred
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from the area theorem (see Chapter 3) or the general converses known for JSCC (cf.
[36]). Our results reveal that, unlike the classic setting, the converse bounds cannot
be achieved with linear codes. Hence, to find good practical codes for broadcasting
we need to cosider non-linear codes. Our proposed codes, LDMCs, may prove to be

helpful in this regard.

Non-linear codes

Codes whose computational graph (see Fig.4-2) are sparse are known as sparse graph
codes. Many such codes are known [47| and can achieve near Shannon limit perfor-
mance. With a few exceptions, these codes are mostly linear. One problem with
linear codes is that BP cannot be initiated without the presence of low degree nodes.
In [16], the authors observe that non-linear functions do not have this problem and
use random sparse non-linear codes to achieve near optimal compression using BP.
However, using non-linear functions in this setting is mainly due to algorithmic con-
siderations, namely, to enable the use of BP. Otherwise, similar compression results
can be obtained by using LDGMs under different message passing rules[79]. In [56],
the authors use special non-linear sparse graph codes to build optimal smooth com-
pressors. In all of these works, however, the focus is on point-wise performance and
a result the codes are optimized to operate at a particular rate. As such, they are
unlikely to achieve graceful degradation.

Another relevant work in this area is that of random constraint-satisfaction prob-
lems (CSPs) with a planted solution [40]. It appears that the CSP literature mostly
focused on geometric characterization of spaces of solutions and phase transitions
thereof. These do not seem to immediately imply properties interesting to us here

(such as graceful degradation).
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Part 1

Shannon’s stochastic model
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Chapter 2

Trade-offs for linear codes

Systematic linear codes form a vast majority of the codes that are used in practice.
In this section, we work towards proving that LDMCs are optimal w.r.t to this family.
In the following, by ker(A) we refer to the left kernel of A, that is the subspace of

vectors x satisfying xA = 0.

2.1 hrank

Definition 7. Given a matriz A define
hrank(A) = [{j : ker(A) C {z : z; = 0}}]

Definition 8. Given a matriz A, define A(p, q) to be a random sub-matriz of A that
is obtained by sampling each row of A with probability p and each column of A with

probability q independently of other rows/columns.
The following proposition is well known (cf. [65]).

Proposition 1. Consider a system of equations xG =y over Fy. If ker(G) C {x :
x; = 0}, then x; is uniquely determined from solving G = y. Otherwise, there is a
bijection between the set of solutions {x : G = y,x; = 0} and {z : G = y,z; = 1}.
In particular, if exactly t coordinates are uniquely determined by the above equations,

then hrank(G) = t.
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Our next proposition relates BER and hrank.

Proposition 2. Let G = [I A] be the generator matriz of a systematic linear code f

with rate R. Then BER(e) < § if and only if

E[hrank <z¢~1(e, 1- 6))] > (e —20)k.

Proof. If BER is bounded by ¢, there are, on average, at most 20k bits that are not
uniquely determined by solving zG (1,1 —¢€) = y. For a systematic code, the channel
returns Bin(k, 1 — €) systematic bits. The remaining systematic bits z, are to be
determined from solving x, A(e, 1 — €) = §j where § is some vector that depends on
the channel output y and the returned systematic bits. If ¢ additional systematic bits
are recovered, then hrank(A(e, 1 — ¢€)) = t by Proposition 1. Since on average at least
(e — 20)k additional systematic bits are recovered, the claim on the average hrank

follows. [ |

2.2 Trade-offs between rank and hrank

The next proposition shows how matrices with positive hrank behave under row sub-
sampling. Our main observation is that row sub-sampled matrices of a (thin) matrix
with large hrank have bounded rank. In particular, if a (thin) matrix has full hrank,

its sub-sampled matrices cannot have full rank.

Proposition 3. Consider and arbitrary field F and let €, > €3. Given a k X m matrix
A,
~ €9 e
E[rank (A(ez, 1))] < rank(A) — (1 — 2)E[hrank <A(el, 1))],

€1
and

E[hrank (A(eg, 1))] > 2E[hrank (A(el, 1))}.

€1

Therefore, if E[rank (A(eg, 1))] = rank(A) — o(k), then E[rank (121(61, 1))] = o(k).
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Proof. Suppose that hrank (/Nl(el, q)) = t. This means that there are at least ¢ rows a;
in A(e;, q) such that a; is not in the span of {a; : i # j}. Let B be the row-submatrix
of fl(el, q) associated to these ¢t rows, and B¢ be its compliment, i.e., the matrix with
rows {a; : a; € A(e1,q),a; ¢ B}. We claim that the compliment of B is a matrix of
rank rank(A) —t. To see this, note that Im(B) NIm(B¢) = {0}, for otherwise we get
linear dependencies of the form h = ). o;b; # 0 where b; € B and h € Im(B°), which
contradicts the construction of B. This means that rank(B°) + rank(B) = rank(A).
The claim now follows since rank(B) = ¢. Under row sub-sampling, each row of B is

selected with probability €;/€; independently of other rows. Thus,

Elhrank (A(Q,g)) |hrank (A(el,q)) =t] > 2y

€1

The rows selected from B¢ can contribute at most rank(A) —t to the rank of A(ey, q).
Hence

E[rank <f~1(62, q)) lhrank(A(ey, q)) = t] < 2y rank(A) — ¢

€1
Taking the average over the hrank of fl(el, q) proves the first two results. The last
inequality follows by re-arranging the terms.

Remark 1. In general the above bound cannot be improved up to o(k) deviations.

Indeed we can partition the matrix A(e;, 1) in the form

B
O
F

where B is a basis with hrank(A(e;, 1)) many rows, O is the zero matrix, and F is a
redundant frame with f > 1 — ¢; — ¢t rows that span the co-kernel of B. This means
that any 1 — e; — ¢ rows in F' form a basis for the image of F. Now for any e < €,
if z—f f =1 — ¢y, then we sub-sample a basis from f with high probability. Thus the
hrank of the sub-sampled matrix 121(62, 1) can jump up with high probability for large
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The next Proposition shows that rank is well behaved under column sub-sampling.

Proposition 4. Consider an arbitrary field F and let p > q. Given a k X m matriz

A over T,
E[rank <f~1(1,p))] < min{pm, SE[rank (121(1, q))]}

Proof. Pick a column basis for A(1,p). We can realize A(1,q) by sub-sampling
columns of A(1,p). In this way, each column in the basis of A(1,p) is selected with
probability ¢/p independently of other columns. In other words,

E[rank (fl(l, q))} > %E[rank <f1(1,p))]

The desired result follows. [ |

2.3 Converse

We are now ready to prove our main result.

Theorem 5. Let f : x+— xG be a systematic linear code of rate 1/p with generator

matriz G = [I| A] over Fy. Fiz e > €3 and 6, < . If BERf(e1) < 61, then

Nl = [i—fwr(p—l)(l—el)—v
BERf(EZ) 2 K(elyalap) = 9

with v = €, —26,. In particular, if BER(e) = €2 — 1 4+ 0(1), then BER(€e1) = & —o(1).

Furthermore, if €3 > €;

BERf(Gl) 2 I(Islf{(SQ . K(GQ,(SQ,p) S 51}

36



Proof. By Proposition 2, we have E[hrank (fl(el, 1— 61)>] > ~vk. By Proposition 3,
we have

E[rank (A(Eg, 1- 61)>] < (—17 + (p— 1)(1 —€1) —y)k.

By Proposition 4, we have

1—62

e (Gt (=D —a) =k

E[rank <1‘~1(62, 1— 62)>] <

The first result now follows from Proposition 2 upon observing that hrank(A) <

rank(A).

The second result follows since BER(€;) = €2—1+0(1) implies that hrank(A(ey, 1—
€2)) = (1 —€9)k —o(k) by Proposition 2. By the second part of Proposition 3, we have
hrank(A(e;,1—¢€;)) = o(k). The result follows after applying Proposition 2 again. M

2.4 LDMCs vs linear systematic codes

Fig. 2-1 shows the lower bound for codes of rate % It can be seen that regular
systematic LDMCs of rate 1/2 (0.5, ¢)-dominate linear codes for all ¢ < 0.5 and
cannot be much worse when ¢ > 0,5. In fact we do not believe that the lower bound
for linear codes is tight and expect LDMCs to dominate all linear codes of rate 1/2

that can achieve BER(0.75) = 0.25 + o(1).
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Figure 2-1: The LDMC performance along with the lower bound of Theorem 5 on
the BER for the systematic linear codes of rate  satisfying a) BER(0.75) < 0.2501
and b) BER(0.45) < 0.01. The left figure shows that any systematic linear code that
comes close to the Shannon limit for linear codes suffers from ungraceful collapse. For
such codes, there is a threshold such that almost any further improvement on BER
for erasure probabilities below the threshold comes from the systematic observations.
Furthermore, almost no unobserved bit can be recovered as the erasure probability
exceeds the threshold. The right figure shows that it is not possible to attain good
performance in the error reduction regime with systematic linear codes at the cost of
tolerating a small error. Even at 10% overhead, systematic linear codes that achieve
BER lower than 0.01 exhibit a sharp decay in performance once C' < R.
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Chapter 3

Bounds via area theorem

The lower bound of Theorem 5 states that a linear systematic code cannot have small
BER for all erasure probabilities. In this sense, it has the flavor of a “conservation
law”. In coding theory, it is often important to understand how a code behaves over
a family of parametrized channels. The main existing tool in the literature to study
such questions is the so called area theorem. Here we introduce the theorem and
study its consequences for two point bounds on BER. It turns out that the bound in
Theorem 5 is tighter than what can be inferred from the area theorem.

Let us first provide an example to show that there is no conservation laws for

input BER:

Ezample 1. Let f be the 2 fold repetition map X — (X, X). Let g be a systematic
code sending x; — (x;, X;,z;) for all odd ¢ and x; +— (z;) for all even i. Then

BER(e) = 1e? and BER,(e) = 1(1€® + 1e). It can be checked that f dominates g.

This means that among repetition codes a balanced repetition is optimal.

3.1 Area theorem

Following [65], we define the notion of an extrinsic information transfer (EXIT) func-

tion.

Definition 9. Let W be a codeword chosen from an (n,k) code C according to the
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uniform distribution. Let Y (€) be obtained by transmitting W through a BEC(e). Let
YN'L(E) - (}/1(€>a e 7Yi—1(6)7 ?7 }/;-1-1(6)7 T aYn<€))

be obtained by erasing the i-th bit from Y (€). The i-th EXIT function of C is defined
as

hi(e) = H(W;|Y_i(¢))

The average EXIT function is

The area theorem states that

Theorem 6 (Area Theorem). The average EXIT function of a binary code of rate

R= /01 h(e)de.

R satisfies the following property

Let g be a decoder acting on Y (¢). Then the output bit error rate associated to

g can be defined as
E[d(W, g(Y (¢))]

n

py(e) =

where the expectation is taken w.r.t to both the input distribution and channel real-
izations at erasure probability e. By Proposition 1, the MAP decoder g* either fully
recovers a bit or leaves it completely unbiased. Thus the i-th EXIT function can be

written as



This gives
W0 = 5 3 eP(gi (V) =7) = MO (3.)

:2n

7

Let us now find the implications of the area theorem for the input BER of linear

systematic codes. To this end we define the average systematic EXIT function
1t
h”%@::EE:hxo.

i=1

Likewise we can define the non-systematic EXIT function as follows:

non—sys 1 -
h y@%:n_kE:hﬂy

i=k+1

3.2 Behavior of BER vs EXIT function

We first prove a lemma to show that the coded bit error rate converges to 0 continu-

ously as the input bit error rate vanishes.

Lemma 7 (Data BER vs EXIT function). Fiz € < €y. For any binary linear code of

rate R, we have
2R

€p — €

h(e) <

BER(eo).

In particular, if BER(ey) — 0 for a sequence of linear codes, then h(e) — 0 for all

€ < €.

Proof. Let X be an input codeword X € {0,1}" and denote by Z(e) and Z(e)

outputs of degraded binary erasure channels, i.e.:

X — Z(E) — Z(Eo).

Notice that

1(Xi; Z(€0)|Zil€)) = 1(Xs; Zi(eo)| Zni(€)) = (1 — €0) H(Xi| Zwi(e))
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where the first equality follows from degradation and the second is a property of

erasure channels. Rewriting this identity and summing over ¢ we obtain

Z H(X|Zui(e), Z(e0)) = €0 > H(Xi| Zi(€)) = eonh(e) (3.2)

=1

where h(-) is an EXIT function of the code X.

We now interpret the left-hand side sum in (3.2) as another EXIT function (a
conditional one). Indeed, given Z(ey) denote by Ty the set of erasures in Z(ep).
Conditioned on Z(ep) = 2z we have that the joint distribution Px z(¢)z(ep)=z can be
understood as follows: X7, is sampled from the distribution Py Xrg and then each
of the |Tp| entries of X7, is erased independently with probability w = % Denote
by h°(w; z9) the EXIT function of the code X7, (note that this is a random function,

dependent on values of zy on a set 7). This discussion implies

1

KO (w; ) = T Z H(X;|Zi(€), Z(eo) = 20) (3.3)

(note that terms corresponding to i ¢ T, are zero.) From the area theorem and

monotonicity of the EXIT function we obtain

RO (w; 20)(1 — w) < ]Tlng(XM(EO) = 20), (3.4)

where the right-hand side is an effective rate of the code. In all, from (3.2)-(3.4) we

obtain (after taking expectation over zj)

1

€p — €

nh(e) < H(X|Z(e)) - (3.5)

So far we have not used the fact that the code is binary, but now we will. Let
k(To) < nR be the number of unrecoverable information bits given a set Ty of erasures.
Notice that

H(X\|Z(e) = 20) < k(Tp),
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and thus taking the expectation, we obtain
H(X|Z(&)) < E[k(Ty)] = 2nR x BER(ep) .

Together with (3.5) this completes the proof.

3.3 Converse
Proposition 8. Let €3 < €;. For any binary code with BER(e2) < do we have

BER(e;) > sup — (;(R— (1—e€) —GOM) _ 1+R)

{eo:e0<ea} ﬁ (61 - 60) €2 — €

In particular, if BER(e2) = o(1), then

BER(€e;) > 26—;% <ﬁ(fi —(1—€))—1+ R) +o(1)

Proof. To prove the lower bound on h(e;), we may approximate h(e;) in a worst-cast
fashion as a piece-wise constant function. To do this, note that h(e) < h(ep) for all
€ < €y, and h(e) < h(ep) for all € € (€9, €], and h(e) <1 for all € > ¢;. Then the area
theorem gives that

1— € + h<61>(€1 - 62) + h(€2>€2 Z R

We note that
h(e) = Rh¥™°(e) + (1 — R)h™"5(¢)

Using the above two relations, we have

1

€1 — €2

RE™(e)) >

(R— (1 —¢€1) — h(ez)ea) — (1 — R)R™"¥3(eq)
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Using A"~ < 1, we get

L (R (1-a) - he)e) — (5 —1)

WY (e)) > -

o R(El — 62)

If BER(e2) — 0 then h(e}) — 0 for any €, < € by Lemma 7. In this case, we can

write

1
SYs >
V2 R —a)

1
(R=(1-a) = (5-1)
Since €1 > €, the right hand is continuous for all €, < e5. Thus we may take the limit
as €, — €5 to obtain the desired result.
The bounds on BER follow from Lemma 1 and the above two inequalities upon
noticing that for a linear systematic code
eh™3(€)

BER(e) = 5

3.4 Comparing the bounds

The above bound is compared with that of Theorem 5 in Fig.3-1. It can be seen that

the former bound is tighter and more stable.

44



R=1/2, C/R=1.01, BER=0 R=1/2, BER=0 at C/R=1.01

0.5 —— Area theorem 0.5 —— Area theorem
Theorem 1 Theorem 1
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(a) Lower bounds for codes with BER(0.475) = 0 (b) Lower bounds for codes with BER(0.495) = 0

R=1/2, C/R=1.01, BER=0 vs 0.001

0571 ~___ —— Area theorem-BER=0.001
~~~~~~ Theorem 1-BER=0.001
049 ~_ T~ === Theorem 1-BER=0
0.34
o
w
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0.24
0.1
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(¢) Stability of the bounds around BER(0.495) = 0

Figure 3-1: Comparing the lower bounds of Theorem 5 and Proposition 8 for linear
systematic codes of rate 1/2 satisfying a) BER(¢) = 0 at e = 0.475 b) BER(¢) = 0 at
e = 0.495 ¢) BER(¢) = 0 vs BER(¢) = 0.001 at € = 0.495. We note that the bounds
from Theorem 5 are tighter and more stable as BER moves away from 0.
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Chapter 4

Analysis of Belief Propogation

In this chapter we provide tools to study the error dynamics under BP for general
codes and apply them to bound the BER of LDMC(3). The same tools can be used
to bound the error under the optimal (bitwise MAP) decoder as well. Our analysis

shows that for LDMC(3) the gap between BP and optimal decoder is small.

4.1 Review of BP

We recall the notion of a code ensemble generated by a Boolean function f : {0,1}™ —
{0,1} from Chapter 1.3. We also briefly review the notion of a (bipartite) factor
graph associated with a code from the ensemble (cf. [65], Chapter 2). Consider a
code defined on {0,1}*. To every coordinate i € [k], we associate a variable node and
represent it by a circle. We further associate random variables X; S Ber(1/2) to
the variable nodes. Likewise, to every subset A; € A, we associate a check node and
represent it by a square. Every such node represents a constraint of the form y; =
f(Xa,), where y;’s are the realized (unerased) coded bits and X4, is the restriction
of X to the coordinates in A;. We connect a variable node 7 to a check node A; if and
only if i € A, (see Fig. 4-1a). We remark that most references associate a separate
node with y;’s to model the channel likelihoods [41, 65, 78|. In the language of [41],
our description is a cross section of the full factor graph parametrized by y;’s. We

do not make this distinction in the sequel as our primary interest is to analyze the
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decoding error for erasure noise. In this case, we can simply restrict to the sub-graph

associated with the observed bits and do not need to consider the channel likelihoods.

Given a target bit X;, the decoding problem is to estimate (or approximate) the
marginal probabilities px,|y (-|y) for a realization y of the (observed) coded bits. Here
we denote such an estimate by the function 7y, and refer to it as a message. A
message should be thought of as an approximation to the true marginal computed
by the decoder. To study the behavior of iterative decoding methods, it is helpful
to consider the notion of a local neighborhood. Given a target bit X;, we denote by
A(1) the set of its neighbor nodes among the factors, that is, the set of check nodes
whose constraint involves X;. We further define the local neighborhood 0(i) among
the variable nodes to be the set of variables (other than i) that appear in A(i) (see
Fig. 4-1b). Given a vector v € {0, 1}*, we define dv; := vy(;) to be the restriction of
v to the coordinates in d(i). Likewise, if v € {0,1}", then Av; := va(;) denotes the
restriction of v to A(¢). The j-th node in A(7) is denoted by A;(7). The variable nodes
other than ¢ that are connected to A; are denoted by 0;(¢). Similarly, we define the
j-th order local neighborhood &7(i) by recursively unfolding the local neighborhoods
at the boundary &'~1(i) := 9(8""'(i)) — &~(i). In other words, the ¢-th order
boundary is the set of nodes (not in &~*(4)) that are in the local neighborhood of
?71(i). Likewise, AJ(7) := A(071(i)) — AT71(i) (see Fig. 4-2a). The compliment of
A(i) inside A is denoted by A~ (7). Finally, we define AD)(0) := U_, A¥(0).

With this notation we can describe a generic iterative algorithm to compute ;.
Let mpx, be the message (or approximation) for pyx,a~y,. This is the conditional
estimate of the random variables in the local neighborhood of X given all the observed
bits outside the neighborhood. By d-separation, the computation of the marginals

for Xy can be decomposed as follows:

Txo(T0) = > Tox, (00)Pxojox, (10]0x0) & > max,(0x0) [ Tiy=riwodye0-
)

Oxg Oxo AjGA(O
(4.1)

In this way, we obtain an iterative procedure where the messages myx, flow into the

local neighborhood and the posterior estimates 7x, flow out to the target node (see
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Fig. 4-1b). To iterate such a procedure ¢-times, one needs to first approximate the
marginals at the ¢-th order boundary. Once this is done, (4.1) can be applied itera-
tively to compute my,. The factor (sub-)graph obtained after ¢ unfoldings represents
the natural order of recursive computations needed to compute 7mx,, and hence, we
refer to it as a computational graph. Fig. 4-2 shows the case where the computational

graph is a tree.

Belief propagation (BP) is a special case of such iterative procedure where the

input messages are assumed to factorize into a product:

ToxXy = H T9; Xo
i

The number of iterations of BP determine the depth of the computational graph,

e., the order of the local neighborhood on which we condition. We denote by 7*
the message corresponding to px awy,- This is the approximate marginal given
observations revealed in the computational graph of depth ¢. After ¢ iterations, the

marginals under BP can be written more efficiently (compared with (4.1)) as

ngo(xo H Zﬂ-a Xo (020 IL{y; f(z0,0520)}> (4.2)

A;EA(0) 950

with the initial conditions 7% (0) = 7% (1) = 1/2 for all bits.

It can be checked that when the computational graph is a tree, BP is exact, i.e.,
it computes the correct marginals py Ay, given the observations in the depth ¢
graph. We also refer to the correct marginal px,y as the (bitwise) MAP estimate
of Xy. When the computational graph is a tree, the only difference between MAP
and BP estimates is the input messages into the /-th order local neighborhood. In
other words, if the initial messages along the boundary are the correct marginals
Poi xo|a~0y,, then BP iterations recover the (bitwise) MAP estimate. Here A~®) is

the set of check nodes in A that do no appear in the computational tree of depth /.

49



4.2 E-functions

We recall that, in general, a computational graph of small depth (o(log(k))) corre-
sponding to a (check-regular) code ensemble is with high probability a tree (cf. [65],
Exercise 3.25). For such ensembles, we want to study the dynamics of the decoding
error along the iterations of BP. Hence, we need to understand how the error flows
in and out of the local neighborhood of a target node. In other words, we want to

understand how the BP dynamics contracts the input error.

We define E-functions for this purpose. They can be viewed as a mapping of the
input error (at the beginning of a decoding iteration) to the output error (at the end
of the iteration). There are two types of E-functions studied in this work: the erasure

functions and the error functions.

Definition 10 (Erasure function). Consider a code ensemble generated by a Boolean
function f : {0,1}™ — {0,1} with variable node degrees sampled from Deg. Fiz
a = C/R and consider a computational tree of depth 1 as in Fig. 4-2b corresponding
to the target bit Xo. Let M; = f(Xo, XU)), j =1,--+ ,d, where X9 ~ Ber(1/2)%(m1)
are the boundary nodes. Suppose that each boundary node is observed through a (mem-
oryless) BEC channel, i.e., YV = BEC4(XU)) where § = 1 — q is the probability of

error. The function
EPEC(q) = E[P(Xo = 1My, -, My, YD .o YD) X, = 0]

is called the d-th erasure polynomial of the ensemble. Here the expectation is taken
with respect to the ensemble distribution as well the randomization over bits. The

erasure function is defined as

E"™(a,q) = Y P(Deg = k) EF*(q).
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y1 = f(Xo, X2, X)

Y2 = f(Xo, Xo, Xu)

Yz = f(X1, X, X3)

A(0) 9(0) A*0)  9%(0)
(b) Local neighborhood of 0 in the unfolded factor graph

Figure 4-1: The factor graph of a code and the local neighborhood of a target node
are shown. a) The check nodes correspond to observed (unerased) coded bits and
represent the constraints imposed by such observations. b) The factor graph can be
unfolded with respect to a target node. The immediate (variable) neighbors of the
target nodes in such unfolding form its local neighborhood. A recursive algorithm
can first estimate the marginal probabilities myx, for the local neighborhood and then
compute the posterior 7, using (4.1). Here we recall that 90Xy, = Xy().

The d-th truncated easure polynomial is

EZ(a,q) = Y _P(Deg = k)E™(q).
k<d

Similarly, we can define the notion of an error function.

Definition 11 (Error function). In the setup of Definition 10, let Y1) = BSC, (X))

be the result of passing X9 through a (memoryless) BSC channel with crossover
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(a) Computational tree of depth ¢ for a (check-regular) ensemble of degree 3
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BEC,_,
BEC_,
BEC)_,
BEC,_,
BEC)_,
BEC,_,

(b) Local neighborhood of a variable node with BEC inputs

Figure 4-2: a) A computational tree for a (check-regular) ensemble of degree 3 ob-
tained after ¢ unfoldings w.r.t a target node along with the (local) indexing used in
the analysis of BP. We refer to 97(0) as the j-th order neighborhood of 0 and 9°(0)
as the boundary of the tree. b) The local neighborhood of the target node with
leaves observed through BEC channels. This local graph is used to define the erasure

function.
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probability q. The function
EBSC( ) E[P(XO — 1|M17 7Md7Y(1)7"' 7Y(d))|X0 :O]

15 called the d-th error polynomial of the ensemble. Likewise, the error function is
defined as
EP(a,q) = P(Deg = k)E*(q)
k

The d-th truncated error polynomial is

E2%(a,q) = P (Deg = k)E(q ZP Deg = k)

k<d k>d

Remark 2. We briefly discuss the effect of truncating the E-functions here. Clearly
EBEC > EBEC holds pointwise since we drop some non-negative terms from EPC to
obtain E2JC. Likewise EP5¢ < E2IC since we assume all the high degree nodes are
in error when computing EESC. In fact, due to monotonicity, a better upper bound

n EB5C would be

E2%(a,q) < P(Deg = k)EF(q) + EFfY(q) Y P(Deg = k).
k<d k>d
In practice, we choose the truncation degree to be large enough that makes this

adjustment not so crucial.

Remark 3. For linear codes, iterative decoding is often studied in terms of the
input-output entropy or the so called EXIT charts [65] instead of error probability.
For linear codes, the two methods are equivalent as the EXIT function is proportional
to the probability of error. For general codes, however, we would need to invoke a
Fano type inequality to relate the two and this step is often lossy. For instance, in
the case of LDMCs, we can obtain much better bounds by analyzing the probability

of error directly.
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4.3 Bounds via comparison lemmas

The motivation to compute the E-functions comes from various comparison lemmas
in information theory. The idea is to approximate the incoming messages to the local
neighborhoods of BP as if they were induced by simpler to analyze (BEC or BSC)
channels, while preserving certain properties of the inputs. Then we carry out the
local contraction analysis on these simpler message and apply comparison lemmas to
control the error dynamics for the original inputs. To this end, we define some partial

orders on the space of channels with common input alphabets.

Definition 12 ( [21, Chapter 5.6]). Given two channels Py|x and Py x with common
input alphabet, we say that Py x is

e less noisy than Py|x, denoted by Py|x =in. Py x, if for all joint distributions

Pyx we have

L(U;Y) < I(U;Y)

e more capable than Py|x, denoted by Py|x =m.. Py x, if for all marginal dis-

tributions Py we have

I(X;Y) < I(X:Y)).

e less degraded than Py|x, denoted by Py|x =aeg Py'|x, if there exists a Markov
chainY —=Y' — X.

We refer to [49, Sections 1.B, II.A] and [62, Section 6] for alternative useful char-
acterizations of the less-noisy order. In particular, it is known (cf. [62, Proposition
14],[38]) that

Pyix Zin. Pyix <= D(Py||Qy) < D(Py||Qy) (4.3)

where the output distributions correspond to common priors Py, Q) x. The following

implications are easy to check

Py|x <daeg Pyiix = Pyix <in. Pyix = Pyix <me. Pyix.
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Proposition 9. Consider the dynamical system
gin (o) = 1= 2E25(a, ¢ (4.4)
initialized at q5¥° = ¢ with o = C/R. Similarly, define
a1 (o) = B2y (o, ¢ (4.5)

with q55¢ = xy. Let 05 be the BER of a (check reqular) ensemble under BP after (
iterations. Likewise, let ™A be the BER under the optimal (bitwise MAP ) decoder.
Then

_ BEC
1 C_Ie2 (1) —o(1) < SMAP < 5;313.
Furthermore,
1 — g (0)

5 —o(l) <677 < ¢(1/2) +o(1)

with o(1) — 0 and k — oc.

To prove the proposition, we need several definitions and two lemmas.

Definition 13 (BMS [65, Chapter 4.1]). Let W be a memoryless channel with binary
input alphabet X and output alphabet Y. Let the two element cyclic group act on X
and Y. Denote by — the action of its generator (transposition). We say that W is

a binary memoryless symmetric channel (BMS) if it is invariant under —, i.e., if

W(ylz) = W(—y| —z) for ally € Y.

We also define the total variation distance (TV) and y*-divergence between two

probability measures P and () as follows:

(.25 [1ap-dql

w2 [

dQ)%lQ— 1.
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Lemma 10. Let W be a BMS channel and define its probability of error, capacity

and x?-capacity as follows

P.(W) 5 ) (4.6)
C(W)=DW(0)Py),  Pr=5W([0)+W([1)) (4.7)
Le(W) = x*(W([0)[| Py). (4.8)

The following holds:

1. Among all BMS channels with the same value of P,(W') the least degraded is
BEC and the most degraded is BSC, i.e.

BSCs =Zgeg W =4eg BECos, (4.9)

where <4, denotes the (output) degradation order.

2. Among all BMS with the same capacity C' the most capable is BEC and the least

capable is BSC, i.e.:

BSCi_p-1¢) Zme W =me BEC1_¢, (4.10)

where =,,. denotes the more-capable order, and h™" : [0,1] — [0,1/2] is the

functional inverse of the (base-2) binary entropy function h : [0,1/2] — [0, 1].

3. Among all BMS channels with the same value of x*-capacity n = I,2(W) the
least noisy is BEC and the most noisy is BSC, i.e.

BSCi2- 2 Zin W 2in BECy1 (4.11)

where =y, denotes the less-noisy order.

The next lemma states that if the incoming messages to BP are comparable, then

the output messages are comparable as well.

56



Lemma 11. Fiz some random transformation Pyx, xm and m BMS channels Wy, ..., W,.
Let W : Xy — (Y, Y]") be a (possibly non-BMS) channel defined as follows. First,
Xi, ..., Xy, are generated as i.i.d Ber(1/2). Second, each Y; is generated as an ob-
servation of X; over the W;, i.e. 'Y; = W;(X;) (observations are all conditionally
independent given Xi"). Finally, Y is generated from all Xo, XT* via Py|x xm (con-
ditionally independent of Y™ given X7"). Define the W channel similarly, but with
W;’s replaced with Wj ’s. The following statements hold:

1 If W, =geg Wy then W <geg W
2. If Wy =i, Wy then W <y, W

Remark 4. An analogous statement for more capable channels does not hold. To
this see, let Y = X+ X+ X, be a parity constraint. Then the channel X — (0,Y7,Y3)
is equivalent to U +— (Y7, Y5) in the setting of Example 2 in §4.4.

The lemmas are proved in Appendix A.

Proof of Prop. 9. We sample codes from the family and consider the (local) compu-
tational graph of a fixed bit Xy with depth ¢. It is known that for large codes, the
computational graph of depth ¢ has a tree structure with high probability. Hence, we
may assume that the graph is a tree.

Consider the depth ¢ tree emanating from X,. The channel
Ty : Xo — (computational tree of depth ¢, A(Z)Yo)

is a BMS (recall that AOY = Yaw (o) denotes all the coded bits observed in the tree
of depth ¢). We note that running ¢-steps of BP is equivalent to decoding Xy from
the output of T;. In other words 6BF = P.(T,) is the error we want to bound. Further
note that the structure of the tree is included as part of the channel, so that P.(7})
is computed by randomizing over possible realizations of the graph as well.

Now condition on the first layer of the tree. If the number of variable nodes in 9(0)
is m, then the restriction of T to the first layer has the structure of Lemma 11. Indeed

for each choice of Xy = x9,0Xy = 09, Payy|xy,0x, simply indicates whether or not
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all the constraints in the local neighborhood are satisfied: Pay;|x,,0x, (Ayo|Zo, 00) =
HjeA(O) L4y, =f(20,0;20)}- Furthermore, if we set W; = T;_; to be the corresponding tree
channel emanating from X,’s (with j € 9(0)), then due to the locally tree assumption
their observations are independent.

Now assume by induction that Tj_; <4es BEC;, ,. Then by Lemma 11, we have

Ty Zdeg T, where T} is the tree of depth ¢ in which the channels W; are replaced with

BEC Note that if we condition on the degree d of X,, then the T' channel has

qe—1-

error EP¥EC(a, ¢,_1). By averaging over the degrees, we obtain
Pe(Té) = EBEC(a7 q@—l) Z EECEIC(O% 912—1) = @/27

where the inequality is due to truncation (recall that in ESBdEC all nodes of degree larger
than d are assumed to have zero error—see Remark 2). To complete the induction step,
note that 7} =<deg BECy, by Lemma 10. We thus have P.(1;) > ¢;/2 as desired.

The proof of the BSC upper bound is obtained in a similar manner after replacing
the input channels to 7, with BSCs and invoking the reverse sides of Lemmas 11,10
again.

Finally, BP and MAP decoding differ only by the initialization of beliefs at the
leaf nodes. Since the MAP channel at the leaves is a degradation of BECy, the lower
bound on MAP follows as well.

4.4 A counter-example

A counter-example is presented in |19, Problem 15.11] to show that the less noisy
property is strictly stronger than less capable. The example is instructive but involves
non-BMS channels. Here we give a more natural counter-example (from a coding-
theoretic perspective) using the parity function and BSC/BEC channels. The purpose
of the example is to show that some coded bits may be easier to recover from a less

capable channel. It also serves to show that an analogous statement of Lemma 11
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above for more capable channels does not hold.

Ezample 2. By Lemma 10 below, if € < h(J), then BEC, is more capable than BSCj
and if € <1 — (1 — 2§)? then BEC, is less noisy than BSC;. We show that for some
e < h(9), the BEC, channel is not less noisy by giving an explicit construction.

Let X;, Xy be independent Ber(1/2) random variables. Let U = XOR(X;, X3)
be their parity and Y; = BEC.(X;), Y; = BSCs(X;) be their observations. By [19,
Problem 6.18], the property of being more capable tensorizes, as does that of being
less noisy [62, Proposition 16|, [73, Proposition 5|. It thus suffices to show that for
some € < h(J) we have

I(U;Y1,Y2) > I(U; Y1, Ys).

We denote by Ns the number of flips (resp. by N, the number of erasures) in the
BSC (resp. BEC) channel. It follows that

I(U;Y1,Ys) = 1 — h(P({Ns is even}) = 1 — h(6* + (1 — §)?)

while

[(U;Y1,Y) = P({N. = 0}) = (1 — ).

We can easily check that the inequality

(1—€)? <1—h(6*+(1-6)?

holds for € € (1—/1 — h(62 + (1 — 6)2), h(d)]. We note that the interval is non-empty
since 62 + (1 — )% > ¢ for all § < 1/2.

In fact, parity bits can become noisier as soon as BEC, loses its less noisy property.

The next example illustrates this point.

Ezample 3. Let Y; = BEC.(X;) and Y; = BSCys(X;). Set 6 := A/n and € := \N/n.
Then by Lemma 10 below, if ' < 4\ — 7, then BECy/, is less noisy than BSC,, for
large enough n and 7 > 0. We show that for some X' > 4(1 + p)A with u > 0, the

channel BECy, is asymptotically (for large n) more capable but not less noisy than
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BSC/n.

First note that X'/n < h(\/n) holds asymptotically if N = ¢\ for any fixed c.
Indeed we can easily check that lim, o h(x)/x = co. Thus for all ' = cA, the BEC)/,
channel is more capable (for large enough n). To see that it is not necessarily less
noisy, let X; ~ Ber(1/2) be an ii.d sequence. Let U, = > | X; (mod 2) be the
parity of the first n bits. Again since the two properties tensorize, it suffices to show

that for some ) = ¢\ we have
lim I(U,; Y™) > lim I(U,; Y™).

To show this, we note that the number Ny of flips (resp. N, of erasures) in the BSC
(resp. BEC) channel is asymptotically distributed as Poi(A) (resp. Poi()\)). It follows
that

lim [(Uy; Y™) = 1 = lim h(P({N; is even}) =1 — h(% + %«52)‘).

Using the taylor series expansion of the binary entropy function around 1/2, we have
that

lim I(U,; Y™) = e +0(e™)),

21n2

whereas

’

lim I(U,; Y") = limP({N, = 0}) = "

Our claim now reduces to checking that the inequality

—Anh < L +0(e™)

¢ 2102

holds for some A and all g > 0, which follows easily after passing to the limits.

4.5 Computing E-functions for LDMC(3)

In the rest of this section, we provide an algorithm to compute the FE-functions

for LDMC(3) and use Proposition 9 to obtain upper and lower bounds for BP and
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bitwise MAP decoders for this family of codes. The degree distribution of LDMC(3)
is asymptotically Poi(3«) distributed where « = C/R. In this case, the truncated

erasure polynomial is

d
EZ%(a,q) = Y P(Poi(3a) = k)EF™(q).
k=0

Computing the erasure polynomials is more involved for LDMC(3) than LDGMs
since the BP messages are more complicated. For LDGMs, the messages are trivial in
the sense that every uncoded bit remains unbiased after each BP iteration. This does
not hold for LDMCs, and it is in fact this very principle that allows BP decoding to
initiate for LDMCs without systematic bits. Hence, to analyze BP locally, we need to
randomize over all possible realizations of the bits in the local neighborhoods. This is
a computationally expensive task in general, but one that can be carried out in some

cases by properly taking advantage of the inherent symmetries in the problem.

The BP update rules are easy to derive for LDMCs. Let Y; be the majority of 3
bits Xo, X1, Xo. Then if Y; = 0, the check to bit message is
P(X,=0]Y; =0) 1 1

- =14+ =+ — 4.12
" P(X, = 1Y, = 0) RS 412)

where r; = P(X; = 0)/P(X; = 1) are the priors (or input messages to the local
neighborhood). The posterior likelihood ratio for X is 7o = [[;ca(g) 725 We now use
these update rules to compute the E-polynomials for LDMC(3). In Appendix B, we
provide a Python generated list of the erasure polynomials for LDMC(3), which are

used in various places throughout this chapter and in §5.2 for code optimization.

Let ¢ = 1—q be the probability of erasure at the boundary. For bits of degree zero,
the probability of error is clearly % and for bits of degree 1 the probability of error is
;11 independent of ¢q. To see this, consider the computational tree of a degree 1 bit X
at depth 1. There are two leaf bits in tree. Suppose that neither of the leaf bits is
erased. This happens with probability ¢?. Conditioned on this, only when the two leaf

bits take different values can X, be fully recovered and this conditional probability is
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%. Otherwise, the bit remains unbiased and must be guessed randomly. The overall
contribution of this configuration to the probability of error for Xy is ¢>/2. One other
possible configuration is when only one leaf bit is erased. In this case the target bit
is determined whenever the unerased bit disagrees with the majority, which happens
with probability }1. When the unerased bit agrees with the majority, it weakens the
(likelihood ratio) message sent from the majority to the target bit. In this case, the
message passing rule in (4.12) shows that the probability of error is . Overall, the
contribution of this configuration to the probability of error is 2¢(1 — ¢)/4. Finally, if
both bits are erased, which happens with probability (1 — ¢)?, then the probability of
error is again %. Adding up all the error terms, we see that Fi(q) = }t. It is true for
any monotonic function that E;(q) is a constant. Indeed if f is monotonic, then the
decision rule for estimation of any degree 1 node depends in a deterministic fashion
on the value of f and not on the distribution of local beliefs.

The first interesting case where the error probability depends on the erasure prob-
ability 1 — ¢ happens for degree 2 nodes. We work out the computation of Es(q),

which contains the main ideas to compute the full error polynomial.

Ezample 4 (Computing Fs(q) for LDMC(3)). For a degree 2 bit X, there are two
majorities connected to the bit, and four leaf bits in the tree. We need to compute
what message is sent from each majority to the target bit along each realization and
compute the corresponding error probability. Consider the case where all four bits at
the leaves are unerased. Since the erasure events are independent, the probability that
all four leaves are unerased is ¢* and we incur an error of 1/2 in recovering X, only
when all the neighboring leaves agree, i.e., the leaf configuration 9°X takes values in
{0000,0011, 1100, 1111}. The message sent from each majority to the bit in this case
is P(x = 0)/P(x = 1) = 1. The leaf configurations above each have a 1/16 chance of
being realized. The overall contribution to the probability of error is % in this case.
When all the bits are erased, the message sent to the target bit is either 1/3 or 3 by
each majority. If the two majorities agree, which happens with probability 5/8, the

messages amplify and give the target bit a 0.9 chance of correct recovery. If they do

not, we get two conflicting messages which cancel out each other, and that leaves the
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target bit unbiased. Overall, the error in this case is (5/8 x 1/10+3/8 x 1/2)(1 —¢)*.
When three bits are unerased, we consider the majority with only one unerased bit.
The bit that is recovered correctly disagrees with its majority with probability 1/4,
in which case the target bit will be recovered correctly. The remaining 3/4 of the
time, the message sent upward in the tree to the target bit is 2, giving the bit a
2/3 chance of being recovered. The other majority either determines the bit with
probability 1/2 or sends it a message of 1 otherwise. Overall, the error incurred
from such configurations is 4¢*(1 — ¢)/8. Next, consider the case where two bits are
unerased. If they belong to the same majority, say AY, they can recover the target
bit with probability 1/2, hence, the probability of error is P(Xy # AY)/2 = 1/8. The
contribution to the probability of error from such configurations is 2¢*(1 — ¢q)?/8. If
they belong to different majorities, which happens with probability 4¢*(1 — ¢)?, then
each majority determines the bit 1/4 of the time independently of the other majority.
If neither majority fully recovers the bit, then each majority sends a message of 2 or
1/2 upward. The messages agree with probability 5/9 and disagree with probability
4/9. Hence an error can happen with probability 9/16 x (1/5x5/9+1/2x4/9). The
total error incurred from this contribution is 9/16 x (1/5x5/9+1/2x 4/9)4¢*(1—q)*.
Finally, when only 1 bit is unerased, its majority can determine the target bit with
probability 1/4. When it does not determine the bit, it sends a message of 2 or 1/2
upward. The other majority sends a message of 3 or 1/3 upward. The two majorities
agree with probability 7/12 in which case the message upward is either 6 or 1/6,
giving an error of 1/7. If the majorities disagree, the message upward is either 3/2
or 2/3 giving an error of 2/5. Putting things together, the error polynomial as a
function of ¢ for a degree 2 bit is:

P*(—q+1)

3¢(—q+1)°  (—q+1)!
> T

4 4

4
q
Es(q) = 5+ + @ (—q+1)% +

For the general case, the ideas are the same. Consider the message sent from the
a majority check to a target bit modulo inversion. This means that we identify a

message m and its inverse 1/m as one group of messages. This is a random variable
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that depends on the erasure patterns as well as the realized values at the leaves. Let
us first condition on the erasure patterns. In this case the message is either in {0, oo},
{1}, {2,1/2}, or {3,1/3}. In the first case, the conditional error is zero, hence, we
assume that one of the latter messages is sent. Let M; be the message sent from the
i-th majority to the target bit modulo inversion. If we represent {1} with a constant,
{2,1/2} with variable s, and {3,1/3} with variable ¢, then the distribution of M;

(modulo inversion) can be represented by the following polynomial

f(s.t,q) =q"/2+2q(1 — q)s + (1 — q)*t (4.13)

where 1 — ¢ is the erasure probability at the leaves. For a target node of degree d, the
joint distributions of messages M, - - - , M, is given by a product distribution [, pas,-

Modulo permutation of messages, these can be represented by

f(s,t,q)" Z q)s'th. (4.14)

jikij+k<d
Define S; = Liareq2,1/2)3 and T; = Lyaseqs,1/3}} to be the indicators that either {2,1/2}
or {3,1/3} are sent, respectively. Let S = Y0, S, T = 3. T;. Note that P(S =
5T =k) = fk(q), i.e., the coefficient of s/t* in the above expansion of f(s,t,q)?
is the probability of the event {S = j,T" = k}. If we find the conditional error Ej;
associated with each monomial term in f, then we can conveniently represent the

erasure polynomial as follows

EFg) = > fi(@)Ex. (4.15)

jkij+k<d

To this end, define M(j, k) = (M;(j, k)) for all i < d with

2 0<i<j
Mi(j,k)=14 3 j<i<j+k (4.16)

1 otherwise,
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to map S, T back to a realization of the incoming messages to Xy. By symmetry
P(Xo # Xo|S = j,T = k) = P(Xo # Xo|M(j, k)).

Let A = (A;) with A; = 1¢a,y,—x,} being the indicator that the i-th majority agrees
with the target bit. Let pg;x = P(A = a|M(j,k)) be the conditional probability
that a is realized given the incoming messages. Since the events {A;Yy = Xy} are

independent conditioned on M;’s we have

. 1
Daljk = HP(Az = aZ|Mz(]7 k)) = H 1+ M(] ]{;)2%—1. (417>

i

The conditional probability of error given the joint realization of messages and ma-

jority votes is given by

1 HMz(ja k,)l—2ai

1+ H ]\L(y7 k)l—Zai’ 1+ H Mz(], k‘)l_2ai) (418)

Ejpja = min(

It is convenient to define

B = Z PaljkEjr A (4.19)

ac{0,1}4
and think of it as the error associated to the monomial 3’2* in (4.14). Algorithm 1
summarizes the proposed procedure to compute the erasure polynomial. For instance,

for degree 4 nodes we have the following erasure polynomial:

EPC(g) = 0.03125¢% + 0.25¢7 (—q + 1) + 1.25¢°(—q + 1)
+2.875¢°(—q + 1)? + 4.6875¢* (—q + 1)*
+4.4375¢% (—q + 1)° + 2.84375¢%(—q + 1)°

+0.9375¢(—q + 1)7 + 0.15625(—q + 1)®.

Fig.4-3 compares EZ¥C with the empirical BER of degree d nodes across samples
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Algorithm 1 Compute E4(q)

0: function ERRORPOLY(d):

Define f(s,t,q) = ¢*/2+3/2¢(1 — q)s + (1 — ¢)*t
Expand the d-th power of f

S

fd(Q) = Z fjdksjtk
.k

Initialize £ := 0
for k:=1tod and j <k do
Compute Ej; using (4.16)-(4.19)
Update E := E + Eji.f5,
end for
return £
0: end function=0

S22

Error function of a degree 4 bit Error polynomial Eg vs its empirical mean

1 — Error polynomial E, 0.07 4 —— Error polynomial Eg
-e- Empirical BER -~ Empirical BER

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Erasure probability Erasure probability

(a) d =4 b)d=8

Figure 4-3: Comparing the erasure polynomials EPC EBEC with their empirical
means. The empirical curves are obtained using 50000 samples from the computa-
tional trees of depth 1 for target nodes of degrees 4 and 8, respectively, with leaves
observed through BEC, as in Fig. 4-2b.

from its depth 1 computational tree with BEC inputs for d=4,8'. For many code
ensembles an exact computation of EFFC is often computationally prohibitive. In
such cases, one can sample from the computational tree and find EZ¥C’s by solving
a regression problem. Such functions are useful in optimizing codes as we will see in
the next sections.

Recall the definition of ¢P¥C(xg) from (4.4)-(4.5). Once we compute the E-

polynomials, we iterate the dynamical system in (4.4)-(4.5) to find bounds on the

'In some references, E-polynomials are called EXIT functions and the corresponding plots are
called EXIT curves.
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C/R | (EPEC BER,) | (EPEC,BER;) | (EPEC, BER,) | (EPEC, BERs)
0.25 | (0.194,0.202) | (0.127,0.146) | (0.097,0.117) | (0.068,0.093)
0.5 | (0.166,0.177) | (0.106,0.124) | (0.070,0.090) | (0.047,0.066)
1 (0.137,0.139) | (0.077,0.081) | (0.044,0.047) | (0.025,0.028)

Table 4.1: Comparing BERy, the empirical bit error rate of degree d nodes after 10
iterations of BP, with the theoretical lower bounds EP¥C at various C//R’s. The lower
bounds are computed at 1 — 2BER for each C'/ R where BER is obtained empirically.

decoding error. We compare the bounds with the empirical performance of BP in
Fig.4-5 for LDMC(3). We see a good agreement between the two. In particular, we
see that the lower bound for LDMC(3) is almost tight. To explain this, we need to
consider the distribution of posterior beliefs in LDMC(3). As shown in Fig.4-4, the
empirical histogram of beliefs after convergence of BP at C'/R = 1 has three major
spikes: two spikes at p = 0,1 and one at p = 0.5. The rest of the beliefs are almost
uniformly distributed across the range [0,1]. It thus seems reasonable to approxi-
mate the posteriors obtained by BP as if they were induced by erasure channels. We
emphasize that this phenomenon is specific to ensembles of degree 3. For larger de-
grees, the histogram has a pronounced uniform component (see Fig. 4-7). Thus one
cannot expected a similar agreement between the BEC lower bound and the BER

performance (see Fig. 4-6).
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8000 - 12500 1
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probability that the bit is 0

(a) C/R =1

0l .

T T u
0.0 0.2 0.4 0.6 1.0

probability that the bit is 0

(b) C/R = 0.25

T u
0.0 0.2 0.8 1.0

Figure 4-4: The empirical histogram of belief distributions for LDMC(3) with k& =
40000 bits. The number of bits that are 0 with probability close to p are shown as a
function of p for a) C/R=1Db) C/R = 0.25.
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LDMC(3)- lower bounds for BP and MAP LDMC(3)- upper and lower bounds for BP vs empirical BER

051 @ -@- MAP lower bound-5 iterations 0.51 -=- MAP lower bound-5 iterations
BP lower bound- 5 iterations BSC upper bound-5 iterations
] —+— LDMC(3)-k=40000, BP steps=5
0.44 0.4+

0.3 3
p (') p 0.3
o e o

[
0.2 o 0.2
]
Q.
e
0.14 © 0.14

©
)
e
L SN,

0.0

0.00 025 050 0.75 1.00 125 150 175 2.00 0.00 025 050 0.75 1.00 125 150 175 2.00
C/R C/R

(a) Density evolution lower bounds for MAP and(b) Bounds from density evolution vs empirical
BP BER

Figure 4-5: The LDMC(3) performance with 5 iterations of BP along with the bound
of Proposition 9 using ¢ = 5 and E4<jo-functions. a) The density evolution dynamics
of (4.4) has a unique fixed point. Hence both bitwise MAP and BP lower bounds
converge to the same point. We remark that this property does not hold for general
codes (see Conjecture 1 and Remark 5 below). b) The BP performance is compared
against the bitwise MAP lower bound. The lower bound is almost tight since the
empirical histogram of beliefs in LDMC(3) is much closer to one induced by an erasure
channel than BSC (see Fig. 4-4).

For smaller degrees, it is possible to lower bound F; with a simpler to compute

polynomial A, for all ¢ € [0, 1]. We describe this idea next.

Table 4.1 compares the values of E¥¥C(1 — 2BER) with the empirical BER of
degree d nodes in the LDMC(3) ensemble after 10 iterations of BP.

The ideas to compute the BSC upper bound are similar. Recall that in (4.19),
Ej. is the error associated to the monomial s/t* (meaning that j of type 1 and k of
type 2 messages are received) for LDMC(3). In general we can re-write (4.19) in the

form
> Bt (q)

where again Fj, .., is a channel-independent term that corresponds to the conditional

error given the input types at the boundary. The only term that depends on the chan-

d

nel is f; L, (¢). Thus for any channel once we find the corresponding f-polynomial

we can construct upper/lower bounds as above.

Let us construct the f-polynomial of LDMC(3) for BSC. Again consider the local
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neighborhood of a target node connected to one majoiry. Note that for the two leaf
nodes in the boundary, each realization 00,01, 10, 11 is equally likely (after possible
flips by BSC). We need to compute the likelihood that they agree with their majority
given the realization. Let X, be the boundary bits, X be their observations through
BSC(p), and Y the majority. We proceed as follows.

e The observed value is 5X0 = 00:

P(Y = 0]0X, = 00) o P(0X, = 00|0X, = 00)P(Y = 0[0X, = 00)P(dX, = 00)
+ P(0X, = 00]0X, = 01)P(Y = 0]0X, = 01)P(0X, = 01)
+ P(0X, = 00]0X, = 10)P(Y = 0/0X, = 10)P(0X, = 10).

We can check that normalization constant is 4. Hence
P(Y = 0[0X, = 00) = 4((1—p)*x1/44p(1—p)1/2x1/4+p(1—p)1/2x1/4) = (1—p)*+p(1—p).
The message corresponding to this event is

P(X,=0]Y =0,0X, =00) =1+ 2/«

with a = %. The complimentary event P(AY, = 1|0X, = 00) has probability

p(1 —p) + p* and the corresponding message sent to the target node is

P(X, = 0]Y =1,0X, = 00) 1

P(X,=1Y =1,0X,=00) 1+2p

Let s represent 1+ 2/« and ¢ represent 1+ 2« (modulo inversion). Then so far

we have P(0X, = 00) = 1/4 and

P (X, = 0[0X, = 00)

P(Xo = 105, —0p) (PP F )+ (= p) e - ).

69



e Suppose that X, = 11 is observed. By symmetry
P(Y =0/0X, = 11) = P(Y = 1]0X, = 00) = p(1 — p) + p°.
The corresponding message is 1 + 2a. Likewise
P(Y = 10X, = 11) = P(Y = 00X, = 00) = p(1 — p) + (1 — p)?
with message ﬁ Thus P(0X, = 11) = 1/4 with

P(X, = 0]0X, = 11)
P(X, = 1|0X, = 11)

=t(p(1 —p) +p?) +s((1 = p)* +p(1 — p)).

e Suppose that 9X; = 01 or Xy = 10 is observed. We have P(dX, = 01) =
P(0X, = 10) = 1/4 with

P(Y =0[0X, = 10) = P(Y = 1]0X, = 10) = 1/2

by symmetry. The corresponding messages in each case are, 1 + «a + 1/« for

Y =0 and m for Y = 1, which we represent by z.

e Adding up all the terms, we get the following f-polynomial to compute EBS5C:

—_

f= g + S (tp(1—p) +p*) + s((1—p)* + p(1 — p))). (4.20)

[\

BSC

We use this polynomial to compute EZ7; and obtain an upper bound on BP error

using Proposition 9. The upper bound is compared with the simulation results in

Fig.4-5.

4.6 Comparing LDMC(3) with LDMC(5)

It is natural to ask how the BER curves behave for LDMC(d) as d grows. This

question is in general computationally difficult to answer. The girth of the compu-
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tational graph grows exponentially fast with d and BP iterations do not seem to
stabilize quickly enough when d is large. Hence, one needs to consider codes of large
length and more iterations of BP. Here we compare the performance of LDMC(5)
with LDMC(3). We also compute the erasure function of LDMC(5) and compare
the corresponding bound with simulations. As mentioned before, the spiky nature of
histogram observed in Fig. 4-4 is specific to the ensembles of degree 3 and hence one
cannot expect the BEC lower bound of Proposition 9 to give equally good predictions
on BER for higher degrees.

We first work out the computation of EBFC for LDMC(5). As before, we need to

consider various cases for realization of erasures at the input layer:

e No input bits are erased. This case occurs with probability ¢*. If the input bits
are balanced, no error occurs. The complimentary event in which the bits are
not balanced has probability 5/8, in which case the message to the target bit is
P(X, =0)/P(X, =1) =1 and error is 1/2. The corresponding term is 5/8¢*.

e One bit is erased. This happens with probability 4¢*(1 — ¢). There are two
cases to consider in which an error may occur: 1) all three unerased bits agree
with the majority; this happens with probability 1/4, and the corresponding
message is 1. 2) Two unerased bits agree with the majority; this happens with
probability 9/16; the corresponding message is 2, which we represent with .

Overall, the error term is 4¢*(1 — ¢)(1/4 + 9/16u).

e Two bits are erased. This happens with probability 6¢?(1 — ¢q)?. There are
two cases in which an error may occur: 1) both unerased bits agree wit the
majority; this happens with probability 7/16, and the corresponding message is
4/3, denoted by w. 2) one unerased bit agrees with the majority; this happens
with probability 1/2, and the corresponding message is 3, denoted by z. Overall,
the error term is 6¢%(1 — ¢)*(7/16w + 1/2z).

e Three bits are erased. This happens with probability 4¢(1 — ¢q)3. Two cases

need to be considered: 1) the unerased bit agree with the majority, which
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happens with probability 11/16, in which the message is 7/4; we represent this
message by v. 2) the unerased bit disagrees with the majority, which happens
with probability 5/16 and gives a message of 4, represented here by s. The
corresponding term is 4q(1 — ¢)*(11/16v + 5/16s).

e All bits are erased. This happens with probability (1 — ¢)* in which case the

message is 11/5. We represent this message by ¢. The corresponding term is

(1—q)'t.
e Adding up all the terms, we get the following polynomial

f(q)=5/8q* + 4¢3(1 — q)(1/4 + 9/16u) + 6¢*(1 — q)*(7/16w + 1/22)
+ 4q(1 — q)3(11/16v + 5/16s) + (1 — q)*¢.

Using (4.15) we compute EglEOC for LDMC(5) and then apply Proposition 9 to compute
a lower bound on BER. The results are shown in Fig. 4-6 along with comparisons
between ensembles of degree 3 and 5 for 5 iterations of BP. We note that the effect
of truncation is of a lower order than the scale of the plots in Fig. 4-6. Since E4(q)

is monotonically decreasing in d and ¢, we can deduce for all a < 1 that
|EPFC(a, q) — E2TY (o, q)| < EfyC(0)P(Poi(5) > 10) = 0.001.

Thus the gap between ¢, and 5% for the degree 5 ensemble cannot be attributed
to the truncation, but rather to the role of the “uniform” component of the belief
histogram shown in Fig. 4-7.

We still see in Fig. 4-6a that ¢PEC converges to a unique point regardless of the
initial condition for LDMC(5). We remark that the same holds for the error dynamics
of the large d limit obtained below in (4.25). In the view of these observations, we

put forth the following conjecture:

Congecture 1. For any ensemble generated by a monotone function, ¢°¥“(z) converges
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to a unique fixed point independent of x.

Remark 5. We note that the conjecture does not hold for general ensembles. For
instance, we have ¢?¥°(1) > 0 for ensembles generated by XOR whereas ¢f=(0) = 0
for all £. In fact, Mackay showed in [46] that the (check regular) ensembles generated
by XOR are very good, meaning that for large enough degree they can asymptotically
achieve arbitrarily small error for rates close to capacity under MAP decoding. Evi-
dently, such performance cannot be achieved by BP since for any degree larger than

1 ¢ = 0is a fixed point of BP, i.e., BER is 1/2 for all £. This point shall be explained
further in Chapter 5 (see Fig. 5-2).

LDMC(5)-lower bounds for BP and MAP LDMC(5)- empirical BER vs LDMC(3) and BP lower bound
051 @ -®- MAP lower bound-5 itertions 0.5 1 —#— LDMC(5)-k=400000, BP steps=5
BP lower bound-5 iterations LDMC(3)-k=400000, BP steps=5
o ——- BP lower bound-5 iterations
0.4+ 0.4 4
]
0.34 . 0.31
4 L 4
w w
o 9, o
0.24 LN 0.2
.
) )
0.1 ®e 0.1

3
aaa

L -
0.01 o-e-e 0.0
000 025 050 075 1.00 125 150 175 2.00 000 025 050 075 1.00 125 150 175 2.00

C/R C/R

(a) Density evolution lower bounds for MAP and(b) Bounds from density evolution vs empirical
BP BER

Figure 4-6: The LDMC(5) performance with 5 iterations of BP along with the lower
bound of Proposition 9 using ¢ = 5 and EEEC-function. a) The density evolution
dynamics of (4.4) has a unique fixed point. Hence both bitwise MAP and BP lower
bounds converge to the same point. b) The BP performance is compared against
LDMC(3) and the BP lower bound. The lower bound can be seen to be looser
compared with the scenario in Fig.4-5. This can be attributed to the fact that the
empirical histogram of beliefs in LDMC(5) shown in Fig. 4-7 is less spiky compared
with 4-4 and can no longer be well approximated by one parameter (i.e., the erasure
probability). Furthermore, LDMC(5) can be seen to perform better than LDMC(3)
for all erasure probabilities. However, we note that longer codes are needed to avoid

short cycles in the computational graph and achieve good decoding performance for
d=>5.
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Figure 4-7: The empirical histogram of belief distributions for LDMC(5) with k& =
400000 bits after 5 iterations of BP. The number of bits that are 0 with probability
close to p are shown as a function of p for a) C/R=1Db) C/R = 0.25.

4.7 Tighter bounds for systematic LDMC(d) with d =
3.5

It is possible to obtain tighter bounds for systematic ensembles. Here we study the
case of systematic regular LDMC(3). The next section extends the analysis to the
large d limit for LDMC(d).

Consider a regular ensemble of (check) degree d. Let € be the probability of erasure
and R be the rate of the code with variable degree 1 4 d(1 — R)/R. Note that we
need d(1 — R)/R € Z to ensure that a regular systematic code exists. As before let
a = C'/R. For a regular systematic ensemble of rate R, we have the following erasure

function:

d(1 - R)

7 ,aR) =i)EP*C(q,a).  (4.22)

EP(q,0) = (1—aR) Y  P(Bin(
i<d(1-R)/R

The key observation is that BP can be initially loaded with the information we obtain

from systematic bits. In other words we can iterate the dynamical system in (4.4)

with 2o = 1 — aR and EBEC as above. Clearly, ¢PF¢(z,) gives an exact estimate for

the first iteration of BP and can serve as an upper bound for the error 62°. The

results are shown in Fig. 4-8 for R = 1/2 and d = 3. The bounds can be seen to
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be rather tight. We note that the accuracy of these bounds depend primarily on the

rate and the check degree of the ensemble and not the regularity assumption.

empirical BER vs BEC bounds, k=40000 empirical BER vs BEC bounds, k=40000
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Figure 4-8: The performance of systematic regular LDMC(d) of rate R = 1/2 using
5 steps of BP along with the upper and lower bounds obtained from the erasure
functions for a) d=3 b) d=5. The upper bound uses one iteration of (4.4) with the
erasure function as in (4.22) and initialized at xy = 1 — aR. The initial point is the
fraction of unerased bits observed in the systematic portion of the code.

4.8 Upper bound for systematic LDMC(d) as d — oo

Now we consider the case where the node degree tends to infinity for systematic

LDMC(d) of rate % To get an upper bound for LDMC codes in this case, we can

analyze one step of BP. To do this, we first need to understand what a typical majority

to bit message looks like as degree increases.

Consider a majority Y of d + 1 bits Xy, -, X4. Let r; = ggi?g. Then the BP

update rules for X, are as follows:

P(Xo=0Y =0) _ 14 > oitt=as2 L Lier 1/mi
P(Xo=1]Y =0) Z|I\<d/2 [Ticr 1/ri

(4.23)

Set © = C'/R. Initially, around p = /2 fraction of the bits are return by the channel.
We have that of the d — 1 nodes that xq is connected to, around dp are recovered
perfectly. In this case, roughly dp/2 send a message of r; = oo and the rest send

r; = 0. There are around (1 — p)d nodes that are undecided and send a message of
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1 into the local neighborhood. Then if we group the terms in the numerator that
contain the strong 1/r; = co messages with the terms that send the uninformative
r; = 1, we get the dominating terms in both the numerator and denominator of (4.23).
Let S’ be the subset of nodes with r; = 1. Given that |S’| &~ d(1 — p), the majority
to bit message is asymptotically as follows:

P(Xo=0Y =0) _ 2 1cs |1=d(—p)/2 ! Py

P(Xo= 1Y =0) 2 1cs 11<(d-2)(1—p)/2 | Y i<t-2apyz (57

By Stirling’s approximation, the numerator behaves as:

2

9d(1=p)
d(1—p)m

and the denominator is roughly

9d(1-p) /2.
Then the triangle to bit message when Y = 0 is

2

1+24)/ .
* d(l1—p)m

Some of the incoming messages to zy will cancel each other and the rest will amplify.
If Ny is the number of majorities that evaluate to 0 and N is the number of majorities

that evaluate to 1, then the decoding error at x is

1
1 + (1 + 21 / m)“\%*]\fl‘

If we integrate this expression w.r.t the distribution of Ny— N; then we get the average

(4.24)

error at xg. One can show that the probability that a node agrees with its majority

%(1+\/%).

Note that Ny — N; is asymptotically normal by the CLT. When Y = 0, Ny — N; has

1s:
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mean d'z4/2; and variance d'z where d’ = d(1 —r). When r = 1/2 we get d' = d/2
and initially we have p = 1/2. Thus Ny — Ny ~ d'z, /nd(12—p) + VdxZ where Z is

standard normal. We can write this as No — Ny ~ Vd'z(Vd'z\/ 2 + Z).

We can integrate (4.24) w.r.t to this density to find the average decoding error
after one iteration of BP. Setting ¢’ = d(1 — r) and taking the limit as d — oo, we
find that

. > 1 o0 1
lim oo (2)dz.

— = [
000 1 4 (1+2 ﬁ)( de/2e+/3) —oo ] 4 ¢ o

(4.25)
This integral gives an upper bound on the decoding error of BP in the asymptotic
regime of large d. Fig. 4-9 shows the above bound versus the empirical performance
of LDMC(17). BP converges fast for systematic LDMCs, which explains the accuracy
of this one step prediction.

R=1/2

0.50 A —— LDMC(17)
—— upper bound for large d

0.45
0.40 1
0.351

i

4 0.30 1
0.251
0.201

0.15 -

0.10 A

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
C/R

Figure 4-9: The empirical performance of LDMC(17) after 5 iterations along with the
predicted on step error in the large d limit obtained from (4.25).
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Chapter 5

Applications in code optimization

In this chapter we study optimization of LDGMs. Recall that LDGM(d) is the (check
regular) ensemble of degree d generated by the parity function. We show that a joint
design over LDGMs and LDMCs can uniformly improve the performance of LDGMs
in some simple settings.

As discussed in the introduction, LDGMs are some of the most widely used families
of linear codes. They are known to be good both in the sense of coding [46] and
compression [79]. In fact, [46] shows that LDGM(d) (for odd! d > 3) enjoys, from
a theoretical perspective, almost all the good properties of random codes. Indeed as
shown in Fig. 5-1, even relatively short LDGMs can achieve reasonably small error
under MAP decoding. As the codes get longer, and the degrees grow, the error can
be made arbitrarily small for all C//R > 1. From a practical perspective, however,
their decoding is problematic. The problem is that MAP decoding is not easy to
implement in practice even for moderate size codes. BP decoding is not feasible
either since for such codes, as generated, BP has a trivial local minima in which
all bits remain unbiased. One may hope that adding a small number of degree 1
nodes would enable BP to get around this initial fixed point and achieve near optimal
performance. Unfortunately, this is not the case. Improving the performance of BP

for LDGMs is a non-trivial task that often involves some careful code optimization

"'When d is even the all one vector is in the kernel of the generator matrix. This implies that
BER is 1/2.

79



with many relevant parameters. We briefly discuss this matter next.

——LDGM(5)
—+ LDGM(3)
repetition |

S
ik Y SR
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C/R

Figure 5-1: The empirical performance of LDGM(d) for d = 1,3,5 under (block)
MAP decoding for rate R = 1/2 and k = 1000. It can be seen that the codes quickly
achieve a threshold-like performance close to the IT limit. In the view of Theorem 5,
bitwise MAP decoding cannot yield any major improvements for either codes.

To understand how LDGM(d) behaves under BP, we first construct its erasure
function and then appeal to Proposition 9. With the notation of Fig. 4-2, we note
that a parity check A; of degree d can determine a target bit X if all of its d —
1 leaf bits 0;X, in the local neighborhood are unerased. Otherwise, it sends an
uninformative message. Thus if ¢ is the probability of erasure coming into the local
neighborhood after some iterations of BP, then at the next iteration the target bit
remains erased with probability (1 — ¢?~!)". This gives the i-th erasure polynomial
EBEC(q) = 1/2(1 — ¢%1)%. Since the variable node degrees are Poisson distributed

(with parameter ad), we obtain the following erasure function

EP¥C(a, q) = % Z P(Poi(ad) = i)(1 — ¢*~ )" (5.1)

5.1 D-curves

We can now study, as before, the local dynamics of error under BP. Let ¢P¥“(z¢) be
computed as done in Proposition 9. We note that ¢P(0) in this case is (asymptoti-
cally) exact for predicting BP error, meaning that whenever the computational graph

is a tree the average error is equal (and not just lower bounded) by ¢P¥C. This is
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due to the fact that parity checks preserve the BEC structure of the input messages,

hence, we can write

0p" = ¢;"(0) +o(1).

Thus for BP to make any progress during decoding, we can impose the following

(necessary) contraction constraint, called the D-function of the ensemble:

1 —
-4 EP¥C(a,q) > 0. (5.2)

D(a,q) := )

Similarly, we can define the truncated D-function:

Deufo,q) =+ B%C(a,) > 0. (5.3)

In other words, we simply want the outgoing error to be less than the error flowing

in. For iterative decoding to take off, we need D(0) > 0. Then the first point where
D(q) = 0 occurs determines the limiting performance of BP. Fig. 5-2 shows the results
for LDMC(3) and a mixed LDGM ensemble, which is defined as follows. Let A be a
degree distribution over check degrees. An LDGM ensemble is said to be A-mixed if

each check node in the code is selected i.i.d from A.

5.2 Improving LDGMs via LDMCs

It is easy to define the erasure function of such an ensemble in terms of the erasure
function of its regular components. Let \; := P(A = 7). Suppose that A has finite
support with cardinality m. Then the erasure polynomial of an A-mixed LDGM

ensemble is simply
BEC _ om—1 T BEC
By (onq) =2 H ELDGM(i)(O‘)\h q)- (5.4)

i=1

We note that this expression is half the probability that a variable node receives

an uninformative message from each component of the code in the ensemble. The
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Figure 5-2: The truncated D-function from (5.3) viewed as a function of ¢ for o« = 1.1.
The first zero of D(q) determines the fixed points of BP dynamics in (4.4). The fixed
points remain stable with respect to small variations in the truncation degree d = 10.
Two ensembles are considered: a) A mixed LDGM ensemble using A\; = 0.05 fraction
of degree 1 nodes and A3 = 0.95 fraction of degree 3 nodes. The degree 1 nodes are
needed so that D(0) > 0 is satisfied. It can be seen that BP has fixed point near 0.
Thus small perturbations in degree distributions cannot help BP reach the MAP level
of performance shown in Fig. 5-1, which corresponds to the right most zero of the
D-function. More sophisticated optimization is required to improve the performance.
b) The LDMC(3) ensemble. As expected from the observations in Figs. 4-5-4-6, D(q)
has a unique fixed point. See also Conjecture 1. Furthermore, the relatively large
value of D(0) suggests that the convergence is fast for this ensemble.

code optimization problem now can be formulated in terms of the dynamical system
in (4.4) associated with this F-function. Suppose that we want to run ¢ iterations of
BP to decode an LGDM. Let QESC(O) be density of unerased bits after ¢ iterations
with C/R = «. If we are interested in minimizing the BP error at two different
C'/R’s, say a1 and aw, then the following optimization problem becomes relevant

maximize, ql}?ic(o) + ql]?c];:zc (0)

S
A > 0.
This is a non-convex optimization problem. We can solve it up to local optimality
using gradient descent. Solving for a; = 0.9,a5 = 1.1 over LDGM(d) with d < 3,
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we find that Ay = 0.08, A\ = 0.22,A\3 = 0.7. The D-curve and the corresponding
performance are shown in Fig. 5-4. The same figure demonstrates the performance
after we simply remove the lower degree parities by setting A\; = 0, A\ = 0, and replace
them with an LDMC(3). Since LDMC(3) dominates the repeition code everywhere,
we expect this new LDGM /LDMC ensemble to have lower error than the pure LDGM
ensemble. We can see that the LDGM family exhibits a sharp transition at the end
point C/R = 0.9 while the combined ensemble degrades more smoothly beyond this
point while maintaining smaller error everywhere else. It can also be seen that the
D-curve with optimal parameters almost touches the z-axis for some small ¢ when
a = 0.9. This is an artifact of the optimal designs. Such proximity with zero induces
a near fixed point, from which BP requires many iterations to escape until it reaches
good performance.

We can also optimize jointly over the LDGM/LDMC ensemble by computing the
erasure polynomial as before. Solving the optimization problem at a; = 0.8, s =
1.1 for the joint LDGM(d)/LDMC(3) ensemble (with d < 3) gives A\ = 0.0, Ay =
0.261, A3 = 0.482 and Appmcs) = 0.257 and for the LDGM ensemble (with d < 3) we
get Ay = 0.001, Ay = 0.669, A3 = 0.33. The results are shown in Fig.5-3.
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Figure 5-3: a) Code performance is compared for optimized LDGMs (over degrees
< 3) and combined LDGM/LDMC ensembles using 80 iterations of BP for k =
50000. The optimized ensemble has parameters \; = 0.08, Ay = 0.22, A3 = 0.7. The
LDGM/LDMC ensemble is obtained by replacing the degree 1 and 2 components of
the optimized ensemble with LDMC(3). Since LDMC(3) dominates repetition for all
noise levels, it is reasonable to expect that the combined LDGM/LDMC ensemble
performs better. b) The D-curve for the optimized LDGM ensemble is shown. The
low values of D (relative to the position of the fixed point) and the near zero point
at ¢ = 0.25 indicate that BP requires many iterations to converge. This behavior
is typical for optimal designs shown at the bottom figure. The fixed point near
0.8 is compatible with the error of 0.105 obtained at a = 0.1 on the left. ¢) The
progress of BP error is shown at C'/R = 0.9. The nearly flat region in the error
curve can be explained by the presence of a near fixed point in the D-curve. Overall,
the experiments suggest that the joint ensemble converges much faster and achieves
better performance uniformly for all erasure levels.
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optimized designs, ¢c_1=0.8,c_2=1.1
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Figure 5-4: BER curves for optimized LDGM/LDMC and is compared with optimized
LDGM. The optimized joint design has degree distributions A\; = 0.0, A\ = 0.0, A3 =
0.62 and Arpmces) = 0.38 and the optimized LDGM has degree distributions A; =
0.001, Ay = 0.669, A3 = 0.33 . The codes are optimized to minimize the sum of BERs
at a; = 0.8 and ay = 1.1.
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Chapter 6

Codes as channel transforms

In this chapter we study LDMCs from the perspective of a channel transform. This
notion arises when one employs a concatenated code. Concatenated codes are the
codes that act on pre-coded information. This means that the input to the code is
not an arbitrary point in the alphabet space, but rather the codeword of an outer
code. This technique is often used to design codes with high performance and low
decoding complexity. For instance, to approach the capacity of the erasure channel
with LDPCs one needs to use high degree variable nodes. These in turn create
short cycles in the computational graph of the BP decoder, which is problematic for
accuracy of BP. To mitigate the impact of cycles, one needs to use very large codes
and many iterations of BP, leading to long delays in the communication system as
well as an expensive decoding procedure. A common method to circumvent these
difficulties is to employ a two (or more) layer design. A low complexity inner code
fi + A¥ — A™ is used to reduce the channel error, without necessarily correcting any
erasure pattern. Then an outer error correcting code f, : A™ — AF cleans up the
remaining error. The outer code here can be an LDPC but one that faces a weakened
channel, hence, it requires fewer BP iterations and can be made to be shorter. It

can also be a (short) error correcting code that relies on syndrom decoding. In either

87



case, the overall communication path looks like the following

Q i Cg i Q
Am I3 gk Jy gn BESe y 96 gk g4 gm
Q(e):chanr:erl transform

Here Y is the outcome of the channel, g; is inner decoder and g, is the outer decoder.
The domain of the outer decoder is chosen to be different from the alphabet of the
message space on purpose. This is to accommodate various decoding messages that
maybe transmitted from the inner decoder to the outer decoder. Two common choices
in the literature are: 1) hard decision decoding (B = .A); in this case the inner decoder
can only transmit a hard decision on each bit to the outer decoder corresponding to
its best estimate of what the bit value is. 2) soft-decision decoding( B = R); in this
case the inner decoder is allowed to send the bitwise probabilities of error to the outer
decoder. In either case, we can view the action of the inner code together with its

decoder as one channel Q).

For hard decision decoding, it is clear that the channel (after interleaving) is a
BSC with crossover probability equal to BER. For soft-decision decoding, the output
of the channel transform is a sequence of probabilities. We view this channel as a
product channel that sends the marginals on every bit to the outer decoder Q(e) :
AF — Hle m;. In practice, often an interleaver is placed between the inner and outer
decoder to ensure that the bit errors are not correlated, hence, it makes sense to model
the action of the inner code with a product channel. To study the performance of

codes as channel transforms under erasures we introduce the notion of soft information

where h; = h(m;) is the binary entropy of the i-th marginal produced by Q(¢). The
soft information can be seen as the average per-bit information sent from the inner
code to the hard decision (outer) decoder. If the inner code is wrapped with an
interleaver, I, will closely approximate the capacity of the inner channel Q(¢). In this

case, two information bits of the inner code are likely to fall in different blocks of the
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outer error correcting code. Hence, the possible dependencies between the bits is not
relevant.

We note that for a linear code I4(¢) = 1 —2BER(€). Thus we can use the bounds of
Theorem 5 together with Proposition 1 to obtain similar bounds on soft information.
For LDMCs we can measure the soft information empirically. The results are shown

in Fig. 6-1
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Figure 6-1: Empirical soft information for LDMC(3) with k£ = 20000 compared with
repetition and linear codes satisfying BER = 0.25 at C'/R = 0.5 for three different
rates. The codes are systematic.
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Part 2

Hamming’s combinatorial model
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Chapter 7

Combinatorial trade-offs for linear

codes

7.1 Introduction

In this part of the thesis, we study the graceful degradation problem for the Hamming
model. As discussed in the introduction, the goal is to understand what codes can
achieve smooth (a, B)-profiles similar to what is shown in Fig. 1-2b. Henceforth, we
assume familiarity with the material discussed in §1.2.

We first briefly review the relevance of the (a, 3)-property for graceful degradation
and explain the main results of this chapter. One often encodes a message by a map
f to build tolerance against external noise. For instance, one may map z to f(x) and
save the outcome on a storage device. Then noise may act by erasing some of stored
bits in an adversarial manner. One then observes the non-erased bits and provides
an estimate = for x. With the conventions of §1.2, a map can fully recover the input
from [(0)n erasures. As the number of erasures exceeds £5(0)n, it is desired that x
be recovered with good fidelity, that is, we want |z — Z| to be as small as possible.
In general, 5(a)n erasures on the output can cause at most ak distortions in the
input. Indeed if we let & be an arbitrary point in the pre-image, it is guaranteed that
|z — 2| < ak. In some cases, this arbitrary point is the best estimate available for

the input. For instance, if ¢ is large and f is linear, then one cannot find an estimate
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with provably lower error !. Thus it makes sense to think of 1 — a as the quality of
estimation in recovering x against adversarial noise with intensity §. In this sense,
B* (see (1.3) for definition) can be thought of as a measure for the ability of the code
to partially recover the input in the presence of strong erasure noise.

A related concept is that of unequal protection (UEP) codes [51, 11, 55, 63].
A code with minimum distance d is said to have the UEP if, for some fixed 7, it
can always recover the i-th input bit from more than d erasures. In this sense, the
UEP codes are often said to have the graceful degradation property. A map with
the (a, §)-property does not necessarily provide this type of biased protection. If d
erasures occur there is no guarantee that any specific bit can be recovered exactly.
However, more can be said about the joint estimates. For instance, if a code has
B(1/k) > B(0) and exactly d erasures occur, then the symbol error rate (SER) on
estimating m bits from d erasures can be shown to be at most % In other words,
the (o, 5)-property does not provide unequal protection for any specific bit but it can
still ensure graceful degradation of overall SER as the noise level exceeds the error
correction capabilities of the code depending on how fast § increases with a.

It is a classic problem in coding theory to find maps with large 5(0). It is thus
useful to have estimates on how large 5(0) can be. The answer to this question is
not yet known unless the alphabet size is large, though various upper bounds on 3(0)
exist (cf. [48]). The recent work has extended this problem to finding estimates on
B(a) [59, 61]. Again the exact answer is known only when the alphabet size is large.
We shall see in the next chapter that f(a) < 1— 1’70‘ with p := Z, where equality can
be achieved if ¢ > n. In this chapter, we focus on a different problem.

The above discussion motivates the need for a code with large minimum distance
and monotonically increasing (a). Such a code can fully recover the input when
the number of erasures is less than its minimum distance, and as the number of
erasures exceeds its minimum distance, it can offer some partial recovery guarantees.
It turns out, however, that there is a trade-off between full and partial recovery.

In the (a, f)-spectrum, we can fix one point, namely, the minimum distance (or

"When ¢ > n, the Chebyshev radius of a linear subspace of Fy is equal to its diameter.
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equivalently /5(0)), and ask how large S(«) can be at some other point? We give some
results in this direction for linear codes. Our results show that there is a trade-off
between the minimum distance ¢ of a linear code and its 8* (see (1.3) for definition).
We characterize the optimal trade-off between § and S* (over large alphabets) and
construct some optimal codes that can achieve it. We further show that optimal
codes are not graceful in the sense that they must send some input vectors with large
weight to codewords with minimal weight 6. A priori, the («, 3)-property asks for the
mapping of dissimilar messages to be also dissimilar and as such is a relaxation of the
locality sensitive hashing (LSH) property ([59]). Our results show, however, that at
least in the case of linear codes there is a stronger connection between the two in the
sense that if a code sends dissimilar messages to dissimilar codewords, it must also

send some similar messages to similar codewords (see Theorem 15).

7.2 Geometric systems

We briefly review the notion of an («, #)-geometric system, which will be used in the
proofs and ensuing discussions. We refer the reader to [59] for further details.

The (a, B)-property of f is determined by its image as well as a choice of an
embedding. If we write f(x) = xG, then we can think of the columns of G as elements
of projective space P¥~!, which we will call S-points, while projective images of the k
standard basis vectors are going to be called a-points. In this language, for example,
1 — p* is the largest fraction of (-points through which we can pass a hyperplane
avoiding all a-points We denote the set of a, 8-points, respectively, by I'y,I's. We
also define the sets of a-only points I'q\ s := I'x\I's, and S-only points I'g\o := I'g\la.

We remark that the minimum distance of a map is a property of its image, hence,
it depends only upon the configuration of its S-points. On the other hand, g* is
a property of both the image and the embedding and as such depends on the ar-
rangements of both a-points and S-points. The bounds in this section are thus to be
interpreted as follows: fixing a property (the minimum distance) of the image, bound

p* for all possible embeddings, i.e., any configuration of a-points.
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7.3 MDS codes

Here we show that linear MDS codes have §* = 1 — % when n > 2k — 1 (see (1.3)
for definition of §*). We remark that this result can be seen as a generalization of
Theorems 8 and 9 in [52]|. Recall that a linear map is MDS if and only if the points
in I'g are in general linear position. We start with a simple observation to show that

the bound n > 2k — 1 is sharp:

Proposition 12. If n < 2k — 1 then the there exists a linear MDS code f : IF’; — Iy
for which |f(x)| < n —k+1 implies || < k — 1. In other words, f > 1 — % can be

achieved at o« =1 — %

Proof. Pick the a-points such that I', C I'3. Then any hyperplane containing & — 1

[-points must contain at least one a-point. |

Conversely, when I', C I's one can easily check that if p > 2 then f(a) <1 — %
for all @ < 1. Indeed the hyperplane containing any & — 1 points in I'g, cannot
contain any a-points due to the general position property of I's. One can ask whether
g>1-— % can be achieved for some a < 1 for a different configuration of a-points?
Let us consider another simple configuration of a-points before we prove the general
result. One can place each a-point on a line between two [-points. We can now
construct a graph whose nodes are the n S-points and there is an edge between two
[-points if the line connecting them does not contain an a-point. The fact that the (-
points are in general position implies that every a-point can be in the span of exactly
one pair of S-points when k& > 3 (two general lines do not meet). The graph is thus
missing k edges compared to the complete graph on n nodes. By Turan’s theorem,
it must contain a (k — 2)-clique. Then a hyperplane containing the clique (and no
further S-point) has a relative (asymptotic) weight of 1— % and does not pass through
any a-points (otherwise, the line connecting the [-points spanning this a-point and
the (k — 2)-space spanned by the clique points will intersect, violating the general
position assumption). Hence, asymptotically, we must have § < 1 — % for all a < 1.

In the same manner one can show that placing a-points in the span of o(k) f-

points will not improve on [* asymptotically. But proving the result for general
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configurations of a-points and finite n requires different ideas.

Theorem 13. Suppose the image of f : F¥ — F" is a linear MDS code. Ifn > 2k —1
then there exists v € F* with |x| = k such that |f(x)| <n — k+ 1. This implies that

*x 11
pr=1-1.

Proof. Suppose we have a collection B of [ points in general position and an arbitrary
collection A of m points inside P". We claim that if [ > r + m, there exists an F-
rational hyperplane containing r points in B and no points in A. Note that the
desired result follows from this claim upon setting m = k,r =k — 1.

We prove the claim by induction on ». When r = 1, each hyperplane is a point in
P!. If I > m + 1 there must exist a point in B that is not a point in A. Now suppose
that the claim holds in dimension r. Take a collection B of [ > r +m + 1 points in
general position inside P!, Since [ > r 4+ m + 1, there must exist a point p € B
such that p € A. We project the sets A and B from p down to P". The image of
B under this projection is a set B’ consisting of [ — 1 points in general position. We
have [ —1 > r 4+ m. Hence, by the inductive hypothesis, there exists a hyperplane in
P” that contains r points in B” and no points in the image of A. Lift this hyperplane
by taking the cone over it that passes through p. This gives a hyperplane inside P"*1
that contains r + 1 points of B and no points of A. This proves the claim. |

Remark 6. Consider solving a system of linear equations y = xGG where G is a kxn
matrix with Kruskal rank & (i.e., any k columns of G span a k-dimensional space). It

is possible to find = with |z| = k that satisfies some k — 1 of the constraints.
For MDS codes of length n < 2k — 2 we have the following result:
Theorem 14. Suppose the image of f : IE"; — Fy is a linear MDS code with ¢ > k. If

k+1<n<2k—1, there existsxe]F'; with |x| > k — sk for all0 < sk <2k —n—1
such that |f(x)| < k — sk. In other words, f(a) < % foralla < 1—s.

Proof. Consider the sets A of m arbitrary points and B of [ points in general position
inside qu, where m <1 < m+r. We claim that there exists a hyperplane containing

[ — m points in B and no points in A if ¢ > m.
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Project the sets A, B successively from a point in B that is not in A. We repeat
this step by projecting from a point in (the image of) B that is not in (the image of)
A until no further such point exists. Note that we can project at least | — m times
(since the points of B are in general position). After this, we land in a projective
space of dimension 1’ < r — [+ m. The image A’ of A under this projection is a set of

cardinality m (counted with multiplicity). If ¢ > m, there exists a hyperplane inside

Py that contains no point of A’. To see this, note that there are £=' hyperplanes
q q—1

7’
q

lf L hyperplanes that pass through

inside P{E;'q. For a fixed point p € A’, there are

/ /
q'f -1 q'r‘ 71_1
q-1 = m q—1

p. By the union bound, if

, there must exist a hyperplane that
passes through no point of A’. We lift this hyperplane back into Py, . This will give
a hyperplane passing through at least [ — m points of B and no points of A.

It further follows that for s < r — (I — m) there exists a hyperplane containing
[ — (m — s) points in B and no more than s points in A. Indeed one can remove a

point p € A and apply the above argument to A\{p}. [ |

Remark 7. The bound f(a) < % is tight and is achieved if ', C I'g, that is,
if the code is systematic. In fact, this result, combined with Theorem 13, can be
used to characterize which k x (k — 1) sub-matrices of G have full-weight elements in
their left null space (as mentioned above) over large alphabets: if G = [I|A] has full
Kruskal rank, then a k x (k — 1) sub-matrix of G has a full weight element in its left
null space if and only if it is a submatrix of A. This follows from Theorems 1 and 2

and the fact that a shortened MDS code is still an MDS code.

7.4 Linear codes

In this section we give a converse bound on * for definition) as a function of ¢
for linear codes. Our bound is alphabet independent, and can be tight (over large
alphabets). We prove some further (a, #)-limitations of the codes that achieve the
bound and construct some examples of such codes. In particular, we show that if
a code with positive distance achieves the bound, then there exists some x with

relatively large weight for which |f(z)| = dn.
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Theorem 15. Let f : IF’; — Ty be a linear code of relative minimum distance 0
with ¢ > k. Then there exists x € Fi with |z| = k such that |f(x)] < (1 +
\/1 — p(ﬁ;)? + n(1f%)2) + 1. In other words,

More generally, for a < 1 we asymptotically have

1—1—%—% 41 — a(1 =19))
WS“T“‘\/“ o+ E-22)

Furthermore, if | f(z)| > n—t for all x with |x| = k and some t < k, then there exists
x with |x] > t such that |f(z)] < (n — )52 In other words, for all a < p(1 — (%)

we have B(a) < pp*(1 — p*). In particular, if a code achieves the above bound on 5*,
then for all « < £(1 — /1 — %) we have f(a) = 4.

Proof. Consider two sets A of m arbitrary points and B of [ points inside P{éq with
the property that any hyperplane contains at most [(1 — 0) fraction of the points in
B. Consider successive projections of A, B from the points in (the image of) B that
are not in (the image of) A. Note that, to project from a point p, we draw a line from
p to every point (except for p) in A, B, and map that point to the intersection of
the line with P". Suppose that after s projections we can no longer find any B-point
to further project from. We say that a B-point is lost in projection if its image is
not defined (i.e., it lies on the point from which we project). Let A be the number of
points in B\ A that are lost in the projections after ¢ steps. Suppose the image of A
contains m’ unique points py, - - - , ppy inside P where ' := r — ¢t. The image of B
contains [ — A points counted with multiplicities. Let b; be the number of points in
B that get mapped to p; in the image of A. We may assume that by > by > ... > .
On average, there are ¢ = l;l—f‘ > % points of B lying on top of a point in A. If
we pick a hyperplane that passes through py,--- ,p, inside P(F;, it must contain at

least 7’=2 points in the image of B. We can lift this hyperplane back to qu to get

(I=X)(r—t)

points in B. The assumption on B
m

a hyperplane containing at least A +
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requires that

&gp—@—»“_”+g (7.1)
Using A > t, we can write this as

t>?%—m+r (7.2)

This implies:

> (1 - J i ”) 73

If ¢ > m, there exists a hyperplane inside P{é’q that contains no point of A’. To see

¢’ -1
pa

this, note that there are £—

hyperplanes inside PI@;. For a fixed point p € A’, there

q'r/ 1_1 rlfl_l

q—1

are hyperplanes that pass through p. By the union bound, if q;__ll > mqu,

there must exist a hyperplane that passes through no point of A’. Setting [ := n, m :=

k,r:=k—1, we get

Br<l—=—< -+ /1—— (7.4)

1 1
2 2 p

S|+

as desired. In general, we can remove s points from A and apply the above argument

to A\{p} so that for « <1 — 7 we have

Blo) < 1- ——2 1 \/1 e (7.5

Now suppose that f(z) > n—t for all x with |z| = k. Then the above sequence of
projections must stop after ¢ steps. Applying the same argument as above will prove

the second part. |

Remark 8. This result shows that there is a trade-off between the “smoothness”
of a code and its ability to correct errors. The trade-off stems from two opposing
tendencies: to correct errors a code needs to spread out messages while smoothness

requires local structures (cf. [7]).

Remark 9. This result strengthens the connection between the («, 8)-property and

the locality sensitive hashing (LSH) property. A priori, the («, 8)-property is only a

98



relaxation of the LSH condition (see [59]), in the sense that a map that is good in
the (o, B)-sense sends far away messages to faraway codewords. This result suggests

that such map must send some nearby messages to nearby codewords as well.

Remark 10. For MDS codes the above Theorem states that * <1 — /l) for p > 2
and 3* < % for p < 2, which agrees with Theorems 13,14. The repetition code can
asymptotically achieve § = 0 and * = 1. Thus the bound is tight at the two extreme

points 6 = 0,0 =1 — %. The bound can be achieved at other values of § as well.

Remark 11. It follows from the above proof that any linear code achieving 5* = 1
in the asymptotic regime (as k& — o00) must be repetition-like, that is almost all
columns of the generator matrix must have weight 1. Indeed the depth of the above
projection sequence can be at most o(k) for any such code. LDMCs on the other
hand can achieve §* = 1 asymptotically (or otherwise). Therefore they are superior

to linear codes in this (admittedly weak) sense as well.

Remark 12. It is asked in [59] what codes can (asymptotically) achieve a = 5 when
p is not an integer. It follows from our proof that such codes, if they exist, cannot be
linear (over large alphabets). Indeed one can check that there are no repetition-like
codes achieving a = 3 for non-integral p and any linear code achieving f* = 1 is

repetition-like as discussed above.

Remark 13. The Theorem states that the codes achieving the bound on £* must
send some heavy weight vectors to low weight codewords. This need not be true for
codes in general. The second example below gives codes of relative distance ¢ > 0 for

which |f(z)| > dn for all z with |z| > 2.

Problem 1. The bound of Theorem 15 can be tight when the alphabet size is large.

It is a (hard) open problem to improve the bound over small alphabets.

Example 5. Here we present a non-MDS code with positive minimum distance that
achieves the bound on * from Theorem 15. The proof of Theorem 15 suggests that

such codes must look like a repetition code after a certain number of projections

k

5 lines in P*~! that are in general linear position. This

from S-only points. Take

means that any s lines are not contained in a 2s — 2-dimensional subspace. Place
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three [S-points and one a-point on each line. Place the other g a-points in general
position w.r.t the lines and place two [-points on each of them. The code has length
3% + 2% = % and dimension k. One can check that this code has, asymptotically,
0 = % By Theorem 15, g* < %. A hyperplane that contains no a-points passes
through at most one S-point from each of the lines. We can thus find a hyperplane
passing through % [-points and no a-point, but we cannot find a hyperplane passing
through more g-point without containing an a-point. This gives §* = %, which agrees

with the bound of Theorem 15. Note that after % projections from the chosen S-only
points the code looks like the repetition code with p = 2.

Ezample 6. The Theorem above shows that the optimal codes (i.e., codes that achieve
the bound on 3*) send some heavy weight messages to codewords of weight dn. This
property need not hold for non-optimal codes. Here we give examples of codes for
which |f(z)| > dn for |z| > 1.

Consider maps f1, fo where f; : IF’; — [y has distance d;n and f; : F’;_l — [y has
distance don. Extend f> to a map on IF’; by adding a zero row to its generator matrix.
Construct a map f : F} — F3" sending z +— (fi(z), fo(z)). Then f has distance 6;n
but |f(z)| > (61 + d2)n for all x with |z| > 1.
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Chapter 8

Maps over large alphabets

In this chapter we address the question of finding the best parameters that can be
achieved for an (o, 3),-map. First, we present a converse result for such maps. Next,
we present an achievability scheme for (o, #),-maps which employ the extremal con-
figuration characterized by Ahlswede and Khachatrian [3]. For large enough ¢ this
scheme is optimal as it attains the converse bound. Then we utilize Reed-Solomon

codes to construct explicit optimal (¢, 3),-maps for ¢ > n.

8.1 Converse for (o, 3),-maps

Theorem 16. Let g N Then, for an (o, B),-map to exist, we must have
hy() = 1 = min{pRy 5, (8), p(1 - )}. (8.1)
Furthermore, for a sufficiently large field size q, we must have
a>1—p+pB+o4.1). (8.2)

Proof. Let f be an (o, 3),-map. Assume that C € ]F’; is the maximum size code with
relative distance a, i.e., |C| = A,(n,an). Encoding each codeword in C with the map

k . .
f, we get a set of vectors f(C) € F; where any two vector are at Hamming distance
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at least Sn. Therefore, f(C) is a code with relative distance §. This implies that
Ay(n,an) = [f(C)] < Ag(n, Bn). (8.3)
From the GV bound we know that
A,(n,an) el gFA—ha(e))+olk), (8.4)
On the other hand, the linear programming bound in [1] ensures that
Ay(n, ) < gRbm @ o), (.5)

where

q _ a1 q=2 2 — —
RLP1(5)—hq( q B p q\/ﬁ(l 5)((1 1))

Now, the bound in (8.1) follows by using (8.4) and (8.5) in (8.3). We obtain the bound
in (8.2) from the fact that for a large enough g we have h,(a) = a+o0,(1) Va € [0,1]. R

8.2 Achievability scheme for («, 8),-map

Here we present an achievability scheme to construct an (o, 8),-map. One approach
to construct (o, §)-maps over F, is as follows. Cover IF’; with configurations of diam-
eter at most ak. Pack in ) as many points (codewords) of pairwise distance more
than fgn as there are configurations in the cover. Then map configurations to code-
words. To obtain good (a, ) properties, it makes sense to look for configurations
that contain a large number of points, for having fewer codewords leads to better
separation. A natural choice is to cover with Hamming balls. The Hamming balls are
too small when ¢ > 2 and, hence, do not give satisfactory («, ) properties. Thus,
one can ask for the shape and cardinality of extremal configurations. This was a long-
standing combinatorial problem and settled by the diametric theorem of Ahlswede
and Khachatrian [3|, which we quote below.

We are interested in large subsets with bounded diameter. The cardinality of the
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largest such subset is
Ny(d, k) = max{|A| : ACF; s.t. diam(A) < d}.
For x € F}, define J(x) = {j : z; = 0} and
U={m eF::|J(x)N[l,k—d+2i]| > k—d+i}.

Note that each set U; can be written as a cartesian product of some (k — 2d + i)-
dimensional ball of radius ¢ with F~%". In particular, Uy is a low dimensional cube

7 inside IF’;. We are now ready to state the diametric theorem:
Proposition 17 (The diametric theorem|3|). Let r be the largest integer such that

k—d—1

k—d+2r <min{k+1,k—d+2 )
q—

}.

Then N,(k,d) = |U,|.

We will make use of the extremal configurations that appear in the theorem in the
covering step mentioned above. We state the achievable parameters in the following
result. For large ¢, this result establishes the tightness of the converse bound in

Theorem 16.
Theorem 18. Fix q¢ > 2 and set

p(g—2)
q(1—hq(1/q))

p q=2

q>2

eyl

Then for all B < 1 — 5 and k;,m; — oo with 3£ — p, there exists (cvi, Bi)-maps

[ Fi = Fr with (g, 5;) — (o, B) if
0 2 max(Z 1= phy (A} or hy(a/2) 2 1=p-+pha(8)  (86)

Proof. Let r(k,d) be the integer as in the diametric theorem. We cover ]F’; with

103



Uy (k,a)’s. Write
Uy (k,a) = Brig,a) X Fﬁ‘”(’“’d)-

Define t(k,d) = k — d + 2r(k,d). Now we can mod out the second factor so that

(k,d)

covering IF’; with translates of U, 4) reduces to covering Iﬁ‘é with Hamming balls

of radius r(k, d). Define
K(d,X) = min{m : UX, S, = X, diam(S;) = d}
and
W(r,X)=min{m : U, B, = X,rad(B;) = r}.
Given a linear code C' C X, denote its covering radius by 7w (C) and further
define

w(r, X') = min{m : there is an m -dimensional linear code C' C X with r..(C) < r}.

We have W(r,F}) < g rFa) < ¢t(0=ha(r/D)+000gt) where the second inequality is from
[17]. We can thus bound the number of configurations of diameter d needed to cover

IF’; as follows

K(d.FE) < W (r(k, d), Fib) < ot o ghd-halGig) totostia)

Using the GV bound, we can see that (a, 8) is achievable asymptotically if

r(k, ak)

tlk, o) (1= ol

holds as k — oo. Setting 7 := r(k, d)/k, we can rewrite the above in the form

T

(I—a+27r)(1 - hq(m)) < p(1 = he(B))

Furthermore, note that for & > 2/q and ¢ > 2, we have 7 = }]_Tg‘ for large k. Hence
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the achievable region contains the curve

q(1 —a)

(0= () = (1 = ()

when o > %. In other words

. 1«
hl}(ﬁ (aapaq)) 2 1_t+f (87)
pop
if @ > %. On the other hand, when a < % we have 7 := 4. Covering F¥ with
Hamming balls of radius ak/2 gives a lower bound
he(e/2) <1 = p+ phy(B) (8.8)
on achievable 8’s. This proves (8.6). [

Fig. 1 shows the bounds in (8.6)-(8.2) for some finite values of q.

8.3 Truncated Reed-Solomon codes

Here we give an explicit family of codes that achieve optimal («, 3)-trade-offs for

q > pk. Set & := 1 — a and consider the Reed-Solomon code frs:V — ]ng where V
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is the subspace of ]F’; formed by its first @k coordinates. Note that frsisa (0,1 — %)—
map. Now let 7wy, be the projection to V' map and define the truncated Reed-Solomon
(TRS) code frgs : Fi — FPF as follows: frrs(x) = frs(mv(x)). Any vector x € F}

with wt(x) > ak projects to a non-zero vector in V. Hence

wt(x) > ak = |frrs(x)| > (1 — —)pk,

> | S

which means that frgs is a (a,1 — %)—map. Furthermore, when ¢ > pk, one can
check that the bound in (8.2) is sharp even for finite k. Thus, the TRS parameters

are optimal over large enough alphabets.
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Chapter 9

Explicit constructions for short codes

In this chapter we study short linear codes. These are some of our attempts at con-
structing good graceful codes prior to the development of LDMCs. After presenting
the preliminary background, we first discuss some natural notions of («a, 3)-optimality
that are relevant for graceful degradation. We then propose a method for construct-
ing linearly optimal short codes using generalized Macwilliams identities. We apply
this method to construct optimal codes. We also construct an optimal code using
algebraic ideas. The codes that we construct here are short and have smooth (a, 3)-
profiles. We observe empirically that they are graceful for stochastic noise as well.

We discuss some algebraic geometric codes at the end.

9.1 Preliminaries

In this section we briefly review the background material needed for this chapter.
Both our designs and analysis rely heavily on generalized Macwilliams identities and

the linear programming bound of coding.

9.1.1 Macwilliams identities for (o, §)-maps

Let C be the graph of an («, 8)-map inside F§ x F3. Define

wt(ua), wt(

glu) = gV edymilus)
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where wt denotes the Hamming weight. Let

Welz,y)= Y gu)

U ,ugEC

be the bi-weight enumerator of the map. Then

Proposition 19. The following (Macwilliams’) identity holds:

l—2z 1—y

. 1 k n
Wer(x,y) = 4 (1+2)"(1 +y) WC(1+x’1+y

1o )

Proof. Proceeding in the same manner as in Macwilliams’ proof, we first compute the

Hadamard transform of ¢

g(u) _ Z (_1)u.v$wt(va)ywt(v5)

veq{0,1}n

LY (R B
ve{0,1}n

— Z H(_l)"%"“aixv% H<_1>“6i'vﬁiyvﬁi
ve{0,1}n i<k i>k

— Z H(_l)“%'”aixvai H(_l)“ﬁi'”ﬂiyvﬁi
ve{0,1}n i<k i>k

= 30 Tyt (=) iy
ve{0,1}" 4,5

:H Z (_1>sulx3H Z (_1>3U1y8
i<k s€{0,1} i>k s€{0,1}

The inner sums are 1 + 2,1 +y when u; =0 and 1 — 2,1 — y otherwise. Hence

g(u> _ (1 + x)n_wt(uo‘)(l + y)n—wt(u/g)(l B $)Wt(u°‘)(1 . y)Wt(“ﬁ).
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Replace this in the Fourier inversion formula

to attain

9.1.2 Bivariate Krawchouk polynomials

We may write the bivariate Macwilliams identity as follows:

n—k,n k,n
. 1 ! ) ) ) )
Y Ay = on Y AL+ ) A4 y) (1 - 2) (1 -y
1=0,m=0 i=0,j=0

We can expand the inner summand on the right hand side:
kn

(1—2)(1+2)"" (1 =yl (L +y)"7 = Y Pulisj)a'y"

I,m=0

where Py, (i,7) = Pi(k,i)Pyn(n,7). In this notation, P,(k, ) is the Krawchouk poly-

Pik,z) = il—lf@ <I;::)

s=0

nomial defined here:

One can thus write
1 k.mn
Ay = on Z P (1, §) Aij
i,j=0
This implies that a certain linear combination of A;;’s need be non-negative for a

linear («, §)-map to exist.
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9.1.3 Generalized linear programming bounds

By the above discussion, the spectrum of any linear (o, )-map must satisfy the

following set of constraints:

> Pu(i,j)A; >0, Vi<n—km<n

2,j=0

A =1, Ay >0, ZAij:<];)7 Z Aij = 0;
J

J<B(E)n

(9.1)

To bound the size of a candidate code one can vary k and check the feasibility of the
above set of linear constraints. In the next section, we use this technique to prove
optimality of a certain quasi-cyclic construction. Before that we shall present the

linear programming problem in its dual form. Relaxing (), we define

i<k,j<n i<k,j<n
=1 + Z Azy + Z Azg Z /\lmf)lm(zaj) + Z Almplm(ov 0)
i>1,7>p6(1) i>1,5>p6(1) I<n—k,m<n I<n—km<n
The dual is

St 1+ N Pan(inj) <0 Vi> 1,5 > (i)
Ilm
Thus, if one finds a polynomial of the form Q(z,y) =1+, 1 .cn AimFi(2) P (y)
with A, > 0 such that Q(i,5) < 0 for ¢ > 1,57 > /(i) then the value of the linear
program is bounded above by Q(0,0) (using the duality theorem). it is easy to deduce

the linear programming bound from here upon noticing that a(y) with

! P@Pay) = P@P W)Y

aly) = —

for propers choices of ¢ and a < 5(0) satisfies these conditions. In other words we can

take A, = 0 for [ > 0 (noting that Py(x) = 1).
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9.2 Strong and weak (o, §)-optimality

We consider two notions of («, 3)-optimality. One of them requires one to compare
(o, B)-properties of codes with different dimension. In such settings, it becomes useful

to have an absolute version of 5(a). We define
A (f) = mi{[f(z) = f(y)] : |o =yl = i} (9:2)

Definition 14 (Weakly optimal maps). A code f : IE"; — Fy is said to be weakly
(e, B)-optimal if there does not exist f : F’;H — [y such that

A1) = Ai(f) Vi<k

In other words, a code f is weakly optimal if no code with larger dimension can

achieve the same or better A% (f)’s.

Definition 15 (Strongly optimal maps). A code f : IF’; — Fy 1s said to be strongly
(e, B)-optimal if it is not dominated by any other code, i.e., there does not exist an

code f': F’; — T} such that
Ai(f) z Ai(f) Vi<k
where at least one inequality is strict.

The examples below show that weak optimality is indeed strictly weaker than

strong optimality. For the reverse direction, we have the following result:
Proposition 20. A strongly optimal map is weakly optimal.

In other words, if there exist a larger code that achieves the same («, 5)-profile as
f, then f cannot be strongly optimal. Before we present the proof we remark that the
analogous statement for minimum distance is false. Indeed, a code maybe optimal

in the sense of minimum distance, yet, there may exists a larger code that achieves
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the same minimum distance. For instance, Tanner |75] constructed a binary [12,4,6]-
code. The linear programming (LP) bound rules out the existence of a [12,3,7]-code.
Thus any [12,3,6]-subcode of the Tanner code is still optimal in the sense of minimum
distance. In general, one can expect such codes to exists over any field where the
singleton bound is not tight. Over such fields, the existence of an [n,k + 1, d]-code
need not imply the existence of an [n, k, d 4+ 1]-code. However, the above proposition
states that the existence of an [n, k+ 1]-code implies the existence an [n, k]-code with

improved A!’s.

Proof (of Proposition 20). Suppose a strongly optimal f : IF’; — Fy is weakly dom-
inated by f’ : IF’;“ — [, Take the Ist coordinate and select the most common
symbol among the codewords of f’. Take all the codewords of f’ that start with this
common symbol and remove the rest of the codewords. Now shorten the code by
removing the first coordinate. This gives an (n — 1, k)-subcode of f" with the same
A’s as f. Now define an extension of f’ as follows: f”(z) := (f'(z),z1) where x4
is the first input coordinate. Clearly, all messages x,2’ with d(z,z’) = k are sent
to codewords that have distance |f”(xz) — f"(2')| = 1+ |f(x) — f(2)|. This violates
strong optimality of f.

|

Remark 14. The proof essentially relies on the fact that A;(f) can be improved if
f is not weakly optimal. Conversely, it can be shown that any map f that achieves

A5 (f) = n is weakly optimal.

Remark 15. The same result can be proved within the class of linear maps, i.e., for
a linear [n, k]-map f there exists a linear [n—1, k—1]-map f’ such that Aj(f) = A*(f)
fore <k —1.

9.3 A weakly optimal quasi-cyclic code

Here we present a code that is optimal in the weak sense. Let Cz C F5 be the [7,4]-

cyclic code generated by the primitive polynomial 2® + z + 1. Similarly, Css denotes
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~+ shortened [4,14]-Hadamard
O quasi-cyclic code (12)
* linear code (14)

A

Figure 9-1: The A} profiles for three codes: 1) the strongly optimal shortened [4,14,7|
Hadamard code 2) the weakly optimal quasi-cyclic code of (9.4) 3) the strongly opti-
mal linear code of (9.6).

the code generated by the primitive polynomial of 33 (which is 23 + 2% +1). Consider
the code
C={(z,y)|r € Cs,y € Css} (9.3)

The code has a minimum distance of 6. One can check that after applying a linear
transform x — z + 2%, the resulting spectrum contains the following («, 3) pairs:
A = A5 =6,A5 =8, A} = 10 (see (9.2) for the definition of AY), with the following

generating matrix:

0001011000110
01110100101 1T10

G = (9.4)
010110001 10100
1011000110100 0

Under these («, §)-constraints, the LP in (9.1) becomes infeasible for k£ = 5. This
implies that no [14, 5]-code exists with the same (or better) («, 3)-properties. We
note that relaxing any of the (a, f)-constraints in the linear program will render
the LP feasible with k& = 5. This code is optimal in the weak sense but not in the
strong sense as the construction below shows. We extend this code by appending the

column ¢ := [0, 1,0, 1]’ to its generating matrix so it has comparable length with the
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Hadamard code. It becomes a [15, 4]-code with the following generating matrix:
Gez[a | c} (9.5)

After the extension, the code contains the following («, 3)-pairs:A} = 6, A5 =

7,A5 =9, A5 = 11.

9.4 A strongly optimal [14,4]-linear code

We ask if there exists a [14,4]-code that dominates the quasi-cyclic code of (9.4).
The LP in (9.1) is infeasible if we set A5 = 7 while keeping the rest of A}’s from
above unchanged. However, one can ask if there exists a code with the following
profile A} = 6,45 = 6,45 = 9,A; = 12. The space of [14,4]-linear codes is too
big to search over. The LP in (9.1) can help reduce the size of the search space by
severely restricting A;;’s. With the above A’s, it turns out that the LP is infeasible
when A < 3. This means that such a linear code can exists only if at least three of
the rows in its generating matrix have weight 6. We can now efficiently search over
the space of linear codes with A;q = 3 after taking out the symmetries. Here is the
generator matrix of a code that was found using computer search over the reduced

search space:

1111111000000 °0
111100011100 °O06O0

G = (9.6)
11101001001 1O0O0
01 111001O0O0O0O0T1T1

The LP and some mild extra work suffice to prove that this code is optimal in strong
sense. We also extend this code by adding a column ¢ = [1,0,0, 0]’ to its generating

matrix to make it have the same length as the Hadamard code:

Go=|a | c] (9.7)



The corresponding BER profile when used in communication over BSC is shown in
Fig. 9-2. It can be seen that for a wide range of channel parameters p the code of
(9.7) outperforms both the quasi-cyclic code of (9.5) and the Hadamard code. We
note that the [15,4, 8] Hadamard code is also optimal in the strong sense, as is the
shortened [14,4,7] Hadamard code. While the BER differences may seem marginal,

we expect to see more significant improvements for larger codes.

[15,4]-codes,BSC
0.5 T T T T

—8— hadamard
0.45 I |—— smooth code
—-—- quasi-cyclic

041
0351
03r
o
w 0.25
[s1]
02r
0.15

01

0.05

0 =l 1 1 1 1 1 1 1
0 005 01 015 02 025 03 035 04 045 05
P

Figure 9-2: The BER profiles under bitMAP decoding for: 1) the [15,4] Hadamard
code 2) the [15.4] extended quasi-cyclic code of (9.5) 3) the extended linear code of
(9.7).

9.5 Impossiblity results for quasi-cyclic codes

Let n = pk with p € Z. We consider linear maps f : IE"; — I} that are equivariant
w.r.t cyclic shifts T} : F'q“ — IF’; and Ty : Fy — Fy, ie., foTy = Tyo f. Any such
map, under ¢ : ¢ — (¢, f(c)), gives rise to a k-dimensional subspace of FZ‘*’“ that is
stable under (71,T%) and vice versa. Set A; := F [z]/(z? — 1). We are thus led to
study submodules of R := Ay & A, generated by 1+ (1,¢(z)) as an Ag-module. We
remark that 1 + (1, g) generates an Ag-module inside R if and only if (2% — 1)g is
zero in A,. Thus we get a correspondence between (77, T3)-stable subspaces of IFZ*’“

and polynomials g € F,[z] such that g(z¥ — 1) = h(2™ — 1). We next list some («, 3)
properties of ¢y.

Proposition 21. If f has the same 1mage as the repetition map, then 5 < a.
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Proof. f can be written as a composition r o m where r is the repetition map and
7 : FF — F} is an automorphism. This means that every ¢ € F¥ is sent to r(c) for
some ¢ = 7(c). Thus f > « under f if and only if 5 > « under 7. However, no 7 can
achieve 5 > « since the set {z : || > £} has smaller cardinality than {z : |z| > «a}

when 3 > a. |

zP—1
z—1

By Eisenstein’s criterion, is irreducible over Z for any prime p. The next

conjecture states that it will be irreducible for infinitely many primes over any fixed

finite field.

xP—1

Conjecture 2. There are infinitely many primes p such that Ipfl is irreducible over

[F, (here ¢ is arbitrary, not necessarily a power of p).

The conjecture is not true for arbitrary ¢, and when ¢ is an odd power, it boils
down to a classic conjecture in number theory, known as the Artin’s conjecture.

It is a basic fact that a polynomial f(x) € F[x] is irreducible over a splitting field
E/F iff the Galois group G(E/F) acts transitively on the roots of f (reason: the
roots that are conjugate under the Galois action have the same minimal polynomial.
We thus need all the roots to be in the same orbit under ¢ — ¢?). The Artin map
gives an isomorphism of the Galois group of the cyclotomic field G(Q((,)/Q) with
(Z/pZ)* sending the Frobenius elements corresponding to (unramified) primes g # p
to ¢ € (Z/pZ)*. Now to study the irreducibility of ¢, over F, we need to work
with Galois group of the residue field of the cyclotomic extension (mod ¢). This is
a subgroup (known as the decomposition group) of G(Q((,)/Q) and is generated by
the Frobenius element corresponding to ¢ (note that raising to power of ¢ leaves F,
fixed). Thus, to get a transitive action we need all the p-th roots of unity to fall in
the same orbit of under { — (9. Hence, for the conjecture to be true, we want ¢ to be
a primitive root modulo infinitely many primes p, which is the statement of Artin’s
conjecture when ¢ is an odd power. This is known to be true under GRH (shown
in [29]). The unconditional results are much weaker, e.g. [57| shows that the set of
integers E(z) = {g < x|q is not a perfect square} for which Artin’s conjecture fails

has cardinality O(log® ) and contains no more than 6 primes. It is not known which
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6 these are.

zP—1

—— 1s irreducible for a fixed

Remark. There are infinitely many ¢’s for which
prime p (reason: all we need is that ¢ has maximal order modulo p, i..e, ¢" # 1 mod
p for any r < p — 1. It follows from Dirichlet’s theorem on arithmetic progressions
that infinitely many such ¢’s exist.). Here we need the converse.

Part b of the following is a consequence of the conjecture.

Proposition 22. (a) Suppose that f is injective. Then [ has the same image as the

repetition map.

(b) There are infinitely many primes k such that o > 8 for all f : IF’; — Fy.

Proof. Write g = i:jh. Injectivity of f requires that z* — 1|i whenever z" — 1]ig.

Hence ged(z® — 1,h) = 1 and thus we can replace g with g/h without changing the

image of the code. But g/h = Z=1 = (2*)?~! + ... + 1, which corresponds to the

repetition map. This proves part (a).

To prove part (b), suppose that ged(h, z¥ — 1) = 1. Then again we can replace g
with g/h and observe, as in part (a), that the code has the same image as the repetition
map and thus o > 3 by Proposition 1. Otherwise, by the above conjecture, there are
infinitely many primes k such that either ged(h,z* — 1) = 2 — 1 or ged(h, 2% — 1) =
¥ ' ...+ 1. In the former case, the codeword z*~! 4 --- + 1 has Hamming weight
k —1 and is sent to zero, which gives f < « for all a < % In the latter case, (x — 1)
and hence all codewords of the form i = (z — 1)c(z) are sent to zero. In particular,
we can take c(z) = ¥t +2* 3 +... + 1. Then c(z)(z — 1) =2 1+ 282+ 41
has hamming weight &k — 2 and is sent to zero. In either case, we have § < « for all

a < 1 asymptotically as k& — oo. |

9.6 Codes from Cayley-Bacharach

We start with a simple statement:
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Theorem 23. Let C' be a smooth plane curve of degree d. Let D = ¢ p; be
a divisor of degree e. Suppose that D' = Y7 | q; is rationally equivalent to D. If

e <d-— 2, then we have p; = g;.

Proof. Set D := > p; and F := > ¢;. Suppose D and E are distinct divisors with
suppD NsuppE = (). If D ~ E then both D and E can realized as the zero locus of
two different sections of the line bundle O(E). In other words, H°(O(E)) > 2. This

implies, by Riemann-Roch, that
H°(O(Kc—E))>g—e

Thus the statement follows if we show that for all divisors F of degree at most d — 2

we have

H(O(Kc—E))<g—e

The adjunction formula gives that
O(Kc) = Op2(d = 3)|c = Oc(d — 3)
We thus have an injection
H(Op2(d = 3)) = H(O(Kc))

Note further that

Hoat-3)= (") =

We also know that O(K¢) has g global sections. By dimension count, we see that the
restriction map induces an isomorphism on global sections. Hence differential forms
on C' that vanish along E come from restricting plane curves of degree d — 3 that
pass through E. Thus we need to count how many conditions F imposes on curves
of degree d — 3.

We claim that F imposes exactly e conditions provided that e < d — 2. Suppose

d — 2 points are given in the plane. Fix a subset I' C F with |I'| = d — 3. It suffices to
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find a curve of degree d — 2 that passes through I' but not £ — I'. By induction, we
can pass a curve of degree d — 3 through all but one point of I'. Then we can easily
pass a line through the remaining point that does not intersect £ — I'. This proves

the claim. Hence H°(O(K¢ — E)) = H°(Op2(d — 3)) — e = g — e as desired. |

The next example shows that the bound e < d — 2 is sharp.

Ezxample 7. Let p;’s be three collinear points on a smooth quartic C'. Let L be the
line through p;’s and r € C be the remaining point where the L meets C. Take a line
distinct from L that passes through r. Let ¢;’s be the three other points where the
line meets C. Then Y p; +7r~ > ¢ +r.

We get a version of Cayley-Bacharach’s theorem as an immediate corollary of our

theorem:

Corollary 24. Let I' = C N C" be the intersection of two smooth plane curves of
degrees d,d', respectively. Then if some smooth plane curve C" with degC” = d'
passes through all but d — 2 points of I, it must contain T".

Proof. We have that [C” N C] ~T'. Now apply Theorem 1. [

The above result maybe useful in designing short (o, 5)-maps.

Ezample 8. Let I' be the intersection of two smooth quartics. Embed P? into P* via
the Veronese embedding. Take the image of I" to be the set of f-points of a code.
Take a maximal subset of I' and complete it to a basis for P'*. Let these be the
a-points. Then any hyperplane containing at least 14 S-points must contain I". The

resulting code has p = %,a = %5,5 = We note that the parameters lie on the

1
5
asymptotically optimal line « =1 — p + pf.
While the above construction does not give any better parameters than the non-
injective RS coding (RS coding on a subset), it does achieve the same performance
over a much smaller field. It is possible to make the above construction work over
finite fields so long as there are enough points on the plane. We can check this happens
when ¢ = 4 in the above example. An RS type code would require ¢ = 15. In general,

we can see that ¢ grows with y/n instead of n in this construction.
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Naturally, one can ask if there are similar constructions that work for larger codes.
Unfortunately, this cannot be done with Cayley-Bacharach type theorems. The above
construction, in the worst case, can have p — 2 but  — 0 as d grows. The problem
lies in the fact that we only need some smooth curves and some sets of good divisors
on them to construct good codes, whereas Cayley-Bacharach type theorems concern
all curves and all divisors! We explain the difference next.

Given a smooth curve C' of degree d, we can associate a variety to its pairs of
effective divisors of degree W, := C° x C°. We are interested in pairs We C W, that
correspond to equivalent divisors. Clearly, W, contains the diagonal A, := {(z,y) :
x,y € C°,x =y}. When e < d— 2, our theorem shows that W. = A,, and example 1
shows that when e > d—2 we have A C W,. Note however, that the three divisors for
which we found a counter-example are special in that they are collinear. We cannot
find a distinct equivalent pair for most other effective divisors of degree 3. In general,
we claim that for a generic divisor of degree e < g, there are no non-trivial equivalent

divisors.

Theorem 25. Let C' be a smooth plane curve of degree d. Let D = Y7 | p; be a
generic divisor of degree e. Suppose that D" = "7 | q; is rationally equivalent to D.

If e < g, then we have p; = q;.
Let us first prove this in the special case where C' is a quartic curve.

Theorem 26. Let C' be a smooth quartic plane curve. Let py,ps, p3 be three points
in general position and let D = py + py + p3 be a divisor. Suppose that D' = Zf’zl q;

1s rationally equivalent to D. Then we have p; = q;.

Proof. Again we need to check [(D) > 2 or (K — D) > 1 by Riemann-Roch. Note
that K € [H| where [H| denotes the hyper-plane class (reason: the curve is embedded
in the plane by the canonical class, which has degree 4 and dimension 3). We make
a choice of K that dependson D: K =p;+ps+1r1+7r2. Then K — D =1y 41y — p3.
If I(K — D) > 0 then there exists a non-constant (rational) function f on C' with two

poles along r1,ry. This function can be used to represent C' as a degree 2 cover of Py
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(use z +— (1 : f(z))). But this implies that the curve is hyper-elliptic, contradicting

the fact that the canonical class embeds the curve in P9~ 1. [ |

We omit the proof for now but instead prove a weaker version that still suffices

for our purposes.

Theorem 27. There exists a smooth plane curve C' of degree d and an effective
divisor D of degree (d'f) — 2 on C such that for all divisors D' < D with deg D' < g
and E > 0, we have E ~ D if and only if E = D.

Proof. We modify the proof of theorem 1 as follows. We need to show that we can
find an effective divisor D on some smooth curve C so that all sub-divisors D’ < D of
degree g impose g conditions on H%(Opz(d — 3)). The latter is a g-dimensional vector
space. We first pick the support of D one point at a time. Once we pick the n-th
point, we only need to look for the (n + 1)-th point to be outside the span of finitely
many ¢g — 1 dimensional subspaces. Now we interpolate a smooth curve of degree d

through all the chosen points. Note that there is a one dimensional family of plane

d+2

5 ) — 2 points. We pick a smooth curve

curves passing through any collection of (

within this family (this is possible by generic smoothness). |

Putting aside the issues of working over finite fields, we can now start to build

long codes with good properties.

Example 9. We pick a family of curves and divisors with growing degree as in Theorem
2. We take the support of D to be the set of S-points and embed the curve into P9.
We pick any subset of size g on the curve and add one point to it to form a basis.
The resulting code has length ~ d* and dimension ~ d?/2. It has relative minimum

distance 8 — % Thus it is an asymptotically optimal code.

Two questions that arise are whether we need any field extensions to place the
points, and whether embedding the curve in higher dimensions would help with fur-

ther reducing the size of the base field.

Problem 2. Implement the code over Iy, i.e., prove that there are enough points in the

projective plane to find the divisor D. Generalize the construction to curves/varieties
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embedded in higher dimensions. Investigate when it is possible to thread curves of
a given degree and genus through a given set of points. Use this to construct good

long codes over relatively small fields.

9.7 Generalized Kasami codes

In [31], Kasami constructed a family of cyclic type codes that achieve the GV bound.
The construction can be presented as follows. Given a projective curve X, fix a divisor

G. Recall that the Riemann-Roch space of GG, denoted by L(G), is the k-vector space
L(G) :={f € k(X)* : div(f)+ G > 0} U {0}

where k(X) denotes the fraction field of X. Construct on X a prime divisor D
of degree r. Then define the Kasami code #x(G, D) as the image of the natural

embedding
L(G — D) — L(G)

Kasami considered the case X = P! and G = (n — 1)P,. It is easily seen that
Hx(G, D) is an [n,n — r|, code in this case. He then showed that there are sequences
of the form J#x (G, D) that achieve the GV bound as deg(G) — oco. To see this, we
first bound the number of low weight vectors in L(G). Given a minimum distance w,

there are

w—1
(7?) (q—1)" < g5

im0 \'
homogeneous polynomials of weight less than w in L(G). Note that each homogeneous
polynomial of degree n defines a finite set with no more than n/r closed points of
degree r. The polynomial is contained in #x(G, D) if and only if the finite set it
defines contains D as one of its points. On the other hand, for large enough r, there

are more than g—: closed points of degree r. Thus a large code of weight w exists if

Rha) <« 4 (9.8)



holds. Passing to the limits and comparing the exponents, we see in particular that

the rates 1 — hy(w/n) are achievable asymptotically by Kasami codes.

One can obtain a version of J#x (G, D) for more general varieties. As we shall see
below, the choice of the variety is not important to achieve the GV bound. There
is a sequence of Kasami codes over any variety X that achieves the GV bound.
Furthermore, the inequality in (1) is fundamental, in the sense that it ties together
the parameters of the code with some fundamental invariant of X, namely, its Zeta
function, in a manner that depends heavily on the choice of the divisors on X. To
emphasize the latter point, we next work out the general form of (1) for smooth

projective curves.

For a projective curve X C P™, we denote its homogeneous coordinate ring by
S(X) :=klxo, -, zm)/1(X)

This ring can be endowed with a grading S(X) := ®45(X)@. The function field of
X takes the form k(X) = {%; h,g € S(d)(X),g # 0}.

We note that L(G) is a k-vector space. It is spanned by ratios % of certain
homogenous polynomials of the same degree. We pick a basis {Z—} for L(G) and
write f = ). ci%. We then define the weight w(f) to be the number of non-zero

coefficients ¢; that appear in its representation w.r.t the chosen basis.

As an example, let C' be an elliptic curve embedded in the plane and take G = p+q.
Let [ be the unique line passing through p and ¢ and s be the other intersection point
of [ with C. Then L(G) is two dimensional by Riemann-Roch. It is isomorphic to
the space of lines passing through s. It is indeed generated as a k-vector space by %
and % where [’ is any other line that contains s. While the weight of a line in L(G)
depends on the choice of I’, we are interested in the number of low-weight lines, which

is independent of the basis.

Given a rational function f = h/g, welet Zy = XNV (h) be the (scheme theoretic)
intersection of X C P™ with the hyper-surface defined by h. With the preceding
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notation, we may now replace the inequality in (1) with

1 Z #Zf(wqr)<%#X(qu) (9.9)

r
FEL(@)w(f)<t

To proceed in a manner similar to Kasami’s, we first need an upper bound on
#7:(F,) that is invariant as Zy varies over hyper-surfaces of degree n in P". When

X is a curve of degree d, Bezout’s theorem gives a natural upper bound of

#Zf(qu) S nd

In this case the inequality in hand reduces to
ndg @G < 4 X (F,) (9.10)
If X is fixed, we need
ndg!(@hat/(G) < g (9.11)

to hold asymptotically. This again gives the GV bound. Thus we do not gain any-

thing by working over fixed curves.

For schemes in higher dimension, we would like to associate codes to their general
irreducible subschemes. Let X be a smooth projective irreducible scheme over F, and

Zp be the ideal sheaf of a subscheme D C X.

We restrict for now to closed points D of X with degree r. Recall that there is an
exact sequence

0— 4 —>0x—0p—0

Twisting by a divisor G, we get

0— Ip(G) = Ox(G) = Op(G) =0
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Taking global sections gives an exact sequence
0 — H(Ip(G)) = H(Ox(G)) = k" — H (Ap(G)) — 0
where we used the fact that H'(Ox(G)) = 0. The first embedding
H*(Ap(G)) — H*(Ox(G))

is the Kasami code J#x (G, D), which has length /(@) and dimension h°(%p(G)) =
I(G) —r + h'(Fp(Q)). Its parameters depend on the choice of a divisor and an ideal
sheaf. Consider the case X = P2. Then X has ¢°" + ¢" + 1 points over F. If r is a
prime number, we see that X has e points of degree r over F,. In general,
using inclusion-exclusion, we can see, for large r, that X has roughly " degree r

points over IF,.

2

Take G = (n — 1)Hy so that {(G) = ("}') ~ 2. The number of homogeneous
polynomials of degree n —1 in L(G) with weight < ¢ is roughly ¢/(©"«®/U&) We need
to count how many closed points of degree r are contained on each curve defined by
such polynomials. We can estimate this number by “Z. Indeed over F, a curve of
degree n has most of its points in an affine open. To get an estimate, it thus suffices
to count the number of zeroes of a polynomial in two variables of degree n. There are
q" ways to fix one variable and obtain a univariate a polynomial of degree n, which
has at most n zeroes. These points contract to around " points of degree r over Fy,.

We thus need for large r» and n that
qr ngh (2t/n2) q2r
—q ) < (9.12)
r r

As r,n, — oo, the above inequality reduces to:

qr+n2 /2h(2t/n?) < q27"
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or

1 —2r/n*>1— h(2t/n?)

which is the GV bound.

When X is a general surface, Z; is a curve of degree dn. Its genus is bounded

above by @ by the Castelnouvo bound. The Hasse-Weil-Serre estimate gives

T 2d2 r/2
#25(Fg) < ¢"+ 14—
The general form of (1) for surfaces is thus
2 72
(¢ + 1+ L iy gomaeney < #XEr)
2 - r

Again #X (F,-) = O(¢*"), hence, fixing the invariants of X will not give any improve-
ments. So in general it appears that we need to look for varieties whose invariants
vary with the parameters of the code. We end this chapter by the following question.

Do such varieties exist and do they posses any coding theoretic merits?
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Appendix A

Proof of channel comparison lemmas

A.1 Proof of Lemma 10

Proof. The first part of lemma is well-known. The BEC part is called the erasure
decomposition lemma [65, Lemma 4.78] and the BSC part is a consequence of data
processing (or, more precisely, hard decision decoding) [65, Problem 4.55]. The BSC
half of the second part has been shown in [68, Appendix|. The rest of the statements
appear to be new.

Let Y; denote output of a BSCs applied to input X. Then BMS W can be
represented as X +— (Ya,A) where A € [0,1/2] is a random variable independent of
X. To prove the BEC part of the second claim, we need to show that for any input
distribution Py = Ber(p) we have

I(X;YA,A) <I(X;YE),

where Yp is the output of a BEC;_¢. Note that I(X;Yg) = CH(X). Thus, we need
to show that for any distribution of A and for any p the following inequality holds:

Eh(p+ A)] = E[R(A)] < (1 = E[(A)])h(p), (A1)

where h denotes the base-2 binary entropy function and a b = a(1 —b) + (1 — a)b
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is the binary convolution function. A result known as Mrs. Gerber’s Lemma (MGL),

cf. [80], which states that the parametric function
h(p*6) vs. h(d), 6 €10,1/2] (A.2)

is convex. Consequently, the function must be below the chord connecting its end-
points, i.e.

h(p*d) < (1 —h(0))h(p) + h(0).

Clearly, the latter inequality implies (A.1) after taking expectation over §. Note also
that the BSC part of the second claim also follows from (A.2). Indeed, from convexity
we have

E[h(px A)] = h(p * deyy) (A.3)

where d0.¢¢ is chosen so that h(d.rf) = E[R(A)]. In turn, (A.3) is equivalent to the
first relation in (4.10).

To prove the third part of the Lemma, i.e. (4.11), take Px = Ber(p) and Qx =
Ber(q) and let Py, @y be the output distributions induced by W. Similarly, let
Py, Qy, and Py, ,Qy, be the distributions induced by the equal-x?-capacity BSC
and BEC, respectively. We need to show (using (4.3)) that

D(Py,||Qv,) < D(Py||Qy) < D(Py, ||Qyy) -
First notice that

L2(BSCs) = (1 —20)? (A.4)
[2(BEC;)=1-14 (A.5)

After representing BMS as a mixture of BSC’s we have n = E[(1—2A)?]. Introducing
the binary divergence function d(al|b) = D(Ber(a)||Ber(b)) we need to show: For any
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distribution of A € [0,1/2] and p, ¢ € [0, 1] we have

d(p * besslla* bepr) < E[D(p* Allg+ A)] < E[(1 —2A)%)d(pllg),  (A6)

1=y
2

where 0.7 = is defined to satisfy

(1 —28.57)* = E[(1 —2A)%].

Note that the right-most inequality in (A.6) follows froma a well-known fact that the
strong data-processing contraction coefficient ng (W) equals E[(1 — 2A)?] (e.g. this
follows from the proof of [62, Theorem 21]).

To prove (A.6) we will establish a variant of the MGL, possibly of separate interest.
Namely, we will show that for any fixed p, ¢ € [0, 1] the function

dip*d|lg*8) vs. (1—-20)* 5€]0,1/2] (A7)

is convex. Clearly, (A.7) would imply both sides of (A.6).

To show (A.7) we proceed directly. Change parametrization to z = (1 — 2§)? and

thus 6 = d(z) = 172\/5. Letting d(x;p,q) = d(p * 6(x)||q * §(x)) we find

1
Opd(x;p,q) = —4ﬁa(af,p, q) (A.8)
p*o 1—q=x0 1—pxd px*xd
0.q) = (1 1 1-2 - 1-2
otipa) = (10 220w L) oy (J2R P ) -

For convenience, let us introduce

SEpxd, o=2qgxd.

Differentiating again, we get that convexity constraint 9%d(z; p,q) > 0 is equivalent
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to the following inequality:

2a(x;p, q) + Vab(z;p,q) >0, (A.10)

where (we used 1 — 2p = tgg and 1 —2¢g = tgg)

+ - 202 _;)<1+_(;); $)o” 0(14f (=291 20—)) .

o (1 - 25)°
b(zip,q) = (1—20)2 < s(1 —s)

Noticing that /x = 1 — 2§ and multiplying (A.10) by (1 — 2J) we get that we need

to verify

s(1—0) 2(1-20)
(1-s)c o(l—o0)

(1—2s)?
s(1—s)

,58(1 —20) + o2
o?(1 —0)?

2(1—2s)In (c+s—1)+ +(1-20) >0.

(A.11)
Note that this inequality needs to hold for all values of s,0 € [§,1/2]. However, due
to arbitrariness of § and since it does not appear in (A.11) (this is crucial), we need

to simply establish (A.11) on the unit square [0, 1/2]2.

Here again, we reparameterize
A A
u=1—-2s, v=1-20

so that (u,v) € [0,1]? now range over the unit square. Then (A.11) is rewritten as

(after dividing by w)

(1—wu)(1+v) 4 Y (utv)+ 1 iuu2+u(14_v2v2)2(

fluv) S 2

2(1—u)v+(1-v)%) > 0.
(A.12)

It is easy to check that this inequality holds when either u = 0+,1— or v = 0+, 1—.
Thus, we only need to rule out violations inside the [0, 1]2. Taking derivative over u

of f(u,v) we get
2u? 2ut
Ouf=0 <= A=)~ (=2

since ¢ — L is monotone, this implies that minimum of f(u,v) is attained at u = v.
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But f(u,u) = 0. Thus, we find

min f(u,v) = min f(u,u) =0.

U,V

This concludes the proof of (A.12) and, hence, of (A.7). [

A.2 Proof of Lemma 11

Proof. If Wy’s are degraded w.r.t W;, then we have a Markov chain Xy — (Y,Y;") —
(Y,Y/™). This proves the first part.

To prove the second part, we may assume by induction that W; = W for all ¢ > 2

(i.e. only one channel is replaced). Now suppose we have
U AL (X7, Y Y, )| X (A.13)

We want to show

LU Y, Y, Y,™) < L(U; Y, Y3, Yy

or equivalently

[(U:|Y,Y3") < (U Y]Y, Y)™). (A.14)

The desired inequality follows from the definition of the less noisy order (in the
conditional universe where (Y, Y") is observed) if we can show U — Xy — X; — (Y3, Y7)
form a Markov chain conditionally on (Y, Y;"). Note that this is equivalent (by d-
separation) to showing that the conditional independence assertions of the Lemma

are representable by the following directed acyclic graphical model (DAG)

U—’Xo—’Xl"(Yhﬁ)
A
Y

}
X5 — Yy
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We first recall (from d-separation) that
Al (B,C)|D = A1 B|(C,D) (A.15)

for arbitrary random variables (A, B, C, D) (cf. (S3) in [43, Chapter 3|). From (A.13)

and (A.15), we see that the main assertion of interest in the above DAG is
U 1L (v, V)|(X4, Y, Y5) (A.16)

To prove this assertion, we note that

Puvivi|xivyyn = E Puvivi | Xo X3 X1 VYo PXo X5 [ X1 YY"
Z0,Th"

by (A.13)
= E : PUXoPyivi | Xo X7 X1 Y Yo PXo X5 | X1 YY"
z0,Th"

X E :pU\XopYYlffl|X0X§"X1Y2pX0X§n|X1YY2m
z0,TH"

= E DPU|Xo Py, v, x, PY | X0 X1 X2 PXo X5 X1 VY™

z0,T5"

= Pyviviixy Z DPU|XoPY | X0 X1 X2 P Xo X5 | X1 YY"
z0,Th"

= h(yh gl? xl)Q(ua r1,Y, y;n)

This proves (A.16) and the desired inequality in (A.14) follows.
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Appendix B

Erasure polynomials for LDMC(3)

Here we include the d-th erasure polynomials E¥E¢(q) for d < 10 in Python form for
LDMC(3). These polynomials are generated using the procedure described in §4.5
and are used to produce the bounds in Figs. 4-3-4-8 and Table 4.1, as well as for for

code optimization in §5.2.

BEC
Ed

d=20
0.5

d=1
0.25

d=2
0.125%q**4 - 0.25*q**3 + 0.25*q**2 - 0.25*%q + 0.25

d=3
0.1875*q**6 - 0.46875%q**5 + 0.46875%q**4 - 0.1875%q**3 +
4.440892¢-16*q**2 - 0.09375%q + 0.15625

d=4
0.46875%q**8 - 1.9375%q**7 + 3.71875*q**6 - 4.3125%**5 +
3.28125%q**4 - 1.6875*q**3 + 0.65625*q**2 - 0.3125%q + 0.15625
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d=5
0.9375*q**10 - 4.58007812500001*q**9 + 10.087890625%¢**8 - 13.0859375%q**7
+ 10.976562500*q**6 - 6.15234375*q**5 + 2.24609375%q**4 - 0.4296875%*¢**3
+ 0.0390625*q**2 - 0.126953125*q + 0.103515625

d=6
2.2900390625*q**12 - 14.455078125*q**11 + 42.9462890624997*¢**10
- 79.5214843749996*q**9 + 102.12890625*¢**8 - 95.5664062499994***7
+ 66.5722656249995*¢**6 - 34.7460937499998*q**5 + 13.5791015624999*¢**4
- 3.99414062499997*q**3 + 0.981445312499996*q**2 - 0.310546875*q + 0.103515625

d="17
5.05517578125%q**14 - 36.368896484375%q**13 + 121.872802734375*q**12
- 251.26171875%q**11 + 354.7236328125*q**10 - 361.612548828124*q**9
+ 274.061279296874*¢**8 - 156.953124999999*q**7 + 68.3422851562493*¢**6
- 22.3791503906245*q**5 + 5.18676757812476*q**4 - 0.68359374999993*q**3
+ 0.0820312499999894*¢**2 - 0.131591796874999*q + 0.070556640625

d=38
12.2824707031249*q**16 - 104.389648437499*¢**15 + 421.901855468746*q**14
- 1078.21191406248*q**13 + 1953.12304687496*q**12 - 2661.41503906243%¢**11
+ 2821.08544921866*q**10 - 2368.68652343741*¢**9 + 1587.56103515619*q**8
- 849.672851562463*q**7 + 361.467285156233*q**6 - 121.303710937495*q**5
+ 31.8554687499987*q**4 - 6.56933593749975*q**3 + 1.18603515624997*¢**2
- 0.282226562499999*q + 0.070556640625
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d=9
28.517944335937*q**18 - 270.209632873528*q**17 + 1213.44797515864*q**16
- 3426.34039306621*q**15 + 6803.52593994091*q**14 - 10066.1437683096*q**13
+ 11474.6510925279*q**12 - 10284.0617065415*q**11 + 7337.84271240106*q**10
- 4200.8187103263*q**9 + 1938.88133239697*q**8 - 722.934997558378*q**7
+ 216.904724121012*q**6 - 51.2509460448973*q**5 + 8.86129760741628*q**4
- 0.913879394530327*q**3 + 0.115905761718657*q**2 - 0.122840881347652*q
-+ 0.0489273071289062

d=10

69.4315452575683%q**20 - 742.947502136231*¢**19 + 3808.84984970093*q**18
- 12453.0257034302*q**17 + 29158.0880355837*q**16 - 52039.3605651862*q**15
+ 73535.9429168715*q**14 - 84300.01968384*q**13 + 79613.6392593413%¢**12
- 62487.5754547145%¢**11 + 40908.980049135*q**10 - 22326.4821624763*q**9
+ 10117.3594665529*q**8 - 3780.88119506833*q**7 + 1154.60105895993*q**6

- 285.082305908195*q**5 + 56.3512229919426*q**4 - 8.95305633544941*¢**3

+ 1.28042221069343*q**2 - 0.244636535644538%q + 0.0489273071289063
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