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Abstract

Wireless networks in the near future face a formidable challenge of accommodating a
dense set of infrequently communicating devices characterized by small data payloads
and strict latency and energy constraints. In such a scenario, providing energy efficient
random-access access becomes a challenge. Information theoretic analysis of such
systems becomes imperative to understand the gap from optimality of the methods
of random-access currently employed.

In this thesis we discuss the trade-off between the required energy-per-bit to
achieve a target probability of error (per-user) and the number of active users. Pre-
vious works in this regard focused on the AWGN channel model. In this thesis we
consider the issue of Rayleigh fading. Specifically, we use random coding with a sub-
space projection based decoder to get finite blocklength bounds from which we arrive
at the trade-off. Further we justify the use of our decoder by proving its asymp-
totic optimality for the channel under consideration. We also show that the required
energy-per-bit increases from around 0-2 dB (for AWGN) to around 8-12 dB under
fading.

Thesis Supervisor: Yury Polyanskiy
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

One of the significant challenges faced by wireless networks in the future is to handle

a massive number of occasionally communicating terminals where the energy require-

ments are very strict. This is also known as massive machine-type communication

(mMTC) and there has been significant discussions on this problem in the next gen-

eration (5G) communities. MTC applications look towards having hundreds of thou-

sands of devices connected to a single base station communicating sporadically with

small data payloads [81. For instance, the internet of things (IoT) is characterized,

among other things, by the network's support for communication of massive number

of devices and long battery lifetimes 125]. In general the characteristics of such MTC

networks include very high node density, short packets, sporadic transmission, strict

energy constraints and limited computational capability 1221. In such a scenario, ac-

cess management plays a critical role. In this thesis, we focus on the energy-efficiency

aspect of such systems.

Currently, there is an active discussion of possible transmission schemes for mMTC

in 3GPP standardization committee. The main candidates are multi-user shared ac-

cess (MUSA, [38]), sparse coded multiple access (SCMA, [23]) and resource shared

multiple access (RSMA, [151 [1).In MUSA, fixed complex spreading sequences of

short length and successive interference cancellation (SIC) decoder are employed.

SCMA is a modification of the low-density signature (LDS [16]) scheme in which

11



sparse spreading sequences are used. Due to sparsity, iterative decoding using mes-

sage passing algorithm [16] 118] [35] can be used. SCMA differs from LDS in the code

used for spreading: the latter uses repetition coding (e.g. from QAM) whereas the

former uses a specifically designed multidimensional codebook to map the incoming

bits which results in enhanced gain over the latter. SCMA codebooks are designed

by casting it as an optmization problem [23] [32], and different codebooks are allo-

cated for each user 123]. Coming to the third scheme, RSMA is characterized by long

pseudo-random spreading sequences along with a low-rate code. RSMA has the ad-

vantage of low complexity over SCMA. In ideal scenarios, the performance of SCMA

is better than RSMA but with significantly complex receiver; but the advantages of

SCMA are not so significant in a practical situation (with imperfect power control,

for example) [2].

In current systems (such as LTE) the initial uncoordinated multiple-access prob-

lem is addressed by using a low-rate physical random-access channel (PRACH), using

which the nodes register themselves with the base station (BS) [3]. Subsequent com-

munication is managed centrally by the BS. Simple slotted ALOHA [30] [3] scheme is

used for random-access. But is this does not scale to high-node density. This is the

problem we are addressing in this work.

Since ALOHA is known to have low utilization (~ 37%) f301, a recent improve-

ment, coded slotted ALOHA (CSA), was introduced in [9] where users repeat their

packet in different slots. Interfering packets can be successively cancelled by using the

additive nature of the channel. Furthering this idea, in 120], interference cancellation

is linked to iterative decoding of graph based codes. By optimizing the probability

distribtuion of the repetition rate, it is shown that the utilization improves to around

80%. In [11] a grant free random access scheme called asynchronous ALOHA was de-

veloped using similar ideas of packet repetition. In 14], more progress in asynchronous

ALOHA have been made towards low-complexity IoT devices.

12



According to what we are aware of, at the heart of most of the ALOHA based

methods lies the ability to decode only uncollided information packets, and hence

any (non-orthogonal) collision is declared as an error. The idea and analysis of us-

ing multi-user detectors for resolving small order collsions has appeared many times

(see [14], for example or more recently in [20, Appendix A]). More recently, a concrete

scheme to resolve higher order collisions called T-fold ALOHA was proposed in [24]

in which up to T collisions are decoded using a specially constructed code, and its

performance in terms of energy-per-bit on an additive white Gaussian noise (AWGN)

channel was compared against the slotted ALOHA scheme and the finite blocklength

(FBL) bounds developed in [27]. In this work, we follow similar lines to develop FBL

bounds using random coding and T-fold ALOHA on a quasi-static Rayleigh fading

channel, and show that this gives better trade-off than slotted ALOHA (which is just

1-fold ALOHA) (see figure 6-1).

The model we consider in this thesis follows from [27] and [24]. Consider a single

base-station (receiver) and a large, potentially unbounded, number of transmitters

wanting to communicate with the base-station. Let K > 1 be a fixed integer. This

represents the number of active users - at any given time exactly Ka of the users are

transmitting. Further, the message of each user is of size k bits and it is transmitted

over n channel uses, which is the blocklength. Typical values of these parameters that

we consider are k = 100 bits and n = 30000. Hence we are looking at theoretically

evaluating the performance for small payloads in the FBL regime. As mentioned

in [271, the goal of this model is to be able to take the total number of users to be in-

finite, and hence schemes like ALOHA would become an achievability. Moreover, any

FBL bound would give us a way to compare all such achievability schemes against one

another, and a gap from from the information theoretic bound would clearly depict

how far the current schemes are from the theoretical achievability.

Coming back to the channel model, we consider a quasi-static Rayleigh fading

channel with additive white Gaussian noise (AWGN) (2.6). Since we are considering

13



a situation with potentially unbounded number of users, it is necessary that all users

use the same codebook. Further, as in a vanilla AWGN MAC, each user is subject

to a maximum power constraint P (2.8). We consider the case of the so called no

channel state information (no-CSI) where neither the transmitters nor the receiver

have knowledge of the realization of the fading coefficients. This makes sense in our

model since the payload is small and the set of active users can change, it may not be

feasible to estimate the channel reliably. Since we are dealing with the quasi-static

case, the fading coefficients remain fixed for the entire block of transmission. The

decoder at the receiver is supposed to output an estimate of the list of the messages

that were sent. Due to the common codebook, the decoding is done upto permutation

of sent messages, and hence user identification is ruled out (which also makes sense

when the number of users is infinite). The rationale for this is that the identity of

users can be embedded in the messages the users send. For instance in LTE PRACH

where the users contend for resources by sending preambles, it is enough if the base

station is able to decode the list of preambles that were sent. Finally the error metric

is the expected fraction of incorrectly decoded messages.

We review some of the related works. As mentioned before, this thesis continues

the line of work initiated in [27] where FBL bounds were developed for the random-

access situation in an AWGN channel. Further, this bound was compared against

existing schemes like ALOHA, TDMA etc. A low complexity scheme using cocati-

nated codes and T-fold aloha was introduced in [24]. Although this is much better

than ALOHA, there is a significant gap from the FBL bound. Serial interference can-

cellation along with interleaved LDPC codes was considered in [331 towards reducing

this gap, and further improvements in the LDPC part of 1331 was done in 121]. The

error metric considered in all of these works is the per-user probability of error. The

idea of per-user error error can be traced back to [5]. In [51, the average fraction

of users that cannot be decoded was analyzed for a quasi-static K-user MAC (with

CSIR) in the regime of n -+ oo and both K = 2 and K > 1. The analysis for large

K was carried out using the fact that the ordered statistics of fading coefficients crys-

14



tallize to some constants. We use this result as a benchmark to compare our bounds.

The main contributions of this thesis are that we develop FBL bounds for the

quasi-static Rayleigh fading random access MAC under the no-CSI assumption 1 . We

use this bound to find the minimum energy-per-bit Eb/No = nP/k to achieve a

target probability of error. This random coding achievability bound uses a subspace

projection based decoder inspired from 137] which doesn't need the knowledge of the

realization of the fading coefficients. Further we show that this decoder achieves

the E-capacity region of the quasi-static MAC under the classical joint probability of

error. We also show that this decoder achieves the same asymptotics as that of the

joint decoder in [5] under per-user error. We also develop a simple converse bound

based on the converse from 1371 and a modification to the meta-converse theorem

from [28]. We would also like to mention here that in a recent unplished work 1171 with

our collaborators a low-complexity iterative decoding scheme is developed based on

LDPC codes [13,29,31j and a belief propagation based decoder that shows significant

performance compared to the theoretical predictions. So, although not part of the

work in the thesis we include these results in our plots so as to compare our theoretical

predictions to an actual coding scheme2

'Part of this work appears in an unpublished work [171 with the author of the thesis as one of
the co-authors. The FBL bounds, T-fold ALOHA and the converse in [17 were developed by the
present author.

2 The practical coding scheme based on LDPC codes in [171 were developed by Alexey A. Frolov
(Skoltech, Moscow, al.frolovdskoltech.ru) and Yury Polyanskiy (MIT, yp~mit.edu). We have used
the this data as an additional graph in our plots, and it is labeled with a name containing "LDPC".
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Chapter 2

Definitions and System Model

In this chapter we introduce the definitions of a code and also describe the system

model.

For a positive integer m, let [m] = {1, 2, ... , m}. We denote by CAf(u, E) the

complex normal distribution with mean p and covariance matrix E (and pseudo-

covariance 0).

2.1 Definitions

Definition 1 (MAC). Fix an integer K > 1. A multiple access channel (MAC) with

K users is a sequence triples (x 1X,", y", Pyi x.) where XA" is the alphabet of

user i, Y is the output alphabet, and Pynlxn,....x. : x ..- 4 Y" is a probability

transition kernel.

Next we define the random access MAC with Ka active users.

Definition 2 (RAC). Fix an integer Ka > 1. A random access MAC (RAC) with Ka

active users is a sequence of triples (Xn, yn, Pynjxy,...,x where X' and yn denote

the common input and output alphabets respectively, and Pyn x n (Xn)Ka _ yn

is a probability transition kernel. Further, it is assumed that kernel is permutation

invariant: for any permutation 7r on [Ka] the distribution Pynx.xn. (|x,.. xK)

coincides with Pynj.p.Xn x xn(), ..., x .

17



We note that the above definition of RAC allows for unbounded number of users

but only Ka of them are active at any time.

For the sake of brevity, we denote the kernel in the above definitions by Pynixn

or just PyIx when what we are referring to is clear from the context.

Now we give various definitions of a code for both MAC and RAC. There are four

possible variants for each: same vs non-same codebook and joint vs per-user (average)

probability of error. But we do not define for all the eight combinations; we just deal

with non-same codebook for the MAC and same-codebook for the RAC.

Definition 3. An ((M1, M2 , ... , MK), n) code for a K user MAC Pynixn is a set

of (possibly randomized) maps {f2 : [Mi] - "} (the encoding functions) and

g : yn --+ BK I[Mi] (the decoder).

Definition 4. An (M, n) code for a Ka active user RAC Pynixn is a set of (possibly

randomized) maps f : [M] --+ X7 (the encoding functions) and g : YTf -+ ( ]) (the

decoder). Here (MI) denotes the subsets of [M] of size Ka.

Notice that in def. 4, the decoder's output is just a list of Ka messages. This is

due to the fact that users employ the same codebook and the channel is permutation

invariant. We emphasize here that in the random access setting, we avoid the user

identification problem since we allow a setting where the total number of users could

be taken as infinite. Further, in a practical setting, the messages can contain the

headers for user identification. Hence our main focus is on data transmission rather

than user identification.

Definition 5 (Non-same codebook, joint error). An ((M1 , M2 , ... , MK), n, E)j code for

the MAC Py Ixn is an ((M1 , M2 , ..., MK), n) code such that if for j E [K], X = f(Wj)

constitute the input to the channel and Wj is chosen uniformly (and independently of

other W, i = j) from [Mj] then the average (joint) probability of error satisfies

P U {W4 # ( > <;< (2.1)
Li[K|

18



where Y is the channel output. If there are input constraints where each Xi E F C

Xi", then we define an ((M, M2 ,..., MK), n, e, (F1, ... , FK)) J code as ((M1, M2 ,..., MK), n,E)J

code where each codeword satisfies the input constraint.

From now on, we do not explicitly state the cost constraint in the definition.

Definition 6 (Non-same codebook, per-user error). An ((M1 , MA2, ..., MK), n, E)pu

code for the MAC PynIxn is an ((A, M2 , ... , MK), n) code such that if for j E [K],

X3 = f(Wj) constitute the input to the channel and Wj is chosen uniformly (and

independently of other Wi, i 4 j) from [Mj] then the average (per-user) probability of

error satisfies

P Wy/ ((Y))5 e(2.2)
j=1

where Y is the channel output.

Definition 7 (Same codebook, per-user error [271). An (M, n, E) random-access code

for the Ka user RAC PynIxn is an (M, n) code such that if W1 ,..., WKa are chosen

independently and uniformly from [M] and X = f(Wj) then the average (per-user)

probability of error satisfies
I Ka

Ka ZIP [E3] < c (2.3)

where E. A {W3 $ g(Y")} U {Wj = W, for some i $ j} and Y is the channel output.

Observe that according to this definition, collision results in an error. The ratio-
(Ka)

nale is that the probability of a collision is at most 2 which is small in a practical

situation. For example, we consider the scenario where each user has a payload of

100 bits and the number of active users Ka of order 100.

Next we have the definition of c-achievability of codes from [15].

Definition 8 (c-achievability [151). Fix c > 0. Let R1 , R2 , ... , RK be non-negative real

numbers. We say that a rate tuple (R1,..., RK) is joint (or per-user) E-achievable for a

M A C PynIxn of there exists a sequence of ((M "), , ... , M ), n, {p .
\ / 

In~ J {or PU resp.}

19



lim sup E < 6
n-*oo

Vi E [K], lim inf 1 logM (n)> R-
n->oo n

(2.4 a)

(2.4 b)

Note that the above definition holds for both joint and per-user probabilities of

error for the case of non-same codebook.

Using joint c-achievability, we can talk of the 6-capacity region for the MAC.

Definition 9 (E-capacity region C, [151). The joint E-capacity region for the MAC

Pynixn is defined as the set of all rate tuples that are c-achievable. That is

CE = (R1, ... , RK : Vi, R > 0, and (R1, ... , RK) is c-achievable)}. (2.5)

2.2 System model

In this thesis, the focus is exclusively on the quasi-static fading MAC (or RAC) which

is described below.

1. K-user fading AWGN MAC (K-MAC): The channel law Pynixn is de-

scribed by
K

Yn = ZHiXn + Zn (2.6)

where Xf E Cn, Zn~ CAF(0, Ia), and Hi CPJ(0, 1) are the fading coefficients

which are independent of {Xi} and Z".

2. Ka-user random-access fading AWGN MAC (Ka-MAC): This is a Ka

active user RAC (def. 2) with the channel law given by

Ka

Y" =H iX + Z" (2.7)

20
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where X h E C", Z" ~- CA(O, I), and H, jdCH(O, 1) are the fading coefficients

which are independent of {X7} and Zn.

We emphasize that the fading coefficients remain fixed for the entire duration of the

transmission, and hence quasi-static.

Further, for both the above models, we assume that there is a maximum power

constraint:

Xn l2 < nP. (2.8)

In the rest of the thesis we drop the superscript n where it may not cause confusion.
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Chapter 3

Ka-MAC: Achievability and converse

In this chapter, we provide some achievability and converse bounds for the Ka-MAC.

For the achievability part, we use random coding with subspace projection based

decoding. The converse is a simple list-decoding version of the converse in [371. The

results provided here are for the case of no channel state information (no-CSI) either

at the transmitters or the receiver.

3.1 Achievability

Before stating the achievability result, we describe the encoder and the decoder for

random coding.

3.1.1 Encoder

As with a vanilla Gaussian MAC, we use random coding with either

1. Spherical codebook: For each message, a vector uniformly distributed on the

/nP-complex sphere is independently generated. That is XirUnif (/n P(CS)n-

where ((CS))- 1 denotes the unit sphere in Cn.

or

2. Gaussian codebook: For each message a CP'J(O, P'I) vector is independently

generated. That is Xi "d CA(O, P'Is) where P' < P. For a message Wj of user

23



j, if |1X(Wj)|1 2 > nP then that user sends 0.

Also observe that a set at most n - 1 codewords are linearly independent almost

surely.

3.1.2 Decoder: Projection decoding

Inspired from [37], we use a projection based decoder. The idea is the following.

Suppose there were no additive noise. Then the received vector will lie in the subspace

spanned by the sent codewords no matter what the fading coefficients are. So a

decoder that outputs a list of Ka codewords which form the subspace, such that

projection of Y onto to this subspace is maximum is a natural choice. Formally, let

C denote a set of vectors in C". Denote PC as the orthogonal projection operator

onto the subspace spanned by C.

Let C denote the common codebook. Then, upon receiving Y from the channel,

the decoder outputs g(Y) given by

g(Y) = {f -'(c) : c E }

C=arg max PcYH 2  (3.1)
CCC: CI=Ka

where f is the encoding function.

Another rationale for using projection decoding is that, when the receiver does

not have the channel state information, projection onto subspaces is a natural thing

to do. Since the receiver is trying to find the closest subspace (from a collection of

subspaces) to the received vector, the channel coefficients are implicitly estimated as

a function of the codewords spanning the subspace: they are precisely the coordinates

of projection of Y in the basis of codewords constituting that subspace. Further, we

show later that projection decoding achieves the 6-capacity of the K-MAC.

3.1.3 Achievability bounds

In this sub-section we state our main achievability results.

24



Theorem 3.1.1. Fix P' < P. Then there exists an (M, n, c) random access code for

the Ka-MAC satisfying power constraint P (see (2.8)) and

Ka

c KaE tP [Ft] + po (3.2)

where, if S, S denote the indices corresponding to sent and decoded codewords re-
(Ka)

spectively, F = {|S \ $| = t}, po = ) for the Spherical codebook and po =

1a + KaE [ 2n] W2 > nPJ , WIdA(O, 1) for the Gaussian codebook [27].

Further, assume w.l.o.g that messages {1, 2, ... , Ka} were sent and ci is the code-

word corresponding to i C [Ka]. For 1 < t < Ka, let R1 = log ((M-K)) and

R2 = log ((Ka)). For 6 > 0, let c(6) = 1 - exp (- ( i _ + (t - )1o f-Ka)

Then

[ R -n K ) + [ IxYr2  11 PC[ lY 12

P [Ft] < inf eR2-(nKa) -C[[Ka] > [[K 
2 c1p

L. IsoI=t J _A

where c[s = {ci : S}.

Proof. The proof of (3.2) follows from the proof of theorem 1 in [27]. Next, we bound

P [Ft] for the projection decoder.

jid /1-
The common codebook is generated by choosing ci Unif (y nP(CS)) or

jidc C.A(0, P'In), i E [M]. Therefore codebook size is M. Note that, following [27],

the users now select Ka messages without replacement from [M] (this is accounted

by po). W.l.o.g assume that S = {1, 2, ... , Ka} is list of messages that were sent.

Therefore the send codewords are c[s = c[[Ka]I. Let A 1 = {So C [KA] : ISo| = t} and

A 2 = {So C [M] \ [Ka] : |SoI = t}. Then we have

F = P [|S \$| = t] c U F(S., S'1) (3.4)
SOcA 1S' EA 2

25



where F(So, So) { PC[s c[S I >P Y and S= [Ka] \ S 0. Further

note that P. Y = PC[K]]y

Claim 1. For any So c A 1 and SO E A 2 , conditioned on C[Ka], H[Ka] = {Hi
22

iC[Ka]} and Z, the law of Pc e Y is same as the law of PCSC] Y +
0IC 0 C 1 1,

(I - Pcs )Y Beta(t, n - Ka) where Beta(a, b) is a beta distributed random variable

with parameters a and b.

Proof. Note that Pc c Y = Pe Y + Pe I P' Y. Further Pc 1 P' Y =
2

2 2 
~p_

,Pc, c1 ) P4 Y. Hence _cq2 1C Yc c P

Now conditioned on C[Ka] and H[KaJ, P Y is a fixed n-Ka+t dimensional vector.
CISC]

2

So, P Pl Y is the squared length of the projection of a fixed vector in
(P45  C[S] 1 [S0

2
Cn-Ka+t (defined by the orthogonal projection operator P' ) of length P' Y

C[SC] c[SCI

onto a random t-dimensional subspace defined by the orthogonal projection operator

.%])Further, the law of the squared length of the orthogonal projection of a

fixed unit vector in C' onto a random t-dimensional subspace is same as the law of

the squared length of the orthogonal projection of a random unit vector in Cd onto a

fixed t-dimensional subspace, which is Beta(t, d - t) (see for e.g. [37, Eq. 79]). Hence
2

the conditional law of P s cL Y is (IS- Pc,)Y Beta(t, n - Ka).
c[SLI

Hence we have

P [F(So, So)|c[K,], H[Ka], Z] =

FO - C[[KI] ; n - Kt (3.5)

where F, (x; a, b) is the cdf of beta distribution Beta(a, b). Further, from 1361, we have

FO(x; n - Ka, t) < (n - Ka)t-lXn-Ka. (36)
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Let g(Y, c[Ka , So) =1 " Then, using ideas similar to random coding
||Y1|| Pc Y1

union (RCU) bound [261, we have,

P[Ft] < P U
0SoEA1 ,SO'EA 2

=E min

<; E min

{
(

1%

F(So, Sf) <

M Ka)

min 1,
E I [F(So, S,)
SOs/

F,3 (g(Y, c[Ka], So)- n - Ka, t)
So

1,Z eRj (n - Ka)(-l g(Y, C[Ka],
so

So) (n-Ka)

IC[K.], H[K.], Z]

(3.7)

where the summations are over So C A 1 and S. C A 2 (we do not write A 1 and A 2 for

the sake of brevity).

For 6 > 0 define the event Et as

E =n 1( log(n -Ka)
E s=0 o g~ Y [ aS) n - K,, n - Ka

RI~ ~~1 Kat,)lg~-a
so= r {g(Y, C[Ka], SO) < + }
So

So

Then we have

P [F] < E e(n-Ka) + p [Er]
So

(3.8)

< C R2-(n-K)6 + Ip (3.9)U{f(, C[K], SO)
.So

Since this true for any 6 > 0, we are done. 0

We make few more observations. Since (cI, CKa ) were the sent codewords, we

have Y = Ka Hci + Z. But, for any So c [Ks], Sol = t, Y can be written as

Y =v 1 + v 2 + Z1 + Z2 + Z where

Z1 = PCJ PC[[Ka]]Z (3.1Oa)
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Z2 = F' P Z(Kall3.lb)

Z3 = PC Z (3.10c)

V1 = P[SC] E H ci (3.10d)
iC[KaI

v 2 = Pc Z H ci. (3.10e)
iESo

Hence

P [Ft] < inf eR2-(n-Ka)+ -IP 2 11 > (3.11)
.5>0 ||Z3|11 + minso ||Z2 + V2||

One way to compute (3.11) is through a union bound which we state next. But as

we shall see, the bound is loose. Apart from the union bound, it is not straightforward

how to compute (3.11) numerically since computing the minimum over all subsets of

[Ka] of size t is unfeasible. However, for small Ka (say Ka < 4) we can perform

Monte-Carlo simulation of the bound.

Theorem 3.1.2 (Union bound). For 1 < t < Ka, let n' = n -Ka and h = n - KaI+t.

Then following the same notation as in theorem 3.1.1, we have

P [F] pt= inf e R2 --(n-K'(+ -- +n) + 2+ e 4 2 i 2 6 1 - 2t
6>0,0<y ;1,r>0,61>0

61 -2t + a
+ P [X2(2t) < .12 + l (3.12)

(1- 'y)iIP'

where X 2(2t) is a chi-square distributed random variable with 2t dimensions, and

c 
= a(r, 6) = 2 )

Proof. From (3.11), we have

tP [F] < eR2 (n-Ka)6 P 3 2  113)
whr S now repIZr||s +enZ2 + V2|| siz t sbt

where So now represents a generic size t subset of [Ka].
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Here, the common codebook is generated by choosing ci CAf(O, P'In), i E [M].

We have, 1Z3| 2 ' W3 where W3 ~ X2(2n'). Let Z2 = V2Z 2 and v' = V 2v2.

Then we have

IZ31|2
2

||z2 +v 2 ||2 +||Z 3||
W3

W3 + IZb + V,112

Therefore, for r > 0,

IP [g(Y,[K], SO) 1 - E] < P [W3 > (1 + r)E [W3]]

+ P [|Z' + V 2

5 e-"' "- +
K (1

-1-c

+ r)E [W3]

P [Z'/ + V' 2 a (3.15)

where a = d-(1+ r)2n', and the last bound follows from the upper tail bound (A.2)

with A = 0.

Conditioned on C[KaI and H[K,], v2 is fixed and hence v+Z-Cj(v', 2P P, ).

Therefore, upon conditioning, IIV, + Z2|1 2 ~ X,(1V, 2 , 2t), where X'(A, d) represents

the non-central chi-squared distribution with non-centrality parameter A and dimen-

sion d. Now we use lower tail in (A.3) to bound P [11Z, + v, 2 < a] as follows.

Let 61 > 0. Let B = {HV1 2 > a-2t+61}. We have

l[||Z'+-V| 2 a <TE [ | Z' + v'||2 < a, B C[Ka], H[Ka] + P [B]

(IlvsI2 2t+a)2t
4

1
2t+2HvgH B2 [B] + P[Be] .

T(A+2i-a)2
The function fi(A) = C- 2+2 is monotonically decreasing for A >

(3.16)

0 if a <
1 (Ilv II2 2t-a)2

4 2t+2|V|, 112A + 2t. Hence on B, we have e K e 4 2,+261 -2t

So we have

P [Z' + ' 112 < a< e 4
2l+261 -2t + P [BC]

29
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To bound P [BC], observe that |vg|| 2 ~P'HU where H ~ X2 (2t) and U ~ X2(2h)

(H and U are independent). So, for 0 <-y < 1,

P [BC I =P -P'HU < a - 2t + 61
.2

[H a + 61 - 2t 1 1
(1- - 7-)E [U) 2_

<4 + P H < a(3.18)<eE[] 'Y2 I+[H a6 1 -2t 21]3.8
1 1- 7Y)E [U] P,

where the last inequality follows from the tail bound (A.3) with A = 0.

Therefore we have

:5 e i2 + ED+ 61 -2t 2
IP [Bc]< 2+IP H < a 1 (3.19)

Finally combining (3.13), (3.15), (3.17) and (3.19), and optimizing over 6, r, y

and 61 we get (3.12).

Next we discuss yet another achievability bound using the so called T-fold ALOHA

method introduced in [24]

T-fold ALOHA

Let T, ni E N such that T < Ka and n1 < n. Here T represents the maximum number

of collisions that we decode before an error is declared. The time frame of length n

is split into L = n/n, slots of length nj. The common codebook is of blocklength

n1 . Each user independently and uniformly picks a slot to transmit his message. We

assume that the decoder has the knowledge of the number of users transmitting in

each slot. This is not that much of an issue since for e.g. the decoder can try to decode

all possible T or use energy detection. Suppose there is a code that can resolve at

most T collisions. Then the decoder tries to decode in the slots where there are at

most T-collisions, but declares an error if there are more. So we can use the random

coding to resolve upto T-collisions, and we can achieve the following probability of
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error per user:

T Ka -I Ka-t

C T 1 t- S ( K ) ( 1 (1+
TK - 1 1-1 Ka-t

Pe (M, ni, tLP) (a 1) (3.20)

where P,(M, ni, t, P) = c of an (M, ni, c) code used over the Ka = t fading MAC

with power constraint P. This is easy to see since in the slot that a particular user is

transmitting, the probability that there are exactly t - 1 of the remaining users also

transmitting is given by (a 1 1 - Ka-t

We will later see that attempting to evaluate (3.11) directly for large Ka does

not result in a good performance (although better than the union bound) since the

user with the smallest fading gain creates a bottleneck. But evaluating (3.11) for

K < T where T is small and then appealing to T-fold ALOHA results in a very

good performance.

3.2 Converse bound

In this section we describe a simple converse bound based on results from 137] and

the meta-converse from 126]. But first, we will discuss a list-decoding version of the

meta-converse.

3.2.1 Meta-converse for list decoding

Following the notation of [26], let (A, B, PyIx) be a random transformation. That is,

the input and output alphabets are A and B respectively, and the channel is given

by the transition kernel PyIx.

Definition 10. An (M, Ka) code for the random transformation (A, B, Py x) is de-

fined by a pair (f, g) with function (encoder) f : [M] -> A and transition kernel

(decoder) g : B -+ UKa M- Ka] where (['[) = {S c [M] : IS| = t}. For this
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code, the probability of error is defined as

EYf, g) = 1 E - P[j E g(Y)|X = f(A)]
j=1

(3.21)

where, with abuse of notation, g denotes a [MKaI valued random variable distributed

according to kernel g - g(-Iy).

Next, we define some notations on binary hypothesis testing from 1261. Let W be

a random variable that can take one of the two distributions P and Q on the same

alphabet W. A randomized test between the two distributions is a transition kernel

Pzlw : W - {0, 1} where 1 indicates P. The optimal performance is given by

f3 (P, Q) = inf Q(Z = 1) (3.22)
PzJw:

P(Z=1)>a

where P(Z = 1) = Eew Pziw(lIw)P(w) and Q(Z = 1) = Ew Pziw(1|w)Q(w).

Similar to the meta-converse theorem in [26], we have the following.

Theorem 3.2.1. Let (A, B, PyIX) and (A, B, Qyix) be two random transformations

and fix an (f, g) code (here f can also be randomized). Let e and c' be the error

probabilities (as in defn. 10) under the transformations P and Q, respectively. Let

PX = Qx be the distribution induced by f on A. Then

01-E (PXY, QXY) <1 -- E (3.23)

Proof. Let W and W be the random variables denoting the input to the encoder and

output of the (list) decoder. Then we have the following two joint distributions

PwXYW(w, X, y, tb) 1f(XIw)QYlx(yIr)g(?dy) (3.24a)
1

QwXYWV (, X, Y YX ( I f (XWQI0IXgiVY (3-24b)
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where W - Unif [M]. Define the random variable Z as

Z = 1{W c Wi}.

Claim 2. Pzlxy = Qzjxy

Proof.

= EWX, Y1P W
j=1

M

j=1l

M

- 51P[W =j|X] g({S E [MKaI: j S}|Y).
j=1

We note that the last expression is for both P and Q.

(3.26)

E

So PZjXY defines a transition kernel from A x B to {0, 1} and hence is a binary

hypothesis test between Pxy and Qxy with

xEA yEB

x E
XEA YEB

PzjXY( IX, y)PXY (X) = 1 6

Pzjxy(1jX, y)Qxy(X, y) = 1 - 6'.

(3.27)

(3.28)

Consequently, by (3.23),

01-6(PXY, QXY) 1 - (3.29)

Next, we have the converse bound.

Theorem 3.2.2 (Converse). Any (M, Ka) code for a random transformation (A, B, PrIx)

33
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with probability of error e satisfies

M < Ka sup inf 1
PX QY 81 _-( PXY, Px x Qy)

(3.30)

where Px ranges over all distributions on A (or, if there is a cost constraint, then on

the constraint set F), and Qy over all distributions on B.

Proof. Let Px be the distribution induced by the encoder. Choose Qyjx = Qy in

Theorem 3.2.1 for an arbitrary distribution Qy. Let c' be the probability of error

under Q. Since the input is independent of the decoder output under Q, we have

'=P [W(

MIiE[M]

>i Ka
M

Ka >
M -

=
iE[M]

I
-P iiEW])

(3.31)

,Px x Qy)

> inf sup 1_-,(Pxy, Px x Qy)
Px QY

(3.32)

FI

3.2.2 Converse for the Ka-MAC

Theorem 3.2.3. Let

L = n log(1 + PG) +

Sn = n log(1 + PG)

j
z~ 1

+

(1- G PZ - V1f +PG1 )

I/PCZ - 11
1+PG )
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since ZEi[MI 1[i E W] < Ka, a.s.

Hence from Theorem 3.2.1, we have

sup i31 _(Pxy
Qy

(3.33)

(3.34)

P [W =i] P i V



where G = |IH||2 and ZiCAf(O, 1). Then for every n and 0 < c < 1, any (M, n-1, c)

code for the quasi static Ka MAC satisfies

1
log(M) < log(Ka) + log (3.35)

P [L, '> n-y,]

where 'N is the solution of

IP [Sn < n-yn] = E. (3.36)

Proof. We note that a converse bound for the case where full CSI is available at

receiver (and/or transmitter) is a converse for the no-CSI case as well. Further, by

symmetry on the users, it is sufficient to get a lower bound on the probability that a

particular user's message is not in the decoded list. Finally we can assume that the

decoder has the knowledge of the codewords of all other users. Formally, let Y be the

received vector and let L(Y) be the list of codewords output by the decoder (we use

list of codewords or messages interchangeably). The size of the list is IL(Y)l < K,.

Then we have the following implications:

IKa

KaEP [Xt L(Y)] > I
t=1

<-> P [Xi L(Y)] 1 - (3.37)

+P [X1 V L(Y, H1)] > 1 -e(3.38)

P [X1  L(Y, H[Ka], X[Ka]\{1})] > 1-6 (3.39)

where (3.38) and (3.39) represents the case when decoder has access to the fading

realization of user 1 and interference from all other users respectively.

Now, given H[KI and X[Ka]\{1} at the receiver, the channel is equivalent to

Y 1 = H1X 1I + Z

where H1 and Z are same as before, the decoder outputs a list of messages W
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L(Y, H1 ) of size at most Ka and the probability of error is IP W1 V W1 where W1

unif[M] is the users message. Observe that this is similar to the case dealt in [37], but

the decoder is performing list-decoding. So the remainder of the proof similar to the

one in [371 (also note that 128, Lemma 39] holds here) with the usual meta-converse

replaced by theorem 3.2.2.
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Chapter 4

Asymptotics of the projection

decoder: Joint probability of error

In this chapter we discuss the asymptotics of the projection decoder under the clas-

sical joint probability of error in the case of non-same codebook. We show that the

projection decoder achieves 6-capacity of the K-MAC.

4.1 E-capacity region for K-MAC

Note that for a fixed finite number of users, the E-capacity of the quasi-static channel

does not depend on whether or not the channel state information (CSI) is available

at the receiver since the fading coefficients can be reliably estimated with negligible

rate penalty as n -> oc [61 [5]. Hence from this fact and using [15, Theorem 51 it is

easy to see that, for 0 < e < 1, the c-capacity region of the K-MAC defined in (2.6)

is given by

Cc = {R = (R1, ...,I RK) : Vi, Ri > 0 and PO(R) < c} (4.1)

where the outage probability Po(R) is given by

Po(R) = P U log1+PZ|H 2  < R (4.2)

LSC[K],Sf0 \ iES iES
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4.2 Achievability

Before we state the main result, we adapt the projection decoder in (3.1) to the case

of non-same codebook.

Encoder

As before, we use random coding with either

1. Spherical codebook: Each user, for each message independently generates

a vector uniformly distributed on the 7nP-complex sphere. That is Xi d

Unif ( InP(CS) n).

or

2. Gaussian codebook: Each user, for each message independently generates a

C.I/(O, P'Is) vector. That is Xi " CAF(O, P'I,) where P' < P. If a codeword

generated violates the power constraint (2.8) then that user sends 0.

Also observe that a set at most n - 1 codewords are linearly independent almost

surely.

Decoder

Let C denote a set of vectors in C'. Denote Pc as the orthogonal projection operator

onto the subspace spanned by C. Let C1 , ..., CK denote the codebooks of the K users

respectively. We have Ci n Cj = 0 a.s. by the random generation of codebooks. Upon

receiving Y from the channel the decoder outputs g(Y) which is given by

g(Y) = (f -1 f1 ( K))

(21, ... 8K) = arg max 11P{c(:iE4[K} 3)

where fi are the encoding functions.

Now we present our main theorem in this section
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Theorem 4.2.1 (Projection decoding achieves Ce). For the K-MAC given by (2.6),

projection decoding achieves C,. That is, let R E C, given by (4.1) and (4.2). Then

for the K-MAC there exists a sequence of M n),..., M7) ,cn, codes satisfying

the power constraint (2.8), with the decoder being the projection decoder (4.3) , such

that

lim inf 1 log M ( > Ri, Vi E [K] (4.4)
n--+oo n /

liM sup En < E (4.5)
n-> o

Proof. Let r/i > 0, i E [K]. Choose _ -=en(Rz-r2)1, Vi E [K]. Let user j generate a

spherical codebook of size Mj and power P independently across codewords and inde-

pendent of other users. Hence the channel inputs are given by X (nP(CS)n .
Let {Ci}4K1 denote the codebooks of the K users with ICil = Mi. We will drop the

superscript n for brevity.

Suppose the codewords (ci, c2, ... , CK) E C1 X C2 ... X CK were actually sent. Then

by (3.1), error occurs iff ](c', c', .. , c'K) E C1 X C2 --- X CK such that (c', c', ---, c') /

(cI, c2, ... , cK) and

|P. K.. .... Y|2 > |PC---,CKK (46)

This can be equivalently written as follows. Let S C [K] be such that

i E [S] -- > Z/ ci (4.7)

where (6i)i1 denote the decoded codewords.

Let c[s] ={c i c [S]}. Then, error occurs iff IS c [K] and S $ 0, and

]Ifc' :i E [S], c' $ ci} such that

2 2

C/ Y >PC[KY . (4-8)

So, the average probability of error is given by
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2[C U U PS] ,[SY] PC[K]] Y
Sc[K] {c'ECi:

SOO iES,cloci}

- U U U {PCiScc > >2 pc
tE[K] Sc[K {c'C:

IS|=t iES,c'=cj}

}I
K 2I

Using ideas similar to the Random Coding Union (RCU) bound 126], we have

Cn < E min 1, E

_' 2

]IPP e Y
2

>C[[K]]
C[K], H[K], Z1 }1

where primes denote unsent codewords and H[KI = {Hj : i E [K] }. Unsent code-

word c' here means that it is independent of the actual channel inputs/output and

distributed with the same law as Xi.

Claim 3. For t E [K] and S C [K] with \SI= t,

P [ 2 2

PccY >P Y[ Ic
PC[SCI 2 > I Pc[Kq

F I C[[KI]

||YI 2 _ PCIse]

[K} H[K],

- Kt)

Z

(4.11)

where F(x; a, b) is the cdf of beta distribution Beta(a, b). Further, from [37], we have

F(x; n - K, t) < (n - K)'-lxn-K (4.12)

Proof. Same as the proof of claim 1 LI

Letting g(Y, C[K], S)
|Y | 11- P [S I Y 2 1), we have the
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(Mi - 1)
\jES/

(4.10)



following from (4.10), (4.11) and (4.12)

YK exp (-(n

SC[K]
S =t

K) [(t log(n - K)

I- -

log(MS) - 10((y, \\ll)
n - K g( [

Let 6 > 0 and let E1 be the following event

E1 = n ) {log((Y, CK], S))
tE[K] SE[K]

ISI=t

(t log(n - K)
-(t-1n n-K

= n n {- log(g(Y, c[K], S)) > n}
tE[K] SE[K]

ISl=t

= n n {g(Y, [K], S) < -n}
tE[K] SE[K]

ISI=t

where ~n = (t - 1 ) + (_-K) +log(Ms) + 6 and = e .and n-K

and t.

Note that y, depends on S

Then, from (4.13) we have the following

En < E [mil {1,

EsE
tE[K] Sc[K]

ISI=t

exp (-(n

log(MS) log(g(Y
n-K

-K)6 + P[Ec]

u u
-t E[K] Sc[K]:ISI=t

g(Y,c[K], S)

Hence, as n -+ 00, it is the second term in the above expression that potentially

41

en E [ nin 1,
tE[K]

(4.13)

log(MS)

n -K
> 6}4.14)

(4.15)

(t- 1)log(n - K)
n-K

e-(n-
tE[K] SE[K]

|SI=t

C[K], S))]) (1[E1 ] + 1[E])]

= E 1:e-n-K)6 +
tE[K] Se[K]

ISI=t

(4.16)7n]



dominates.

Claim 4. For t E [K], S c [K] with |Sj = t, we have

E H~2 
-2

|1Y1| 2 _ PC[[K] 2

|1y1|2 _ P[C

F 2

<; P j(1- ym)P43 Z - ynP43 1  H c
LL ZieS

~~n

21

iES

where PICI represents the orthogonal projection onto the orthogonal complement of

the space spanned by c[Sc].

Proof. See appendix. El

To evaluate the above probability, we condition on c[KI and H[K]. For ease of

notation, we will not explicitly write the conditioning.

Since Z CA/(O, In), we have Z - -In Zs Hici ~ CK(- 1 Zies Hic2 , I).

Hence P41 (Z - 'In Zss Hici)~ C n(-; Pc, HicZS P 3 ).

fact that if W = P + iQ ~ C(p, F, 0) then

P

-Q

Re() 1
Im(pu) J

1[Re(F)
2 Im()

-Im(F)

Re(F)J

Now using the

) (4.18)

we can show the following

Lemma 4.2.2. Conditioned on H[K] and C[KI, we have

Hic)
) 2

' yn PC

2

SHici ,2(nr-K +
iES
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'Yn (4.17)

P1L (z - " r
1 -

~ ( 2 t) ) (4.19)

P [g(Y, C[K]) S) > .]=P



where x' (A, k) represents a non-central chi-squared random variable with non-centrality

parameter A and dimension k. Hence its conditional expectation is

y = n' + A (4.20)

-yni P 1
2

Hici 1 and n'= n - K + t.

Proof. See appendix.

Hence we have

P U U
tE[K] SE[KSs[=t

P U U
t E[K] SE [K]

lsl=t

P

P-LCPSC]

P1

(Z-

(Z-

U U
tE[K] SE[K]

IsI=t

i "n

1"i

Z Hzcz)
iES

1 Hici)
) S

2

2

- (A n') >

iYn

-f (1 N)

-- 1 n

}} Ic[K] , H[K]

where - = gn P' H c 2 n' and A = P 1
(1-Yn) jjC[Sc] LKdES "' ~A (i--Yn) 2

11C[scI

2

ZzESie H cI . Hence

A = (- + n'). Note that in, -y A all depend on t and S.

Now, note that

7 = )

n

= ( -i)

= n'1 i(

2

YP Hci - n'

2

n (I + n

(4.22)
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where A =

0

2

Hi ci

2

Hi Ci

iES

P-L

-ill
n'

(4.21)I x2(2A, 2nf)



where in1 - 1 ('Yn (1+ Hn/s

A = - ( + n')

Let 61 > 0. Let Ell = FtE[K] SE[K] f
ISI=t

> 61 From (4.21) we have

P U U
tE[K] SE[K]

IsI=t

= E E 1

LE [ IP tE[

= E p U
.tE[K

< E p U
tE[K

< ZE
tc[K] SE[K

LSIrt

< zz
tE[KI SE[K]

IsI=t

1x (2A ,{ 2
U

K] SG[K]
ISI=t

U
]SE[K]

U
JSE[K]

IsI='t

l '(2A, 2n
- X

2n') -(A +n') >

x (2A,

}71

2n') - (A +n') >

{ X (2A,2 ') - (A +m ')

{x'(2A,

IE[IP X2(2A, 2n')
F- -[

2n') - (A + n')

') - (A + n') >

II

'y

- (A + n') >

I K I H[K]

I
I

11E 11]

} C[K] H[K]1 1[y > 61] + P [Ee1 ]

[exp (-n'fn(7')) 1[71 > 61]] + P [Eel]< 1: E F
tE[K] SC[K]

ISI2~t

where the last inequality follows from (A.2) with

fn(X) = X + 1 + 2n(I1+ X)1 - ( + )

-~2y Vt 2'>n +1vTjx +2;
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Hence

(4.23)

71} C[K), H[K]

>'} CJK), HJK)]

> } K cKH[K]

1
(1[Ell] + 1[E',])

1[Ell] +P[E'I]

+ P [E 1 ]

(4.24)

x) (4.25)

= '^Y n (7 + ).



Now, we claim the f, is monotonic:

Claim 5. For 0 < -yn < 1 and x > 0, fn(x) is a monotonically increasing function of

X.

Proof. See appendix El

Hence we have

P U U
tG[K] SE[K]

S\=t

2 2 2n') - (A+n') >

(4.26)< 1: 1:exp(-Pn'f, (61)) + P [E'1] .
tC[K] SE[K]

lS=t

So, we have the following proposition

Proposition 1. If 0 < < 1 for all t E [K], S C [K] with |S=

S and t) then we have

||Y||2
LE[K|S_[K] ||Y 2  Y

|C[[SK
jsl=t PC[SC]Y

tE[K] SG[K]
ISI=t

t (-y1 depends on

2

P-L jEs HiciWUU lixit C[SC]L X S:
+nP U U I + /

tE[K] SG[K]
_ S|=t

-1 (4.

(4.27)

Proof.

P U U 2y1 _Pc-r
ItE[K]SE[K]II| 2 -P

< exp(--n'fn (61)) + P [Eel]
tG[K] SE[K]

|s|=:t

45
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= E E exp(-n'fn(6i)) +
te[K] SE[K]

|S|=t

1 (PU U1  Yn
tE[K] SE[K]

|S=t

E exp(-n'fn(6 1 )) + P
SE[K]
Is|=t

2

+ c-Lsc EiES HiCi

1 + C , n

U U
tEfK] Sc[K]

_ S=t

<

2

+ 
n, )

-1 6ij

(4.28)

Fl

Now, we need to upper bound

U U
tE[K] SE[K]

L |s|=t

2

+ PIsc, EiGzs Hi c
2. 1+ n/ -1< 31.

We have

2

P1 Z H ci
icS

2 5 Re P ci,
i<j:ijES

PC PCScC) = (ci, c

|H|2 P c~ 2+

Pc-,L c 3) H %HJ)

) - K Pc[SC C, PC[.C C 3

Hence we get

KP-LC Ci PC ISC]

C-' Pcsc1 CiPC[5C] Cc7

(ci,7 ci) + PcIC sci c Pctsl C4
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tE[K]

Further,

(4.29)

(4.30)

Re K P 1 ci, Pcl c3

7n 1i



= nP (0K(i, a)| + PqSCJ e PC[SCIQJ ) (4.31)

where hats denote corresponding normalized vectors. Since these unit vectors are

high dimensional, their dot products and projection onto a smaller, fixed dimension

surface is very small. Indeed, we have the following two lemmas.

Lemma 4.2.3. If e1, e2 % Unif((CS)" 1 ), then for any 62 > 0, we have

P [ (el, C 2) I > 62] - 4C 2 (4.32)

Proof. First, lets take e1 , e 2 iid Sn-1. Let x be a fixed unit vector in R" . Due to

symmetry, we have P [(ei, x) > 0] = 1/2. Hence, by Levy's Isoperimetric inequality

on the sphere 119], we have

P [(ei, x) > 62] < e-n 2/2. (4.33)

Again by symmetry, and then taking x as e2 , we have

IP [I (ei, e2)1 > 62] < 2e-n 2. (4.34)

Now uniform distribution on (CS)n-I is same as the uniform distribution on S2n-,

and for complex vectors zi = x1 + iyi and z2 = X 2 + iy 2 we have Re (z1 , z 2 ) =

T (I Y) n d1 'Ud S2n-1heXi X2 + Y1 Y2 = ( (, )( 2). Hence if el, e 2  (CJi )"-d and Ui, U2 then

Re (ei, e2 ) has same law as (Ui, U 2). Hence we have

2n3
2

P [IRe (ei, e 2)I > 62] < 2e 2. (4.35)

Also, Im (zi, Z2) = X1 Y2 - Y1X2. Hence Im (ei, e 2 ) has the same law as Re (el, e2).

Hence we have

P [|(ei, e 2)I > 62]

= P[I eie2)2 > 62]
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SIP [Re (ei, e2) + Im (ei, e2) 2> 2

< P62 62
IP IRe (ei, e 2) > + P IIm (ei, e2)I >

2

< 4e- . (4.36)

nF61

Next we have a similar lemma for low dimensional projections from [34, Lemma

5.3.2]

Lemma 4.2.4 ( [34]). Let x~Unif (S 1 ) and P be a projection to an m dimensional

subspace of Rn. Then for any 63 > 0, we have

P InPxI| - > 2e - "n (4.37)

where c is some absolute constant. Hence, by symmetry, the result remains true if P

is a uniform random projection, independent of x.

Now we need to prove that a similar result holds for the complex variable case as

well. We have the following lemma

Lemma 4.2.5. Let z ~ Unif(CS)n- and P be a projection to an m dimensional

subspace V of C". Then for any 3 > 0, we have

P I||Pz|| - r > 63 1 2e -'"n6 (4.38)

where c is some absolute constant. Hence, by symmetry, the result remains true if P

is a uniform random projection, independent of z.

Proof. Consider ||PzJJ. Let U be the unitary change of basis matrix which converts

V to first m coordinates. Hence ||PzJ| = ||UPzJJ. Therefore we can just consider

the orthogonal projection onto first m coordinates. Hence the projection matrix P

is real. Let ei, ... , em be the standard basis corresponding to the first m coordinates.

Let A be the n x m matrix whose columns are ec,..., em. Then P = AA* (* denotes
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conjugate transpose). Since A is real, we have Re(Pz) = AA*Re(z) and Im(Pz)

AA*Im(z). Now, if z ~ Unif((CS)--1) then Re(z) has same law as Im(z). Hence

Re(Pz) has same law as Im(Pz). Further A* = AT. Also note that, if z = x+iy then

||Pz||2  z*AA*Z = XT AATX + yT AATy [ yT [AAT =T L P H
0 A AT

where P denotes the orthogonal projection from R2" to a 2m dimensional subspace.

Hence f1Pz1 2 has the same law as that of the projection of a uniform random vector

on S2 --I to a 2m dimensional subspace. Hence using lemma 4.2.4, we have

IP [PzI - > 63 < 2e-2cn3 (4.39)

Since Hi~ -CAr(0, 1), we have IHi12 ~X2(2 ) exp(1) where X2 (d) denotes the chi-

squared distribution with d degrees of freedom and exp(1) represents an exponentially

distributed random variable with rate 1. Therefore, for v > 0,

P [IHiI 2 > ] (4.40)

Now, we are in a position to bound

2

C 
PI Zi6s Hici

P U U -Yn 1+ n/ <1 3
tE[K] SE[K]

IS|=t

For S C [K] with ISI = t, define the events E2, E3 and E4 as follows:

E 2 (,t)= P - t (4.41a)
iES

E 0 {(, ij) 1 62} (4.41b)
i<j:i~JG[K]

E4 = 0 {Hi2 <v} (4.41c)
iG[K]
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where we choose 62 = n-i 63 and v = n4. Hence we have

P

SP

PI Z1 8  c12)
1+ cs, s Hic

U U n/1+,,
tE[K] SE[K]

Isi=t

-1<61

2

P( 6sHec
1+ P18[ , , Z ES i

n/I
-1 < 61, E2 (S, t), E 3,E 4

U U(
te[K] SE[K]

... IS=t

< IP U U
tC[K] SE[K]

_I s|=t

j(S, t) U EC U E)

'Yn (1
PI EiEs HiCi 12

+ 
1 C S H

-1 < 61, E2 (S, t), E3, E4

[Eel + P [EC) + P [EC(S, t)].
tE[K] SE[K]

ISI=t

Using lemmas 4.2.3 and 4.2.5 and eq. (4.40), we have

> P [E(S, t)] < 2Ke-_n, + Ke-v +
., K E IP K E2

tE[K] SE[K
ISI~t

2t(t - 1)e- 2

SE[K]
IsI=t

(4.43)

Note that the above quantity goes to 0 as n -÷ oc due to the choice of 62, 63 and v.

Also, the choice of parameters is not the optimum. Nevertheless, this is enough to

prove the result.

Further, observe that on the sets E2 , E3 and E4, we have from (4.31)

Re 62

21
+ 63 = O(n-1 )(4.44a)

2

1 i-12
Pets', jI 14 63+ K+t]
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{ NU U
tC[K SE[K]

IsI=t

+F

}I+
(4.42)

P[Ec] + P [E2] +

KPj C, PI C Hz < + K-t)

= O(n_- ) (4.44b)



So we have

SU U
tc [K] SC[K]

p U U
tE[K] S[K-'P [=t~N

I 1+ ( E S ) -)1 61 , E2 (S, t), E 3 , E 4

{7~n
+2 E Re (P

tE[K] SE[K] { Y[

L + n Hil2pi112
n iCS iES

C)] 2 I P C HJ -j

E lH|22 |2 tv

iES

2
IHi 2 PCIs] c I

< 61, E2 (S, t),E3

63+ t

-t(t-1) (62 +

=P U U
tE[K] SE[K]

lSI=t

-'P log

tE[ K] SE[ K|

F

tE[K] S[K]
lSlt

U U
tG[K] SE[K]

{ n

[1

{

(

(

=P U U lo
tE[ K] SE[K| ] s

L i

[1

+iP

iCS

riP
n/

icS

lH 21

H2 2]

I .1

is

+ P I
iES

iES

IHi ]

IHi 12

-1 61}

+61+ -0(n 1)

<1+61+O(n- L)1

< I+6 1 + O(n-2)

9- log(7n) + log(1 + 6 1 + O(n-1/ 12 ))

< i + log(1 + 61 + 0(n-1/12)
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,E4

2

<'4

<P

.

2

63 + 
t

n ) ) -



U U log
tE[K] SE[K]

ISl=t

1 PE IHI2]
iES ..

where -' = ~y + log(1 + 61 + 0(n- 1/ 12 )), and 0 depends on K and t.

Let 6n = log(1 + 61 + O(n- 1 /12)). We have n-K (-s - i)) (1 + o(1)).

By the choice of M "), for sufficiently large n, sufficiently small 6 and 61, we have

P U U log
tE [K ]

ISI=t

tE[K] SK]lo
SI=t

= P U U (log
tC[K] SE[K]

iES

L i +P >Hi 12

+PE IHil2
iES

< (t - og(n - K)n-K

log(n - K)
ri-K

+ 1:(Ri - r/j)

<PU U log
tE[K] SE[K]

SI=t

Finally combining everything, we have

En < P U U flog
tE[K] Se[K]

ISI=t

E l
Hi S (t - og( - K )

<(t1) r- K+PE
iES
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(4.45)

log(MS) +6 6
nF-FK6I

)
L+ 1PiZ

iES

I Hi 12 R2) (4.46)

- 7n

jHij2 <7

(I + 0(1)) + 6 + 6n



+ E )}

+E Ye
tE [KI SE[K]

IS|=t

-6(n-K) -n + 2t(t - 1)e

Therefore for this choice of

iM SUP En
n->oo_

< u
te[K] SE[K]

ISI=t

<6

(M z(n, from (4.46) we have

log [1+ PE IHi 2
iES

R)

(4.48)

Since 7 > 0 were arbitrary, we are done. That is (4.5) is also satisfied.

D-

53

2Ke-c + K " n1/4
n1/3~

2 j

(4.47)

-
77i ) )
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Chapter 5

Asymptotics of the projection

decoder: per-user probability of error

In this chapter, we analyze the asymptotics of the projection decoder under the per-

user probability of error in the case of non-same codebook. Our benchmark in this case

is the Shamai-Bettesh asymptotic bound from [5]. The authors provide an asymptotic

bound (n -+ oc) on the probability of error per user in the case of symmetric rate

and large K. The idea is the following. The joint decoder that they use knows the

realization of fading coefficients and users are ranked according to this information.

The decoder first tries to decode all users. If it fails (i.e., the rate vector is not inside

the instantaneous full capacity region), it drops the user with least fading coefficient

and tries to decode the remaining K - 1 users. The dropped user forms part of

the noise. This process continues iteratively, and the fraction of users that were not

decoded is precisely the outage/probability of error per-user. Since the case under

discussion is for large K, the order statistics of the absolute value of fading coefficients

crystallize (i.e., become almost non-random) and hence analytical expressions can be

derived for outage in terms of spectral efficiency (kK/n) and total power.

Assuming channel state information at the receiver (CSIR), we show that in the

general non-symmetric case, the projection decoder (suitably modified to use CSIR)

achieves the asymptotic bound as that of [51 generalized to the non-symmetric situa-

tion.
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5.1 Achievability

Just to recall, we consider the quasi-static K-MAC with CSIR. We modify the pro-

jection decoder to use CSIR as follows. The decoder works in two stages. The first

stage finds the following set

D (E arg max IDI: D C [K],VS C D, S f ,ERi < log I+ 1+ CS s,1

(5.1)

where D is chosen to contain users with largest fading coefficients. The second stage

is similar to (3.1) but decodes only those users in D. Formally, let E denote an error

symbol. The decoder output gD(Y) E fIk I Ci is given by

(-( (Y))= E1D

IE i V D

(0i)iED = arg max P{ci:iED}y 2 (5.2)
(ciEci)iED

where fi are the encoding functions. Our error metric is the average per-user proba-

bility of error (2.2).

We recall the result on the per-user probability of error as n - oc from [5], for

the joint decoder, in the general non-symmetric rate case:

Pf (R) = 1 - IEsup{IDI : Dc [K],VSc D,S $0,K

R < log I + < EiES IHi 2 (5.3)
1 + P Ei D (H5.2

where R = (R1 , ... , RK) and the maximizing set, among all those that achieve the

maximum, is chosen to contain the users with largest fading coefficients.

The following theorem is the main result of this section.

Theorem 5.1.1. For the K-MAC, if Pe(R) < c, then there exists a sequence of

!,I.f),ncP) codes with the decoder given by (5.1) and (5.2) such
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that

lim inf log (Mi n)) > Ri, Vi C [K] (5.4)
fl->-oo n-

lim sup 6, _ e (5.5)
n-+oo

Proof. Let PS (R) < c and 71i > 0, i E [K]. Choose Mf) = [en(Ri-,ni)],Vi E [K].

User i generates Mi codewords {c j E [M']} n C(O, P;In) independent of other

users, where Pn = ' I . For the (random) message Wi c [Mi], user i transmits
1+n 3

Xi =ci{ cj 12 > nP}. The channel model is given in (2.6) and the decoder is

given by (5.1) and (5.2). The per-user probability of error is given by (2.2)

Pe = E K IW. / (g,(y) . (5.6)
j=1

Similar to the proof of [27, Theorem 11, we change the measure over which E

is taken in (5.6) to the one where Xi = ci at the cost of adding a total variation

distance. Hence the probability of error under this change of measure becomes

Pe Pi + Po

with

po =KP |IWI12 > n Pp](5.7)

Pi =E K IW = (gD (5.8)
. j=1

where w ~ CJV(O, In) and, with abuse of notation, E in pi is taken over the new

measure. It can be easily seen that by the choice of P, and lemma A.0.1, po -+ 0 as

n -+ oc. From now on, we exclusively focus on bounding pl.
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p, can also be written as

pi = E {W # (gD (Y))I}+ DC]
iED

=1 E [IDI] + IE 1 W, = (gD(Y))j (5.9)
K K LEJ

where D is given by (5.1), because, for i E Dc, 1 {Wj # (gD(Y))j} = 1, a.s. Define

P2 as

P2 = P I Wj (gD > 0 (5.10)
JiED

So, it's enough to show that P2 -+ 0 as n -+ oo. This is because, if P2 -+ 0, then

the non-negative random variables An = EiED 1 {Wj $ (gD(Y)) 3 } converge tO 0

in probability. Since An < K, a.s, we have, by dominated convergence, E [An]

E [ZED 1 {Wi 7 (9D (y))J -+ 0. To this end, we upper bound P2.

Let c = (ci, ... , cK) E C 1 x ... X CK be the tuple of sent codewords. Let K1 = D!.

Let c(D) denote the ordered tuple corresponding to indices in D. That is, if i1 < i 2 <

< ZKI are the elements of D, then (C(D))j = c23,Vj E [K1]. Then P2 can also be

written as

P2 = P 1 W (gDIPC 0 (5.11)

=-P [ES c D, S 0 : Vi E S, (gD(Y))i / Wi] (5.12)

=P [SD) S#sC(D) i c$ Y PCS]CD] q 2 > 1 (5.13)

I 2 >2~1

= P e PC[D Y .q ( 5.15)

tE[K1} SD c' E j\{cj}

Let 6 > 0, g(Y, C[K],S, D) = ,ID] 2, MS = JjS(Mj - 1), in = (t -
yi 2- P, [S 7 JE112
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l)og(n-Kl)+lo(s+
) - 1  ( n-K + and yn = e-Y. Note that, since D is random, both Ms and

-yn are random. But in the symmetric case only MS is not random. Now, following

steps similar to (4.10), (4.11), (4.13) and (4.16), we have

e-(n-Kl)61

tE[K13 ScD
IsI=t

Sc[K]
ISl=t

e-(n-K)6 +

+P U U
tE[K] SCD:ISI=t

U U 19(y
-t E[K1] SC D:ISI=t

{g(Y, c(K], S,D) > 7n}

I
So, the first term goes to 0 as n -+ oc.

Let ZD = Z + KEDc Hici. It can be easily seen that, similar to (4.17),

2
P [9(y, C[K], S, D) > -y,]

P (1 - N) P SCIZD - /fnPc z Hici
CI S

2

> n P Hici . (5.18)
iES

Now, conditional of H[KI and C[D], ZD ~ CK(0, (1 + P' EiEDc JHi 2 )). Hence

P ZD -- ZiS HicL) ~CA(-l-; P-C Es Hici, (1+P'+ iDC |H 12)p4L c

Therefore

(ZD

2

n H ici
iGS

~In
1 --yn

-1 I (5.19)
iEDC

P1 > ES

2

Hic1

(1 + P'inDC Hi)
n'/ n - K, + t.

(5.20)

(5.21)
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P2 < E

<
tE [K

(5.16)

(5.17)

we have

P1
C[SC]

where

I
C[K], s, D) > N}1

jHi 12 1 2 (2A, 2n')



n |sC ZIE s Hic, 2

- yN) (1 + P' EiED H 12)

(1

2>

+

Hence -y n'jy and A =I n'(1 + -y). So, similar to (4.21), we have

1P U U (Y, C[K],S, D) > yn}
tE[K1] SCD:ISL=t

< p U U { x(2A,2n') - (Ai-r>') }
tE[K] SCD

Let 61 > 0 and E11 = ftE[KIfscD{'1 1 > 61} E o-(H[K], C[D])-
IS|=t

Now, similar to (4.26), we have

P U U 2 (2A,2n')- ( + ')>
tE[K1 ] SCD

IsI~

S exp(-n'fn(61))
te[K1 ] SCD

IsI=t

(5.22)

(5.23)

(5.24)

+ IP [Ecl].

(5.25)

where f, (now a random function) was defined in (4.25). So, again by claim 5 and

dominated convergence, the first term in (5.25) converges to 0 as n -+ oc. Next, we

upper bound the second term IP [EJl].

Similar to (4.28), we have

P[E1]=IP U U yI<1] <
t[KJ SCD
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|cj 3CZ Es Hici

n'(1 + PnZieDc JHi 2 )



2

(1 ' jZes Hici

'- (+ +P

Let &j = cj/ cill. Let 62 > 0, 63 > 0, 64 > 0 and v > 1. Define the events

E5 = 7 {|||cil

and choose 62 =O(n-A) = 63 = 64 and v = O(n/ 4 ).

Using these events we can bound P [Ec1] as

P [Ee1 ] <

IP U U
tE[K1 ] SCD

ISI=t{
2

P1  Zes Hic
C[ iE Il2'yn 1 +

tE[K1 ]
E
SCD
ISIzt

)
P [Ec(S, t)I

- 1 61, E2 (S, t), E 3, E4 ,

H[K]]

From [34, Theorem 3.1.1], we have

P [Ec] < 2Ke-c1n4 (5.29)

for some constant c1 > 0. So, from lemma 4.2.3, lemma 4.2.5, (4.40) and (5.29), we

have

61

P U U
tE[K1 ] SCD

LIS 1=' ) -1 .

(5.26)

E2(S,=t)=c - K 1 -t
iES I

E3 = f { (2i, Bj) I < 62}
i<j:i,jE[K]

E4  fl {Hi2 < v}
iE[K]

< 3 } (5.27a)

(5.27b)

(5.27c)

(5.27d)- nPl 64- nPI}

E5 +

(5.28)[Ec] + P [Ec] + P [EC] + EF



IP[Ecl] <

[tE[KI] ScD
ISI=t

{ N

2Ke-M 3+ Ke '

(1
+ ) -1 61,E2(S, t), E3, E4, E5 +

+ 2Ke cin+ 4e
tE[K] Sc[K]

2
n~2

(5.30)

So, by the chose of 6 j, i E {2, 3, 4} and v, the exponential terms in the last expres-

sion go to 0 as n -+ 00.

Now, arguing similar to (4.45), we get

tE[KI] SCD
IS t

P U
tE[K] SCD

ISk~t

{7n

{
(1

+

1+

P KL S H C'SC]ZI lE '

n' (1 + Pn1 ZiED IH 12 )

1

' (1 + P ZieDc IH|2)

) - 1 61, E2 (S, t), E3, E4 ,

{E Hi| 2 Ic 12

iES
-z

iES

E5

+2 S Re (Psc c., PeL cj)
i<j:i,jES

< P U U
tE[K1 ] ScD

ISI=t

-(1+64)2 (
+nP't(t 

- 1
+n-K

{'Yn E1
HHj } - 1 61,E 2(St), E3, E4,

+ nPA(I_64)
2  Hi2

n' (1 + P I I HED 2)

n Pn' tv
n-K

)(62 +

63+ K nt

63 + -<1 61

62

|Hi12 PC[SC]Ci

E5} (5.31)

(5.32)

2

t n ) ))



<liD U U{~[tE[Ki] Sc D
ISI=t

L i
nP'Y

+r' (1 + P
iCS|H |2

ZiEDc H 2)

- Pn K(1 + J4 )
n-K

nP K2 (1 + 64)2

n-K

F SYD{ SCL
ISI~t

2 1/ 6+
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where -' = -I + log(1 + 61 + O(n

Let 6, = log(1 + 61 + O(n-1/12)). We have IOg(MS) (Es(Rj - r/i)) (1 + o(1)).

There for sufficiently large n and sufficiently small 6 and 61, we have ' < Eiss Ri a.s.
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But we know that P, -- P, and on D, from (5.1) we have

z Ri < log ( -+ PZES H 2 )
1 + PZEiDc JH12

Hence the probability in (5.41) goes to 0 as n -+ oc.

So combining everything from (5.17), (5.26), (5.30), (5.31), (5.39), (5.41) and

(5.42), we get P2 -> 0 as n --> o. Therefor p, -+ 1 - E as n -> oc. Hence we have
K

En = Pe -+
E [D]

1- K (5.43)

Hence lim sup , E, < E. Further, since rij > 0 were arbitrary, we can ensure

lim infn, 0 M > R., Vi E [K].
72 z - 2
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Chapter 6

Numerical results and discussion

This chapter is devoted to presenting some numerical results of our bound for the

Ka-MAC. As mentioned in the introduction, our performance metric is the minimum

energy-per-bit (Eb/No = !) required to achieve a target probability of error E for

various values of Ka.

For our simulations, the parameters used are payload size k = 100 bits, blocklength

n = 30000 and target probability of error c = 0.1. Our benchmark performance is the

Shamai-Bettesh asymptotic bound [5]. Although this is asymptotic in n and for large

Ka, it gives the functional dependence of probability of error (per-user) on spectral

efficiency (which is kKp in our case) and the total power (of all users). Hence we can

use this to compute the minimum Eb/N required. Against this benchmark, we plot

the results of the union bound (3.12), T-fold ALOHA (3.20) for T = 1, 2, 3,4, the

converse bound (3.35)(3.36) and two approximations of (3.11). We briefly describe

these below.

6.1 Computing the bounds

6.1.1 T-fold ALOHA

We compute the T-fold ALOHA bound for T = 1, 2, 3, 4. As seen from(3.20), we

need compute Pe(M,ni, t, LP) for each t = 1,2,.., T. But first we need to optimize
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the number of slots for each Ka. Since direct optimization of the bound itself is

computationally slow, we use a 2 "d order capacity approximation

niC (p' EtD IH,12) - log(M)Pe(M, ni, t, P') = E i (6.1)

Vn 1V (P'Z E=1 IHi 2 ) J

where C(x) = log(1 + x) and V(x) = 1 - are the capacity and dispersion of

the standard AWGN channel [281, to find the (approximately) optimum L and set

ni = Ln/Li. Now using this n, and L we compute Pe(M, ni, t, LP) using a Monte-

Carlo simulation of (3.3) as describe below.

To perform the Monte-Carlo simulation of (3.3), consider the statistic g1 (Y, C[Ka], t)

maxsO g(Y, C[Ka], SO). Since this doesn't depend on 6, we can construct a Gaussian

kernel approximation of its empirical cumulative distribution function (CDF) using

Monte-Carlo simulations and use it to optimize over 6 in (3.3). We sample 103

points and use the inbuilt kernel density estimation function is MATLAB ® to ap-

proximate the empirical CDF.

6.1.2 Union bound

To compute the union bound (3.12), we need to optimize over the relevant parameters

r, 6, -y and 61. To this end, we first set up an optimization problem to minimize one

of the exponents in (3.12) subject to all the exponents being equal. Using the result

of this optimization as the starting point, we optimize (3.12). We use the inbuilt

optimization functions in MATLAB@ to perform both tasks.

6.1.3 Converse bound

The converse bound (3.35)(3.36) was evaluated using a suitable modified version of

the code in [10].
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6.1.4 Approximation to the achievability bound (3.3)

Since it is not straightforward to evaluate the bound (3.3) (or (3.11)) for Ka > 10,

we can approximate it based on the following observations. First of all, we can ap-

proximate the noise to be orthogonal to the code space. Hence we set Z2 = 0 in

(3.11). Next, we note that if the codewords were truly orthogonal, then the mini-

mum in (3.11) would be achieved by the set So which contains the t smallest fading

coefficients (in absolute value). Since we are using Gaussian or spherical codewords

in a high dimension (n = 30000), they are almost orthogonal. Hence we approximate

the minimum by choosing the set corresponding to the smallest fading coefficients.

Assuming Z2 = 0 we can make the second approximation rigorous as described below.

We call this the orthogonal noise approximation.

Orthogonal noise approximation

Consider the following generic problem. Let X be an n x Ka random matrix with each

column iid Unif /nP(CS)n-1 ). Let S C [Ka] with ISI = t where 0 < t < Ka. Let

Px[, denote the orthogonal projection operator onto the space spanned by the set of

columns Xs = {Xi : Z E S} of X. Let H E C^' be a fixed vector. Let Hs E Ct denote
2

the subvector corresponding to S. We need to lower bound mins P- Xsc Hsc

where minimum is over all t-sized subsets of [Ka]. The intuition is the following. If the

matrix X were orthogonal, then the minimum occurs at that set which corresponds to

the top t absolute values of H. Although X is not orthogonal, it is almost orthogonal

(because it is approximately a random Gaussian matrix). Next, we formalize this

intuition.

Fix -y > 0 and 0 < -y < 1. Let B1 = ni'Y} < and B2 = {Omin(X) ;>

n P(1 - - 1)} where 9min(X) is the smallest singular value of X. On the

events B1 and B 2, we have
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PxIs1 Xsc Hsc = Xs(XXs)-'XXXscHsc < Xs(XtXs) 1  X XscHs

nP 't(Ka- t) |Hsc||
O'min(X,)

< rnPy Vt(Ka- t)||Hse||
U7min(X)

K

V/nP(1 -7 )
nP' lt(Ka - t IIHscH

i E t(Ka -t)Y IHsc|.
1 - Ka-

Similarly,

IIXsc Hs::II > min(X) I IHsc I;> P

Hence on the events B1 and B2, we have

PxI XsC Hs-C

>rnP ||Hsc| 2

= ||Xsc Hs, |2 PX[SXSc HS 2

2

Ka72

2 t(Ka t)

(1 K j)J2

= h(n, Ka - t, Ka, -y, i1)nPIIHSc|2

So if ' < (- t) then this lower bound is minimized

corresponds to the t highest absolute values of the vector H.

at the set S which

Therefore we have,

P [F $ inf eR 2 -(n-Ka)6 + P [Bc] + P [Bc]

+P [ lZ3 2 2

| IZ3112+ h(n, t, Ka, , I)nP|IIHs 11
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where I ) and S* is the set corresponding to t smallest fading coeffi-
t(Kat)

cients (i.e. smallest absolute values of H). Further we have from (4.36) and 112, The-

orem 9.26]

P [Bc] Ka 4 e -n 2 /2 from eq. (4.36)

P [Be] ;< -n, ,/2

(the second inequality is approximate since the matrix we have is not truly Gaussian

but is very well approximated by a Gaussian matrix).

Hence, for a good choice of 'y and -yi, we can perform a Monte-Carlo simulation

of (3.12) as described in the previous sub-section.

But note that for large Ka, there may not exist a good -y such that the probability

of error is less than our target.

6.2 Plots

In this section, we present the plots of Eb/No vs Ka with n = 30000, k = 100 bits

and c = 0.1. In fig. 6-1, we have plotted the minimum Eb/NO required for c < 0.1 as

a function of the number of active users Ka for the FBL bound approximations, the

union bound, converse bound, T-fold ALOHA and the Shamai-Bettesh asymptotic

bound 15]. We have also plotted the result of using 4-fold ALOHA on the LDPC code

developed in 117]. In fig. 6-2, we plot the probability of error (per-user) as a function

of SNR(dB) with parameters n = 300, k = 100 and Ka = 2 for our FBL bound, treat

interference as noise (TIN), TIN with SIC and the joint asymtotic bound from [51, and

the (300, 100) LDPC code from 1171. It is interesting and intriguing to note that even

at that short blocklength of n = 300, the LDPC code performs pretty well compared

to both the FBL bound and the asymptotic bound. The reason is probably due to the

fact that (as shown in 136]) in quasi-static scenario finite-blocklength performance is

not very sensitive to quality of the code, since the probability of error predominantly

governed by the fading coefficient realization.
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We can observe from fig. 6-2 that the FBL bound is very close to the Shamai-

Bettesh asymptotic bound in terms of probability of error vs SNR(dB). Further from

fig. 6-1, we see that the approximation to the FBL bound is far off from the Shamai-

Bettesh asymptotic bound for large Ka but using 4-fold ALOHA, we can come quite

close to it. Therefore the projection decoder doesn't give good performance when

tried to decode all users. Intuitively, this is what we can expect: it is quite difficult

the user with the smallest fading coefficient since the expectation of the smallest of

{1H,1 : 1 < i <K KI is I.

Is

F.dkq K. MAC: E I(dB) -K f--**OO, k-100 b4..-d -0.1

Figure 6-1: Eb/No vs Ka for e < 0.1, n = 30000, k = 100 bits
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Figure 6-2: Probability of error (per-user) P vs SNR for n = 300, k = 100 bits and
Ka = 2
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Chapter 7

Conclusion

In this thesis, motivated by massive machine type communications (mMTC) and in-

ternet of things (IoT), we considered the problem of energy-efficient random access for

a quasi-static Rayleigh fading model. Using tools from finite-blocklength information

theory, random coding and a subspace projection based decoder we developed upper

bounds for the probability of error per user for our model. We used this bound along

with T-fold ALOHA to discuss the trade-off between the number of active users and

the minimum energy-per-bit to achieve a desired probability of error (per-user). Fur-

ther we provided some approximations to evaluate the bound for moderately large

number of users. We demonstrated that attempting to decode all active users is not

a good idea, and showed that T-fold ALOHA method with random coding achieves

a much better trade-off and it is off from the asymptotic bound of [5] by at most

4dB even at Ka = 300. We also developed a simple converse bound for our model

by generalizing the meta converse of [28] to list-decoding. In terms of the rationale

behind using the projection decoder, we proved that it achieves the (-capacity of the

K-user quasi static Rayleigh fading MAC under the classical probability of error, and

also achieves the the asymptotic bound from [5] under per-user error.

In terms of future work. as mentioned in the previous paragraph, the 4-fold

ALOHA bound is pretty close to the asymptotic bound. But in the AWGN setup,

there is a significant gap between 4-fold ALOHA and the random coding bounds

[24, 331. This could be because of the lack of power control at the transmitter. Since
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in a practical situation the transmitters estimate the channel and adjust their powers

accordingly, the effective fading is just over phase. So it will be interesting to see how

the trade-off changes under uniform phase fading.

Further, resolving higher order collisions in coded slotted ALOHA (CSA) to get

a coded-slotted version of T-fold ALOHA might seem to give improvements. But

already the 4-fold ALOHA is close to the asymptotic bound. For higher values of T,

we might get even closer trade-offs. So it is not clear if the coded-slotted version would

lead to significant improvements since we also incur a penalty on power by repeating

packets but it remains to be seen. Finally, we have assumed a quasi-static model of

fading, but in reality, the channel conditions might vary over the blocklength. So

analyzing a block-fading version of model seems like an interesting direction.
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Appendix A

Auxiliary results

We have the following concentration result for non-central chi-squared distribution

from [7, Lemma 8.11 which we use extensively.

Lemma A.0.1 ( [7]). Let x be a non-central chi-squared distributed variable with d

degrees of freedom and non-centrality parameter A. Then Vx > 0

P x - (d+ A) > 2/(d+2A)x+2x] ex (A.1)

P IX - (d + A) < -2/(d--+2A)x e-

Hence, for x > 0, we have

IP [X - (d + A) > r] < e (x+d+2A -d2A2x+d+2A) (A.2)

and for x < (d + A), we have

P[x < X] <
1 (d______e4 d+2A (A.3)

Observe that, in (A.2), the exponent is always negative for x > 0 and finite A due

to AM-GM inequality
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Appendix B

Proofs of certain claims

Proof of Claim 4. We have Y = Zi[K] H c + Z. Further Y = P,,K]Y + P Y. But

C[K] = C[[K]]Z.

||Z||2 - PCe Z 2

Hence ||YI| 2 
- C[ 2

= PC ZI .

C [K]] Z = |ZI12 - PC[[K]l Z 2

Also ||y| 2 _ 2 
P tc 2I '

have

IY 2

LIP, j C[C 2 Y

21

IIZ 12 _ 1 PC[[K ] Z 1 2
~Yn

n PCjt5c Z
is

2

Pc Hi c + Pe-L : Z
iES

21

H ci + Pet- Z

2y/Re PC Z PE H c 
I sC E

'nPC 1
1 5 1c

2
(1 n) -- ,c Z F' z

>Yn ( I - Yn)
iES

- 2-y(I - -y,)Re P Z,
\s,

2

H ci
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P Z

= P
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=IFDL H c2

PCLiS1 Z
iES

H c2)



2 2

= P (1 -- Y)P Z - ynPe E Hici '> -y HPc1
iES iES

2 2
sI1 - sc Hici ;> 7n 1s H (B.1)

N IS c ES

LI

Proof of Lemma 4.2.2. First of all, rank of P' is n - K + t because the vectors inC[SC]

c(sC] are linearly independent almost surely. Let U be a unitary change of basis matrix

that rotates the range space of PF to the space corresponding to first (n - K + t)C[SCI

coordinates. Then

2

CK(- 1Hi PP

U Cc(- p H 2c , PL ))

2

= CK(- UP Hci, UP U) . (B.2)

Now UP' U* is a diagonal matrix with first (n - K + t) diagonal entries being

ones and rest all 0. The definition of non-cental chi-squared distribution x2(A, d) is

the sum of d squares of independent Gaussians with sum of squares of their means

being A. Using this and (4.18) we have proved the lemma.

Proof of Claim 5. We have

f,(X)= + (+ 2-y, 0)21I-

- I+ 2-y 1+X) 2x+1 + 2,y (I+ x)

1 /((1 y + )2 2 _ )y2
=+(7n+))(x + 1)) - 2 X + 7 (B .3)

4-- 4, 16 2
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1a
f'(x) =I + Thf - 2 n'a2 b2

I - a -

where a= (x+ ( ) and b . Also a > 0 and b > 0.

and

F a- + b

Further a+b> a - b

_7(1 +-yn + 2x)

1 + -yn + 2 7T

whic> 2s tr+ + b < 2x + +ao i

+40 < - , < I

which is true. Hence both the factors in (B.4) are negative. Therefore f'(x) > 0. El
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