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Abstract

Wireless networks in the near future face a formidable challenge of accommodating a
dense set of infrequently communicating devices characterized by small data payloads
and strict latency and energy constraints. In such a scenario, providing energy efficient
random-access access becomes a challenge. Information theoretic analysis of such
systems becomes imperative to understand the gap from optimality of the methods
of random-access currently employed.

In this thesis we discuss the trade-off between the required energy-per-bit to
achieve a target probability of error (per-user) and the number of active users. Pre-
vious works in this regard focused on the AWGN channel model. In this thesis we
consider the issue of Rayleigh fading. Specifically, we use random coding with a sub-
space projection based decoder to get finite blocklength bounds from which we arrive
at the trade-off. Further we justify the use of our decoder by proving its asymp-
totic optimality for the channel under consideration. We also show that the required
energy-per-bit increases from around 0-2 dB (for AWGN) to around 8-12 dB under
fading.
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Chapter 1

Introduction

One of the significant challenges faced by wireless networks in the future is to handle
a massive number of occasionally communicating terminals where the energy require-
ments are very strict. This is also known as massive machine-type communication
(mMTC) and there has been significant discussions on this problem in the next gen-
eration (5G) communities. MTC applications look towards having hundreds of thou-
sands of devices connected to a single base station communicating sporadically with
small data payloads [8]. For instance, the internet of things (IoT) is characterized,
among other things, by the network’s support for communication of massive number
of devices and long battery lifetimes [25]. In general the characteristics of such MTC
networks include very high node density, short packets, sporadic transmission, strict
energy constraints and limited computational capability [22]. In such a scenario, ac-
cess management plays a critical role. In this thesis, we focus on the energy-efficiency

aspect of such systems.

Currently, there is an active discussion of possible transmission schemes for mMTC
in 3GPP standardization committee. The main candidates are multi-user shared ac-
cess (MUSA, [38]), sparse coded multiple access (SCMA, [23]) and resource shared
multiple access (RSMA, [15] [1]).In MUSA, fixed complex spreading sequences of
short length and successive interference cancellation (SIC) decoder are employed.

SCMA is a modification of the low-density signature (LDS [16]) scheme in which
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sparse spreading sequences are used. Due to sparsity, iterative decoding using mes-
sage passing algorithm [16] [18] [35] can be used. SCMA differs from LDS in the code
used for spreading: the latter uses repetition coding (e.g. from QAM) whereas the
former uses a specifically designed multidimensional codebook to map the incoming
bits which results in enhanced gain over the latter. SCMA codebooks are designed
by casting it as an optmization problem [23] [32], and different codebooks are allo-
cated for each user [23]. Coming to the third scheme, RSMA is characterized by long
pseudo-random spreading sequences along with a low-rate code. RSMA has the ad-
vantage of low complexity over SCMA. In ideal scenarios, the performance of SCMA
is better than RSMA but with significantly complex receiver; but the advantages of
SCMA are not so significant in a practical situation (with imperfect power control,

for example) [2].

In current systems (such as LTE) the initial uncoordinated multiple-access prob-
lem is addressed by using a low-rate physical random-access channel (PRACH), using
which the nodes register themselves with the base station (BS) [3]. Subsequent com-
munication is managed centrally by the BS. Simple slotted ALOHA [30] [3] scheme is
used for random-access. But is this does not scale to high-node density. This is the

problem we are addressing in this work.

Since ALOHA is known to have low utilization (= 37%) [30], a recent improve-
ment, coded slotted ALOHA (CSA), was introduced in [9] where users repeat their
packet in different slots. Interfering packets can be successively cancelled by using the
additive nature of the channel. Furthering this idea, in [20], interference cancellation
is linked to iterative decoding of graph based codes. By optimizing the probability
distribtuion of the repetition rate, it is shown that the utilization improves to around
80%. In [11] a grant free random access scheme called asynchronous ALOHA was de-
veloped using similar ideas of packet repetition. In [4], more progress in asynchronous

ALOHA have been made towards low-complexity IoT devices.
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According to what we are aware of, at the heart of most of the ALOHA based
methods lies the ability to decode only uncollided information packets, and hence
any (non-orthogonal) collision is declared as an error. The idea and analysis of us-
ing multi-user detectors for resolving small order collsions has appeared many times
(see [14], for example or more recently in [20, Appendix A]). More recently, a concrete
scheme to resolve higher order collisions called T—fold ALOHA was proposed in [24]
in which up to T collisions are decoded using a specially constructed code, and its
performance in terms of energy-per-bit on an additive white Gaussian noise (AWGN)
channel was compared against the slotted ALOHA scheme and the finite blocklength
(FBL) bounds developed in [27]. In this work, we follow similar lines to develop FBL
bounds using random coding and T—fold ALOHA on a quasi-static Rayleigh fading
channel, and show that this gives better trade-off than slotted ALOHA (which is just
1-fold ALOHA) (see figure 6-1).

The model we consider in this thesis follows from [27] and [24]. Consider a single
base-station (receiver) and a large, potentially unbounded, number of transmitters
wanting to communicate with the base-station. Let K, > 1 be a fixed integer. This
represents the number of active users — at any given time exactly K, of the users are
transmitting. Further, the message of each user is of size k bits and it is transmitted
over n channel uses, which is the blocklength. Typical values of these parameters that
we consider are k = 100 bits and n = 30000. Hence we are looking at theoretically
evaluating the performance for small payloads in the FBL regime. As mentioned
in [27], the goal of this model is to be able to take the total number of users to be in-
finite, and hence schemes like ALOHA would become an achievability. Moreover, any
FBL bound would give us a way to compare all such achievability schemes against one
another, and a gap from from the information theoretic bound would clearly depict

how far the current schemes are from the theoretical achievability.

Coming back to the channel model, we consider a quasi-static Rayleigh fading

channel with additive white Gaussian noise (AWGN) (2.6). Since we are considering
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a situation with potentially unbounded number of users, it is necessary that all users
use the same codebook. Further, as in a vanilla AWGN MAC, each user is subject
to a maximum power constraint P (2.8). We consider the case of the so called no
channel state information (no-CSI) where neither the transmitters nor the receiver
have knowledge of the realization of the fading coefficients. This makes sense in our
model since the payload is small and the set of active users can change, it may not be
feasible to estimate the channel reliably. Since we are dealing with the quasi-static
case, the fading coefficients remain fixed for the entire block of transmission. The
decoder at the receiver is supposed to output an estimate of the list of the messages
that were sent. Due to the common codebook, the decoding is done upto permutation
of sent messages, and hence user identification is ruled out (which also makes sense
when the number of users is infinite). The rationale for this is that the identity of
users can be embedded in the messages the users send. For instance in LTE PRACH
where the users contend for resources by sending preambles, it is enough if the base
station is able to decode the list of preambles that were sent. Finally the error metric

is the expected fraction of incorrectly decoded messages.

We review some of the related works. As mentioned before, this thesis continues
the line of work initiated in [27] where FBL bounds were developed for the random-
access situation in an AWGN channel. Further, this bound was compared against
existing schemes like ALOHA, TDMA etc. A low complexity scheme using cocati-
nated codes and T—-fold aloha was introduced in [24]. Although this is much better
than ALOHA, there is a significant gap from the FBL bound. Serial interference can-
cellation along with interleaved LDPC codes was considered in [33] towards reducing
this gap, and further improvements in the LDPC part of [33] was done in [21]. The
error metric considered in all of these works is the per-user probability of error. The
idea of per-user error error can be traced back to [5]. In [5], the average fraction
of users that cannot be decoded was analyzed for a quasi-static K-user MAC (with
CSIR) in the regime of n — oo and both K = 2 and K > 1. The analysis for large

K was carried out using the fact that the ordered statistics of fading coefficients crys-
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tallize to some constants. We use this result as a benchmark to compare our bounds.

The main contributions of this thesis are that we develop FBL bounds for the
quasi-static Rayleigh fading random access MAC under the no-CSI assumption!. We
use this bound to find the minimum energy-per-bit E,/Ny = nP/k to achieve a
target probability of error. This random coding achievability bound uses a subspace
projection based decoder inspired from [37] which doesn’t need the knowledge of the
realization of the fading coefficients. Further we show that this decoder achieves
the e-capacity region of the quasi-static MAC under the classical joint probability of
error. We also show that this decoder achieves the same asymptotics as that of the
joint decoder in [5] under per-user error. We also develop a simple converse bound
based on the converse from [37] and a modification to the meta-converse theorem
from [28]. We would also like to mention here that in a recent unplished work [17] with
our collaborators a low-complexity iterative decoding scheme is developed based on
LDPC codes [13,29,31] and a belief propagation based decoder that shows significant
performance compared to the theoretical predictions. So, although not part of the
work in the thesis we include these results in our plots so as to compare our theoretical

predictions to an actual coding scheme?.

'Part of this work appears in an unpublished work [17] with the author of the thesis as one of
the co-authors. The FBL bounds, T-fold ALOHA and the converse in [17] were developed by the
present author.

?The practical coding scheme based on LDPC codes in [17] were developed by Alexey A. Frolov
(Skoltech, Moscow, al.frolov@skoltech.ru) and Yury Polyanskiy (MIT, yp@mit.edu). We have used
the this data as an additional graph in our plots, and it is labeled with a name containing "LDPC".
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Chapter 2

Definitions and System Model

In this chapter we introduce the definitions of a code and also describe the system
model.

For a positive integer m, let [m] = {1,2,...,m}. We denote by CN(u,X) the
complex normal distribution with mean p and covariance matrix ¥ (and pseudo-

covariance 0).

2.1 Definitions

Definition 1 (MAC). Fiz an integer K > 1. A multiple access channel (MAC) with
K users is a sequence triples (XX, X7, Y™, Pyixp, .. X;)n where X is the alphabet of
user ¢, Y™ is the output alphabet, and Pyn|X?7m,X; : xf‘;l)(i" — Y™ s a probability

transition kernel.
Next we define the random access MAC with K, active users.

Definition 2 (RAC). Fiz an integer K, > 1. A random access MAC (RAC) with K,
active users is a sequence of triples (X”, Y, Pynixp,., X7 ) where X™ and Y™ denote

the common input and output alphabets respectively, and Pyn xr (X ”)K“ -y

----- a

s a probability transition kernel. Further, it is assumed that kernel is permutation

invariant: for any permutation T on [K,] the distribution Pynixp, X?a('lx?’ L T)

,,,,,
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We note that the above definition of RAC allows for unbounded number of users
but only K, of them are active at any time.

For the sake of brevity, we denote the kernel in the above definitions by Py xn
or just Py;x when what we are referring to is clear from the context.

Now we give various definitions of a code for both MAC and RAC. There are four
possible variants for each: same vs non-same codebook and joint vs per-user (average)
probability of error. But we do not define for all the eight combinations; we just deal

with non-same codebook for the MAC and same-codebook for the RAC.

Definition 3. An ((M, Ms, ..., Mk),n) code for a K user MAC Pynxn is a set
of (possibly randomized) maps {f; : [M;] — XP}E, (the encoding functions) and
g: V" — 15, [M)] (the decoder).

Definition 4. An (M, n) code for a K, active user RAC Pyn|xn is a set of (possibly
randomized) maps f : [M] — X™ (the encoding functions) and g : Y* — (%]) (the
decoder). Here ([Ilgz]) denotes the subsets of [M] of size K,.

Notice that in def. 4, the decoder’s output is just a list of K, messages. This is
due to the fact that users employ the same codebook and the channel is permutation
invariant. We emphasize here that in the random access setting, we avoid the user
identification problem since we allow a setting where the total number of users could
be taken as infinite. Further, in a practical setting, the messages can contain the
headers for user identification. Hence our main focus is on data transmission rather

than user identification.

Definition 5 (Non-same codebook, joint error). An (M, My, ..., Mk),n,€), code for
the MAC Pynixn is an ((My, My, ..., M), n) code such that if for j € [K], X; = f(W;)
constitute the input to the channel and W; is chosen uniformly (and independently of

other Wi, i # j) from [M;] then the average (joint) probability of error satisfies

Pl U {w#60,} <e (2.1)

JE[K]
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where Y is the channel output. If there are input constraints where each X; € F; C
X[, then we define an ((My, Ma, ..., M), n. €, (F1, ..., Fk)); code as (M, My, ..., Mk),n,€),

code where each codeword satisfies the input constraint.
From now on, we do not explicitly state the cost constraint in the definition.

Definition 6 (Non-same codebook, per-user error). An ((My, M, ..., Mk),n,€)py
code for the MAC Pyn xn is an ((My, Ma, ..., Mk),n) code such that if for j € [K],
X; = f(W;) constitute the input to the channel and W; is chosen uniformly (and
independently of other W;, i # j) from [M;] then the average (per-user) probability of

error satisfies

K
1
=SB |W; £ (g(V)),] <e (22)
j=1
where Y is the channel output.

Definition 7 (Same codebook, per-user error [27]). An (M, n,€) random-access code
for the K, user RAC Pynx» s an (M,n) code such that if Wi, ..., Wk, are chosen
independently and uniformly from [M] and X; = f(W;) then the average (per-user)

probability of error satisfies

K
1 a

X Y PIE]<e (2.3)
j=1

where E; £ {W, ¢ g(Y")}U{W,; =W, for some i # j} and Y is the channel output.

Observe that according to this definition, collision results in an error. The ratio-
nale is that the probability of a collision is at most @ which is small in a practical
situation. For example, we consider the scenario where each user has a payload of
100 bits and the number of active users K, of order 100.

Next we have the definition of e-achievability of codes from [15].

Definition 8 (e-achievability [15]). Fiz e > 0. Let Ry, Ra, ..., Rk be non-negative real
numbers. We say that a rate tuple (Ry, ..., Ri) is joint (or per-user) e-achievable for a

MAC Py xn of there exists a sequence of ((Ml("), MQ("), . M}(?)), n, en)
J {or PU resp.}
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codes such that

limsupe, <€ (2.4a)
Vi € [K], lim inf ~ log M™ > R, (2.4b)
n—oo M

Note that the above definition holds for both joint and per-user probabilities of
error for the case of non-same codebook.

Using joint e-achievability, we can talk of the e-capacity region for the MAC.

Definition 9 (e-capacity region C. [15]). The joint e-capacity region for the MAC

Pynixn is defined as the set of all rate tuples that are e-achievable. That is

C.={(R1,..., Rk : Vi, R; > 0, and (Ry, ..., Rg) is e—achievable)} . (2.5)

2.2 System model

In this thesis, the focus is exclusively on the quasi-static fading MAC (or RAC) which

is described below.

1. K—user fading AWGN MAC (K-MAC): The channel law Pynxn is de-
scribed by

K
Y" =Y HX!+ 2" (2.6)

=1
where X € C", Z" ~CN(0, 1), and H; %CN(O, 1) are the fading coefficients

which are independent of { X} and Z™.

2. K,~user random-access fading AWGN MAC (K,-MAC): This is a K,
active user RAC (def. 2) with the channel law given by

Ka
Y" =Y HX!+Z" (2.7)

i=1

20



where X" € C*, Z" ~CN(0, I,,), and H; %CN(O, 1) are the fading coefficients
which are independent of { X} and Z".

We emphasize that the fading coefficients remain fixed for the entire duration of the
transmission, and hence quasi-static.
Further, for both the above models, we assume that there is a maximum power

constraint:

IXP|* < nP. (2.8)

In the rest of the thesis we drop the superscript n where it may not cause confusion.
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Chapter 3

K,—MAC: Achievability and converse

In this chapter, we provide some achievability and converse bounds for the K,-MAC.
For the achievability part, we use random coding with subspace projection based
decoding. The converse is a simple list-decoding version of the converse in [37]. The
results provided here are for the case of no channel state information (no-CSI) either

at the transmitters or the receiver.

3.1 Achievability

Before stating the achievability result, we describe the encoder and the decoder for

random coding.

3.1.1 Encoder

As with a vanilla Gaussian MAC, we use random coding with either

1. Spherical codebook: For each message, a vector uniformly distributed on the
v'nP-complex sphere is independently generated. That is X AUni f (\/ nP(CS )"_1)
where ((CS))"! denotes the unit sphere in C™.

or

2. Gaussian codebook: For each message a CN (0, P'I,,) vector is independently

generated. That is X; ~ CA (0, P'I,,) where P' < P. For a message W; of user

23



7, if | X (W;)||* > nP then that user sends 0.

Also observe that a set at most n — 1 codewords are linearly independent almost

surely.

3.1.2 Decoder: Projection decoding

Inspired from [37], we use a projection based decoder. The idea is the following.
Suppose there were no additive noise. Then the received vector will lie in the subspace
spanned by the sent codewords no matter what the fading coefficients are. So a
decoder that outputs a list of K, codewords which form the subspace, such that
projection of Y onto to this subspace is maximum is a natural choice. Formally, let
C denote a set of vectors in C". Denote P¢ as the orthogonal projection operator
onto the subspace spanned by C.

Let C denote the common codebook. Then, upon receiving Y from the channel,

the decoder outputs g(Y') given by

g¥)={f"(c):ce C}

S P.Y|? 3.1
C argccg‘lgfc:KaH cY |l (3.1)

where f is the encoding function.

Another rationale for using projection decoding is that, when the receiver does
not have the channel state information, projection onto subspaces is a natural thing
to do. Since the receiver is trying to find the closest subspace (from a collection of
subspaces) to the received vector, the channel coefficients are implicitly estimated as
a function of the codewords spanning the subspace: they are precisely the coordinates
of projection of Y in the basis of codewords constituting that subspace. Further, we

show later that projection decoding achieves the e—capacity of the K-MAC.

3.1.3 Achievability bounds

In this sub-section we state our main achievability results.
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Theorem 3.1.1. Fiz P' < P. Then there exists an (M, n,€) random access code for

the K,~MAC satisfying power constraint P (see (2.8)) and

Z [F] + po : (3.2)

where, if S. S denote the indices corresponding to sent and decoded codewords re-
~ Ka
spectively, F, = {|S\ S| = t}, po = M for the Spherical codebook and py =

Ka ’ . it
%—) + K,P [% Zi€[2n] W2 > nP] W; dN(O 1) for the Gaussian codebook [27].

Further, assume w.l.o.g that messages {1,2, ..., K,} were sent and c; is the code-
word corresponding to i € [K,]. For 1 < t < K,, let Ry = log((M;K“)) and
Ry = log ((X*)). For 6 > 0, let €(§) = 1 — exp (— (5 + B (t - l)l—c’%’_‘;{—f")))
Then

Y12 = || Py ¥ ||

C[[Kal)

v

P[F] <inf |efrn=fell 4 p >1-¢€(d)p|[33)
>

8§

soctkal | VI - |

[So|=t

where cg) = {c; : 1 € S}.

Proof. The proof of (3.2) follows from the proof of theorem 1 in [27]. Next, we bound
[P[F,] for the projection decoder.

The common codebook is generated by choosing c; X Unif (\/n_IS(CS)"_l) or
o BeN (0, P'I,),t € [M]. Therefore codebook size is M. Note that, following [27],
the users now select K, messages without replacement from [M] (this is accounted
by po). W.lo.g assume that S = {1,2,..., K,} is list of messages that were sent.
Therefore the send codewords are cs) = ¢k, Let A = {Sp C [K,] : |So| = t} and
As = {Sy C [M]\ [K,] : |So| =t}. Then we have

—P[Is\SI=t|c U FS50) (3.4)

S()EAl,SE)EAQ
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2 2
where F'(Sp, Sj) = {’ PCIS&}*Cts']YH > l Peigereisq Y } and S§ = [Ka] \ Sp. Further
note that PC[SB],C[SO]Y = PCHKQ]]Y.

Claim 1. For any So € A, and S5 € Ay, conditioned on ck,, Hix,) = {H; :
2 2
i € [KJ} and Z, the law of chISSI,C[S,]Y PCISS]YH +
0

1 same as the law of ’

2
H(I - Pc[sgl)Y Beta(t,n— K,) where Beta(a, b) is a beta distributed random variable

with parameters a and b.

_ L Loy
Proof. Note that PC[SSI’C[ 5(,)]Y = PC[SSJY + PCISS],C[%] PC[SE]Y. Further PC[SSI,C[S,OI PC[551Y =
2 2 2
P Pl Y. Hence | Pogoc ¥ =[P Y| +|P PLY
Cigc * C{Sc],c s’ C[SC] Croc .
(PCJ[-S(C)]C[SE,]) 1551 §heisy) ; (PCJ[_S(ﬁ]c[ 561) [sg)

Now conditioned on cix,; and Hig,), P} Y isafixed n—K,+t dimensional vector.

CIsgl
2
So, P(,u )PcfSC]Y is the squared length of the projection of a fixed vector in
Ciar (0]
°lsg) 1ol

2

Cn—Ke+t (defined by the orthogonal projection operator Pcfsc]) of length ) PcfSCIY“
0 o]

onto a random ¢-dimensional subspace defined by the orthogonal projection operator

(Pl ) Further, the law of the squared length of the orthogonal projection of a
é(sg1 185

fixed unit vector in C? onto a random t-dimensional subspace is same as the law of

the squared length of the orthogonal projection of a random unit vector in C¢ onto a

fixed t-dimensional subspace, which is Beta(¢,d —t) (see for e.g. [37, Eq. 79]). Hence
2

2
the conditional law of is ll([ - P, ])YH Beta(t,n — K,).

P PLY eise
(Pcl[sﬁlcisﬁl) i 15
O
Hence we have
P [F(So, Sp)leika; Hixap, 2] =
2
IYIE =[P Y|
Lin— K, t (3.5)
2
VI = || P ]

where F(z;a,b) is the cdf of beta distribution Beta(a, b). Further, from [36], we have

Fa(z;n — Ko, t) < (n— K,) g Ka, 3.6
B
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Y- PCuKanYHZ

Let g(Y, C[Ka]: So) =

5. Then, using ideas similar to random coding
I g v

union (RCU) bound [26], we have,

PR <P U F(S,S0)| <E [minq1, Y P[F(So, Sp)leixa), Hixal Z]

| So€A1,Sh€A: 50,5

= |min {1, > (M ~t Ka) F (9(Y, cii,), So);n — Ko, t) }]

So

< E |min {1, > e (n— Ko)“Vg(Y, e, So) R H : (3.7)
N So
where the summations are over Sy € A; and S} € Az (we do not write A; and A, for
the sake of brevity).

For 6 > 0 define the event E; as

E =) {-10g(g(Y’ Clias So)) — B 1)1()_%("_—.@ S 5}

So n — Ka P Ka
= ﬂ {Q(Ya CIK,]» SO) < e'(:—}(a—f—(t—l)lgg%_)_f_d)}
So
= ﬂ {g(Y7 C[Ka], SO) <1-— 6(5)} (38)
So

Then we have

PIF] < ) e K 4 pEY]

So
< efer(nKdoy p U {9(Y, ¢k, S0) > 1 —€}| . (3.9)
So
Since this true for any ¢ > 0, we are done. O

We make few more observations. Since (cy, ..., cx,) were the sent codewords, we
have Y = Zf(:“l Hic; + Z. But, for any Sy C [K,],|So] = t, Y can be written as
Y:@1+U2+Zl+Z2—|-Z3 where

Zy = Py, P,

S§1 7 CliKal)

Z (3.10a)
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Zy=P, P2 (3.10b)

c|sg)
_ plL
Zy =P 7 (3.10¢)
v = Pogy Y Hic, (3.10d)
i€[Ka]
vy = Pcfsa] > Hc:. (3.10e)
i€Sp

Hence

11 Z5| S
1 Z3]|* + mins, || Z2 + v2]|* —

P[F] < inf eflz=(n-Ka)d L p 1—e¢l. (3.11)

One way to compute (3.11) is through a union bound which we state next. But as
we shall see, the bound is loose. Apart from the union bound, it is not straightforward
how to compute (3.11) numerically since computing the minimum over all subsets of
[K,] of size t is unfeasible. However, for small K, (say K, < 4) we can perform

Monte-Carlo simulation of the bound.

Theorem 3.1.2 (Union bound). For1 <t < K,, letn' =n—K, and n = n— K, +t.

Then following the same notation as in theorem 3.1.1, we have

- 52
PF] <p = 520,02 inf 05io0 el {e‘("_K")‘s 4o (Hr=VEF) | -3 | i
W<Ys1,r>0,01
61 -2t + «
+ P [XQ(Qt) < m” (3.12)

where x2(2t) is a chi-square distributed random variable with 2t dimensions, and

2n/e(141)

a=a(rd) = "=

Proof. From (3.11), we have

P[F] <e™ (e”("_K")‘s +P [ 121 >1- ED (3.13)

1Z5]1* + 11 Z2 +vall*
where Sp now represents a generic size t subset of [K,].
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Here, the common codebook is generated by choosing c; KeN (0, P'L,),1 € [M].
We have, || Zs]|* ~ W5 where Wj ~ x2(2n'). Let Z} = V27, and vl = \/2uvs.

Then we have

AR W
q(v, ClK.]» So) = H ?;H 7 = ,$ 2 (3.14)
| Z2 + val|” + || Zs|| Ws + || Z5 + V3|

Therefore, for r > 0,

P [9(Y, cra}, So) =1 — €] <P[W3 > (1+7)E W3]
+ (12l < T E

<e (T L p |z 1) <a]  (319)

where o = = (1+7)2n/, and the last bound follows from the upper tail bound (A.2)
with A = 0.

Conditioned on ¢k, and Hi,, v} is fixed and hence vy+Z5~CN (vy, QPJSS] eliral)*
Therefore, upon conditioning, [|v} + Z4]|* ~ x4 (|[v4]|*, 2t), where x4(), d) represents
the non-central chi-squared distribution with non-centrality parameter A and dimen-

sion d. Now we use lower tail in (A.3) to bound P [||Z} + vh||* < o] as follows.

Let 0; > 0. Let B = {||v}]|> > o — 2t + &,}. We have

P12+ 4l <o <E[PI1Z+ul < a Bl e, Hiy || +PIBY]
(o117 +2-a)"

<Elc =" 1By +P[BY. (3.16)

SIS

) _1042-w? . : .
The function fi(A) = e 1T s monotonically decreasing for A > 0 if a <

(1247 +2e-a)®

“% /12 _1 612
A+ 2t. Hence on B, we have e~ 2Pl < e immr=,
So we have
y 72 _lL
P[12,+ )P <a] < e i BB (3.17)
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To bound P[B¢), observe that ||v}||* ~ 3P'HU where H ~ x(2t) and U ~ x2(27)
(H and U are independent). So, for 0 <y < 1,

1
P[BY =P [§P'HU <a—2t+ 51}

51P’[U<(1—7)E[U]]+]P’[H§ o+ o —2 1 }

(1-7E[U]2
_EU) 2 o+ 51 —2t 2
< + 7T +P I HLS —m———— 3.18
< ep < ] 1)
where the last inequality follows from the tail bound (A.3) with A = 0.
Therefore we have
_A.2 a+d; -2t 2
P{B° < T+PIHLS ——— 3.19

Finally combining (3.13), (3.15), (3.17) and (3.19), and optimizing over &, 7, v
and 6, we get (3.12). O

Next we discuss yet another achievability bound using the so called T-fold ALOHA
method introduced in [24]

T—-fold ALOHA

Let T,n; € Nsuch that T' < K, and n; < n. Here T represents the maximum number
of collisions that we decode before an error is declared. The time frame of length n
is split into L = n/n, slots of length n;. The common codebook is of blocklength
n;. Each user independently and uniformly picks a slot to transmit his message. We
assume that the decoder has the knowledge of the number of users transmitting in
each slot. This is not that much of an issue since for e.g. the decoder can try to decode
all possible T' or use energy detection. Suppose there is a code that can resolve at
most T' collisions. Then the decoder tries to decode in the slots where there are at
most T—collisions, but declares an error if there are more. So we can use the random

coding to resolve upto T-collisions, and we can achieve the following probability of
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€rror per user:

eS8
> P(M,ny,t, LP) (f“_'ll) (%)H <1 —~ %)KH (3.20)

t=1

where P,(M,n;,t, P) = € of an (M,ny,¢) code used over the K, = t fading MAC
with power constraint P. This is easy to see since in the slot that a particular user is
transmitting, the probability that there are exactly ¢ — 1 of the remaining users also
transmitting is given by (Kt":ll) (%)t‘1 (1- %)K"_t.

We will later see that attempting to evaluate (3.11) directly for large K, does
not result in a good performance (although better than the union bound) since the
user with the smallest fading gain creates a bottleneck. But evaluating (3.11) for

K, < T where T is small and then appealing to T—fold ALOHA results in a very

good performance.

3.2 Converse bound

In this section we describe a simple converse bound based on results from [37] and
the meta-converse from [26]. But first, we will discuss a list-decoding version of the

meta-converse.

3.2.1 Meta-converse for list decoding

Following the notation of [26], let (A, B, Py|x) be a random transformation. That is,
the input and output alphabets are A and B respectively, and the channel is given

by the transition kernel Py|x.

Definition 10. An (M, K,) code for the random transformation (A, B, Py|x) is de-
fined by a pair (f,g) with function (encoder) f : [M] — A and transition kernel
(decoder) g : B — Uf(:“l([]\:[]) = [Mg,] where ([M]) = {S C [M]:|S| =t}. For this

t

31



code, the probability of error is defined as

M

(,9) = 37 Y1~ Pli € gV)IX = /()

(3.21)

where, with abuse of notation, g denotes a [My,] valued random variable distributed

according to kernel g = g(-|y).

Next, we define some notations on binary hypothesis testing from [26]. Let W be
a random variable that can take one of the two distributions P and () on the same
alphabet W. A randomized test between the two distributions is a transition kernel

Pziw : W — {0, 1} where 1 indicates P. The optimal performance is given by

fulP.Q) = jnf QZ=1) (3:22)
P(ZZ:”;;'ZQ

where P(Z = 1) = > . Pzw(llw)P(w)and Q(Z = 1) = > wew Pziw (1w)Q(w).

Similar to the meta-converse theorem in [26], we have the following.

Theorem 3.2.1. Let (A, B, Py|x) and (A, B,Qy|x) be two random transformations
and fix an (f,g) code (here f can also be randomized). Let € and € be the error
probabilities (as in defn. 10) under the transformations P and (), respectively. Let
Px = Qx be the distribution induced by f on A. Then

Br—e(Pxy,Qxy) <1—¢ (3.23)

Proof. Let W and W be the random variables denoting the input to the encoder and

output of the (list) decoder. Then we have the following two joint distributions

1

Py oyw (W, z,y,) = —M—f(a:|w)Py|x(y|rc)g(1I)|y) (3.24a)
1

Qwxyw(w, z,y,0) = Mf(xlw)lex(ylx)g(wly) (3.24b)
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where W ~ Uni f[M]. Define the random variable Z as
Z=1WeWw} (3.25)

Claxm 2. PZ|XY = Qz|XY

Proof.
M
P[Z =1|X,Y] :ZP[ =€ W|X,Y]
j=1
M
=Z W =jIX]P[j € W|Y]
"
= Z = JjIX]9({S € Mk} : j € SHY). (3.26)
We note that the last expression is for both P and Q. O

So Pz xy defines a transition kernel from A x B to {0,1} and hence is a binary

hypothesis test between Pxy and Q)xy with

ZZ Prixy(l|z,y)Pxy(z,y) =1 —¢ (3.27)
T€EA yeB
Z Z Prxy(llz,y)Qxy(z,y) =1 — €. (3.28)
z€A yeB

Consequently, by (3.23),

Bi-e(Pxy,Qxy) <1—¢ (3.29)

Next, we have the converse bound.

Theorem 3.2.2 (Converse). Any (M, K,) code for a random transformation (A, B, Py|x)
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with probability of error € satisfies

1
M < K, supinf 3.30
Py Qv Bi-(Pxy, Px X Qy) ( )

where Px ranges over all distributions on A (or, if there is a cost constraint, then on

the constraint set F'), and Qy over all distributions on B.

Proof. Let Px be the distribution induced by the encoder. Choose Qyx = Qy in
Theorem 3.2.1 for an arbitrary distribution Qy. Let ¢ be the probability of error

under (). Since the input is independent of the decoder output under @, we have

i€[M]
1 .
-3 T (-2few)
>1- —5\-{4— (3.31)

since > ;e 1l € W] < K,,a.s.

Hence from Theorem 3.2.1, we have

K,
o > sup Bi—(Pxy, Px x Qy)
Qy
Z inf sup /Bl—e(PXY7 PX X Qy) (332)
Px Qy
O
3.2.2 Converse for the K,—~MAC
Theorem 3.2.3. Let
L, =nlog(1+ PG)+ Y (1 _WPGZ -1+ PGIQ) (3.33)
=1
= IVPGZ; —1)?
n = nlog PG) + - — :
S, = nlog(l + G)+;(1 e (3.34)
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where G = ||H||* and Zi@CN(O, 1). Then for everyn and 0 < e < 1, any (M,n—1,¢)
code for the quasi static K, MAC satisfies

log(M) < log(K,) (3.35)

1 -
TR [Ln > ny)

where 7y, is the solution of
P[S, < ny] =e. (3.36)

Proof. We note that a converse bound for the case where full CSI is available at
receiver (and/or transmitter) is a converse for the no-CSI case as well. Further, by
symmetry on the users, it is sufficient to get a lower bound on the probability that a
particular user’s message is not in the decoded list. Finally we can assume that the
decoder has the knowledge of the codewords of all other users. Formally, let Y be the
received vector and let L(Y') be the list of codewords output by the decoder (we use
list of codewords or messages interchangeably). The size of the list is |L(Y)| < K.

Then we have the following implications:

Kiagmxt ¢LY)>1-c
— PX; ¢ LY)]>1—¢ (3.37)
= P[X; ¢ LY, H)]>1—c¢ (3.38)
«— P[X: ¢ LY, Hk.p, Xix\y)] >1—¢ (3.39)

where (3.38) and (3.39) represents the case when decoder has access to the fading
realization of user 1 and interference from all other users respectively.

Now, given Hk,} and X[k,\(1} at the receiver, the channel is equivalent to
Y1 = H1X1 + Z

where H; and Z are same as before, the decoder outputs a list of messages W =
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L(Yy, H)) of size at most K, and the probability of error is P [Wl ¢ W] where W) ~
uni f[M] is the users message. Observe that this is similar to the case dealt in [37], but
the decoder is performing list-decoding. So the remainder of the proof similar to the

one in [37] (also note that |28, Lemma 39] holds here) with the usual meta-converse

replaced by theorem 3.2.2.
o
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Chapter 4

Asymptotics of the projection

decoder: Joint probability of error

In this chapter we discuss the asymptotics of the projection decoder under the clas-
sical joint probability of error in the case of non-same codebook. We show that the

projection decoder achieves e—capacity of the K-MAC.

4.1 e—capacity region for K-MAC

Note that for a fixed finite number of users, the e—capacity of the quasi-static channel
does not depend on whether or not the channel state information (CSI) is available
at the receiver since the fading coefficients can be reliably estimated with negligible
rate penalty as n — oo [6] [5]. Hence from this fact and using [15, Theorem 5] it is
easy to see that, for 0 < ¢ < 1, the e—capacity region of the K-MAC defined in (2.6)
is given by

C.={R=(Ry,...Rk):Vi,R; > 0 and Py(R) < €} (4.1)

where the outage probability Py(R) is given by

PRy =P| |J {1og (1 +Py |Hi12) <> Rz} (4.2)

SC[K],5#0 €S €S
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4.2 Achievability

Before we state the main result, we adapt the projection decoder in (3.1) to the case

of non-same codebook.

Encoder

As before, we use random coding with either

1. Spherical codebook: Each user, for each message independently generates

a vector uniformly distributed on the v/nP-complex sphere. That is X; W

Unif (VaP(Cs)"™).

or

2. Gaussian codebook: Each user, for each message independently generates a
CN (0, P'I,,) vector. That is X; % CN(0,P'IL,) where P’ < P. If a codeword

generated violates the power constraint (2.8) then that user sends 0.

Also observe that a set at most n — 1 codewords are linearly independent almost

surely.

Decoder

Let C denote a set of vectors in C”. Denote P¢ as the orthogonal projection operator
onto the subspace spanned by C. Let Cy, ...,Cx denote the codebooks of the K users
respectively. We have C;NC; = 0 a.s. by the random generation of codebooks. Upon

receiving Y from the channel the decoder outputs g(Y') which is given by

9(Y) = (f7(&), -, f'(eK))
(e, .-Cx) = arg max || PeaciepyY ||’ (4.3)

(ci Eci)iK:1

where f; are the encoding functions.

Now we present our main theorem in this section
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Theorem 4.2.1 (Projection decoding achieves C.). For the K-MAC given by (2.6),
projection decoding achieves C,. That is, let R € C, given by (4.1) and (4.2). Then
for the K-MAC there exists a sequence of ((Ml(n), - M}(n)) M, en)J codes satisfying
the power constraint (2.8), with the decoder being the projection decoder (4.3) , such

that
lim inf ~ log (Mi(")) > R;,Vi € [K] (4.4)
n—oo M
limsupe, <e€ (4.5)

Proof. Let n; > 0,7 € [K]. Choose Mi(") = [enlfa=m)] ¥4 € [K]. Let user j generate a
spherical codebook of size M; and power P independently across codewords and inde-
pendent of other users. Hence the channel inputs are given by X ™% ( VnP(CS )"_1).
Let {C;}X, denote the codebooks of the K users with |C;| = M;. We will drop the

superscript n for brevity.

Suppose the codewords (¢, ca, ..., cx) € C1 X Cs... X Cx¢ were actually sent. Then
by (3.1), error occurs iff 3(c}, ch, ..., ) € C1 X Ca... x Ck such that (c},c), ..., k) #
(c1, 2, ...y cx) and

1PV |

LoeCie

Y|?. (4.6)

1,-5CK

This can be equivalently written as follows. Let S C [K] be such that

where (&)X, denote the decoded codewords.

Let ¢5) = {ci : ¢ € [S]}. Then, error occurs iff 35 C [K] and S # 0, and
3{c; : ¢ € [5], ¢} # ¢} such that

So, the average probability of error is given by

2 2
FPegesa Y]] > \P"’HKHYN : (4.8)
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2
a= | U U ] > [P

SClK] {c,eC:: }
L S#0 ieS,ci#c}

-[UU U {

K] Sc[K] {ceC;:
|S| t i€S,ci#c;}

2
V>

. YH } (4.9)

Cfs] €[se]

Using ideas similar to the Random Coding Union (RCU) bound [26], we have

& <E|min{1, Y )" (H(Mj—l))

te[K] Se[K]:|S|=t \jeS
P “

where primes denote unsent codewords and Hjx; = {H; : ¢ € [K]}. Unsent code-

Pigesn|| > |

i1

2
' |C[K]1H[K]7Z} H (4.10)

word ¢, here means that it is independent of the actual channel inputs/output and

distributed with the same law as X;.

Claim 3. Fort € [K] and S C [K] with |S| =t,

2
P[ CisyclSCIY“ >| c[[KHYH |C[K17H[K]aZ]
2
V1P = || o Y|
—F Ll S S (4.11)
2
VI~ | Py

where F(z;a,b) is the cdf of beta distribution Beta(a,b). Further, from [37], we have

F(z;n— K, t) < (n— K)'zm ¥ (4.12)

Proof. Same as the proof of claim 1 O
Letting o(Y, ep,S) = "Ll g vy M; — 1), we have th
etting g( ) CK], ) = e Pc[sc]YNZ an g = Hjes( i — )7 we have the
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following from (4.10), (4.11) and (4.12)

¢n <E [min {1, Z ZeXp< n—l&){ (t—l)}%

K] sc| K]
|S|=t

-2~ tox(a(Y: . ) ) H (4.13)

Let 0 > 0 and let E; be the following event

E = ﬂ] N {—log (Y, ¢y, S)) — (t—1)10g( KK) —l(;g(_]‘if,) >5}(4.14)
te|K SE

ISI t

= () () {-log(Y,cix),S)) > An}

te[K] Se[K]
|S|=t

= N {9Vax, $) <} (4.15)

te[K] Se[K]
|S|=t

log(n—K)
n—K

where 3, = (t — 1) + 105(_1\?(5) + 6 and v, = e” . Note that +, depends on S

and ¢.

Then, from (4.13) we have the following

€n < E[min {1,

Zzexp( ) |- - )

te[K] SC[K
[S|=t

-2 oxtov,em, )] ) a1 11531 |

< Z Z f(n K)o+]P>[Ec]

S'E[K]
1S|=t
- Z Z SRR U U a(Y, k), S) = 1| - (4.16)
te[K] se K] te[K] SC[K]:|S|=t
|S|=

Hence, as n — o0, it is the second term in the above expression that potentially
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dominates.

Claim 4. For t € [K], S C [K] with |S| =t, we have

I = P ||
Plg(Y,cx),8) > ] =P N
¥ - | c[sc]YH
<P ( ,Yn) C[SC]Z - "Yn C[SC] Z H; iCi
i€S
> 3 ||PA, S Hc, (4.17)
i€S

where PJ' represents the orthogonal projection onto the orthogonal complement of
°[se)

the space spanned by c(se).
Proof. See appendix. O

To evaluate the above probability, we condition on c(x) and Hgj. For ease of
notation, we will not explicitly write the conditioning.

Since Z ~ CN(0,1I,), we have Z — T2 D ies Hici ~ CN (=122 3 i Hici, In).
Hence Pt (Z - >ies Hi cz) ~CN (=122 Py >ies Hicis Py, ). Now using the

€lse] C[se)

"’Y

fact that if W = P +1iQ ~ CN (g, T, 0) then

P Re(u 1| Re(l’) —Im(T
[ ] 1| B wis)

Q Im(u)| "2 | Im(T)  Re(T)
we can show the following
Lemma 4.2.2. Conditioned on H|g) and ck), we have

2
L Tn
PC[Sc] (Z - 1 — Y 1623 H’ici)
) 2
Tr
~ 5% (2|12 - Pr Y Hiil| ,2(n— K +1) (4.19)
€S
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where x5 (X, k) represents a non-central chi-squared random variable with non-centrality

parameter A and dimension k. Hence its conditional expectation is

p=n'+X (4.20)
* 2 2
where A = (1—_7;;)—2 ;SC] Y ies Hici|| andn’ =n— K +1.
Proof. See appendix. O

Hence we have

2
1 Yn
P U U FPose <Z— 1_%2}1@) Tn= (1—% )2 clquHCZ N
te[K] Se[K] €S €S
L |S|=t
2
— L Tn ,
=P U U Pose (Z_l_%ZHﬁJ —”’2(1_ Yn) SCIZHC’ -n
te[K] Se[K] €S i€S
L [Sf=t
—e|p|{ U U {paenm-0em =a ]t a, b (421)
te[K] Se[K]
i |S]=t
2 2
where v = 25 || Pa. Yies Hici|| —n' and A = 2255 |\ Py Y ies Hici|| - Hence
A= ('y + n’). Note that v,, v ,A all depend on ¢ and S.
Now, note that
= CHCIZHC’ —n’
( o ieS
2
n' I cise) >ies Hici
1=, n’
=n'y! (4.22)
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2
Pz o ies Hics
where 7! = = (’yn (1 e n,es ) - 1). Hence

h+nU=MTﬁL%¢+1) (4.23)

L= = Tn

Let 61 > 0. Let By = (e Nsexy{y* > d1}. From (4.21) we have
|S|=t

P U U{ 5(2X,2n") — (A+n’)27}

]
L ISI

te[K] Se[K]
L L |S1=t
- /s \ -

=E|P |/ U U { X2 2/\ 2n) ()\+n')27} >‘C[K],H[K] (1[E11]+1{E161D

te[K] S€[K]
L L\ 1S|=t J i
— - A ]
<E|P . U U { Xz (2A 2n) (/\-i—n')Z'y} HC[K],H[K] 1[E11] +]P[Ef1]
te[K]Se[K]
|S|=t y, _
(1, ] c
< E:E:E]P{§MQA2M}—Q+nUZW}kmMmm uEﬂ}+Pw¢
te[K] Se[K] - * -
|S|=t
(1 -
< 3 S E|P[{5wen2) - (k) 2] e, Hug | 101 > 6]+ PIBG]
K L L i
[ ]ISI K
< S Eexp (—n'fu(r)) 1l > 6] + PES] (4.24)
teK]]Gel[K]
S|=t

where the last inequality follows from (A.2) with

2

n

27, 27,
—vG+1’7 U+mmﬁx+l+17 (1+x) (4.25)

— Yn n

falz) =2+ 1+ (1+x)
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Now, we claim the f,, is monotonic:

Claim 5. For 0 <, <1 and x > 0, f,(x) is a monotonically increasing function of

xT.
Proof. See appendix O

Hence we have

1
U U 56@r20) - (A +n) 2
te[K] Se[K]
[S|=¢

<> Z exp(—n'fa(01)) + P[E]. (4.26)

te[K] Se(K
|5l

So, we have the following proposition
Proposition 1. If 0 < v, <1 for all t € [K]|, S C [K] with |S| =t (y. depends on

S and t) then we have

2
IV = [Py Y |

(k)

.

te[K] Se(K] HY”2 - I s
|S|=t

2
4 o
PC[‘;C] ZieS chl

ZZexp (—=n'fu(01)) + P U U’Yn 1 - " —-1<é;

te[K] Se[K] K] Se[K]

|S1=t |S|=¢
(4.27)
Proof.
) 2
”Y“ - l PC[[K]}Y“
- = > Tn
te(K] ?'E[K] Y| _' C[sclyll
Z Z exp(—n'fn(01)) + P [E}]
te(K] Se[K]
|S|=t
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Z Z exp(—n'f.(61)) +

€[K] se[K]
|S|=t
[Py S e
n| 1+ p 1| <46
te[K SE[K n
|S|=t
Ly S
¢crge ies 11iCi
ZZGXP ' fu(6))+P | U w1 = nf 1<
€[K] S€[K] te|K] Se[K]
1S|=t |S|=t
(4.28)
O
Now, we need to upper bound
s S
cige ies 111G
PIU Umw e ~1<4,
te[K] Se[K]
|S|=t
We have
2
C[sc ZHC’ Z|H| ’ sy
€S €S
L L
2 Z Re (<PC[SC]CTJ PC[SC,I > H H ) (4.29)
i<ji,jes
Further,
<P(:;-SC PCJ[_SC] > = (Ci’ CJ> - <PC[sclci’ PC[SC] c]> (430)

Hence we get

1 1 L
}Re < C[SC]C PCISC]C]> < ‘<PC[SC Ci PC[SC] CJ>

< esse3) + | Prge 6 Pagu )
—<— |<Ci7 C])‘ + ’ PC[sclcj PC[sclci
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=P (1( &)] + |

poncl|

PC[SC]éj”) (4.31)

where hats denote corresponding normalized vectors. Since these unit vectors are
high dimensional, their dot products and projection onto a smaller, fixed dimension

surface is very small. Indeed, we have the following two lemmas.

Lemma 4.2.3. If 1, 0 2% Unif((CS)*™"), then for any &5 > 0, we have

2
ndy

Pl (e, e2) | > &y] < de™ 2 (4.32)

Proof. First, lets take e, e, % "1, Let z be a fixed unit vector in R™. Due to
symmetry, we have P[(e;,z) > 0] = 1/2. Hence, by Levy’s Isoperimetric inequality

on the sphere [19], we have
P[(ey, ) > &) < e ™%/2. (4.33)
Again by symmetry, and then taking z as ey, we have
P[|{ey, e2)]| > 5] < 2e7™%/2. (4.34)

Now uniform distribution on (CS)" " is same as the uniform distribution on §2*~1,
and for complex vectors z; = z; + iy; and z; = x5 + iy> we have Re(z),z) =
tTry + yTyy = (w1, 91)T (22, y2). Hence if e, ey i (CS)™™", and uy, up 2 §2n=1 then

Re (ey, e2) has same law as (uy,u,). Hence we have

2n§§

P “RB <€1, €2> l > (52] <2 7z, (435)

Also, I'm {z1, 22) = Ty, —y{ z5. Hence Im (e, e;) has the same law as Re (ey, e3).

Hence we have

Pl {e1, e2) | > 05
=P [| {e1,e9) |* > 53]
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I

P [|Re (e, e2) |* + [ I (ey, e2) > 63]

) 1)
<P ]Re <61,82)| > é:l +P [|Im (61,62)| > %
nég

de™ 2 (4.36)

IA

g

Next we have a similar lemma for low dimensional projections from [34, Lemma

5.3.2]

Lemma 4.2.4 ( [34]). Let x~Unif(S™ ') and P be a projection to an m dimensional

subspace of R™. Then for any d3 > 0, we have

P |ipat - /2

where ¢ is some absolute constant. Hence, by symmetry, the result remains true if P

> 63| < 2e~% (4.37)

s a uniform random projection, independent of x.

Now we need to prove that a similar result holds for the complex variable case as

well. We have the following lemma

Lemma 4.2.5. Let z ~ Unif(CS)"*l and P be a projection to an m dimensional

subspace V' of C". Then for any 03 > 0, we have

P ||i7al - /2

where c is some absolute constant. Hence, by symmetry, the result remains true if P

> 53} < 2¢72n83 (4.38)

18 a uniform random projection, independent of z.

Proof. Consider ||Pz||. Let U be the unitary change of basis matrix which converts
V to first m coordinates. Hence ||Pz| = ||[UPz||. Therefore we can just consider
the orthogonal projection onto first m coordinates. Hence the projection matrix P
is real. Let ey, ..., e, be the standard basis corresponding to the first m coordinates.

Let A be the n x m matrix whose columns are ey, ..., €,,. Then P = AA* (x denotes
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conjugate transpose). Since A is real, we have Re(Pz) = AA*Re(z) and Im(Pz) =
AA*Im(2). Now, if z ~ Unif((CS)" ') then Re(z) has same law as Im(z). Hence

Re(Pz) has same law as Im(Pz). Further A* = AT. Also note that, if z = z+iy then
AAT 0 z .
|Pz||> = 2 AA*Z = 2T AATz + yTAATy = [zT yT] _p

where P denotes the orthogonal projection from R?" to a 2m dimensional subspace.

T

Hence || Pz||” has the same law as that of the projection of a uniform random vector

on S?"~! to a 2m dimensional subspace. Hence using lemma 4.2.4, we have

P HHPZH - \/g ‘ > 53} < 2¢7 203 (4.39)

Since H; ~CN (0, 1), we have |H;|* ~ $x2(2) = exp(1) where x(d) denotes the chi-
squared distribution with d degrees of freedom and exp(1) represents an exponentially

distributed random variable with rate 1. Therefore, for v > 0,
PlH>>v] =€ (4.40)

Now, we are in a position to bound

2
[P Cics Hic
15¢) €S Tt
P U U N R n —1<4
te(K] Se[K]
|S|=t

For S C [K] with |S| = t, define the events E>, E3 and E, as follows:

A K—t
E2(Sv t) = m { ' PC[s(‘]ci " < 53} (441&)
€S
Es = m {1(éi, &) | < 02} (4.41b)
i<j:1,7€[K]
Fy = ﬂ {lHi|2 < V} (4.41c¢)
1€[K]
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1 1
where we choose d2 = n~3 = d3 and v = n1. Hence we have

2
P;sc] ies Hici
P tgqsgq% 1+ ~ ~1<6
|S|=t
iPL gl
<Pl U dm |1+ 122 nfs —1<6,Ey(S,1),Es, By p | +
tE[K]T‘gl[ft}

Pl U (S ) UESUES)

te[K] Se[K]
L |S|=t
[ 2
’ P;sc] ies Hici
<P U U |1+ y —1< 61, Ex(S,t), B3, By o | +
K] S€[K]
L |S|=t
PES +PES+ ) > P[ES(S,1)]. (4.42)
te[K] SEI[K]
1S|=t

Using lemmas 4.2.3 and 4.2.5 and eq. (4.40), we have

PIES +B[E]+ > S PIES(S, 0] < 2Ke ™™ + Ke ™ + Y 2t(t —1)e™ 7.

te[K} SelK) Se[K]
|S|=t |S|=t

(4.43)

Note that the above quantity goes to 0 as n — oo due to the choice of 9,5, d3 and v.
Also, the choice of parameters is not the optimum. Nevertheless, this is enough to

prove the result.

Further, observe that on the sets F», F5 and Fj, we have from (4.31)

Cclse) cse) Cj

|R6<Pl ¢, Pt *>H'ﬁj‘§u 52+(53-|— —K—n———t>2 = O(n ~l2’)(44431,)

= O(n_ iz) (4.44b)




So we have

2
| PCJ[_SC] i€S Hici
P U U 1+ n' -1< 61’E2(Sat)7E3;E4
te[K] Se[K]
|S|=t

~2[U U

A

1+——{ZIHI l&l® = 1Hil* || P

C[SC] 'l
te[K Se[K] €S i€S
[S|=t
+2 > Re (< L G PL 2 ]> H,H, )H — 1< 81, Ex(S,t), Eg,E4}
1<j:1,j€S
2
<P U U{~/ I: {Z|H|]|c|—tu(53+\/K t)
= n 1 n
te[K] Se[K] €S
|S|=t
K-t ’
—tt—1) [ 6, + (o‘gﬂ/—i—) ) -1<4,
[ nP _L
=P U U Tn <1+51+7n0(" 12)}
te[K] Se[K] | i€S
5 [Sl=t
P
<P|{J o |14 5 <1+61+0( %)}
te[K] S€[K] €S
| [S]=t
<146+ O(n‘ll_z)}
] Se[K] L i€S

log 1+PZ |Hi|?| < —log(ya) + log(1 + 6, + O(n—1/12))}

€S ]

e
-l
ly {A,n oy
{
|

log |1 +PZ|H|2 < Ap + log(1 + 6 —I—O(n"l/lz))}

te[K] Se[K] i€s

1S|=t
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Pl U {log {1+PZIH1~|2] S“/,’l} (4.45)

te[K] Se[K] icS
IS|=t

where 7/, = 7, + log(1 + & + O(n"Y/12)), and O depends on K and t.

Let 8, = log(1 + &, + O(n~1/*2)). We have 105(};1(3) = (Yies(Ri —m)) (L +0(2)).

By the choice of Mi("), for sufficiently large n, sufficiently small § and §;, we have

Py U {log 1+PZ|H1-I2} Sv&}

te[K] Se[K) i€S
s |S|=t
log(n — K) log(Ms)
=P 2l < (t— n
U U {log 1+PZ|H| St-D)— L T+
te[K] S€[K] i€S
L Isl=
log(n — K)
=P < (t—1) 22/
U Uy {log 1+PZ|H| <(t-D)——%
te[K] S€[K] i€S
|S|=t

+ (Z(Ri — ﬁi)\ (1+o0(1)+06+0d, )

i€S

PlU U {u

te[K] S€[K]
[S|=t

1+PY |Hi|2} < ZRi) } (4.46)

ieS €S

Finally combining everything, we have

1+ Py |H?| < (t— 1)%4)

€S

6, <P U U {log
te[K

|S|=t
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+ (Z(R,- - m)) (I4+01)+d+d,) p | +

ieS

A a1/3
2K6—cnl/3 + K F*n + Z Z { —6(n—K) 7ljn(51) + Zf(t o l)G_T

te[K] Se[K
|S| c
(4.47)
Therefore for this choice of <Mi(")), from (4.46) we have
lim sup €,
U U {log 1+PZ|H1-|2] < (Z&-)}
K] Se[K] ieS icS
|S|=t
<e (4.48)
Since 7; > 0 were arbitrary, we are done. That is (4.5) is also satisfied.
O
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Chapter 5

Asymptotics of the projection

decoder: per-user probability of error

In this chapter, we analyze the asymptotics of the projection decoder under the per-
user probability of error in the case of non-same codebook. Our benchmark in this case
is the Shamai-Bettesh asymptotic bound from [5]. The authors provide an asymptotic
bound (n — oo0) on the probability of error per user in the case of symmetric rate
and large K. The idea is the following. The joint decoder that they use knows the
realization of fading coefficients and users are ranked according to this information.
The decoder first tries to decode all users. If it fails (i.e., the rate vector is not inside
the instantaneous full capacity region), it drops the user with least fading coefficient
and tries to decode the remaining K — 1 users. The dropped user forms part of
the noise. This process continues iteratively, and the fraction of users that were not
decoded is precisely the outage/probability of error per-user. Since the case under
discussion is for large K, the order statistics of the absolute value of fading coefficients
crystallize (i.e., become almost non-random) and hence analytical expressions can be
derived for outage in terms of spectral efficiency (kK /n) and total power.
Assuming channel state information at the receiver (CSIR), we show that in the
general non-symmetric case, the projection decoder (suitably modified to use CSIR)
achieves the asymptotic bound as that of [5] generalized to the non-symmetric situa-

tion.
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5.1 Achievability

Just to recall, we consider the quasi-static K-MAC with CSIR. We modify the pro-
jection decoder to use CSIR as follows. The decoder works in two stages. The first

stage finds the following set

P ies 1 Hil?
D € argmax< |D|: D C [K]|,VSC D,S#0,Y R;<log (1+ ie3 )
{ zEZS 1+ PZieDc lHi|2

(5.1)

where D is chosen to contain users with largest fading coefficients. The second stage
is similar to (3.1) but decodes only those users in D. Formally, let £ denote an error

symbol. The decoder output gp(Y) € [[5_, C: is given by

fi_l(éi) €D

(gD(Y))i =
3 i¢ D
(&i)iep = arg  max ”P{ci:iED}Yllz (5.2)
(ci€Cy)iep

where f; are the encoding functions. Our error metric is the average per-user proba-
bility of error (2.2).
We recall the result on the per-user probability of error as n — oo from [5], for

the joint decoder, in the general non-symmetric rate case:

PS(R)=1— —}(—]Esup{|D| :D C[K],vSC D,S #0,

Py s |Hil?
R; < log (1 + ieS ) (5.3)
; 1+ PzieDc |Hi|2

where R = (Ry, ..., Rk) and the maximizing set, among all those that achieve the
maximum, is chosen to contain the users with largest fading coeflicients.

The following theorem is the main result of this section.

Theorem 5.1.1. For the K-MAC, if P5(R) < ¢, then there exists a sequence of
((Ml(n), M M) n, en) - codes with the decoder given by (5.1) and (5.2) such
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that

liminf = log (M“‘)) > Ry, Vi € [K] (5.4)
n—oo M

limsupe, < € (5.5)
n—ro0

Proof. Let PS(R) < e and 1; > 0,5 € [K]. Choose M™ = [enBi=m)] Wi € [K].

User 4 generates M; codewords {c: : j € [M]} % CN(0, P.1,) independent of other

users, where P/ = —Z—. For the (random) message W; € [M;], user i transmits

14+n~ 3
X; = ci,vil{||c§,vil|2 > nP}. The channel model is given in (2.6) and the decoder is

given by (5.1) and (5.2). The per-user probability of error is given by (2.2)

P.=E

LS (W, £ (000}

Jj=l1

Similar to the proof of [27, Theorem 1], we change the measure over which E
is taken in (5.6) to the one where X; = ¢}, at the cost of adding a total variation

distance. Hence the probability of error under this change of measure becomes

Pe <p1+po

with

{nwn >n—] (57)
Z {W; # (o)), }

where w ~ CN (0, I,,) and, with abuse of notation, [E in p; is taken over the new
measure. It can be easily seen that by the choice of P, and lemma A.0.1, py — 0 as

n — o0o. From now on, we exclusively focus on bounding p;.
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p1 can also be written as
1 (64
P == [Z 1{W; # (go(Y), } + D"
i€D

1B, L [Zl (W, # (a0(v),}

i€D

(5.9)

where D is given by (5.1), because, for i € D¢, 1 {Wj # (gD(Y))j} =1, a.s. Define

P2 as

pr=P [21 {W; # (ap(v)),} > o] . (5.10)

ieD
So, it’s enough to show that p; — 0 as n — oo. This is because, if p» — 0, then
the non-negative random variables A, = >, 1 {Wj # (gp(Y)) j} converge to 0
in probability. Since A, < K, a.s, we have, by dominated convergence, E[A,] =
E [ZiED 1 {Wj # (gD(Y))j}] — 0. To this end, we upper bound p,.

Let ¢ = (c1,...,cx) € C; X ... X Ck be the tuple of sent codewords. Let K; = |D|.
Let c(py denote the ordered tuple corresponding to indices in D. That is, if 7; < iy <

.. < ik, are the elements of D, then (c(p)); = ¢;;,Vj € [Ki]. Then p; can also be

written as
p2=P|Y 1 {Wj 4 (gD(y))j} >0 (5.11)
LieD
=P[EASCD,S#0:VieS, (gD( )i # Wi (5.12)
=P HC’D)#CD . ’Pc l ep] :| (513)
2

_P|35CD.S#DstVies I Ao |P s }(5.14)
=rlJU U U { Pc(s,,c[qu“ | o) } . (5.15)

te[K) S|C_D c; EC \{cl
Let & > 0, g(Y,cpx), S, D) = HYH2 quYHZ, Mg = HjeS(Mj - 1), An = (t —

Y17 =| Py Y|
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1)105;5”1{11‘1) + l°g(Mq) + 4 and 7y, = e ™. Note that, since D is random, both Mg and

%Y, are random. But in the symmetric case only Mg is not random. Now, following

steps similar to (4.10), (4.11), (4.13) and (4.16), we have

p<E| Y > etFiipl ) | {9V, S, D)=} (5.16)

te[K] IS?D te[K1] SCD:|S|=t

Z ooy p ) U {9k, S D)=wb| . (517)

K] SC[K] te[K1] SCD:|S|=t
|S|=t

So, the first term goes to 0 as n — oc.

Let Zp = Z + ) ;. p. Hici. It can be easily seen that, similar to (4.17), we have

Pg K']aSD >7n]

. (5.18)

(1 =) Py Zp — mPay > Hici| >

€S

C[scl Z Hic;

€S

Now, conditional of Hik) and ¢pj, Zp ~ CN(0,(1 + P, .cp. |Hi|?)). Hence
PCJ[-SC] (ZD - l—zrfly; ZiES Hicl) CN( ’\/n PCJ[_SC] ZiES Hici’ (1 + P1,l ZiEDC |H | ) C[SC])

Therefore

Pctgc] ( o Z HC:)

€S

1
(1 +PY |Hi|2) SXa (22,20 (5.19)

i€ D¢

where

2

M pl o
1~7nPC[501 ies 1ic:

(L+ Py Y iepe [Hil?)
n'=n~K1 +t (521)

A\ =

(5.20)
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Let

2
L
(1= 7) (1+ Py Sicpe | HL[?) |
2
Pt Y. o H;
1 cige ie§ thit
PV'=——1|m on e -1 (5.23)

1- 7 W (1+ P, Yiepe 1H:l?)

Hence v = n'+! and A\ = T:%n’(l +v'). So, similar to (4.21), we have

U U {ch ,S, D) >fyn}

te[{Ki1) SCD:|S|=t

<p|J U {%X'z(zx, o'y — (A +n') > 'y} (5.24)

Let 61 > 0 and By = (e i ]ﬂ|SS$—Dt{71 > 01} € o(Hk), cipy)-

Now, similar to (4.26), we have

U U { 5(2X,2n") — (A +n') 27} <E Z Zexp(—n'fn(dl)) +P[EY].

te[Kq] SCD te[K1] SCD
|Sl=t |S]=t

(5.25)

where f, (now a random function) was defined in (4.25). So, again by claim 5 and
dominated convergence, the first term in (5.25) converges to 0 as n — oco. Next, we

upper bound the second term P [EY,].

Similar to (4.28), we have

PEL] = U U{7 <h}| <

f,E[Kl] sScD
|5]=1
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2
F)L ; Hici

~ cisc €S
P |1+ = ~1<4,
tEL[IJ(I ISL;CJD (1 + Pn ZieDc Hi|2)
(5.26)
Let ¢; = ¢;/ ||cil|- Let 62 > 0, 3 > 0, 6, > 0 and v > 1. Define the events
A Ky —t] .
Ey(S,t) =) { erse; Ci ln < og} (5.27a)
i€s
By = m {146, &) | < 62} (5.27b)
1<j:i,5€[K]
= () {IH:? < v} (5.27¢)
1€[K]
= N {llel = V/nP; < 8sV/nP| | (5.27d)
i€[K]

and choose 0y = O(n~3) = §3 = §; and v = O(n'/*).

Using these events we can bound P [Ef,] as

P[ET] <
2
1
U U Tn 1+ ,' PC[SC] ,Eies HiCi 5 -1 S 513 E?(Sv t)7 E37 E47 ES +
te[K1] IS?D n (1+Pn zz‘eDC lel )
P[Es]+P[E]] +P[EJ+E [ Y Y P[EYSt)|Hx)]| - (5.28)

te[Ki) ISICD

From [34, Theorem 3.1.1], we have
P[ES] < 2Ke 1™ (5.29)

for some constant ¢; > 0. So, from lemma 4.2.3, lemma 4.2.5, (4.40) and (5.29), we

have

61



P[EY] <

2
U U 1+ ' ctc] ics Hici | < b1, Bu(S,8), Fn, B, E .
Tn 9 - 4L > U1, L2\, by, g, g, LS
te[K1] SCD W (14 Py Y iepe [Hil?)
|S]=t
y’ né%
2Ke ™5 4+ Ke ™ + 2Ke ™ + Z Z de~ 3
te[K] SC[K]
|S|=t

(5.30)

So, by the chose of ¢;,i € {2,3,4} and v, the exponential terms in the last expres-

sion go to 0 as n — oo.

Now, arguing similar to (4.45), we get

2

‘ Py 2ics Hic
P ) 1 I [5¢] 1€
U Uy n (1+ Py Y e pe |Hil?)

1 S 617 EQ(S7 t)) E37 E47 E5

|

=P| U U{Wn

tE[Kll SCD

1
1 E:Hz 1 —E:H21

i€S

+2 > Re((Ph,c Phe >HH)H—1351,E2(S,t),E3,E4,E5H (5.31)

1<j:i,j€S

’I’LPl(l - 54)2 Z ’Hi|2
<P Yo |14 —7 ST
S Cer

te[K,] SCD
|S[=t
P K1\
n n —_
—(1 + 84)? — oty (53 + ln )
Pli(t—1) Ki—t)
n — —
- | 6y + (53 + L ) —-1<4 (5.32)
n—K n



<P

=P

=P

U U

tE[Kl] ScD
5=t

npP,
n—K

_nPT’IK2(1 -+ 54)2

n—K

8

U U

tE[Kl] ScD
|S|=t

U U

te[K,] SCD
1S]=t

U U

te[K1]) SCD
|S]=t

{log
t

U U

te[K| %IC

8

(o

bl

K(l + (54)21/ ((53 —+

nPrlr. Zies |H1|

2

B nP, KvO(d4)

2
K
n

1+ PT,l ZiEDC |Hi|2)

n— K

2
52+<63+\/5) -1<4
n

1+

1+(

npb, ZieS |Hi|2

nP7,L Zies |Hi'2

W (1+ P, Y icpe | Hil?)

P’r/l Zies |I-Iz'|2

n (14 B Yiepe |Hil?)

(1 + Prlz EiEDC |H1|2

P’I/l Zies II‘IiI2

1+ ‘PTIL ZiEDC IHiIQ)

< —log(yn) + log(1 + 6, + O(Tfl/”’))H

U U

te[K1] SCD
|S|=t

{log

1+

1+

Pvlz ZieS !Hi|2

P> ies [Hil®

(1 + Prlz ZiEDC |H1|2)

where v/ = 7, + log(1 + 0, + O(n~"/12)).

Let 8, = log(1 + & + O(n~/12))

(1 + Pvlt ZiEDC |Hi|2)

. We have 8(Ms) _
n-K

<1+60.0070)|

L

<146 +O(n—l—lz)}

)] <1l+46 +O(n_11_2)}

|

(ZieS(Ri -

(5.33)

(5.34)

(5.35)

(5.36)

(5.37)

< Y +log(l + 6 + O(n—””))} 5.38)

(5.39)

r),-)) (14 o(1)).

There for sufficiently large n and sufficiently small 0 and d;, we have v, < ", ¢
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Hence

U U

te[K,] SCD
1S|=t

U

te[K,] SCD
IS1=

{Iog

{log 1

Pr ¥ ies | Hil?

(14 P, Y icpe | Hil?)

Pvlz Zies lHi|2

(1+ P, Y icpe 1 Hil?)

.

But we know that P, — P, and on D, from (5.1) we have

€S

ZRi<log(l+

P ics 1H:[?

Hence the probability in (5.41) goes to 0 as n — oo.

1+szﬂﬂm)“&

< 7;} (5.40)
<M R,-} (5.41)
(5.42)

So combining everything from (5.17), (5.26), (5.30), (5.31), (5.39), (5.41) and

5.42), we get p; — 0 as n — oo. Therefor p; - 1 — EID] 35 n — 0o. Hence we have
K

€n

=F, =

E|D
1—‘—‘[I€—]<€

(5.43)

Hence limsup,,_,. €, < €. Further, since n; > 0 were arbitrary, we can ensure

liminf, o 2M™ > R, Vi € [K].
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Chapter 6

Numerical results and discussion

This chapter is devoted to presenting some numerical results of our bound for the
K,~MAC. As mentioned in the introduction, our performance metric is the minimum
energy-per-bit (FE,/Ny = "—[i) required to achieve a target probability of error e for
various values of K.

For our simulations, the parameters used are payload size k = 100 bits, blocklength
n = 30000 and target probability of error ¢ = 0.1. Our benchmark performance is the
Shamai-Bettesh asymptotic bound [5]. Although this is asymptotic in n and for large
K,, it gives the functional dependence of probability of error (per-user) on spectral
efficiency (which is 54 in our case) and the total power (of all users). Hence we can
use this to compute the minimum F,/N, required. Against this benchmark, we plot
the results of the union bound (3.12), T—fold ALOHA (3.20) for T = 1,2, 3,4, the
converse bound (3.35)(3.36) and two approximations of (3.11). We briefly describe

these below.

6.1 Computing the bounds

6.1.1 7T—fold ALOHA

We compute the T-fold ALOHA bound for T = 1,2,3,4. As seen from(3.20), we
need compute P,(M,n,t, LP) for each t = 1,2,..,T. But first we need to optimize
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the number of slots for each K,. Since direct optimization of the bound itself is

computationally slow, we use a 2" order capacity approximation

n,C (P'Y._ |Hi|?) — log(M)

PG(M,nl,t,P') =E
JmV (PSS )

(6.1)

where C(z) = log(1 +z) and V(z) =1 - H—‘*‘lﬂ'f—)z are the capacity and dispersion of
the standard AWGN channel [28], to find the (approximately) optimum L and set
ny = |n/L]. Now using this n; and L we compute F,(M,ny,t, LP) using a Monte-

Carlo simulation of (3.3) as describe below.

To perform the Monte-Carlo simulation of (3.3), consider the statistic g;(Y, cix,),t) =
maxs, 9(Y, c[x,], So)- Since this doesn’t depend on J, we can construct a Gaussian
kernel approximation of its empirical cumulative distribution function (CDF) using
Monte-Carlo simulations and use it to optimize over ¢ in (3.3). We sample =~ 10°
points and use the inbuilt kernel density estimation function is MATLAB® to ap-

proximate the empirical CDF.

6.1.2 Union bound

To compute the union bound (3.12), we need to optimize over the relevant parameters
r, 9, v and ;. To this end, we first set up an optimization problem to minimize one
of the exponents in (3.12) subject to all the exponents being equal. Using the result
of this optimization as the starting point, we optimize (3.12). We use the inbuilt

optimization functions in MATLAB® to perform both tasks.

6.1.3 Converse bound

The converse bound (3.35)(3.36) was evaluated using a suitable modified version of

the code in [10].
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6.1.4 Approximation to the achievability bound (3.3)

Since it is not straightforward to evaluate the bound (3.3) (or (3.11)) for K, > 10,
we can approximate it based on the following observations. First of all, we can ap-
proximate the noise to be orthogonal to the code space. Hence we set Z = 0 in
(3.11). Next, we note that if the codewords were truly orthogonal, then the mini-
mum in (3.11) would be achieved by the set Sp which contains the ¢ smallest fading
coefficients (in absolute value). Since we are using Gaussian or spherical codewords
in a high dimension (n = 30000), they are almost orthogonal. Hence we approximate
the minimum by choosing the set corresponding to the smallest fading coefficients.
Assuming Z, = 0 we can make the second approximation rigorous as described below.

We call this the orthogonal noise approrimation.

Orthogonal noise approximation

Consider the following generic problem. Let X be an n x K, random matrix with each
column iid Unif (x/nP(CS)"_l). Let S C [K,] with |S| =t where 0 <t < K,. Let
Py denote the orthogonal projection operator onto the space spanned by the set of

columns Xg = {X; :i € S} of X. Let H € C¥= be a fixed vector. Let Hg € C' denote
2
the subvector corresponding to S. We need to lower bound ming HP)J(-[SIX geHge

where minimum is over all ¢-sized subsets of [K,|. The intuition is the following. If the
matrix X were orthogonal, then the minimum occurs at that set which corresponds to
the top t absolute values of H. Although X is not orthogonal, it is almost orthogonal

(because it is approximately a random Gaussian matrix). Next, we formalize this

intuition.
Fix y > 0and 0 < v, < 1. Let By = Ni; {‘lﬁ(—mlxj(i:! < 'y} and By = {omin(X) >
illll 4

VnP(1 — y/ %2 — 4)} where ou(X) is the smallest singular value of X. On the

events B; and By, we have
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| Py XseHse

_ ”XS(X;XS)*X;XSCHSC HXS (X}xg)!
- (X)nP'y\/t(Ka——t) || Hse|l
< nPyV/t(K, —t) || Hse|

Omin(X)
nPy\/t( t) | Hse||
1 - \/ - M)
_ YRPVHUE Yy

1“\/ -—Nn

)X XgeHe

IA

l/\

(6.2)

Similarly,

K,
[ Xse Hsel| 2 Omn(X) [[Hse|| = vV (1 V- 71) |Hsel| - (6.3)

Hence on the events B, and B,, we have

2 2
HP;[S] XseHge|| = || Xse Hoe|” — HPX[S]XSCHSC

2
(K, —t
2nP||ch|]2 (1— 7—’71> —( 7\(/7 ))z
L VA=uie

= h(n7 Ka - ta Ka777 ’71)7'LP ||Iq‘sC ?

(-5
t(Ka—t)
corresponds to the ¢ highest absolute values of the vector H.

So if v < then this lower bound is minimized at the set .S which

Therefore we have,

Mﬂhﬁﬁ[ T 4+ PB] + P B

1Z
- l S >1—¢ (6.4)
”Z3” +h(n7t7 Kanyval)nP“HS(’jH
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(1-vE )"

where v < VT and S7 is the set corresponding to ¢ smallest fading coeffi-
cients (i.e. smallest absolute values of H). Further we have from (4.36) and [12, The-

orem 9.26]

P[Bf] < (l§a> 4¢7™"/2 from eq.(4.36)

P[BS] S e ™i/?

(the second inequality is approximate since the matrix we have is not truly Gaussian
but is very well approximated by a Gaussian matrix).

Hence, for a good choice of v and 7;, we can perform a Monte-Carlo simulation
of (3.12) as described in the previous sub-section.

But note that for large K, there may not exist a good ~ such that the probability

of error is less than our target.

6.2 Plots

In this section, we present the plots of E,/Ny vs K, with n = 30000, & = 100 bits
and € = 0.1. In fig. 6-1, we have plotted the minimum Fj/Nj required for € < 0.1 as
a function of the number of active users K, for the FBL bound approximations, the
union bound, converse bound, T-fold ALOHA and the Shamai-Bettesh asymptotic
bound [5]. We have also plotted the result of using 4-fold ALOHA on the LDPC code
developed in [17]. In fig. 6-2, we plot the probability of error (per-user) as a function
of SNR(dB) with parameters n = 300, ¥ = 100 and K, = 2 for our FBL bound, treat
interference as noise (TIN), TIN with SIC and the joint asymtotic bound from [5], and
the (300, 100) LDPC code from [17]. It is interesting and intriguing to note that even
at that short blocklength of n = 300, the LDPC code performs pretty well compared
to both the FBL bound and the asymptotic bound. The reason is probably due to the
fact that (as shown in [36]) in quasi-static scenario finite-blocklength performance is
not very sensitive to quality of the code, since the probability of error predominantly

governed by the fading coefficient realization.
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We can observe from fig. 6-2 that the FBL bound is very close to the Shamai-
Bettesh asymptotic bound in terms of probability of error vs SNR(dB). Further from
fig. 6-1, we see that the approximation to the FBL bound is far off from the Shamai-
Bettesh asymptotic bound for large K, but using 4-fold ALOHA, we can come quite
close to it. Therefore the projection decoder doesn’t give good performance when
tried to decode all users. Intuitively, this is what we can expect: it is quite difficult
the user with the smallest fading coefficient since the expectation of the smallest of
{lH*:1<i< K,}is KL.;.

I —

ol T T T T T
e T ALOHA verg 7BLbane

Figure 6-1: E;/Ny vs K, for € < 0.1, n = 30000, & = 100 bits
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P, va SNR for =300, k=100 bits and Ka=2

Figure 6-2: Probability of error (per-user) P. vs SNR for n = 300, k = 100 bits and
Ky =12

71






Chapter 7

Conclusion

In this thesis, motivated by massive machine type communications (mMTC) and in-
ternet of things (IoT), we considered the problem of energy-efficient random access for
a quasi-static Rayleigh fading model. Using tools from finite-blocklength information
theory, random coding and a subspace projection based decoder we developed upper
bounds for the probability of error per user for our model. We used this bound along
with T—fold ALOHA to discuss the trade-off between the number of active users and
the minimum energy-per-bit to achieve a desired probability of error (per-user). Fur-
ther we provided some approximations to evaluate the bound for moderately large
number of users. We demonstrated that attempting to decode all active users is not
a good idea, and showed that T-fold ALOHA method with random coding achieves
a much better trade-off and it is off from the asymptotic bound of [5] by at most
4dB even at K, = 300. We also developed a simple converse bound for our model
by generalizing the meta converse of [28] to list-decoding. In terms of the rationale
behind using the projection decoder, we proved that it achieves the e-capacity of the
K-user quasi static Rayleigh fading MAC under the classical probability of error, and
also achieves the the asymptotic bound from [5] under per-user error.

In terms of future work. as mentioned in the previous paragraph, the 4-fold
ALOHA bound is pretty close to the asymptotic bound. But in the AWGN setup,
there is a significant gap betweeu 4-fold ALOHA and the random coding bounds

[24,33]. This could be because of rhe lack of power control at the transmitter. Since
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in a practical situation the transmitters estimate the channel and adjust their powers
accordingly, the effective fading is just over phase. So it will be interesting to see how
the trade-off changes under uniform phase fading.

Further, resolving higher order collisions in coded slotted ALOHA (CSA) to get
a coded-slotted version of T-fold ALOHA might seem to give improvements. But
already the 4-fold ALOHA is close to the asymptotic bound. For higher values of T,
we might get even closer trade-offs. So it is not clear if the coded-slotted version would
lead to significant improvements since we also incur a penalty on power by repeating
packets but it remains to be seen. Finally, we have assumed a quasi-static model of
fading, but in reality, the channel conditions might vary over the blocklength. So

analyzing a block-fading version of model seems like an interesting direction.
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Appendix A

Auxiliary results

We have the following concentration result for non-central chi-squared distribution

from |7, Lemma 8.1] which we use extensively.

Lemma A.0.1 ( [7]). Let x be a non-central chi-squared distributed variable with d

degrees of freedom and non-centrality parameter A. Then VYax > 0

P [x —(d+A) > 2/d T 2N + 2x] <e®

(A1)
P [X —(d+X) < —2 (d+2A)x] <e®
Hence, for z > 0, we have
Plx — (d+)) > a] < e 2(s+dr2A-VITBVEFIR) (A2)
and for x < (d + \), we have
Px < 2] < et R (A3)

Observe that, in (A.2), the exponent is always negative for > 0 and finite A due
to AM-GM inequality
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Appendix B

Proofs of certain claims

Proof of Claim 4. WehaveY =3, Hic;+Z. Further Y = PeeyY + Py Y. But

Cl(K])
1
PC-ﬁK”Y PCI[K]]Z Hence IlY” ‘ ClIK]) ' l C[[K]]ZH - “ZH } C[[h]]ZH
2
L
1217~ | P 2] = |25 2|
2 1 2 L L 2
Also ||Y|I* - ‘ C{SCIY“ ' oY 1 Fgye, 2oies Hici + P, ZH . Hence we
have
L M
P 5 = Tn
2
Y1 = [Py |
- 2 )
2 1
=P 121" = | Poyuy 2| = || P D Hici+ Py 2
| €S
- 2 )
L
S ]P) ‘ C[SL]Z’ Z ’771 SC] Z Hcl + PC[SC]
| €S
_ _ 1 _ L
=P|(1-7,) Pc[SC]Z} 2%R6< e %o Py ]ZHQ> > || P, ZHC,
| 1€S €S
. B _ _ i
=P |(1-7,)? | C[SC]Z“ 27,(1 %)Re< SL]Z Pie ZHC,>
i 1€S
Z’Yn“_’)’n C[sc ZHQ
€S

7



— 1
- ]P) (1 - ,Yn)PC[SC]Z fYn C[SC] Z H iCi > Yn C[SC] Z H iCi
i €S €S
— L _ AL
=P | Fasq? P > H| > 1 ) Prse > Hi (B.1)
i 1€S i€S
O

Proof of Lemma 4.2.2. First of all, rank of P+ is n — K + t because the vectors in

C[Sc]

cse] are linearly independent almost surely. Let U be a unitary change of basis matrix

that rotates the range space of Pl to the space corresponding to first (n — K + ¢
s¢) g

Sc

coordinates. Then

Tn 1L L
CN(_l_—-’)’_nPC[SC] Hicl7 PC[sc] )

€S

2
- o (v i)

ieS

= |lenv(-

L *
Pr. > Hici, UPy, U”)

C[SC
€S

1—%

Now U Pcf U™ is a diagonal matrix with first (n — K + ¢) diagonal entries being
ones and rest all 0. The definition of non-cental chi-squared distribution x5(A,d) is
the sum of d squares of independent Gaussians with sum of squares of their means

being A. Using this and (4.18) we have proved the lemma. (I

Proof of Claim 5. We have

27
fn(m):a:-+—1+1_fy’y (1 +x)
29 27
—4/1 1 2z + 1 l+x
\/+1_%( +3:)\/:z+ +1~%( + )
1+%) Rk
= 1 n 1 — 2 n - fn B3
vl IUR S CE ) \/'r\/ ) 6e |9
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Hence

1 a
) = 14, - 2/7
F(a) 1_%[ ) ﬁr_w]
1 a+b a—2>b
= - AVAR: B.4
11— (ﬁ a—b)( i a+b) (B4)
wherea:(x+<‘+%>)andb— ~72 Alsoa > 0and b> 0. Further a+b> a — b

and

a—2>b (1 + v + 21)
/n<\/

14+ v, + 29,2

— 27n$+1+’}/,,,<2x+1+7n

= 0<y <l

which is true. Hence both the factors in (B.4) are negative. Therefore f'(z) > 0. O
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