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Abstract

This thesis demonstrates some non-asymptotic information theoretic results for point
to point channels. Non-asymptotic information theory addresses the question: “For
a fixed blocklength and fixed probability of error, what is the maximum number of
codewords M that I can support?”. Compare this to classical (asymptotic) informa-
tion theory, which answer this question only for blocklengths tending to infinity and
probability of error tending to zero. In this sense, non-asymptotic results are more
difficult to derive, but are more practically applicable.

First, we look at the multiple input multiple output (MIMO) coherent block fading
channel with channel state information available at the receiver, called the MIMO-BF
channel. This is perhaps the most well studied model for a wireless communication
channel — it captures the setting where two wireless devices are communicating with-
out a dominant line of sight between them, so the signal reflects off many surfaces
before reaching the receiver. A typical example of this channel is communication
between two cell phones in a city. The MIMO assumption means the transmitter
and receive may have multiple antennas — adding multiple antennas can increase
achievable rates enormously while costing very little.

This work characterizes the dispersion of the MIMO-BF channel. The dispersion
is a fundamental channel quantity similar to capacity — it describes the rate penalty
incurred for transmitting at a fixed blocklength and error probability. We first prove
achievability and converse theorems, together which demonstrate that the dispersion
is given by the conditional variance of the information density, minimized over all
capacity achieving input distributions. We then give an analytic expression for the
dispersion, and describe its implications in terms of the channel parameters. For ex-
ample, we learn that dispersion scales linearly with the coherence time, while capacity
is not a function of the coherence time. We then give an achievability bound to help
numerically compute the finite blocklength rates, and demonstrate its application to
the MIMO-BF channel.

Secondly, we analyze the MISO case — where the transmitter has many antennas
but the receiver has only one, which turns out to be an interesting special case.
For this, we first give a theorem characterizing the input distributions that achieve
capacity. It turns out that full rate orthogonal design-like input distributions achieve
capacity, along with the distribution with i.i.d. Gaussian entries. It is shown that
these orthogonal design objects are in fact the extremal objects of this channel from



the point of view of dispersion — using them gives better performance then simply
sending independent symbols from each antenna at each time step, a result that
cannot be seen with only asymptotic analysis. In this way, orthogonal designs appear
as the natural space-time coding scheme for the MISO channel.

Finally, we analyze the problem of variable length list decoding with stop feedback.
This is the following problem: a transmitter sends symbols one by one into a channel
until the decoder says “stop”. The decoder then outputs a list of L codewords — if
the correct codeword is in the list, it succeeds, else it makes an error. Hence there is
a tradeoff between stopping time, number of messages, and the probability of error.
The question becomes: which indicators can tell the decoder that the correct message
is in a set of L messages?” We demonstrate for the BEC channel that it is possible
to communicate with zero dispersion using a variable length list decoding scheme.
However for the BSC, surprisingly you cannot stop in a way the gives zero dispersion,
when the list size is sub-exponential relative to the number of messages. Furthermore,
we show an application to delayed variable length feedback — i.e. the receiver says
“stop” but the transmitter only sees the stop signal after a delay, which gives a more
practical way of using stop feedback.

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

First of all, thanks for deciding to look at my thesis. In this section, we first give an
introduction to non-asymptotic information theory, and then briefly describe what
we consider to be the main interesting contributions of the thesis.

1.1 Non-Asymptotic Information Theory

Information theory, and more specifically coding theory, centrally deals with the
problem of how to map & bits into n channel symbols in order to send them over a
noisy channel, then recover those original & bits at the other side. In 1948, Shannon 1]
gave us a beautiful description of what is possible in this setting: as n and k& both
tend to infinity with the ratio k/n being fixed as R, then there is a value C called
the capacity for which, if R < C, communication with an arbitrarily small error is
possible, otherwise the probability of error is bounded away from 0. This essentially
showed that a communication channel is like a water pipe — there exists a maximal rate
C bits per channel use at which information can flow with low probability of error, but
beyond that rate, one cannot push information through the channel without incurring
€Nnormous errors.

The main uses of this result is 1) to show that you can transmit at a rate strictly
larger than zero with arbitrary small probability of error, which is highly non-obvious,
and 2) that designers of codes have a benchmark rate of C' against which they can
compare the performance of their codes. E.g. if a code achieves 50% of capacity, then
large rate improvements can be made to the system simply by developing a smarter
coding scheme rather than increasing power or getting more bandwidth; however if a
code achieves 99% of capacity, it is likely not worth your effort to invest in improving
your coding scheme, since you are near the theoretical limit. Compare this to many
problems in statistics where we do not have such a demonstrated theoretical limit —
researchers are constantly beating each others’ algorithms to achieve smaller errors
on datasets, but no one knows if these algorithms are 50% or 99% optimal.

Shannon’s results were asymptotic in nature — they hold when the number of
bits and the code blocklength tend to infinity. But what if we ask: which rates are
achievable if k = 100,n = 1000,e = 10737 It is possible that the largest theoretical
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rate for these fixed constants may be 90% of capacity, hence a code designer would
be mislead, they’d say “why am I only achieving 90% of capacity, how do I get the
extra 10%7” when in reality, they already are close to the theoretical limit. Hence
capacity is insufficient, or at least inaccurate, for characterizing theoretical rate limits
for a fixed blocklength and error probability.

Non-asymptotic information theory addresses this question. The original formu-
lation of non-asymptotic information theory was in terms of error exponents, e.g.
see Gallager [2, Theorem 5.6.2]. If we define ¢*(M,n) to be the smallest error
possible using M codewords and blocklength n, then error exponent results show
€*(M,n) < exp(—nkEjy), i.e. the probability of error decreases with some exponent
Ey as blocklength increases, where Ej is only a function of the rate R = %log M.
More recently, Polyanskiy, Poor, and Verdu [3] developed a new framework for look-
ing at non-asymptotic information theory. They instead analyzed the largest number
of messages a codebook can support for fixed n and ¢, denoted by M*(n,¢). They
showed that for a general discrete memoryless channel, we have

log M*(n,€) = nC — vVnVQ () + O(logn) . (1.1)

where () is the complementary Gaussian CDF. After diving by n to look at rate
rather than messages, and taking the blocklength n — oo, we recover the capacity.
Notice that the quantity log M*(n,€) is not directly computable (there are doubly
exponential many codebooks in n to search over). To deal with this, upper and
lower bounds on log M*(n, €) are proven, with the aim of having a small gap between
them. The parameter V above is called the dispersion — it is a fundamental channel
parameter similar to capacity which measures the gap in rate from capacity incurred
by using a fixed n and probability of error €. The dispersion leads to a more refined
approximation for the maximal rate, given by the normal approximation

! logM* (n,€) \/762 (1.2)

Simulations show that this approximation is remarkably tight in most cases. The
channel dispersion had been established for the most fundamental channel in infor-
mation theory, e.g. the Binary Symmetric Channel, Binary Erasure Channel, and
Additive White Gaussian Noise Channel, but the question of dispersion and finite
blocklength performances for more complicated channel models had not yet been
studied. This study is largely the contents of this thesis.

1.2 Characterization of the MIMO Coherent Block
Fading Channel at Finite Blocklength

The first major contribution of this thesis is to characterize the finite blocklength
performance of the Mulitple Input Multiple Output (MIMO) Coherent Block Fad-
ing channel (called the MIMO-BF channel). The MIMO-BF channel models wireless
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communication between two devices in an environment where there is no dominant
line of sight between the transmitter and receiver — hence the signal bounces around
before reaching its destination. Telatar [4] gave the most famous result for this chan-
nel, showing that the capacity scales as

C = min(n,,n;) log(SNR) (1.3)

i.e. the minimum of the number of antennas on the transmitter and receiver times the
logarithm of the channel SNR. The significance of this result is that one could increase
rate linearly simply by scaling up the number of antennas. Scaling up antennas is
cheap and easy compared to other methods of increasing rate. This scaling lead to
the incorporation of MIMO in all modern telecommunication standards: e.g. 4G,
LTE, 802.11 for Wi-Fi, and will play a large role in 5G standard when released. The
higher rates provided by good codes and multiple antennas allow for things like Wi-Fi
on planes and trains, streaming movies, real time video chatting, and all the future
application requiring high data rates that have not yet been invented.

Out of all wireless channel models, the MIMO-BF channel is amongst the most well
studied, yet still we do not even know its dispersion. The first major contribution of
this thesis is to give achievability and converse theorems that establish the dispersion
of this channel. After proving the dispersion via coding theorems, we give a closed
form expression, similar to Telatar’s expression for capacity (though, certainly less
monumental), and discuss its scaling in terms of number of antennas, power, and
coherence time. We show how to numerically compute the dispersion of this channel
via the 8 bound, the code for which can be found in the SPECTRE package [5].

1.3 MISO Case

The second major contribution of this thesis is the analysis of the Multiple Input
Single Output (MISO) case — an especially interesting special case of the MIMO-BF
channel. This special case is interesting for the following reason: when we establish
the dispersion, we show that it is given in the variational form

V= PX:I&%EH):CIE[VM (XY, H)|X)] (1.4)
i.e. it is a minimization over capacity achieving input distributions, similar to how
capacity is a maximization over distributions. It turns out that when the number
of receive antennas is at least 2, then the capacity achieving input distribution is
unique, and hence the minimization above is trivial. However, when there is only one
receive antenna, the MIMO-BF channel has many interesting capacity achieving input

distributions. For example, consider two such capacity achieving input distributions
for the MISO channel with two transmit antennas: for A, B,C, D ~ N (0, 1;) iid.,

AB}

A —-B
xo=[2 B I

X4 = [ 5 A (1.5)
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Here, the subscript G denotes the i.i.d. Gaussian input, corresponding to sending
independent data from each antenna at each time step, the A denotes the “Alam-
outi” input, inspired by Alamouti’s famous scheme [6], which sends two independent
symbols in the first time step, then the orthogonal vector in the second time step.
Both of these distributions achieve capacity, but is either a minimizer in (1.4)7

To this end, we first give a characterization theorem of all distributions that
achieve capacity in this channel. We show that amongst them are full rate orthogonal
designs, of which X 4 above is an example. We then give a theorem showing that these
full rate orthogonal designs are the unique minimizers in (1.4). Note that full rate
orthogonal designs do not exist in all dimensions. In dimensions where they exist,
this result shows that they are in a sense the extremal objects in the MIMO-BF
channel for the MISO case. In dimensions where they do not exist, We give a criteria
for finding input distributions that are optimal in the sense of minimizing dispersion:
maximize Var(||X||%) subject to X being a capacity achieving input distribution, and
explicitly compute its maximizer in the 2 x 3 and 3 x 3 cases.

1.4 Variable Length List Decoding

The third contribution we make is to the problem of variable length list decoding,
which is introduced in this thesis. Up to this point, we have been talking about
fized blocklength codes, where the transmitter sends n symbols, and the decoder
must estimate the message based on those n symbols. Variable length coding instead
requires that the decoder estimates the correct message with n symbols on average
— but the total number of symbols sent can vary. Of course, the encoder must have
some way of knowing when to stop transmitting, and hence the simplest form of
feedback is used — the encoder send symbols until the decoder says “stop”, at which
point the decoder outputs an estimate of the message. This is called stop feedback.
In the list decoding setting, the decoder instead outputs a set of L messages, and an
error occurs if the correct message is not in the set of messages.

Polyanskiy et al [7] demonstrated that the use of variable length coding with stop
feedback can dramatically reduce the gap to capacity for a fixed average blocklength.
For example, for a discrete memoryless, we have the expansion

1

log M*(n,€) =nC — VnVQ (e) + Elogn—I—O(l), (1.6)

whereas with variable length coding, using average blocklength ¢, we have

. o]’
log M*(¢,¢€) = T + O(log¥¢) (1.7)
—€

I.e. the dispersion and even logarithmic term vanish. The intuition behind this is
that a fixed blocklength code requires that the correct codeword be distinguishable
with high probability at time n, whereas for a variable length code, if the correct
codeword is not yet distinguishable, the system can simply wait a bit longer. This

optionality is key to narrow the gap to capacity.
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In this thesis, we analyze the variable length coding problem when the decoder uses
list decoding. We show that, for the Binary Erasure Channel, it is again possible to kill
all terms beside the linear and constant term, similar to (1.7). We give an application
of this variable length list decoding scheme to the problem of stop feedback with delay.
Namely, suppose we are in the variable length (non list decoding) setting, but when
the decoder says “stop”, the encoder only sees it after a delay of D symbols. Hence the
decoder must say stop earlier than it can distinguish the correct message — but when it
believes that with D extra symbols, the correct message will become distinguishable.
Then we show that for the Binary Symmetric Channel, we cannot manage to stop in
a way that gives zero dispersion whenever the list is of size L = M=% for a € (0, 1),
showing surprisingly that the behavior from (1.7) does not carry over to the BSC
case.

1.5 Organization of this Thesis

Chapter 2 focuses on the definition and basic properties of the MIMO-BF channel.
First the channel is defined, then the capacity expression and capacity acheiving out-
put distribution are described. Next, a theorem characterizing all input distribution
that achieve capacity is proven. Finally, the information density is computed for this
channel, which will be instrumental later on.

Chapter 3 gives the achievability and converse theorems for the MIMO-BF chan-
nel, showing that they agree up to the O(y/n) term, thus establishing dispersion.
First, an introduction is given to hypothesis testing in the Neyman-Pearson settings,
and a number of lemmas are proven which are essential in the achievability and con-
verse proofs. We remark the converse is only a partial converse, but in a benign way
— see Section 3.3 for more details.

Chapter 4 discusses the numerical computation of an achievability bound for this
channel. A new average probability of error achievability bound, the 88 bound, is
stated and proved. Then its computation for the MIMO-BF channel specifically is
discussed. The code computation described in this chapter is used in the SPECTRE
package [5].

Chapter 5 gives a closed form expression for the dispersion, whereas the dispersion
was only given as the variational form (1.4) in Chapter 3. This expression is first
computed, then some implications of the expression in terms of number of transmit
and receive antennas, coherence time, and power are discussed.

Chapter 6 discussed the special case of the MIMO-BF channel where the receiver
has only a single antenna, but the transmitter may have many antennas. First the
form of the dispersion is given as a function of the capacity achieving input distribu-
tion. Then we introduce objects called full rate orthogonal design, and show that they
are the minimizers of this dispersion expression uniquely, when they exist. Finally we
show that in dimensions where they do not exist, we can usc a truncation construc-
tion to obtain input distributions that preform strictly better than the i.i.d. Gaussian
input. Finally, we give a brute force computation of the optimal input distribution
for the n; = 2,7 =3 and n; = 3,T = 3 cases.

14



Chapter 7 discusses the variable length list decoding, a problem defined here for
the first time. Results are given for the Binary Erasure Channel, showing that capac-
ity can be approached quickly. An application the delayed variable length feedback is
given. Finally, it is shown that for the Binary Symmetric Channel, we cannot achieve
the same fast convergence as in the Binary Erasure Channel.
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Chapter 2

The Channel Model and its
Capacity Achieving Input
Distributions

In this chapter, we begin by defining the main fading channel of interest, the MIMO
coherent block fading channel, in Section 2.1. We discuss some classical results for
this channel in Section 2.2, then look at the capacity achieving input distributions
(caids) for this channel in Section 2.3. Finally, we define the information density for
this channel in Section 2.4, which will be useful later on.

Before we define the model, we make a remark on the assumptions that go into
specifying a fading channel. Generally, we have the following categories:

e Channel state information: receiver (CSIR), transmitter (CSIT), both (CSIRT),
or none (noCSI).

e Fading dynamics: H generated once then fixed (quasi-static), H generated
once for T' symbols independently (block fading), H generated independently
every time step (fast fading).

e Fading distribution: most popular are Rayleigh which models a rich scatter-
ing environment, and Rician which models antennas with a dominant line of
sight.

e Availability of antennas: one transmit and one receive antenna (SISO), one
transmit and many receive antennas (SIMO), many transmit and one receive
antenna (MISO), many transmit and many receive antennas (MIMO).

This work will consider a rotationally invariant fading process (a generalization of
Rayleigh fading), with CSIR, block fading, in the MIMO and MISO settings. Note
that some combinations are less realistic than others — for example, fast fading with
CSIRT is unrealistic, since the fading coefficients must be estimated, and if they
change every time step, there is no time to estimate them.

16



2.1 The MIMO Coherent Block Fading Channel

The channel model considered in this paper is the frequency-nonselective coherent real
block fading (BF') discrete-time channel with multiple transmit and receive antennas
(MIMO) (See [8, Section II] for extra background on this model). We will simply
refer to it as the MIMO-BF channel, which we formally define here. This channel is
parameterized by the quantities n, n,, P,T, which are

e n; > 1 — the number of transmit antennas

e n, > 1 — the number of receive antennas

e T > 1 — the coherence time of the channel

e P > 0 — the power available to the transmitter in decibels

The input-output relation at block j (spanning time instants (j —1)7'+ 1 to jT') with
7 =1,...,nis given by
Yy = H;X; + Z;, (2.1)
where
e {H;,j=1,...}is a n, X n; matrix-valued random fading process.

e X, is a n; x T matrix channel input.

e Z; is a n, X T Gaussian random real-valued matrix with independent entries of
zero mean and unit variance.

e Y} is the n, x T matrix-valued channel output.

The process H; is assumed to be ii.d. with isotropic distribution Py, i.e. for any
orthogonal matrices U € R™*™ and V € R™*™ both UH and HV are equal in
distribution to H. We also assume

P[H # 0] > 0 (2.2)

to avoid trivialities. We assume coherent demodulation so that the channel state
information (CSI) H; is fully known to the receiver (CSIR).

Note that due to merging channel inputs at time instants 1,...,7" into one matrix-
input, the block-fading channel becomes memoryless. This is slightly different than
the phrasing of the MIMO-BF channel in the literature — often the input is simply a
dimension n; vector, rather than an n;, x T matrix. For example, in the n, =T = 2,
n, = 1, a single channel input / output relation is given by

X]] X12

V1 Y] = [Fy 3] [ Xo1 Xoo

|+z 2. (23

The reason for such a definition is that, as we will later see, when an input distribution
Py is capacity achieving, all columns are individually i.i.d. Gaussian, however the
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joint distribution of the matrix may not be i.i.d. Gaussian. Hence viewing the input
as a matrix allows us to identify these capacity achieving input distribution.
We now define a code for this channel:

Definition 1. An (nT, M, €, P)csigr average probability of error code of blocklength
nT', probability of error ¢ and power-constraint P is a pair of maps: the encoder
[ [M] = (R™*T)" and the decoder g : (R™*T)" x (R**™)" — [M] satisfying the
probability of error constraint

PW # W] <e. (2.4)
on the probability space
W— X" = (Y" H") - W,

where the message W is uniformly distributed on [M], X" = f(W), X" — (Y", H")
is as described in (2.1), and W = g(Y™, H"). In addition the input sequences are
required to satisfy the power constraint:

Z 1 X% < nTP P-a.s.,

Jj=1

where | M||% = >_i; M, is the Frobenius norm of the matrix M.

If instead, the probability of error criterion (2.4) is replaced by

max ]P’[W#WiW:w] <e (2.5)
we{l,...,M}

then this is called a mazimum probability of error code. Note that the blocklength

is given in increments of 7', since the channel input is defined as a matrix with T

columns. So for example, n = 5,T = 2 corresponds to 10 actual channel uses.

With this, we are interest in the fundamental quantity
log M*(n, €, P) =sup{M : I(nT, M, €, P)csrr code} . (2.6)

In words, the logarithm of the maximum number of messages in a codebook, where
each codeword must have blocklength n7T" and total power bounded by nT P, and have
overall probability of error bounded by e. When unclear, we will use M;,, and My,
to denote the average and maximum probability of error cases, respectively.

As a remark, note that the usual definition of capacity in terms of this notation

is given by

1
C =lim lim —Tlog M*(n,e, P) (2.7)

e—~0n—ooo n

l.e. first take the limit as blocklength goes to infinity, then as probability of error
goes to zero. Note that the base of the logarithm should agree with the base of the
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logarithm in the mutual information expression for C.

2.2 Known Results: Capacity and Capacity Achiev-
ing Output Distribution

First we review a few known results on the MIMO-BF channel. Since the channel is
memoryless, the capacity is given by maximizing the mutual information subject to
a second moment constraint on the input distribution, i.e.

1
= — I(X:;Y H). 2.8
TPx:mﬁI)lféﬁ}Z:]STP (X;Y, H) (2:8)

C

It was shown by Telatar [9] that whenever distribution of H is isotropic, the input
X € R™*T with entry i, j given

X, "~ N (0, f) , (2.9)
Tt

is a maximizer. Throughout, we will refer to the distribution with i.i.d. Gaussian

entries as in (2.9) is the “Telatar input distribution”. If someone had no idea about

fading channels, and were told to guess the capacity achieving input distribution, this

is probably the distribution you would guess. Plugging this distribution into (2.8)

yields the capacity formula

ny

— ni]E [CAWGN (7%\3)] , (2.11)

=1

C(P) = %IE {log det (In, + EHHT)] (2.10)

where Cawgn (P) = 5 log(1+ P) is the capacity of the additive white Gaussian noise

(AWGN) channel with SNR P, ny;, = min(n,,n;) is the minimum of the transmit
and receive antennas, and {A?, i = 1,... ,nyn} are eigenvalues of HHT. Note that
it is common to think that as P — co the expression (2.11) scales as ny, log P, but
this is only true if Plrank H = np;,) = 1. The main non-trivial step in the proof of
(2.10) is that if X € R™ is zero-mean and has covariance matrix ¥, then the entropy
of X satisfies H(X) < logdet(2meX), with equality if and only if X is i.i.d. Gaussian
with covariance matrix .

The distribution induced by a caid at the channel output (Y, H) is called the
capacity achieving output distribution (caod). A classical fact is that, while there
may be many caids, the caod is unique, e.g. [10, Section 4.4]. This fact gives a
convenient way to finding caids — if an input distribution induces the caod through
the channel, then it is a caid.
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From (2.9) we infer that the caod is given by

* A *
Pyy = PuPy g, (2.12)
T
« O *
Py = HPY<1‘>|H7 (2.13)
j=1
" A P
YO |H=h = N <O, I, + n—thhT) , (2.14)

Here, Y = [Y® ..., Y™)] where Y9 is j-th column of Y, which, as we specified
in (3), is a n, x T matrix. Le. the caod has i.i.d. columns, each column having
conditional distribution given by (2.14).

Here, we make a few remarks about what the capacity formula (2.11) tells us:

1. This formula most significantly says that the capacity scales as approximately
Nmin 10g(1 + P). This result is enormously significant — we see that adding more
antennas at both the transmitter and receiver can boost rate linearly. Antennas
are generally cheap and harmless, compared to increasing power, which only
provides a logarithmic increase in rate, and is limited by regulations. Note
that the channel model assumes independent fading between each transmit and
receive antenna — if n.,;, is enormous, spatial coupling between antennas can
occur, causing the independence assumption to break down, which prevents us
from achieving arbitrarily large rates just by adding more antennas.

2. This formula is independent of 7', hence from a capacity standpoint, a shorter
or longer coherence time does not affect achievable rates.

3. By the identity
P P
det (Inr - —n—HHT) = det (Im + ~——HTH> (2.15)
t Uz

we see that switching n, and n; has no effect on the expression, which is known
as reciprocity — the channel from the transmitter to the receiver has the same
capacity as the channel from the receiver to the transmitter.

4. As we will soon see, when rank(H) < 1 a.s., this channel has multiple capacity
achieving input distributions. From the point of view of (2.11), all give the
same performance. However, we will see that this is not true when looking at
more refined asymptotics.

2.3 Capacity Achieving Input Distributions

A very interesting feature of the MIMO-BF channel is that it has many caids in
the case where rank(H) < 1, whereas many commonly studied channels (e.g. BSC,
BEC, AWGN) have a unique caid. While a capacity achieving input distribution is
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a random construction for demonstrating the capacity of a channel, the structure of
the caid gives insights into the statistics of good codes. For example, a caid for the
MIMO-BF channel has i.i.d. Gaussian entries, so one would expect a scheme like
V-BLAST (see [11]) that sends independent symbols over each antenna at each time
step to be good. For a more formal statement, see [12], where it is shown that for a
code to be good, the output distribution it induces must be indistinguishable from
the caod.

The following theorem characterizes the set of caids for the MIMO-BF channel.
Somewhat surprisingly, for the case of rank-1 H (e.g. for MISO) there are multiple
non-trivial jointly Gaussian caids with different correlation structures. For example,
space-time block codes can achieve the capacity in the rank 1 case, but do not achieve
capacity when the rank is 2 or greater e.g. [13].

Theorem 1.
1. Every caid X satisfies Va € R™ b c RT:

ne T P
>3 ats Xy~ N (0 a0l ) 216)

i=1 j=1

If Plrank H < 1] = 1 then condition (2.16) is also sufficient for X to be caid.

Ry
2. Let X = | --- | be decomposed into rows R;. If X is a caid, then each R; ~
Ry,
N(0, n—PtIT) (i.1.d. Gaussian) and
T P ,
E[Rl Rl] = -—'IT, 1= 1, e, Ny (217)
Uz
E[R{ R;] = ~E[R] Ry, i# ] (2.18)

If X is jointly zero-mean Gaussian and Plrank H < 1] = 1, then (2.17)-(2.18)
are sufficient for X to be caid.

3. Let X = (Cy...Cr) be decomposed into columns C;. If X is a caid, then each
Cj ~N(0,£1,,) (ii.d Gaussian) and

t

E[CiC}] = ~E[C;CT], i (2:20)

T (2.19)

If X is jointly zero-mean Gaussian and Plrank H < 1] = 1, then (2.19)-(2.20)
are sufficient for X to be caid.

4. When Plrank H > 1] > 0, any caid has pairwise independent rows:
P .
Ty
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and in particular

Therefore, among jointly Gaussian X the i.i.d. X;; is the unique caid.
5. There exist non-Gaussian caids if and only if Plrank H > min(n;, T)] = 0.

Remark 1. (Special case of rank-1 H) In the MISO case when n; > 1 and n, =1
(or more generally, rank H < 1 a.s.), there is not only a multitude of caids, but in
fact they can have non-trivial correlations between entries of X (and this is ruled out
by (2.22) for all other cases). As an example, for the n, = T = 2 case, any of the
following random matrix-inputs X (parameterized by p € [—1, 1]) is a Gaussian caid:

_ P& —pba++/1-p%
X_\/;[& plr+/1—p%s |’ (2.23)

where &;,&,&3,&4 ~ N(0,1) iid.. In particular, there are caids for which not all
entries of X are pairwise independent.

Remark 2. Another way to state conditions (2.17)-(2.18) is: all elements in a row
(resp. column) are pairwise independent ~ A(0, EI'){) and each 2 x 2 minor has an-

tipodal correlation for the two diagonals. In particular, if X is a caid, then X7 and
any submatrix of X are caids too (for different n, and T).

Proof. We will rely repeatedly on the following observations:
1. if A, B are two random vectors in R™ then for any v € R® we have
VWweR":vTAL0TB «— A<LB. (2.24)
This is easy to show by computing characteristic functions.

2. If A, B are two random vectors in R™ independent of Z ~ N(0, I,,), then
A+ZL<B+27 <« A<B. (2.25)

This follows from the fact that the characteristic function of Z is nowhere zero.

3. For two matrices @1, Q2 € R™*" we have, Vv € R™:
Q=210 <—= Q1 +QT =Q,+QF. (2.26)

This follows from the fact that a quadratic form that is zero everywhere on R"
must have all coefficients equal to zero.

Part 1 (necessity). Recall that the caod is unique and given by (2.12). Thus an
input X is a caid iff for Py-almost every hy € R**™ we have

hoX + Z L hoG + Z, (2.27)
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where G is an n; x T matrix with i.i.d. N (0, P/n;) entries (for sufficiency, just write
I(X;Y,H) = h(Y|H) — h(Z) with h(-) denoting differential entropy). We will argue
next that (2.27) implies (under isotropy assumption on Pg) that

VaeR™: ofX 2£47G. (2.28)

From (2.24), (2.28) is equivalent to >, ; a;0; X; ; & > aibiGj for all b € R™.

Let Ey be a Py-almost sure subset of R™*" for which (2.27) holds. Let O(n) =
{U e R™*™ : UTU = UUT = I} denote the group of orthogonal matrices, with the
topology inherited from R™*™. Let {Ux} and {Vi} for k € {1,2,...} be countable
dense subsets of O(n,) and O(n,), respectively. (These exist since R is a second-
countable topological space). By isotropy of Py we have Py[Ur(Fo)Vi] = 1 and
therefore

EZEnN (] UEoVi (2.29)

k=1,1=1

is also almost sure: Py[E] = 1, since E is the intersection of countably many almost
sure sets. Here, Uy (Ej) denotes the image of Ey under Uy. By assumption (4), £ must
contain a non-zero element hy, for otherwise we would have Py[0] = 1, contradicting
(4). Consequently, hg € Ux(E,)V; for all k,1, and so U, *heV,~! € E; for all k, 1. Since
for U € O(n), the map U — U~ is a bijective continuous transformation of O(n),
we have that {U; '} and {V,7'} are also countable dense subsets of O(n;) and O(n,),
respectively. From (2.25) and (2.27) along with the definition of Ey, we conclude that

U heV ' X LU ReVTIG Yk, L.
Arguing by continuity and using the density of {U, '} and {V;7'}, this implies also
UhoVX £ URVG YU € O(ny),V € O(n,). (2.30)

In particular, for any a € R™ there must exist a choice of U,V such that UhyV has

the top row equal to coa” for some constant ¢y > 0. Choosing these U,V in (2.30)

and comparing distributions of top rows, we conclude (2.28) after scaling by 1/c¢.
Part 1 (sufficiency). Suppose Plrank H < 1] = 1. Then our goal is to show

that (2.28) implies that X is a caid. To that end, it is sufficient to show hoX L hoG
for all rank-1 hg. In the special case

the claim follows directly from (2.28). Every other rank-1 hj can be decomposed as
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hy = Uhg for some matrix U, and thus again we get UhoX iy hoG, concluding the
proof.

Parts 2 and 3 (necessity). From part 1 we have that for every a,b we must have
al Xb ~ N(0, ||a]|§||b||§n%) Computing expected square we get

E [(a¥ Xb)?] == <Za) <zb§) : (2.31)

Thus, expressing the left-hand side in terms of rows R; as a7 X = > a:R; we get

V' {E (Z aiR,-)T (Z a,-Ri) b=b" (Z aflT) b

and thus by (2.26) we conclude that for all a:

(2] 5] - ()

Bach entry of the T' x T matrices above is a quadratic form in a and thus again
by (2.26) we conclude (2.17)-(2.18). Part 3 is argued similarly with roles of a and b
interchanged.

Parts 2 and 3 (sufficiency). When H is (at most) rank-1, we have from part 1
that it is sufficient to show that a” Xb ~ N(0, [|al/3]|b]|3Z). When X is jointly zero-
mean Gaussian, we have a? Xb is zero-mean Gaussian and so we only need to check
its second moment satisfies (2.31). But as we just argued, (2.31) is equivalent to
either (2.17)-(2.18) or (2.19)-(2.20).

Part 4. As in Part 1, there must exist hg € R"*™ such that (2.30) holds and
rank hg > 1. Thus, by choosing U,V we can diagonalize hg and thus we conclude any
pair of rows R;, R; must be independent.

Part 5. This part is never used in subsequent parts of the paper, so we only
sketch the argument and move the most technical part of the proof to Appendix A.
Let ¢ = max{r : P[rank H > r| > 0}. Then arguing as for (2.30) we conclude that X
is a caid if and only if for any hA with rank h < ¢ we have

hX £ hG .

In other words, we have

Za” i = ZG’” Va € R**T : ranka < ¢. (2.32)

If £ = min(n,,T), then rank condition on a is not active and hence, we conclude
by (2.24) that X £ G. So assume £ < min(n;, T). Note that (2.32) is equivalent to
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the condition on characteristic function of X as follows:

P 2

E [e'2us%9%0i] = ¢ % 2% Vo :ranka < L. (2.33)

It is easy to find polynomial (in a;;) that vanishes on all matrices of rank < ¢ (e.g.
take the product of all £ x £ minors). Then Proposition 47 in Appendix A constructs
non-Gaussian X satisfying (2.33) and hence (2.32). a

2.4 Information Density and its Moments

In finite blocklength analysis, a key object of study is the information density, along
with its first and second moments. In this section we’ll find expressions for these
moments, along with showing when the information density is asymptotically normal.
First, we give a short description of the information density.

In general, for a channel given by Py|x, and input distribution Px that induces
Py, the information density is given by

Pxy(z,y)
Px(z)Py(y)

The most intuitive interpretation of this is as the log likelihood ratio in a test of
dependence between X and Y, i.e. the binary hypothesis test

i(z;y) = log (2.34)

H() VAN PXpy (235)
H1 VAR ny . (236)

By the Neyman-Pearson Lemma, we know that the optimal test in the non-Bayesian
setting is given by thresholding the log likelihood ratio, i.e. if we observe n sample
21, ..., Zp 1.i.d., the optimal test is given by

if i(X™Y™) > v output H,; (2.37)
if {(X™Y™) < output Hy (2.38)

In this way, we can view many decoders in information theory as running M binary
dependence tests of this form.

To find the information density for the MIMO-BF channel, it will be convenient
to assume that the matrix H is represented as

H=UAVT, (2.39)

where U,V are uniformly distributed on O(n,) and O(n;) (which follows from the
isotropic assumption on H), respectively,! and A is the n, x n, diagonal matrix with
diagonal entries {A;,2 = 1,... ,nyin}. Joint distribution of {A;} depends on the fading

'Recall that O(m) = {A € R™*™ : AAT = ATA = I,,,} is the space of all orthogonal matrices.
This space is compact in a natural topology and admits a Haar probability measure.
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model. It does not matter for our analysis whether A;’s are sorted in some way, or
permutation-invariant.

For the MIMO-BF channel, let Py denote the caod (2.12). To compute the
information density with respect to Py, (for a single T-block of symbols) as defined
in (2.12), denote y = hzx + z and write an SVD decomposition for matrix h as

h = ulv?,

where v € O(n,), v € O(n;) and A is an n, x n; matrix which is zero except for the
diagonal entries, which are equal to A;,...,\, ... Note that this representation is
unique up to permutation of {);}, but the choice of this permutation will not affect
any of the expressions below. With this decomposition we have:

T P
i(e;y,h) £ 5 log det (Im + -—hhT)
Uz
NMmin z Lid z
loge > A|[ofx||? + 2X; (T, 5) — £X215]2 (2.40)
2 14+ £)2

Jj=1 ng”J

where we denoted by v; the j-th column of V, and have set z = u”z, with Z; rep-

resenting the j-th row of Z. The definition naturally extends to blocks of length nT
additively:

n

fmoonoLny A .
iy B 2 Y iy, hy) - (2.41)

j=1

We compute the (conditional) mean of information density to get

D(z") 2 niTlE XY™, B X™ = o7 (2.42)
"
— 0P+ Y2 Sl 7). 243

where we used the following simple fact:

Lemma 2. Let U € R*™ be uniformly distributed on the unit sphere, and x € R™*T
be a fized matriz, then

E{|Uzl?) = ”%”—F (2.44)

Proof. Note that by additivity of ||Uz||?> across columns, it is sufficient to consider
the case T' = 1, for which the statement is clear from symmetry. O

Remark 3. A simple consequence of Lemma 2 is E[||Hz||%] = IE[HHH%]”—ZU%, which
follows from considering the SVD of H.

Finally, the following lemma computes the Berry Esseen constant. This is a tech-
nical result that will be needed for both the achievability and converse proofs.
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Lemma 3. Fiz x1,...,2, € R"*T and let W; = i(z;;Y}, H;), where Y;, H; are
distributed as the output of channel (2.1) with input z;. Define the Berry-Esseen

ratio - 5
an:l E “VV? —E [WJ“ ]

ny 2
B,(z") = +/n ( ;.‘:1Var(Wj))3/2

Then whenever 37, ||z;||% = nTP and max; ||z;||r < oni we have

(2.45)

K

Bu(a") < Ki6%vn + Kon'* + —

where K, Ko, K3 > 0 are constants which only depend on channel parameters but not
"™ orn.

Remark 4. Lemma 3 contains the condition that max; ||z;||r < én3, which is why
we need this assumption to hold in the converse statement. In words: in order for the
information density to be asymptotically normal, too much power cannot be place in
any single time slot. Intuitively, this scaling is the threshold that ruins the “sum of
many small independent quantities” in the central limit theorem.

Proof of Lemma 3. We begin with upper bounding the numerator in (2.45), i.e.
>_E [W; ~E[W]f] . (2.46)
j=1

The information density is given by

T
: 1 1 1 B
i(w;y,h) = 5 logdet (5) — 5 X:j lys — hayI* + 5tr (y'S7hy) - (247)
where
P oo
S=1I, + —HHT. (2.48)
Uz
Define W = i(; Y, H) under the distribution Y = Hz + Z. (2.47) reduces to
T 1
W = Elog det (¥) — §||ZH2F
1
+ 5t (2"H"S ' He + 22" H'S ' Z 4+ 27271 2) (2.49)
1
= o(H, Z) + 5tr (z"HTS'Hz) + tr («THTE 71 Z) (2.50)

where the scalar random variable

1
c(H,Z) = glog det(2) — %][ZH% +5tr (z"s712) (2.51)
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is the sum of all the terms that do not depend on z. Note that
Etr (z"H'S'Hz) = tr (z"E [H'S'H] z) (2.52)
Etr (¢"H'S7'Z) =0. (2.53)
Therefore, the “centered” information density is

W — E[W]
= co(H, Z) — E[c(H, Z))

1 _ -
+5tr (" (H'S'H —E[H'S™'H)) z)

+tr (zTH'S™'2) (2.54)
=co(H,Z) + tr (zT Az) + tr (z7 B) (2.55)
where
A= -;- (H'S™'H —E [H'S'H]) (2.56)
B=HTy 'z (2.57)
co(H,Z)=c(H,Z) - E[c(H, Z)]. (2.58)

Hence we can upper bound the centered third moment as

E[|W - EW]P] <

3E [|eo(H, Z)*] +3E [[tr (a7 Az) '] +3E [Jtr (=7 B)["] . (2.59)

We now proceed to upper bound each term individually. First S5,

$: =E |[tr (27 Az)["] (2.60)
. %]E |e"HTS " He — 2B [H7S 7 H] | (2.61)
< %E |2"HTS ' He + 2"E [HTS ' H] a;|3] (2.62)
L (120 2|
< 3E |5 lel7 ] (2.63)
3
= (%) Il (2.64)

where

e (2.62) follows since HTY"'H is PSD, and E[HTX"1H] is also PSD as a non-
negative combination of PSD matrices, so that both tT H'Y "' Hz and 2TE[HT S H]z
are non-negative
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e (2.63) follows since HTY"'H = VDV7T where
D:diag(c(./\f),...,c(./\2 _),0,...,0) (2.65)

Mmin

and D < %1, in the PSD ordering, so
THTS ' He < 2% - LTV T = t||x||2F (2.66)
and

oTE [HTS'H] = < %a:TE [VVT]z = %nxu;. (2.67)

Now we bound S; from (2.59),

—E [[tr (27 B)|'] (2.68)
—E ||tr ("HT=72) 7] (2.69)
nt T A 3
=F Fii Dps e (2.70)
; oL+ LA
T 3
< n?T? E ||| Z:;]? A, (2.71)
121: = T+ A2
T2
< T (P (2.72)

where
e In (2.70), define Z = VTx and expand the trace.
e (2.71) follows from the triangle inequality, along with | >, a;|> < n?>"7 | |as|3.
e (2.72) we have used E[|Z|%] < 2 for Z ~ N(0,1) along with the bound

(2.73)

Now notice that

¢ T ng T 3/2
> Jal* < (Z > :'i:%) (2.74)
= i =1

which can be viewed as the norm inequality ||al|s < ||a||; for a € R?. Finally,
we use ||[VTz||% = ||z||2 for any orthogonal matrix V.
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For the denominator in (2.45), the expression for £ Var(W;) is given in (5.7)-(5.11).
Note that the final term (5.11) is non-negative, so we have the lower bound

> Var(Wy) > Kin+ K3y (lzll% — TP)” (2.75)

Jj=1 j=1
> max (nK{, K Z (llz;l1% — TP)Q) (2.76)

j=1
where
, " Mmin P R
K] =T*“Var (C.(H,P)) + TZ E [VAWGN (—Ai)} (2.77)
i=1 ™

2 2

K,=T (“@ﬁ - E) : (2.78)

g T

Hence K] > 0 whenever P > 0. Note that we use the assumption ||z"||% = nTP
freely here, as stated before. The lower bound on the variance (2.76), we obtain the
upper bound

i KallzillG + Kollz |3 + K
n 3/2
(max (nK7, K5 55, (lasly — TPY?))

where all constants are non-negative. There are two cases based on which term
achieves the max in the dominator. First, suppose

Bn(z") < Vn

(2.79)

nK| > K> ()3 - TP)* . (2.80)

Jj=1

Expanding the square yields

Ky sl < nK; + nT*P2K) . (2.81)

j=1

Thus the terms in the numerator are bounded by

n n
n
2l < (o 12 >l
Jj= Jj=

< n¥25% (K| + T*P?K}) (2.82)
D Nl <n>
j=1 Jj=1

<YK, + T*P*K}) (2.83)
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where (2.82) uses the assumption ||z;||r < én3. Applying this to B, in (2.79), we see
that in this case,

&@ﬂg¢m%n+wﬂz+£§ (2.84)

nl/2

where the constant Cy, Cs, C3 are non-negative constants.
Now take the case when

K3 (lzll% = TP)® > nK] . (2.85)
i=1

Note that since K| > 0, in the case we must also have K > 0 for the above inequality
to hold. Let a be defined as follows

T?P?

L (2.86)

T2P2 4 4

Here a < 1 since Kj/K} > 0. Applying (2.85) yields

n K,

az lz;|% > a (nfz + nT2P2> (2.87)
j=1

> nT?P? . (2.88)

With this, from (2.79) we obtain the following upper bound

B,(z") <

o Kzl % + Kallzsllg + K
o o Killzsl® + KollzllF + K (2.89)

K32 (1= a) Sy Nl + 0 Sy gl — n72P2)
2 j=1 IL5llF j=1 IT5llFp
S Kl + Kol + Ko

n 3/2
K (1= ) )y llas )

where (2.90) uses (2.88). Now, we can upper bound each term in (2.90) as, for the
first term,

<

(2.90)

Ky D00 sl
2/ n 3/2
K57 (1= ) T sl
. Ky max;—1,n ||zi]|%
13/2 R n
K;/ (1 — (1)3/2 (ijl Hl‘]”%’)
K, 62n}/2
<
> nl/QK;3/2<1 _ a)3/2(T2P2 + nKi)l/Q )

— (2.91)

(2.92)
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the second,

Ky 35 sl

K32 (=) 23, )
Konl/4
= 13/2 n 3/4
KL= a2 (S0 Nl )
K2n1/4

<
T nl2KP(1 — a)3¥/2(T2P2 + nK})34’

and the third,
Ks
n 3/2
K (1= a) Sy Nzt
< Ks
T 032 (K1 — a)(T2P? +nK)))*?’

(2.93)

(2.94)

(2.95)

where in (2.93) we have used 3.7 a3 < nl/4 (3", a)** (easily obtained from p-

=1 Y1

norm inequalities), and both (2.91) and (2.95) use the assumption ||z;||lr < ni.

Using these bounds in (2.90), we obtain
Cs

nl/2

B, (z™) < V/nd*C) + nl/AC +

where C1, C}%, C} are non-negative constants.
From (2.84) and (2.96), we conclude that

"

B, (z™) < /nd%Cy +n'/tCy + nlj’z :
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Chapter 3

Coding Theorems

In this chapter, we prove an achievability and converse result second order term in the
MIMO-BF channel. The proof techniques for both achievability and converse have
quite a few new elements — see the individual sections for more information. To the
best of our knowledge, this is the first known channel where the dispersion has been
shown to be a minimization over capacity achieving input distributions, as in (3.6).
Note that these results appear in [14].

Note that seeing the conditional variance E [Var(i(X;Y)|X)] of the information
density is to be expected. A priori, one might expect the variance (unconditional) to
give the dispersion. When X is finite, it turns out these are the same, since

Var(i(X;Y)) = E [Var(i(X; V)| X)] + Var (E[¢(X; V)| X]) (3.1)
and, when Py is capacity achieving,
Ve e X, Ei(X;Y)|X = 1] = D(Pyx=||P}) = C (3.2)

so that the second term in (3.1) vanishes, and Var(i(X;Y)) = E[Var(i(X;Y)|X)].
However, when X is not finite, this is no longer the case.

The main result that will be proved in the following sections is the following
theorem:

Theorem 4. For the MIMO-BF channel, there exists an (nT, M, €, P)csir mazimal
probability of error code with 0 < € < 1/2 satisfying

log M > nTC(P) — \/nTV(P)Q () + o(v/n) . (3.3)

Furthermore, for any 6, — 0 there exists §,, — 0 so that every (nT, M, €, P)csir code
with extra constraint that max; ||2%||r < §,nY%, must satisfy

log M < nTC(P) — \/nTV(P)Q (e) + 8/,/n (3.4)
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where
1
C(P) 2 5E [log det (Jn, + EHHTH (3.5)
T

1
PX:I()?;lmH):C T]E [Var(i(X; Y, H)|X)] (3.6)

and i(z;y, h) is given by (2.40).

The proof is broken up into Theorem 9 and Theorem 12 for achievability and
converse, respectively. Before giving those proofs, first we introduce some notation,
definitions, and lemmas concerning hypothesis testing.

3.1 Binary and Composite Hypothesis Testing

Many finite blocklength results are derived by considering an optimal hypothesis
between appropriate distributions. A binary hypothesis test Pzw : W — {0,1} is a
test that, given a sample w from a space W, chooses (perhaps non-deterministically)
one of two distributions P or @ that could have generated w. Z = 1 indicates that
the test choose P to be the true distribution, and Z = 0 indicates the test chooses @
instead. This is sometimes written as

Hy: W ~Q .
H :W~P (3.8)

Two types of errors can be made in a binary hypothesis test: we can mistakenly
choose P when () is the actual distribution, or we can choose ) when P is the true
distribution. These errors depends on the choice of test Pz, and in general are
asymmetric. Here we will use the convention that we always consider the error when
the test chooses P when the actual distribution is Q.

We define ,(P, Q) to be the minimum error probability of all statistical tests
Pzw between distributions P and @, given that the test chooses P when P is correct
with at least probability a. Formally:

Ba(P, Q) = inf /w Pziw (1|w)dQ(w) (3.9)

PlelfW PZIW1|de(w)2a

The Neyman Pearson Lemma tells us that an optimal test P§|W achieving error
B exists, and has the form of a ratio test, i.e.

Ba(P,Q) =Q [% > 7} (3.10)
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Where v is chosen to satisfy

(3.11)

e

_— >
aQ ~

In a composite hypothesis test, P and @) are now parametric families of distribu-
tiOIlS, {Pgl }91691 and {Q92}92e@2, le.

Hy: W ~ ng s.t. O, € O, (312)
H1 W~ Pgl s.t. 91 € 91 (313)

In words: the test sees a sample w and must decide whether the distribution gener-
ating that sample was from the Py, family or the Qp, family. Similar to the binary
hypothesis testing case, we denote the minimum error probability of a test Pz given
that the test chooses H; when H; is true for any 6, € ©,. Formally:

n,(@l,Gz)z inf sup / Pz|W(1|’LU)dQ92 (314)
w

Pziw:infe; co, { fiy Pziw (Llw)dPy, (w)>7} 9,0,

Our main case of interest will be between the set of distributions {Py|x=¢}zcr and
a single distribution Qy. We will denote the minimum error probability in the com-
posite hypothesis test in this case as k,(F, Qy).

Now that we have the basic definitions, we’ll need a few bounds that will be used
in the next section. First, we can lower bound a composite hypothesis test in terms
of a binary hypothesis test. This is useful because often it is difficult to evaluate .,
but for 8, the Neyman-Pearson lemma gives us the form of the optimal test.

Lemma 5. For a composite hypothesis test between {Py|x=s}ccr and Qy, where
F C A = support(X), for any distribution Py such that Pg[F] > 0,

kr(F, Qy) 2 Brpg k) (Px © Prix, Qy) (3.15)

Here, Px o Py|x = f Py |x=2dPx(z).

Proof. Let Pzy be any test for the composite hypothesis test between {Py|x—;}scr
and Qy satisfying

;Iellfpz Pyix(ylz)Pziy(ly) > 7 (3.16)

yEB

Where Z = 1 indicates the test chooses { Py|x—; }zcr. Then we use this test Pz for
testing Py vs Qy, where now Z = 1 indicates the test chooses Py. The corresponding
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probability of choosing Py when Py is correct is (note Py = Px o Py|x by assumption)

ZPY y)Pzy(1ly) = Z <Z Px (z)Py|x ?JI-T)) Pziy(1ly) (3.17)

yEB yEB \z€A
> Z <Z Px (x)Py|x y[:c)) Pziy(1ly) (3.18)
yeB \zeF

> Px() (ggﬁZPYIX(yW)PZIY(”y)) > Px[F]r (3.19)

zeF yEB

Since this hold for all tests Pz)y for the composite HT, it holds for the test achieving
Kr. Since Brpy(r) lower bounds the myjo error of all test for Py vs Qy, it lower bounds
Kr. 0

Furthermore, we can lower bound §, from a binary hypothesis test in terms of
the divergence between D(P||Q) using the data processing inequality:

Lemma 6. For all distributions P,Q s.t. P < Q, and all a € [0,1],
D(P||Q) + hB(O‘))

Ba(P,Q) = exp <— (3.20)

«

Proof. Use the data processing inequality with the kernel Pz from our hypothesis
test:

—h(a) + « log—;-
(3.21)

D(P||Q) > d(al|a) = —h(a) + alog =

1
/B-i-(l—a)log1

>
_/3“

Where d(p||q) is the divergence between a Bernoulli(p) and Bernoulli(q) distribution.
The lemma follows from solving for 3,. O

Finally, we are interested the case when P and @ are product distribution P =
[I;; P and @ =[], @Q;. When this is the case, with a few regularity conditions
we can expand S, in terms of it’s dependence on n by the following lemma from [15,
Lemma 14], which we give here

Lemma 7. Let P =[], P, and Q =[], Q; with P, < Q; be two measures on a
measurable space A" such that the third moment of log % 15 bounded, then

log B.(P, Q) = —nD,, — \/nV,Q! o(v/n) (3.22)
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Where

ZD (P|Qs) = ZE [ d@] (3.23)
ZV (P]|Q;) = ZVar (log jgl) (3.24)

The proof is an application of the Berry-Esseen Theorem, which quantifies the
error in approximating the CDF of a sum of independent random variables by a
Gaussian distribution as in the Central Limit Theorem.

3.2 Achievability

In this section, we prove the achievability side of the coding theorem for the MIMO-
BF channel. We will rely on the k3 bound [16, Theorem 25], quoted here:

Theorem 8 (k3 bound). Given a channel Pyx with input alphabet A and output
alphabet B, for any distribution Qy on B, any non-empty set F' C A, and €, 7 such
that 0 < 7 < € < 1/2, there exists and (M, €)-maz code satisfying

M Z K/T(F7 QY) )
SUDgef /81—€+T(PY|X=(L‘7 QY)

(3.25)

The art of applying this theorem is in choosing F' and @y appropriately. The
intuition in choosing these is as follows: although we know the distributions in the
collection {Py|x—z}zcr, we do not know which z is actually true in the composite, so
if Qy is in the “center” of the collection, then the two hypotheses can be difficult to
distinguish, making the numerator large. However, for a given z, Py|x=, vs Qy may
still be easily to distinguish, making the denominator small. The main principle for
applying the x-bound is thus: Choose F' and Qy such that Pyjx—, vs Qy is easy to
distinguish for any given x, yet the composite hypothesis Y ~ {Py|x=s}zeF is hard
to distinguish from a simple one Y ~ Qy-.

The main theorem of this section gives achievable rates for the MIMO-BF channel,
as follows:

Theorem 9. Fiz an arbitrary caid Px on R™*T and let

;A

V' 2 L [Var(i(X; Y, H)|X)] = E[W(X)], (3.26)

where Vi(x) is introduced in Proposition 18. Then we have

log M*(nT, e, P) > nTC(P) — VnTV'Q 7 (€) + o(+/n) (3.27)

with C(P) given by (2.10).

37



Proof. Let 7 > 0 be a small constant (it will be taken to zero at the end). We apply
the x5 bound (3.25) with auxiliary distribution Qy = (Py.,)", where Py is the
caod (2.12), and the set F}, is to be specified shortly. Recall notation D,(z"), V,(z")
and By,(z") from (2.42), (5.6) and (2.45). For any z™ such that B,(z") < 7v/n, we
have from [17, Lemma 14],

—log Bi—etr(Pynpnixn=gn, Py'y) >
1
nTDy(z") + /nTVa(zM)Q 7 (1 — € — 27) — log - - K’ (3.28)

where K’ is a constant that only depends on channel parameters. We mention that
obtaining (3.28) from [17, Lemma 14] also requires that V,(z") be bounded away from
zero by a constant, which holds since in the expression for V;,(z") in Proposition 18,
the term (5.8) is strictly positive, term (5.9) will vanish, and terms (5.10) and (5.11)
are both non-negative.

Considering (3.28), our choice of the set F, should not be surprising:

F 2

{x” :lz™|F = nTP,V,(z™) < V' + 7, max ||z;||p < 5n%} (3.29)
j

where § = §(7) > 01is chosen so that Lemma 3 implies B,(z") < 7v/n for any 2™ € F,.
Under this choice from (3.28), (2.43) and Lemma 3 we conclude

sug log B1—etr(Pynan|xn=gn, Pyy) <
e n

—nTC(P)+ /nT(V' +1)Q (e — 27) + K", (3.30)

where K” = K’ +log L.

To lower bound the numerator &, (F},, Py'y;) we first state two auxiliary lemmas,
whose proofs follow. The first, Lemma 10, shows that the output distribution induced
by an input distribution that is uniform on the sphere is “similar” (in the sense of
divergence) to the n-fold product of the caod.

Lemma 10. Fiz an arbitrary caid Px and let X™ have i.i.d. components ~ Px. Let

e X TP (3.31)
X"

where || X™[p = /2=y [ Xll%- Then

TPloge
D(Pynpnjxn © Pea||PTy) < ——8CF

(IH 1% (3.32)

t

where PyTy is the n-fold product of the caod (2.12).

The second, Lemma 11, shows that a uniform distribution on the sphere has nearly
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all of its mass in F,, as n — oc.

Lemma 11. With X" as in Lemma 10 and set F, defined as in (3.29) (with arbitrary
7 >0 and 0 > 0) we have as n — oo,

PX" € F,] —» 1

Denote the right-hand side of (3.32) by K; and consider the following chain:

e (Fny Qyn) > exp (— D& Y"”""";}ﬁ;ﬁ'?”) i 1°g2) (3.33)
> exp ( Ifl + l[og]z) (3.34)
_ K; +log?2
> Ks(T), (3.36)

where (3.33) follows from Lemmas 5 and 6 with Py, as in Lemma 10, (3.34) is from

Lemma 10, (3.35) is from Lemma 11, and in (3.36) we introduced a 7-dependent
constant K.

Putting (3.30) and (3.36) into the x3-bound we obtain
logM *(nT e, P) >
nTC(P) — \/nT(V' + 7)Q ' (e — 21) — K" — Ky(7).
Taking n — co and then 7 — 0 completes the proof. O
Now we prove the two lemmas used in the Theorem.

Proof of Lemma 10. In the case of no-fading (H; = 1) and SISO, this Lemma follows
from [18, Proposition 2]. Here we prove the general case. Let us introduce an auxiliary
channel acting on X as follows:

~ X )
Y; = Hj”—XZJ”—F\/nTP%— Z;,  j=1,...,n (3.37)
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With this notation, consider the following chain:

= D(memxv» o Pxn||PyTy) (3.38)
(PY"H"|X" © PX"HPY“H"|X" o Pxn) (3.39)
D(Pyn g xn || Pynpnixn| Pxn) (3.40)
D(Pyniggn xn || Pyrnypinixcn | Pxen Ppin) (3.41)

loge nT P -

=—E H;X; 3.42
2 ( 'Xn” ) Z ” ”F ( )

loge .
Bl I3E | (11 - VATP) | (3.43
loge

= “2°E[||H|2)(nTP — VaT PE | X" 7)) (3.44)

where (3.38) is by clear from (3.37), (3.39) follows since Py is a caid, (3.40)-(3.41) are
standard identities for divergence, (3.42) follows since both 373 and Y} are unit-variance
Gaussians and D(N(0,1)||V (a,1)) = %‘—’55, (3.43) is from Lemma 2 (see Remark 3)
and (3.44) is just algebra along with the assumption that E [|| X™||2] = nTP.

It remains to lower bound the expectation E [|| X™||r]. Notice that for any uncor-
related random variables B; > 0 with mean 1 and variance 2 we have

(3.45)

which follows from /z > %—;“ﬁ for all x > 0 and simple computations. Next consider
the chain:

EllX"r] =E (3.46)

> (3.47)

- (3.48)

where in (3.48) we used the fact that for any caid, {(Xt)”, =1,...n} ~N(0, P/n,)
iid. (from Theorem 1) and applied (3.45) with B, = Xt) i Puttlng together (3.44)
and (3.48) completes the proof. O

Proof of Lemma 11. Note that since || X™||% is a sum of i.i.d. random variables, we
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have % — 1 almost surely. In addition we have

E[|X.3] < (mT)ﬁ‘ZE (X8 = K,

where we used the fact (Theorem 1) that X,’s entries are Gaussian. Then we have
from independence of X;’s and Chebyshev’s inequality,

Plmax || X;||r < &'ni] = P[| X, ||r < 6'ni]"
J

K n
> <1—- 5’8n2) —1

as n — oco. Consequently,
P [max 15l < 60t >
J

o 1 | X"lF 1
P X, < -ni| -Pl— < =-| =51
as n — oo. )
Next we analyze the behavior of V,,(X™). From Proposition 18 we see that, due
to || X™||% = nT P, the term (5.9) vanishes, while (5.10) simplifies. Overall, we have

Vn(Xn) =

nTP 2 1 = N3y — 14
K+|l—=) = =1 X112 X; XT3 3.49

" <”Xn”%) n;( ny 1 X517 + nall X j I ( )
where we replaced the terms that do not depend on z™ with K. Note that the
first term in parentheses (premultiplying the sum) converges almost-surely to 1, by
the strong law of large numbers. Similarly, the normalized sum converges to the
expectation (also by the strong law of large numbers). Overall, applying the SLLN

in the limit as n — oo, we obtain:

Jim Va(X") = lim = STVA(X)) (3.50)
=EVi(X) & V. (3.51)

In particular, P[V,,(X") < V' + 7] — 1. This concludes the proof of PX" € F,| —
1. O
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3.3 Converse

Here we state and prove the converse part of Theorem 4. There are two challenges
in proving the converse relative to other finite blocklength proofs. First, behavior of
the information density (2.40) varies widely as ™ varies over the power-sphere

Sp = {z" € (R™*TY" : |2"|% = nTP). (3.52)

Indeed, when max; ||z;||r > cni the distribution of information density ceases to be
Gaussian. In contrast, the information density for the AWGN channel is constant
over S,,.

Second, assuming asymptotic normality, we have for any z” € S,,:

—log 61— e(PY"H"|X"=z" P{?’};) ~

However, the problem is that V,(2") is also non-constant. In fact there exists regions
of S, where V,,(2™) is abnormally small. Thus we need to also show that no capacity-
achieving codebook can live on those abnormal sets.

The main theorem of the section is the following:

Theorem 12. For any 6, — 0 there exists 8, — 0 such that any (n, M, €)-maz code
with € < 1/2 and codewords satisfying maxi<;<y ||z;||r < S,ni has size bounded by

log M < nTC(P) — /nTV(P)Q ' (¢) + 6., v/n, (3.54)
where C(P) and V(P) are defined in (2.11) and (3.6), respectively.

Proof. As usual, without loss of generality we may assume that all codewords belong
to S, as defined in (3.52), see [16, Lemma 39]. The maximal probability of error code
size is bounded by a meta-converse theorem [16, Theorem 31], which states that for
any (n, M, €) code and distribution Qy~g= on the output space of the channel,

1 .
2 inf Br—e(Pyngnix=an, Qynun), (3.55)

where infimum is taken over all codewords. The main problem is to select Qyngn
appropriately. We do this separately for the two subcodes defined as follows. Fix
arbitrary ¢ > 0 (it will be taken to 0 at the end) and introduce:

CGECN{a": V,(z") < n(V(P) - §)} (3.56)
Co2CN{z": V,(z") > n(V(P) —d)}. (3.57)

To bound the cardinality of C,, we select Qynyn = (Py )" to be the n-product of
the caod (2.12), then apply the following estimate from [17, Lemma 14], quoted here:
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for any A > 0 we have
log 51—6(PYan;x=zn, Py) >

— nDo(a") — \/aVa@) Q" ( #)

1 n
where Dn, Vo and B, are given by (2.43), (5.6) and (2.45), respectively. We choose

A = ni and then from Lemma 3 (which relies on the assumption that ||z;||z < én3)
we get that for some constants K, K5 we have for all z" € C,:

K3
B( )+A<K16\/_+K2n + —

nl/2”

From (3.55) and (3.58) we therefore obtain

+ 1logn, (3.59)

log|Cu| < nTC(P) — /nT(V(P) — 6)Q (e — &) 1

where 6! = K62 + Kzn“% — 0 asn — oo.

Next we proceed to bounding |C;|. To that end, we first state two lemmas. Lemma
13 shows that, if in addition to the power constraint E[|| X||%] < TP, we also required
E[Vi(X)] < V(P)—4, then the capacity of this variance-constrained channel is strictly
less than without the latter constraint.

Lemma 13. Consider the following constrained capacity:

c(P,5) &
%sup{] X;Y|H) E[|X||Z] < TP,E[W(X)] < V(P) -6} (3.60)

where V(P) is from (3.6) and Vi(z) is from (5.7). For any § > O there exists T =
T(P,6) > 0 such that C(P,d) < C(P) — 7.

Remark 5. Curiously, if we used constraint E [V;(X)] > V(P)+4 instead of E[V;(X)] <
V(P) — ¢ in (3.60), then the resulting capacity equals C(P) regardless of 6.

The following Lemma shows that, with the appropriate choice of an auxiliary
distribution Qy~ g», the expected size of the normalized log likelihood ratio is strictly
smaller than capacity, while the variance of that same ratio is upper bounded by a
constant (i.e. does not scale with n).

Lemma 14. Define the auziliary distribution

Po(lh) [IBl|% > A

R (3.61)
Pog(ylh) |IR]E < A

Qyu(ylh) = {
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where A > 1 is a constant, Py y(y|h) is the caod for the MIMO-BF channel, and

P}’ZIH(ylh) is the caod for the variance-constrained channel in (3.60). Let Qypy =

PyQyiu, and Qyn grn = [[_, Qv.u. Then there exists constants 7, K > 0 such that
for all 2™ € Cy,

1 PYn HnIXn ]

C,2 —E [10 —— = (Y" H"|z")| < C(P)—T1 3.62
T los g = = (Y ') | < O(P) (3.62)
1 Pyn HnIXn )

V, & —Var <lo —= (YY" H"z") | < K 3.63
— B G Ha) ) < (3.63)

where Y; = Hyx; + Z;, i =1,...,n is the joint distribution.
Remark 6. The reason we let Qy |y take on two distributions depending on the value
of H is because we do not know the form of Pi*’l > hence we do not explicitly know

how it depends on H. This choice of Qy|y ensures that expectations involving 15;}| H
are finite.

Choose Qy,y as in Lemma 14, so that the bounds on C,, V,, from (3.62), (3.63)
respectively, hold. Applying [17, Lemma 15] with @ = 1 — € (the statement of this
lemma is the contents of (3.64)), we obtain

logﬁl_e(Pyn,Hnlxnzx" ’ 15;;,1}{)

[2nTV,, -
> —nTC, — 2nlVn _ log 1-¢ (3.64)
1—e€ 2

2nTK 1-—

> —nT(C(P) — 1) — 1" log — ; (3.65)

Therefore, from (3.55) we conclude that for all n > ny(d) we have
log |G| < nT (O(P) _ Z) . (3.66)

2
Overall, from (3.59) and (3.66) we get (due to arbitrariness of §) the statement (3.54).
O
Proof of Lemma 13. Introduce the following set of distributions:

P& [Py E[|X|3] < TP, E[Vi(X)] <V — 5} . (3.67)

By Prokhorov’s criterion (e.g. [19, Theorem 5.1], tightness implies relative compact-
ness), the norm constraint implies that this set is relatively compact in the topology
of weak convergence. So there must exist a sequence of distributions P, € P sit.
P, 2 Pand I(X,;HX, + Z|H) — C(P,5) where X, ~ P,. By Skorokhod repre-
sentation [19, Theorem 6.7], we may assume X, =3 X ~ P, i.e. there exists random
variable X that is the pointwise limit of the X,,’s. Notice that for any continuous
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bounded function f(h,y) we have
E[f(H,HX,+ 2)] > E[f(H, HX + 2)],

and therefore Py, 4 Rt Py . Assume (to arrive at a contradiction) that C(P,6) =
C(P), then by the golden formula, cf. [10, Theorem 3.3], we have

(X HX, + Z|H)

= D(Pymx || PulPx,) ~ D(Py, ull P (3.68)
=E(D:(X.)] — D(By, 4l B.n) (3.69)
< C(P)  D(By, 4| Pn). (3.70)

where D, (z) is from (2.43). Therefore, we have
D(Py, ullPs) 0.

From weak lower-semicontinuity of divergence [10, Theorem 3.6] we have D(Py ;|| Py ;) =
0. In particular, if we denote X™* to have Telatar distribution (2.9), we must have

E(IYH =E[HX + Z||2] =E[|HX" + Z||7]. (3.71)

From Lemma 2 (see Remark 3) we have
E (|| H|Z
() = Sy (.72
and hence from the independence of Z from (H, X) we get
~ E[IH 2 ~
B (1% + 23] = g gy 4 o,

and similarly for the right-hand side of (3.71). We conclude that
E(IX|F] =E[NX"3) =TP.
Finally, plugging this fact into the expression for D;(z) in (2.43) and (3.69) we obtain
I(X;HX + Z|H) = E[Dy(X,)] = C(P).

That is, X is a caid. But from Fatou’s lemma we have (recall that V;(x) > 0 since it
is a variance)

E[Vi(X)] < liminf E [V4(X,,)] < V(P) -6,

n—00

where the last step follows from P, € P. A caid achieving conditional variance
strictly less than V(P) contradicts the definition of V/(P), cf. (3.6), as the infimum
of E [V1(X)] over all caids. O
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Proof of Lemma 14. First we analyze C,, from (3.62). Denote

_ P
i(z;y, h) = log —~=(y|h, z) (3.73)

i(z;y,h) = log Pp* =~ (ylh,x) . (3.74)

Here, i(z;y, h) is the information density given by (2.40), while i(x;y, h) instead has
the caod for the variance-constrainted channel (3.60) in the denominator. Since Qy|g
takes on one of two distributions based on the value of H, conditioning on H in two
ways yields

1 Pyn Hn| X7
Cn = —=E |log ————— (Y™, H"|z" 3.75
7 [log T v (.75)
1
== > E [iz; V5, Hy) || Hj|1% > A] Pl ;)% > A) (3.76)
j=1
I .
+o > E[i(z;, Yy, Hy)|I|H; 1% < A P[||H;||% < A]. (3.77)
j=1

The Hj’s are i.i.d. according to Py, so we define p = P[||H;||% > A]. Using capacity
saddle point, (3.76) is bounded by

n

> iz Y, Hj)

=1

p
—E
nT

15017 > AJ < pC(Py>a) (3.78)

where C(Py) denotes the capacity of the MIMO-BF channel with fading distribribu-
tion Py, and Py 4 denotes the distribution of H conditioned on ||H||% > A (similarly,
Py <4 will denote H conditioned on ||H||% < A). (3.78) follows from the fact that the

information density, i.e. log P;l#(ym,x), is not a function of Py, hence changing
Y|H

the distribution Py does not affect the form of i(z;y, k). Similarly, using Lemma 13,
(3.77) is bounded by

ln_TpIE ;g(XﬁYijj) | Hjll7 < AJ
< (1-p)C(Puca) (3.79)
= (1 =p)(C(Pr<a) — ) (3.80)

where 7/ > 0 is a positive constant, and C (Py) denotes the solution to the optimiza-
tion problem (3.60) when the fading distribution is Py. Putting together (3.78) and
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(3.80), we obtain an upper bound on C,,,

Cn < pC(Prsa) + (1 —p)(C(Puca) — 7). (3.81)
Note that C(Py) = Ep, [logdet(I,, + P/n,HHT)], so the capacity only depends on
Py through the expectation — the expression inside is not a function of Py because

the i.i.d. Gaussian caid achieves capacity for all isotropic Py’s. Hence, by the law of
total expectation, (3.81) simplifies to

Cn <C(Pyg)—(1—p)r. (3.82)
Finally, we can upper bound p using Markov’s inequality as
1
p=PllH|F> A <3 (3.83)

since A > 1. Applying this bound to (3.82), we obtain

Cn <C(Py)—(1-p1' (3.84)
< C(Py) — (1 _ %) _ (3.85)

Defining 7 £ (1 — 1/A)7’ completes the proof of (3.62).

Next we analyze V;, from (3.63). The strategy will be to decompose (3.63) into two
terms depending on the value of ||H||%, then show that each term is upper bounded
by A1+ A23 77, ||z;ll%, where A;, Ay are constants not depending on z". Finally, we
will show that 37, [|lz;]|% = O(n) when 2™ € C;. To this end,

1 PYn Hn|Xn )
Vo, = —Var | log ————— (Y, H"|2" 3.86
7 Var (1og R ey (380
= —LG:Var log iDYLD((Y Hj|z;) (3.87)
nT = Qyu =~ 777
R Py g x 2
< — E|[(l . Y., H;|x; 3.88
F.29 [(g S, Hyly)) } (3.59)

where (3.87) follows from the independence of the terms, and (3.88) is from the bound
Var(X) < E[X?]. Again we condition on H in two ways,

Vo < 25 B filey; Vi )2 I 13 > A] (3.89)
j=1
l—p e -
+ LS R [ia Yy, H P < A] (3.90)
j=1
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For the first term, (3.89), we know the expression for i(z;y,h) from (2.40), so we
simply upper bound i(z;y, k)% To this end,

i(x;y, h)?

T P 2
<2 (— log det (Inr + —hhT))
2 ng

, . B 2

log e &= Afllvf z[|? + 2X;(v] 2, ) — §A?|Izjll2
2 ! 3.91
* ( ]2:; 1+ 22 (3.9
< Cillhl|F + Collzlly + Ca(2)) |2l% + Ca(Z) (3.92)

where C1, Cy are non-negative constants, and Cs(Z;), C4(2;) are functions of only Z;
that have bounded moments. This follows from:

e Bounding the first term via

T P 2 PT?
=logdet ( I,. + —hhT | ) < log®(e)——nmin||h||% 3.93
(2 ogde ( -t )) < log™(€) 4 —minl |l (3.93)
which can be derived from the basic inequality log(1 + x) < log(e)y/z.

e Noting that the second term is bounded in h, since for all A € R,

A 1
< (3.94)
1+ %/\2 2 %
AQ [
T+ Ze =P (395)
ne

e Noting that all moments of ||2;||? are finite because this is the norm of a standard
normal vector.

Therefore, after taking the expectation of (3.92) and summing over all n, we obtain
P N
= DB [ias; Ys Hy)?|I|Hy 13 > A]
j=1

< <<;5 +C Y nxjn‘;) (3.96)

=1

for some non-negative constants Cs, Cj.
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To bound the second term, (3.90), first we split the logarithm as
E [i(z5; Y;, Hy)* ||| H;lI% < A]
2
<2E [log (Priax (Y;|Hj, 5)) }“HjH% < A]

~ 2
+28 [tog (P (511,

IH, 1% < A] (3.97)

The first term in (3.97) is simple to handle, since its expression is given by the
definition of the channel,

E [log (Pyum.x (Y3l H, z,)) I3 < 4]

n I 1 2
~E [(— o log(2r) ~ 51211 ] (3.98)
1 2 1 -
< §nTT log®(2m) + §an(2 +n, 1) (3.99)
2K, (3.100)

i.e. we have a constant upper bound. For the second term in (3.97), notice that 15}*, 1%
that is inducible through channel, i.e. there exists an input distribution Px such that
Py (y, h) = E[Py i x(y, h| X)]. Using this fact, we obtain the bound

—log Py (y|h) = — log [Py p,x (y|h, X)) (3.101)
< E[-log Pyiu x (ylh, X)) (3.102)
T 1
=E |22 log(2n) + 5y — hXII% (3.103)
Nyl
< 5 log(2m) + “Z/”%‘ + TP”h”%«“ (3.104)

where (3.102) follows from Jensen'’s inequality, (3.103) is from the definition of the
channel, and (3.104) follows from applying the inequality ||A+ B||% < 2||4||%+2||B||%
along with ||AX |7 < ||h||%]| X||%, then noting that X satisfies E[|| X||%2] = TP. Using
this, we can bound the second term in (3.97) via

~ 2
E |log (B (518) 115 < 4] (3.105)
n, T 2
<E [( - log(2m) + IV IH + TPIIE) (I < A} (3.106
2T2
<& 3" logl(em) + 3%
SST2 P 5L 3 < A (3.107)
< Ky + Ksllz||% (3.108)
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where K>, K3 are non-negative constants which do not depend on z, (3.106) is from
the above bound (3.104), and (3.108) follows from applying the bound

E [|IYl[# |1 517 < A]

= E [|Hjz; + Z;||3| | H;||% < A] (3.109)
< 8E [|H; 15|11 5,113 < A] ||zl + 16n2T° (3.110)
< 8A||zj|| + 16n2T2. (3.111)

Putting together (3.108) and (3.100), we obtain an upper bound on (3.90),

1—p - y
— > _E[ile;; 5, Hy)*| |1 H;|} < 4]
j=1
2(1-p) - s
< == (K3+K4+K5j§||le|F . (3.112)

Now, since 2™ € C; by assumption, we can control the quantity > 1, ||z:]|% via

Z il < Z Vi(z:) (3.113)
: < n(V(P)—4), (3.114)

where the first inequality follows from the non-negativity of the terms in Vj(z) given
in Proposition 18, and the second inequality is from the definition of C;. Hence the
sum of fourth powers of the ||z;||p’s is O(n) on C;. All together, combining (3.112)
and (3.96) yields the following bound on V,

1 n
< —| K'+ K" ik 115
S >l .115)
<K (3.116)
which completes the proof of (3.63). O



Chapter 4

Numerical Computation of
Non-Asymptotic Bounds

In this chapter, we discuss one method to numerically computation an achievability
bound for the MIMO-BF channel. First, we want to explain why this is necessary.
The bounds in Chapter 3 show that the maximum number of supportable codewords
at blocklength n and error probability ¢ is upper and lower bounded as

K'T(Fna QY"H") 1
< M*(n,, P) < '
> (n’ & ) - infzn Bl—e(PY"H"fX::ﬂW QY"HH)
(4.1)

Supxnepn Bl—f-}—‘l‘ (PYanIXn:In ; QYan)

These are non-asymptotic bounds, i.e. they hold for all n,e, and P. In order to
establish the dispersion, we showed that these bound match up to the O(y/n) term.
Note that matching to the O(y/n) term is an asymptotic statement, and allow us to
use the “normal approximation”

log M*(n,e, P) = nTC — VnVQ (¢ (4.2)

to get a more refined approximation for log M*(n, €, P). This approximation is fairly
easy to compute, since C' and V' are given by single letter expressions. However, if
one is interested in hard achievability and converse bounds, as some applications may
demand, the approximation (4.2) is not sufficient. For example, it may be possible
that the constant term, which disappears asymptotically, is in fact large enough to
compute with the O(n) term for mild blocklengths. That is where computation of
the non-asymptotic bounds comes into play.

To give guarantees based on our achievability and converse proofs, we would have
to numerically compute the non-asymptotic upper an lower bounds in (4.1). Often
this is difficult, first because «, does not have a nice form, and because the minimiza-
tion in the denominator over an n dimensional space can be hard to find. Note that
the 3 terms, because of the Neyman-Pearson Lemma, are given by the CDF of an
n-fold product distribution. Hence these are not trivial to compute, but at least they
can be approximated via monte carlo given enough time.
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To solve this problem, in this chapter we derive the 33-bound, which is looser than
the k3 bound, but is more amenable to numerical computation. After deriving it, we
show how to apply it to the MIMO-BF channel, and give examples of its computation.
We note that this is joint work with Wei Yang, and the results appear in [20].

4.1 (B Achievability Bound

The 38 bound gives a looser but easier to compute alternative to the k3 bound. First
we state and prove the bound, then give a discussion on its computability.

Theorem 15 (33 bound). For all € € (0,1), and every input distribution Py, there
exists an (M, €) average probability of error code satisfying

M sup sup Br(Py, Qy)
2 = 0<7<e Qy Bl—€+T(PXY7 PXQY)

The proof is due to Wei Yang — we give it here for completeness.

(4.3)

Proof. Take € € (0,1) and 7 € (0, ¢€), and let Px,Qy be two arbitrary measure on the
input and output space, respectively. Consider the binary hypothesis test

Hy: (X,Y) ~ PxQy .
Hl : (SL', Y) ~ PXY (45)

where Pyxy = Px o Py|x is the join distribution induced by the channel. l.e. this
tests if the pair (X,Y’) are dependent, or are independent with product distribution
PxQy. Using the Neyman-Pearson Lemma, let Z(X,Y) be the test that correctly
outputs H; with probability at least 1 — ¢ + 7, and has minimal error amongst all
tests which output H; when in fact Hy is true, i.e.

PxQy [Z(X,Y) =1] = B1_esr(Pxy, PxQy) . (4.7)

Note that this is the definition of f1_cy,(Pxy, PxQy). The encoder employs random
coding — each of M codewords {C},...,Cx} is generated i.i.d. from the distribution
Px. The decoder computes the test Z(c;,y) for each j = 1,..., M, and outputs the
smallest j such that Z(c;,y) = 1. If such an index does not exist, the decoder makes
an error. Denote the probability of error for a fixed codebook by P.(ci,...,cp). Let
W denote the sent codeword. With this encoder and decoder, there are two error
events: either an incorrect codeword has Z(c;,y) = 1 for j < W (since the decoder
outputs the first index), or if the correct codeword has Z(cy,y) = 0. From this, the
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probability of error averaged over all codebooks is given by

E[P.(C,...,Cy)] < PIZ(Cw,Y) = 0] + P [%;V( Z(C,,Y) = 1] (4.8)
_<_6—T+IP[1Jgaw>/cZ(Cj,Y)= 1} (4.9)

where the second line follows from (4.6). We handle the second term as follows: Let
X ~ Px denote a random variable that is independent from Y, then

M
P \max 7(C;,Y) = 1} = % Zzlp [Ijngx Z(C;,Y) = 1] (4.10)
1 < _
< M;;P [Z2(X,Y)=1] (4.11)
<M-lp [Z(X,Y)=1] (4.12)
= M2_ 1ﬁ1—e+r(ny,Pny), (4.13)

where the first line is averaging over W, the second is from the union bound, the
third is from summing the series of j < 7., and the fourth is from the definition of
/Bl—e+-r(PXY7 Pny). NOW, choose

T 28.(PQy) ]
M= { B (v, PxOY) | (1.14)
yielding from (4.13),
P |1 2(C; ) = 1] < 5Py, Q). (4.15)
j<

Now, note that 8,(P, Q) < « since the best test is better than the test that ignores
the data and outputs P with probability a. With this, we conclude

j<w

P |max Z(C;,Y) =1| < 7. (4.16)
| |

Hence overall, the average probability of error of our random code, from (4.9) is
bounded by

E[P.(Cy,...,Cu)] < e (4.17)

and we conclude that there exists an (M, €) code satisfying (4.14) for arbitrary 7 €
(0, €) and arbitrary distribution Qy. O

Remark 7. The “golden formula” in information theory often refers to the following
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equation: for any distribution on the output space Qy,
I(X;Y) = D(Pyix|Qv|Px) — D(Py||Qy). (4.18)

An example application is capacity saddle point i.e. if P%, Py are the capacity achiev-
ing input and output distribution of a channel, respectively, then for all Px, Qy,

D(Pyx||Py|Px) < D(Pyx||Py|Px) < D(Pyix||Qy|P) (4.19)

which allows us to give upper and lower bounds on capacity by cleverly choosing Px
and/or Qy. Indeed, in finite blocklength applications, a meta-principle is that

D(PHQ) = = lOg Ba(P? Q) (420)

Le. divergences are “replaced” by A functions. Note that ——%log Ba(P™, Q™) —
D(P||Q) as n — oo, so this isn’t unexpected. In this sense, the 88 bound can
be seen as a non-asymptotic analog to the golden formula, it reads:

M
log 5 > sup sup (—log fi_ci-(Pxy, PxQy) + log 3, (Py, Qy)) (4.21)

0<7<e Qy

The 8 bound can be seen as an average probability of error analog to the xA3
bound. Indeed, using Lemma 5, we can lower bound bound the x3 bound by

K. (F, Qy) > 6TPX[F](PX o PYIXy Qy)

M > >
SUP,ep /61—€+T(PY|X=1'7 QY) Sup:ceF Bl——e+T(PY|X=3:7 QY)

(4.22)

The 3 bounds has a few computational advantages. The major difficulty in comput-
ing the x8 bound is computing the supremum in the denominator. When considering
the average probability of error in the 83 bound, this supremum does not appear,
leaving us to approximate the error in a hypothesis test between two n-fold distribu-
tions.

4.2 Application to the MIMO-BF Channel

The art of applying and computing these bounds is in choosing the distributions
Px, Qy, and parameter 7 such that 1) the quantities are computable, and 2) the
bound still remains fairly tight. In this section, we will go through these choices for
the MIMO-BF channel where the fading process has i.i.d. Gaussian entries, i.e. the
Rayleigh case.

We apply the 53 bound by first choosing the input distribution Py~ to be uniform
on the sphere {z" € C">*"T : ||z"||2. = nTP}. This distribution can be represented
as

PX" ~ _K——Q— V nT P (423)
IWn|1%
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where W™ € C™*" has i.i.d. CN(0,1) entries. Note that this is the same input
distribution as used in the achievability proof. Qy»g» is chosen to be the capacity
achieving output distribution — this is the standard choice. Since Px» can be sampled
from using a n-dimensional standard Gaussian, and Qyrg~ = [[}., PuQy x is the
product of two Gaussian distributions, we can easily sample from this distribution.
Thus computing the denominator

Br—etr(Pxnynpn, PxnQynpn) (4.24)

can be done using the standard monte carlo approach.

Note that in the AWGN channel, B,(Pxnyn, PxnQyn) is constant over all in-
put distributions on the sphere when Qy~ is the capacity achieving output distri-
bution. Hence to compute this for the AWGN channel, replacing Px» with 2" =
(\/F, R \/_}—’) can simplify computation. In the MIMO-BF channel, 3, is not longer
constant over Pxn, so we cannot use this simplification.

The real challenge is computing B,(Pyngn, Qyngn). There is no closed form
expression for Pyn, hence we cannot directly compute the log likelihood ratio via
monte carlo. A technique to compute this S, (Pyngn,Qyngn) is as follows: Let
P%. denote the distribution on C*"T that has i.i.d. CN(0, P/n,) entries. Then
Qyrmn = P¥n 0 Pyngnixn, and

Pyan = PXn o PYanIXn (425)
= Pin 0 POy xn (4.26)

where Px o Py|x denotes the output distribution induced by Py through Py|x, and

here Pl(,s,z Hr|Xn denotes the channel

vnTP

Y*"=H"X"
1 X" F

AN (4.27)

I.e. we replace the channel by one that forces the input distribution to live on the
sphere, and then choose the i.i.d. Gaussian input distribution for this channel. The
motivation for doing this is the following — by the data processing inequality for

Ba(P, Q),
Br(Pyngn, Qynpin) > Br(Pin pganle P Pynpnxn) . (4.28)
le. the error in a binary hypothesis test between the true and auxiliary output

distributions is lower bounded by the error of the hypothesis test between the joint
distributions. Now, the log likelihood ratio of the right hand side can be computed
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in closed form, i.e.

yn — Ry vnTP

=1l

L exp (_}

2
P: HP(S) ' )
o (4.29)

l YanIXn n n’ hn :1
8 P Pyngnxn (" y ) =log > exp (— ||y — hnz™||?)
2
n n._n n n_nYv nTP
=log(e) | lly" — h"z"|)* — ||y" — "z Tl
(4.30)

Because of this form of the log likelihood ratio, ﬁT(P}nP}(,S,z Hnxn> Pxn Pynm) xn) be-
comes computable via Monte Carlo.

4.2.1 Renyi Divergence Method

There is a nice lower bound on the numerator in terms of the Renyi divergence:

Proposition 16. For any P, Q such that P < Q, and any non-negative A > 1,
B.(P,Q) > 771 (£P-DDAFIR) _ (1 _ T)A)“Ti“l (4.31)

Where DA(P||Q) = 125 logEq [(%)a] is the Renyi divergence. This implies

B-(P,Q) > exp (— Da(P ”2) () ) (4.32)

Proof. We use the property that the Renyi divergence satisfies the data processing
inequality, and use the test between P vs @ from the optimal hypothesis test to obtain

1

DA(PIIQ) 2 da(r]|Br) = 3—

log (P17 + (1- 71— B (4.33)

We lower bound the RHS using 1/(1 — 8,)*~! > 1, then simply solve for 3, in

A—1
DA(PIQ) 2 5= log ( (ﬁi) +(1- TV) (4.34)

a

We can use the data processing trick to obtain a closed form upper bound for the
Renyi divergence

where again Qynpgn is the caod, and Pynpg» induced by Pxg uniform on vnPS™ .
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Recall the data (un)processing trick: For two distributions Py,Qy, if we can view
them as outputs of two different channels for the sample input distribution, i.e.

Py :PXOPy|X (436)
Qy = Px o Qy|x (4.37)

Then the data processing inequality tells us that, for any function f that satisfies
data processing,

f(Py,Qy) < f(PxPyix, PxQyx) (4.38)

This is useful when the RHS is easy to compute and the LHS is difficult. An example of
this is for the MIMO fading channel, both 84 (Pynpgn, Qyngn) and D(Pyngn||Qynpn)
become easier to compute after noticing that each is the output distribution induced
by an ii.d. Gaussian input through

vnTP
X F
QYan|Xn . Yn = Han + ZTL (4.40)

PY“H“|X" YY" = H"X" + zZ" (439)
Then we compute the Renyi divergence between these distributions,

1
A—1

D(Pxnynpn|Qxnyngn) = logE

< PY'an|Xn

A—1
(Y",H",X")) ] (4.41)
QynHnixn

Again, the log likelihood ratio takes a fairly simple form,

2
P n n n P
(A= Dlog = (e b 2™y = (A — 1)z | [ly" = Bra™|)? = ||y" — hra" Y
Qyrpn xn |zl
(4.42)
Under Pxnynpgn, this has distribution
2
(A—1) vnP 9
"+ H'X" | —— -1 — 12" (4.43)
2 X7
2
A—1 vVnP - vnP
=—— | |H"X"|]? —1] +2Y ZHX,| — —1 (4.44)
2 [[X7]] ; X7
Denote, for notational simplicity,
2
P
S, = [|[H"X"|? (H—)?"II . 1) (4.45)
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And notice that expression (4.44) can be written as

A2 (5. +2v5.2) (4.46)

Where here, Z ~ N(0,1). With this, our task is to compute

D)\(_PXnyan |QXnYan) —

1 logE [e%()‘_l)(s"”mz)] (4.47)

To compute this, first taking expectations over Z, and either completing the square
or noticing that this is simply the MGF, we obtain

E [e%()\—l)(SnJr?\/S_nZ) — E [e30-Dsapg [e(A—l)ﬁ;z Sﬂ“ (4.48)
_E :e%(,\_1)sn+§(,\—1)zsn] (4.49)
. :e%W—l)Sn] , (4.50)
Plugging in S,,, we must compute
E [e%’\(*‘l)( ) T lexf] (4.51)

Where H; ~ N(0,1) for the Rayleigh case. Define

VY R AN
a=X\A—1) (1 ”Xn”) (4.52)

Then, we’re interested in

IEl: 221 lHlQXlz

X" —\/_n exp( 1h22——z}z)dh” (4.53)

— \/ﬁ” exp (~§ Zl h3(1 — axf)) dh® (4.54)

which we can numerically approximate. Empirically, it looks like the Renyi divergence
beats the non-Renyi divergence method by a decent margin, and about a factor
of 2 away from computing log B, (Pxnyngn,Qxnyngn), done via monte carlo. The
advantage of such a bound is that the Renyi divergence may be easier to compute
that B,(Py, Qy), either in closed for or via Monte Carlo. The downside is that when
7 is small, for small blocklengths, the bound can be fairly loose. We have used
direct computation of log B, (Pxnyngn, Q@xnyngn), but in cases where this cannot be
computed, this Renyi divergence trick may help.



Chapter 5

Analysis of the Dispersion
Expression

In Chapter 3, we established that the dispersion is given by

V = min E[Var(i(X;Y, H)|X)] . (5.1)

Px-caid

Furthermore, Theorem 1 gave a characterization of the capacity achieving input distri-
butions: when rank(H) > 1 with positive probability, the caid is uniquely Gaussian,
otherwise there are multiple caids. However, this form of the dispersion gives us no
insight into the behavior of the channel as a function of the parameters, just as the
capacity expression C' = maxp, [(X;Y, H) tells us nothing about how rate behaves
as a function of number of antennas. In this chapter, we begin by giving an analytic
expression for the dispersion. After that calculation, we look at what we learn from
the form of this expression.

5.1 Calculation of the Dispersion

The main theorem of this section is a calculation of the MIMO dispersion expression:

Theorem 17. Assume that Plrank H > 1] > 0, then V(P) = V,;4(P), where

Mmin P
Viia(P) = TVar (}: Cawen (n—AED
i=1 ¢

Mmin P
+ ZE [VAWGN (n_A?):i
i=1 t

(6

where {A?,i =1,... ,nun} are eigenvalues of HHT, Vawon(P) = 252 (1 — ﬁ),
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and

g

A 5.3
02 53)
0 2 log ¢ ZIE 2(A2)] (5.4)

é

Tmin 2
(Z E [c ) (5.5)
The proof is given in terms of a series of propositions.

Proposition 18. Let V,(z") £ LVar(i(X™; Y™, H")|X™ = z"), then we have
1 n
==Y Va(zy), (5.6)
n

where the function Vi : R**T s R defined as Vi(z) £ 1Var(i(X;Y, H)|X = z) is
given by

Vi(z) = T'Var (C,(H, P)) (5.7)

(C.
i) o
+775( 2| _E) (5.9)

Uz T
2. 1p\?
Ty Ty
1
o (ann% - n—tuxn;%) (5.11)

where c(-) was defined in (5.3) and C.(H, P),n3,m4,ms are given by (5.12)-(5.15).

Remark 8. Every term in the definition of Vi(z) (except the one with 75) is non-
negative (for ns-term, see (5.41)). The ns-term will not be important because for
inputs satisfying power-constraint with equality it vanishes. Note also that the first
term in (5.15) can alternatively be given as

Cov <CT(H, P), i c (Ai)) = nt;iPVar [C.(H, P)] .

Proof. From (2.40), we have the form of the information density. First note that
the information density over n channel uses decomposes into a sum of n independent
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terms,

n

i@ Y™ H") = i(z;,Y;, Hy). (5.16)
j=1

As such, the variance conditioned on z™ also decomposes as

Var(i(a"; Y, H™) = S Var(i(ey; Yy, Hy)) (5.17)
j=1
from which (5.6) follows. Because the variance decomposes as a sum in (5.17), we
focus on only computing Var(i(z;Y, H)) for a single coherent block. Define

f(h) ETC,(h, P) (5.18)
A loge & AZ|lvf ||? + 2Ak (vf @, Zx) — ZAZ|| 2|
g(z,h,z) = Z — : (5.19)
2 k=1 1+ ?;Ak

so that i(x;y, h) = f(h) + g(x, h, 2) in notation from (2.40). With this, the quantity
of interest is

Var(i(z,Y, H)) (5.20)
= Var(f(H)) + Var(g(z, H, Z)) + Cov(f(H), g9(z, H, Z)) (5.21)
= Cov(f(H), g(z, H, Z)Z—E—Yar(f(H)z
éTl éTz
+ Var (Elg(z, H, Z)|H]) + E [Var(g(z, H, Z)| H)] (5.22)
C.(H,P) 2 ; log det (Inr + —HHT) i Cawan ( ) (5.12)
ns 2 ]Oi Var (gc (Aﬁ)) (5.13)
a log®e flaly 2y
2 g (B[00 - iy D e ) e
ns 2 lOgec ov (C,.(H, P.S e (Ai)) + 105;26 "i]E B
k=1 k=1 (1 + %Ai)

(5.15)
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where (5.22) follows from the identity

Var(g(z, H, Z)) = E [Var(g(z, H, Z)|H)]
+ Var (E[g(z, H, Z)|H]) . (5.23)
Below we show that T} and Tj corresponds to (5.9), T corresponds to (5.7), Ty

corresponds to (5.8), and Tj corresponds to (5.10) and (5.11). We evaluate each term
separately.

Cov( (H) g(z, H, Z)) (5.24)
loge ||$||
( "tF )
ZIE (f(H) = E[f(H)])(c (A7) — Ele (AD)])] (5.26)
oge 2 i
_1 § (”Z’JF TP) ;Cov (H),c(A2)) (5.27)
where (5.26) follows from noting that
E [g(z, H, Z)|H] = i (||Vka||2 — an) c(72) 1°§e . (5.28)
k=1 ¢

Now, since V; is independent from A by the rotational invariance assumption, we
have that f(H) is independent from Vi, since f(H) only depends on H through its
eigenvalues, see (5.12). We are only concerned with the expectation over g9(z,H,Z)
n (5.25), which reduces to

Elg(z, H,Z) — E[g(z, H, Z)]| Ay, ..., An_.]

C(lzlE TPNZR ., o, loge
_( - - ;c(/\k) Elc (Ax)?] = (5.29)

giving (5.26).
Next, T, in (5.22) becomes

Ty = Var(f(H)) (5.30)
= T?Var <§ Cawen (5[\%)) . (531)
k=1 t
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For T3 in (5.22), we obtain

T3 = E [Var(g(z,H, Z)|H)) (5.32)
2
log2 e min 4Ai”VkT‘T”2 + 2T }%) Ai
=~ E S (5.33)
k=1 (1 + n%Ak)
2
. TP A2 4
log? e Mmin 2 A+T - A,c
_ ogé‘ e T]E < )2
1+ Ak
!l_xll_g 2 TPA2
+2E | = (5.34)
1 + PA2
= TZ VAWGN AQ)
k=1
TP
+ log?(e) (”x”F ) E , (5.35)

1 + £ A2)
where

e (5.33) follows from taking the variance over Z (recall Z = UTZ in (2.40)).

e (5.34) follows from Lemma 2 applied to E[||V,Tz||?], and adding and subtracting
the term

TP A2

g k
log’(e)E | —2t—— | . (5.36)
(1 - n—}in)
Continuing with T3 from (5.22),

Ty = VarE[g(z, H, Z)|H] (5.37)

~ Var (1-;0’—2 (1) (1 n?—’%)) (539)

k=1

(Ill‘llfv TP)2
T Ty

log? e Qmin .
©°E |Var (Zc(Az) Vi)

* 4
k=1

A17 M 7A"min):| (539)

where
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e (5.38) follows from taking the expectation over Z,

e (5.39) follows from applying the variance identity (5.23) with respect to V and
A, . A as well as recalling (5.13).

Tmin ?

We are left to show that the term (5.39) equals (5.11). To that end, define

#(z) 2 E |Var (Z c (AD) Vil z|?|Ay, . .. ,Anm)] (5.40)
k=1
=Y E[A(A])]Var ([ z||?)
k=1
+ ZIE c (AD)] Cov(||[ViT |2 IV z|?) . (5.41)
k£l

We will finish the proof by showing

4 T2 1 4)
T S— )
logzem (“ |7 e |-

To that end, we first compute moments of V' drawn from the Haar measure on the
orthogonal group.

¢(z) =

Lemma 19. Let V be drawn from the Haar measure on O(n), then for i,j,k,l =
1,...,n all unique,

E[V;3 =% (5.42)

E[V; Vi =0 (5.43)
E[V;Vil = n(n—1+2§ (5.44)
Vel = o —n;)r(:z ) (545)
E[V]] = —T—LG—:jm (5.46)

B[V ViV Vi = ———— (5.47)

nn—1)(n+2)

Proof of this Lemma is given below.

First, note that the variance Var(||V,I z||?) does not depend on k, since the marginal
distribution of each V} is uniform on the unit sphere. Hence below we only consider
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Vi. We obtain

Var(|[Vi"2]|*)

[IIVT$II4] E*[||vi"2|1%] (5.48)
2
L [Ealy:
=K <Z;Zlkz:‘/]1v;cll'ﬂxm) — n—tQF (549)
% i=1 k=

=]E Ziizvﬂv’ﬂ 11 m1 TJ,Tk><’I"l,’I‘m>} (550)

Li=1 k=1 I=1 m=1

where r; denotes the j-th row of z. Now it is a matter counting similar terms:

E[IVi || ZE ”7'1”4‘*‘221E AVal(rs, )’

J#k

+ZE Viviallln | re1? (5.51)

J#k
— 4 - _ 2
= +2) lenll gy D ()

i#k
b I Pl (5.52)
J#k
1 4 T2

= ——— 2 5.53

gy (el + 20z 3) (5.53)

where
e (5.51) follows from collecting like terms from the summation in (5.50).
e (5.52) uses Lemma 19 to compute each expectation.

e (5.53) follows from realizing that

Izl = (Z llrjll2> Z Irsl1* + Z I 11l (5.54)

J?ék
Tt Tt
lza™ 15 = (i) Z 711+ + Z 7y ) (5.55)
7=1 k=1 J#k
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Plugging this back into (5.48) yields the variance term,

||
Var(|[Vi z|?) = (e 12 Izl + 2llzz™||7) — 7
2 2 lzllE
_ S Ikl 1V I 5.56
ndnr+2)(nmvnF L (5.56)

Now we compute the covariance term from (5.41) in a similar way. By symmetry of
the columns of V', we can consider only the covariance between ||V,'z||? and ||V z|?,
le.

x
Cov(IV7al®, IV l?) = EfVEa|2 Vel - 12IE (557)

t

Expanding the expectation, we get

E[IVi z|*|| V5 =|?) (5.58)
= > EVi;VieVatVam) (75, 1) (1, ) (5.59)
jk:lm
= ZE[ Hrll* + > EVEVaRIIr 1Pl
J#k
+2 Z E[Vi;VikVa; Var) (5, 75) (5.60)
J#k
=-——1———§fﬂrﬂ4+ nt }:HTHIVIP
n(n +2) <70 T (e — Dng(ng +2) g ATk
2
- .61
( —1)nt nt+2)z T],’I"k (56 )
1
= ((ne + D|z|3 — 2l|lzz"||7) - (5.62)

(ny — V)ng(ngy +2)
With this, we obtain from (5.57),
Cov([Vy =l IVy2II)

2 B
(ne — Dyng(ng + 2) ( ny | | 1~) (5.63)

where the steps follow just as in the variance computation (5.51)-(5.53).
Finally, returning to (5.41), using the variance (5.56) and covariance (5.63), we
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obtain

o) = (oo - L)

_nt (nt + 2) Ty
ne 1
(Z E[c*(A2)] — — > Elc(A}) c(Af)]) . (5.64)
k=1 t kL
Plugging this into (5.39) finishes the proof. O

Proof of Lemma 19. We first note that all entries of V have identical distribution,
since permutations of rows and columns leave the distribution invariant. Because of
this, we can WLOG only consider Vi1, Via, Vo1, Vae to prove the lemma.

e (5.42) follows immediately from > 7 Vi =1 a.s.
e Let V;, V; be any two distinct columns of V/, then (5.43) follows from

0 =E[(V;, V})] = nE[Vi1 Val] (5.65)

e For (5.44) and (5.47), let E; = E[V}i] and E, = E[V32VZ]. The following
relations between E,, E5 hold,

1=FE (Xn: V{j) (5.66)
=nE; +n(n—-1)E,. (5.67)

By multiplying V by the orthogonal matrix matrix

1/vV2 —-1/v/2 0
1/v2 1/v2 0 (5.68)
0 0 I,
where I, is the n x n identity matrix, we obtain the extra relation
Vi Vlz)“
E=E||l—=+—7F 5.69
| (5 (559
1 3
= §E1 + §E2 (5.70)
from which we obtain F; = 3F,. With this and (5.67), we obtain
3
EFl=— 5.71
T nn+2) (5.71)
1
Ey=———. 5.72
> T nn+2) (572)
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e For (5.45), take

Ey = E[VAVZ] (5.73)
1/121 ( Z VQQJ) (5.74)
J#2
1 1
= ~ m —(n—2)E; . (5.75)

Solving for Fj yields (5.45).

e For (5.47), let Vi, V; denote the first and second column of V respectively, and
let By = E[V}3 V12V Vag), then (5.47) follows from

0=E[(1h,2)?] (5.76)
=nEs+n(n—1)E, . (5.77)

Using E> from (5.72) and solving for E, gives (5.47).

The following proposition gives the value of the conditional variance of the infor-
mation density when input distribution has i.i.d. N (0, P/n;) entries. This will turn
out to be the operational dispersion in the case where rank H > 1.

Proposition 20. Let X" = (X3, ... ,Xn) be i.i.d. with Telatar distribution (2.9) for
each entry. Then

E [Var(¢(X™ Y™, H™)|X")] = nTV;;a(P), (5.78)
where V;q(P) is the right-hand side of (5.2).

Proof. To show this, we take the expectation of the expression given in Proposition 18
when X™ has ii.d. N(0, P/n;) entries. The terms (5.7) and (5.8) do not depend
on X", and these give us the first two terms in (5.2). (5.9) vanishes immediately,
since E[|| X||%] = T'P by the power constraint. It is left to compute the expectation
over (5.10) and (5.11) from the expression in Proposition 18. Using identities for x?
distributed random variables (namely, E [x?] = k, Var(x?) = 2k), we get:

v = 2 () ar (579)
Bl =77 (74 2) (5.80)

E[| X, XT||%] = nT (%)2(1 + T +ny) (5.81)

E || X XT3 - %] =T (%)2 (ng — 1)(ny +2) . (5.82)
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Hence, the sum of terms in (5.10) + (5.11) after taking expectation over X™ yields

T (5)2 [2@ + (g — 1) (ng + 2)774} .

Uz Uz

Introducing random variables U; = ¢(A?) the expression in the square brackets equals
2
> Var(ZU) + (ny — 1) Z]E [U7]
- > E[UU;)

i

log? el

(5.83)

At the same time, the third term in expression (5.2) is

loiel ntZIE[UQ (ZE ) . (5.84)

LD

One easily checks that (5.83) and (5.84) are equal. O

The next proposition shows that, when the rank of H is larger than 1, the condi-
tional variance in (3.6) is constant over the set of caids. Thus we can compute the
conditional variance for the i.i.d. N'(0, P/n;) caid, and conclude that this expression
is the minimizer in (3.6).

Proof of Theorem 17. For any caid the term (5.9) vanishes. Let X* be Telatar dis-
tributed. To analyze (5.10) we recall that from (2.22) we have

E(IXIF =) EXZX: ] =E[X"||3.

4,545

For the term (5.11) we notice that

IXXTNI% =D (R, R;),

J
where R; is the i-th row of X. By (2.21) from Theorem 1 we then also have
E[IXXTE] =E[IX"XT]Z].

To conclude, E [V} (X)] = E [Vi(X*)] = Viia(P). O

5.2 Intuition about the Dispersion Expression

Just as there was interesting design intuition to gain from Telatar’s capacity result, by
looking at the dispersion expression found in Theorem 17, we can gain some additional
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Figure 5-1: Achievability and normal approximation for n, = n, =T =4, P = 0dB,
and € = 1073,

insights about the MIMO-BF channel.

Figure 5-1 plots the capacity, normal approximation, and 3/ achievability bound
for the MIMO channel with n; = n, = T = 4 for the complex case. The details of
this computation are given in [21]. The 88 bound was developed by Yang et al [21]
and is often more computationally friendly than the k3 bound. This figure illustrates
the gap between achievability and the normal approximation, as well as the gap to
capacity. For example, at blocklength 400, we can achieve about 88% of capacity,
and at blocklength 1000 we can achieve about about 92% of capacity, given P = 0dB
and tolerating an error probability of 1073

Figure 5-2 shows the dependence of the rate on the coherence time 7" for the 4 x 4
MIMO channel. The normal approximation for T = 1, 20, 80 is plotted. From (2.10)
and (5.2), we know the capacity does not depend on T', but the dispersion depends on
T in an affine relationship. Hence, from the dispersion we see that a larger coherence
time reduces the maximum transmission rate when the other channel parameters are
held fixed. Intuitively, when the coherence time is lower, we are able to average over
independent realizations of the fading coefficients in less channel uses. Note that the
CSIR assumption implies that we know the channel coefficient perfectly, which may
be unrealistic at short coherence times for a practical channel.

We now ask: how does the dispersion depend on the number of transmit and
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receive antennas? Figures 5-3 and 5-4 depict the normalized dispersion V/C? as a
function of the number of antennas. The normalized dispersion gives us a measure of
the blocklength needed to achieve a fraction n € (0,1) of capacity, via

nz (%(;))2 é (5.85)

The fading process is chosen to be i.i.d. (0, 1). Each plot has two curves: one curve
with n, fixed and n; growing, and the other curve with n; fixed and n, growing. In
both plots, coherence time is T' = 16. The difference is that on Fig. 5-3 the received
power P, is held fixed (at 20 dB, i.e. P is chosen so that P, = 100), whereas on
Fig 5-4 it is the transmit power P that is held fixed (also at 20 dB, i.e. P = 100).
The relation between P. and P is as follows:

o gEmHH%J , (5.86)

These figures also display the asymptotic limiting values of % computed via random-
matrix theory:

1. When n, is fixed and n; — oo under fixed received power P, we have

C(P,) = % log (1 + g) +o(1) (5.87)
V(P,) = log?(e) - f’”& +0o(1) . (5.88)

2. When n, is fixed and n, — oo under fixed received power P, we have

C(P,) = % log <1 + %) +o(1) (5.89)
P2+ £)

V(P,) = log®(e) +0(1). (5.90)

21 + £=)2
3. When n, is fixed and n; — oo under fixed transmitted power P we have

C(P) = % log (1 + P) + o(1) (5.91)

n, P
1+ P

+o(1). (5.92)
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Figure 5-2: The normal approximation for varying coherent times, with n, = n, = 4,
P =20dB, and € = 1073

4. When n; is fixed and n, — oo under fixed transmit power P we have

C{P) = % log (1 + %) +0(1) (5.93)
ViP) = logz(e)% +o(1). (5.94)

is the same as the capacity of the n, xn; one. Having information about dispersion,
we may ask the more refined question: although capacities of the channels are the
same, which one has better dispersion (i.e. causes smaller coding latency)?

From approximations (5.88) and (5.90), we can see that the channel dispersion is
not symmetric in ny, n,. For example, in the setting of Fig. 5-3 we see that the delay
penalty in the n, < n, regime is 58% of the penalty in the n, < n; regime. Hence,
in a two user channel, if user 1 has n; antennas and user 2 has np > n; antennas,
then the asymptotic analysis suggest that channel from user 1 to user 2 can support
higher rates than the channel from user 2 to user 1 at finite blocklength.

Figure 5-4 shows the scenario where the transmit power is fixed. In this case,
the capacity approaches a finite limit when 7, is held fixed and n; — oo, but grows
logarithmically when n, is fixed and n, — oo, as shown in equations (5.91) and (5.93).
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Figure 5-3: Normalized dispersion —(‘;—2 as a function of n, and n;. The received power

is P. = 20dB and T = 16. Dashed lines are asymptotic values from (5.87)-(5.90).

In this setting, the normalized dispersion approaches a finite limit when n, is fixed
and n; — oo, yet it vanishes when n; is fixed and n, — oo. Consequently in this
regime, we can always choose the number of receive antennas n, large enough so
that our system can achieve a given fraction of capacity 1 using blocklength n. The
normalized dispersion in this case is proportional to 1/ log®(n,.).
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Figure 5-4: Normalized dispersion —C‘% as a function of n, and n,. The transmit power
is P = 20dB and T = 16. Dashed lines are asymptotic values from (5.91)-(5.94).
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Chapter 6
The Curious Case of Rank 1

In the case where the fading process has rank 1 almost surely (of which n, = 1,
i.e. MISO, is a special case), and interesting phenomenon occurs. As described in
Theorem 1, when the fading process has rank 1, suddenly the channel has many non-
trivial capacity achieving input distributions. As we saw in Chapter 3, the dispersion
is given in the variational form

L g Var(i(x; v, H)|X)] . (6.1)

A
V(P) =
(P) PX:I()}?Y\H)=CT

where the minimization is over the set of caids. In this chapter, we’ll see that in fact
the above function is not constant over the set of caids, and in fact is minimized at
non-trivial orthogonal design like input distributions.

6.1 Computation of the Dispersion as a Function
of the Input Distribution

To understand the minimal value in (6.1), first we compute the explicit expression
in terms of the input Px. The following proposition gives the expression for the
conditional variance in this case, as a function of the caid.

Theorem 21. When P[rank(H) < 1] =1, we have

t

+ GZ)Q (m - E%v*(nt,T)) (6.3)

where A% denotes the distribution of the non-zero eigenvalues of HHT , and

V(P) = TVar (CAWGN (%\2)) +E [VAWGN (HEAQ)] (6.2)

* n? 2
T) — Var(|| X 4
v T) = o, ax Ver(IX L) (6-4)



Proof. As in Prop. 20 we need to evaluate the expectation of terms in (5.9)-(5.11).
Any caid X should satisfy E [||X||%] = TP and thus the term (5.9) is zero. The term
(5.10) can be expressed in terms of Var(]|X]|%), but the (5.11) presents a non-trivial
complication due to the presence of || X X7||%, whose expectation is possible (but
rather tedious) to compute by invoking properties of caids established in Theorem 1.
Instead, we recall that the sum (5.10)+(5.11) equals (5.39). Evaluation of the latter
can be simplified in this case due to constraint on the rank of H. Overall, we get

E [Var(i(X; Y, H)|X)]
= T?Var (CAWGN (%A%)) +TE [VAWGN (—EA%)] (6.5)

+28 [var (o) (v - 25 [x)] ©6)

where ¢(-) is from (5.3). The last term in (6.6) can be written as
TP\?

(mxie-27)
Uz

2
(Emvrxiix - 0 ] 67)

E[c (1)’ E

—E*[c(A])]E

t

which follows from the identity Var(AB) = E[A?|E[B?] — E*[A]E?[B] for indepen-
dent A, B. The second term in (6.7) is easily handled since from Lemma 2 we have
E[|VIX||%2|X] = ||X]|%/n:. To compute the first term in (6.7) recall from Theo-
rem 1 that for any fixed unit-norm v and caid X we must have vT X ~ N(0, P/n,Ir).
Therefore, we have

TP\? 2T P?
B | (vrxie- 10 ) | =T
n n;
Putting everything together we get that (6.7) equals
2)2 P\* 212 1 2
E |c (A3)%] 27 ) —El(A)] S Var(1X]) (6.8)
t
concluding the proof. O

6.2 Minimizing the Conditional Variance

Theorem 21 shows that the conditional variance has the form

X
n

Var(i(X;Y, H)|X) = Vi(P) — S Var(|X[[}) (69
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where V; is independent of the CAID X and x» is a non-negative constant. In this
form, the dependence of the dispersion on the input distribution is explicit: in order
to minimize the dispersion, we maximize Var(||X||%) over the set of CAIDs. We can
expand Var(||X||%) as a sum of covariances which will be easier to deal with. This is

captured in the following definition, then use to define V,,;, as the minimal dispersion
over the set of CAIDs.

Definition 2. For the MISO channel with n; transmit antennas and coherence time
T we define

vt (n, T) £ Py I(X YH) CZZZZP?@ (6.10)

i=1 j=1 k=1 I=1
where

2 M’_X:l (6.11)
Pikit = Var(X?,) .
The notation p;; is appropriate since whenever X is jointly Gaussian, pfkﬂ is the
squared correlation coefficient between X;; and Xj;;. However, there are non-jointly
Gaussian CAIDs where this isn’t the case. For instance, when n, = T = 2, for
v ~ Ber(1/2) and A, B i.i.d. N (0, P/2), the following achieves capacity

=[5 G o2

Here, the correlation coefficient between X7 and Xa; is 0, however (6.11) gives plyo, =
1.
Now we define V,,;,, the minimal dispersion, is given in terms of v*(n, T).

Proposition 22. The minimal dispersion of an ny x T block-fading MISO channel
s gwven by

A . 1 . 2X2P2
Vimin = Inf  =Var[i(X;Y, H)|X]| = Vi(P) —

v (ng, T) (6.13)

where Vi and xo are from (6.9).

Proof. The only term that depends on X in (6.9) is Var(||X||%). We can expand this
as a sum of covariance terms:

e ne

Var(|| X ||2) ZZZZCW (6.14)

i=1 j=1 k=1 l=1
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Writing this in terms of the pj ;;, and using Var(X7) = 2(P/n,)?, (6.11) yields

Var( X[ =2 £ )ZZ S (6.15)

i=1 j=1 k=1 I=1

Maximizing this term over the set of CAIDs gives 2(P/n;)?v*(n;, T), and plugging
this value of Var(||X||%) into the expression for the conditional variance from Propo-
sition 21 gives V,,;, above. D

Intuitively, we see that minimizing dispersion is equivalent to mazimizing the
amount of correlation amongst the entries of X when X is jointly Gaussian. In a
sense, this asks for the capacity achieving input distribution having the least amount
of randomness.

Next we must characterize v*(n;, T'). The manifold of CAIDs is not a particularly
nice manifold to optimize over, one must account for all the independence constraints
on the rows and columns, the covariance constraints on the 2 X 2 minors, positive
definite constraints, etc. Our strategy instead will be to given an upper bound on
v*(ng, T'), then show that for most of the pairs (n;, T'), the upper bound is tight. The
crux of the upper bound is the following simple lemma.

Lemma 23. Let (Ay,...,A,) and (By,...,B,) be i.i.d. random vectors that may
have arbitrary correlation between them, then

i i Cov(A;, B;) < no? (6.16)

i=1 j=1
With equality iff Y . Ai =Y ., Bi almost surely.

Proof. Simply use the fact that covariance is a bilinear function, and apply the
Cauchy-Schwarz inequality as follows:

n

ZiCov(Ai,Bj) = Cov (i Ai,zn:Bj) (6.17)
< ,|Var (2": Ai) Var <i Bj) (6.18)

i=1 j=1

= +/(nVar(A;))(nVar(B)) (6.19)
= no? (6.20)

We have equality in Cauchy-Schwarz when Y " | A; and > 7 | B; are propositional,
and since these sums have the same distribution, the constant of proportionality must
be 1, so we have equality in (6.36) iff >, A; =" | B; almost surely. O

We will use this lemma shortly to upper bound Var(]|X||3.). But before stating
the main theorem of the section, we review orthogonal designs.
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6.3 Orthogonal Designs

6.3.1 Historical Introduction

In this section we will give some relevant background on orthogonal designs, since
they will play a large role in this work. For some historical background, Hurwitz was
interested the existence of a “composition formula” for positive integers (r, s,n) [22]

@z + ) =+ ) (6.21)

where the z;’s and y;’s are indeterminantes, and each z; is a bilinear form in the z;’s
and y;’s. For example, such a (2,2,2) composition formula is

(xf + xg)(yf + yg) = (7191 — $2y2)2 + (z1y2 + $2y1)2 (6.22)

Let z = (z1,...,2),y = (Y1,-.-,Ys), and z = (21, ..., 2,), then the condition that z;
is a bilinear form of the z;’s and y;’s means that z can be written as z = Ay where
the entries of A (n x s) are linear combinations of z;’s. In this notation, (6.21) can
be restated as

2Tz =yTAT Ay = 2T zy"y (6.23)

Which must hold for all indeterminants in y, so the existence condition reduces to
the existence of an n x s matrix A with entries that are linear combinations of the
x;’s such that

ATA =Y "all, (6.24)
=1

which yields (6.21), since
3= () (24) (629
i=1 i=1 i=1

as desired. So the problem of constructing n X s matrices A with entries given by

Zi,..., T, satisfying (6.24) is equivalent to finding composition formulas of the form
(6.21).

6.3.2 Hurwitz-Radon Families

Definition 3 (Orthogonal Design). A real n x n orthogonal design of size k is defined
to be an n xn matrix A with entries given by linear forms in x1, .. ., zx and coefficients

in R satisfying
k
ATA = <Z m§> I, (6.26)
i=1
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In other words, all columns of A have squared Euclidean norm Zle x?, and all
columns are pairwise orthogonal. Orthogonal designs may be represented as the sum
A = S x,V; where {V4,...,Vi} is a collection of n x n real matrices satisfying

Hurwitz-Radon conditions:

VIiVi=1, i=1,...,k (6.27)
VIV +ViVi=0 i#

The main theorem on Hurwitz-Radon families gives the largest k such that a family
satisfying the above conditions exists, as stated in the following theorem from [23,24].

Theorem 24 (Radon-Hurwitz). There exists a family of nxn real matrices {V4, ..., Vi}
satisfying (6.27) iff k < p(n), where

p(2°0) = 8 EJ Foomedd o h e 7 boodd. (6.28)

In particular, p(n) < n and p(n) =n only forn =1,2,4,8.

So the maximal size of a n x n orthogonal design is the Hurwitz-Radon number
p(n). For a concrete example, note that Alamouti’s scheme is created from a Hurwitz-
Radon family for n = k = 2. Indeed, take the matrices

0 1
‘/12127 ‘/Q_I:_l 0]7

then Alamouti’s orthogonal design can be formed by taking aV; + bV5. It turns out
that “maximal” Hurwitz-Radon families give capacity achieving input distributions
for the MIMO-BF channel, see Proposition 25 for the details.

The definition of orthogonal designs can be generalized to rectangular matri-
ces [25], as follows:

Definition 4 (Generalized Orthogonal Design). A generalized orthogonal design is
a p X n matrix A with p > n with entries as linear forms of the indeterminates
{z1,...,z} satisfying (6.26).

The quantity R = k/p is often called the rate of the generalized orthogonal design.
This term is justify by noticing that if p represents a number channel uses and k&
represents the number of data symbols, then R represents sending k data symbols in
p channel uses. In this work, we are only interested in the case R =1 (i.e. k = p),
called full-rate orthogonal designs. Full-rate orthogonal design can be constructed
from a Hurwitz-Radon family {V},...,V,}, each V; € R¥** by forming the matrix A

A=Wz - V,a (6.29)

where & = [z1,..., 2T is the vector of indeterminates. It follows immediately from
this construction that (6.26) is satisfied. Theorem 24 allows us to conclude that a
generalized full rate n x k orthogonal design exists if and only if n < p(k).
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The following proposition shows that full rate orthogonal designs correspond to
caids in the MIMO-BF channel.

Proposition 25. Take n, = p(T) and a mazimal Hurwitz-Radon family {V;,i =
1,...,m} of T x T matrices (cf. Theorem 24). Let & ~ N(0,P/n.r) be an i.i.d.
row-vector. Then the input distribution

X = [V ...vTer)” (6.30)
achieves capacity for any MIMO-BF channel provided Plrank H < 1] = 1.

Proof. Since {V4,...,Vy,} is a Hurwitz-Radon family, they satisfy (6.27). Form X
as in (6.30). Then each row and column is jointly Gaussian, and applying the caid
conditions (2.17) and (2.18) from Theorem 1 shows,

P P

E[RR] = VTBETqVi = -V{TVi = —-Ir (6.31)
B[R] )] = VTEIEQ)Y; = V]V =~ VIV
— ERIR] t (6.32)
Therefore X satisfies the caid conditions, and hence achieves capacity. O

Remark 9. The above argument implies that if X € R™*T is constructed above,
then removing the last row of X gives an (n; — 1) x T input distribution that also
achieves capacity.

6.4 Main Theorem

The main theorem of this section is the following, which summarizes our current
knowledge of v*(n., T).

Theorem 26. For any pair of positive integers ny, T we have
v (T,ng) = v*(ng, T) < nyT min(ny, T) . (6.33)
Ifne < p(T) or T < p(ny) then a full-rate orthogonal design is dispersion-optimal and
v*(ng, T) = n,T min(n,, T) . (6.34)
If instead ny > p(T) and T > p(ny) then for a jointly-Gaussian capacity-achieving

input X we have

2
ny

2pP?

Var(|| X ||%) < nT min(ny, T) . 6.35)
F

1So that in these cases the bound (6.33) is either non-tight, or is achieved by a non-jointly-
Gaussian caid.
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Finally, if n, < T and (6.34) holds, then v*(n},T) = n?T for any n, < n; (and
stmilarly with the roles of ny and T switched).

Theorem 26 states that for dimensions where orthogonal designs exist, the con-
ditional variance (3.6) is minimized if and only if the input is constructed from an
orthogonal design as in Proposition 25. The approach is first to prove an upper
bound on v*, then show that conditions for tightness of the upper bound correspond
to conditions of the Hurwitz-Radon theorem.

Note that the p(n) function is monotonic in even values of n (and is 1 for n odd),
and p(n) — oo along even n. Therefore, for any number of transmit antennas ny,
there is a large enough 7" such that n, < p(T), in which case an n; x T full rate
orthogonal design achieves the optimal v*(n;, T).

We start with a simple lemma, which will be applied with A, B equal to the rows
of the capacity achieving input X.

Lemma 27. Let A = (Ay,...,A,) and B = (By,...,B,) each be i.i.d. random
vectors from the same distribution with finite second moment E[A?] = 0% < oo.

While A and B are i.i.d. individually, they may have arbitrary correlation between
them. Then

n

> i Cov(A;, B;) < no? (6.36)

=1 j=1
with equality iff > | A; = ., Bi almost surely.

Proof. Simply use the fact that covariance is a bilinear function, and apply the
Cauchy-Schwarz inequality as follows:

n

> ‘i Cov(A;, B;) = Cov (Xn: A;, Xn: Bj) (6.37)
< .| Var (Zn: Ai> Var (i Bj) (6.38)

i=1 j=1

= /(nVar(A,;))(nVar(B,)) (6.39)
= no? (6.40)
We have equality in Cauchy-Schwarz when )" | A; and > | B; are proportional, and

since these sums have the same distribution, the constant of proportionality must be
equal to 1, so we have equality in (6.36) iff > | A, = > " | B; almost surely. O
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Proof of Theorem 26. First, we rewrite v*(n;,T) defined in (6.4) as

U*(nta T) é
,n2 nge ne T T
- 2
2P? py: I(X YIH) c z; ; kZ Z: ov (X, X ) (6.41)

From here, v*(n;, T) = v*(T,n;) follows from the symmetry to transposition of the
caid-conditions on X (see Theorem 1) and symmetry to transposition of (6.41). From
now on, without loss of generality we assume n; < 7.

For the upper bound, since the rows and columns of X are i.i.d., we can apply
Lemma 27 with A; = X7, and B; = X7, (and hence 0% = 2(P/n;)?) to get

> Cov(XZ, X2) < ) 2T(P/ny)* = 2nfT(P/n)? (6.42)

i’j’k7l

which together with (6.41) yields the upper bound (6.33) (recall that n, < 7).
Equation (6.42) implies that if X achieves the bound (6.33), then removing the
last row of X achieves (6.33) as an (n; — 1) x T design. In other words, if (6.33) is
tight for n; x T then it is tight for all n; < n,.
Notice that for any X such that any pair X;x,X;, is jointly Gaussian, we have

5 PQVar(lanF > At (6.43)
3,7,k
where
plkﬂ P COV( ik le) . (644)

Take X € R™*7T as constructed in (6.30). By Proposition 25, X is capacity achieving
and identity (6.43) clearly holds. In the representation (6.30), the matrix XI/JTV con-
tains the correlation coefficients between rows ¢ and j of X, since E[(¢V;)" (EV))] =
A

T T
IVIVillE =D oh (6.45)

k=1 [=1
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Therefore we can represent the sum of squared correlation coefficients as

ny Nt

> o= Y IVl (6.46)
VLN i=1 j=1
= > u (Vi) (6.47)
i=1 j=1
ng 2
= tr (Ezlé%T) (6.48)
=1
=n;.T (6.49)

Line (6.49) follows since the V;’s are orthogonal by the Hurwitz-Radon condition,
so each V;V;T = Ir in the summation in (6.48). Hence the X constructed in (6.30)
achieves the upper bound in (6.42) and (6.33).

Next we prove (6.35). Suppose X is a jointly-Gaussian caid saturating the bound (6.42).
From Lemma 27, the condition for equality in (6.36) implies that for all j € {1,...,n.},

IR IIE = IR as. (6.50)

where R; is the j-throw of X for j = 1,...,n,. In particular, this means that every R;
is a linear function of R;. Consequently, we may represent X in terms of a row-vector
& ~ N(0,P/n,) as in (6.30), that is R; = £V for some T x T matrices Vj,j € [ng].
We clearly have

E[RTR,] = VIV,
t

But then the caid constraints (2.17)-(2.18) imply that the matrix A in (6.29) con-

structed using indeterminates {z1,..., 2z, } and family {Vi,...,V, .} satisfies Defi-
nition 4. Therefore, from Theorem 24, (see also [26, Proposition 4]), we must have

Remark 10. In the case n, = T = 2 it is easy to show that for any non-jointly-
Gaussian caid, there exists a jointly-Gaussian caid achieving the same Var(|| X||%).

cov 2 2 ov 2 2
Indeed, consider (2.23) with p = 2 (X"l’Xg*(zlizt)z(xm’xm). If this phenomena held in
general, we would conclude that (6.34) holds if and only if ny < p(T) or T' < p(n;). As
a step towards the proof of the latter, we notice that any caid X achieving equality

in (6.42) satisfies

X1

N

XXT =

I, (a.s.), (6.51)

which is equivalent to saying R;R; = 0 for i # j. The latter follows from apply-
ing (6.50) to rows of UX, where U is an arbitrary orthogonal matrix. Identity (6.51)
could be informally stated as “any caid saturating (6.42) is a random full-rate or-
thogonal design”.

In summary, the full-rate orthogonal designs (when those exist) achieve the opti-
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mal channel dispersion V(P). Some examples (§; are i.i.d. N(0,1)) for n, =T =4
and n; = 4,T = 3, respectively, are as follows:

> [ & & & &
_ P & & & &
X—\/Z =& & & & (6:52)
=& =& &L &
> [ & & &
_ [P =& & =&
X_\/Z & & &
| —& & &

6.5 When Full-Rate Orthogonal Designs do not
Exist

For pairs (n;,T) where n, > p(T), full-rate orthogonal design do not exist. For
example p(3) = 1, so no full-rate orthogonal design exits for n; = 2, T = 3. Which
caids are minimizer for (3.6) in this case? In general, we do not know the answer and
do not even know whether one can restrict the search to jointly-Gaussian caids. But
one thing is certain: it is definitely not an i.i.d. Gaussian (Telatar) caid. To show
this claim, we will give a method for constructing improved caids.

To that end, suppose that X consists of entries £¢;, j = 1...,d, where §; R
N(0, P/n;). Then we have:

2 d

n

SLvar(IXIE) = Do), (6.53)
t=1

where /; is the number of times +¢£; appears in the description of X. By this obser-
vation and the remark after Theorem 1 (any submatrix of a caid X is also a caid),
we can obtain lower bounds on v*(n:,T) for n; > p(T’) via the following truncation
construction:

1. Take T" > T such that p(T") > n; and let X’ be a corresponding p(T") x T’
full-rate orthogonal design with entries +&;,... £ &pv.

2. Choose an n; x T' submatrix of X’ maximizing the sum of squares of the number
of occurrences of each of &;, cf. (6.53).

As an example of this method, by truncating a 4 x 4 design (6.52) we obtain the
following 2 x 3 and 3 x 3 submatrices:

& & &
~éz 5? fj X = \E [ S & & } (6.54)
=& =& & 20 -% 4 &

X =

w|
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Table 6.1: Values for v*(n,, T

(n\T1[2] 38 [4] 5 | 6 | 7 [8]
1 12| 3 4 5 6 7 8
2 8| 10* } 16 18 24 26 32
3 21* 1 36 | [39,45 46,54 (57,63 72
4 64 | 168,80 80,96 100,112} | 128
5 (89,125] | {118,150] | [155,175] | 200
6 168,216] | [222,252] | 288
7 301,343] | 392
8 512

Note: Table is symmetric about diagonal; intervals [a, b] mark entries for which dispersion-optimal
input is unknown. The optimality of entries marked with * is only established in the class of all
jointly-Gaussian caids.

By independent methods we were able to show that designs (6.54) are dispersion-
optimal out of all jointly Gaussian caids. Note that in these cases (6.34) does not
hold, illustrating (6.35).

Our current knowledge about v* is summarized in Table 6.1. The lower bounds for
cases not handled by Theorem 26 were computed by truncating the 8x8 orthogonal
design [25, (5)]. Based on the evidence from 2 x T and 3 x 3 we conjecture this
construction to be optimal.

From the proof of Theorem 26 it is clear that Telatar’s i.i.d. Gaussian is never
dispersion optimal, unless n, = 1 or T' = 1. Indeed, for Telatar’s input p;x;; = 0 unless
(i,k) = (j,1). Thus embedding even a single 2 x 2 Alamouti block into an otherwise
Lid. ny; x T matrix X strictly improves the sum (6.41). We note that the value of
% entering (5.85) can be quite sensitive to the suboptimal choice of the design. For
example, for n, = T = 8 and SNR = 20 dB estimate (5.85) shows that one needs

e around 600 channel inputs (that is 600/8 blocks) for the optimal 8 x 8 orthogonal
design, or

e around 850 channel inputs for Telatar’s i.i.d. Gaussian design

in order to achieve 90% of capacity. This translates into a 40% longer delay or battery
spent in running the decoder.

Thus, curiously even in cases where pure multiplexing (that is maximizing trans-
mission rate) is needed — as is often the case in modern cellular networks — transmit
diversity enters the picture by enhancing the finite blocklength fundamental limits.
Remember, however, that our discussion pertains only to cases when the transmitter
(base-station) is equipped with more antennas than the receiver (user equipment), or
when the channel does not have more than one diversity branch.

In cases when full-rate designs do not exist, there have been various suggestions
as to what could be the best solution, e.g. [26]. Thus for non full-rate designs the
property of minimizing dispersion (such as (6.54)) could be used for selecting the best
design for cases n; > p(7T).
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6.5.1 The 2x3 and 3x3

In this section, we explicitly compute the minimizers in (6.1) for the cases n, = 2,7 =
3, and n; = 3,T = 3, where full rate orthogonal designs do not exist. These are both
practical regimes, i.e. it is easy to put two or three antennas on a device. While full
rate orthogonal designs have been proposed base on heuristics, this section serves as
a rigorous justification for space time configurations in the 2 x 3 and 3 x 3 case. We
begin the with n; = 2,T = 3 case.

Proposition 28. For n, = 2,T = 3, the distribution

Pl Xi X, X3
X =4/ =— 6.55
2 l—Xz X1 Xu ( )

where each X; is i.i.d. N(0,1) is the optimal jointly Gaussian distribution in the
optimization (6.1).

Proof. We do this by brute force. Throughout, let A, B,C, D, E, F be i.i.d. N(0,1).
We know that the first row has ii.d. jointly Gaussian entries, hence we can write
is as (A4, B,C). Each column must be independent, hence our input must be in the
form

Y A B C

= . 6.56
p12B + p13C + p1 D pa1 A+ ppsC + poE p31 A+ p3 B + psF (6.56)

Now we apply the constraints of Theorem 1 to constrain the p’s. The cross correlation
constraints gives the conditions

p21 = —p12 (657)
P13 = —pP31 (6.58)
P23 = —p32 (6.59)

and entries of the second row must be independent, giving the conditions

P12P23 = P12p32 = p2a1psr = 0. (6-60)

We can write out the objective function in terms of the p’s via
Var([|X|[7) =3+ 3+ gy + p31 + pla + P32 + pis + phs- (6.61)

where the first two terms are from the correlations of the first and second rows with
themselves, respectively. The first observation is that we gain no benefit from allocat-
ing mass to pi, p2, p3. Secondly, by the constraints in (6.57)-(6.60), at least 4 of the
coefficients must be zero. Le. 3 are forced to be 0 from (6.60), e.g. ps1, P23, p32 = 0,
which forces at least one of conditions (6.57)-(6.59) to introduce an additional zero
(in the example, p13 = 0. Hence at most 2 of the p’s can be non-zero in (6.61). Since
each p? can be at most 1, we can take py; = —pyo = 1, which gives the maximum
value of (6.61), and gives the distribution in the Proposition statement. U
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Remark 11. The distribution given in (6.55) is asymmetric, however we can make
a symmetric version of this as follows: let A, B,C, D be i.i.d. N(0,1), and take the
distribution

B C
* \/7[ —-B - C+D) \%(A—C—D) ‘\‘}“g(A‘F‘B—*—D) (6.62)

The it is easily verified that this distribution satisfies the constraints given in the proof
of Proposition 28. The reason this configuration does not fall out of the theorem is
that we chose to parameterize the second to row to give each entry an independent
Gaussian component. This choice of parameterization is general enough to demon-
strate optimality of the input (6.55), but does not contain the distribution (6.62).

As a corollary, we obtain the optimal n; = T = 3 input distribution:

Corollary 29. For n;, = T = 3, the following distribution achieves the mazimum
value in the optimization (6.1)

/P Xl X2 X3
_XS _X4 Xl
where Xl, XQ,Xg, X4 are ZZd N(O, 1)

Proof. The objective function Var(|| X||%) can be decomposed into an expression only
concerning pairs of rows, 1.e.

Var(1X12) = 33 Cov (122, 1R l?) (6.64)

i=1 k=1

=%<Z Cov (|RiII% IRe?) + > Cov (IR:% IRel?) + D Cov (IIR:)1% |1 Rell®)

i,k=1,2 4,k=2,3 1,k=1,3

(6.65)
(Var (| X 2|2) + Var (| X@91?) + Var (| X*Y]?)) (6.66)

l\le—*

where X8 e R2%3 denotes the n; = 2,T = 3 input distribution from taking the 7
and k-th rows of X. From Proposition 28, we know that the perfectly correlating two
elements between rows maximizes Var(|| X ||%) in the 2 x 3 case. But the input (6.63)
does this for each pair of rows, and hence maximizes each term individually in (6.66),
and hence must maximize Var(]| X||%). O
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Chapter 7

Variable Length List Decoding

The second point to point coding problem we study is the problem of variable length
list decoding with stop feedback. First we give some background on variable length
coding and list decoding, then give motivation for studying the variable length list
decoding problem.

The idea of using feedback in communication schemes has been around since
Shannon, where he showed the feedback cannot increase channel capacity [27]. Do-
brushin 62 [28] showed that for fixed blocklength codes, even the error exponent
cannot increase. Burnashev '75 [29] had the idea to use variable length codes along
with feedback, where he established upper and lower bounds on the average trans-
mission time of a code with M codewords and probability of error €, showing that
the reliability function is given by

Eou(R) = Cy (1 _ g) (7.1)

where C1 = max; yex D(Py|x=z||Pyv|x=s). Polyanskiy et al in [7] showed that us-
ing feedback with variable length codes can dramatically increase the distance from
capacity using a fixed average blocklength, in the sense that the maximal number of
codewords for average blocklength ¢ and probability of error € is given by

]’

— €

log M*(£,¢) = 1 +0(1) (7.2)

boosting the linear term to <, and eliminating both the O(v/¢) and O(log ¢) terms.
Furthermore, this speed up can be obtained by using only stop feedback rather than
full feedback — where the decoder sends only a single bit of feedback to indicate that
the encoder should stop sending symbols.

List decoding began with Elias and Wozencraft in [30] and [31] in 1957 and 1958,
respectively. Elias’ motivation was to show that for large enough L, a code for the
BSC chosen at random from the set of all codes preform nearly as well as the best
possible code. Subsequently, list decoding became an interesting question to coding
theorists — since instead of designing codes where that could tolerate at most d/2 bit
errors, many more errors could be tolerated when the decoder only must output a
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list. Works such as Blinovsky '86 [32] and Elias '91 [33] analyzed how many errors
could be tolerated by codes with a fixed list size. Tan ’14 [34] gave a finite blocklength
result for the performance of list decoding, showing that essentially the same finite
blocklength results hold when replacing M with M/L.

Variable length coding allows the system to have optionality concerning when to
stop. For a fixed blocklength system, the number of messages must be chosen such
that at time n, with high probability, the correct codeword is distinguishable for
the M — 1 other codewords. In variable length coding, the correct codeword only
needs to be distinguishable in average time n. Hence, if the channel conditions are
unlucky early on, you can stop later, or if they are good, you can stop sooner. The
interesting question unique to variable length coding with stop feedback thus is: how
does the system decide when to stop? I.e. in the list decoding setting, how does the
system know that, with high probability, the correct codeword is amongst a set of L
codewords? Notice that at such a time, we do not expect the correct codeword to
be distinguishable from the other L — 1 incorrect codewords, so there is no “popping
out” behavior.

In this chapter, we first define the problem of variable length list decoding with
stop feedback. We give a definition that forces the encoder to use random coding
— arguing that this capture the nature of the problem, and showing that without
this constraint, the problem becomes trivial. We show that for the Binary Erasure
Channel (BEC), such a variable length scheme is able to kill all but the linear term
and constant term in the expansion of log M*. We give an application of variable
length list decoding to stop feedback with delay, where the stop signal is seen by the
encoder only after a delay of D time steps. Finally, we argue that, surprisingly, for
the Binary Symmetric Channel (BSC), variable length list decoding is not able to
eliminate the square root term, when the size of the list satisfies L = M=% for any
a € (0,1).

7.1 Problem Definition

We define the variable length list decoding problem as follows: an (¢, M, L, €) variable
length list decodable code with stop feedback (VLLD) for a discrete memoryless
channel (DMC) Py x with input alphabet X and output alphabet ) consists of

1. A sequence of encoders f, : {1,..., M} — X, where the channel input at time
n is given by X, = f,(W), and the message W is the uniformly chosen from
the set {1,...,M}. In this work, we will require that the encoder employs
random coding, where each f,(w) ~ P% is i.i.d. from the capacity achieving
input distribution.

2. A sequence of decoders g, : Y* — {1,..., M}£, where the decoder at time n
gives the “best guess” of the most likely list of L messages. Note that g, is
set-valued.

3. Astopping time 7 € {0, 1,2, ...} measurable on the filtration F,, = o(V3,...,Y,)
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satifying the constraint

E[r] < ¢, (7.3)

at which time the decoder sends the stop signal to the encoder.

4. The probability of error is required to satisfy
PW¢g (Y] <e (7.4)

where Y™ = (Y},...,Y,). Le. an error is made if at time 7, the correct message
is not in the set of L messages outputted by the decoder.

With this definition, we define the fundamental quantity M*(L, ¢, ¢), which will be
the main object of study:

log M*(¢, L,e) =sup{M : 3(¢, M, L,e) — VLLD}. (7.5)

First we discuss the random coding assumption in the definition above.

7.1.1 The Random Coding Assumption

With regards to the random coding definition in point 1 above, notice that the prob-
lem becomes trivial if we do not impose this random coding constraint. Indeed, we
show the following simple proposition:

Proposition 30. There exists an (¢, M, L,€) code without the random coding con-
straint satisfying

M 1464
log T > 1 + O(log ¢) (7.6)
Proof. Generate the codebook as follows: form M/L bins of L sequences each (per-
haps fewer than L in the final bin). Assign bin k£ € {1,..., L} a codeword with i.i.d.
draws from a distribution Py, i.e. all sequences in bin k map to the same codeword.
Then, the encoder and decoder operate just as for an L = 1 variable length stop
feedback code designed for M/L codewords and having probability of error smaller
than e. The decoder produces the bin number, from which it outputs all messages
in that bin as the list. As an immediate corollary of Theorem 2 in [7], this scheme
achieves '
M 1763

log — >
OgL_l—e

+ O(log ¢) (7.7)

which demonstrates the claim. O

The appealing property of list decoding is that choosing the list size allow us to
trade off uncertainty about the correct message for faster stopping. I.e. we can say
“suppose we are willing to accept that our message is only one of L, how much earlier
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does this relaxation allow us to stop?”. For the random coding scheme in Proposition
30, even if we decide to transmit for infinitely many time slots, we would never be
able to choose the correct message with high probability, since buckets of L messages
are associated with a single codeword. For this reason, we focus on the case when
each symbol in the codebook is generated i.i.d. from the capacity achieving input
distribution. We conjecture that, instead of this random coding assumption, it is
sufficient to require that a coding scheme has good performance for both the unique
decoding case and for lists of size L = M!~¢.

Conjecture 31. There does not exist a code for the BSC simulaneously achieving
(7.7) for unique decoding (L = 1) and achieving

M E[TL]C
log — >
OgL — 1—c¢

+ O(log ¢) (7.8)

for L = M~ for any a € (0,1), and E[r] = £ — 5 log L.

7.2 As a Variable Length Delayed Feedback Scheme

Suppose instead we ask a similar question: given a variable length code with L = 1,
suppose that when the decoder sends stop, the transmitter sees the stop signal only
after a delay of D time steps. I.e. the problem set up is as follows: an (¢, D, M, ¢)
variable length stop feedback with Delay (VLSF-D) code is defined to be

1. A sequence of encoders f, : {1,..., M} — X, where the channel input at time
n is given by X,, = f,(W), where W is the uniformly chosen message from the
set {1,..., M}.

2. A sequence of decoders g, : Y* — {1,..., M}.

3. Astoppingtime 7 € {0,1,2,...} measurable on the filtration F,, = o(Y1,...,Y;)
satisfying the constraint E[r] < ¢, at which time the decoder sends the stop
signal to the encoder.

4. The probability of error is required to satisfy

P[W # g-p(Y7P)] <e (7.9)

where Y™ = (Y1,...,Y,). Le. an error is made if at time 7 + D, the encoder
outputs the incorrect codeword.

Such a scheme has a clear practical use: feedback is never immediately available at
the transmitter, and often is sent on a slower clock than the transmitter is operating
at. Hence, most stop feedback schemes will fall into this definition. The question
becomes: how much more information can we squeeze out of the system, given the
knowledge that the decoder will receive D extra symbols after saying stop?
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The following proposition shows that the existence of a good VLLD code implies
the existence of a good VLSF-D code. Notice that the i.i.d. random codebook is an
essential part of the proof.

Proposition 32. Suppose Py|x is a channel such that there exists a (¢, M, L,e€)-
VLLD code satisfying

log % >0C+0(). (7.10)

Then there exists a (¢,D, M,€')-VLSF-D code for € > € satisfying

logM > (£ + D)C — vVDVQ (&) + O(log D) (7.11)
where
/ —_—
=" (7.12)
1—e¢

Proof. We construct a VLSF-D code from the VLLD code as follows: the decoder
uses the VLLD code to say stop when the correct message is in a list of size L with
probability at least 1 — €, where

log L = DC — VDVQ (&) + O(log D) (7.13)

and ¢ is chosen as in (7.12), so that the overall error of the code is at most ¢. The
VLLD code uses random coding according to the capacity achieving input distribution
of the channel, so that the D additional symbols can be viewed as a fixed blocklength
code to differentiate L messages in D channel uses, i.e. the encoder does not need to
change its mode of operation. The decoder decodes this fixed blocklength code, then
outputs the message it chooses. Hence we have created a (¢, D, M, ¢')-VLSF-D code,
with

logM > logL +¢C + O(1) (7.14)
={+D)C — \/DVQ_I(GQ) + O(log D) (7.15)
as claimed. O

In the following sections, we will show that indeed the BEC satisfies the condition
(7.10), so this definition is not vacuous. However, we will see that the BSC does not
satisfy this condition.

7.3 Posterior Stopping Rule
In this section, we discuss the “ideal” stopping rule: stop when the sum of the largest

posterior values exceeds a threshold. Like many situations, it is more difficult to
analyze posterior distributions than to (suboptimally) analyze log likelihood ratios.
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However, we will see that we can directly analyze this posterior-based stopping rule
for the case L = 1 using a simple martingale argument, improving the bound and
simplifying the achievability scheme given by Polyanskiy et al in [7].

The appealing property of the “stop when the sum of the largest L posteriors
exceeds 1 — €’ stopping rule is that it automatically guarantees that the correct
codeword is in the list with at least probability 1 — €. This is shown in the following
lemma.

Lemma 33. Stopping at time

= inf > . {7 t >1-—- 1

7 =in {t_O 5c{1,.T%,|S|=LZPW'Y (ly') =1 6} (7.16)
jE€S

and outputting

WL = argmax Z Pw|yt (]'yt) (717)
Sc{1,...M},|S|=L jes

at time T guarantees that P, < €.

Proof. Notice that the probability of error can be expresses in terms of the sum of
the largest L posterior distributions:

P =PW & g,(Y")] (7.18)
=E [Tweg, (v) (7.19)
r M
=E | > Lggg o Pwiy-(ilY7) (7.20)
Lj=1
=E|)_ PWIYT(j|YT)] (7.21)
LWL
<e (7.22)
where the last line follows directly from the definition of 7. O

It will often be useful to apply Bayes rule to represent the posteriors Py y+ differ-
ently. To this end, define the quantity

Pyow (y*]7)

Qy(y")
where Qy: = [[._, Qy () is a product distribution, and each Qy is a distribution on
Y. In this work, Qy will often be the capacity achieving output distribution. For a

S{(y") = log (7.23)
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discrete memoryless channel, (7.23) can be written as a sum of information densities:

t
Sl = i(ch ) (7.24)
k=1

where ¢/ = f;(j) is the i-th element of the j-th codeword, and

Py x(yl|z)

i(z,y) = log (7.25)
Py(y)
is the information density. With this, we can write the posterior as
Pyow (y'17) 37
Pwye(§ly') = =31 & (7.26)
2k PY‘IW(ytVf)%
et
= —— 7.27
Zﬁil est (720
With this representation, we can write the stopping time (7.16) as
e
T=inf<t>0: max %21—6 . (7.28)
5c{1,...,.M},|S|=L Zk:l eSt

Before proceeding to variable length results, we show a simple argument for the
L =1 case using the stopping rule (7.16), that gives a small improvement of log% —
log % on the best known bound of Polyanskiy et al [7]. The main contribution is to
notice that the martingale M, (defined below) can make the analysis very simple.

Proposition 34. There exists an (M, £, €) stop feedback code satisfying

1—c¢

log M > £C — log —A (7.29)

where A = max, , |i(z,y)|.

Proof. Define the stopping time 7 as in (7.16) for L =1, i.e.
— 3 f t: P - Yt > 1 i ' 7.30
T =in { je{I?,.g.i.),(M} wiyt(F]Y") > e} (7.30)

When 7 occurs, the decoder sends stop and outputs g(Y”) = argmax; Py y-(j]Y7).
With this, the probabability of error is bounded by €, as demonstrated in Lemma 33.
Now we bound the expected time to stop using this rule. To this end, define 7, as
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the first time that the posterior for codeword 1 exceeds 1 — e,

7 =inf {t : Pyp(1]Y") > 1 —¢€} (7.31)
= inf{t . Z, > log ! _6} : (7.32)
€
where
St
Z; = log YA (7.33)
j=2 €%

and SV = i(X 5 Y") is the information density for the j-th codeword. Clearly E[r] <
E[r1], since the first time that largest posterior exceed 1 — € is surely no later than
the first time the posterior for the correct codeword exceeds 1 — €. Lemma 35 below
shows that E[r;] < 0o, and Lemma 36 shows that M; £ Z, — tC is a submartingale.

Hence, by the Optional Stopping Theorem (which we can apply since the increments
are bounded: |Z; — Z;_1| < A), we have

E[Mo] = —log(M — 1) (7.34)
= E[M,] (7.35)
— E[Z,] — CE[f] (7.36)
so that
CE[r] =log(M — 1) + E[Z,] (7.37)
<log(M — 1) +log — + A (7.38)

since at time 7, we know that Z; has exceeded log % for the first time, so it cannot
be more than A above this quantity. Hence, choosing the number of codewords to be

1—c¢
€

log M = ¢C' — log

—A (7.39)
guarantees that E[7] < {. Hence, there exists a code with log M given by (7.39) and
probability of error bounded by € that has average stopping time bounded by ¢. [

Lemma 35. E[r;] < o0.

Proof. Can be upper bounded by the time M positively biased random walks cross a
threshold, each of which is finite, and therefore the max of M of them is finite. O

Lemma 36. If S} = i(X%Y*) and S} = i(X5YY), j =2,..., M, where X; is i.i.d.
with the same distribution as X but independent from Y, then
eSt

SJ
j=2€7"
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is a submartingale.

Proof. Write

Sl M
et j
log —57—— = S; —log <Z est) . (7.41)
Zj=2 eSt j=2
Now, eSt is a martingale, the sum of martingales is a martingale, and log of a mar-

tingale is a supermartingale. Hence
M .
S} —tC —log (Z eSt ) (7.42)
§=2

is a martingale plus a submartingale, hence is a submartingale. (]

7.4 The BEC Case

In this section, we discuss results for the Binary Erasure Channel (BEC). For this,
the main result is Theorem 40, which says that there exists an (¢, M, L,0) scheme
satisfying

log % > 4C + O(1) (7.43)

just as in the L = 1 case. First we give the channel definition and description of how
its information density evolves.

The BEC is defined as the discrete memoryless channel with input alphabet X =
{0, 1}, output alphabet Y = {0, e,1}, and transition matrix

[155 g 125]. (7.44)

For this channel, the capacity achieving input distribution is uniquely Bernoulli(1/2),
and the resulting capacity achieving output distribution is given by

1-46
- y=0,1
Py(y) = { 5 y—e (7.45)

With this, the information density is given by

log2 y==x
i@y =30  y=e . (7.46)
—00 yFeandyFzx

i.e. when the input and output agree, we learn one bit of information, when the
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output is erased, we learn 0 bits, and when the input and output disagree, we can
automatically rule out that input codeword. We will keep the notation

si =ik, ) (7.47)

to be the information density between the first ¢ symbols of codeword j and the first
t symbols of the output sequence. Note that the correct codeword (assume WLOG
that W = 1 is sent) will always have S} > 0 since the input and output will never
disagree. With probability § an erasure occurs, and all codewords have S7 = S7_,
else an erasure does not occur, in which case all incorrect codewords evolve as

| (9)
I St wp. 1/2, i=2,...,M (7.48)
—00 w.p. 1/2

L.e. with probability ¢ all partial sums that still have St(]_ )1 > 0 “survive”, else they
“die out” independently, each with probability 1/2. This is depicted in Figure 7.4.
We will view the process as follows: take M independent Geo(1/2) processes, then
insert an erasure into all with probability é at each time step. This is captures in the
following definition.

Let Z; ~ Geo(p) i.i.d. for j =1,..., M (generally, we will take p = 1/2 later),
and define the process

M
Vi = Z 1iz,>4 (7.49)
=1

In words, V; is the number of geometric random variables that have “survived” until
time ¢t. Notice that the first time when V; = k for some k¥ < M is the (M — k)-
th order statistic of the random vector (Zy,...,Z)/). With this established, we can
define the BEC(d) process, which inserts erasures into the independent geometric
random variables above.

Definition 5 (BEC(J) Process). Let V; bet the process defined in (7.49) with p = 1/2.
Construct a Markov chain with state space {Vi, Va,...} as follows: set V; = Vi, and
transition according to

_ ) s=V

P[W=8|Vi_1=Vz]:{1 55— Vi, (7.50)
- - Yi+

for € {1,...,i—1}. Then V; is called the BEC(d) process.

The following lemma gives an upper bound on expected first time that V; < k for
some k < M.

Lemma 37. Let V; be given by (7.49). Define the stopping time

o =1inf{t > 0:V, <k} (7.51)
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Figure 7-1: Example evolution of the information densities for the BEC, where the
x-axis is time and the y axis is the value of the information density. The red curve
represents the correct codeword, and the blue curves represent the unsent codewords.
At each time step, if there there is no erasure, approximately half of the informa-
tion densities for the unsent codewords drop to —oco. When an erasure occurs, all
information densities increase by 0. Eventually, only the correct codeword survives.
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for0 <k < M. Then

log—Aki+c

]E[Tk] S
log

(7.52)

where ¢ < 2 is a constant independent of all other parameters.

Proof. First we introduce exponential distributions, and use them to bound the quan-
tities involving geometric distributions. The idea behind this is that the expected
order statistics of an exponential distribution has a nice form in terms of harmonic
numbers, which we will see shortly.

To this end, consider the following coupling of processes:

M

V=2 Lz (7.53)
=1
M

Vi=> Lyzzy (7.54)
=1

where Z] ~ Exp(—log(1 — p)) i.id., so that |Z]] ~ Geo(p) i.i.d.. Hence V; is the
same process as defined in (7.49). Since, as a function of ¢, we have

Loz>g < Lizzy (7.55)

it follows that V; <V} almost surely. Consider the stopping times
7 =inf{t > 0:V; <k} (7.56)
7 =inf{t >0: V] <k}. (7.57)

Notice that V; < VT/L < k, and since 7y, is the first time that V/ < k, we have that
T < 71, almost surely, and hence

Efr] < E[r] (7.58)

The first time that V; < k is the (M —k)-th order statistic of Z1, ..., Z),. The expecta-
tion of the I-th order statistic for an Exp()) distribution is given by 3 M 41 1/n,
so we have
I e 1 1
El[r] = ~ —=—(Hy — H 7.59
[Tk]/\zn 3 (o — Hi) (7.59)

n=k-+1
where H, is the M-th harmonic number. The harmonic numbers are bounded by
1 < Hy —log M — <L (7.60)
oM 1 1) = MM T =0y '
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where 7 is the Euler-Mascheroni constant (v ~ 0.577). Hence

1
vajglogM+m+'y§logM+c (7.61)

Hy > logk + +v > logk (7.62)

1
2(k + 1)

where ¢ = 14+ < 2. Applying this to (7.59), we obtain (noting that A = —log(1—p)),

log & +
Efr)] = —k [ ° (7.63)
log jom
From (7.58), we conclude
log 2 +
Elr] < —ok T° (7.64)
log
as desired. U

Our next Lemma upper bounds a similar stopping time, but now for the BEC(9)
process.

Lemma 38. For the BEC(6) process, define the stopping time

T =inf{t>0:V, <k} . (7.65)
Then
log¥ + ¢
E[f] < —% —— 7.66
7l < A5 100 (7.66)
where ¢ < 2.

Proof. From the definition of the BEC() process, define F; as the number of times
the Markov chain failed to transition to a new state before state ¢ was reached. Then
E, has Negative Binomial(t, §) distribution, and hence

E[E,] = 1’5—:55 . (7.67)

By definitions (7.51) and (7.65), we can relate the BEC(J) process stopping time to
the process without erasures, via

7_-k: =T + ETk (768)
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L.e. V; is run until time 7%, then the erasure pattern E,,_is generated. Hence we have

B{B(E )] = B |2 (769

]

= 7—En] . (7.70)

Therefore, using (7.68) and Lemma 37 with p = 1/2, we obtain

_ E[Tk]
= — 71
B = 124 (7.71)
log % +c
Ok 7 7.72
~(1-96)log2 (7.72)
as claimed. O

We now give a corollary connecting the posterior stopping rule (7.16) to the stop-
ping rule described above. The main point is that the above rule could have easily
been discovered using the posterior stopping rule.

Corollary 39. The stopping rule T given in (7.16) for the BEC also satisfies

EMS%O%%+OM) (7.73)

Proof. For the BEC, the sum of the largest L posteriors is given by

ZjeS e

Pyiye = e 7.74
5c{1,.TA3)}(,|S|=Lj€ZS Wiy (ly) Sc{l,.l.r.l,ll\af}{,lsld chw:l eS¥ ( )
min(L, V;)eSt
= — 7.75
‘/testl ( )
min(L, V;)
= 7.76
7 (7.76)

where V; is given in (7.80). Hence the sum of the largest L posteriors becomes 1 when
Vi < L. Lemma 38 shows that the expected first time that V; is less than or equal
to k is bounded by (7.66). Hence the first time that the top L posterior sum exceeds

1 —e€is no larger than the first time the sum is equal to 1, hence we have from Lemma
38,

Efr] < é (log 2 0(1)) (7.77)

which shows the claim. O

Now we arrive at the main theorem of this section, which says that for the BEC,
we can indeed kill all lower order terms in the expansion of log M*(¢, M, L, 0) for any
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list size L. Note that this is a zero error scheme.

Theorem 40. There exists an (¢, M,L,0) VLLD code satisfying

M
log T > 4C + ¢y (7.78)

where C' = (1 — 6)log2 is the BEC capacity, and cy < 2+ log?2 is a fized constant.

Proof. Let the encoder map each message w € {1,..., M} to f,(w) = X,(w), where
Xp ~ Bernoulli(1/2) i.i.d.. The decoder sends stop when

T=inf{t >0:3JC{l,...,M},|J| < L:Vj € J%,i(c,y") = —oo}. (7.79)

In words, the decoder sends stop when at most L codewords have information density
not equal to —oco. Define

M
Ve=2 Li@woz0 (7.80)
j=1
then
M-1
Vi=14 ) Luxuyoso (7.81)
j=1

since the correct codeword always has i(c}; Y*) > 0, and )_(;f represents the first ¢
symbols of a randomly generated unsent codeword. Now, the second term is precisely
a BEC(d) process. Applying Lemma 38, noting that 7 is the first time that the
process with M — 1 variables is less than or equal to L — 1, we obtain

< log%—i—c

E — 7.82
Il < (1—0)log2 (782)
To meet the constraint E[7] < [, notice that
M-1 M
< — 2. .
log 71 < log 7 + log (7.83)
Choose L as
logL =logM —¢C + ¢ (7.84)
where ¢’ = ¢+ log2. This choice of L guarantees E[r] < . Hence we have a code
with zero error (since the correct codeword never has S} = —oo) with
M

codewords and average stopping time E[7] < £, as desired.
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O

In Theorem 40, we see that there exists a zero error code with only the linear and
constant term in this expansion. If we’d like, from this we can form a code where the

linear term is boosted to %, at the expense of no longer being a zero error code.

Corollary 41. There exists an (¢, M, L, €) code for the BEC satisfying
M
log — > —— 7.86
BT 21, + ¢o (7.86)

where ¢y > 0 is a fixed constant.

Proof. The idea is to use a zero error code for the BEC, but stop at time ¢ = 0 with
probability €, increasing the error probability but decreasing average stopping time.
To this end, construct the new stopping time 7 as follows: take an (¢, M, L,0) code
with ¢ = ﬁ for the BEC that stops at time 7/, which we know can be chosen to
satisfy, from Theorem 40,

M
log I 2 0C+cp. (7.87)
Our new code stops at time
/
r=4 VPP (7.88)
0 else

where p is chosen such that the probability of error is
P<p0+(l—p)=e¢ = p=1—c¢. (7.89)

Notice that the average length of this code, by choice of ¢, is

E[r] = pE[7'] + (1 — p)0 (7.90)
= pl’ (7.91)
l

=P (7.92)
= (7.93)

Hence we have constructed an (¢, M, L, ¢) code satisfying

M
log 7 >U'C+co (7.94)
1—e€

as desired. N
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Figure 7-2: Example evolution of the information densities for the BSC, where the z-
axis 1s time and the y-axis is the information density value. The red curve represents
the correct codeword, and the blue curves represent the unsent codewords. Eventually,
the red curve “pops out” of the collection of blue curves — however in the list decoding
problem, we aim to stop before the red curve becomes distinguishable.

7.5 The BSC Case

In this section, we will show that for the BSC, we cannot stop in a way such that
the dispersion term vanishes whenever the list has size L = M!'~®. Note the stark
difference in the evolution of the information densities for the BEC and BSC: for the
BEC, all values were either equal or zero as in Figure 7.4 — for the BSC information
densities move up and down in finite increments. Figure 7.5 gives example trajectories
of the BSC information densities. The information density for the correct codeword
drifts up with drift C = D(Pxy||PxPy) (with Px being the caid), while the M — 1
information densities for the unsent codewords drift down with drift —D( Py Py || Pxy).

The surprising property of the BSC is that the distribution of the posteriors turns
out to be nearly deterministic when L = M~ for some a € (0,1). Hence, there
is no clever way to stop based on the evolution of the posteriors that beats simply
ignoring the received sequence. This is shown in the following two sections.
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7.5.1 Concentration of the Largest L Posteriors

In this section, we show that the sum of the L largest posteriors concentrates tightly
around its mean. This is the contents of the following theorem.

Theorem 42 (Largest L posteriors concentration). Define the following quantities,

P2 Y Py (GYY) (7.96)
jeTk
p=P Y} 2 j] (7.97)

where T is the set of the largest L posteriors at time t, Yf ~ Binom(t,d), and j; is
such that

L
P 2i] <o <P 25 -1]. (7.98)

Then,

P [lpe — pe| 2 t7%] < cot ™ (7.99)
for some constants k, kg, co > 0.
Proof. First let us introduce notation. Define the quantities

SI=i(XLY") (7.100)

1-6
= tlog(24) + B} log !

(7.101)

where X} is the first ¢ symbols of the j-th codeword, Y* is the channel output from
codeword 1 (assume W =1 WLOG), i(z,y) is the information density for the BSC,
and

B~ {Bmomlal (t,1-0) j=1 (7.102)

Binomial (t, %) 1=2,....M

is a random variable representing the number of flips between Y* and the first ¢
symbols of the j-th codeword. Note that for the BSC, all Stj for y =1,..., M are
independent, which is not true for a general channel. With this definition, we can
express the posterior distributions via Bayes rule as

St

Pyy:(§IY?) = —7——=

7.103
ke € ( :
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for j=1,..., M. Now p; can be expressed as

S7
. et
Z]ETtL

= —_t 7.104
szzl eSt ( :

Dt

The following arguments will describe the behavior of the numerator and denominator
separately.

Lemma 43. The denominator in (7.104) satisfies

|

where I'y = {m : %(t) > tk} for constants k, ko, ky,c > 0.

m

M .
D% = Mpr,

Jj=1

> Mpplt—kow <ct™h (7.105)

Remark 12. There are two competing behaviors here, in M and in t. le. for
M — oo with fixed ¢, we have law of large numbers behavior:

1 & 3
71 2653 ~E [es‘] =1 (7.106)
=2

However, for fixed M and t — oo, we have a softmax type behavior

M
1 si) oL J
;log (;e ) Ny max S; . (7.107)

Since we can approximate
S} ~tu+Vte2Z;, j=2,...,M. (7.108)

where u = E[{(X,Y)] <0 and 02 = Var(i(X,Y)), and the Z,’s are i.i.d. N(0,1), we
see that this tends towards pu.

Hence our argument above in a sense shows that we are operating in the LLN
regime.

Remark 13. Note that if we apply Chebyshev’s inequality, we see the following:

M ) [A
P[Zesg—M > M6 gv—ar—(%—l (7.109)
< M3
E [65’}
<= (7.110)

where in the second line, S; has the distribution of the information density for the
send codeword, and S; has the distribution of the information density for an unset
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codeword. If we are interested in times ¢t < & log M, then

M .
P[Zesf—M
j=1

> M(S} < (7.111)
M*—ec 2

where C = log E[elXY)] > C. Hence Chebyshev’s inequality shows that for times
t < &log M, where a < C/C, we have concentration. The more elaborate argument
below shows that, for the BSC, we can improve this concentration up to times with
a < 1.

Proof. We start by rewriting the sum of interest

M t
D €S =" Lyeltm (7.112)
j=1 m=0

where

M
Ln 2 Lipi_ny (7.113)
j=1
A 1-6
fi(m) = tlog 26 + m——. (7.114)

Then (7.112) follows from grouping all the occurrences of S} = f,(m). For now,
assume that each B/ ~ Binomial(t,1/2) i.i.d., i.e. there is no “correct codeword”,
later in the proof we will show that this approximation is valid. Partition the L,,’s
into three sets,

[, = {m:E[L,] >t} (7.115)
[y = {m:E[L,] € (t7% t")} (7.116)
I3 ={m:E[L,] <t*}. (7.117)

The idea is that L,, for m € I'; exhibits concentration around its mean, and nearly
all of the mass is in I';. Applying (7.112), we can bound (7.105) as follows, defining
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pr, 2P [Y € Fl} with Y? denoting the distribution Binomial(¢, p), and 6&21-9,

M
P [ > % — Mpr,| > Mpnt"’m} (7.118)
7=1
|t
=P ||> Lyne™™ — Mpr,| > Mpplt_ko] (7.119)
| |m=0
<SP D Lne™ — Mpr, |+ D Lpne™ + >~ Lyeftm > Mprlt"“’}
LImelr; mels merls
(7.120)
[ 1 —k ft(m) —ki
<P Z Lime’™ — Mprp, | > gMprl 0} +P [Z Lne > 3Mpr g
_ LImel SN meTls
1 2
D Lypeft™ > %Mpplt_ko} . (7.121)
mels
3

Now we bound each term in (7.121) individually.

Term 1 in (7.121): First we apply the union bound to get a statement about
binomial distributions:

P [ > Lnef™ — Mpr,| > —I-Mpp t—’%] (7.122)
1 3 1
mel;
1
<P {Hm €l :|Ly —E[L,]| > gt_’“OIE[Lm]] (7.123)
<> P [|L (L]l > t"“OIE[L ]] (7.124)

mel'y

where the first line follows from the fact that »_ . E[Ln,] = Mpr,, and the second
is from the union bound. Note that L,, ~ Binomial(M, P[B} = m]), and the Chernoff
bound tells us that if X ~ Binomial(n, p), then for any n > 0,

P[IX — E[X)| > nE[X]] < e 5, (7.125)
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Applying this to the RHS of (7.124), we obtain

ZP[IL Lnll 2 5t ] > ¢ i) (7.126)

merl; mely
< ¥ emEeE (7.127)

mely
< (t+1)emmt ™0 (7.128)

where we have used that E[L,,] > t* for m € I'; in the second line, and |T';| <t + 1

in the third line. Hence term 1 in (7.121) tends to zero exponentially fast whenever
k > 2ko.

Term 2 in (7.121): First note that I's cannot contain very many codewords, since
by Markov’s inequality,

. (t+ 1)tk
IP’[E LmZtO]StT (7.129)
mels
1
< PP (7.130)

and hence as long as kg > k + 2, this goes to zero. Define A as the event where
> mer, Lm > t*, then term 2 in (7.121) can be bounded by

1 1
> Lypef™ > §Mpplt-’m} SP| Y Lyeltm > gMpplt_kO A°| 4+ P[A]
mels L mel?

(7.131)

N
2=

ko max eft(™ > Mpp t—k‘“ + ¢~ (ko—k=2)
3

mels
(7.132)

In the final line, the quantities inside the P[-] are deterministic. We now argue that

max fi(m) < log (Mpr,) + O (logt) . (7.133)

mels

which will show that the first term in (7.132) vanishs. To this end, note that we can

write
mi|l mi|=
=t(a(=|5) —a(F]]p) 7.134
o519 -
m|l
logEE[L,,] = log M —td <7H§) + O(log t) (7.135)
where d(p||q) = plog E+(1—-p)log 1-P is the divergence between a Bernoulli(p) and

1—¢q
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Bernoulli(g) distribution. Applying the definition of I'y to (7.135), and using the
bounds on binomial coefficients, for & # 0, n,

M nhk/n) < (T o [TV nh(k/m) 7136
8k(n — k) =\k) =\ 2rk(n—k)° ! (7.136)

logE[L,,| = +klogt = d (?H%) = %logM +0 <lngt) (7.137)

we obtain

and hence the LHS of (7.133) is upper bounded by

max film) < max (logM —td (—?—’ ‘5) + O(log t)) (7.138)
< log M — ¢ min d (-Tt? ' |5) + O(logt). (7.139)

Now we show that the second term in (7.139) scales linearly in ¢. To this end, we
show that there exists a ¢’ > ¢ such that ¢’ € I';. The criteria for membership in Iy,
as in (7.137), whenever ¢t < &log M, is that m satisfies

ml|ily 1 logt
C logt
> 2 = .
- +O< : > (7.141)

Now, C' = d(6]1/2), so since C/a > C, any m in I’y must have m > ¢4, where
8 = C~1(C/a) > 4, where the inverse of C(6) is taken on [1/2,1]. Hence we have

. mi|< -
mind (2||5) > d(]5) > 0. (7.142)
From this, we conclude that the RHS of (7.133) is upper bounded by

max fe(m) <log M —td (&'||6) + O(logt) (7.143)

The RHS of (7.133) is simpler to bound, via

log Mpr, = log (Z E[Lm]ef‘(m)) (7.144)
mel;
> max (log E[L.,]) + fi(m)) (7.145)
m —
= max (1og M —td (7;[5) + O(log t)) (7.146)
> log M + O(logt) (7.147)
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where the first inequality follows from keeping only the largest term in the sum, along
with applying E[L,,] > ¢* for m € 'y, and the second follows since t6 € I';. We can
see this by noting that for any time ¢ < 2 log M,

log E[L5] = log M — tC + O(logt) > tC (é - 1) + O(logt) . (7.148)

Combining bound (7.143) and (7.147), we find the first term of (7.132) to vanish,
and hence term 2 of (7.121) is bounded by

1 _ —(ko—k—
P| Y Lpe/™ > s Mpr,t ko] < ¢~ (ko=k-2) (7.149)

mel's

Term 3 in (7.121): First, notice that the probability that L,, for m € I's is non-zero
is small. Indeed,

P[Ly > 0] =P[L, > 1] (7.150)
< E[L] (7.151)
<t* (7.152)

“where the second line is Markov’s inequality, and the third is from the definition of
I's. Hence, we can bound term 3 as

1
P|)  Lyettm > -?;Mpplt-ko <P[EAmeTs: Ly > 0] (7.153)
mel's

<Y P[Lp > 0] (7.154)

merl's

1§
< (7.155)

1

<o (7.156)

where we have used the union bound in the 3rd line, Markov’s inequality in the 4th
line, and |I'3] <t + 1 < #? in the 5th line.

Finally, note that we can ignore the “correct codeword”. Suppose WLOG W =1,
then in our original expression i.e. the LHS of (7.105), we can separate out the S}
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term,

St Mprl

> Mprlt"“OJ (7.157)

M
+ 3o — ar

=2

> Mpplt"ko] (7.158)

M .
2% = Mpr,

=2

2

1
<P|eSt > —Mprlt_ko] +P

1
> —Q—Mpplt_k"] : (7.159)

Then the second term in (7.159) is bounded by the analysis above M — 1, and the
first term is small, because

P [es %Mpp1 } =P [S} > log(Mpr,) + O(logt)] (7.160)
<P [S; > log M + O(logt)] (7.161)
<P [S C + O(logt)| — 0O (7.162)

where the second line used (7.147), and the third uses log M > ¢t<. The final line
goes to zero by the law of large numbers.
Hence, overall we have the bound

7|

Zesf — Mpr,

Z Mpr‘lt—koJ S (t + 1)6—%%—%0 + t—(ko—k—2) + t_(k_g) '

j=1
(7.163)
Ifeg. k=5/2,ky =1, then the RHS vanishes as t — oo. O
Lemma 44. The denominator in (7.104) satisfies
Z St — Mq| > Mgt | < cpt™ (7.164)
JETE
where
g= > E[Lyle™™ (7.165)

mZJ* 7m€rl

in the notation of the proof of Lemma 43, and j, is the solution to, for Yt]/2 ~
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Binomial(t,1/2),
PV, 25 +1] < ELZ <P[v;*> ] (7.166)

Proof. The proof is largely the same as Lemma 44, except for one step. Take j, to
be the largest integer value such that

> E[Ln]>L. (7.167)
m2j«

First, we show that j, € I';.

Lemma 45. For all time t < & log M, we have j, € I’y for large enough t.

Proof. Indeed, for all times ¢t < & log M,

L= M- > (058 (7.168)

and hence L is lower bounded by an exponential function in ¢. Note that j, < t/2,
since L = M'~* and j, = t/2 yields > m>;j, E[L;] > M/2. Hence E[Lj,] is the largest
term in the sum (7.167). Since the sum grows exponentially in ¢, at least one of the
terms must grow exponentially in ¢, and hence E[L;,| certainly grows exponentially
in ¢t. Hence E[L;,] > t* for large enough ¢, so j, € I';. a

Because of Lemma 45, we expect that the sum on the LHS of (7.167) concentrates
around its mean. To this end, following a similar set of steps as in Lemma 43,

P { Do Lm— D ELp] >t ]E[Lm]} (7.169)
m>j« m2j« m2>j.«,mel

<t ¥ 4P > Lm— > E[Ly| >t > E[Lm]} (7.170)

m>j.,melr) m>j.,melr; m>j«,mer

< 3 et (7.171)
m2j.«,mel

< (t+ 175t (7.172)

<tk (7.173)

where (7.170) follows since P [ngrl L, > t’“o] < t~(ko=k=2) 1y Markov’s inequality,

(7.171) follows from Chernoff’s bound, and (7.173) follows from E[L,,] > t* for m €
I'y, just as in (7.149).
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Hence we conclude that with probability at least 1 — ¢t=*1 by the definition of j,,

D Ln=(1+t") > E[Ln) > (1£t™)L (7.174)

m2js m>7j

Y Ln=Q+t™) > E[L.) <(1+t™)L. (7.175)
m2j«+1 m>j.+1

Then, with probability at least (1 — t=*1)2 we have
Z L,efttm < Z St < Z L,,eftm (7.176)
m>jat1 jeTk m>ja
Noting that
3" E[L,] = MP [Y;l/ 2> j*] (7.177)
m2j.

we find that j, satisfies
12 . L 12 .
PV} 25 +1] < o <P[ 2 )] (7.178)

as claimed in (7.166). The concentration of > jerk St now follows from applying the
same steps as Lemma 43 to the upper and lower bounds in (7.176).
O

Now we combine lemmas 43 and 44. Define A as the event where the numerator
and denominator are both within their high probability bounds, i.e.

Z St Mq| < Mgt~ m{

JETE

M .
2% = Mpr,

j=1

< Mpplt—’%} . (7.179)

With this, we can show concentration of p,. Note that q/pr, = p;, so that when
t=h < 1/4,

< P[A%] (7.180)

where in the second line, we have used that, when A occurs and t=% < 1/4,

_ ko o L —tTR N kg
Dt (1 — 4t ) < Piy g <p < Piy g <D (1 + 4t ) (7.181)
From Lemma 43 and Lemma 44, we know that
P[A°] < (¢ +eo)t™ (7.182)
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as claimed. O

7.5.2 Non-Existence of Good Stopping Rules

In the previous section, we showed that the sum of the largest L posteriors concen-
trates when L = M~ for any a € (0,1). In this section, we use this result to show
that any stopping rule for the BSC results in a non-zero dispersion term.

Theorem 46. Let the codebook f,(w) for w € {1,...,M},t = 1,2,... be chosen
uniformly at random according to the capacity achieving input distribution, and let
7 be any stopping time with E[r] = £ on filtration Fy = o({f(w)l|tez, weir), and
F = o(Y{) V Fo, and such that there exists a decoder W € F, with probability
PW & W] <, then

M C 1
i S .1
log 7 <71 \/Vflogﬁ\/l_-‘E + o(£log ) (7.183)
where
C =log2 — h(9) (7.184)
1-6\?

are the BSC(0) capacity and dispersion, respectively, and h(-) is the binary entropy
function.

Remark 14. Here we demonstrate that the % and £ log ¢ terms can be seen as a con-
sequence of randomizing fixed blocklength codes. Take an (¢, M, €) fixed blocklength
code for the BSC. We know that such a code can support

log M = (C —VIVQ ™ (e) + —;—logf +0(1). (7.186)

codewords. Suppose we are allowed to randomize the blocklength ¢ ~ 7 where E[r] =
¢, but 7 must be a fixed distribution that does not depend on the codebook or the

received symbols. Then, applying the approximation Q!(e) ~ {/2log %, we see

M 1 1
logf sz—y/QVElog—ﬁL510g€+0(1). (7.187)
€

Hence, there exists an (¢, M, 1/{) fixed blocklength code satisfying

M 1
log T~ 0C — \/2Vllogl + 3 log¢+ O(1). (7.188)
Now, as done by Polyanskiy [7], with probability p = e—;':—ll choose 7 = 0, otherwise
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use the (£, M,1/¢) code above. With this randomization, the probability of error is

1
P.<p+(1-p); (7.189)
L é-1 1-€)1

- 1
-1 " -1 ¢ (7.190)
-1
=¢ 7.191
‘-1 (7.191)
=, (7.192)
‘The average blocklength of this code is now, call this E[7’],
E[r'] = pf + 0(1 — p) (7.193)
2(1—-¢€)
_ , 7.194
71 (7.194)
Defining ¢ = e%;_—;') , we see that there exists an (¢, M, €') code satisfying
M _?C 1
log — > — 2V ' /1 . 7.195
R Y Ve log€m+o( og¥) ( )

Hence, at least heuristically, we can achieve (7.195) even if the decoder ignores the
codebook and the received sequence, and picked the stopping time 7 as above. Note
that this argument depends crucially on how log % depends on e.

Proof. We begin by expressing the probability of error in terms of the sum of the
largest L posteriors:

P.>1-E | > Pyp-(jlY") (7.196)

JETT

where T} indicates the largest L posteriors Py(y+(j|y?) at time ¢. This lower bound is
tight if and only if the decoder g, outputs the top L posteriors as the list. Note that
regardless of the stopping rule, outputting the messages corresponding to the largest
L posteriors always gives a better probability of error than any other list.

The main idea of this argument is the following: we expect the quantity

P2 Py (YY) (7.197)

. t
JETY

to be nearly deterministic, as shown in the last section, then so too do we expect the
probability of error above to evolve deterministically, since the lower bound (7.196)
(which is tight when the decoder outputs the largest L posteriors) depends only on
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p:. Rigorously, we have the following chain of inequalities

P.>1—E[p,] (7.198)

=1-Y E[lg—yp] (7.199)
t=1

=1- ZP [lpt —pe| < t_ko] E [11{T=t}pt||pt — | < ﬁtt_ko] (7.200)
t=1

+ P [Ips — Bel >t E [Lrmype|Ipe — 2] > t7] (7.201)

>1—-E[p,]—2E [r7%] . (7.202)

We can interpret the E [p,] as randomizing between fixed blocklength codes, since p; is
the error for a fixed blocklength (¢, M, €) code. We will show that such randomization
cannot kill the dispersion term. Let €; be the probability of error for a fixed length
code with blocklength ¢, and suppose we can choose any distribution 7 € {1,2,...}
such that E[7] = ¢, how small can E[e,] be?

To this end, note that p; satisfies

b = P [Yf > Et] (7.203)
Z_ [Ytl/? > ;t] (7.204)
l.e. take a binary hypothesis test between

Ho: Z ~ Y2 (7.205)
Hy:Z~Y (7.206)

that outputs Hy when Hj is true with probability at least p;, then p; gives the mini-
mum type 2 error, i.e. with a slight abuse of notation,

L 5 1172

— =, (YY) (7.207)
First note that when ¢t = 0, we have that the probability of error is 1 — % ~ 1, i.e.
the best that we can do is guess the codeword. Hence our analysis will lower bound
1 —p; for t > 1. From [15, Lemma 14}, we have the bound on 8;,, for any A > 0,

M %
log — = —log By, (¥7,,"") (7.208)
B+ A 1
<tC+Vtv™? (ﬁt + j/} ) + 5 logt — log A (7.209)

where ' and V are the capacity and dispersion of the BSC, respectively, and B > 0
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is a fixed constant. Solving for the error 1 — p,, we obtain

log® —tC — Llog -4 B+ A
1—p,> L 2 _2Ar ) 4 7.210
b= ( Nov NG (7.210)
log¥ _tC 1 t
> @ L - log — 7.211
- ( ViV ) 2 2ortV & A2 ( )

where ®(-) denotes the Gaussian CDF, and the second line follows from % > 0and

S
Taylor’s theorem, i.e. defining
log X —tC
= 2L " (7.212)
VvtV

for some 6 € [x - 2\/1W log =z, x], we have

®<x~ ! lo i) —@(x)—;lo ¢ (9) (7.213)
WAV CA? N |
1 t

> d(r) - ——=log — 7.214
=00 S B (7214

where ¢(-) is the Gaussian pdf, which is maximized at 1/v/27. For large enough M
and ¢, the second term can be made arbitrarily small relative to the first, since the
region of interest of the first term is around t = % log % To this end, choose t large
enough so that

1 ¢
———log— <1,
22tV Saz ="

for some 7 > 0 arbitrarily small. Hence we have a lower bound on the probability of
error,

1—5 > ®(x) — 7. (7.215)

Now we return to the question, give any distribution 7 on the positive integers such
that E[r] < ¢, how small can E[1 — p.] be? Using (7.215), we have the lower bound

E[l-p]>E {@ (bi%—‘T—C) 1 (7.216)

VTV

Note that the RHS of (7.215) is a decreasing function of ¢, as z is monotonically
decreasing in ¢, and that ®(-) has an inflection point at 0. Hence we can further lower
bound the RHS of (7.216) by the linear function with largest negative slope. The
point of this is, if say 1 — p, > max(—at + b,0), then 1) the distribution 7 never puts
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mass beyond the point ¢ = b/a, lest it gains nothing while increasing E[r], and 2)
E(l — p,] > E[max(—ar + b,0)] = —aE[r] + b (7.217)

since we never put mass on the zero part. Hence all distributions 7 such that E[r] = ¢
give the same lower bound of —af + b, eliminating the challenge of optimizing over
7’s. To this end, the point of interest ¢ is given by

1-(1-p) 0
=P~ 20 (7.218)

p_ 9, (7.219)

T
Notice that shifting (7.216) by the offset n does not affect the location ¢ where the

maximal slope occurs, hence we can ignore 1 for now. Applying this to the lower
bound in (7.216), and we obtain

1 log 7 —tC _2 log ¥ —tC
Q <———W ) =59 (——\jﬁ ) (7.220)
. log——tC _log%+tC
- so( i ) ( N ) (7.221)
which becomes,
Q) = ota) (32+ Vi) (7222)

for z defined as in (7.212). Note that the point ¢ we seek will occur when z < 0, since
@ is concave on the interval (—oo,0], and hence we define y £ —z to work with a
positive value. Let b £ % for clarity. Rearranging (7.222) yields

! _;(Cj_)(y) _ _%y Vb, (7.223)
Plugging in ¢(y) = —=e ~¥*/2 yields
V2reV'? = +Vtb + % : (7.224)

When y > 0, we have constant bounds Q(y)/¢(y),

QW
< S \/g . (7.225)
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Using this, first we upper bound vy, via

Voreh'? <0+ Vb + \/g . (7.226)
Solving for y yields the upper bound
th+ /%
= y < 4/2log \/_ 5 2 (7227)
V2mr
Now, we can also lower bound y via (7.224),
1 th+ /%
Vore?' /2 > —51/2log ‘[—\/2_—‘/—;- +Vtb+0 (7.228)
iy
> ——;-\/Zb + Vb (7.229)
1
= 5\/Zb (7.230)

where in the first line we used (7.227), and the second we used log(1+z) < z. Solving

for y yields the lower bound
1
y > ,/2log§\/ib. (7.231)

From (7.227) and (7.231), we conclude that

y=(1+0(1))/logt. (7.232)

Applying the definition of y, this shows that the ¢ from (7.219), which we will call ¢*,
satisfies

log Ag— =t"C — /Vitrlogt (1 + 0(1)). (7.233)
Hence, we have the linear lower bound via (7.216) as
log X — t*C
El —p) > p® | —Lt—— |+ (1 - 7.234

log % —t*C

since we have that (0,1) and (t,@ (—W)) are two points on the line, where p
is selected so that E[r] = ¢, i.e.

¢
pt"+01l—p)=0 = p=— (7.235)

t*
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Plugging this p into (7.234) yields

¢ log4 — t*C

¢
=20 (—\/log t*) +1- tf (7.237)
>1-— tf (7.238)

where the second line uses that ¢* satisfies (7.233). Setting this equal to € gives the
condition on ¢*:

621—£ = t* < ) (7.239)
t* 1—c¢
With this, finally we obtain an upper bound on the number of messages:
M
log 7= t"C — /Vitrlogt*(1 + o(1)) (7.240)
<8 L TTlogi—— + o(tlog0) (7.241)
— 0 .
e 8 V1—ce¢ .
since the first line is an increasing function in ¢* for large enough ¢*.
O
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Appendix A

Existence of non-Gaussian caids

Proposition 47. Let S C R" be such that a) 0 € S and b) there exists a non-zero
polynomial in n variables with real coefficients vanishing on S. Then there exists
a random wvariable X taking values in R™ with the property that its characteristic

function ¥U(t) 2E [e'Xi=1t%] ¢t € R™ satisfies

T

U(t)=e T Vtes

2

but there exist a ty € R™ such that U(ty) # e 'Y (i.e. X £ N(0,1,)).

Remark 15. The simplest application of this proposition is the following. Suppose
that three random vectors in R® have the property that projection onto any (2-
dimensional) plane has the joint distribution A (0, Is) x AV(0, I) x N(0, I5). Does it
imply that the joint distribution of them is M (0, I3) x N (0, I3) x N'(0, I3)? Note that it
is easy to argue that joint distribution of any pair of them is indeed N (0, I3) x N'(0, I5)
and thus the only jointly Gaussian distribution that satisfies the requirements is
indeed the i.i.d. triplet. However, the above proposition shows that the general
answer is still negative. Here S is a subset of all R3*3 with determinant zero.

Proof. We will slightly extend the argument of [35]. We will assume familiarity with
basic commutatitive algebra on the level of [36]. Consider an identity expressing the
well-known computation of the Gaussian characteristic function:

1 : x?2 2¢2
eztz——gzo — e~a T
V2ra? Jr

Setting 8 = é, changing sign of ¢t we get

it B2 [2m 2
/em 2 dr=4/—e 28,
R B

Differentiating this in 8 and setting 3 = % we get
% —itz— 2
/:1: eMTT dr = po(t)e™
R
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where pyy(t) is some polynomial of degree 2k with real coefficients (and involving only
even powers of t). For later convenience, we also interchange ¢ and z to get

2

/t%e"im_g dt = por(x)e™ (A.1)
R

(Identity (A.1) also follows from the fact that Hermite polynomials times Gaussian
density are eigenfunctions of the Fourier transform.)
Next, suppose that there is a polynomial g(¢1, . . ., t,) such that ¢ vanishes on S and

each monomial t’fl -«-tfn in g has all ky,...,k, even. Then, define the characteristic
function ) ,
Tk=1tk k=i ti

Uty .. ) 25 e =T F gty ... 1), (A.2)

We will argue that for e sufficiently small, ¥ is a characteristic function of some
(obviously non-Gaussian) probability density function f on R". By taking the inverse
Fourier transform we get that

@) = Grge F L+ eo(o)).

=i . . . .
where e~z g(x) is the inverse Fourier transform of the second term in (A.2). Since

U(t) is even in each t¢;, we conclude that f(z) is real. Since g(0) = 0 (recall that
0 € S) we have ¥(0) = 1, and thus [, f = 1. So to prove that f is a valid density
function for small € we only need to show that

sup |g(z)] < co. (A.3)

T€ER™

To that end, notice that applying (A.1) to each monomial Ht?kj we get

/ <H t?kj) 12, t%i— ”til dty - - dt,
R\
J

=i
2

Multiplying the right-hand side by e we conclude that contribution of each mono-

mial of ¢ to sup, |¢g(z)| is bounded by

(H Dok, (%‘)) e

Since there are finitely many monomials in ¢, the proof of (A.3) and of validity of
W(t) is done.
We are left to argue that there must necessarily exist polynomial ¢ with required

sup
zeR™

< 0.
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properties. By assumption there exist some other polynomial ¢y vanishing on S.
Consider an inclusion of rings

TéR[x%,xg,...,xi] — Rlzy, ...,z

where Rz, ..., x,] denotes the ring of polynomials with variables z1, ..., z, and co-
efficients in R, and < denotes an inclusion map. This morphism of rings is obviously

finite. Consider ideal (go) of R[zy,...,z,] and denote as usual by (go)° = (g0) NT its
contraction. We argue that (go)° # (0). Assume otherwise, then we have (gp)¢ = (0)
and /(o) = (0) (since 4/(0) = (0) as T is an integral domain). Take all mini-
mal primes of (qo), call these {p,}, then the radical of (g) is the intersection of all

prime ideals that contain it, i.e. y/(go) = N;p;. Then, denoting g; 2 p§ we get that
N;q; = (0) in T. By “prime-avoidance”, cf. [36, Prop. 1.11], we know (0) C Njq;
implies that q; C (0) for some j, hence q; is the zero ideal for some j. This contradicts
the “going-up theorem”, cf. [36, Corollary 5.9], so we must have (go)¢ # (0), and
hence we may take ¢ as an arbitrary non-zero element of (go)°. O
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