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Doctor of Philosophy in Aeronautics and Astronautics

Abstract

A central question in information theory is to understand when and how data can be
reconstructed from noisy observations. Error correcting codes are means of adding
redundancy to the data to enable better recovery. Most commonly, codes are designed
to recover data in a regime where the statistics of the noise are kept constant. In a
number of applications, however, it is required that the quality of the reconstruction
degrade gracefully as noise statistics worsen. It was known since the early work of
Jacob Ziv (among others) that trade-offs between gracefullness and error correcting
capability exist. We focus on characterizing these trade-offs and proposing codes that
are closer to optimal than those employed today.

The information-theoretic contributions consist of three parts: combinatorial –
where we study the so called alpha-beta profile of codes over large alphabets; ge-
ometric – where we show that a linear code that spreads out nearby data vectors
must contract some far away data vectors as well; and probabilistic – where we show
that good linear codes must necessarily experience threshold effect, i.e. degrade their
performance sharply when the noise level exceeds a certain limit.

Our main coding-theoretic contribution is the introduction of a new class of non-
linear sparse-graph codes that we call Low-Density Majority Codes (LDMCs). They
admit efficient decoding via belief propagation and have provably superior perfor-
mance compared to the best-possible linear systematic codes, in particular LDGMs.
Hence, we hope that LDMCs will be able to replace LDGMs in practical applica-
tions, such as pre-coding for optical channels, tornado-raptor codes, and protograph
constructions.

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

This thesis is a study of graceful degradation in the context of partial data recovery.

We start with a basic estimation problem in the presence of missing data:

Given a code 𝑓 : 𝑥 ↦→ 𝑦, recover 𝑥 after observing (possibly some random subset

of) the coded data 𝑦 = 𝑓(𝑥).

Roughly speaking, anytime that the amount of available data falls short of the in-

formation theoretic requirements of full recovery, we have a partial data recovery

problem in hand. Information theoretic requirements for full recovery are easy to

describe here: the number of observations must be at least equal to the number of

unknowns. Once this requirement is met, there is hope to solve the following coding

theoretic problem: design good maps 𝑓 from which any unknown vector can be recov-

ered. If however the information theoretic requirement is not met, there exist some

vectors for any design that cannot be fully recovered. Let 𝑥̂ be an estimate for the

unknown 𝑥. To measure the quality of the estimate, we need a notion of similarity,

i.e., a metric. In this thesis, we work exclusively with the Hamming distance

𝑑𝐻(𝑥, 𝑥̂) =
∑︁
𝑖

1{𝑥𝑖 ̸= 𝑥̂𝑖},

which simply counts the number of coordinates in which 𝑥 and 𝑥̂ differ. By a graceful

code, we mean a mapping 𝑓 for which the quality of estimation varies smoothly with

the amount of available data from 𝑦 = 𝑓(𝑥).
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To construct good codes, we need to make some assumption on how the informa-

tion is generated and how the coded data is erased. Since the seminal works of Claude

Shannon [70] and Richard Hamming [28], the following models are now standard:

∙ Shannon’s stochastic model: Assumes that the information 𝑋1, 𝑋2, · · · is a ran-

dom sequence (typically i.i.d uniform over some alphabet) and each coded data

𝑌𝑖 = 𝑓𝑖(𝑋) is dropped randomly (and independently) with probability 𝜖.

∙ Hamming’s combinatorial model: Assumes that the information is an arbitrary

vector 𝑥 over a fixed base field. It bounds the number of missing coded bits in

the data 𝑦 = 𝑓(𝑥) but otherwise assumes that they are chosen adversarially.

Most commonly, codes are designed to operate efficiently in the regime of full

data recovery. This often leads to some restrictive conditions. In a communication

problem, this typically means that delay is not important, or somewhat equivalently,

that the noise statistics are known. In many modern applications these assumption

are not met. One example is that of short-packet communication [20]. In this regime,

the concentration laws of probability are not fully in play yet and the channel cannot

be treated as a stable medium that on average behaves in a predictable way. The

uncertainty in the medium can be significant enough that, for all practical purposes,

we may assume to be working with a family of channels. Hence to achieve good finite

length performance, we need graceful codes that can adapt to the medium as it shifts

from one channel to the next. Another setting where communication delay is critical

is that of control over a noisy communication channel [76, 39, 66, 50]. Control systems

are generally sensitive to delays in the feedback loop. Typically, delays in the feedback

control signal are more destabilizing than noise or other forms of disturbance. Hence,

it is often preferred to have partial feedback in real time than to have perfect delayed

feedback. It is thus important to design coding schemes that estimate the state in

real time and progressively improve when more gracedata is made available. Graceful

codes are also useful in the regime of full data recovery (delay issues notwithstanding),

since they can be used as an inner code in layered designs (or concatenated codes).

For instance a design with two layers typically uses an outer error correcting code

12



(BCH, Hamming, etc) and an inner error reducing code. Ideally, the inner code

must be graceful since it is to operate in the regime of partial data recovery. It

only produces an estimate of the source with some distortion that is within the error

correcting capability of the outer code. Even in the full recovery regime, such designs

are becoming increasingly popular. Tornado-raptor codes and its many extensions

are among such designs [8, 26, 4, 9, 45, 15, 14]. This is mainly due to the fact that

achieving small error under iterative decoding with a single layer design is difficult.

For instance, the standards in optical communication require an error rate of 10−15,

much lower than what a state-of-the-art low density parity check (LDPC) code can

achieve. It has been observed that two layer deigns can achieve the required error

rate and that significant savings in complexity and power is obtained when the inner

code of the design is a graceful low density generator matrix (LDGM) code [72, 81, 5].

We have such applications in mind when we speak of graceful degradation.

This brings us to the following loose definition of a good graceful code: it is a

code that has good error correction capability and can smoothly adapt to variations

in its medium. Once we make this notion more precise, we set out to address the

same two fundamental problems discussed earlier: 1) to determine the information

theoretic limits of graceful codes, i.e., study the trade-offs between error correction

and gracefulness, and 2) to solve the corresponding coding theoretic problem of con-

structing them. Evidently, designing practical codes that can operate closer to the

fundamental trade-off than those employed in modern practice (e.g. LDGMs), can

impact all or some of the applications mentioned above. We first give an informal

overview of how this thesis plans to undertake this effort and outline the organization

of the thesis. We then dedicate the next few sections of this chapter to explain our

technical results and their connection with prior work more formally.

The trade-offs between gracefulness and error correction capability were known to

exists for analog systems since the early work of Jacob Ziv [82]. However, determining

the exact trade-offs even for the simple problem discussed at the beginning of this

chapter is an unsolved problem both in the Hamming and Shannon senses of the

definition [36, 74, 32, 60, 52, 33]. Our main information theoretic contribution is to

13



study what these trade-offs are for linear codes. Our results in essence show that non-

linear codes are superior to linear codes from the perspective of graceful degradation.

This is done by

∙ establishing the information theoretic trade-offs for graceful linear codes, and

∙ constructing practical graceful non-linear codes that surpass these limitations.

The organization of the thesis is as follows. We first formalize the graceful degrada-

tion problem both for Hamming’s and Shannon’s models in the next few sections and

introduce our main coding theoretic contribution: a new family of sparse graph codes

called Low Density Majority Codes (LDMCs). After reviewing our technical results

we move on to Part I of the thesis, where we focus on the graceful degradation prob-

lem under Shannon’s stochastic model. In Chapter 2, we characterize the trade-offs

between error correction capability and gracefulness for linear codes. These results

can be shown to improve significantly on the best known general converses [36, 32] in

the case of linear codes. Such trade-offs are naturally related to the area theorem of

coding [53]. In Chapter 3, we study the implications of the area theorem and show

that it is not strong enough to fully characterize these trade-offs for linear codes. In

Chapter 4 we provide new tools to analyze the dynamics of belief propagation (BP)

for general non-linear codes using various notions of channel comparison in informa-

tion theory. When applied to certain special cases of LDMCs the results accurately

predict the performance. It follows from this analysis and the trade-offs of Chapter 2

that LDMCs have provably superior performance to the best possible linear system-

atic codes. We study the applications of LDMCs to code optimization in Chapter 5,

where we show that by replacing the degree 1 nodes in LDGMs, the performance (as

well as the rate of convergence) can be uniformly improved for all noise levels. In

Chapter 6, we study soft-decoding properties of LDMCs when used in a concatenated

design.

In Part II of the thesis we shift our focus to the Hamming model. Historically

speaking, this is the first model we studied. Our original motivation was to find maps

that are graceful in the Hamming sense. In §1.3.1, we breifly comment on how this

14



study led to the development of LDMCs.

In Chapter 7, we characterize the trade-offs for linear codes in the Hamming sense

and show that linear codes with good distance are not graceful. It follows from these

results that LDMCs are superior to linear codes in a (weak) Hamming sense as well

whenever the bandwidth expansion factor is not an integer. In Chapter 8 we study

codes over large alphabets and prove some combinatorial results about their so called

alpha-beta profile in this regime. Chapter 9 contains some of our exhaustive attempts

at constructing graceful codes (in the Hamming sense) prior to the development of

LDMCs. We propose general methods to find the best possible short linear codes.

These methods use various structures including algebraic, symmetry, linearity, etc.

to construct graceful codes.

1.1 Shannon’s model

We start by describing more formally a version of the graceful degradation (or joint

source-channel) problem for a binary unbiased source and a memoryless erasure chan-

nel. Let 𝑋 = (𝑋1, 𝑋2, · · · , 𝑋𝑘) ∼ Ber(1/2)⊗𝑘 be information bits. An encoder

𝑓 : {0, 1}𝑘 → {0, 1}𝑛 maps 𝑋 to a (possibly longer) sequence 𝑌 = (𝑌1, · · · , 𝑌𝑛) where

each 𝑌𝑖 is called a coded bit and 𝑌 is a codeword. The rate of the code 𝑓 is denoted

by 𝑅 = 𝑘/𝑛 and its bandwidth expansion by 𝜌 = 𝑛/𝑘. A channel BEC𝜖 takes 𝑌 and

produces 𝑍 = (𝑍1, . . . , 𝑍𝑛) where each 𝑍𝑗 = 𝑌𝑗 with probability (1 − 𝜖) or 𝑍𝑗 =?

otherwise. In this thesis we are interested in performance of the code simultaneously

for multiple values of 𝜖, and for this reason we denote 𝑍 by 𝑍(𝜖) to emphasize the

value of the erasure probability.

Upon observing the distorted information 𝑍(𝜖), decoder 𝑔 maps 𝑍(𝜖) into 𝑋̂(𝜖).

We measure quality of the decoder by the data bit error rate (BER):

BER𝑓 (𝜖) :=
1

𝑘

𝑘∑︁
𝑖=1

P[𝑋𝑖 ̸= 𝑋̂𝑖(𝜖)] =
1

𝑘
E[𝑑𝐻(𝑋, 𝑋̂(𝜖))] ,
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where 𝑑𝐻 stands for Hamming distance.1

Consider the setting of point-to-point (or many) communication where a single

user needs to transmit the information bits to interested part(ies). Suppose for now

that there is a single user who is interested in the information source, and that the

communication takes place over a fixed BEC𝜖. As mentioned before, a central question

in information theory is to determine the amount of data needed at the user’s end to

recover the source data with some guaranteed fidelity. In this case, we are interested

in the best achievable performance for the given channel. We define the information

theoretic limit of a family ℱ of codes for partial recovery w.r.t capacity-to-rate ratio

𝑥 = 𝐶/𝑅 as follows

𝜔ℱ(𝑥) := inf
𝑓∈ℱ

BER𝑓 (1− 𝑥𝑅).

Note that at 𝐶/𝑅 = 𝑥 we have 𝜖 = 1− 𝑥𝑅. When 𝐶 = 𝑅, on average, we observe 𝑘

coded bits, i.e., the number of available observations on average matches the number

of source bits to be estimated. In other words, the ratio 𝐶/𝑅 measures the excess (or

lack thereof) in the average number of available observations for recovering 𝑋. The

reason to define 𝜔ℱ in terms of the ratio 𝐶/𝑅 (as opposed to the erasure probability

𝜖) is to have a unified way of quantifying the information theoretic limit of a family

that may contain codes of different rates. We can always restrict a family to sub-

codes of fixed rate, or block-length, and study the corresponding partial recovery limit

separately.

For linear maps ℒ, it is easy to find a bound for 𝜔ℒ(𝑥). Indeed, we have a simple

counting problem in hand. To recover any 𝑚 source bits, we need to observe at least

𝑚 linear equations (associated with coded bits). The remaining coordinates cannot

be guessed better than random (see Prop. 1 below). Therefore

𝜔ℒ(𝑥) ≥
1− 𝑥

2
. (1.1)

This lower bound has a nice geometric interpretation that is worth noting. The kernel

1We remark that BER𝑓 (𝜖) depends on the choice of the decoder as well. We specify the choice
of decoder if it is not clear from the context.
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of the linear system associated with the observed coded bits specifies the region of

uncertainty in which 𝑋 lies. All points in this region are equally likely to occur

and contribute to the distortion in recovering 𝑋. We thus need to find a point (not

necessarily inside the kernel) that minimizes the average distance to all the points in

the kernel, i.e., we want to find the Chebyshev center of the kernel. The above lower

bound is tight for sub-cubes. We may thus interpret the bound as follows: among all

linear sub-spaces of the Hamming cube with the same dimension, the sub-cubes have

the smallest Chebyshev radius.

For general codes, we can again reduce the matters to a counting problem by

applying the entropy functional. Roughly speaking, since on average we observe

(1− 𝜖)𝑛 equations, we can only hope to reduce the entropy of 𝑋 by (1− 𝜖)𝑛 bits upon

observing 𝑍(𝜖). Then it follows from Fano’s inequality (and concavity of entropy)

that for any family ℱ

ℎ(𝜔ℱ(𝑥)) ≥ 1− 𝑥, (1.2)

where ℎ is the binary entropy function. We call this lower bound the information

theoretic limit of partial recovery for a general family of codes. Likewise, (1.1) is

called the information theoretic limit for linear codes. The two bounds are shown

in Fig. 1-1. It follows from Shannon’s achievability theorems for coding [70] and

rate distortion [69] that the above two bounds are tight asymptotically, i.e., there

exist encoders and decoders that operate close to the curves when 𝑛 and 𝑘 are large.

When 𝐶 > 𝑅, the curves for linear and non-linear codes coincide. We call this regime

the error correction regime. However, there is a gap between the two curves when

𝐶 < 𝑅. We call this regime the error reduction regime. The bounds show that

non-linear codes are more capable than linear codes in the regime of error reduction.

The gap between 𝜔ℒ and 𝜔ℱ for 𝐶/𝑅 < 1 has a geometric explanation. The

pre-image of a point under a linear map is an affine space, and affine spaces have

relatively large diameter (in the Hamming sense). However, the pre-image of a point

under a non-linear map can be a set with small diameter. Such sets are known as

anticodes and over the binary cube Hamming balls are the optimal anticodes. Indeed
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the general lower bound can be achieved by first packing points inside balls in the

source space and then encoding the centers optimally. We call the codes that can

achieve the information theoretic limit of partial recovery the Shannon codes.

When multiple parties are interested in the information source, we need to consider

the behavior of 𝜔ℱ at different points. Intuitively, we want to say that a family of

codes is graceful if BER𝑓 (𝜖) varies smoothly with 𝜖 for some 𝑓 , while satisfying some

required fidelity criteria by users. To formalize this notion, we can fix an erasure

probability 𝜖1 and a minimum admissible recovery quality 𝛿1. Then among all the

codes (in the family) satisfying BER(𝜖1) ≤ 𝛿1, we look for one that has the lowest

possible BER at some 𝜖2, i.e., a code that gives the best possible improvement (resp.

least possible degradation) as more (resp. less) data becomes available. We thus

introduce the two point trade-off function as follows.

Definition 1. Given a family ℱ of codes, the two point trade-off function of 𝑓 at

(𝜖1, 𝛿1) is defined as

𝜂ℱ(𝜖2; 𝜖1, 𝛿1) = inf
𝑓∈ℱ

{BER𝑓 (𝜖2) : BER𝑓 (𝜖1) ≤ 𝛿1}

where the BER functions are computed w.r.t to the optimal (bitwise MAP) decoder.

It follows from our results in Chapter 2 (see Theorem 5) that linear codes are not

graceful, i.e., their trade-off function has a threshold like behavior. That is to say,

if a linear code is efficient for partial recovery of one user it performs poorly for the

other. For instance, consider the case with two users where user 1 is interested in

50% of the source bits and user 2 is interested in 25% of the source bits. Can we

design linear codes so that, on average, user 1 can reach his goal by observing around

0.5𝑘 coded bits and user 2 can achieve his by observing close to 0.25𝑘 coded bits?

Unfortunately, the answer is no as shown in Fig.1-1. Similarly, separation codes of

Shannon suffer from the same issue. However, we shall see that there exist non-linear

codes that can provide a graceful degradation in performance while staying close or

even below the fundamental line of linear codes. A prevalent barrier in using non-

linear codes is their decoding complexity. Indeed the idea of solving linear systems
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Figure 1-1: The lower bounds for codes of rate 𝑅 = 1/2 vs achievability with system-
atic LDMCs as defined in §1.3. Here 𝐶 = 1− 𝜖 is the capacity of the erasure channel
and BER is computed w.r.t the source distortion E[𝑑(𝑋, 𝑋̂)]/𝑘, where 𝑑 is the Ham-
ming distance and 𝑘 is the number of source bits. We note that on average 𝑘 coded
bits are returned by the channel at 𝐶/𝑅 = 1. Shannon codes that achieve the infor-
mation theoretic limit suffer from an ungraceful collapse. The two point converse for
systematic linear codes is from Theorem 5 and is computed for codes that can achieve
the point 𝐵 = (0.5, 0.2501), i.e., they satisfy BER ≤ 0.2501 at 𝜖 = 0.75. This means
that they can, on average, recover 0.499𝑘 coordinates from 0.5𝑘 observations. The
bound is stable, i.e., a small perturbation on the location of point 𝐵 cannot prevent
the step-like behavior of the code. The lower bound shows that almost no unobserved
coordinates can be recovered when 𝐶/𝑅 < 0.5. Furthermore, separation codes that
pass through point 𝐴 = (0.5, 0.1101) suffer from the same problem. The LDMCs can
however achieve a graceful decline while surpassing the fundamental limitations of
linear codes when 𝐶/𝑅 ≤ 0.5.

of equations should in general be more appealing than solving non-linear equations

with no structure. The codes that we shall present shortly are, however, efficiently

decodable and can surpass capabilities of linear codes for partial recovery. We call

these codes Low Density Majority Codes(LDMCs) and describe them in §1.3. As

shown in Fig.1-1, LDMCs can simultaneously achieve smaller error than any linear

codes for both users.

We shall be mainly interested in the trade-off function of the family ℒ of linear

codes in comparison with LDMCs. The following definition is relevant.

Definition 2. A code 𝑔 is said to (𝜖1, 𝜖2)-dominate ℱ if there exists 𝛿1 so that

BER𝑔(𝜖1) ≤ 𝛿1 and BER𝑔(𝜖2) ≤ 𝜂ℱ(𝜖2; 𝜖1, 𝛿1). If BER𝑔(𝜖) ≤ BER𝑓 (𝜖) for all 𝜖 and all

𝑓 ∈ ℱ , then 𝑔 is said to dominate ℱ .
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The question of graceful degradation for a code over a family {BEC𝜖}𝜖∈[𝜖1,𝜖2] of

channels can now be discussed in terms of (𝜖1, 𝜖2)-domination w.r.t to ℱ for a rich

enough family of maps ℱ . We study the trade-off function of the family ℒ of sys-

tematic linear codes in Chapter 2 and show that LDMCs dominate ℒ in the error

reduction regime.

1.2 Hamming’s model

We now discuss some versions of graceful degradation in the Hamming sense [33, 34].

Definition 3. A code 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 is said to be a [𝑛, 𝑘,𝐷(𝛿)] combinatorial-joint-

source-channel-code (CJSCC), if

∀𝑥, |𝑒| ≤ 𝛿𝑘 =⇒ 𝑑𝐻(𝑔(𝑓(𝑥+ 𝑒)), 𝑥) ≤ 𝐷𝑘.

CJSCCs can be viewed as maps that “contract” the input (noise) error 𝛿 to output

(decoder) error 𝐷. In particular, if the contraction is linear, i.e., if 𝐷(𝛿) ≤ 𝜆𝛿, then

the CJSCC is said to be 𝜆-error reducing [71]. In this sense, CJSCCs generalize the

notion of error reducing codes.

A related notion to CJSCC is that of the (𝛼, 𝛽)-property [59]. A mapping of 𝑘

symbols to 𝑛 symbols is said to have the (𝛼, 𝛽)-property if it sends any two strings of

(Hamming) distance more than 𝛼𝑘 to two strings of (Hamming) distance more than

𝛽𝑛.

Definition 4 ([60]). A map 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 is said to be [𝑛, 𝑘, 𝛽(𝛼)] if

|𝑥− 𝑦| > 𝛼𝑘 =⇒ |𝑓(𝑥)− 𝑓(𝑦)| > 𝛽𝑛,

where | · | denotes the Hamming weight.

The (𝛼, 𝛽)-property can be seen as a relaxation of the CJSCC property. Indeed,

the (𝛼, 𝛽)-property is a restriction of the CJSCC property where the decoder is forced

to pick the estimate from the pre-image of 𝑓 . For linear codes, and in the regime of
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large alphabets, the two notions are equivalent. Since our combinatorial results fall

in this regime, we do not distinguish between the two.

The (𝛼, 𝛽)-property is a natural generalization of minimum distance. We think of

𝛽 as the level of erasure noise needed to cause a relative distortion of 𝛼 in the input

space (see Fig. 1-2a). A graceful code in this sense is one with a smooth (𝛼, 𝛽)-profile

similar to Fig.1-2b. Such a code can fully recover the input when the noise level is

below its error correcting capability and can paritialy recover it once the noise level

exceeds its error correction capabiltiy.

(a) The (𝛼, 𝛽)-property (b) A (fictitious) graceful code

Figure 1-2: The alpha-beta property and the corresponding notion of graceful degra-
dation. a) The (𝛼, 𝛽)-property. The images of the points along with the regions of
disturbance required to cause confusion are shown. Any two points that are more
than 𝛼-away in the input space are sent to points that are 𝛽-away in the output space.
As a result the amount of noise needed in the target space to cause 𝛼-distortion is
larger than minimum distance. b) The “ideal” profile in the Hamming sense. Such
profile would indicate that the code can fully recover the input when the noise level
is small and can partially recover it as the noise level increases. Finding codes with
such profiles is a difficult task.

For a linear map 𝑓 , we can equivalently define

𝛽𝑓 (𝛼) := inf
𝑥
{|𝑓(𝑥)|

𝑛
| |𝑥| > 𝛼𝑘} − 1

𝑛

and

𝛽*
𝑓 := 𝛽𝑓 (1−

1

𝑘
). (1.3)

Note that the (relative) minimum distance of 𝑓 is 𝛽(0) + 1
𝑛
.

Operationally, 𝛽* characterizes the threshold for adversarial erasure noise beyond
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which the decoder cannot guaranteed to recover a single bit. Alternatively, 1 − 𝛽*
𝑓

is the fraction of equations needed such that 𝑓 can always recover at least one input

symbol. Likewise, 1 − 𝛽(0) measures the minimum number of equations needed so

that 𝑓 can fully recover the input. It is thus ideal to have a code with large minimum

distance and monotonically increasing 𝛽(𝛼). Such a code can fully recover the input

when the number of erasures is less than its minimum distance, and as the number of

erasures exceeds its minimum distance, it can offer some partial recovery guarantees.

It turns out that, similar to the stochastic case, there is a trade-off between error

correction and gracefulness. We study these trade-offs in detail in Chapter 7. In

particular, we show that the only linear codes that can asymptotically achieve 𝛽* = 1

are repetition like and that no such linear codes exsit when 𝜌 ̸∈ Z. However, LDMCs

always satisfy 𝛽* = 1 in a stable way that easily extends to the asymptotic limits as

well. Thus LDMCs can dominate linear codes in the (admittedly weak) sense of 𝛽*

as well.

1.3 The LDMC ensemble

We first define the notion of a check regular code ensemble generated by a Boolean

function.

Definition 5. Let PΣ be a joint distribution on 𝑚-subsets of [𝑘]. Given a Boolean

function 𝑓 : {0, 1}𝑚 → {0, 1}, the (check regular) ensemble of codes on {0, 1}𝑘 gen-

erated by (𝑓,PΣ) is the family of random codes 𝑓Σ : 𝑥 ↦→ (𝑓(𝑥𝑆))𝑆∈Σ obtained by

sampling Σ ∼ PΣ.Here 𝑥𝑆 is the restriction of 𝑥 to the coordinates indexed by 𝑆.

Given 𝑥 ∈ {0, 1}𝑑, we consider the 𝑑-majority function

d-maj(𝑥) = 1{
∑︀

𝑖 𝑥𝑖>
𝑑
2
}.

We have the following definition:

Definition 6. Let UΣ = Unif⊗𝑛({d-subsets of [𝑘]}) be the uniform product distri-

bution on the 𝑑-subsets of [𝑘]. The ensemble of codes generated by (d-maj,UΣ) is
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called the Low Density Majority Code (LDMC) ensemble of degree 𝑑 and denoted by

LDMC(𝑑). Furthermore, define the event 𝐴 = {
∑︀

𝑆∈Σ 1{𝑖∈𝑆} =
∑︀

𝑆∈Σ 1{𝑗∈𝑆}}, i.e.,

the event that each 𝑖 appears in the same number of d-subsets 𝑆. Then the ensemble

generated by (d-maj,UΣ|𝐴) is called a regular LDMC(𝑑) ensemble.

We shall also consider systematic LDMCs, which are codes of the form 𝑥 ↦→ (𝑥, 𝑓(𝑥))

where 𝑓 is picked from a regular LDMC ensemble. Throughout this work, we also

refer to the check regular ensemble generated by the XOR function, known as the

Low Density Generator Matrix codes (LDGMs).

1.3.1 A comment

Before we present our technical results on LDMCs, we briefly explain what led us to

study this family of codes.

While LDMCs posses many interesting properties in the Shannon sense of grace-

ful degradation, our original motivation lied, in fact, in finding graceful codes for the

Hamming model, i.e., we wanted to construct maps with smooth (𝛼, 𝛽)-profiles, sim-

ilar to what is shown in Fig. 1-2b. It was however our expectation that a solution to

the latter problem would provide at least some insight on how to make progress on the

former. There seems to be a recurring theme in coding theory that codes designed on

the basis of good Hamming properties turn out to be useful for the stochastic problem

as well. A recent example is the work of [42] which shows that many families of good

error correcting codes, which were originally designed to give protection against the

combinatorial noise in the Hamming model, can achieve full recovery in the stochastic

sense as well. Further evidence will come in Chapter 9 where we shall see that some

small codes with smooth (𝛼, 𝛽)-profile perform well against stochastic noise as well

(see Fig. 9-2). We thus set out to find codes whose profiles looked like that of Fig.

1-2b.

To design good codes in the combinatorial sense, one idea that appealed to us was

to “geometrize” the problem, i.e., to forget momentarily that we are working over the

Hamming cube and lift the problem to the Euclidean space. We then considered the
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following construction. Pick some randomly chosen triangulations points 𝑦1, · · · , 𝑦𝑛
inside {0, 1}𝑘. Given an input 𝑥, compute inner products (or alternatively distances)

between the input and the triangulation points 𝑓 : 𝑥 ↦→ ((𝑥, 𝑦1), · · · , (𝑥, 𝑦𝑛)). The

idea is shown in Fig. 1-3. This map is easily seen to preserve nearby distances. The

principle here is that when we try to triangulate a point, our estimate of where the

point is should vary smoothly with the position of the point. But there is a problem

with the points that are far away: any two typical points 𝑥, 𝑥′ that are maximally

apart will likely land in coordinates that differ by at most 𝑂(
√
𝑘). This means that

the relative distance in the target space vanishes, and there seems to be no way to

salvage a good code of positive rate out of this. One way around this problem is to

pick our triangulation vectors to be sparse. Then the relative distance of such points

in every coordinate is of the same order as the weight of the triangulating vector.

Hence there is some hope to obtain smooth binary codes of non-vanishing rate after

quantization. The all-important question is now this: how to quantize to get back

a binary codes? In some sense if the quantization map is not itself smooth then

the overall scheme fails. It may not seem like we have made much progress at this

point since we have just reduced the task of finding smooth codes to finding smooth

quantizers, a problem that had been observed and reported before in the context of

graceful degradation [25]. After some time we learned that the right way to quantize

is to use a 1-bit quantizer, i.e., to compute majorities. This was the first idea that

enabled us to construct maps that dominated the repetition code (see Fig.1-4).

1.4 Main contributions

Our main results are as follows:

∙ We establish two-point lower bounds for the partial recovery trade-off function

of systematic linear codes in the stochastic setting in Chapter 2. Together

with the bounds of Chapter 4, these bounds show that systematic LDMCs are

provably more capable than any systematic linear code for partial recovery.

These bounds also improve on existing bounds (cf. [36]) for the stochastic
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(a) A triangulation code (b) High dimensional picture

(c) Sparse triangulation code

Figure 1-3: The notion of a random triangulation code. a) The map 𝑓 : 𝑥 ↦→
((𝑥, 𝑦1), (𝑥, 𝑦2), (𝑥, 𝑦3)) is smooth, i.e., it preserves nearby distances. b) A problem
emerges in high dimensions as distances concentrate for complimentary points. In-
deed if 𝑥̄ is the compliment of 𝑥 then its (relative) inner product with a randomly
chosen point different from that 𝑥 by at most 𝑂(1/

√
𝑛). c) The problem is resolved

once the triangulation points are chosen to be low weight vectors.

broadcast JSCC problem in the case of linear codes. They may also be used to

derive informative bounds for the finite length analysis of linear codes.

∙ We study the implications of the area theorem in the stochastic setting in Chap-

ter 3. We conclude that our bounds are tighter than those obtained via area

theorem. In retrospect, this is not surprising since in the case of input BER

there are no conservation laws (see Example 1 in Chapter 3).

∙ We use various notions of channel comparison to provide a general method for

analysis of information propagation for BP in Chapter 4. In the process, we

prove a variant of Mrs. Gerber’s Lemma, which may prove useful in convexifying

information measures for parametric distributions.

∙ In particular, we apply our tools to compute upper and lower bounds for BP
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error of LDMC(3) and LDMC(5). A data processing argument shows that the

lower bound is universal, i.e., it holds for the optimal (bitwise MAP) decoder

as well. In the case of LDMC(3), the lower bound is very close to our empirical

results, which means there can only be a small gap between the optimal and BP

decoder for LDMC(3) for any erasure level. In the case of systematic LDMC(3),

our upper and lower bounds match fairly well.

∙ We construct an asymptotic upper bound for BP error of systematic LDMC(d)

of large degrees. The bound does not depend on degree and relies on propagating

messages in just 1 iteration of BP. The bound tightly fits our simulation results,

demonstrating that asymptotics in 𝑑 kicks in early.

∙ We show that LDGM constructions can be uniformly improved by replacing

repetition code with LDMCs in Chapter 5. A joint optimization over LDGM

and LDMC is shown to improve on partial recovery for all noise levels.

∙ In the combinatorial setting, we establish the trade-offs between minimum dis-

tance and the recoverability threshold 𝛽* for linear codes in Chapter 7. We

show that linear codes cannot achieve 𝛽* = 1 when the bandwidth expansion

factor 𝜌 is not an integer. It follows that no linear repetition like code exists

when 𝜌 ̸∈ Z, answering a question asked in [60]. LDMCs on the other hand can

achieve 𝛽* = 1.

∙ We provide tight bounds for the (𝛼, 𝛽)-limits of general codes over large alpha-

bets in Chapter 8 and present explicit (short) codes with good (𝛼, 𝛽)-properties

in Chapter 9 .

1.5 Prior work

Rateless codes

To solve the multi-cast problem over the internet, the standard TCP protocol uses

feedback to deal with erasures, i.e., each lost packet gets re-transmitted. This scheme
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is optimal from a data recovery point of view. From any 𝑘 received coded data bits,

𝑘 source bits can be recovered. Hence it can achieve every point on the fundamental

line of Fig. 1-1. However, a separate feedback line is not always available, and using

the same channel to implement feedback has other complications. For instance, when

many packets are likely to get dropped, feedback has a large overheard (or the excess

in information bits required to reconstruct the source). Alternatively, a forward error

correcting code can be used to deal with data loss. A preliminary analysis in [44]

shows that forward error correction can save up to 25% in overhead compared to a

feedback approach over a typical Internet network.

In particular, Fountain codes have been introduced to solve the problem of multi-

casting over the erasure channel [12]. They are a family of linear error correcting codes

that can recover 𝑘 source bits from any 𝑘 + 𝑜(𝑘) coded bits with small overhead. A

special class of fountain codes, called systematic Raptor codes, have been standardized

and are used for multi-casting in 3GPP [8, 26, 4, 9, 45]. Various extensions and

applications of Raptor codes are known [15, 14]. However, as observed in [67], these

codes are not able to adapt to the user demands and temporal variations in the

network.

As less data becomes available at the user’s end, it is inevitable that our abil-

ity to recover the source deteriorates. However, we may still need to present some

meaningful information about the source to the user, i.e., we want to partially recover

the source. For instance, in sensor networks it becomes important to maximize the

throughput of the network at any point in time since there is always a high risk that

the network nodes fail and become unavailable for a long time [30]. In such applica-

tions it is important for the codes to operate gracefully, i.e., to partially recover the

source and improve progressively as more data comes in. We show in Chapter 2 that

Fountain codes, and more generally linear codes, are not graceful for forward error

correction. Hence, it is not surprising that many authors have tried to develop grace-

ful linear codes by using partial feedback [30, 27, 6, 13]. However, we shall challenge

the idea that graceful degradation (or the online property) is not achievable without

feedback [13]. Indeed LDMCs give a family of efficient (non-linear) error reducing
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codes that can achieve graceful degradation and can perform better than any linear

code in the sense of partial recovery (see Fig.1-1).

Raptor codes are essentially concatenation of a rateless Tornado type error-reducing

code with an outer error correcting pre-coder. Forney [23] observed that concatena-

tion can be used to design codes that come close to Shannon limits with polynomial

complexity. Forney’s concatenated code consisted of a high rate error correcting

(pre)-coder that encodes the source data and feeds it to a potentially complicated

inner error correcting code. One special case of Raptor codes, called pre-code only

Raptor code is the concatenation of an error correcting code with the repetition code.

Recently, such constructions are becoming popular in optics. In these applications it

is required to achieve 10−15 ouput BER, much lower than the error floor of LDPC.

Concatenation with a pre-coder to clean up the small error left by LDPCs is one

way to achieve the required output BER [72]. It was shown recently however that

significant savings in decoding complexity (and power) can be achieved if the inner

code is replaced with a simple error reducing code and most of the error correction is

left to the outer code [81, 5].

These codes, as all currently known examples of concatenated codes, are linear.

They use an outer linear error correcting code (BCH, Hamming, etc) and an inner

error reducing LDGM. The LDGM code however operates in the regime of partial

data recovery. It only produces an estimate of the source with some distortion that

is within the error correcting capability of the outer code. To achieve good error

reduction, however, LDGMs still need rather long block-length and a minimum num-

ber of successful transmissions. In other words, they are not graceful codes (see Fig.

5-4). We shall see in Chapter 5 that LDMCs can uniformly improve on LDGMs in

this regime. Thus, we expect that LDMCs appear in applications where LDGMs are

currently used for error reduction.

Joint Source-Channel Coding

The problem discussed in this work can be viewed as an example of broadcasting with

a joint source-channel code (JSCC), which is considered one of the challenging open
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problems is network information theory [36, 35, 64, 74, 32]. In general it is known that

the users have a conflict of interests, i.e., there is a trade-off between enhancing the

experience of one user and the others. For instance, if we design the system to work

well for the less resourceful users, others suffer from significant delay. Likewise, if we

minimize the delay for the privileged users, others suffer significant loss in quality.

Naturally, there are two questions we are interested in: 1) what are the fundamental

trade-offs for partial recovery 2) how do we design codes to achieve them?

Many achievability and converse bounds are available for the two user case under

various noise models [64, 58, 2, 22, 18]. In turns out that in most cases there is a

gap between achievablity and converse bounds. In a sense, the theory and practice

of partial recovery so far are much less developed compared with the classic setting

of full recovery with one user (also known as point-to-point communication). For the

classic problem, Shannon provided a converse for full recovery and showed that it is

asymptotically tight using a non-constructive (random coding) argument. Over the

years many practical codes were developed that can achieve good performance in the

sense of full recovery and admit efficient decoding. These codes mostly rely on the idea

that linear systems of equations with proper structure (symmetry, sparsity, etc) can

be solved efficiently. However, for the two user case the best achievability results are

either non-constructive [22], or involve complicated non-linearities (e.g., compression

at different scales [24][37]). Shannon also developed the rate distortion theory of

partial recovery for one user and showed that separation is asymptotically optimal.

In practice, however, the codes are finite and it is known that in this regime separation

is not optimal (see [36] and references therein). Furthermore, lossy compression is

inherently nonlinear and separating it from coding adds another layer of complexity

to the system. This is the problem that JSCCs attempt to solve.

A classic error correction solution is not completely satisfactory here. Indeed for

error correction to work, we need to know the channel quality. If we design the code

to work well in the worst case situation, we suffer significant delay. If we assume

a best case channel, we suffer significant loss in recovery once the channel quality

drops below the design rate. This sudden drop in quality is known as the “cliff
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effect” [24] and shown in Fig.1-4 for LDPC codes. Roughly speaking, there is a phase

transition in the BER performance of LDPCs or any capacity achieving code. When

the noise level is below a certain threshold the input can be recovered with small

error. When the noise level exceeds that threshold the input cannot be recovered

with good fidelity. This is a consequence of the so called area theorem and will be

visited later. Our results show that the “cliff effect” persists in the range of partial

recovery as well. That is, any linear code that comes close to the fundamental limits

of partial recovery cannot be graceful. This latter result cannot be inferred from the

area theorem (see Chapter 3) or the general converses known for the JSCC problem.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
C/R

0.0

0.1

0.2

0.3

0.4

0.5

BE
R

R=1/5
LDMC,k=70000,BP steps=5
LDPC,k=70000,BP steps=50
repetition

Figure 1-4: Comparing BER at different erasure channels for three codes with rate
1/5: an LDPC code with 𝑘 = 70000 data bits using 50 iterations of BP, the repetition
code, and LDMC(3) with 𝑘 = 70000 information bits using 5 iterations of BP. The
LDMC code does not have any systematic bits. The LDPC code suffers from the cliff
effect. Here 𝐶 is the capacity of the channel and 𝑅 is the rate of the code.

The repetition code, on the other hand, can recover the input bits partially at

all channel noise levels. Of course, its performance degrades as the channel capacity

drops but it does so in a graceful way.

Much work has been done recently to find graceful codes in the literature [37, 77,

24, 10, 54, 25]. Such approaches can broadly be categorized into JSCC solutions. It

was known since the early days of communication that trade-offs exist between error

correction and gracefulness of a code [82]. We characterize these trade-offs for linear

codes under erasure noise. Our bounds on the trade-off functions give new converses

for broadcasting with linear codes. These bounds are stronger than those inferred
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from the area theorem (see Chapter 3) or the general converses known for JSCC (cf.

[36]). Our results reveal that, unlike the classic setting, the converse bounds cannot

be achieved with linear codes. Hence, to find good practical codes for broadcasting

we need to cosider non-linear codes. Our proposed codes, LDMCs, may prove to be

helpful in this regard.

Non-linear codes

Codes whose computational graph (see Fig.4-2) are sparse are known as sparse graph

codes. Many such codes are known [47] and can achieve near Shannon limit perfor-

mance. With a few exceptions, these codes are mostly linear. One problem with

linear codes is that BP cannot be initiated without the presence of low degree nodes.

In [16], the authors observe that non-linear functions do not have this problem and

use random sparse non-linear codes to achieve near optimal compression using BP.

However, using non-linear functions in this setting is mainly due to algorithmic con-

siderations, namely, to enable the use of BP. Otherwise, similar compression results

can be obtained by using LDGMs under different message passing rules[79]. In [56],

the authors use special non-linear sparse graph codes to build optimal smooth com-

pressors. In all of these works, however, the focus is on point-wise performance and

a result the codes are optimized to operate at a particular rate. As such, they are

unlikely to achieve graceful degradation.

Another relevant work in this area is that of random constraint-satisfaction prob-

lems (CSPs) with a planted solution [40]. It appears that the CSP literature mostly

focused on geometric characterization of spaces of solutions and phase transitions

thereof. These do not seem to immediately imply properties interesting to us here

(such as graceful degradation).
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Chapter 2

Trade-offs for linear codes

Systematic linear codes form a vast majority of the codes that are used in practice.

In this section, we work towards proving that LDMCs are optimal w.r.t to this family.

In the following, by ker(𝐴) we refer to the left kernel of 𝐴, that is the subspace of

vectors 𝑥 satisfying 𝑥𝐴 = 0.

2.1 hrank

Definition 7. Given a matrix 𝐴 define

hrank(𝐴) = |{𝑗 : ker(𝐴) ⊂ {𝑥 : 𝑥𝑗 = 0}}|

Definition 8. Given a matrix 𝐴, define 𝐴(𝑝, 𝑞) to be a random sub-matrix of 𝐴 that

is obtained by sampling each row of 𝐴 with probability 𝑝 and each column of 𝐴 with

probability 𝑞 independently of other rows/columns.

The following proposition is well known (cf. [65]).

Proposition 1. Consider a system of equations 𝑥𝐺 = 𝑦 over F2. If ker(𝐺) ⊂ {𝑥 :

𝑥𝑖 = 0}, then 𝑥𝑖 is uniquely determined from solving 𝑥𝐺 = 𝑦. Otherwise, there is a

bijection between the set of solutions {𝑥 : 𝑥𝐺 = 𝑦, 𝑥𝑖 = 0} and {𝑥 : 𝑥𝐺 = 𝑦, 𝑥𝑖 = 1}.

In particular, if exactly 𝑡 coordinates are uniquely determined by the above equations,

then hrank(𝐺) = 𝑡.
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Our next proposition relates BER and hrank.

Proposition 2. Let 𝐺 = [𝐼 𝐴] be the generator matrix of a systematic linear code 𝑓

with rate 𝑅. Then BER𝑓 (𝜖) ≤ 𝛿 if and only if

E[hrank
(︁
𝐴(𝜖, 1− 𝜖)

)︁
] ≥ (𝜖− 2𝛿)𝑘.

Proof. If BER is bounded by 𝛿, there are, on average, at most 2𝛿𝑘 bits that are not

uniquely determined by solving 𝑥𝐺̃(1, 1− 𝜖) = 𝑦. For a systematic code, the channel

returns Bin(𝑘, 1 − 𝜖) systematic bits. The remaining systematic bits 𝑥𝑟 are to be

determined from solving 𝑥𝑟𝐴(𝜖, 1 − 𝜖) = 𝑦 where 𝑦 is some vector that depends on

the channel output 𝑦 and the returned systematic bits. If 𝑡 additional systematic bits

are recovered, then hrank(𝐴(𝜖, 1− 𝜖)) = 𝑡 by Proposition 1. Since on average at least

(𝜖 − 2𝛿)𝑘 additional systematic bits are recovered, the claim on the average hrank

follows.

2.2 Trade-offs between rank and hrank

The next proposition shows how matrices with positive hrank behave under row sub-

sampling. Our main observation is that row sub-sampled matrices of a (thin) matrix

with large hrank have bounded rank. In particular, if a (thin) matrix has full hrank,

its sub-sampled matrices cannot have full rank.

Proposition 3. Consider and arbitrary field F and let 𝜖1 > 𝜖2. Given a 𝑘×𝑚 matrix

𝐴,

E[rank
(︁
𝐴(𝜖2, 1)

)︁
] ≤ rank(𝐴)− (1− 𝜖2

𝜖1
)E[hrank

(︁
𝐴(𝜖1, 1)

)︁
],

and

E[hrank
(︁
𝐴(𝜖2, 1)

)︁
] ≥ 𝜖2

𝜖1
E[hrank

(︁
𝐴(𝜖1, 1)

)︁
].

Therefore, if E[rank
(︁
𝐴(𝜖2, 1)

)︁
] = rank(𝐴)− 𝑜(𝑘), then E[rank

(︁
𝐴(𝜖1, 1)

)︁
] = 𝑜(𝑘).
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Proof. Suppose that hrank
(︁
𝐴(𝜖1, 𝑞)

)︁
= 𝑡. This means that there are at least 𝑡 rows 𝑎𝑗

in 𝐴(𝜖1, 𝑞) such that 𝑎𝑗 is not in the span of {𝑎𝑖 : 𝑖 ̸= 𝑗}. Let 𝐵 be the row-submatrix

of 𝐴(𝜖1, 𝑞) associated to these 𝑡 rows, and 𝐵𝑐 be its compliment, i.e., the matrix with

rows {𝑎𝑗 : 𝑎𝑗 ∈ 𝐴(𝜖1, 𝑞), 𝑎𝑗 ̸∈ 𝐵}. We claim that the compliment of 𝐵 is a matrix of

rank rank(𝐴)− 𝑡. To see this, note that Im(𝐵)∩ Im(𝐵𝑐) = {0}, for otherwise we get

linear dependencies of the form ℎ =
∑︀

𝑖 𝛼𝑖𝑏𝑖 ̸= 0 where 𝑏𝑖 ∈ 𝐵 and ℎ ∈ Im(𝐵𝑐), which

contradicts the construction of 𝐵. This means that rank(𝐵𝑐) + rank(𝐵) = rank(𝐴).

The claim now follows since rank(𝐵) = 𝑡. Under row sub-sampling, each row of 𝐵 is

selected with probability 𝜖2/𝜖1 independently of other rows. Thus,

E[hrank
(︁
𝐴(𝜖2, 𝑞)

)︁
|hrank

(︁
𝐴(𝜖1, 𝑞)

)︁
= 𝑡] ≥ 𝜖2

𝜖1
𝑡

The rows selected from 𝐵𝑐 can contribute at most rank(𝐴)− 𝑡 to the rank of 𝐴(𝜖2, 𝑞).

Hence

E[rank
(︁
𝐴(𝜖2, 𝑞)

)︁
|hrank(𝐴(𝜖1, 𝑞)) = 𝑡] ≤ 𝜖2

𝜖1
𝑡+ rank(𝐴)− 𝑡

Taking the average over the hrank of 𝐴(𝜖1, 𝑞) proves the first two results. The last

inequality follows by re-arranging the terms.

Remark 1. In general the above bound cannot be improved up to 𝑜(𝑘) deviations.

Indeed we can partition the matrix 𝐴(𝜖1, 1) in the form

⎡⎢⎢⎢⎣
𝐵

𝑂

𝐹

⎤⎥⎥⎥⎦
where 𝐵 is a basis with hrank(𝐴(𝜖1, 1)) many rows, 𝑂 is the zero matrix, and 𝐹 is a

redundant frame with 𝑓 > 1− 𝜖1 − 𝑡 rows that span the co-kernel of 𝐵. This means

that any 1− 𝜖1 − 𝑡 rows in 𝐹 form a basis for the image of 𝐹 . Now for any 𝜖2 < 𝜖1,

if 𝜖2
𝜖1
𝑓 = 1 − 𝜖1, then we sub-sample a basis from 𝑓 with high probability. Thus the

ℎ𝑟𝑎𝑛𝑘 of the sub-sampled matrix 𝐴(𝜖2, 1) can jump up with high probability for large
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𝑘.

The next Proposition shows that rank is well behaved under column sub-sampling.

Proposition 4. Consider an arbitrary field F and let 𝑝 > 𝑞. Given a 𝑘 ×𝑚 matrix

𝐴 over F,

E[rank
(︁
𝐴(1, 𝑝)

)︁
] ≤ min{𝑝𝑚,

𝑝

𝑞
E[rank

(︁
𝐴(1, 𝑞)

)︁
]}.

Proof. Pick a column basis for 𝐴(1, 𝑝). We can realize 𝐴(1, 𝑞) by sub-sampling

columns of 𝐴(1, 𝑝). In this way, each column in the basis of 𝐴(1, 𝑝) is selected with

probability 𝑞/𝑝 independently of other columns. In other words,

E[rank
(︁
𝐴(1, 𝑞)

)︁
] ≥ 𝑞

𝑝
E[rank

(︁
𝐴(1, 𝑝)

)︁
].

The desired result follows.

2.3 Converse

We are now ready to prove our main result.

Theorem 5. Let 𝑓 : 𝑥 ↦→ 𝑥𝐺 be a systematic linear code of rate 1/𝜌 with generator

matrix 𝐺 = [𝐼 |𝐴] over F2. Fix 𝜖1 > 𝜖2 and 𝛿1 ≤ 𝜖1
2
. If BER𝑓 (𝜖1) ≤ 𝛿1, then

BER𝑓 (𝜖2) ≥ 𝜅(𝜖1, 𝛿1, 𝜌)
Δ
=

𝜖2 − 1−𝜖2
1−𝜖1

[︁
𝜖2
𝜖1
𝛾 + (𝜌− 1)(1− 𝜖1)− 𝛾

]︁
2

with 𝛾 = 𝜖1−2𝛿1. In particular, if BER(𝜖2) = 𝜖2− 1
2
+𝑜(1), then BER(𝜖1) =

𝜖1
2
−𝑜(1).

Furthermore, if 𝜖2 > 𝜖1

BER𝑓 (𝜖1) ≥ inf
𝛿2
{𝛿2 : 𝜅(𝜖2, 𝛿2, 𝜌) ≤ 𝛿1}.
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Proof. By Proposition 2, we have E[hrank
(︁
𝐴(𝜖1, 1− 𝜖1)

)︁
] ≥ 𝛾𝑘. By Proposition 3,

we have

E[rank
(︁
𝐴(𝜖2, 1− 𝜖1)

)︁
] ≤ (

𝜖2
𝜖1
𝛾 + (𝜌− 1)(1− 𝜖1)− 𝛾)𝑘.

By Proposition 4, we have

E[rank
(︁
𝐴(𝜖2, 1− 𝜖2)

)︁
] ≤ 1− 𝜖2

1− 𝜖1
(
𝜖2
𝜖1
𝛾 + (𝜌− 1)(1− 𝜖1)− 𝛾)𝑘.

The first result now follows from Proposition 2 upon observing that hrank(𝐴) ≤

rank(𝐴).

The second result follows since BER(𝜖2) = 𝜖2− 1
2
+𝑜(1) implies that hrank(𝐴(𝜖2, 1−

𝜖2)) = (1−𝜖2)𝑘−𝑜(𝑘) by Proposition 2. By the second part of Proposition 3, we have

hrank(𝐴(𝜖1, 1−𝜖1)) = 𝑜(𝑘). The result follows after applying Proposition 2 again.

2.4 LDMCs vs linear systematic codes

Fig. 2-1 shows the lower bound for codes of rate 1
2
. It can be seen that regular

systematic LDMCs of rate 1/2 (0.5, 𝜖)-dominate linear codes for all 𝜖 ≤ 0.5 and

cannot be much worse when 𝜖 > 0, 5. In fact we do not believe that the lower bound

for linear codes is tight and expect LDMCs to dominate all linear codes of rate 1/2

that can achieve BER(0.75) = 0.25 + 𝑜(1).
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(a) Lower bound for linear codes with
BER(0.75) ≤ 0.2501
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Figure 2-1: The LDMC performance along with the lower bound of Theorem 5 on
the BER for the systematic linear codes of rate 1

2
satisfying a) BER(0.75) ≤ 0.2501

and b) BER(0.45) ≤ 0.01. The left figure shows that any systematic linear code that
comes close to the Shannon limit for linear codes suffers from ungraceful collapse. For
such codes, there is a threshold such that almost any further improvement on BER
for erasure probabilities below the threshold comes from the systematic observations.
Furthermore, almost no unobserved bit can be recovered as the erasure probability
exceeds the threshold. The right figure shows that it is not possible to attain good
performance in the error reduction regime with systematic linear codes at the cost of
tolerating a small error. Even at 10% overhead, systematic linear codes that achieve
BER lower than 0.01 exhibit a sharp decay in performance once 𝐶 < 𝑅.
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Chapter 3

Bounds via area theorem

The lower bound of Theorem 5 states that a linear systematic code cannot have small

BER for all erasure probabilities. In this sense, it has the flavor of a “conservation

law”. In coding theory, it is often important to understand how a code behaves over

a family of parametrized channels. The main existing tool in the literature to study

such questions is the so called area theorem. Here we introduce the theorem and

study its consequences for two point bounds on BER. It turns out that the bound in

Theorem 5 is tighter than what can be inferred from the area theorem.

Let us first provide an example to show that there is no conservation laws for

input BER:

Example 1. Let 𝑓 be the 2 fold repetition map 𝑋 ↦→ (𝑋,𝑋). Let 𝑔 be a systematic

code sending 𝑥𝑖 ↦→ (𝑥𝑖, 𝑋𝑖, 𝑥𝑖) for all odd 𝑖 and 𝑥𝑗 ↦→ (𝑥𝑗) for all even 𝑖. Then

BER𝑓 (𝜖) =
1
2
𝜖2 and BER𝑔(𝜖) =

1
2
(1
2
𝜖3 + 1

2
𝜖). It can be checked that 𝑓 dominates 𝑔.

This means that among repetition codes a balanced repetition is optimal.

3.1 Area theorem

Following [65], we define the notion of an extrinsic information transfer (EXIT) func-

tion.

Definition 9. Let 𝑊 be a codeword chosen from an (𝑛, 𝑘) code 𝐶 according to the
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uniform distribution. Let 𝑌 (𝜖) be obtained by transmitting 𝑊 through a BEC(𝜖). Let

𝑌∼𝑖(𝜖) = (𝑌1(𝜖), · · · , 𝑌𝑖−1(𝜖), ?, 𝑌𝑖+1(𝜖), · · · , 𝑌𝑛(𝜖))

be obtained by erasing the 𝑖-th bit from 𝑌 (𝜖). The 𝑖-th EXIT function of 𝐶 is defined

as

ℎ𝑖(𝜖) = 𝐻(𝑊𝑖|𝑌∼𝑖(𝜖))

The average EXIT function is

ℎ(𝜖) =
1

𝑛

𝑛∑︁
𝑖=1

ℎ𝑖(𝜖)

The area theorem states that

Theorem 6 (Area Theorem). The average EXIT function of a binary code of rate

𝑅 satisfies the following property

𝑅 =

∫︁ 1

0

ℎ(𝜖)𝑑𝜖.

Let 𝑔 be a decoder acting on 𝑌 (𝜖). Then the output bit error rate associated to

𝑔 can be defined as

𝑝𝑔𝑏(𝜖) =
E[𝑑(𝑊, 𝑔(𝑌 (𝜖))]

𝑛

where the expectation is taken w.r.t to both the input distribution and channel real-

izations at erasure probability 𝜖. By Proposition 1, the MAP decoder 𝑔* either fully

recovers a bit or leaves it completely unbiased. Thus the 𝑖-th EXIT function can be

written as

𝐻(𝑊𝑖|𝑌∼𝑖(𝜖)) = 𝐻(𝑊𝑖|𝑌∼𝑖(𝜖), 𝑔
*
𝑖 (𝑌∼𝑖(𝜖))) = P(𝑔*𝑖 (𝑌∼𝑖(𝜖)) =?).
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This gives

𝑝𝑔
*

𝑏 (𝜖) =
1

2𝑛

∑︁
𝑖

𝜖P(𝑔*𝑖 (𝑌∼𝑖(𝜖)) =?) =
𝜖ℎ(𝜖)

2
. (3.1)

Let us now find the implications of the area theorem for the input BER of linear

systematic codes. To this end we define the average systematic EXIT function

ℎsys(𝜖) =
1

𝑘

𝑘∑︁
𝑖=1

ℎ𝑖(𝜖).

Likewise we can define the non-systematic EXIT function as follows:

ℎnon−sys(𝜖) =
1

𝑛− 𝑘

𝑛∑︁
𝑖=𝑘+1

ℎ𝑖(𝜖).

3.2 Behavior of BER vs EXIT function

We first prove a lemma to show that the coded bit error rate converges to 0 continu-

ously as the input bit error rate vanishes.

Lemma 7 (Data BER vs EXIT function). Fix 𝜖 < 𝜖0. For any binary linear code of

rate 𝑅, we have

ℎ(𝜖) ≤ 2𝑅

𝜖0 − 𝜖
BER(𝜖0).

In particular, if BER(𝜖0) → 0 for a sequence of linear codes, then ℎ(𝜖) → 0 for all

𝜖 < 𝜖0.

Proof. Let 𝑋 be an input codeword 𝑋 ∈ {0, 1}𝑛 and denote by 𝑍(𝜖) and 𝑍(𝜖0)

outputs of degraded binary erasure channels, i.e.:

𝑋 → 𝑍(𝜖) → 𝑍(𝜖0) .

Notice that

𝐼(𝑋𝑖;𝑍(𝜖0)|𝑍∼𝑖(𝜖)) = 𝐼(𝑋𝑖;𝑍𝑖(𝜖0)|𝑍∼𝑖(𝜖)) = (1− 𝜖0)𝐻(𝑋𝑖|𝑍∼𝑖(𝜖)) ,
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where the first equality follows from degradation and the second is a property of

erasure channels. Rewriting this identity and summing over 𝑖 we obtain

𝑛∑︁
𝑖=1

𝐻(𝑋𝑖|𝑍∼𝑖(𝜖), 𝑍(𝜖0)) = 𝜖0

𝑛∑︁
𝑖=1

𝐻(𝑋𝑖|𝑍∼𝑖(𝜖)) = 𝜖0𝑛ℎ(𝜖) , (3.2)

where ℎ(·) is an EXIT function of the code 𝑋.

We now interpret the left-hand side sum in (3.2) as another EXIT function (a

conditional one). Indeed, given 𝑍(𝜖0) denote by 𝑇0 the set of erasures in 𝑍(𝜖0).

Conditioned on 𝑍(𝜖0) = 𝑧0 we have that the joint distribution 𝑃𝑋,𝑍(𝜖)|𝑍(𝜖0)=𝑧0 can be

understood as follows: 𝑋𝑇0 is sampled from the distribution 𝑃𝑋𝑇0
|𝑋𝑇𝑐

0
and then each

of the |𝑇0| entries of 𝑋𝑇0 is erased independently with probability 𝜔 = 𝜖
𝜖0
. Denote

by ℎ0(𝜔; 𝑧0) the EXIT function of the code 𝑋𝑇0 (note that this is a random function,

dependent on values of 𝑧0 on a set 𝑇 𝑐
0 ). This discussion implies

ℎ0(𝜔; 𝑧0) =
1

|𝑇0|

𝑛∑︁
𝑖=1

𝐻(𝑋𝑖|𝑍∼𝑖(𝜖), 𝑍(𝜖0) = 𝑧0) (3.3)

(note that terms corresponding to 𝑖 ̸∈ 𝑇0 are zero.) From the area theorem and

monotonicity of the EXIT function we obtain

ℎ0(𝜔; 𝑧0)(1− 𝜔) ≤ 1

|𝑇0|
𝐻(𝑋|𝑍(𝜖0) = 𝑧0) , (3.4)

where the right-hand side is an effective rate of the code. In all, from (3.2)-(3.4) we

obtain (after taking expectation over 𝑧0)

𝑛ℎ(𝜖) ≤ 1

𝜖0 − 𝜖
𝐻(𝑋|𝑍(𝜖0)) . (3.5)

So far we have not used the fact that the code is binary, but now we will. Let

𝑘(𝑇0) ≤ 𝑛𝑅 be the number of unrecoverable information bits given a set 𝑇0 of erasures.

Notice that

𝐻(𝑋|𝑍(𝜖0) = 𝑧0) ≤ 𝑘(𝑇0) ,
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and thus taking the expectation, we obtain

𝐻(𝑋|𝑍(𝜖0)) ≤ E[𝑘(𝑇0)] = 2𝑛𝑅× BER(𝜖0) .

Together with (3.5) this completes the proof.

3.3 Converse

Proposition 8. Let 𝜖2 < 𝜖1. For any binary code with BER(𝜖2) ≤ 𝛿2 we have

BER(𝜖1) ≥ sup
{𝜖0:𝜖0<𝜖2}

𝜖1
2𝑅

(︂
1

(𝜖1 − 𝜖0)
(𝑅− (1− 𝜖1)− 𝜖0

2𝛿2(𝜖0/𝜖2)𝑅

𝜖2 − 𝜖0
)− 1 +𝑅

)︂

In particular, if BER(𝜖2) = 𝑜(1), then

BER(𝜖1) ≥
𝜖1
2𝑅

(︂
1

(𝜖1 − 𝜖2)
(𝑅− (1− 𝜖1))− 1 +𝑅

)︂
+ 𝑜(1)

Proof. To prove the lower bound on ℎ(𝜖2), we may approximate ℎ(𝜖1) in a worst-cast

fashion as a piece-wise constant function. To do this, note that ℎ(𝜖) ≤ ℎ(𝜖2) for all

𝜖 ≤ 𝜖2, and ℎ(𝜖) ≤ ℎ(𝜖1) for all 𝜖 ∈ (𝜖2, 𝜖1], and ℎ(𝜖) ≤ 1 for all 𝜖 > 𝜖1. Then the area

theorem gives that

1− 𝜖1 + ℎ(𝜖1)(𝜖1 − 𝜖2) + ℎ(𝜖2)𝜖2 ≥ 𝑅

We note that

ℎ(𝜖) = 𝑅ℎsys(𝜖) + (1−𝑅)ℎnon−sys(𝜖)

Using the above two relations, we have

𝑅ℎsys(𝜖1) ≥
1

𝜖1 − 𝜖2
(𝑅− (1− 𝜖1)− ℎ(𝜖2)𝜖2)− (1−𝑅)ℎnon−sys(𝜖1)
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Using ℎnon−sys ≤ 1, we get

ℎsys(𝜖1) ≥
1

𝑅(𝜖1 − 𝜖2)
(𝑅− (1− 𝜖1)− ℎ(𝜖2)𝜖2)− (

1

𝑅
− 1)

If BER(𝜖2) → 0 then ℎ(𝜖′2) → 0 for any 𝜖′2 < 𝜖2 by Lemma 7. In this case, we can

write

ℎsys(𝜖1) ≥
1

𝑅(𝜖1 − 𝜖′2)
(𝑅− (1− 𝜖1))− (

1

𝑅
− 1)

Since 𝜖1 > 𝜖2, the right hand is continuous for all 𝜖′2 < 𝜖2. Thus we may take the limit

as 𝜖′2 → 𝜖2 to obtain the desired result.

The bounds on BER follow from Lemma 1 and the above two inequalities upon

noticing that for a linear systematic code

BER(𝜖) =
𝜖ℎsys(𝜖)

2
.

3.4 Comparing the bounds

The above bound is compared with that of Theorem 5 in Fig.3-1. It can be seen that

the former bound is tighter and more stable.
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(a) Lower bounds for codes with BER(0.475) = 0
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Figure 3-1: Comparing the lower bounds of Theorem 5 and Proposition 8 for linear
systematic codes of rate 1/2 satisfying a) BER(𝜖) = 0 at 𝜖 = 0.475 b) BER(𝜖) = 0 at
𝜖 = 0.495 c) BER(𝜖) = 0 vs BER(𝜖) = 0.001 at 𝜖 = 0.495. We note that the bounds
from Theorem 5 are tighter and more stable as BER moves away from 0.
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Chapter 4

Analysis of Belief Propogation

In this chapter we provide tools to study the error dynamics under BP for general

codes and apply them to bound the BER of LDMC(3). The same tools can be used

to bound the error under the optimal (bitwise MAP) decoder as well. Our analysis

shows that for LDMC(3) the gap between BP and optimal decoder is small.

4.1 Review of BP

We recall the notion of a code ensemble generated by a Boolean function 𝑓 : {0, 1}𝑚 →

{0, 1} from Chapter 1.3. We also briefly review the notion of a (bipartite) factor

graph associated with a code from the ensemble (cf. [65], Chapter 2). Consider a

code defined on {0, 1}𝑘. To every coordinate 𝑖 ∈ [𝑘], we associate a variable node and

represent it by a circle. We further associate random variables 𝑋𝑖
𝑖.𝑖.𝑑∼ Ber(1/2) to

the variable nodes. Likewise, to every subset Δ𝑗 ∈ Δ, we associate a check node and

represent it by a square. Every such node represents a constraint of the form 𝑦𝑗 =

𝑓(𝑋Δ𝑗
), where 𝑦𝑗’s are the realized (unerased) coded bits and 𝑋Δ𝑗

is the restriction

of 𝑋 to the coordinates in Δ𝑗. We connect a variable node 𝑖 to a check node Δ𝑗 if and

only if 𝑖 ∈ Δ𝑗 (see Fig. 4-1a). We remark that most references associate a separate

node with 𝑦𝑗’s to model the channel likelihoods [41, 65, 78]. In the language of [41],

our description is a cross section of the full factor graph parametrized by 𝑦𝑗’s. We

do not make this distinction in the sequel as our primary interest is to analyze the
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decoding error for erasure noise. In this case, we can simply restrict to the sub-graph

associated with the observed bits and do not need to consider the channel likelihoods.

Given a target bit 𝑋𝑖, the decoding problem is to estimate (or approximate) the

marginal probabilities 𝑝𝑋𝑖|𝑌 (·|𝑦) for a realization 𝑦 of the (observed) coded bits. Here

we denote such an estimate by the function 𝜋𝑋𝑖
and refer to it as a message. A

message should be thought of as an approximation to the true marginal computed

by the decoder. To study the behavior of iterative decoding methods, it is helpful

to consider the notion of a local neighborhood. Given a target bit 𝑋𝑖, we denote by

Δ(𝑖) the set of its neighbor nodes among the factors, that is, the set of check nodes

whose constraint involves 𝑋𝑖. We further define the local neighborhood 𝜕(𝑖) among

the variable nodes to be the set of variables (other than 𝑖) that appear in Δ(𝑖) (see

Fig. 4-1b). Given a vector 𝑣 ∈ {0, 1}𝑘, we define 𝜕𝑣𝑖 := 𝑣𝜕(𝑖) to be the restriction of

𝑣 to the coordinates in 𝜕(𝑖). Likewise, if 𝑣 ∈ {0, 1}𝑛, then Δ𝑣𝑖 := 𝑣Δ(𝑖) denotes the

restriction of 𝑣 toΔ(𝑖). The 𝑗-th node inΔ(𝑖) is denoted byΔ𝑗(𝑖). The variable nodes

other than 𝑖 that are connected to Δ𝑗 are denoted by 𝜕𝑗(𝑖). Similarly, we define the

𝑗-th order local neighborhood 𝜕𝑗(𝑖) by recursively unfolding the local neighborhoods

at the boundary 𝜕𝑗−1(𝑖) := 𝜕(𝜕𝑗−1(𝑖)) − 𝜕𝑗−1(𝑖). In other words, the ℓ-th order

boundary is the set of nodes (not in 𝜕𝑗−1(𝑖)) that are in the local neighborhood of

𝜕𝑗−1(𝑖). Likewise, Δ𝑗(𝑖) := Δ(𝜕𝑗−1(𝑖))−Δ𝑗−1(𝑖) (see Fig. 4-2a). The compliment of

Δ(𝑖) inside Δ is denoted by Δ∼(𝑖). Finally, we define Δ(𝑗)(0) := ∪𝑗
𝑖=1Δ

𝑖(0).

With this notation we can describe a generic iterative algorithm to compute 𝜋𝑋𝑖
.

Let 𝜋𝜕𝑋0 be the message (or approximation) for 𝑝𝜕𝑋0|Δ∼𝑌0 . This is the conditional

estimate of the random variables in the local neighborhood of𝑋0 given all the observed

bits outside the neighborhood. By d-separation, the computation of the marginals

for 𝑋0 can be decomposed as follows:

𝜋𝑋0(𝑥0) =
∑︁
𝜕𝑥0

𝜋𝜕𝑋0(𝜕𝑥0)𝑝𝑋0|𝜕𝑋0(𝑥0|𝜕𝑥0) ∝
∑︁
𝜕𝑥0

𝜋𝜕𝑋0(𝜕𝑥0)
∏︁

Δ𝑗∈Δ(0)

1{𝑦𝑗=𝑓(𝑥0,𝜕𝑗𝑥0)}.

(4.1)

In this way, we obtain an iterative procedure where the messages 𝜋𝜕𝑋0 flow into the

local neighborhood and the posterior estimates 𝜋𝑋0 flow out to the target node (see
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Fig. 4-1b). To iterate such a procedure ℓ-times, one needs to first approximate the

marginals at the ℓ-th order boundary. Once this is done, (4.1) can be applied itera-

tively to compute 𝜋𝑋0 . The factor (sub-)graph obtained after ℓ unfoldings represents

the natural order of recursive computations needed to compute 𝜋𝑋0 , and hence, we

refer to it as a computational graph. Fig. 4-2 shows the case where the computational

graph is a tree.

Belief propagation (BP) is a special case of such iterative procedure where the

input messages are assumed to factorize into a product:

𝜋𝜕𝑋0 =
∏︁
𝑖

𝜋𝜕𝑖𝑋0

The number of iterations of BP determine the depth of the computational graph,

i.e., the order of the local neighborhood on which we condition. We denote by 𝜋ℓ

the message corresponding to 𝑝𝑋0|Δ(ℓ)𝑌0
. This is the approximate marginal given

observations revealed in the computational graph of depth ℓ. After ℓ iterations, the

marginals under BP can be written more efficiently (compared with (4.1)) as

𝜋ℓ
𝑋0
(𝑥0) ∝

∏︁
Δ𝑗∈Δ(0)

∑︁
𝜕𝑗𝑥0

𝜋ℓ−1
𝜕𝑗𝑋0

(𝜕𝑗𝑥0)1{𝑦𝑗=𝑓(𝑥0,𝜕𝑗𝑥0)}, (4.2)

with the initial conditions 𝜋0
𝑋𝑖
(0) = 𝜋0

𝑋𝑖
(1) = 1/2 for all bits.

It can be checked that when the computational graph is a tree, BP is exact, i.e.,

it computes the correct marginals 𝑝𝑋0|Δ(ℓ)𝑌0
given the observations in the depth ℓ

graph. We also refer to the correct marginal 𝑝𝑋0|𝑌 as the (bitwise) MAP estimate

of 𝑋0. When the computational graph is a tree, the only difference between MAP

and BP estimates is the input messages into the ℓ-th order local neighborhood. In

other words, if the initial messages along the boundary are the correct marginals

𝑝𝜕𝑙𝑋0|Δ∼(ℓ)𝑌0
, then BP iterations recover the (bitwise) MAP estimate. Here Δ∼(ℓ) is

the set of check nodes in Δ that do no appear in the computational tree of depth ℓ.
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4.2 E-functions

We recall that, in general, a computational graph of small depth (𝑜(log(𝑘))) corre-

sponding to a (check-regular) code ensemble is with high probability a tree (cf. [65],

Exercise 3.25). For such ensembles, we want to study the dynamics of the decoding

error along the iterations of BP. Hence, we need to understand how the error flows

in and out of the local neighborhood of a target node. In other words, we want to

understand how the BP dynamics contracts the input error.

We define E-functions for this purpose. They can be viewed as a mapping of the

input error (at the beginning of a decoding iteration) to the output error (at the end

of the iteration). There are two types of E-functions studied in this work: the erasure

functions and the error functions.

Definition 10 (Erasure function). Consider a code ensemble generated by a Boolean

function 𝑓 : {0, 1}𝑚 → {0, 1} with variable node degrees sampled from Deg. Fix

𝛼 = 𝐶/𝑅 and consider a computational tree of depth 1 as in Fig. 4-2b corresponding

to the target bit 𝑋0. Let 𝑀𝑗 = 𝑓(𝑋0, 𝑋
(𝑗)), 𝑗 = 1, · · · , 𝑑, where 𝑋(𝑗) ∼ Ber(1/2)⊗(𝑚−1)

are the boundary nodes. Suppose that each boundary node is observed through a (mem-

oryless) BEC channel, i.e., 𝑌 (𝑗) = BEC𝑞(𝑋
(𝑗)) where 𝑞 = 1 − 𝑞 is the probability of

error. The function

𝐸BEC
𝑑 (𝑞) = E[P(𝑋0 = 1|𝑀1, · · · ,𝑀𝑑, 𝑌

(1), · · · , 𝑌 (𝑑))|𝑋0 = 0]

is called the 𝑑-th erasure polynomial of the ensemble. Here the expectation is taken

with respect to the ensemble distribution as well the randomization over bits. The

erasure function is defined as

𝐸BEC(𝛼, 𝑞) =
∑︁
𝑘

P(Deg = 𝑘)𝐸BEC
𝑘 (𝑞).
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(a) Factor graph representation of the (observed) equations

(b) Local neighborhood of 0 in the unfolded factor graph

Figure 4-1: The factor graph of a code and the local neighborhood of a target node
are shown. a) The check nodes correspond to observed (unerased) coded bits and
represent the constraints imposed by such observations. b) The factor graph can be
unfolded with respect to a target node. The immediate (variable) neighbors of the
target nodes in such unfolding form its local neighborhood. A recursive algorithm
can first estimate the marginal probabilities 𝜋𝜕𝑋0 for the local neighborhood and then
compute the posterior 𝜋𝑋0 using (4.1). Here we recall that 𝜕𝑋0 = 𝑋𝜕(0).

The 𝑑-th truncated easure polynomial is

𝐸BEC
≤𝑑 (𝛼, 𝑞) =

∑︁
𝑘≤𝑑

P(Deg = 𝑘)𝐸BEC
𝑘 (𝑞).

Similarly, we can define the notion of an error function.

Definition 11 (Error function). In the setup of Definition 10, let 𝑌 (𝑗) = BSC𝑞(𝑋
(𝑗))

be the result of passing 𝑋(𝑗) through a (memoryless) BSC channel with crossover
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(a) Computational tree of depth ℓ for a (check-regular) ensemble of degree 3

(b) Local neighborhood of a variable node with BEC inputs

Figure 4-2: a) A computational tree for a (check-regular) ensemble of degree 3 ob-
tained after ℓ unfoldings w.r.t a target node along with the (local) indexing used in
the analysis of BP. We refer to 𝜕𝑗(0) as the 𝑗-th order neighborhood of 0 and 𝜕ℓ(0)
as the boundary of the tree. b) The local neighborhood of the target node with
leaves observed through BEC channels. This local graph is used to define the erasure
function.
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probability 𝑞. The function

𝐸BSC
𝑑 (𝑞) = E[P(𝑋0 = 1|𝑀1, · · · ,𝑀𝑑, 𝑌

(1), · · · , 𝑌 (𝑑))|𝑋0 = 0]

is called the 𝑑-th error polynomial of the ensemble. Likewise, the error function is

defined as

𝐸BSC(𝛼, 𝑞) =
∑︁
𝑘

P(Deg = 𝑘)𝐸BSC
𝑘 (𝑞)

The 𝑑-th truncated error polynomial is

𝐸BSC
≤𝑑 (𝛼, 𝑞) =

∑︁
𝑘≤𝑑

P(Deg = 𝑘)𝐸BSC
𝑘 (𝑞) +

1

2

∑︁
𝑘>𝑑

P(Deg = 𝑘)

Remark 2. We briefly discuss the effect of truncating the E-functions here. Clearly

𝐸BEC ≥ 𝐸BEC
≤𝑑 holds pointwise since we drop some non-negative terms from 𝐸BEC to

obtain 𝐸BEC
≤𝑑 . Likewise 𝐸BSC ≤ 𝐸BSC

≤𝑑 since we assume all the high degree nodes are

in error when computing 𝐸BSC
≤𝑑 . In fact, due to monotonicity, a better upper bound

on 𝐸BSC would be

𝐸BSC
≤𝑑 (𝛼, 𝑞) ≤

∑︁
𝑘≤𝑑

P(Deg = 𝑘)𝐸BSC
𝑘 (𝑞) + 𝐸BSC

𝑑+1 (𝑞)
∑︁
𝑘>𝑑

P(Deg = 𝑘).

In practice, we choose the truncation degree to be large enough that makes this

adjustment not so crucial.

Remark 3. For linear codes, iterative decoding is often studied in terms of the

input-output entropy or the so called EXIT charts [65] instead of error probability.

For linear codes, the two methods are equivalent as the EXIT function is proportional

to the probability of error. For general codes, however, we would need to invoke a

Fano type inequality to relate the two and this step is often lossy. For instance, in

the case of LDMCs, we can obtain much better bounds by analyzing the probability

of error directly.
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4.3 Bounds via comparison lemmas

The motivation to compute the 𝐸-functions comes from various comparison lemmas

in information theory. The idea is to approximate the incoming messages to the local

neighborhoods of BP as if they were induced by simpler to analyze (BEC or BSC)

channels, while preserving certain properties of the inputs. Then we carry out the

local contraction analysis on these simpler message and apply comparison lemmas to

control the error dynamics for the original inputs. To this end, we define some partial

orders on the space of channels with common input alphabets.

Definition 12 ( [21, Chapter 5.6]). Given two channels 𝑃𝑌 |𝑋 and 𝑃𝑌 ′|𝑋 with common

input alphabet, we say that 𝑃𝑌 ′|𝑋 is

∙ less noisy than 𝑃𝑌 |𝑋 , denoted by 𝑃𝑌 |𝑋 ⪯l.n. 𝑃𝑌 ′|𝑋 , if for all joint distributions

𝑃𝑈𝑋 we have

𝐼(𝑈 ;𝑌 ) ≤ 𝐼(𝑈 ;𝑌 ′)

∙ more capable than 𝑃𝑌 |𝑋 , denoted by 𝑃𝑌 |𝑋 ⪯m.c. 𝑃𝑌 ′|𝑋 , if for all marginal dis-

tributions 𝑃𝑋 we have

𝐼(𝑋;𝑌 ) ≤ 𝐼(𝑋;𝑌 ′).

∙ less degraded than 𝑃𝑌 |𝑋 , denoted by 𝑃𝑌 |𝑋 ⪯deg 𝑃𝑌 ′|𝑋 , if there exists a Markov

chain 𝑌 − 𝑌 ′ −𝑋.

We refer to [49, Sections I.B, II.A] and [62, Section 6] for alternative useful char-

acterizations of the less-noisy order. In particular, it is known (cf. [62, Proposition

14],[38]) that

𝑃𝑌 |𝑋 ⪯l.n. 𝑃𝑌 ′|𝑋 ⇐⇒ 𝐷(𝑃𝑌 ‖𝑄𝑌 ) ≤ 𝐷(𝑃𝑌 ′‖𝑄𝑌 ′) (4.3)

where the output distributions correspond to common priors 𝑃𝑋 , 𝑄𝑋 . The following

implications are easy to check

𝑃𝑌 |𝑋 ≤deg 𝑃𝑌 ′|𝑋 =⇒ 𝑃𝑌 |𝑋 ≤l.n. 𝑃𝑌 ′|𝑋 =⇒ 𝑃𝑌 |𝑋 ≤m.c. 𝑃𝑌 ′|𝑋 .

54



Proposition 9. Consider the dynamical system

𝑞BEC
𝑡+1 (𝑥0) = 1− 2𝐸BEC

≤𝑑 (𝛼, 𝑞BEC
𝑡 ) (4.4)

initialized at 𝑞BEC
0 = 𝑥0 with 𝛼 = 𝐶/𝑅. Similarly, define

𝑞BSC
𝑡+1 (𝑥0) = 𝐸BSC

≤𝑑 (𝛼, 𝑞BSC
𝑡 ) (4.5)

with 𝑞BSC
0 = 𝑥0. Let 𝛿BP

ℓ be the BER of a (check regular) ensemble under BP after ℓ

iterations. Likewise, let 𝛿MAP be the BER under the optimal (bitwise MAP) decoder.

Then
1− 𝑞BEC

ℓ (1)

2
− 𝑜(1) ≤ 𝛿MAP ≤ 𝛿BP

ℓ .

Furthermore,
1− 𝑞BEC

ℓ (0)

2
− 𝑜(1) ≤ 𝛿BP

ℓ ≤ 𝑞BSC
ℓ (1/2) + 𝑜(1)

with 𝑜(1) → 0 and 𝑘 → ∞.

To prove the proposition, we need several definitions and two lemmas.

Definition 13 (BMS [65, Chapter 4.1]). Let 𝑊 be a memoryless channel with binary

input alphabet 𝒳 and output alphabet 𝒴. Let the two element cyclic group act on 𝒳

and 𝒴. Denote by − the action of its generator (transposition). We say that 𝑊 is

a binary memoryless symmetric channel (BMS) if it is invariant under −, i.e., if

𝑊 (𝑦|𝑥) = 𝑊 (−𝑦| − 𝑥) for all 𝑦 ∈ 𝒴.

We also define the total variation distance (TV) and 𝜒2-divergence between two

probability measures 𝑃 and 𝑄 as follows:

(𝑃,𝑄)
Δ
=

1

2

∫︁
|𝑑𝑃 − 𝑑𝑄|,

𝜒2(𝑃,𝑄)
Δ
=

∫︁
(
𝑑𝑃

𝑑𝑄
)2𝑑𝑄− 1.
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Lemma 10. Let 𝑊 be a BMS channel and define its probability of error, capacity

and 𝜒2-capacity as follows

𝑃𝑒(𝑊 ) =
1− (𝑊 (·|0),𝑊 (·|1))

2
, (4.6)

𝐶(𝑊 ) = 𝐷(𝑊 (·|0)‖𝑃𝑌 ), 𝑃𝑌 =
1

2
(𝑊 (·|0) +𝑊 (·|1)) (4.7)

𝐼𝜒2(𝑊 ) = 𝜒2(𝑊 (·|0)‖𝑃𝑌 ) . (4.8)

The following holds:

1. Among all BMS channels with the same value of 𝑃𝑒(𝑊 ) the least degraded is

BEC and the most degraded is BSC, i.e.

BSC𝛿 ⪯𝑑𝑒𝑔 𝑊 ⪯𝑑𝑒𝑔 BEC2𝛿 , (4.9)

where ⪯𝑑𝑒𝑔 denotes the (output) degradation order.

2. Among all BMS with the same capacity 𝐶 the most capable is BEC and the least

capable is BSC, i.e.:

BSC1−ℎ−1(𝐶) ⪯𝑚𝑐 𝑊 ⪯𝑚𝑐 BEC1−𝐶 , (4.10)

where ⪯𝑚𝑐 denotes the more-capable order, and ℎ−1 : [0, 1] → [0, 1/2] is the

functional inverse of the (base-2) binary entropy function ℎ : [0, 1/2] → [0, 1].

3. Among all BMS channels with the same value of 𝜒2-capacity 𝜂 = 𝐼𝜒2(𝑊 ) the

least noisy is BEC and the most noisy is BSC, i.e.

BSC1/2−√
𝜂/2 ⪯𝑙𝑛 𝑊 ⪯𝑙𝑛 BEC1−𝜂 , (4.11)

where ⪯𝑙𝑛 denotes the less-noisy order.

The next lemma states that if the incoming messages to BP are comparable, then

the output messages are comparable as well.
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Lemma 11. Fix some random transformation 𝑃𝑌 |𝑋0,𝑋𝑚
1

and 𝑚 BMS channels 𝑊1, ...,𝑊𝑚.

Let 𝑊 : 𝑋0 ↦→ (𝑌, 𝑌 𝑚
1 ) be a (possibly non-BMS) channel defined as follows. First,

𝑋1, ..., 𝑋𝑚 are generated as i.i.d Ber(1/2). Second, each 𝑌𝑗 is generated as an ob-

servation of 𝑋𝑗 over the 𝑊𝑗, i.e. 𝑌𝑗 = 𝑊𝑗(𝑋𝑗) (observations are all conditionally

independent given 𝑋𝑚
1 ). Finally, 𝑌 is generated from all 𝑋0, 𝑋

𝑚
1 via 𝑃𝑌 |𝑋,𝑋𝑚

1
(con-

ditionally independent of 𝑌 𝑚
1 given 𝑋𝑚

1 ). Define the 𝑊̃ channel similarly, but with

𝑊𝑗’s replaced with 𝑊̃𝑗’s. The following statements hold:

1. If 𝑊̃𝑗 ⪯𝑑𝑒𝑔 𝑊𝑗 then 𝑊̃ ⪯𝑑𝑒𝑔 𝑊

2. If 𝑊̃𝑗 ⪯𝑙𝑛 𝑊𝑗 then 𝑊̃ ⪯𝑙𝑛 𝑊

Remark 4. An analogous statement for more capable channels does not hold. To

this see, let 𝑌 = 𝑋+𝑋1+𝑋2 be a parity constraint. Then the channel 𝑋 ↦→ (0, 𝑌1, 𝑌2)

is equivalent to 𝑈 ↦→ (𝑌1, 𝑌2) in the setting of Example 2 in §4.4.

The lemmas are proved in Appendix A.

Proof of Prop. 9. We sample codes from the family and consider the (local) compu-

tational graph of a fixed bit 𝑋0 with depth ℓ. It is known that for large codes, the

computational graph of depth ℓ has a tree structure with high probability. Hence, we

may assume that the graph is a tree.

Consider the depth ℓ tree emanating from 𝑋0. The channel

𝑇ℓ : 𝑋0 ↦→ (computational tree of depth ℓ,Δ(ℓ)𝑌0)

is a BMS (recall that Δ(ℓ)𝑌0 = 𝑌Δ(𝑙)(0) denotes all the coded bits observed in the tree

of depth ℓ). We note that running ℓ-steps of BP is equivalent to decoding 𝑋0 from

the output of 𝑇ℓ. In other words 𝛿BP = 𝑃𝑒(𝑇ℓ) is the error we want to bound. Further

note that the structure of the tree is included as part of the channel, so that 𝑃𝑒(𝑇ℓ)

is computed by randomizing over possible realizations of the graph as well.

Now condition on the first layer of the tree. If the number of variable nodes in 𝜕(0)

is𝑚, then the restriction of 𝑇ℓ to the first layer has the structure of Lemma 11. Indeed

for each choice of 𝑋0 = 𝑥0, 𝜕𝑋0 = 𝜕𝑥0, 𝑃Δ𝑌0|𝑋0,𝜕𝑋0 simply indicates whether or not

57



all the constraints in the local neighborhood are satisfied: 𝑃Δ𝑌0|𝑋0,𝜕𝑋0(Δ𝑦0|𝑥0, 𝜕𝑥0) =∏︀
𝑗∈Δ(0) 1{𝑦𝑗=𝑓(𝑥0,𝜕𝑗𝑥0)}. Furthermore, if we set 𝑊𝑗 = 𝑇ℓ−1 to be the corresponding tree

channel emanating from 𝑋𝑗’s (with 𝑗 ∈ 𝜕(0)), then due to the locally tree assumption

their observations are independent.

Now assume by induction that 𝑇ℓ−1 ⪯deg BEC𝑞ℓ−1
. Then by Lemma 11, we have

𝑇ℓ ⪯deg 𝑇ℓ where 𝑇ℓ is the tree of depth ℓ in which the channels 𝑊𝑗 are replaced with

BEC𝑞ℓ−1
. Note that if we condition on the degree 𝑑 of 𝑋0, then the 𝑇 channel has

error 𝐸BEC
𝑑 (𝛼, 𝑞ℓ−1). By averaging over the degrees, we obtain

𝑃𝑒(𝑇ℓ) = 𝐸BEC(𝛼, 𝑞ℓ−1) ≥ 𝐸BEC
≤𝑑 (𝛼, 𝑞ℓ−1) = 𝑞ℓ/2,

where the inequality is due to truncation (recall that in 𝐸BEC
≤𝑑 all nodes of degree larger

than 𝑑 are assumed to have zero error–see Remark 2). To complete the induction step,

note that 𝑇ℓ ⪯deg BEC𝑞ℓ by Lemma 10. We thus have 𝑃𝑒(𝑇ℓ) ≥ 𝑞ℓ/2 as desired.

The proof of the BSC upper bound is obtained in a similar manner after replacing

the input channels to 𝑇ℓ with BSCs and invoking the reverse sides of Lemmas 11,10

again.

Finally, BP and MAP decoding differ only by the initialization of beliefs at the

leaf nodes. Since the MAP channel at the leaves is a degradation of BEC0, the lower

bound on MAP follows as well.

4.4 A counter-example

A counter-example is presented in [19, Problem 15.11] to show that the less noisy

property is strictly stronger than less capable. The example is instructive but involves

non-BMS channels. Here we give a more natural counter-example (from a coding-

theoretic perspective) using the parity function and BSC/BEC channels. The purpose

of the example is to show that some coded bits may be easier to recover from a less

capable channel. It also serves to show that an analogous statement of Lemma 11
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above for more capable channels does not hold.

Example 2. By Lemma 10 below, if 𝜖 ≤ ℎ(𝛿), then BEC𝜖 is more capable than BSC𝛿

and if 𝜖 ≤ 1− (1− 2𝛿)2 then BEC𝜖 is less noisy than BSC𝛿. We show that for some

𝜖 ≤ ℎ(𝛿), the BEC𝜖 channel is not less noisy by giving an explicit construction.

Let 𝑋1, 𝑋2 be independent Ber(1/2) random variables. Let 𝑈 = XOR(𝑋1, 𝑋2)

be their parity and 𝑌𝑖 = BEC𝜖(𝑋𝑖), 𝑌𝑖 = BSC𝛿(𝑋𝑖) be their observations. By [19,

Problem 6.18], the property of being more capable tensorizes, as does that of being

less noisy [62, Proposition 16], [73, Proposition 5]. It thus suffices to show that for

some 𝜖 ≤ ℎ(𝛿) we have

𝐼(𝑈 ;𝑌1, 𝑌2) > 𝐼(𝑈 ;𝑌1, 𝑌2).

We denote by 𝑁𝛿 the number of flips (resp. by 𝑁𝜖 the number of erasures) in the

BSC (resp. BEC) channel. It follows that

𝐼(𝑈 ;𝑌1, 𝑌2) = 1− ℎ(P({𝑁𝛿 is even}) = 1− ℎ(𝛿2 + (1− 𝛿)2)

while

𝐼(𝑈 ;𝑌1, 𝑌2) = P({𝑁𝜖 = 0}) = (1− 𝜖)2.

We can easily check that the inequality

(1− 𝜖)2 < 1− ℎ(𝛿2 + (1− 𝛿)2)

holds for 𝜖 ∈ (1−
√︀

1− ℎ(𝛿2 + (1− 𝛿)2), ℎ(𝛿)]. We note that the interval is non-empty

since 𝛿2 + (1− 𝛿)2 > 𝛿 for all 𝛿 < 1/2.

In fact, parity bits can become noisier as soon as BEC𝜖 loses its less noisy property.

The next example illustrates this point.

Example 3. Let 𝑌𝑖 = BEC𝜖(𝑋𝑖) and 𝑌𝑖 = BSC𝛿(𝑋𝑖). Set 𝛿 := 𝜆/𝑛 and 𝜖 := 𝜆′/𝑛.

Then by Lemma 10 below, if 𝜆′ < 4𝜆− 𝜏 , then BEC𝜆′/𝑛 is less noisy than BSC𝜆/𝑛 for

large enough 𝑛 and 𝜏 > 0. We show that for some 𝜆′ ≥ 4(1 + 𝜇)𝜆 with 𝜇 > 0, the

channel BEC𝜆′/𝑛 is asymptotically (for large 𝑛) more capable but not less noisy than
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BSC𝜆/𝑛.

First note that 𝜆′/𝑛 < ℎ(𝜆/𝑛) holds asymptotically if 𝜆′ = 𝑐𝜆 for any fixed 𝑐.

Indeed we can easily check that lim𝑥↓0 ℎ(𝑥)/𝑥 = ∞. Thus for all 𝜆′ = 𝑐𝜆, the BEC𝜆′/𝑛

channel is more capable (for large enough 𝑛). To see that it is not necessarily less

noisy, let 𝑋𝑖 ∼ Ber(1/2) be an i.i.d sequence. Let 𝑈𝑛 =
∑︀𝑛

𝑖=1𝑋𝑖 (mod 2) be the

parity of the first 𝑛 bits. Again since the two properties tensorize, it suffices to show

that for some 𝜆′ = 𝑐𝜆 we have

lim
𝑛

𝐼(𝑈𝑛;𝑌
𝑛) > lim

𝑛
𝐼(𝑈𝑛;𝑌

𝑛).

To show this, we note that the number 𝑁𝛿 of flips (resp. 𝑁𝜖 of erasures) in the BSC

(resp. BEC) channel is asymptotically distributed as Poi(𝜆) (resp. Poi(𝜆′)). It follows

that

lim
𝑛

𝐼(𝑈𝑛;𝑌
𝑛) = 1− lim

𝑛
ℎ(P({𝑁𝛿 is even}) = 1− ℎ(

1

2
+

1

2
𝑒−2𝜆).

Using the taylor series expansion of the binary entropy function around 1/2, we have

that

lim
𝑛

𝐼(𝑈𝑛;𝑌
𝑛) = 𝑒−4𝜆(

1

2 ln 2
+𝑂(𝑒−𝜆)),

whereas

lim
𝑛

𝐼(𝑈𝑛;𝑌
𝑛) = lim

𝑛
P({𝑁𝜖 = 0}) = 𝑒−𝜆′

.

Our claim now reduces to checking that the inequality

𝑒−4𝜇𝜆 <
1

2 ln 2
+𝑂(𝑒−𝜆)

holds for some 𝜆 and all 𝜇 > 0, which follows easily after passing to the limits.

4.5 Computing E-functions for LDMC(3)

In the rest of this section, we provide an algorithm to compute the 𝐸-functions

for LDMC(3) and use Proposition 9 to obtain upper and lower bounds for BP and
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bitwise MAP decoders for this family of codes. The degree distribution of LDMC(3)

is asymptotically Poi(3𝛼) distributed where 𝛼 = 𝐶/𝑅. In this case, the truncated

erasure polynomial is

𝐸BEC
≤𝑑 (𝛼, 𝑞) =

𝑑∑︁
𝑘=0

P(Poi(3𝛼) = 𝑘)𝐸BEC
𝑘 (𝑞).

Computing the erasure polynomials is more involved for LDMC(3) than LDGMs

since the BP messages are more complicated. For LDGMs, the messages are trivial in

the sense that every uncoded bit remains unbiased after each BP iteration. This does

not hold for LDMCs, and it is in fact this very principle that allows BP decoding to

initiate for LDMCs without systematic bits. Hence, to analyze BP locally, we need to

randomize over all possible realizations of the bits in the local neighborhoods. This is

a computationally expensive task in general, but one that can be carried out in some

cases by properly taking advantage of the inherent symmetries in the problem.

The BP update rules are easy to derive for LDMCs. Let 𝑌𝑗 be the majority of 3

bits 𝑋0, 𝑋1, 𝑋2. Then if 𝑌𝑗 = 0, the check to bit message is

𝑚𝑗 =
P(𝑋0 = 0|𝑌𝑗 = 0)

P(𝑋0 = 1|𝑌𝑗 = 0)
= 1 +

1

𝑟1
+

1

𝑟2
, (4.12)

where 𝑟𝑖 = P(𝑋𝑖 = 0)/P(𝑋𝑖 = 1) are the priors (or input messages to the local

neighborhood). The posterior likelihood ratio for 𝑋0 is 𝑟0 =
∏︀

𝑗∈Δ(0)𝑚𝑗. We now use

these update rules to compute the E-polynomials for LDMC(3). In Appendix B, we

provide a Python generated list of the erasure polynomials for LDMC(3), which are

used in various places throughout this chapter and in §5.2 for code optimization.

Let 𝑞 = 1−𝑞 be the probability of erasure at the boundary. For bits of degree zero,

the probability of error is clearly 1
2
and for bits of degree 1 the probability of error is

1
4
independent of 𝑞. To see this, consider the computational tree of a degree 1 bit 𝑋0

at depth 1. There are two leaf bits in tree. Suppose that neither of the leaf bits is

erased. This happens with probability 𝑞2. Conditioned on this, only when the two leaf

bits take different values can 𝑋0 be fully recovered and this conditional probability is
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1
2
. Otherwise, the bit remains unbiased and must be guessed randomly. The overall

contribution of this configuration to the probability of error for 𝑋0 is 𝑞2/2. One other

possible configuration is when only one leaf bit is erased. In this case the target bit

is determined whenever the unerased bit disagrees with the majority, which happens

with probability 1
4
. When the unerased bit agrees with the majority, it weakens the

(likelihood ratio) message sent from the majority to the target bit. In this case, the

message passing rule in (4.12) shows that the probability of error is 1
3
. Overall, the

contribution of this configuration to the probability of error is 2𝑞(1− 𝑞)/4. Finally, if

both bits are erased, which happens with probability (1− 𝑞)2, then the probability of

error is again 1
4
. Adding up all the error terms, we see that 𝐸1(𝑞) =

1
4
. It is true for

any monotonic function that 𝐸1(𝑞) is a constant. Indeed if 𝑓 is monotonic, then the

decision rule for estimation of any degree 1 node depends in a deterministic fashion

on the value of 𝑓 and not on the distribution of local beliefs.

The first interesting case where the error probability depends on the erasure prob-

ability 1 − 𝑞 happens for degree 2 nodes. We work out the computation of 𝐸2(𝑞),

which contains the main ideas to compute the full error polynomial.

Example 4 (Computing 𝐸2(𝑞) for LDMC(3)). For a degree 2 bit 𝑋0, there are two

majorities connected to the bit, and four leaf bits in the tree. We need to compute

what message is sent from each majority to the target bit along each realization and

compute the corresponding error probability. Consider the case where all four bits at

the leaves are unerased. Since the erasure events are independent, the probability that

all four leaves are unerased is 𝑞4 and we incur an error of 1/2 in recovering 𝑋0 only

when all the neighboring leaves agree, i.e., the leaf configuration 𝜕0𝑋 takes values in

{0000, 0011, 1100, 1111}. The message sent from each majority to the bit in this case

is P(𝑥 = 0)/P(𝑥 = 1) = 1. The leaf configurations above each have a 1/16 chance of

being realized. The overall contribution to the probability of error is 𝑞4

8
in this case.

When all the bits are erased, the message sent to the target bit is either 1/3 or 3 by

each majority. If the two majorities agree, which happens with probability 5/8, the

messages amplify and give the target bit a 0.9 chance of correct recovery. If they do

not, we get two conflicting messages which cancel out each other, and that leaves the
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target bit unbiased. Overall, the error in this case is (5/8×1/10+3/8×1/2)(1− 𝑞)4.

When three bits are unerased, we consider the majority with only one unerased bit.

The bit that is recovered correctly disagrees with its majority with probability 1/4,

in which case the target bit will be recovered correctly. The remaining 3/4 of the

time, the message sent upward in the tree to the target bit is 2, giving the bit a

2/3 chance of being recovered. The other majority either determines the bit with

probability 1/2 or sends it a message of 1 otherwise. Overall, the error incurred

from such configurations is 4𝑞3(1− 𝑞)/8. Next, consider the case where two bits are

unerased. If they belong to the same majority, say Δ0
1, they can recover the target

bit with probability 1/2, hence, the probability of error is P(𝑋̂0 ̸= Δ0
2)/2 = 1/8. The

contribution to the probability of error from such configurations is 2𝑞2(1 − 𝑞)2/8. If

they belong to different majorities, which happens with probability 4𝑞2(1− 𝑞)2, then

each majority determines the bit 1/4 of the time independently of the other majority.

If neither majority fully recovers the bit, then each majority sends a message of 2 or

1/2 upward. The messages agree with probability 5/9 and disagree with probability

4/9. Hence an error can happen with probability 9/16× (1/5×5/9+1/2×4/9). The

total error incurred from this contribution is 9/16×(1/5×5/9+1/2×4/9)4𝑞2(1−𝑞)2.

Finally, when only 1 bit is unerased, its majority can determine the target bit with

probability 1/4. When it does not determine the bit, it sends a message of 2 or 1/2

upward. The other majority sends a message of 3 or 1/3 upward. The two majorities

agree with probability 7/12 in which case the message upward is either 6 or 1/6,

giving an error of 1/7. If the majorities disagree, the message upward is either 3/2

or 2/3 giving an error of 2/5. Putting things together, the error polynomial as a

function of 𝑞 for a degree 2 bit is:

𝐸2(𝑞) =
𝑞4

8
+

𝑞3(−𝑞 + 1)

2
+ 𝑞2(−𝑞 + 1)2 +

3𝑞(−𝑞 + 1)3

4
+

(−𝑞 + 1)4

4

For the general case, the ideas are the same. Consider the message sent from the

a majority check to a target bit modulo inversion. This means that we identify a

message 𝑚 and its inverse 1/𝑚 as one group of messages. This is a random variable
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that depends on the erasure patterns as well as the realized values at the leaves. Let

us first condition on the erasure patterns. In this case the message is either in {0,∞},

{1}, {2, 1/2}, or {3, 1/3}. In the first case, the conditional error is zero, hence, we

assume that one of the latter messages is sent. Let 𝑀𝑖 be the message sent from the

𝑖-th majority to the target bit modulo inversion. If we represent {1} with a constant,

{2, 1/2} with variable 𝑠, and {3, 1/3} with variable 𝑡, then the distribution of 𝑀𝑖

(modulo inversion) can be represented by the following polynomial

𝑓(𝑠, 𝑡, 𝑞) = 𝑞2/2 + 2𝑞(1− 𝑞)𝑠+ (1− 𝑞)2𝑡 (4.13)

where 1− 𝑞 is the erasure probability at the leaves. For a target node of degree 𝑑, the

joint distributions of messages 𝑀1, · · · ,𝑀𝑑 is given by a product distribution
∏︀

𝑖 𝑝𝑀𝑖
.

Modulo permutation of messages, these can be represented by

𝑓(𝑠, 𝑡, 𝑞)𝑑 =
∑︁

𝑗,𝑘:𝑗+𝑘≤𝑑

𝑓𝑑
𝑗𝑘(𝑞)𝑠

𝑗𝑡𝑘. (4.14)

Define 𝑆𝑖 = 1{𝑀𝑖∈{2,1/2}} and 𝑇𝑖 = 1{𝑀𝑖∈{3,1/3}} to be the indicators that either {2, 1/2}

or {3, 1/3} are sent, respectively. Let 𝑆 =
∑︀𝑑

𝑖=1 𝑆𝑖, 𝑇 =
∑︀𝑑

𝑖=1 𝑇𝑖. Note that P(𝑆 =

𝑗, 𝑇 = 𝑘) = 𝑓𝑑
𝑗𝑘(𝑞), i.e., the coefficient of 𝑠𝑗𝑡𝑘 in the above expansion of 𝑓(𝑠, 𝑡, 𝑞)𝑑

is the probability of the event {𝑆 = 𝑗, 𝑇 = 𝑘}. If we find the conditional error 𝐸𝑗𝑘

associated with each monomial term in 𝑓 , then we can conveniently represent the

erasure polynomial as follows

𝐸BEC
𝑑 (𝑞) =

∑︁
𝑗,𝑘:𝑗+𝑘≤𝑑

𝑓𝑑
𝑗𝑘(𝑞)𝐸𝑗𝑘. (4.15)

To this end, define 𝑀(𝑗, 𝑘) = (𝑀𝑖(𝑗, 𝑘)) for all 𝑖 ≤ 𝑑 with

𝑀𝑖(𝑗, 𝑘) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2 0 ≤ 𝑖 ≤ 𝑗

3 𝑗 < 𝑖 ≤ 𝑗 + 𝑘

1 otherwise,

(4.16)
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to map 𝑆, 𝑇 back to a realization of the incoming messages to 𝑋0. By symmetry

P(𝑋0 ̸= 𝑋0|𝑆 = 𝑗, 𝑇 = 𝑘) = P(𝑋0 ̸= 𝑋0|𝑀(𝑗, 𝑘)).

Let 𝐴 = (𝐴𝑖) with 𝐴𝑖 = 1{Δ𝑖𝑌0=𝑋0} being the indicator that the 𝑖-th majority agrees

with the target bit. Let 𝑝𝑎|𝑗𝑘 = P(𝐴 = 𝑎|𝑀(𝑗, 𝑘)) be the conditional probability

that 𝑎 is realized given the incoming messages. Since the events {Δ𝑖𝑌0 = 𝑋0} are

independent conditioned on 𝑀𝑖’s we have

𝑝𝑎|𝑗𝑘 =
∏︁
𝑖

P(𝐴𝑖 = 𝑎𝑖|𝑀𝑖(𝑗, 𝑘)) =
∏︁
𝑖

1

1 +𝑀𝑖(𝑗, 𝑘)2𝑎𝑖−1
. (4.17)

The conditional probability of error given the joint realization of messages and ma-

jority votes is given by

𝐸𝑗𝑘|𝐴 = min(
1

1 +
∏︀

𝑀𝑖(𝑗, 𝑘)1−2𝑎𝑖
,

∏︀
𝑀𝑖(𝑗, 𝑘)

1−2𝑎𝑖

1 +
∏︀

𝑀𝑖(𝑗, 𝑘)1−2𝑎𝑖
) (4.18)

It is convenient to define

𝐸𝑗𝑘 =
∑︁

𝑎∈{0,1}𝑑
𝑝𝑎|𝑗𝑘𝐸𝑗𝑘|𝐴 (4.19)

and think of it as the error associated to the monomial 𝑦𝑗𝑧𝑘 in (4.14). Algorithm 1

summarizes the proposed procedure to compute the erasure polynomial. For instance,

for degree 4 nodes we have the following erasure polynomial:

𝐸BEC
4 (𝑞) = 0.03125𝑞8 + 0.25𝑞7(−𝑞 + 1) + 1.25𝑞6(−𝑞 + 1)2

+ 2.875𝑞5(−𝑞 + 1)3 + 4.6875𝑞4(−𝑞 + 1)4

+ 4.4375𝑞3(−𝑞 + 1)5 + 2.84375𝑞2(−𝑞 + 1)6

+ 0.9375𝑞(−𝑞 + 1)7 + 0.15625(−𝑞 + 1)8.

Fig.4-3 compares 𝐸BEC
𝑑 with the empirical BER of degree d nodes across samples
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Algorithm 1 Compute 𝐸𝑑(𝑞)

0: function ErrorPoly(𝑑):
0: Define 𝑓(𝑠, 𝑡, 𝑞) = 𝑞2/2 + 3/2𝑞(1− 𝑞)𝑠+ (1− 𝑞)2𝑡
0: Expand the 𝑑-th power of 𝑓

𝑓𝑑(𝑞) =
∑︁
𝑗,𝑘

𝑓𝑑
𝑗𝑘𝑠

𝑗𝑡𝑘

0: Initialize 𝐸 := 0
0: for k:=1 to 𝑑 and 𝑗 ≤ 𝑘 do
0: Compute 𝐸𝑗𝑘 using (4.16)-(4.19)
0: Update 𝐸 := 𝐸 + 𝐸𝑗𝑘𝑓

𝑑
𝑗𝑘

0: end for
return 𝐸

0: end function=0
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Figure 4-3: Comparing the erasure polynomials 𝐸BEC
4 , 𝐸BEC

8 with their empirical
means. The empirical curves are obtained using 50000 samples from the computa-
tional trees of depth 1 for target nodes of degrees 4 and 8, respectively, with leaves
observed through BEC𝜖 as in Fig. 4-2b.

from its depth 1 computational tree with BEC inputs for d=4,81. For many code

ensembles an exact computation of 𝐸BEC
𝑑 is often computationally prohibitive. In

such cases, one can sample from the computational tree and find 𝐸BEC
𝑑 ’s by solving

a regression problem. Such functions are useful in optimizing codes as we will see in

the next sections.

Recall the definition of 𝑞BEC
𝑡 (𝑥0) from (4.4)-(4.5). Once we compute the E-

polynomials, we iterate the dynamical system in (4.4)-(4.5) to find bounds on the

1In some references, 𝐸-polynomials are called EXIT functions and the corresponding plots are
called EXIT curves.
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𝐶/𝑅 (𝐸BEC
2 ,BER2) (𝐸BEC

3 ,BER3) (𝐸BEC
4 ,BER4) (𝐸BEC

5 ,BER5)
0.25 (0.194,0.202) (0.127,0.146) (0.097,0.117) (0.068,0.093)
0.5 (0.166,0.177) (0.106,0.124) (0.070,0.090) (0.047,0.066)
1 (0.137,0.139) (0.077,0.081) (0.044,0.047) (0.025,0.028)

Table 4.1: Comparing BER𝑑, the empirical bit error rate of degree 𝑑 nodes after 10
iterations of BP, with the theoretical lower bounds 𝐸BEC

𝑑 at various 𝐶/𝑅’s. The lower
bounds are computed at 1− 2BER for each 𝐶/𝑅 where BER is obtained empirically.

decoding error. We compare the bounds with the empirical performance of BP in

Fig.4-5 for LDMC(3). We see a good agreement between the two. In particular, we

see that the lower bound for LDMC(3) is almost tight. To explain this, we need to

consider the distribution of posterior beliefs in LDMC(3). As shown in Fig.4-4, the

empirical histogram of beliefs after convergence of BP at 𝐶/𝑅 = 1 has three major

spikes: two spikes at 𝑝 = 0, 1 and one at 𝑝 = 0.5. The rest of the beliefs are almost

uniformly distributed across the range [0, 1]. It thus seems reasonable to approxi-

mate the posteriors obtained by BP as if they were induced by erasure channels. We

emphasize that this phenomenon is specific to ensembles of degree 3. For larger de-

grees, the histogram has a pronounced uniform component (see Fig. 4-7). Thus one

cannot expected a similar agreement between the BEC lower bound and the BER

performance (see Fig. 4-6).
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(b) 𝐶/𝑅 = 0.25

Figure 4-4: The empirical histogram of belief distributions for LDMC(3) with 𝑘 =
40000 bits. The number of bits that are 0 with probability close to 𝑝 are shown as a
function of 𝑝 for a) 𝐶/𝑅 = 1 b) 𝐶/𝑅 = 0.25.
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Figure 4-5: The LDMC(3) performance with 5 iterations of BP along with the bound
of Proposition 9 using ℓ = 5 and 𝐸𝑑≤10-functions. a) The density evolution dynamics
of (4.4) has a unique fixed point. Hence both bitwise MAP and BP lower bounds
converge to the same point. We remark that this property does not hold for general
codes (see Conjecture 1 and Remark 5 below). b) The BP performance is compared
against the bitwise MAP lower bound. The lower bound is almost tight since the
empirical histogram of beliefs in LDMC(3) is much closer to one induced by an erasure
channel than BSC (see Fig. 4-4).

For smaller degrees, it is possible to lower bound 𝐸𝑑 with a simpler to compute

polynomial 𝐴𝑑 for all 𝑞 ∈ [0, 1]. We describe this idea next.

Table 4.1 compares the values of 𝐸BEC
𝑑 (1 − 2BER) with the empirical BER of

degree 𝑑 nodes in the LDMC(3) ensemble after 10 iterations of BP.

The ideas to compute the BSC upper bound are similar. Recall that in (4.19),

𝐸𝑗𝑘 is the error associated to the monomial 𝑠𝑗𝑡𝑘 (meaning that j of type 1 and k of

type 2 messages are received) for LDMC(3). In general we can re-write (4.19) in the

form ∑︁
𝐸𝑖1,···𝑖𝑠𝑓

𝑑
𝑖1,···𝑖𝑠 (𝑞)

where again 𝐸𝑖1,···𝑖𝑠 is a channel-independent term that corresponds to the conditional

error given the input types at the boundary. The only term that depends on the chan-

nel is 𝑓𝑑
𝑖1,···𝑖𝑠 (𝑞). Thus for any channel once we find the corresponding 𝑓 -polynomial

we can construct upper/lower bounds as above.

Let us construct the 𝑓 -polynomial of LDMC(3) for BSC. Again consider the local
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neighborhood of a target node connected to one majoiry. Note that for the two leaf

nodes in the boundary, each realization 00, 01, 10, 11 is equally likely (after possible

flips by BSC). We need to compute the likelihood that they agree with their majority

given the realization. Let 𝜕𝑋0 be the boundary bits, 𝜕𝑋̃ be their observations through

BSC(𝑝), and 𝑌 the majority. We proceed as follows.

∙ The observed value is 𝜕𝑋0 = 00:

P(𝑌 = 0|𝜕𝑋̃0 = 00) ∝ P(𝜕𝑋0 = 00|𝜕𝑋0 = 00)P(𝑌 = 0|𝜕𝑋0 = 00)P(𝜕𝑋0 = 00)

+P(𝜕𝑋̃0 = 00|𝜕𝑋0 = 01)P(𝑌 = 0|𝜕𝑋0 = 01)P(𝜕𝑋0 = 01)

+P(𝜕𝑋̃0 = 00|𝜕𝑋0 = 10)P(𝑌 = 0|𝜕𝑋0 = 10)P(𝜕𝑋0 = 10).

We can check that normalization constant is 4. Hence

P(𝑌 = 0|𝜕𝑋̃0 = 00) = 4((1−𝑝)2×1/4+𝑝(1−𝑝)1/2×1/4+𝑝(1−𝑝)1/2×1/4) = (1−𝑝)2+𝑝(1−𝑝).

The message corresponding to this event is

P(𝑋0 = 0|𝑌 = 0, 𝜕𝑋̃0 = 00) = 1 + 2/𝛼

with 𝛼 = 1−𝑝
𝑝
. The complimentary event P(Δ𝑌0 = 1|𝜕𝑋̃0 = 00) has probability

𝑝(1− 𝑝) + 𝑝2 and the corresponding message sent to the target node is

P(𝑋0 = 0|𝑌 = 1, 𝜕𝑋̃0 = 00)

P(𝑋0 = 1|𝑌 = 1, 𝜕𝑋̃0 = 00)
=

1

1 + 2𝜌
.

Let 𝑠 represent 1+ 2/𝛼 and 𝑡 represent 1+ 2𝛼 (modulo inversion). Then so far

we have P(𝜕𝑋̃0 = 00) = 1/4 and

P(𝑋0 = 0|𝜕𝑋̃0 = 00)

P(𝑋0 = 1|𝜕𝑋̃0 = 00)
= 𝑡(𝑝(1− 𝑝) + 𝑝2) + 𝑠((1− 𝑝)2 + 𝑝(1− 𝑝)).
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∙ Suppose that 𝜕𝑋̃0 = 11 is observed. By symmetry

P(𝑌 = 0|𝜕𝑋̃0 = 11) = P(𝑌 = 1|𝜕𝑋̃0 = 00) = 𝑝(1− 𝑝) + 𝑝2.

The corresponding message is 1 + 2𝛼. Likewise

P(𝑌 = 1|𝜕𝑋̃0 = 11) = P(𝑌 = 0|𝜕𝑋̃0 = 00) = 𝑝(1− 𝑝) + (1− 𝑝)2

with message 1
1+2/𝛼

. Thus P(𝜕𝑋̃0 = 11) = 1/4 with

P(𝑋0 = 0|𝜕𝑋̃0 = 11)

P(𝑋0 = 1|𝜕𝑋̃0 = 11)
= 𝑡(𝑝(1− 𝑝) + 𝑝2) + 𝑠((1− 𝑝)2 + 𝑝(1− 𝑝)).

∙ Suppose that 𝜕𝑋̃0 = 01 or 𝜕𝑋̃0 = 10 is observed. We have P(𝜕𝑋̃0 = 01) =

P(𝜕𝑋̃0 = 10) = 1/4 with

P(𝑌 = 0|𝜕𝑋̃0 = 10) = P(𝑌 = 1|𝜕𝑋̃0 = 10) = 1/2

by symmetry. The corresponding messages in each case are, 1 + 𝛼 + 1/𝛼 for

𝑌 = 0 and 1
1+𝛼+1/𝛼

for 𝑌 = 1, which we represent by 𝑧.

∙ Adding up all the terms, we get the following 𝑓 -polynomial to compute 𝐸BSC:

𝑓 =
𝑧

2
+

1

2
(𝑡(𝑝(1− 𝑝) + 𝑝2) + 𝑠((1− 𝑝)2 + 𝑝(1− 𝑝))). (4.20)

We use this polynomial to compute 𝐸BSC
≤10 and obtain an upper bound on BP error

using Proposition 9. The upper bound is compared with the simulation results in

Fig.4-5.

4.6 Comparing LDMC(3) with LDMC(5)

It is natural to ask how the BER curves behave for LDMC(d) as 𝑑 grows. This

question is in general computationally difficult to answer. The girth of the compu-

70



tational graph grows exponentially fast with 𝑑 and BP iterations do not seem to

stabilize quickly enough when 𝑑 is large. Hence, one needs to consider codes of large

length and more iterations of BP. Here we compare the performance of LDMC(5)

with LDMC(3). We also compute the erasure function of LDMC(5) and compare

the corresponding bound with simulations. As mentioned before, the spiky nature of

histogram observed in Fig. 4-4 is specific to the ensembles of degree 3 and hence one

cannot expect the BEC lower bound of Proposition 9 to give equally good predictions

on BER for higher degrees.

We first work out the computation of 𝐸BEC for LDMC(5). As before, we need to

consider various cases for realization of erasures at the input layer:

∙ No input bits are erased. This case occurs with probability 𝑞4. If the input bits

are balanced, no error occurs. The complimentary event in which the bits are

not balanced has probability 5/8, in which case the message to the target bit is

P(𝑋0 = 0)/P(𝑋0 = 1) = 1 and error is 1/2. The corresponding term is 5/8𝑞4.

∙ One bit is erased. This happens with probability 4𝑞3(1 − 𝑞). There are two

cases to consider in which an error may occur: 1) all three unerased bits agree

with the majority; this happens with probability 1/4, and the corresponding

message is 1. 2) Two unerased bits agree with the majority; this happens with

probability 9/16; the corresponding message is 2, which we represent with 𝑢.

Overall, the error term is 4𝑞3(1− 𝑞)(1/4 + 9/16𝑢).

∙ Two bits are erased. This happens with probability 6𝑞2(1 − 𝑞)2. There are

two cases in which an error may occur: 1) both unerased bits agree wit the

majority; this happens with probability 7/16, and the corresponding message is

4/3, denoted by 𝑤. 2) one unerased bit agrees with the majority; this happens

with probability 1/2, and the corresponding message is 3, denoted by 𝑧. Overall,

the error term is 6𝑞2(1− 𝑞)2(7/16𝑤 + 1/2𝑧).

∙ Three bits are erased. This happens with probability 4𝑞(1 − 𝑞)3. Two cases

need to be considered: 1) the unerased bit agree with the majority, which
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happens with probability 11/16, in which the message is 7/4; we represent this

message by 𝑣. 2) the unerased bit disagrees with the majority, which happens

with probability 5/16 and gives a message of 4, represented here by 𝑠. The

corresponding term is 4𝑞(1− 𝑞)4(11/16𝑣 + 5/16𝑠).

∙ All bits are erased. This happens with probability (1 − 𝑞)4 in which case the

message is 11/5. We represent this message by 𝑡. The corresponding term is

(1− 𝑞)4𝑡.

∙ Adding up all the terms, we get the following polynomial

f(q)=5/8q4 + 4𝑞3(1− 𝑞)(1/4 + 9/16𝑢) + 6𝑞2(1− 𝑞)2(7/16𝑤 + 1/2𝑧)

+ 4𝑞(1− 𝑞)3(11/16𝑣 + 5/16𝑠) + (1− 𝑞)4𝑡.

Using (4.15) we compute 𝐸BEC
≤10 for LDMC(5) and then apply Proposition 9 to compute

a lower bound on BER. The results are shown in Fig. 4-6 along with comparisons

between ensembles of degree 3 and 5 for 5 iterations of BP. We note that the effect

of truncation is of a lower order than the scale of the plots in Fig. 4-6. Since 𝐸𝑑(𝑞)

is monotonically decreasing in 𝑑 and 𝑞, we can deduce for all 𝛼 ≤ 1 that

|𝐸BEC(𝛼, 𝑞)− 𝐸BEC
≤10 (𝛼, 𝑞)| ≤ 𝐸BEC

10 (0)P(Poi(5) > 10) = 0.001.

Thus the gap between 𝑞ℓ and 𝛿𝐵𝑃 for the degree 5 ensemble cannot be attributed

to the truncation, but rather to the role of the “uniform” component of the belief

histogram shown in Fig. 4-7.

We still see in Fig. 4-6a that 𝑞BEC
𝑙 converges to a unique point regardless of the

initial condition for LDMC(5). We remark that the same holds for the error dynamics

of the large 𝑑 limit obtained below in (4.25). In the view of these observations, we

put forth the following conjecture:

Conjecture 1. For any ensemble generated by a monotone function, 𝑞BEC
ℓ (𝑥) converges
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to a unique fixed point independent of 𝑥.

Remark 5. We note that the conjecture does not hold for general ensembles. For

instance, we have 𝑞BEC
ℓ (1) > 0 for ensembles generated by XOR whereas 𝑞BEC

ℓ (0) = 0

for all ℓ. In fact, Mackay showed in [46] that the (check regular) ensembles generated

by XOR are very good, meaning that for large enough degree they can asymptotically

achieve arbitrarily small error for rates close to capacity under MAP decoding. Evi-

dently, such performance cannot be achieved by BP since for any degree larger than

1 𝑞 = 0 is a fixed point of BP, i.e., BER is 1/2 for all ℓ. This point shall be explained

further in Chapter 5 (see Fig. 5-2).
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Figure 4-6: The LDMC(5) performance with 5 iterations of BP along with the lower
bound of Proposition 9 using ℓ = 5 and 𝐸BEC

≤10 -function. a) The density evolution
dynamics of (4.4) has a unique fixed point. Hence both bitwise MAP and BP lower
bounds converge to the same point. b) The BP performance is compared against
LDMC(3) and the BP lower bound. The lower bound can be seen to be looser
compared with the scenario in Fig.4-5. This can be attributed to the fact that the
empirical histogram of beliefs in LDMC(5) shown in Fig. 4-7 is less spiky compared
with 4-4 and can no longer be well approximated by one parameter (i.e., the erasure
probability). Furthermore, LDMC(5) can be seen to perform better than LDMC(3)
for all erasure probabilities. However, we note that longer codes are needed to avoid
short cycles in the computational graph and achieve good decoding performance for
𝑑 = 5.

73



0.0 0.2 0.4 0.6 0.8 1.0
probability that the bit is 0

0

10000

20000

30000

40000

50000

60000

70000

80000

(a) 𝐶/𝑅 = 1

0.0 0.2 0.4 0.6 0.8 1.0
probability that the bit is 0

0

20000

40000

60000

80000

100000

120000

(b) 𝐶/𝑅 = 0.25

Figure 4-7: The empirical histogram of belief distributions for LDMC(5) with 𝑘 =
400000 bits after 5 iterations of BP. The number of bits that are 0 with probability
close to 𝑝 are shown as a function of 𝑝 for a) 𝐶/𝑅 = 1 b) 𝐶/𝑅 = 0.25.

4.7 Tighter bounds for systematic LDMC(𝑑) with 𝑑 =

3, 5

It is possible to obtain tighter bounds for systematic ensembles. Here we study the

case of systematic regular LDMC(3). The next section extends the analysis to the

large 𝑑 limit for LDMC(d).

Consider a regular ensemble of (check) degree 𝑑. Let 𝜖 be the probability of erasure

and 𝑅 be the rate of the code with variable degree 1 + 𝑑(1 − 𝑅)/𝑅. Note that we

need 𝑑(1 − 𝑅)/𝑅 ∈ Z to ensure that a regular systematic code exists. As before let

𝛼 = 𝐶/𝑅. For a regular systematic ensemble of rate 𝑅, we have the following erasure

function:

𝐸BEC(𝑞, 𝛼) = (1− 𝛼𝑅)
∑︁

𝑖≤𝑑(1−𝑅)/𝑅

P(Bin(
𝑑(1−𝑅)

𝑅
,𝛼𝑅) = 𝑖)𝐸BEC

𝑖 (𝑞, 𝛼). (4.22)

The key observation is that BP can be initially loaded with the information we obtain

from systematic bits. In other words we can iterate the dynamical system in (4.4)

with 𝑥0 = 1− 𝛼𝑅 and 𝐸BEC as above. Clearly, 𝑞BEC
1 (𝑥0) gives an exact estimate for

the first iteration of BP and can serve as an upper bound for the error 𝛿BP
ℓ . The

results are shown in Fig. 4-8 for 𝑅 = 1/2 and 𝑑 = 3. The bounds can be seen to
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be rather tight. We note that the accuracy of these bounds depend primarily on the

rate and the check degree of the ensemble and not the regularity assumption.
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Figure 4-8: The performance of systematic regular LDMC(d) of rate 𝑅 = 1/2 using
5 steps of BP along with the upper and lower bounds obtained from the erasure
functions for a) d=3 b) d=5. The upper bound uses one iteration of (4.4) with the
erasure function as in (4.22) and initialized at 𝑥0 = 1− 𝛼𝑅. The initial point is the
fraction of unerased bits observed in the systematic portion of the code.

4.8 Upper bound for systematic LDMC(𝑑) as 𝑑 → ∞

Now we consider the case where the node degree tends to infinity for systematic

LDMC(d) of rate 1
2
. To get an upper bound for LDMC codes in this case, we can

analyze one step of BP. To do this, we first need to understand what a typical majority

to bit message looks like as degree increases.

Consider a majority 𝑌 of 𝑑 + 1 bits 𝑋0, · · · , 𝑋𝑑. Let 𝑟𝑖 = P(𝑋𝑖=0)
P(𝑋𝑖=1)

. Then the BP

update rules for 𝑋0 are as follows:

P(𝑋0 = 0|𝑌 = 0)

P(𝑋0 = 1|𝑌 = 0)
= 1 +

∑︀
|𝐼|=𝑑/2

∏︀
𝑖∈𝐼 1/𝑟𝑖∑︀

|𝐼|<𝑑/2

∏︀
𝑖∈𝐼 1/𝑟𝑖

. (4.23)

Set 𝑥 = 𝐶/𝑅. Initially, around 𝑝 = 𝑥/2 fraction of the bits are return by the channel.

We have that of the 𝑑 − 1 nodes that 𝑥0 is connected to, around 𝑑𝑝 are recovered

perfectly. In this case, roughly 𝑑𝑝/2 send a message of 𝑟𝑖 = ∞ and the rest send

𝑟𝑖 = 0. There are around (1 − 𝑝)𝑑 nodes that are undecided and send a message of
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1 into the local neighborhood. Then if we group the terms in the numerator that

contain the strong 1/𝑟𝑖 = ∞ messages with the terms that send the uninformative

𝑟𝑖 = 1, we get the dominating terms in both the numerator and denominator of (4.23).

Let 𝑆 ′ be the subset of nodes with 𝑟𝑖 = 1. Given that |𝑆 ′| ≈ 𝑑(1 − 𝑝), the majority

to bit message is asymptotically as follows:

P(𝑋0 = 0|𝑌 = 0)

P(𝑋0 = 1|𝑌 = 0)
≈ 1 +

∑︀
𝐼⊂𝑆′,|𝐼|=𝑑(1−𝑝)/2 1∑︀

𝐼⊂𝑆′,|𝐼|≤(𝑑−2)(1−𝑝)/2 1
= 1 +

(︀
𝑑(1−𝑝)

𝑑(1−𝑝)/2

)︀∑︀
𝑗≤(𝑑−2)(1−𝑝)/2

(︀
𝑑(1−𝑝)

𝑗

)︀ .
By Stirling’s approximation, the numerator behaves as:

2𝑑(1−𝑝)

√︃
2

𝑑(1− 𝑝)𝜋

and the denominator is roughly

2𝑑(1−𝑝)/2.

Then the triangle to bit message when 𝑌 = 0 is

1 + 2

√︃
2

𝑑(1− 𝑝)𝜋
.

Some of the incoming messages to 𝑥0 will cancel each other and the rest will amplify.

If 𝑁0 is the number of majorities that evaluate to 0 and 𝑁1 is the number of majorities

that evaluate to 1, then the decoding error at 𝑥0 is

1

1 + (1 + 2
√︁

2
𝑑(1−𝑝)𝜋

)|𝑁0−𝑁1|
. (4.24)

If we integrate this expression w.r.t the distribution of 𝑁0−𝑁1 then we get the average

error at 𝑥0. One can show that the probability that a node agrees with its majority

is:
1

2
(1 +

√︂
2

𝜋𝑑
).

Note that 𝑁0 −𝑁1 is asymptotically normal by the CLT. When 𝑌 = 0, 𝑁0 −𝑁1 has
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mean 𝑑′𝑥
√︁

2
𝜋𝑑

and variance 𝑑′𝑥 where 𝑑′ = 𝑑(1 − 𝑟). When 𝑟 = 1/2 we get 𝑑′ = 𝑑/2

and initially we have 𝑝 = 1/2. Thus 𝑁0 − 𝑁1 ∼ 𝑑′𝑥
√︁

2
𝜋𝑑(1−𝑝)

+
√
𝑑′𝑥𝑍 where 𝑍 is

standard normal. We can write this as 𝑁0 −𝑁1 ∼
√
𝑑′𝑥(

√
𝑑′𝑥
√︁

2
𝜋𝑑

+ 𝑍).

We can integrate (4.24) w.r.t to this density to find the average decoding error

after one iteration of BP. Setting 𝑑′ = 𝑑(1 − 𝑟) and taking the limit as 𝑑 → ∞, we

find that

lim
𝑑→∞

∫︁ ∞

−∞

1

1 + (1 + 2
√︁

2
𝑑(1−𝑝)𝜋

)(
√

𝑑𝑥/2(𝑧+
√

𝑥
𝜋
))
𝑓(𝑧)𝑑𝑧 =

∫︁ ∞

−∞

1

1 + 𝑒
2
√︁

2𝑥(1−𝑟)
𝜋(1−𝑝)

𝑧+
4𝑥(1−𝑟)

𝜋
√
1−𝑝

𝑓(𝑧)𝑑𝑧.

(4.25)

This integral gives an upper bound on the decoding error of BP in the asymptotic

regime of large 𝑑. Fig. 4-9 shows the above bound versus the empirical performance

of LDMC(17). BP converges fast for systematic LDMCs, which explains the accuracy

of this one step prediction.
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Figure 4-9: The empirical performance of LDMC(17) after 5 iterations along with the
predicted on step error in the large 𝑑 limit obtained from (4.25).

77



78



Chapter 5

Applications in code optimization

In this chapter we study optimization of LDGMs. Recall that LDGM(𝑑) is the (check

regular) ensemble of degree 𝑑 generated by the parity function. We show that a joint

design over LDGMs and LDMCs can uniformly improve the performance of LDGMs

in some simple settings.

As discussed in the introduction, LDGMs are some of the most widely used families

of linear codes. They are known to be good both in the sense of coding [46] and

compression [79]. In fact, [46] shows that LDGM(𝑑) (for odd1 𝑑 ≥ 3) enjoys, from

a theoretical perspective, almost all the good properties of random codes. Indeed as

shown in Fig. 5-1, even relatively short LDGMs can achieve reasonably small error

under MAP decoding. As the codes get longer, and the degrees grow, the error can

be made arbitrarily small for all 𝐶/𝑅 > 1. From a practical perspective, however,

their decoding is problematic. The problem is that MAP decoding is not easy to

implement in practice even for moderate size codes. BP decoding is not feasible

either since for such codes, as generated, BP has a trivial local minima in which

all bits remain unbiased. One may hope that adding a small number of degree 1

nodes would enable BP to get around this initial fixed point and achieve near optimal

performance. Unfortunately, this is not the case. Improving the performance of BP

for LDGMs is a non-trivial task that often involves some careful code optimization

1When 𝑑 is even the all one vector is in the kernel of the generator matrix. This implies that
BER is 1/2.
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with many relevant parameters. We briefly discuss this matter next.
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Figure 5-1: The empirical performance of LDGM(𝑑) for 𝑑 = 1, 3, 5 under (block)
MAP decoding for rate 𝑅 = 1/2 and 𝑘 = 1000. It can be seen that the codes quickly
achieve a threshold-like performance close to the IT limit. In the view of Theorem 5,
bitwise MAP decoding cannot yield any major improvements for either codes.

To understand how LDGM(𝑑) behaves under BP, we first construct its erasure

function and then appeal to Proposition 9. With the notation of Fig. 4-2, we note

that a parity check Δ𝑗 of degree 𝑑 can determine a target bit 𝑋0 if all of its 𝑑 −

1 leaf bits 𝜕𝑗𝑋0 in the local neighborhood are unerased. Otherwise, it sends an

uninformative message. Thus if 𝑞 is the probability of erasure coming into the local

neighborhood after some iterations of BP, then at the next iteration the target bit

remains erased with probability (1 − 𝑞𝑑−1)𝑖. This gives the 𝑖-th erasure polynomial

𝐸BEC
𝑖 (𝑞) = 1/2(1 − 𝑞𝑑−1)𝑖. Since the variable node degrees are Poisson distributed

(with parameter 𝛼𝑑), we obtain the following erasure function

𝐸BEC(𝛼, 𝑞) =
1

2

∑︁
𝑖

P(Poi(𝛼𝑑) = 𝑖)(1− 𝑞𝑑−1)𝑖. (5.1)

5.1 𝐷-curves

We can now study, as before, the local dynamics of error under BP. Let 𝑞BEC
ℓ (𝑥0) be

computed as done in Proposition 9. We note that 𝑞BEC
ℓ (0) in this case is (asymptoti-

cally) exact for predicting BP error, meaning that whenever the computational graph

is a tree the average error is equal (and not just lower bounded) by 𝑞BEC
ℓ . This is
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due to the fact that parity checks preserve the BEC structure of the input messages,

hence, we can write

𝛿BP
ℓ = 𝑞BEC

ℓ (0) + 𝑜(1).

Thus for BP to make any progress during decoding, we can impose the following

(necessary) contraction constraint, called the 𝐷-function of the ensemble:

𝐷(𝛼, 𝑞) :=
1− 𝑞

2
− 𝐸BEC(𝛼, 𝑞) ≥ 0. (5.2)

Similarly, we can define the truncated 𝐷-function:

𝐷≤𝑑(𝛼, 𝑞) :=
1− 𝑞

2
− 𝐸BEC

≤𝑑 (𝛼, 𝑞) ≥ 0. (5.3)

In other words, we simply want the outgoing error to be less than the error flowing

in. For iterative decoding to take off, we need 𝐷(0) > 0. Then the first point where

𝐷(𝑞) = 0 occurs determines the limiting performance of BP. Fig. 5-2 shows the results

for LDMC(3) and a mixed LDGM ensemble, which is defined as follows. Let Λ be a

degree distribution over check degrees. An LDGM ensemble is said to be Λ-mixed if

each check node in the code is selected i.i.d from Λ.

5.2 Improving LDGMs via LDMCs

It is easy to define the erasure function of such an ensemble in terms of the erasure

function of its regular components. Let 𝜆𝑖 := P(Λ = 𝑖). Suppose that Λ has finite

support with cardinality 𝑚. Then the erasure polynomial of an Λ-mixed LDGM

ensemble is simply

𝐸BEC
Λ (𝛼, 𝑞) = 2𝑚−1

𝑚∏︁
𝑖=1

𝐸BEC
LDGM(𝑖)(𝛼𝜆𝑖, 𝑞). (5.4)

We note that this expression is half the probability that a variable node receives

an uninformative message from each component of the code in the ensemble. The
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cated at 𝑑 = 10
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Figure 5-2: The truncated 𝐷-function from (5.3) viewed as a function of 𝑞 for 𝛼 = 1.1.
The first zero of 𝐷(𝑞) determines the fixed points of BP dynamics in (4.4). The fixed
points remain stable with respect to small variations in the truncation degree 𝑑 = 10.
Two ensembles are considered: a) A mixed LDGM ensemble using 𝜆1 = 0.05 fraction
of degree 1 nodes and 𝜆3 = 0.95 fraction of degree 3 nodes. The degree 1 nodes are
needed so that 𝐷(0) > 0 is satisfied. It can be seen that BP has fixed point near 0.
Thus small perturbations in degree distributions cannot help BP reach the MAP level
of performance shown in Fig. 5-1, which corresponds to the right most zero of the
𝐷-function. More sophisticated optimization is required to improve the performance.
b) The LDMC(3) ensemble. As expected from the observations in Figs. 4-5-4-6, 𝐷(𝑞)
has a unique fixed point. See also Conjecture 1. Furthermore, the relatively large
value of 𝐷(0) suggests that the convergence is fast for this ensemble.

code optimization problem now can be formulated in terms of the dynamical system

in (4.4) associated with this 𝐸-function. Suppose that we want to run ℓ iterations of

BP to decode an LGDM. Let 𝑞BEC
ℓ,𝛼 (0) be density of unerased bits after ℓ iterations

with 𝐶/𝑅 = 𝛼. If we are interested in minimizing the BP error at two different

𝐶/𝑅’s, say 𝛼1 and 𝛼2, then the following optimization problem becomes relevant

maximizeΛ 𝑞BEC
𝑙,𝛼1

(0) + 𝑞BEC
𝑙,𝛼2

(0)∑︁
𝑖

𝜆𝑖 = 1

𝜆𝑖 ≥ 0.

This is a non-convex optimization problem. We can solve it up to local optimality

using gradient descent. Solving for 𝛼1 = 0.9, 𝛼2 = 1.1 over LDGM(𝑑) with 𝑑 ≤ 3,
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we find that 𝜆1 = 0.08, 𝜆2 = 0.22, 𝜆3 = 0.7. The 𝐷-curve and the corresponding

performance are shown in Fig. 5-4. The same figure demonstrates the performance

after we simply remove the lower degree parities by setting 𝜆1 = 0, 𝜆2 = 0, and replace

them with an LDMC(3). Since LDMC(3) dominates the repeition code everywhere,

we expect this new LDGM/LDMC ensemble to have lower error than the pure LDGM

ensemble. We can see that the LDGM family exhibits a sharp transition at the end

point 𝐶/𝑅 = 0.9 while the combined ensemble degrades more smoothly beyond this

point while maintaining smaller error everywhere else. It can also be seen that the

𝐷-curve with optimal parameters almost touches the 𝑥-axis for some small 𝑞 when

𝛼 = 0.9. This is an artifact of the optimal designs. Such proximity with zero induces

a near fixed point, from which BP requires many iterations to escape until it reaches

good performance.

We can also optimize jointly over the LDGM/LDMC ensemble by computing the

erasure polynomial as before. Solving the optimization problem at 𝛼1 = 0.8, 𝛼2 =

1.1 for the joint LDGM(d)/LDMC(3) ensemble (with 𝑑 ≤ 3) gives 𝜆1 = 0.0, 𝜆2 =

0.261, 𝜆3 = 0.482 and 𝜆LDMC(3) = 0.257 and for the LDGM ensemble (with 𝑑 ≤ 3) we

get 𝜆1 = 0.001, 𝜆2 = 0.669, 𝜆3 = 0.33. The results are shown in Fig.5-3.
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Figure 5-3: a) Code performance is compared for optimized LDGMs (over degrees
≤ 3) and combined LDGM/LDMC ensembles using 80 iterations of BP for 𝑘 =
50000. The optimized ensemble has parameters 𝜆1 = 0.08, 𝜆2 = 0.22, 𝜆3 = 0.7. The
LDGM/LDMC ensemble is obtained by replacing the degree 1 and 2 components of
the optimized ensemble with LDMC(3). Since LDMC(3) dominates repetition for all
noise levels, it is reasonable to expect that the combined LDGM/LDMC ensemble
performs better. b) The 𝐷-curve for the optimized LDGM ensemble is shown. The
low values of 𝐷 (relative to the position of the fixed point) and the near zero point
at 𝑞 ≈ 0.25 indicate that BP requires many iterations to converge. This behavior
is typical for optimal designs shown at the bottom figure. The fixed point near
0.8 is compatible with the error of 0.105 obtained at 𝛼 = 0.1 on the left. c) The
progress of BP error is shown at 𝐶/𝑅 = 0.9. The nearly flat region in the error
curve can be explained by the presence of a near fixed point in the 𝐷-curve. Overall,
the experiments suggest that the joint ensemble converges much faster and achieves
better performance uniformly for all erasure levels.
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Figure 5-4: BER curves for optimized LDGM/LDMC and is compared with optimized
LDGM. The optimized joint design has degree distributions 𝜆1 = 0.0, 𝜆2 = 0.0, 𝜆3 =
0.62 and 𝜆LDMC(3) = 0.38 and the optimized LDGM has degree distributions 𝜆1 =
0.001, 𝜆2 = 0.669, 𝜆3 = 0.33 . The codes are optimized to minimize the sum of BERs
at 𝛼1 = 0.8 and 𝛼2 = 1.1.
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Chapter 6

Codes as channel transforms

In this chapter we study LDMCs from the perspective of a channel transform. This

notion arises when one employs a concatenated code. Concatenated codes are the

codes that act on pre-coded information. This means that the input to the code is

not an arbitrary point in the alphabet space, but rather the codeword of an outer

code. This technique is often used to design codes with high performance and low

decoding complexity. For instance, to approach the capacity of the erasure channel

with LDPCs one needs to use high degree variable nodes. These in turn create

short cycles in the computational graph of the BP decoder, which is problematic for

accuracy of BP. To mitigate the impact of cycles, one needs to use very large codes

and many iterations of BP, leading to long delays in the communication system as

well as an expensive decoding procedure. A common method to circumvent these

difficulties is to employ a two (or more) layer design. A low complexity inner code

𝑓𝑖 : 𝒜𝑘 → 𝒜𝑛 is used to reduce the channel error, without necessarily correcting any

erasure pattern. Then an outer error correcting code 𝑓𝑜 : 𝒜𝑚 → 𝒜𝑘 cleans up the

remaining error. The outer code here can be an LDPC but one that faces a weakened

channel, hence, it requires fewer BP iterations and can be made to be shorter. It

can also be a (short) error correcting code that relies on syndrom decoding. In either
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case, the overall communication path looks like the following

𝒜𝑚 𝑓𝑜→ 𝒜𝑘 𝑓𝑖→ 𝒜𝑛 BEC𝜖→ 𝑌
𝑔𝑖→⏟  ⏞  

𝑄(𝜖):channel transform

ℬ𝑘 𝑔𝑜↦→ 𝒜𝑚.

Here 𝑌 is the outcome of the channel, 𝑔𝑖 is inner decoder and 𝑔𝑜 is the outer decoder.

The domain of the outer decoder is chosen to be different from the alphabet of the

message space on purpose. This is to accommodate various decoding messages that

maybe transmitted from the inner decoder to the outer decoder. Two common choices

in the literature are: 1) hard decision decoding (ℬ = 𝒜); in this case the inner decoder

can only transmit a hard decision on each bit to the outer decoder corresponding to

its best estimate of what the bit value is. 2) soft-decision decoding( ℬ = R); in this

case the inner decoder is allowed to send the bitwise probabilities of error to the outer

decoder. In either case, we can view the action of the inner code together with its

decoder as one channel 𝑄.

For hard decision decoding, it is clear that the channel (after interleaving) is a

BSC with crossover probability equal to BER. For soft-decision decoding, the output

of the channel transform is a sequence of probabilities. We view this channel as a

product channel that sends the marginals on every bit to the outer decoder 𝑄(𝜖) :

𝒜𝑘 →
∏︀𝑘

𝑖=1 𝜋𝑖. In practice, often an interleaver is placed between the inner and outer

decoder to ensure that the bit errors are not correlated, hence, it makes sense to model

the action of the inner code with a product channel. To study the performance of

codes as channel transforms under erasures we introduce the notion of soft information

𝐼𝑠(𝜖) = 1− E[
1

𝑘

𝑘∑︁
𝑖=1

ℎ𝑖(𝜖)]

where ℎ𝑖 = ℎ(𝜋𝑖) is the binary entropy of the 𝑖-th marginal produced by 𝑄(𝜖). The

soft information can be seen as the average per-bit information sent from the inner

code to the hard decision (outer) decoder. If the inner code is wrapped with an

interleaver, 𝐼𝑠 will closely approximate the capacity of the inner channel 𝑄(𝜖). In this

case, two information bits of the inner code are likely to fall in different blocks of the
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outer error correcting code. Hence, the possible dependencies between the bits is not

relevant.

We note that for a linear code 𝐼𝑠(𝜖) = 1−2BER(𝜖). Thus we can use the bounds of

Theorem 5 together with Proposition 1 to obtain similar bounds on soft information.

For LDMCs we can measure the soft information empirically. The results are shown

in Fig. 6-1
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Figure 6-1: Empirical soft information for LDMC(3) with 𝑘 = 20000 compared with
repetition and linear codes satisfying BER = 0.25 at 𝐶/𝑅 = 0.5 for three different
rates. The codes are systematic.
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Part 2

Hamming’s combinatorial model
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Chapter 7

Combinatorial trade-offs for linear

codes

7.1 Introduction

In this part of the thesis, we study the graceful degradation problem for the Hamming

model. As discussed in the introduction, the goal is to understand what codes can

achieve smooth (𝛼, 𝛽)-profiles similar to what is shown in Fig. 1-2b. Henceforth, we

assume familiarity with the material discussed in §1.2.

We first briefly review the relevance of the (𝛼, 𝛽)-property for graceful degradation

and explain the main results of this chapter. One often encodes a message by a map

𝑓 to build tolerance against external noise. For instance, one may map 𝑥 to 𝑓(𝑥) and

save the outcome on a storage device. Then noise may act by erasing some of stored

bits in an adversarial manner. One then observes the non-erased bits and provides

an estimate 𝑥̂ for 𝑥. With the conventions of §1.2, a map can fully recover the input

from 𝛽(0)𝑛 erasures. As the number of erasures exceeds 𝛽(0)𝑛, it is desired that 𝑥

be recovered with good fidelity, that is, we want |𝑥 − 𝑥̂| to be as small as possible.

In general, 𝛽(𝛼)𝑛 erasures on the output can cause at most 𝛼𝑘 distortions in the

input. Indeed if we let 𝑥̂ be an arbitrary point in the pre-image, it is guaranteed that

|𝑥 − 𝑥̂| ≤ 𝛼𝑘. In some cases, this arbitrary point is the best estimate available for

the input. For instance, if 𝑞 is large and 𝑓 is linear, then one cannot find an estimate
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with provably lower error 1. Thus it makes sense to think of 1 − 𝛼 as the quality of

estimation in recovering 𝑥 against adversarial noise with intensity 𝛽. In this sense,

𝛽* (see (1.3) for definition) can be thought of as a measure for the ability of the code

to partially recover the input in the presence of strong erasure noise.

A related concept is that of unequal protection (UEP) codes [51, 11, 55, 63].

A code with minimum distance 𝑑 is said to have the UEP if, for some fixed 𝑖, it

can always recover the 𝑖-th input bit from more than 𝑑 erasures. In this sense, the

UEP codes are often said to have the graceful degradation property. A map with

the (𝛼, 𝛽)-property does not necessarily provide this type of biased protection. If 𝑑

erasures occur there is no guarantee that any specific bit can be recovered exactly.

However, more can be said about the joint estimates. For instance, if a code has

𝛽(1/𝑘) > 𝛽(0) and exactly 𝑑 erasures occur, then the symbol error rate (SER) on

estimating 𝑚 bits from 𝑑 erasures can be shown to be at most 1
𝑚
. In other words,

the (𝛼, 𝛽)-property does not provide unequal protection for any specific bit but it can

still ensure graceful degradation of overall SER as the noise level exceeds the error

correction capabilities of the code depending on how fast 𝛽 increases with 𝛼.

It is a classic problem in coding theory to find maps with large 𝛽(0). It is thus

useful to have estimates on how large 𝛽(0) can be. The answer to this question is

not yet known unless the alphabet size is large, though various upper bounds on 𝛽(0)

exist (cf. [48]). The recent work has extended this problem to finding estimates on

𝛽(𝛼) [59, 61]. Again the exact answer is known only when the alphabet size is large.

We shall see in the next chapter that 𝛽(𝛼) ≤ 1− 1−𝛼
𝜌

with 𝜌 := 𝑛
𝑘
, where equality can

be achieved if 𝑞 ≥ 𝑛. In this chapter, we focus on a different problem.

The above discussion motivates the need for a code with large minimum distance

and monotonically increasing 𝛽(𝛼). Such a code can fully recover the input when

the number of erasures is less than its minimum distance, and as the number of

erasures exceeds its minimum distance, it can offer some partial recovery guarantees.

It turns out, however, that there is a trade-off between full and partial recovery.

In the (𝛼, 𝛽)-spectrum, we can fix one point, namely, the minimum distance (or

1When 𝑞 > 𝑛, the Chebyshev radius of a linear subspace of F𝑛
𝑞 is equal to its diameter.
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equivalently 𝛽(0)), and ask how large 𝛽(𝛼) can be at some other point? We give some

results in this direction for linear codes. Our results show that there is a trade-off

between the minimum distance 𝛿 of a linear code and its 𝛽* (see (1.3) for definition).

We characterize the optimal trade-off between 𝛿 and 𝛽* (over large alphabets) and

construct some optimal codes that can achieve it. We further show that optimal

codes are not graceful in the sense that they must send some input vectors with large

weight to codewords with minimal weight 𝛿. A priori, the (𝛼, 𝛽)-property asks for the

mapping of dissimilar messages to be also dissimilar and as such is a relaxation of the

locality sensitive hashing (LSH) property ([59]). Our results show, however, that at

least in the case of linear codes there is a stronger connection between the two in the

sense that if a code sends dissimilar messages to dissimilar codewords, it must also

send some similar messages to similar codewords (see Theorem 15).

7.2 Geometric systems

We briefly review the notion of an (𝛼, 𝛽)-geometric system, which will be used in the

proofs and ensuing discussions. We refer the reader to [59] for further details.

The (𝛼, 𝛽)-property of 𝑓 is determined by its image as well as a choice of an

embedding. If we write 𝑓(𝑥) = 𝑥𝐺, then we can think of the columns of 𝐺 as elements

of projective space P𝑘−1, which we will call 𝛽-points, while projective images of the 𝑘

standard basis vectors are going to be called 𝛼-points. In this language, for example,

1 − 𝛽* is the largest fraction of 𝛽-points through which we can pass a hyperplane

avoiding all 𝛼-points We denote the set of 𝛼, 𝛽-points, respectively, by Γ𝛼,Γ𝛽. We

also define the sets of 𝛼-only points Γ𝛼∖𝛽 := Γ𝛼∖Γ𝛽, and 𝛽-only points Γ𝛽∖𝛼 := Γ𝛽∖Γ𝛼.

We remark that the minimum distance of a map is a property of its image, hence,

it depends only upon the configuration of its 𝛽-points. On the other hand, 𝛽* is

a property of both the image and the embedding and as such depends on the ar-

rangements of both 𝛼-points and 𝛽-points. The bounds in this section are thus to be

interpreted as follows: fixing a property (the minimum distance) of the image, bound

𝛽* for all possible embeddings, i.e., any configuration of 𝛼-points.
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7.3 MDS codes

Here we show that linear MDS codes have 𝛽* = 1 − 1
𝜌
when 𝑛 ≥ 2𝑘 − 1 (see (1.3)

for definition of 𝛽*). We remark that this result can be seen as a generalization of

Theorems 8 and 9 in [52]. Recall that a linear map is MDS if and only if the points

in Γ𝛽 are in general linear position. We start with a simple observation to show that

the bound 𝑛 ≥ 2𝑘 − 1 is sharp:

Proposition 12. If 𝑛 < 2𝑘 − 1 then the there exists a linear MDS code 𝑓 : F𝑘
𝑞 → F𝑛

𝑞

for which |𝑓(𝑥)| ≤ 𝑛 − 𝑘 + 1 implies |𝑥| ≤ 𝑘 − 1. In other words, 𝛽 > 1 − 1
𝜌

can be

achieved at 𝛼 = 1− 1
𝑘
.

Proof. Pick the 𝛼-points such that Γ𝛼 ⊂ Γ𝛽. Then any hyperplane containing 𝑘 − 1

𝛽-points must contain at least one 𝛼-point.

Conversely, when Γ𝛼 ⊂ Γ𝛽 one can easily check that if 𝜌 ≥ 2 then 𝛽(𝛼) ≤ 1 − 1
𝜌

for all 𝛼 < 1. Indeed the hyperplane containing any 𝑘 − 1 points in Γ𝛽∖𝛼 cannot

contain any 𝛼-points due to the general position property of Γ𝛽. One can ask whether

𝛽 > 1 − 1
𝜌
can be achieved for some 𝛼 < 1 for a different configuration of 𝛼-points?

Let us consider another simple configuration of 𝛼-points before we prove the general

result. One can place each 𝛼-point on a line between two 𝛽-points. We can now

construct a graph whose nodes are the 𝑛 𝛽-points and there is an edge between two

𝛽-points if the line connecting them does not contain an 𝛼-point. The fact that the 𝛽-

points are in general position implies that every 𝛼-point can be in the span of exactly

one pair of 𝛽-points when 𝑘 > 3 (two general lines do not meet). The graph is thus

missing 𝑘 edges compared to the complete graph on 𝑛 nodes. By Turan’s theorem,

it must contain a (𝑘 − 2)-clique. Then a hyperplane containing the clique (and no

further 𝛽-point) has a relative (asymptotic) weight of 1− 1
𝜌
and does not pass through

any 𝛼-points (otherwise, the line connecting the 𝛽-points spanning this 𝛼-point and

the (𝑘 − 2)-space spanned by the clique points will intersect, violating the general

position assumption). Hence, asymptotically, we must have 𝛽 ≤ 1− 1
𝜌
for all 𝛼 < 1.

In the same manner one can show that placing 𝛼-points in the span of 𝑜(𝑘) 𝛽-

points will not improve on 𝛽* asymptotically. But proving the result for general
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configurations of 𝛼-points and finite 𝑛 requires different ideas.

Theorem 13. Suppose the image of 𝑓 : F𝑘 → F𝑛 is a linear MDS code. If 𝑛 ≥ 2𝑘−1

then there exists 𝑥 ∈ F𝑘 with |𝑥| = 𝑘 such that |𝑓(𝑥)| ≤ 𝑛− 𝑘 + 1. This implies that

𝛽* = 1− 1
𝜌
.

Proof. Suppose we have a collection 𝐵 of 𝑙 points in general position and an arbitrary

collection 𝐴 of 𝑚 points inside P𝑟. We claim that if 𝑙 ≥ 𝑟 + 𝑚, there exists an F-

rational hyperplane containing 𝑟 points in 𝐵 and no points in 𝐴. Note that the

desired result follows from this claim upon setting 𝑚 = 𝑘, 𝑟 = 𝑘 − 1.

We prove the claim by induction on 𝑟. When 𝑟 = 1, each hyperplane is a point in

P1. If 𝑙 ≥ 𝑚+1 there must exist a point in 𝐵 that is not a point in 𝐴. Now suppose

that the claim holds in dimension 𝑟. Take a collection 𝐵 of 𝑙 ≥ 𝑟 +𝑚 + 1 points in

general position inside P𝑟+1. Since 𝑙 ≥ 𝑟 + 𝑚 + 1, there must exist a point 𝑝 ∈ 𝐵

such that 𝑝 ̸∈ 𝐴. We project the sets 𝐴 and 𝐵 from 𝑝 down to P𝑟. The image of

𝐵 under this projection is a set 𝐵′ consisting of 𝑙 − 1 points in general position. We

have 𝑙− 1 ≥ 𝑟 +𝑚. Hence, by the inductive hypothesis, there exists a hyperplane in

P𝑟 that contains 𝑟 points in 𝐵′ and no points in the image of 𝐴. Lift this hyperplane

by taking the cone over it that passes through 𝑝. This gives a hyperplane inside P𝑟+1

that contains 𝑟 + 1 points of 𝐵 and no points of 𝐴. This proves the claim.

Remark 6. Consider solving a system of linear equations 𝑦 = 𝑥𝐺 where 𝐺 is a 𝑘×𝑛

matrix with Kruskal rank 𝑘 (i.e., any 𝑘 columns of 𝐺 span a 𝑘-dimensional space). It

is possible to find 𝑥 with |𝑥| = 𝑘 that satisfies some 𝑘 − 1 of the constraints.

For MDS codes of length 𝑛 ≤ 2𝑘 − 2 we have the following result:

Theorem 14. Suppose the image of 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 is a linear MDS code with 𝑞 > 𝑘. If

𝑘+ 1 ≤ 𝑛 < 2𝑘− 1, there exists 𝑥 ∈ F𝑘
𝑞 with |𝑥| ≥ 𝑘− 𝑠𝑘 for all 0 ≤ 𝑠𝑘 ≤ 2𝑘− 𝑛− 1

such that |𝑓(𝑥)| ≤ 𝑘 − 𝑠𝑘. In other words, 𝛽(𝛼) ≤ 1−𝑠
𝜌

for all 𝛼 < 1− 𝑠.

Proof. Consider the sets 𝐴 of 𝑚 arbitrary points and 𝐵 of 𝑙 points in general position

inside P𝑟
F𝑞
, where 𝑚 ≤ 𝑙 ≤ 𝑚+ 𝑟. We claim that there exists a hyperplane containing

𝑙 −𝑚 points in 𝐵 and no points in 𝐴 if 𝑞 > 𝑚.
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Project the sets 𝐴,𝐵 successively from a point in 𝐵 that is not in 𝐴. We repeat

this step by projecting from a point in (the image of) 𝐵 that is not in (the image of)

𝐴 until no further such point exists. Note that we can project at least 𝑙 −𝑚 times

(since the points of 𝐵 are in general position). After this, we land in a projective

space of dimension 𝑟′ ≤ 𝑟− 𝑙+𝑚. The image 𝐴′ of 𝐴 under this projection is a set of

cardinality 𝑚 (counted with multiplicity). If 𝑞 > 𝑚, there exists a hyperplane inside

P𝑟′

F𝑞
that contains no point of 𝐴′. To see this, note that there are 𝑞𝑟

′−1
𝑞−1

hyperplanes

inside P𝑟′

F𝑞
. For a fixed point 𝑝 ∈ 𝐴′, there are 𝑞𝑟

′−1−1
𝑞−1

hyperplanes that pass through

𝑝. By the union bound, if 𝑞𝑟
′−1

𝑞−1
> 𝑚 𝑞𝑟

′−1−1
𝑞−1

, there must exist a hyperplane that

passes through no point of 𝐴′. We lift this hyperplane back into P𝑟
F𝑞
. This will give

a hyperplane passing through at least 𝑙 −𝑚 points of 𝐵 and no points of 𝐴.

It further follows that for 𝑠 ≤ 𝑟 − (𝑙 − 𝑚) there exists a hyperplane containing

𝑙 − (𝑚 − 𝑠) points in 𝐵 and no more than 𝑠 points in 𝐴. Indeed one can remove a

point 𝑝 ∈ 𝐴 and apply the above argument to 𝐴∖{𝑝}.

Remark 7. The bound 𝛽(𝛼) ≤ 1−𝑠
𝜌

is tight and is achieved if Γ𝛼 ⊂ Γ𝛽, that is,

if the code is systematic. In fact, this result, combined with Theorem 13, can be

used to characterize which 𝑘× (𝑘− 1) sub-matrices of 𝐺 have full-weight elements in

their left null space (as mentioned above) over large alphabets: if 𝐺 = [𝐼|𝐴] has full

Kruskal rank, then a 𝑘 × (𝑘 − 1) sub-matrix of 𝐺 has a full weight element in its left

null space if and only if it is a submatrix of 𝐴. This follows from Theorems 1 and 2

and the fact that a shortened MDS code is still an MDS code.

7.4 Linear codes

In this section we give a converse bound on 𝛽* for definition) as a function of 𝛿

for linear codes. Our bound is alphabet independent, and can be tight (over large

alphabets). We prove some further (𝛼, 𝛽)-limitations of the codes that achieve the

bound and construct some examples of such codes. In particular, we show that if

a code with positive distance achieves the bound, then there exists some 𝑥 with

relatively large weight for which |𝑓(𝑥)| = 𝛿𝑛.
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Theorem 15. Let 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 be a linear code of relative minimum distance 𝛿

with 𝑞 > 𝑘. Then there exists 𝑥 ∈ F𝑘
𝑞 with |𝑥| = 𝑘 such that |𝑓(𝑥)| ≤ 𝑛

2
(1 +√︁

1− 4𝛿
𝜌(1− 1

𝑛
)2
+ 4

𝑛(1− 1
𝑛
)2
) + 1. In other words,

𝛽* ≤ 1

2
+

1

2

√︃
1− 4𝛿

𝜌
,

More generally, for 𝛼 < 1 we asymptotically have

𝛽(𝛼) ≤ 1−
1 + 1

𝜌
− 𝛼

𝜌

2

(︀
1−

√︃
1− 4(1− 𝛼(1− 𝛿))

𝜌(1 + 1
𝜌
− 𝛼

𝜌
)2
)︀

Furthermore, if |𝑓(𝑥)| ≥ 𝑛− 𝑡 for all 𝑥 with |𝑥| = 𝑘 and some 𝑡 < 𝑘, then there exists

𝑥 with |𝑥| ≥ 𝑡 such that |𝑓(𝑥)| ≤ (𝑛 − 𝑡) 𝑡+1
𝑘

. In other words, for all 𝛼 < 𝜌(1 − 𝛽*)

we have 𝛽(𝛼) ≤ 𝜌𝛽*(1− 𝛽*). In particular, if a code achieves the above bound on 𝛽*,

then for all 𝛼 < 𝜌
2
(1−

√︁
1− 4𝛿

𝜌
) we have 𝛽(𝛼) = 𝛿.

Proof. Consider two sets 𝐴 of 𝑚 arbitrary points and 𝐵 of 𝑙 points inside P𝑟
F𝑞

with

the property that any hyperplane contains at most 𝑙(1 − 𝛿) fraction of the points in

𝐵. Consider successive projections of 𝐴,𝐵 from the points in (the image of) 𝐵 that

are not in (the image of) 𝐴. Note that, to project from a point 𝑝, we draw a line from

𝑝 to every point (except for 𝑝) in 𝐴, 𝐵, and map that point to the intersection of

the line with P𝑟. Suppose that after 𝑠 projections we can no longer find any 𝐵-point

to further project from. We say that a 𝐵-point is lost in projection if its image is

not defined (i.e., it lies on the point from which we project). Let 𝜆 be the number of

points in 𝐵∖𝐴 that are lost in the projections after 𝑡 steps. Suppose the image of 𝐴

contains 𝑚′ unique points 𝑝1, · · · , 𝑝𝑚′ inside P𝑟′ where 𝑟′ := 𝑟 − 𝑡. The image of 𝐵

contains 𝑙 − 𝜆 points counted with multiplicities. Let 𝑏𝑖 be the number of points in

𝐵 that get mapped to 𝑝𝑖 in the image of 𝐴. We may assume that 𝑏1 ≥ 𝑏2 ≥ ... ≥ 𝑏𝑚′ .

On average, there are 𝑐 = 𝑙−𝜆
𝑚′ ≥ 𝑙−𝜆

𝑚
points of 𝐵 lying on top of a point in 𝐴. If

we pick a hyperplane that passes through 𝑝1, · · · , 𝑝𝑟′ inside P𝑟′

F𝑞
, it must contain at

least 𝑟′ 𝑙−𝜆
𝑚

points in the image of 𝐵. We can lift this hyperplane back to P𝑟
F𝑞

to get

a hyperplane containing at least 𝜆 + (𝑙−𝜆)(𝑟−𝑡)
𝑚

points in 𝐵. The assumption on 𝐵
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requires that

𝛿𝑙 ≤ 𝑙 −
(︂
(𝑙 − 𝜆)

(𝑟 − 𝑡)

𝑚
+ 𝜆

)︂
(7.1)

Using 𝜆 ≥ 𝑡, we can write this as

𝑡 ≥ 𝛿𝑙𝑚

𝑙 − 𝑡
−𝑚+ 𝑟 (7.2)

This implies:

𝑡 ≥ 𝑟 + 𝑙 −𝑚

2

(︃
1−

√︃
1− 4𝑙(−𝑚(1− 𝛿) + 𝑟)

(𝑟 + 𝑙 −𝑚)2

)︃
(7.3)

If 𝑞 > 𝑚, there exists a hyperplane inside P𝑟′

F𝑞
that contains no point of 𝐴′. To see

this, note that there are 𝑞𝑟
′−1

𝑞−1
hyperplanes inside P𝑟′

F𝑞
. For a fixed point 𝑝 ∈ 𝐴′, there

are 𝑞𝑟
′−1−1
𝑞−1

hyperplanes that pass through 𝑝. By the union bound, if 𝑞𝑟
′−1

𝑞−1
> 𝑚 𝑞𝑟

′−1−1
𝑞−1

,

there must exist a hyperplane that passes through no point of 𝐴′. Setting 𝑙 := 𝑛,𝑚 :=

𝑘, 𝑟 := 𝑘 − 1, we get

𝛽* ≤ 1− 𝑡

𝑛
≤ 1

2
+

1

2

√︃
1− 4𝛿

𝜌
(7.4)

as desired. In general, we can remove 𝑠 points from 𝐴 and apply the above argument

to 𝐴∖{𝑝} so that for 𝛼 < 1− 𝑠
𝑘
we have

𝛽(𝛼) ≤ 1−
1 + 1−𝛼

𝜌

2
[1−

√︃
1− 4(1− 𝛼(1− 𝛿))

𝜌(1 + 1
𝜌
− 𝛼

𝜌
)2

] (7.5)

Now suppose that 𝑓(𝑥) ≥ 𝑛− 𝑡 for all 𝑥 with |𝑥| = 𝑘. Then the above sequence of

projections must stop after 𝑡 steps. Applying the same argument as above will prove

the second part.

Remark 8. This result shows that there is a trade-off between the “smoothness”

of a code and its ability to correct errors. The trade-off stems from two opposing

tendencies: to correct errors a code needs to spread out messages while smoothness

requires local structures (cf. [7]).

Remark 9. This result strengthens the connection between the (𝛼, 𝛽)-property and

the locality sensitive hashing (LSH) property. A priori, the (𝛼, 𝛽)-property is only a
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relaxation of the LSH condition (see [59]), in the sense that a map that is good in

the (𝛼, 𝛽)-sense sends far away messages to faraway codewords. This result suggests

that such map must send some nearby messages to nearby codewords as well.

Remark 10. For MDS codes the above Theorem states that 𝛽* ≤ 1− 1
𝜌
for 𝜌 ≥ 2

and 𝛽* ≤ 1
𝜌
for 𝜌 ≤ 2, which agrees with Theorems 13,14. The repetition code can

asymptotically achieve 𝛿 = 0 and 𝛽* = 1. Thus the bound is tight at the two extreme

points 𝛿 = 0, 𝛿 = 1− 1
𝜌
. The bound can be achieved at other values of 𝛿 as well.

Remark 11. It follows from the above proof that any linear code achieving 𝛽* = 1

in the asymptotic regime (as 𝑘 → ∞) must be repetition-like, that is almost all

columns of the generator matrix must have weight 1. Indeed the depth of the above

projection sequence can be at most 𝑜(𝑘) for any such code. LDMCs on the other

hand can achieve 𝛽* = 1 asymptotically (or otherwise). Therefore they are superior

to linear codes in this (admittedly weak) sense as well.

Remark 12. It is asked in [59] what codes can (asymptotically) achieve 𝛼 = 𝛽 when

𝜌 is not an integer. It follows from our proof that such codes, if they exist, cannot be

linear (over large alphabets). Indeed one can check that there are no repetition-like

codes achieving 𝛼 = 𝛽 for non-integral 𝜌 and any linear code achieving 𝛽* = 1 is

repetition-like as discussed above.

Remark 13. The Theorem states that the codes achieving the bound on 𝛽* must

send some heavy weight vectors to low weight codewords. This need not be true for

codes in general. The second example below gives codes of relative distance 𝛿 > 0 for

which |𝑓(𝑥)| > 𝛿𝑛 for all 𝑥 with |𝑥| > 2.

Problem 1. The bound of Theorem 15 can be tight when the alphabet size is large.

It is a (hard) open problem to improve the bound over small alphabets.

Example 5. Here we present a non-MDS code with positive minimum distance that

achieves the bound on 𝛽* from Theorem 15. The proof of Theorem 15 suggests that

such codes must look like a repetition code after a certain number of projections

from 𝛽-only points. Take 𝑘
2
lines in P𝑘−1 that are in general linear position. This

means that any 𝑠 lines are not contained in a 2𝑠 − 2-dimensional subspace. Place
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three 𝛽-points and one 𝛼-point on each line. Place the other 𝑘
2
𝛼-points in general

position w.r.t the lines and place two 𝛽-points on each of them. The code has length

3𝑘
2
+ 2𝑘

2
= 5𝑘

2
and dimension 𝑘. One can check that this code has, asymptotically,

𝛿 = 2
5
. By Theorem 15, 𝛽* ≤ 4

5
. A hyperplane that contains no 𝛼-points passes

through at most one 𝛽-point from each of the lines. We can thus find a hyperplane

passing through 𝑘
2
𝛽-points and no 𝛼-point, but we cannot find a hyperplane passing

through more 𝛽-point without containing an 𝛼-point. This gives 𝛽* = 4
5
, which agrees

with the bound of Theorem 15. Note that after 𝑘
2
projections from the chosen 𝛽-only

points the code looks like the repetition code with 𝜌 = 2.

Example 6. The Theorem above shows that the optimal codes (i.e., codes that achieve

the bound on 𝛽*) send some heavy weight messages to codewords of weight 𝛿𝑛. This

property need not hold for non-optimal codes. Here we give examples of codes for

which |𝑓(𝑥)| > 𝛿𝑛 for |𝑥| > 1.

Consider maps 𝑓1, 𝑓2 where 𝑓1 : F𝑘
𝑞 → F𝑛

𝑞 has distance 𝛿1𝑛 and 𝑓2 : F𝑘−1
𝑞 → F𝑛

𝑞 has

distance 𝛿2𝑛. Extend 𝑓2 to a map on F𝑘
𝑞 by adding a zero row to its generator matrix.

Construct a map 𝑓 : F𝑘
𝑞 → F2𝑛

𝑞 sending 𝑥 ↦→ (𝑓1(𝑥), 𝑓2(𝑥)). Then 𝑓 has distance 𝛿1𝑛

but |𝑓(𝑥)| ≥ (𝛿1 + 𝛿2)𝑛 for all 𝑥 with |𝑥| > 1.
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Chapter 8

Maps over large alphabets

In this chapter we address the question of finding the best parameters that can be

achieved for an (𝛼, 𝛽)𝑞-map. First, we present a converse result for such maps. Next,

we present an achievability scheme for (𝛼, 𝛽)𝑞-maps which employ the extremal con-

figuration characterized by Ahlswede and Khachatrian [3]. For large enough 𝑞 this

scheme is optimal as it attains the converse bound. Then we utilize Reed-Solomon

codes to construct explicit optimal (𝛼, 𝛽)𝑞-maps for 𝑞 > 𝑛.

8.1 Converse for (𝛼, 𝛽)𝑞-maps

Theorem 16. Let 𝑞 𝒩
= 2. Then, for an (𝛼, 𝛽)𝑞-map to exist, we must have

ℎ𝑞(𝛼)
𝒩
= 1−min{𝜌𝑅𝑞

𝐿𝑃1(𝛽), 𝜌(1− 𝛽)}. (8.1)

Furthermore, for a sufficiently large field size 𝑞, we must have

𝛼 ≥ 1− 𝜌+ 𝜌𝛽 + 𝑜𝑞(1). (8.2)

Proof. Let 𝑓 be an (𝛼, 𝛽)𝑞-map. Assume that 𝒞 ∈ F𝑘
𝑞 is the maximum size code with

relative distance 𝛼, i.e., |𝒞| = 𝐴𝑞(𝑛, 𝛼𝑛). Encoding each codeword in 𝒞 with the map

𝑓 , we get a set of vectors 𝑓(𝒞) ∈ F𝑘
𝑞 where any two vector are at Hamming distance
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at least 𝛽𝑛. Therefore, 𝑓(𝒞) is a code with relative distance 𝛽. This implies that

𝐴𝑞(𝑛, 𝛼𝑛) = |𝑓(𝒞)| ≤ 𝐴𝑞(𝑛, 𝛽𝑛). (8.3)

From the GV bound we know that

𝐴𝑞(𝑛, 𝛼𝑛)
𝒩
= 𝑞𝑘(1−ℎ𝑞(𝛼))+𝑜(𝑘). (8.4)

On the other hand, the linear programming bound in [1] ensures that

𝐴𝑞(𝑛, 𝛽𝑛) ≤ 𝑞𝑛𝑅
𝑞
𝐿𝑃1(𝛽)+𝑜(𝑛), (8.5)

where

𝑅𝑞
𝐿𝑃1(𝛿) = ℎ𝑞(

𝑞 − 1

𝑞
− 𝛽

𝑞 − 2

𝑞
− 2

𝑞

√︀
𝛽(1− 𝛽)(𝑞 − 1)).

Now, the bound in (8.1) follows by using (8.4) and (8.5) in (8.3). We obtain the bound

in (8.2) from the fact that for a large enough 𝑞 we have ℎ𝑞(𝑎) = 𝑎+𝑜𝑞(1) ∀𝑎 ∈ [0, 1].

8.2 Achievability scheme for (𝛼, 𝛽)𝑞-map

Here we present an achievability scheme to construct an (𝛼, 𝛽)𝑞-map. One approach

to construct (𝛼, 𝛽)-maps over F𝑞 is as follows. Cover F𝑘
𝑞 with configurations of diam-

eter at most 𝛼𝑘. Pack in F𝑛
𝑞 as many points (codewords) of pairwise distance more

than 𝛽𝑛 as there are configurations in the cover. Then map configurations to code-

words. To obtain good (𝛼, 𝛽) properties, it makes sense to look for configurations

that contain a large number of points, for having fewer codewords leads to better

separation. A natural choice is to cover with Hamming balls. The Hamming balls are

too small when 𝑞 > 2 and, hence, do not give satisfactory (𝛼, 𝛽) properties. Thus,

one can ask for the shape and cardinality of extremal configurations. This was a long-

standing combinatorial problem and settled by the diametric theorem of Ahlswede

and Khachatrian [3], which we quote below.

We are interested in large subsets with bounded diameter. The cardinality of the
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largest such subset is

𝑁𝑞(𝑑, 𝑘) = max{|𝒜| : 𝒜 ⊂ F𝑘
𝑞 s.t. diam(𝒜) ≤ 𝑑}.

For 𝑥 ∈ F𝑘
𝑞 , define 𝐽(𝑥) = {𝑗 : 𝑥𝑗 = 0} and

𝒰𝑖 = {𝑥 ∈ F𝑘
𝑞 : |𝐽(𝑥) ∩ [1, 𝑘 − 𝑑+ 2𝑖]| ≥ 𝑘 − 𝑑+ 𝑖}.

Note that each set 𝒰𝑖 can be written as a cartesian product of some (𝑘 − 2𝑑 + 𝑖)-

dimensional ball of radius 𝑖 with F𝑑−2𝑖
𝑞 . In particular, 𝒰0 is a low dimensional cube

F𝜌
𝑞 inside F𝑘

𝑞 . We are now ready to state the diametric theorem:

Proposition 17 (The diametric theorem[3]). Let 𝑟 be the largest integer such that

𝑘 − 𝑑+ 2𝑟 < min{𝑘 + 1, 𝑘 − 𝑑+ 2
𝑘 − 𝑑− 1

𝑞 − 2
}.

Then 𝑁𝑞(𝑘, 𝑑) = |𝒰𝑟|.

We will make use of the extremal configurations that appear in the theorem in the

covering step mentioned above. We state the achievable parameters in the following

result. For large 𝑞, this result establishes the tightness of the converse bound in

Theorem 16.

Theorem 18. Fix 𝑞 ≥ 2 and set

𝜌 :=

⎧⎨⎩
𝜌(𝑞−2)

𝑞(1−ℎ𝑞(1/𝑞))
𝑞 > 2

𝜌 𝑞 = 2

Then for all 𝛽 ≤ 1 − 1
𝑞

and 𝑘𝑖, 𝑛𝑖 → ∞ with 𝑛𝑖

𝑘𝑖
→ 𝜌, there exists (𝛼𝑖, 𝛽𝑖)-maps

𝑓 : F𝑘𝑖
𝑞 → F𝑛𝑖

𝑞 with (𝛼𝑖, 𝛽𝑖) → (𝛼, 𝛽) if

𝛼 ≥ max{2
𝑞
, 1− 𝜌+ 𝜌ℎ𝑞(𝛽)}} or ℎ𝑞(𝛼/2) ≥ 1− 𝜌+ 𝜌ℎ𝑞(𝛽) (8.6)

Proof. Let 𝑟(𝑘, 𝑑) be the integer as in the diametric theorem. We cover F𝑘
𝑞 with
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𝒰𝑟(𝑘,𝑑)’s. Write

𝒰𝑟(𝑘,𝑑) = 𝐵𝑟(𝑘,𝑑) × F𝑑−2𝑟(𝑘,𝑑)
𝑞 .

Define 𝑡(𝑘, 𝑑) = 𝑘 − 𝑑 + 2𝑟(𝑘, 𝑑). Now we can mod out the second factor so that

covering F𝑘
𝑞 with translates of 𝒰𝑟(𝑘,𝑑) reduces to covering F𝑡(𝑘,𝑑)

𝑞 with Hamming balls

of radius 𝑟(𝑘, 𝑑). Define

𝐾(𝑑,𝑋) = min{𝑚 : ∪𝑚
𝑖=1𝑆𝑖 = 𝑋, diam(𝑆𝑖) = 𝑑}

and

𝑊 (𝑟,𝑋) = min{𝑚 : ∪𝑚
𝑖=1𝐵𝑖 = 𝑋, rad(𝐵𝑖) = 𝑟}.

Given a linear code 𝐶 ⊂ 𝑋, denote its covering radius by 𝑟cov(𝐶) and further

define

𝑤(𝑟,𝑋) = min{𝑚 : there is an 𝑚 -dimensional linear code 𝐶 ⊂ 𝑋 with 𝑟cov(𝐶) ≤ 𝑟}.

We have 𝑊 (𝑟,F𝑡
𝑞) ≤ 𝑞𝑤(𝑟,F𝑡

𝑞) ≤ 𝑞𝑡(1−ℎ𝑞(𝑟/𝑡))+𝑂(log 𝑡) where the second inequality is from

[17]. We can thus bound the number of configurations of diameter 𝑑 needed to cover

F𝑘
𝑞 as follows

𝐾(𝑑,F𝑘
𝑞) ≤ 𝑊 (𝑟(𝑘, 𝑑),F𝑡(𝑘,𝑑)

𝑞 ) ≤ 𝑞𝑤(𝑟(𝑘,𝑑),F𝑡(𝑘,𝑑)
𝑞 ) ≤ 𝑞𝑡(𝑘,𝑑)(1−ℎ𝑞(

𝑟(𝑘,𝑑)
𝑡(𝑘,𝑑)

))+𝑂(log 𝑡(𝑘,𝑑))

Using the GV bound, we can see that (𝛼, 𝛽) is achievable asymptotically if

𝑡(𝑘, 𝛼𝑘)(1− ℎ𝑞(
𝑟(𝑘, 𝛼𝑘)

𝑡(𝑘, 𝑑)
)) ≤ 𝑛(1− ℎ𝑞(𝛽))

holds as 𝑘 → ∞. Setting 𝑟 := 𝑟(𝑘, 𝑑)/𝑘, we can rewrite the above in the form

(1− 𝛼 + 2𝑟)(1− ℎ𝑞(
𝑟

1− 𝛼 + 2𝑟
)) ≤ 𝜌(1− ℎ𝑞(𝛽))

Furthermore, note that for 𝛼 ≥ 2/𝑞 and 𝑞 > 2, we have 𝑟 = 1−𝛼
𝑞−2

for large 𝑘. Hence
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the achievable region contains the curve

𝑞(1− 𝛼)

𝑞 − 2
(1− ℎ𝑞(

1

𝑞
)) = 𝜌(1− ℎ𝑞(𝛽))

when 𝛼 ≥ 2
𝑞
. In other words

ℎ𝑞(𝛽
*(𝛼, 𝜌, 𝑞)) ≥ 1− 1

𝜌
+

𝛼

𝜌
(8.7)

if 𝛼 ≥ 2
𝑞
. On the other hand, when 𝛼 < 2

𝑞
we have 𝑟 := 𝛼𝑘

2
. Covering F𝑘

𝑞 with

Hamming balls of radius 𝛼𝑘/2 gives a lower bound

ℎ𝑞(𝛼/2) ≤ 1− 𝜌+ 𝜌ℎ𝑞(𝛽) (8.8)

on achievable 𝛽’s. This proves (8.6).

Fig. 1 shows the bounds in (8.6)-(8.2) for some finite values of 𝑞.

8.3 Truncated Reed-Solomon codes

Here we give an explicit family of codes that achieve optimal (𝛼, 𝛽)-trade-offs for

𝑞 ≥ 𝜌𝑘. Set 𝛼̄ := 1− 𝛼 and consider the Reed-Solomon code 𝑓𝑅𝑆 : 𝑉 → F𝜌𝑘
𝑞 where 𝑉
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is the subspace of F𝑘
𝑞 formed by its first 𝛼̄𝑘 coordinates. Note that 𝑓𝑅𝑆 is a (0, 1− 𝛼̄

𝜌
)-

map. Now let 𝜋𝑉 be the projection to 𝑉 map and define the truncated Reed-Solomon

(TRS) code 𝑓𝑇𝑅𝑆 : F𝑘
𝑞 → F𝜌𝑘

𝑞 as follows: 𝑓𝑇𝑅𝑆(𝑥) = 𝑓𝑅𝑆(𝜋𝑉 (𝑥)). Any vector 𝑥 ∈ F𝑘
𝑞

with wt(𝑥) > 𝛼𝑘 projects to a non-zero vector in 𝑉 . Hence

wt(𝑥) > 𝛼𝑘 =⇒ |𝑓𝑇𝑅𝑆(𝑥)| > (1− 𝛼̄

𝜌
)𝜌𝑘,

which means that 𝑓𝑇𝑅𝑆 is a (𝛼, 1 − 𝛼̄
𝜌
)-map. Furthermore, when 𝑞 ≥ 𝜌𝑘, one can

check that the bound in (8.2) is sharp even for finite 𝑘. Thus, the TRS parameters

are optimal over large enough alphabets.
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Chapter 9

Explicit constructions for short codes

In this chapter we study short linear codes. These are some of our attempts at con-

structing good graceful codes prior to the development of LDMCs. After presenting

the preliminary background, we first discuss some natural notions of (𝛼, 𝛽)-optimality

that are relevant for graceful degradation. We then propose a method for construct-

ing linearly optimal short codes using generalized Macwilliams identities. We apply

this method to construct optimal codes. We also construct an optimal code using

algebraic ideas. The codes that we construct here are short and have smooth (𝛼, 𝛽)-

profiles. We observe empirically that they are graceful for stochastic noise as well.

We discuss some algebraic geometric codes at the end.

9.1 Preliminaries

In this section we briefly review the background material needed for this chapter.

Both our designs and analysis rely heavily on generalized Macwilliams identities and

the linear programming bound of coding.

9.1.1 Macwilliams identities for (𝛼, 𝛽)-maps

Let 𝐶 be the graph of an (𝛼, 𝛽)-map inside F𝑘
2 × F𝑛

2 . Define

𝑔(𝑢) = 𝑥wt(𝑢𝛼)𝑦wt(𝑢𝛽)
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where wt denotes the Hamming weight. Let

𝑊𝐶(𝑥, 𝑦) =
∑︁

𝑢𝛼,𝑢𝛽∈𝐶

𝑔(𝑢)

be the bi-weight enumerator of the map. Then

Proposition 19. The following (Macwilliams’) identity holds:

𝑊𝐶⊥(𝑥, 𝑦) =
1

|𝐶|
(1 + 𝑥)𝑘(1 + 𝑦)𝑛𝑊𝐶(

1− 𝑥

1 + 𝑥
,
1− 𝑦

1 + 𝑦
)

Proof. Proceeding in the same manner as in Macwilliams’ proof, we first compute the

Hadamard transform of 𝑔

𝑔(𝑢) =
∑︁

𝑣∈{0,1}𝑛
(−1)𝑢.𝑣𝑥wt(𝑣𝛼)𝑦wt(𝑣𝛽)

=
∑︁

𝑣∈{0,1}𝑛
(−1)

∑︀
𝑖 𝑢𝛼𝑖 .𝑣𝛼𝑖+

∑︀
𝑗 𝑢𝛽𝑗

.𝑣𝛽𝑗𝑥
∑︀

𝑖 𝑣𝛼𝑖𝑦
∑︀

𝑗 𝑣𝛽𝑗

=
∑︁

𝑣∈{0,1}𝑛

∏︁
𝑖≤𝑘

(−1)𝑢𝛼𝑖 .𝑣𝛼𝑖𝑥𝑣𝛼𝑖

∏︁
𝑖>𝑘

(−1)𝑢𝛽𝑖
.𝑣𝛽𝑖𝑦𝑣𝛽𝑖

=
∑︁

𝑣∈{0,1}𝑛

∏︁
𝑖≤𝑘

(−1)𝑢𝛼𝑖 .𝑣𝛼𝑖𝑥𝑣𝛼𝑖

∏︁
𝑖>𝑘

(−1)𝑢𝛽𝑖
.𝑣𝛽𝑖𝑦𝑣𝛽𝑖

=
∑︁

𝑣∈{0,1}𝑛

∏︁
𝑖,𝑗

(−1)𝑢𝛼𝑖 .𝑣𝛼𝑖𝑥𝑣𝛼𝑖 (−1)𝑢𝛽𝑗
.𝑣𝛽𝑗 𝑦𝑣𝛽𝑗

=
∏︁
𝑖≤𝑘

∑︁
𝑠∈{0,1}

(−1)𝑠𝑢𝑖𝑥𝑠
∏︁
𝑖>𝑘

∑︁
𝑠∈{0,1}

(−1)𝑠𝑢𝑖𝑦𝑠

The inner sums are 1 + 𝑥, 1 + 𝑦 when 𝑢𝑖 = 0 and 1− 𝑥, 1− 𝑦 otherwise. Hence

𝑔(𝑢) = (1 + 𝑥)𝑛−wt(𝑢𝛼)(1 + 𝑦)𝑛−wt(𝑢𝛽)(1− 𝑥)wt(𝑢𝛼)(1− 𝑦)wt(𝑢𝛽).

108



Replace this in the Fourier inversion formula

∑︁
𝑢∈𝐶⊥

𝑔(𝑢) =
1

|𝐶|
∑︁
𝑢∈𝐶

𝑔(𝑢)

to attain

𝑊𝐶⊥(𝑥, 𝑦) =
1

|𝐶|
(1 + 𝑥)𝑘(1 + 𝑦)𝑛𝑊𝐶(

1− 𝑥

1 + 𝑥
,
1− 𝑦

1 + 𝑦
)

9.1.2 Bivariate Krawchouk polynomials

We may write the bivariate Macwilliams identity as follows:

𝑛−𝑘,𝑛∑︁
𝑙=0,𝑚=0

𝐴′
𝑙𝑚𝑥

𝑙𝑦𝑚 =
1

2𝑛

𝑘,𝑛∑︁
𝑖=0,𝑗=0

𝐴𝑖𝑗(1 + 𝑥)𝑘−𝑖(1 + 𝑦)𝑛−𝑗(1− 𝑥)𝑖(1− 𝑦)𝑗

We can expand the inner summand on the right hand side:

(1− 𝑥)𝑖(1 + 𝑥)𝑘−𝑖(1− 𝑦)𝑗(1 + 𝑦)𝑛−𝑗 =

𝑘,𝑛∑︁
𝑙,𝑚=0

𝑃𝑙𝑚(𝑖, 𝑗)𝑥
𝑙𝑦𝑚

where 𝑃𝑙𝑚(𝑖, 𝑗) = 𝑃𝑙(𝑘, 𝑖)𝑃𝑚(𝑛, 𝑗). In this notation, 𝑃𝑙(𝑘, 𝑥) is the Krawchouk poly-

nomial defined here:

𝑃𝑙(𝑘, 𝑥) =
𝑖∑︁

𝑠=0

(−1)𝑠
(︂
𝑖

𝑠

)︂(︂
𝑘 − 𝑥

𝑙 − 𝑠

)︂
One can thus write

𝐴′
𝑙𝑚 =

1

2𝑛

𝑘,𝑛∑︁
𝑖,𝑗=0

𝑃𝑙𝑚(𝑖, 𝑗)𝐴𝑖𝑗

This implies that a certain linear combination of 𝐴𝑖𝑗’s need be non-negative for a

linear (𝛼, 𝛽)-map to exist.
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9.1.3 Generalized linear programming bounds

By the above discussion, the spectrum of any linear (𝛼, 𝛽)-map must satisfy the

following set of constraints:

𝑘,𝑛∑︁
𝑖,𝑗=0

𝑃𝑙𝑚(𝑖, 𝑗)𝐴𝑖𝑗 ≥ 0, ∀𝑙 ≤ 𝑛− 𝑘,𝑚 ≤ 𝑛

𝐴00 = 1, 𝐴𝑖𝑗 ≥ 0,
∑︁
𝑗

𝐴𝑖𝑗 =

(︂
𝑘

𝑖

)︂
,

∑︁
𝑗≤𝛽( 𝑖

𝑘
)𝑛

𝐴𝑖𝑗 = 0;

(9.1)

To bound the size of a candidate code one can vary 𝑘 and check the feasibility of the

above set of linear constraints. In the next section, we use this technique to prove

optimality of a certain quasi-cyclic construction. Before that we shall present the

linear programming problem in its dual form. Relaxing (*), we define

ℒ = 1 +

𝑖≤𝑘,𝑗≤𝑛∑︁
𝑖≥1,𝑗>𝛽(𝑖)

𝐴𝑖𝑗 +

𝑖≤𝑘,𝑗≤𝑛∑︁
𝑖≥1,𝑗>𝛽(𝑖)

𝐴𝑖𝑗

∑︁
𝑙≤𝑛−𝑘,𝑚≤𝑛

𝜆𝑙𝑚𝑃𝑙𝑚(𝑖, 𝑗) +
∑︁

𝑙≤𝑛−𝑘,𝑚≤𝑛

𝜆𝑙𝑚𝑃𝑙𝑚(0, 0)

The dual is

min 1 +
∑︁

𝑙≤𝑛−𝑘,𝑚≤𝑛

𝜆𝑙𝑚𝑃𝑙𝑚(0, 0)

𝑠.𝑡. 1 +
∑︁
𝑙𝑚

𝜆𝑙𝑚𝑃𝑙𝑚(𝑖, 𝑗) ≤ 0 ∀𝑖 ≥ 1, 𝑗 > 𝛽(𝑖)

Thus, if one finds a polynomial of the form 𝑄(𝑥, 𝑦) = 1 +
∑︀

𝑙≤𝑛−𝑘,𝑚≤𝑛 𝜆𝑙𝑚𝑃𝑙(𝑥)𝑃𝑚(𝑦)

with 𝜆𝑙,𝑚 ≥ 0 such that 𝑄(𝑖, 𝑗) ≤ 0 for 𝑖 ≥ 1, 𝑗 > 𝛽(𝑖) then the value of the linear

program is bounded above by 𝑄(0, 0) (using the duality theorem). it is easy to deduce

the linear programming bound from here upon noticing that 𝛼(𝑦) with

𝛼(𝑦) =
1

𝑎− 𝑦
{𝑃𝑡(𝑎)𝑃𝑡+1(𝑦)− 𝑃𝑡+1(𝑎)𝑃𝑡(𝑦)}2

for propers choices of 𝑡 and 𝑎 ≤ 𝛽(0) satisfies these conditions. In other words we can

take 𝜆𝑙𝑚 = 0 for 𝑙 > 0 (noting that 𝑃0(𝑥) = 1).

110



9.2 Strong and weak (𝛼, 𝛽)-optimality

We consider two notions of (𝛼, 𝛽)-optimality. One of them requires one to compare

(𝛼, 𝛽)-properties of codes with different dimension. In such settings, it becomes useful

to have an absolute version of 𝛽(𝛼). We define

𝐴*
𝑖 (𝑓) := inf{|𝑓(𝑥)− 𝑓(𝑦)| : |𝑥− 𝑦| ≥ 𝑖} (9.2)

Definition 14 (Weakly optimal maps). A code 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 is said to be weakly

(𝛼, 𝛽)-optimal if there does not exist 𝑓 ′ : F𝑘+1
𝑞 → F𝑛

𝑞 such that

𝐴*
𝑖 (𝑓

′) ≥ 𝐴*
𝑖 (𝑓) ∀𝑖 ≤ 𝑘

In other words, a code 𝑓 is weakly optimal if no code with larger dimension can

achieve the same or better 𝐴*
𝑖 (𝑓)’s.

Definition 15 (Strongly optimal maps). A code 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 is said to be strongly

(𝛼, 𝛽)-optimal if it is not dominated by any other code, i.e., there does not exist an

code 𝑓 ′ : F𝑘
𝑞 → F𝑛

𝑞 such that

𝐴*
𝑖 (𝑓

′) ≥ 𝐴*
𝑖 (𝑓) ∀𝑖 ≤ 𝑘

where at least one inequality is strict.

The examples below show that weak optimality is indeed strictly weaker than

strong optimality. For the reverse direction, we have the following result:

Proposition 20. A strongly optimal map is weakly optimal.

In other words, if there exist a larger code that achieves the same (𝛼, 𝛽)-profile as

𝑓 , then 𝑓 cannot be strongly optimal. Before we present the proof we remark that the

analogous statement for minimum distance is false. Indeed, a code maybe optimal

in the sense of minimum distance, yet, there may exists a larger code that achieves
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the same minimum distance. For instance, Tanner [75] constructed a binary [12,4,6]-

code. The linear programming (LP) bound rules out the existence of a [12,3,7]-code.

Thus any [12,3,6]-subcode of the Tanner code is still optimal in the sense of minimum

distance. In general, one can expect such codes to exists over any field where the

singleton bound is not tight. Over such fields, the existence of an [𝑛, 𝑘 + 1, 𝑑]-code

need not imply the existence of an [𝑛, 𝑘, 𝑑+ 1]-code. However, the above proposition

states that the existence of an [𝑛, 𝑘+1]-code implies the existence an [𝑛, 𝑘]-code with

improved 𝐴*
𝑖 ’s.

Proof (of Proposition 20). Suppose a strongly optimal 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 is weakly dom-

inated by 𝑓 ′ : F𝑘+1
𝑞 → F𝑛

𝑞 . Take the 1st coordinate and select the most common

symbol among the codewords of 𝑓 ′. Take all the codewords of 𝑓 ′ that start with this

common symbol and remove the rest of the codewords. Now shorten the code by

removing the first coordinate. This gives an (𝑛 − 1, 𝑘)-subcode of 𝑓 ′ with the same

𝐴*
𝑖 ’s as 𝑓 . Now define an extension of 𝑓 ′ as follows: 𝑓 ′′(𝑥) := (𝑓 ′(𝑥), 𝑥1) where 𝑥1

is the first input coordinate. Clearly, all messages 𝑥, 𝑥′ with 𝑑(𝑥, 𝑥′) = 𝑘 are sent

to codewords that have distance |𝑓 ′′(𝑥) − 𝑓 ′′(𝑥′)| = 1 + |𝑓(𝑥) − 𝑓(𝑥′)|. This violates

strong optimality of 𝑓 .

Remark 14. The proof essentially relies on the fact that 𝐴*
𝑘(𝑓) can be improved if

𝑓 is not weakly optimal. Conversely, it can be shown that any map 𝑓 that achieves

𝐴*
𝑘(𝑓) = 𝑛 is weakly optimal.

Remark 15. The same result can be proved within the class of linear maps, i.e., for

a linear [𝑛, 𝑘]-map 𝑓 there exists a linear [𝑛−1, 𝑘−1]-map 𝑓 ′ such that 𝐴*
𝑖 (𝑓) = 𝐴*(𝑓 ′)

for 𝑖 ≤ 𝑘 − 1.

9.3 A weakly optimal quasi-cyclic code

Here we present a code that is optimal in the weak sense. Let 𝐶𝛽 ⊂ F7
2 be the [7,4]-

cyclic code generated by the primitive polynomial 𝑥3 + 𝑥+ 1. Similarly, 𝐶𝛽3 denotes
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shortened [4,14]-Hadamard
quasi-cyclic code (12)
linear code (14)

Figure 9-1: The 𝐴*
𝑖 profiles for three codes: 1) the strongly optimal shortened [4,14,7]

Hadamard code 2) the weakly optimal quasi-cyclic code of (9.4) 3) the strongly opti-
mal linear code of (9.6).

the code generated by the primitive polynomial of 𝛽3 (which is 𝑥3+𝑥2+1). Consider

the code

𝐶 = {(𝑥, 𝑦)|𝑥 ∈ 𝐶𝛽, 𝑦 ∈ 𝐶𝛽3} (9.3)

The code has a minimum distance of 6. One can check that after applying a linear

transform 𝑥 → 𝑥 + 𝑥2, the resulting spectrum contains the following (𝛼, 𝛽) pairs:

𝐴*
1 = 𝐴*

2 = 6, 𝐴*
3 = 8, 𝐴*

4 = 10 (see (9.2) for the definition of 𝐴*
𝑖 ), with the following

generating matrix:

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 0 1 1 0 0 0 1 1 0 1

0 1 1 1 0 1 0 0 1 0 1 1 1 0

0 1 0 1 1 0 0 0 1 1 0 1 0 0

1 0 1 1 0 0 0 1 1 0 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ (9.4)

Under these (𝛼, 𝛽)-constraints, the LP in (9.1) becomes infeasible for 𝑘 = 5. This

implies that no [14, 5]-code exists with the same (or better) (𝛼, 𝛽)-properties. We

note that relaxing any of the (𝛼, 𝛽)-constraints in the linear program will render

the LP feasible with 𝑘 = 5. This code is optimal in the weak sense but not in the

strong sense as the construction below shows. We extend this code by appending the

column 𝑐 := [0, 1, 0, 1]′ to its generating matrix so it has comparable length with the
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Hadamard code. It becomes a [15, 4]-code with the following generating matrix:

𝐺𝑒 =
[︁
𝐺 | 𝑐

]︁
(9.5)

After the extension, the code contains the following (𝛼, 𝛽)-pairs:𝐴*
1 = 6, 𝐴*

2 =

7, 𝐴*
3 = 9, 𝐴*

4 = 11.

9.4 A strongly optimal [14,4]-linear code

We ask if there exists a [14, 4]-code that dominates the quasi-cyclic code of (9.4).

The LP in (9.1) is infeasible if we set 𝐴*
2 = 7 while keeping the rest of 𝐴*

𝑖 ’s from

above unchanged. However, one can ask if there exists a code with the following

profile 𝐴*
1 = 6, 𝐴*

2 = 6, 𝐴*
3 = 9, 𝐴*

4 = 12. The space of [14, 4]-linear codes is too

big to search over. The LP in (9.1) can help reduce the size of the search space by

severely restricting 𝐴1𝑗’s. With the above 𝐴*
𝑖 ’s, it turns out that the LP is infeasible

when 𝐴16 < 3. This means that such a linear code can exists only if at least three of

the rows in its generating matrix have weight 6. We can now efficiently search over

the space of linear codes with 𝐴16 = 3 after taking out the symmetries. Here is the

generator matrix of a code that was found using computer search over the reduced

search space:

𝐺 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 1 1 1 1 1 0 0 0 0 0 0 0

1 1 1 1 0 0 0 1 1 1 0 0 0 0

1 1 1 0 1 0 0 1 0 0 1 1 0 0

0 1 1 1 1 0 0 1 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎦ (9.6)

The LP and some mild extra work suffice to prove that this code is optimal in strong

sense. We also extend this code by adding a column 𝑐 = [1, 0, 0, 0]′ to its generating

matrix to make it have the same length as the Hadamard code:

𝐺𝑒 =
[︁
𝐺 | 𝑐

]︁
(9.7)
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The corresponding BER profile when used in communication over BSC is shown in

Fig. 9-2. It can be seen that for a wide range of channel parameters 𝑝 the code of

(9.7) outperforms both the quasi-cyclic code of (9.5) and the Hadamard code. We

note that the [15, 4, 8] Hadamard code is also optimal in the strong sense, as is the

shortened [14, 4, 7] Hadamard code. While the BER differences may seem marginal,

we expect to see more significant improvements for larger codes.
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Figure 9-2: The BER profiles under bitMAP decoding for: 1) the [15,4] Hadamard
code 2) the [15,4] extended quasi-cyclic code of (9.5) 3) the extended linear code of
(9.7).

9.5 Impossiblity results for quasi-cyclic codes

Let 𝑛 = 𝜌𝑘 with 𝜌 ∈ Z. We consider linear maps 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 that are equivariant

w.r.t cyclic shifts 𝑇1 : F𝑘
𝑞 → F𝑘

𝑞 and 𝑇2 : F𝑛
𝑞 → F𝑛

𝑞 , i.e., 𝑓 ∘ 𝑇1 = 𝑇2 ∘ 𝑓 . Any such

map, under 𝜙𝑓 : 𝑐 ↦→ (𝑐, 𝑓(𝑐)), gives rise to a 𝑘-dimensional subspace of F𝑛+𝑘
𝑞 that is

stable under (𝑇1, 𝑇2) and vice versa. Set 𝐴𝑗 := F𝑞[𝑥]/(𝑥
𝑗 − 1). We are thus led to

study submodules of 𝑅 := 𝐴𝑘 ⊕𝐴𝑛 generated by 1 ↦→ (1, 𝑔(𝑥)) as an 𝐴𝑘-module. We

remark that 1 ↦→ (1, 𝑔) generates an 𝐴𝑘-module inside 𝑅 if and only if (𝑥𝑘 − 1)𝑔 is

zero in 𝐴𝑛. Thus we get a correspondence between (𝑇1, 𝑇2)-stable subspaces of F𝑛+𝑘
𝑞

and polynomials 𝑔 ∈ 𝐹𝑞[𝑥] such that 𝑔(𝑥𝑘 − 1) = ℎ(𝑥𝑛 − 1). We next list some (𝛼, 𝛽)

properties of 𝜙𝑓 .

Proposition 21. If 𝑓 has the same image as the repetition map, then 𝛽 ≤ 𝛼.
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Proof. 𝑓 can be written as a composition 𝑟 ∘ 𝜋 where 𝑟 is the repetition map and

𝜋 : F𝑘
𝑞 → F𝑘

𝑞 is an automorphism. This means that every 𝑐 ∈ F𝑘
𝑞 is sent to 𝑟(𝑐′) for

some 𝑐′ = 𝜋(𝑐). Thus 𝛽 > 𝛼 under 𝑓 if and only if 𝛽 > 𝛼 under 𝜋. However, no 𝜋 can

achieve 𝛽 > 𝛼 since the set {𝑥 : |𝑥| ≥ 𝛽} has smaller cardinality than {𝑥 : |𝑥| ≥ 𝛼}

when 𝛽 > 𝛼.

By Eisenstein’s criterion, 𝑥𝑝−1
𝑥−1

is irreducible over Z for any prime 𝑝. The next

conjecture states that it will be irreducible for infinitely many primes over any fixed

finite field.

Conjecture 2. There are infinitely many primes 𝑝 such that 𝑥𝑝−1
𝑥−1

is irreducible over

F𝑞 (here 𝑞 is arbitrary, not necessarily a power of 𝑝).

The conjecture is not true for arbitrary 𝑞, and when 𝑞 is an odd power, it boils

down to a classic conjecture in number theory, known as the Artin’s conjecture.

It is a basic fact that a polynomial 𝑓(𝑥) ∈ 𝐹 [𝑥] is irreducible over a splitting field

𝐸/𝐹 iff the Galois group 𝐺(𝐸/𝐹 ) acts transitively on the roots of 𝑓 (reason: the

roots that are conjugate under the Galois action have the same minimal polynomial.

We thus need all the roots to be in the same orbit under 𝜁 → 𝜁𝑞). The Artin map

gives an isomorphism of the Galois group of the cyclotomic field 𝐺(Q(𝜁𝑝)/Q) with

(Z/𝑝Z)* sending the Frobenius elements corresponding to (unramified) primes 𝑞 ̸= 𝑝

to 𝑞 ∈ (Z/𝑝Z)*. Now to study the irreducibility of 𝜑𝑝 over F𝑞 we need to work

with Galois group of the residue field of the cyclotomic extension (mod 𝑞). This is

a subgroup (known as the decomposition group) of 𝐺(Q(𝜁𝑝)/Q) and is generated by

the Frobenius element corresponding to 𝑞 (note that raising to power of 𝑞 leaves F𝑞

fixed). Thus, to get a transitive action we need all the 𝑝-th roots of unity to fall in

the same orbit of under 𝜁 → 𝜁𝑞. Hence, for the conjecture to be true, we want 𝑞 to be

a primitive root modulo infinitely many primes 𝑝, which is the statement of Artin’s

conjecture when 𝑞 is an odd power. This is known to be true under GRH (shown

in [29]). The unconditional results are much weaker, e.g. [57] shows that the set of

integers 𝐸(𝑥) = {𝑞 < 𝑥|𝑞 is not a perfect square} for which Artin’s conjecture fails

has cardinality 𝑂(log6 𝑥) and contains no more than 6 primes. It is not known which
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6 these are.

Remark. There are infinitely many 𝑞’s for which 𝑥𝑝−1
𝑥−1

is irreducible for a fixed

prime 𝑝 (reason: all we need is that 𝑞 has maximal order modulo 𝑝, i..e, 𝑞𝑟 ̸≡ 1 mod

𝑝 for any 𝑟 < 𝑝 − 1. It follows from Dirichlet’s theorem on arithmetic progressions

that infinitely many such 𝑞’s exist.). Here we need the converse.

Part b of the following is a consequence of the conjecture.

Proposition 22. (a) Suppose that 𝑓 is injective. Then 𝑓 has the same image as the

repetition map.

(b) There are infinitely many primes 𝑘 such that 𝛼 ≥ 𝛽 for all 𝑓 : F𝑘
𝑞 → F𝑛

𝑞 .

Proof. Write 𝑔 = 𝑥𝑛−1
𝑥𝑘−1

ℎ. Injectivity of 𝑓 requires that 𝑥𝑘 − 1|𝑖 whenever 𝑥𝑛 − 1|𝑖𝑔.

Hence gcd(𝑥𝑘 − 1, ℎ) = 1 and thus we can replace 𝑔 with 𝑔/ℎ without changing the

image of the code. But 𝑔/ℎ = 𝑥𝑛−1
𝑥𝑘−1

= (𝑥𝑘)𝜌−1 + · · · + 1, which corresponds to the

repetition map. This proves part (a).

To prove part (b), suppose that gcd(ℎ, 𝑥𝑘 − 1) = 1. Then again we can replace 𝑔

with 𝑔/ℎ and observe, as in part (a), that the code has the same image as the repetition

map and thus 𝛼 ≥ 𝛽 by Proposition 1. Otherwise, by the above conjecture, there are

infinitely many primes 𝑘 such that either gcd(ℎ, 𝑥𝑘 − 1) = 𝑥− 1 or gcd(ℎ, 𝑥𝑘 − 1) =

𝑥𝑘−1 + · · ·+ 1. In the former case, the codeword 𝑥𝑘−1 + · · ·+ 1 has Hamming weight

𝑘−1 and is sent to zero, which gives 𝛽 < 𝛼 for all 𝛼 < 𝑘−1
𝑘
. In the latter case, (𝑥−1)

and hence all codewords of the form 𝑖 = (𝑥 − 1)𝑐(𝑥) are sent to zero. In particular,

we can take 𝑐(𝑥) = 𝑥𝑘−1 + 𝑥𝑘−3 + · · ·+ 1. Then 𝑐(𝑥)(𝑥− 1) = 𝑥𝑘−1 + 𝑥𝑘−2 + · · ·+ 𝑥

has hamming weight 𝑘 − 2 and is sent to zero. In either case, we have 𝛽 < 𝛼 for all

𝛼 < 1 asymptotically as 𝑘 → ∞.

9.6 Codes from Cayley-Bacharach

We start with a simple statement:
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Theorem 23. Let 𝐶 be a smooth plane curve of degree 𝑑. Let 𝐷 =
∑︀𝑒

𝑖=1 𝑝𝑖 be

a divisor of degree 𝑒. Suppose that 𝐷′ =
∑︀𝑒

𝑖=1 𝑞𝑖 is rationally equivalent to 𝐷. If

𝑒 ≤ 𝑑− 2, then we have 𝑝𝑖 = 𝑞𝑖.

Proof. Set 𝐷 :=
∑︀

𝑝𝑖 and 𝐸 :=
∑︀

𝑞𝑖. Suppose 𝐷 and 𝐸 are distinct divisors with

supp𝐷 ∩ supp𝐸 = ∅. If 𝐷 ∼ 𝐸 then both 𝐷 and 𝐸 can realized as the zero locus of

two different sections of the line bundle 𝑂(𝐸). In other words, 𝐻0(𝑂(𝐸)) ≥ 2. This

implies, by Riemann-Roch, that

𝐻0(𝑂(𝐾𝐶 − 𝐸)) > 𝑔 − 𝑒

Thus the statement follows if we show that for all divisors 𝐸 of degree at most 𝑑− 2

we have

𝐻0(𝑂(𝐾𝐶 − 𝐸)) ≤ 𝑔 − 𝑒

The adjunction formula gives that

𝑂(𝐾𝐶) = 𝑂P2(𝑑− 3)|𝐶 = 𝑂𝐶(𝑑− 3)

We thus have an injection

𝐻0(𝑂P2(𝑑− 3)) →˓ 𝐻0(𝑂(𝐾𝐶))

Note further that

𝐻0(𝑂P2(𝑑− 3)) =

(︂
𝑑− 1

2

)︂
= 𝑔.

We also know that 𝑂(𝐾𝐶) has 𝑔 global sections. By dimension count, we see that the

restriction map induces an isomorphism on global sections. Hence differential forms

on 𝐶 that vanish along 𝐸 come from restricting plane curves of degree 𝑑 − 3 that

pass through 𝐸. Thus we need to count how many conditions 𝐸 imposes on curves

of degree 𝑑− 3.

We claim that 𝐸 imposes exactly 𝑒 conditions provided that 𝑒 ≤ 𝑑− 2. Suppose

𝑑−2 points are given in the plane. Fix a subset Γ ⊂ 𝐸 with |Γ| = 𝑑−3. It suffices to
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find a curve of degree 𝑑− 2 that passes through Γ but not 𝐸 − Γ. By induction, we

can pass a curve of degree 𝑑− 3 through all but one point of Γ. Then we can easily

pass a line through the remaining point that does not intersect 𝐸 − Γ. This proves

the claim. Hence 𝐻0(𝑂(𝐾𝐶 − 𝐸)) = 𝐻0(𝑂P2(𝑑− 3))− 𝑒 = 𝑔 − 𝑒 as desired.

The next example shows that the bound 𝑒 ≤ 𝑑− 2 is sharp.

Example 7. Let 𝑝𝑖’s be three collinear points on a smooth quartic 𝐶. Let 𝐿 be the

line through 𝑝𝑖’s and 𝑟 ∈ 𝐶 be the remaining point where the 𝐿 meets 𝐶. Take a line

distinct from 𝐿 that passes through 𝑟. Let 𝑞𝑖’s be the three other points where the

line meets 𝐶. Then
∑︀

𝑝𝑖 + 𝑟 ∼
∑︀

𝑞𝑖 + 𝑟.

We get a version of Cayley-Bacharach’s theorem as an immediate corollary of our

theorem:

Corollary 24. Let Γ = 𝐶 ∩ 𝐶 ′ be the intersection of two smooth plane curves of

degrees 𝑑, 𝑑′, respectively. Then if some smooth plane curve 𝐶 ′′ with deg𝐶 ′′ = 𝑑′

passes through all but 𝑑− 2 points of Γ, it must contain Γ.

Proof. We have that [𝐶 ′′ ∩ 𝐶] ∼ Γ. Now apply Theorem 1.

The above result maybe useful in designing short (𝛼, 𝛽)-maps.

Example 8. Let Γ be the intersection of two smooth quartics. Embed P2 into P14 via

the Veronese embedding. Take the image of Γ to be the set of 𝛽-points of a code.

Take a maximal subset of Γ and complete it to a basis for P14. Let these be the

𝛼-points. Then any hyperplane containing at least 14 𝛽-points must contain Γ. The

resulting code has 𝜌 = 16
15
,𝛼 = 1

15
,𝛽 = 1

8
. We note that the parameters lie on the

asymptotically optimal line 𝛼 = 1− 𝜌+ 𝜌𝛽.

While the above construction does not give any better parameters than the non-

injective RS coding (RS coding on a subset), it does achieve the same performance

over a much smaller field. It is possible to make the above construction work over

finite fields so long as there are enough points on the plane. We can check this happens

when 𝑞 = 4 in the above example. An RS type code would require 𝑞 = 15. In general,

we can see that 𝑞 grows with
√
𝑛 instead of 𝑛 in this construction.
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Naturally, one can ask if there are similar constructions that work for larger codes.

Unfortunately, this cannot be done with Cayley-Bacharach type theorems. The above

construction, in the worst case, can have 𝜌 → 2 but 𝛽 → 0 as 𝑑 grows. The problem

lies in the fact that we only need some smooth curves and some sets of good divisors

on them to construct good codes, whereas Cayley-Bacharach type theorems concern

all curves and all divisors! We explain the difference next.

Given a smooth curve 𝐶 of degree 𝑑, we can associate a variety to its pairs of

effective divisors of degree 𝑊𝑒 := 𝐶𝑒 × 𝐶𝑒. We are interested in pairs 𝑊̃𝑒 ⊂ 𝑊𝑒 that

correspond to equivalent divisors. Clearly, 𝑊̃𝑒 contains the diagonal Δ𝑒 := {(𝑥, 𝑦) :

𝑥, 𝑦 ∈ 𝐶𝑒, 𝑥 = 𝑦}. When 𝑒 ≤ 𝑑− 2, our theorem shows that 𝑊̃𝑒 = Δ𝑒, and example 1

shows that when 𝑒 > 𝑑−2 we have Δ ( 𝑊̃𝑒. Note however, that the three divisors for

which we found a counter-example are special in that they are collinear. We cannot

find a distinct equivalent pair for most other effective divisors of degree 3. In general,

we claim that for a generic divisor of degree 𝑒 ≤ 𝑔, there are no non-trivial equivalent

divisors.

Theorem 25. Let 𝐶 be a smooth plane curve of degree 𝑑. Let 𝐷 =
∑︀𝑒

𝑖=1 𝑝𝑖 be a

generic divisor of degree 𝑒. Suppose that 𝐷′ =
∑︀𝑒

𝑖=1 𝑞𝑖 is rationally equivalent to 𝐷.

If 𝑒 ≤ 𝑔, then we have 𝑝𝑖 = 𝑞𝑖.

Let us first prove this in the special case where 𝐶 is a quartic curve.

Theorem 26. Let 𝐶 be a smooth quartic plane curve. Let 𝑝1, 𝑝2, 𝑝3 be three points

in general position and let 𝐷 = 𝑝1 + 𝑝2 + 𝑝3 be a divisor. Suppose that 𝐷′ =
∑︀3

𝑖=1 𝑞𝑖

is rationally equivalent to 𝐷. Then we have 𝑝𝑖 = 𝑞𝑖.

Proof. Again we need to check 𝑙(𝐷) ≥ 2 or 𝑙(𝐾 − 𝐷) ≥ 1 by Riemann-Roch. Note

that 𝐾 ∈ [𝐻] where [𝐻] denotes the hyper-plane class (reason: the curve is embedded

in the plane by the canonical class, which has degree 4 and dimension 3). We make

a choice of 𝐾 that depends on 𝐷: 𝐾 = 𝑝1 + 𝑝2 + 𝑟1 + 𝑟2. Then 𝐾 −𝐷 = 𝑟1 + 𝑟2 − 𝑝3.

If 𝑙(𝐾 −𝐷) > 0 then there exists a non-constant (rational) function 𝑓 on 𝐶 with two

poles along 𝑟1, 𝑟2. This function can be used to represent 𝐶 as a degree 2 cover of P1
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(use 𝑥 ↦→ (1 : 𝑓(𝑥))). But this implies that the curve is hyper-elliptic, contradicting

the fact that the canonical class embeds the curve in P𝑔−1.

We omit the proof for now but instead prove a weaker version that still suffices

for our purposes.

Theorem 27. There exists a smooth plane curve 𝐶 of degree 𝑑 and an effective

divisor 𝐷 of degree
(︀
𝑑+2
2

)︀
− 2 on 𝐶 such that for all divisors 𝐷′ ≤ 𝐷 with deg𝐷′ ≤ 𝑔

and 𝐸 ≥ 0, we have 𝐸 ∼ 𝐷 if and only if 𝐸 = 𝐷.

Proof. We modify the proof of theorem 1 as follows. We need to show that we can

find an effective divisor 𝐷 on some smooth curve 𝐶 so that all sub-divisors 𝐷′ ≤ 𝐷 of

degree 𝑔 impose 𝑔 conditions on 𝐻0(𝑂P2(𝑑− 3)). The latter is a 𝑔-dimensional vector

space. We first pick the support of 𝐷 one point at a time. Once we pick the 𝑛-th

point, we only need to look for the (𝑛+ 1)-th point to be outside the span of finitely

many 𝑔 − 1 dimensional subspaces. Now we interpolate a smooth curve of degree 𝑑

through all the chosen points. Note that there is a one dimensional family of plane

curves passing through any collection of
(︀
𝑑+2
2

)︀
− 2 points. We pick a smooth curve

within this family (this is possible by generic smoothness).

Putting aside the issues of working over finite fields, we can now start to build

long codes with good properties.

Example 9. We pick a family of curves and divisors with growing degree as in Theorem

2. We take the support of 𝐷 to be the set of 𝛽-points and embed the curve into P𝑔.

We pick any subset of size 𝑔 on the curve and add one point to it to form a basis.

The resulting code has length ∼ 𝑑2 and dimension ∼ 𝑑2/2. It has relative minimum

distance 𝛽 → 1
2
. Thus it is an asymptotically optimal code.

Two questions that arise are whether we need any field extensions to place the

points, and whether embedding the curve in higher dimensions would help with fur-

ther reducing the size of the base field.

Problem 2. Implement the code over F𝑞, i.e., prove that there are enough points in the

projective plane to find the divisor 𝐷. Generalize the construction to curves/varieties
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embedded in higher dimensions. Investigate when it is possible to thread curves of

a given degree and genus through a given set of points. Use this to construct good

long codes over relatively small fields.

9.7 Generalized Kasami codes

In [31], Kasami constructed a family of cyclic type codes that achieve the GV bound.

The construction can be presented as follows. Given a projective curve𝑋, fix a divisor

𝐺. Recall that the Riemann-Roch space of 𝐺, denoted by 𝐿(𝐺), is the 𝑘-vector space

𝐿(𝐺) := {𝑓 ∈ 𝑘(𝑋)× : div(𝑓) +𝐺 ≥ 0} ∪ {0}

where 𝑘(𝑋) denotes the fraction field of 𝑋. Construct on 𝑋 a prime divisor 𝐷

of degree 𝑟. Then define the Kasami code K𝑋(𝐺,𝐷) as the image of the natural

embedding

𝐿(𝐺−𝐷) →˓ 𝐿(𝐺)

Kasami considered the case 𝑋 = P1 and 𝐺 = (𝑛 − 1)𝑃∞. It is easily seen that

K𝑋(𝐺,𝐷) is an [𝑛, 𝑛− 𝑟]𝑞 code in this case. He then showed that there are sequences

of the form K𝑋(𝐺,𝐷) that achieve the GV bound as deg(𝐺) → ∞. To see this, we

first bound the number of low weight vectors in 𝐿(𝐺). Given a minimum distance 𝑤,

there are
𝑤−1∑︁
𝑖=0

(︂
𝑛

𝑖

)︂
(𝑞 − 1)𝑖 ≤ 𝑞𝑛ℎ𝑞(

𝑤−1
𝑛

)

homogeneous polynomials of weight less than 𝑤 in 𝐿(𝐺). Note that each homogeneous

polynomial of degree 𝑛 defines a finite set with no more than 𝑛/𝑟 closed points of

degree 𝑟. The polynomial is contained in K𝑋(𝐺,𝐷) if and only if the finite set it

defines contains 𝐷 as one of its points. On the other hand, for large enough 𝑟, there

are more than 𝑞𝑟

2𝑟
closed points of degree 𝑟. Thus a large code of weight 𝑤 exists if

𝑛

𝑟
𝑞𝑛ℎ𝑞(

𝑤−1
𝑛

) ≤ 𝑞𝑟

2𝑟
(9.8)
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holds. Passing to the limits and comparing the exponents, we see in particular that

the rates 1− ℎ𝑞(𝑤/𝑛) are achievable asymptotically by Kasami codes.

One can obtain a version of K𝑋(𝐺,𝐷) for more general varieties. As we shall see

below, the choice of the variety is not important to achieve the GV bound. There

is a sequence of Kasami codes over any variety 𝑋 that achieves the GV bound.

Furthermore, the inequality in (1) is fundamental, in the sense that it ties together

the parameters of the code with some fundamental invariant of 𝑋, namely, its Zeta

function, in a manner that depends heavily on the choice of the divisors on 𝑋. To

emphasize the latter point, we next work out the general form of (1) for smooth

projective curves.

For a projective curve 𝑋 ⊂ P𝑚, we denote its homogeneous coordinate ring by

𝑆(𝑋) := 𝑘[𝑥0, · · · , 𝑥𝑚]/𝐼(𝑋)

This ring can be endowed with a grading 𝑆(𝑋) := ⊕𝑑𝑆(𝑋)(𝑑). The function field of

𝑋 takes the form 𝑘(𝑋) = {ℎ
𝑔
;ℎ, 𝑔 ∈ 𝑆(𝑑)(𝑋), 𝑔 ̸= 0}.

We note that 𝐿(𝐺) is a 𝑘-vector space. It is spanned by ratios 𝑓
𝑔
of certain

homogenous polynomials of the same degree. We pick a basis {ℎ𝑖

𝑔𝑖
} for 𝐿(𝐺) and

write 𝑓 =
∑︀

𝑖 𝑐𝑖
ℎ𝑖

𝑔𝑖
. We then define the weight 𝑤(𝑓) to be the number of non-zero

coefficients 𝑐𝑖 that appear in its representation w.r.t the chosen basis.

As an example, let 𝐶 be an elliptic curve embedded in the plane and take𝐺 = 𝑝+𝑞.

Let 𝑙 be the unique line passing through 𝑝 and 𝑞 and 𝑠 be the other intersection point

of 𝑙 with 𝐶. Then 𝐿(𝐺) is two dimensional by Riemann-Roch. It is isomorphic to

the space of lines passing through 𝑠. It is indeed generated as a 𝑘-vector space by 𝑙
𝑙

and 𝑙′

𝑙
where 𝑙′ is any other line that contains 𝑠. While the weight of a line in 𝐿(𝐺)

depends on the choice of 𝑙′, we are interested in the number of low-weight lines, which

is independent of the basis.

Given a rational function 𝑓 = ℎ/𝑔, we let 𝑍𝑓 = 𝑋∩𝑉 (ℎ) be the (scheme theoretic)

intersection of 𝑋 ⊂ P𝑚 with the hyper-surface defined by ℎ. With the preceding
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notation, we may now replace the inequality in (1) with

1

𝑟

∑︁
𝑓∈𝐿(𝐺):𝑤(𝑓)<𝑡

#𝑍𝑓 (F𝑞𝑟) <
1

𝑟
#𝑋(F𝑞𝑟) (9.9)

To proceed in a manner similar to Kasami’s, we first need an upper bound on

#𝑍𝑓 (F𝑞) that is invariant as 𝑍𝑓 varies over hyper-surfaces of degree 𝑛 in P𝑚. When

𝑋 is a curve of degree 𝑑, Bezout’s theorem gives a natural upper bound of

#𝑍𝑓 (F𝑞𝑟) ≤ 𝑛𝑑

In this case the inequality in hand reduces to

𝑛𝑑𝑞𝑙(𝐺)ℎ𝑞(𝑡/𝑙(𝐺)) < #𝑋(F𝑞𝑟) (9.10)

If 𝑋 is fixed, we need

𝑛𝑑𝑞𝑙(𝐺)ℎ𝑞(𝑡/𝑙(𝐺)) ≤ 𝑞𝑟 (9.11)

to hold asymptotically. This again gives the GV bound. Thus we do not gain any-

thing by working over fixed curves.

For schemes in higher dimension, we would like to associate codes to their general

irreducible subschemes. Let 𝑋 be a smooth projective irreducible scheme over F𝑞 and

I𝐷 be the ideal sheaf of a subscheme 𝐷 ⊂ 𝑋.

We restrict for now to closed points 𝐷 of 𝑋 with degree 𝑟. Recall that there is an

exact sequence

0 → I𝐷 → 𝒪𝑋 → 𝒪𝐷 → 0

Twisting by a divisor 𝐺, we get

0 → I𝐷(𝐺) → 𝒪𝑋(𝐺) → 𝒪𝐷(𝐺) → 0
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Taking global sections gives an exact sequence

0 → 𝐻0(I𝐷(𝐺)) → 𝐻0(𝒪𝑋(𝐺)) → 𝑘𝑟 → 𝐻1(I𝐷(𝐺)) → 0

where we used the fact that 𝐻1(𝑂𝑋(𝐺)) = 0. The first embedding

𝐻0(I𝐷(𝐺)) →˓ 𝐻0(𝒪𝑋(𝐺))

is the Kasami code K𝑋(𝐺,𝐷), which has length 𝑙(𝐺) and dimension ℎ0(I𝐷(𝐺)) =

𝑙(𝐺)− 𝑟 + ℎ1(I𝐷(𝐺)). Its parameters depend on the choice of a divisor and an ideal

sheaf. Consider the case 𝑋 = P2. Then 𝑋 has 𝑞2𝑟 + 𝑞𝑟 + 1 points over F𝑞𝑟 . If 𝑟 is a

prime number, we see that 𝑋 has 𝑞2𝑟+𝑞𝑟−𝑞2−𝑞
𝑟

points of degree 𝑟 over F𝑞. In general,

using inclusion-exclusion, we can see, for large 𝑟, that 𝑋 has roughly 𝑞2𝑟

𝑟
degree 𝑟

points over F𝑞.

Take 𝐺 = (𝑛 − 1)𝐻∞ so that 𝑙(𝐺) =
(︀
𝑛+1
2

)︀
∼ 𝑛2

2
. The number of homogeneous

polynomials of degree 𝑛−1 in 𝐿(𝐺) with weight < 𝑡 is roughly 𝑞𝑙(𝐺)ℎ𝑞(𝑡/𝑙(𝐺)). We need

to count how many closed points of degree 𝑟 are contained on each curve defined by

such polynomials. We can estimate this number by 𝑛𝑞𝑟

𝑟
. Indeed over F𝑞𝑟 a curve of

degree 𝑛 has most of its points in an affine open. To get an estimate, it thus suffices

to count the number of zeroes of a polynomial in two variables of degree 𝑛. There are

𝑞𝑟 ways to fix one variable and obtain a univariate a polynomial of degree 𝑛, which

has at most 𝑛 zeroes. These points contract to around 𝑛𝑞𝑟

𝑟
points of degree 𝑟 over F𝑞.

We thus need for large 𝑟 and 𝑛 that

𝑞𝑟

𝑟
𝑞

𝑛2

2
ℎ𝑞(2𝑡/𝑛2) ≤ 𝑞2𝑟

𝑟
(9.12)

As 𝑟, 𝑛,→ ∞, the above inequality reduces to:

𝑞𝑟+𝑛2/2ℎ(2𝑡/𝑛2) ≤ 𝑞2𝑟
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or

1− 2𝑟/𝑛2 ≥ 1− ℎ(2𝑡/𝑛2)

which is the GV bound.

When 𝑋 is a general surface, 𝑍𝑓 is a curve of degree 𝑑𝑛. Its genus is bounded

above by 𝑑2𝑛2

2
by the Castelnouvo bound. The Hasse-Weil-Serre estimate gives

#𝑍𝑓 (F𝑞) ≤ 𝑞𝑟 + 1 +
𝑛2𝑑2

2
𝑞𝑟/2

The general form of (1) for surfaces is thus

(𝑞𝑟 + 1 +
𝑛2𝑑2

2
𝑞𝑟/2)𝑞𝑙(𝐺)ℎ𝑞(𝑡/𝑙(𝐺)) ≤ #𝑋(F𝑞𝑟)

𝑟

Again #𝑋(F𝑞𝑟) = 𝑂(𝑞2𝑟), hence, fixing the invariants of 𝑋 will not give any improve-

ments. So in general it appears that we need to look for varieties whose invariants

vary with the parameters of the code. We end this chapter by the following question.

Do such varieties exist and do they posses any coding theoretic merits?
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Appendix A

Proof of channel comparison lemmas

A.1 Proof of Lemma 10

Proof. The first part of lemma is well-known. The BEC part is called the erasure

decomposition lemma [65, Lemma 4.78] and the BSC part is a consequence of data

processing (or, more precisely, hard decision decoding) [65, Problem 4.55]. The BSC

half of the second part has been shown in [68, Appendix]. The rest of the statements

appear to be new.

Let 𝑌𝛿 denote output of a BSC𝛿 applied to input 𝑋. Then BMS 𝑊 can be

represented as 𝑋 ↦→ (𝑌Δ,Δ) where Δ ∈ [0, 1/2] is a random variable independent of

𝑋. To prove the BEC part of the second claim, we need to show that for any input

distribution 𝑃𝑋 = Ber(𝑝) we have

𝐼(𝑋;𝑌Δ,Δ) ≤ 𝐼(𝑋;𝑌𝐸) ,

where 𝑌𝐸 is the output of a BEC1−𝐶 . Note that 𝐼(𝑋;𝑌𝐸) = 𝐶𝐻(𝑋). Thus, we need

to show that for any distribution of Δ and for any 𝑝 the following inequality holds:

E[ℎ(𝑝 *Δ)]− E[ℎ(Δ)] ≤ (1− E[ℎ(Δ)])ℎ(𝑝) , (A.1)

where ℎ denotes the base-2 binary entropy function and 𝑎 * 𝑏 = 𝑎(1 − 𝑏) + (1 − 𝑎)𝑏
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is the binary convolution function. A result known as Mrs. Gerber’s Lemma (MGL),

cf. [80], which states that the parametric function

ℎ(𝑝 * 𝛿) vs. ℎ(𝛿), 𝛿 ∈ [0, 1/2] (A.2)

is convex. Consequently, the function must be below the chord connecting its end-

points, i.e.

ℎ(𝑝 * 𝛿) ≤ (1− ℎ(𝛿))ℎ(𝑝) + ℎ(𝛿) .

Clearly, the latter inequality implies (A.1) after taking expectation over 𝛿. Note also

that the BSC part of the second claim also follows from (A.2). Indeed, from convexity

we have

E[ℎ(𝑝 *Δ)] ≥ ℎ(𝑝 * 𝛿𝑒𝑓𝑓 ) , (A.3)

where 𝛿𝑒𝑓𝑓 is chosen so that ℎ(𝛿𝑒𝑓𝑓 ) = E[ℎ(Δ)]. In turn, (A.3) is equivalent to the

first relation in (4.10).

To prove the third part of the Lemma, i.e. (4.11), take 𝑃𝑋 = Ber(𝑝) and 𝑄𝑋 =

Ber(𝑞) and let 𝑃𝑌 , 𝑄𝑌 be the output distributions induced by 𝑊 . Similarly, let

𝑃𝑌𝐵
, 𝑄𝑌𝐵

and 𝑃𝑌𝐸
, 𝑄𝑌𝐸

be the distributions induced by the equal-𝜒2-capacity BSC

and BEC, respectively. We need to show (using (4.3)) that

𝐷(𝑃𝑌𝐵
‖𝑄𝑌𝐵

) ≤ 𝐷(𝑃𝑌 ‖𝑄𝑌 ) ≤ 𝐷(𝑃𝑌𝐸
‖𝑄𝑌𝐸

) .

First notice that

𝐼𝜒2(BSC𝛿) = (1− 2𝛿)2 (A.4)

𝐼𝜒2(BEC𝛿) = 1− 𝛿 (A.5)

After representing BMS as a mixture of BSC’s we have 𝜂 = E[(1−2Δ)2]. Introducing

the binary divergence function 𝑑(𝑎‖𝑏) = 𝐷(Ber(𝑎)‖Ber(𝑏)) we need to show: For any
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distribution of Δ ∈ [0, 1/2] and 𝑝, 𝑞 ∈ [0, 1] we have

𝑑(𝑝 * 𝛿𝑒𝑓𝑓‖𝑞 * 𝛿𝑒𝑓𝑓 ) ≤ E[𝐷(𝑝 *Δ‖𝑞 *Δ)] ≤ E[(1− 2Δ)2]𝑑(𝑝‖𝑞) , (A.6)

where 𝛿𝑒𝑓𝑓 =
1−√

𝜂

2
is defined to satisfy

(1− 2𝛿𝑒𝑓𝑓 )
2 = E[(1− 2Δ)2] .

Note that the right-most inequality in (A.6) follows froma a well-known fact that the

strong data-processing contraction coefficient 𝜂𝐾𝐿(𝑊 ) equals E[(1− 2Δ)2] (e.g. this

follows from the proof of [62, Theorem 21]).

To prove (A.6) we will establish a variant of the MGL, possibly of separate interest.

Namely, we will show that for any fixed 𝑝, 𝑞 ∈ [0, 1] the function

𝑑(𝑝 * 𝛿‖𝑞 * 𝛿) vs. (1− 2𝛿)2 𝛿 ∈ [0, 1/2] (A.7)

is convex. Clearly, (A.7) would imply both sides of (A.6).

To show (A.7) we proceed directly. Change parametrization to 𝑥 = (1− 2𝛿)2 and

thus 𝛿 = 𝛿(𝑥) = 1−
√
𝑥

2
. Letting 𝑑(𝑥; 𝑝, 𝑞) = 𝑑(𝑝 * 𝛿(𝑥)‖𝑞 * 𝛿(𝑥)) we find

𝜕𝑥𝑑(𝑥; 𝑝, 𝑞) = − 1

4
√
𝑥
𝑎(𝑥; 𝑝, 𝑞) (A.8)

𝑎(𝑥; 𝑝, 𝑞) =

(︂
ln

𝑝 * 𝛿
1− 𝑝 * 𝛿

+ ln
1− 𝑞 * 𝛿
𝑞 * 𝛿

)︂
(1− 2𝑝) +

(︂
1− 𝑝 * 𝛿
1− 𝑞 * 𝛿

− 𝑝 * 𝛿
𝑞 * 𝛿

)︂
(1− 2𝑞) .

(A.9)

For convenience, let us introduce

𝑠 , 𝑝 * 𝛿, 𝜎 , 𝑞 * 𝛿 .

Differentiating again, we get that convexity constraint 𝜕2
𝑥𝑑(𝑥; 𝑝, 𝑞) ≥ 0 is equivalent
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to the following inequality:

2𝑎(𝑥; 𝑝, 𝑞) +
√
𝑥𝑏(𝑥; 𝑝, 𝑞) ≥ 0 , (A.10)

where (we used 1− 2𝑝 = 1−2𝑠
1−2𝛿

and 1− 2𝑞 = 1−2𝜎
1−2𝛿

)

𝑏(𝑥; 𝑝, 𝑞) =
1

(1− 2𝛿)2

(︂
(1− 2𝑠)2

𝑠(1− 𝑠)
+ (1− 2𝜎)2

𝑠(1− 𝜎)2 + (1− 𝑠)𝜎2

𝜎2(1− 𝜎)2
+

4𝑠

𝜎(1− 𝜎)
(1− 2𝑠)(1− 2𝜎)

)︂
.

Noticing that
√
𝑥 = 1 − 2𝛿 and multiplying (A.10) by (1 − 2𝛿) we get that we need

to verify

2(1−2𝑠) ln
𝑠(1− 𝜎)

(1− 𝑠)𝜎
+
2(1− 2𝜎)

𝜎(1− 𝜎)
(𝜎+𝑠−1)+

(1− 2𝑠)2

𝑠(1− 𝑠)
+(1−2𝜎)2

𝑠(1− 2𝜎) + 𝜎2

𝜎2(1− 𝜎)2
≥ 0 .

(A.11)

Note that this inequality needs to hold for all values of 𝑠, 𝜎 ∈ [𝛿, 1/2]. However, due

to arbitrariness of 𝛿 and since it does not appear in (A.11) (this is crucial), we need

to simply establish (A.11) on the unit square [0, 1/2]2.

Here again, we reparameterize

𝑢 , 1− 2𝑠, 𝑣 , 1− 2𝜎

so that (𝑢, 𝑣) ∈ [0, 1]2 now range over the unit square. Then (A.11) is rewritten as

(after dividing by 𝑢)

𝑓(𝑢, 𝑣) , 2 ln
(1− 𝑢)(1 + 𝑣)

(1 + 𝑢)(1− 𝑣)
−4

𝑣

𝑢(1− 𝑣2)
(𝑢+𝑣)+

4𝑢

1− 𝑢2
+

4𝑣2

𝑢(1− 𝑣2)2
(2(1−𝑢)𝑣+(1−𝑣)2) ≥ 0 .

(A.12)

It is easy to check that this inequality holds when either 𝑢 = 0+, 1− or 𝑣 = 0+, 1−.

Thus, we only need to rule out violations inside the [0, 1]2. Taking derivative over 𝑢

of 𝑓(𝑢, 𝑣) we get

𝜕𝑢𝑓 = 0 ⇐⇒ 2𝑢4

(1− 𝑢2)2
=

2𝑣4

(1− 𝑣2)2
,

since 𝑡 ↦→ 𝑡
1−𝑡

is monotone, this implies that minimum of 𝑓(𝑢, 𝑣) is attained at 𝑢 = 𝑣.
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But 𝑓(𝑢, 𝑢) = 0. Thus, we find

min
𝑢,𝑣

𝑓(𝑢, 𝑣) = min
𝑢

𝑓(𝑢, 𝑢) = 0 .

This concludes the proof of (A.12) and, hence, of (A.7).

A.2 Proof of Lemma 11

Proof. If 𝑊̃𝑖’s are degraded w.r.t 𝑊𝑖, then we have a Markov chain 𝑋0 − (𝑌, 𝑌 𝑚
1 ) −

(𝑌, 𝑌 𝑚
1 ). This proves the first part.

To prove the second part, we may assume by induction that 𝑊𝑖 = 𝑊̃𝑖 for all 𝑖 ≥ 2

(i.e. only one channel is replaced). Now suppose we have

𝑈 ⊥⊥ (𝑋𝑚
1 , 𝑌 𝑚

1 , 𝑌 𝑚
1 , 𝑌 )|𝑋0 (A.13)

We want to show

𝐼(𝑈 ;𝑌, 𝑌1, 𝑌
𝑚
2 ) ≤ 𝐼(𝑈 ;𝑌, 𝑌1, 𝑌

𝑚
2 )

or equivalently

𝐼(𝑈 ;𝑌1|𝑌, 𝑌 𝑚
2 ) ≤ 𝐼(𝑈 ;𝑌1|𝑌, 𝑌 𝑚

2 ). (A.14)

The desired inequality follows from the definition of the less noisy order (in the

conditional universe where (𝑌, 𝑌 𝑚
2 ) is observed) if we can show 𝑈−𝑋0−𝑋1− (𝑌1, 𝑌1)

form a Markov chain conditionally on (𝑌, 𝑌 𝑚
2 ). Note that this is equivalent (by d-

separation) to showing that the conditional independence assertions of the Lemma

are representable by the following directed acyclic graphical model (DAG)

𝑈 𝑋0 𝑋1 (𝑌1, 𝑌1)

𝑌

𝑋𝑚
2 𝑌 𝑚

2
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We first recall (from d-separation) that

𝐴 ⊥⊥ (𝐵,𝐶)|𝐷 =⇒ 𝐴 ⊥⊥ 𝐵|(𝐶,𝐷) (A.15)

for arbitrary random variables (𝐴,𝐵,𝐶,𝐷) (cf. (S3) in [43, Chapter 3]). From (A.13)

and (𝐴.15), we see that the main assertion of interest in the above DAG is

𝑈 ⊥⊥ (𝑌1, 𝑌1)|(𝑋1, 𝑌, 𝑌
𝑚
2 ) (A.16)

To prove this assertion, we note that

𝑝𝑈𝑌1𝑌1|𝑋1𝑌 𝑌 𝑚
2

=
∑︁
𝑥0,𝑥𝑚

2

𝑝𝑈𝑌1𝑌1|𝑋0𝑋𝑚
2 𝑋1𝑌 𝑌2

𝑝𝑋0𝑋𝑚
2 |𝑋1𝑌 𝑌 𝑚

2

by (𝐴.13)
=

∑︁
𝑥0,𝑥𝑚

2

𝑝𝑈 |𝑋0𝑝𝑌1𝑌1|𝑋0𝑋𝑚
2 𝑋1𝑌 𝑌2

𝑝𝑋0𝑋𝑚
2 |𝑋1𝑌 𝑌 𝑚

2

∝
∑︁
𝑥0,𝑥𝑚

2

𝑝𝑈 |𝑋0𝑝𝑌 𝑌1𝑌1|𝑋0𝑋𝑚
2 𝑋1𝑌2

𝑝𝑋0𝑋𝑚
2 |𝑋1𝑌 𝑌 𝑚

2

=
∑︁
𝑥0,𝑥𝑚

2

𝑝𝑈 |𝑋0𝑝𝑌1𝑌1|𝑋1
𝑝𝑌 |𝑋0𝑋1𝑋2𝑝𝑋0𝑋𝑚

2 |𝑋1𝑌 𝑌 𝑚
2

= 𝑝𝑌1𝑌1|𝑋1

∑︁
𝑥0,𝑥𝑚

2

𝑝𝑈 |𝑋0𝑝𝑌 |𝑋0𝑋1𝑋2𝑝𝑋0𝑋𝑚
2 |𝑋1𝑌 𝑌 𝑚

2

= ℎ(𝑦1, 𝑦1, 𝑥1)𝑔(𝑢, 𝑥1, 𝑦, 𝑦
𝑚
2 ).

This proves (A.16) and the desired inequality in (A.14) follows.
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Appendix B

Erasure polynomials for LDMC(3)

Here we include the 𝑑-th erasure polynomials 𝐸BEC
𝑑 (𝑞) for 𝑑 ≤ 10 in Python form for

LDMC(3). These polynomials are generated using the procedure described in §4.5

and are used to produce the bounds in Figs. 4-3-4-8 and Table 4.1, as well as for for

code optimization in §5.2.

EBEC
𝑑

𝑑 = 0

0.5

𝑑 = 1

0.25

𝑑 = 2

0.125*q**4 - 0.25*q**3 + 0.25*q**2 - 0.25*q + 0.25

𝑑 = 3

0.1875*q**6 - 0.46875*q**5 + 0.46875*q**4 - 0.1875*q**3 +

4.440892e-16*q**2 - 0.09375*q + 0.15625

𝑑 = 4

0.46875*q**8 - 1.9375*q**7 + 3.71875*q**6 - 4.3125*q**5 +

3.28125*q**4 - 1.6875*q**3 + 0.65625*q**2 - 0.3125*q + 0.15625
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𝑑 = 5

0.9375*q**10 - 4.58007812500001*q**9 + 10.087890625*q**8 - 13.0859375*q**7

+ 10.976562500*q**6 - 6.15234375*q**5 + 2.24609375*q**4 - 0.4296875*q**3

+ 0.0390625*q**2 - 0.126953125*q + 0.103515625

𝑑 = 6

2.2900390625*q**12 - 14.455078125*q**11 + 42.9462890624997*q**10

- 79.5214843749996*q**9 + 102.12890625*q**8 - 95.5664062499994*q**7

+ 66.5722656249995*q**6 - 34.7460937499998*q**5 + 13.5791015624999*q**4

- 3.99414062499997*q**3 + 0.981445312499996*q**2 - 0.310546875*q + 0.103515625

𝑑 = 7

5.05517578125*q**14 - 36.368896484375*q**13 + 121.872802734375*q**12

- 251.26171875*q**11 + 354.7236328125*q**10 - 361.612548828124*q**9

+ 274.061279296874*q**8 - 156.953124999999*q**7 + 68.3422851562493*q**6

- 22.3791503906245*q**5 + 5.18676757812476*q**4 - 0.68359374999993*q**3

+ 0.0820312499999894*q**2 - 0.131591796874999*q + 0.070556640625

𝑑 = 8

12.2824707031249*q**16 - 104.389648437499*q**15 + 421.901855468746*q**14

- 1078.21191406248*q**13 + 1953.12304687496*q**12 - 2661.41503906243*q**11

+ 2821.08544921866*q**10 - 2368.68652343741*q**9 + 1587.56103515619*q**8

- 849.672851562463*q**7 + 361.467285156233*q**6 - 121.303710937495*q**5

+ 31.8554687499987*q**4 - 6.56933593749975*q**3 + 1.18603515624997*q**2

- 0.282226562499999*q + 0.070556640625
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𝑑 = 9

28.517944335937*q**18 - 270.209632873528*q**17 + 1213.44797515864*q**16

- 3426.34039306621*q**15 + 6803.52593994091*q**14 - 10066.1437683096*q**13

+ 11474.6510925279*q**12 - 10284.0617065415*q**11 + 7337.84271240106*q**10

- 4200.8187103263*q**9 + 1938.88133239697*q**8 - 722.934997558378*q**7

+ 216.904724121012*q**6 - 51.2509460448973*q**5 + 8.86129760741628*q**4

- 0.913879394530327*q**3 + 0.115905761718657*q**2 - 0.122840881347652*q

+ 0.0489273071289062

𝑑 = 10

69.4315452575683*q**20 - 742.947502136231*q**19 + 3808.84984970093*q**18

- 12453.0257034302*q**17 + 29158.0880355837*q**16 - 52039.3605651862*q**15

+ 73535.9429168715*q**14 - 84300.01968384*q**13 + 79613.6392593413*q**12

- 62487.5754547145*q**11 + 40908.980049135*q**10 - 22326.4821624763*q**9

+ 10117.3594665529*q**8 - 3780.88119506833*q**7 + 1154.60105895993*q**6

- 285.082305908195*q**5 + 56.3512229919426*q**4 - 8.95305633544941*q**3

+ 1.28042221069343*q**2 - 0.244636535644538*q + 0.0489273071289063
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