Prime-Sized Multilevel Flash Memory with
Non-Binary LDPC

by
Mohammed Al Ai Baky

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
April 2018
(© Massachusetts Institute of Technology 2018. All rights reserved.

AUthor. ..
Department of Electrical Engineering and Computer Science
April 10, 2018

Certified by
Dr. James Fitzpatrick
Engineering Fellow at Western Digital Corporation

Thesis Supervisor
April 10, 2018

Certified by ...
Yury Polyanskiy
Associate Professor

Thesis Supervisor
April 10, 2018

Accepted by ...
Christopher Terman
Chairman, Masters of Engineering Thesis Committee

Prime-Sized Multilevel Flash Memory with Non-Binary LDPC

by
Mohammed Al Ai Baky

Submitted to the Department of Electrical Engineering and Computer Science
on April 10, 2018, in partial fulfillment of the
requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

Flash memory companies are increasing the number of bits per cell to obtain higher
information capacity per cell, starting from 1 bit/cell and going to 4 bits/cell re-
cently. This scaling is enabled by the advancements in flash semiconductor tech-
nology, specifically the Bit Cost Scalable (BiCS) technology. However, capacity per
cell scaling comes with performance, reliability, and endurance challenges. The
industry has only used integer number of bits per cell, which makes the tradeoff
between the capacity and the other system features less flexible than using frac-
tional bits. This project explores programming 13 levels of charge (3.7 bits) into
a QLC flash cell that normally carries 16 levels of charge (4 bits). We evaluate the
13-ary scheme against the 16-ary one and we show that the 13-ary has the same
reliability at a lower SNR as the 16-ary, or the 13-ary has higher reliability than
the 16-ary at the same SNR. We design binary and non-binary Quasi-Cyclic LDPC
codes and implement Belief Propagation decoders for them.

Thesis Supervisor: Dr. James Fitzpatrick
Title: Engineering Fellow at Western Digital Corporation

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor

Acknowledgments

I'd like to extend my deep appreciation to everyone that helped me with this work.
First, I'd like to thank Western Digital Corporation and the MIT VI-A program for
offering the opportunity of conducting this work. I'm deeply grateful to Seishi
Takamura, of Nippon Telegraph and Telephone Corporation, for his help with fast
implementations of Non-Binary LDPC decoders. I'm also grateful to Dariush Di-
vsalar, of NASA JPL, for his LDPC code design suggestions. I am indebted to Idan
Alrod who made his computational resources available to me. Special thanks to
Ahmed Hareedy, from the Laboratory for Robust Information Systems at UCLA,
for his insights on the cutting edge research in the LDPC codes area.

I am equally indebted to the experts at Western Digital, specifically Rick Gal-
braith for openly sharing all his research work with me. I also appreciate Majid
Nemati’s remarks on LDPC for flash memory. Thank you to these people at MIT
and Western Digital: Bruce Kaufman, Dudy Avraham, Henry Yip, John Jackson,
Niranjay Ravindran, Jonas Goode, Manish Madhukar, Mostafa El Gamal, Nima
Mokhlesi, Ravi Kumar, Steven Aronson, Angela Liu, Nancy Semanko, Tomas Pala-
cios, and Kathleen Sullivan.

Finally, I'd like to express my sincere gratitude to my advisors: Jim Fitzpatrick
and Yury Polyanskiy for connecting me to world class experts in this research area,

and helping me finish this project in a tight schedule.

Contents

1 Flash Memory Systems Introduction

1.1 Flash Memory Physics and Technologies
1.1.1 Bit Cost Scalable (BiCS) Technology
1.2 Channel Model and Channel Detector
121 ChannelDetector

Low-Density Parity-Check (LDPC) Codes

2.1 Error Correction Codes and Linear Block Codes
211 Minimum Distance L 0oL
2.1.2 Tanner Graph Representation

22 DecodingLDPCcode
2.2.1 Belief Propagation and the Sum-Product Algorithm

2.3 Quasi-Cyclic LDPC Codes QC-LDPC
23.1 Quasi-Cyclic Code Construction
2.3.2 Circulant Progressive Edge Growth (CPEG)

24 Non-Binary LDPC (NB-LDPC)
241 Belief Propagation with NB-LDPC

Experiment and Evaluation

3.1 Non-BinaryScheme

3.2 Modulation Codes and Programming 13-ary Symbols

33 ChannelModel
3.3.1 State Transition Matrix (STM)

7

13
13
15
17
19

332 ChannelCapacity 54

3.3.3 Signal-to-Noise Ratio (SNR) Definition 55
3.3.4 A More Sophisticated Channel Model 55
33.5 SoftInformation 56
34 Experiment. o 58
35 Results 60
36 Conclusion L 63

List of Figures

1-1
1-2
1-3

1-4

1-7

1-8

Floating-gate transistor.
NAND flash architecture.
Simplified model of charge distributions in flash memory. (a) 16
levels of charge in QLC. (b) 8 levels of charge in TLC. (c) 4 levels
of charge in MLC. (d) 2 levels of charge in SLC. Note that each dis-
tribution is Gaussian plotted on a log scale. Note Sp and S15 have
higher variance than the other distributions. Note also the x-axis is
voltage, called the Threshold Voltage (V;), and it is proportional to the
storedcharge.
Bit Cost Scalable (BiCS) memory [1].
The distributions of NAND voltage levels collected from real hard-
ware [2]. The figure shows the distributions after different P/E cycle
points. Note the variance of a distribution increases with the num-
ber of P/E cycles. Note only three levels are shown in this figure. . .
This figure shows three symbols of QLC flash. The Gray encoding
guarantees one bit flip between the adjacent symbols to minimize
the BER when a symbol ismisread.
Program Disturb. (a) Before Program Disturb. (b) After Program
Disturb. Program Disturb increases the voltage of the neighboring
programmedcells. 00 L
Data Retention. (a,b) Before Data Retention. (c,d) After Data Reten-
tion. Note the dashed line represents the point in the voltage space

that the distribution move towards with data retention.

9

16
17

18

1-9

2-1

2-2

2-3

2-4

2-7

The channel detector decides the symbol transmitted is 1001 with
high probability if the cell voltage is detected between the red and
blue thresholds. If the cell is detected in the symbols to the right
or left from the middle one, but 1001 was actually transmitted, then

there will be a single bit flip only due to the Gray coding.

(@) The Tanner graph of our example code. (b) The parity check

matrix of our examplecodeo Lo oL
BSC(p) Binary Symmetric Channel with parameter (p).

Variable node processing. The message qf-]-z is the variable node v;
message to check node ¢j, at iteration ¢. quz depends on the mes-
sages from the channel and from the neighboring check nodes to v;
excluding the check node transmitted to c;, at the previous iteration

t — 1. Note V; = {j1/j21j3}

Check node processing. The message rsz is the check node ¢; mes-

sage to variable node vj, at iteration f. rf.z depends on the mes-

1]
sages from the neighboring variable nodes to c; excluding the vari-

able node transmitted to v;, at the previous iteration t — 1. Note

Ci={jjo 3t o o oo

Quasi-cyclic matrix of size 16 x 32 with circulant size 8. Note the

all-zero circulants and cyclically permuted identity matrices.

Protograph lifting. Starting from the protograph on the left, which
is copied, then the edges are permuted. This graph has Z = 3 and

6x9 H-matrix. e

This figure shows the tree expanded from v; to depth I. The un-
shaded squares represent the check nodes in the LDPC graph that

are not within the /-deep tree extended fromwv;.

10

2-8

2-9

3-1

3-2

3-3

3-4

Variable node processing. The message qf-jz is the variable node v;

message to the permutation node Hj,; at iteration {. The permutation

o1
node permutes the incoming message from the variable node and
sends the resulting message qpfh to check node ¢;,. It depends on the
messages from the channel and from the neighboring check nodes to
v; except the check node transmitted to c;, at the previous iteration

t —1. Note V; = {jl,jz,j3} 42

Check node processing. The message rsz is the check node c; mes-
sage to the permutation node Hj;, at iteration f. The permutation
node permutes the incoming message from the check node and sends
the resulting message rpsz to variable node vj,. It depends on the
messages from the neighboring variable nodes to c; except the vari-

able node transmitted to v;, at the previous iteration f — 1. Note

Ci= {1 jojate s o o oo 43

The first architecture. Non-Binary scheme with binary LDPC. 48
The second architecture. Non-Binary scheme with non-binary LDPC. 49
Basic binary scheme. It uses binary LDPC.. 50

The coderate of modulation at different values of m, the correspond-

ing value of n in each case is maximized such that coderate < 1. . . . 52

Flash channel model with 16-ary signal constellation. Note Sp mean
is fixed at 0 and S15 mean is fixed at 1. Note the symbol distributions
are not equally separated, but the difference in separation is very

small that it is hard to see on the figure., 53

Flash channel model with 13-ary signal constellation. Note S, mean
is fixed at % = 0.1333 and Sq4 mean is fixed at % = 0.9333. Note the
symbol distributions are not equally separated, but the difference in

separation is very small that it is hard to see on the figure. 53

Signal-to-Noise Ration (SNR) calculation. 56

11

3-8

3-9

3-10

3-11

3-12

3-13

3-14

Flash channel model with 16-ary signal constellation. Note Sy and
S15 have higher variance. The separation between these two sym-
bols and the other symbols is relatively high to balance out the raw
error rate and maximize the channel capacity. The dots represent
the rest of the 16 symbols with variance o. Note the labels on the
figure are twice the variance.
Single read. The cell is detected in S¢ region. The channel detector
gives high belief the symbol transmitted is S¢. Note the belief is
non-zero in the other symbols as their distributions overlap in the
detection area. The detector gives low beliefs in S5 and Sy, and much
lower beliefsintherest.
Three reads. The cell is detected in the wide region of S¢. The
channel detector gives high belief the symbol transmitted is Sg, and
lower beliefsintherest.
Three reads. The cell is detected in a narrow Sg region close to Sy
region. The channel detector gives comparable beliefs in the symbol
transmitted being S¢ and S7, and lower beliefs in therest.
Symbol-based bit LLR assignment. Bits that change according to
the Gray code if the adjacent symbol is transmitted are given lower
confidence than the otherbits,
Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note
the soft information decoding in the 13-ary scheme is done with
threereads. L
Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note
the results from the simple and sophisticated channel models in the
16-ary scheme are almost the same. We believe the slight discrep-
ancy comes from defining the noise of a channel that adds Gaussian

noise with different variance to different symbols.

12

63

Chapter 1

Flash Memory Systems Introduction

1.1 Flash Memory Physics and Technologies

Flash memory was invented by Fujio Masuoka of Toshiba in the early 1980s. In-
tel and Toshiba started to commercialize the new technology in the late 1980s.
Flash memory penetration in consumer and enterprise products has been increas-
ing since then. All memory cards used in digital camera and mobile phones are
flash-based storage devices, and the same is true for USB flash drives. In addition,
Solid-state Drives (SSDs) are flash-based storage devices similar to Hard-disk Drives
(HDD:s), but have a better performance than HDDs. In the late 2000s, SSDs started
to replace HDDs in personal laptops for their desired features [3]. SSDs are also
used in enterprise storage, such as data centers [4].

Historically, the basic unit, the cell, of flash memory consists of the floating-gate
transistor that stores electrical charge (shown in Figure 1-1). The information is en-
coded in the amount (level) of this charge. In most of the flash products, these
transistors are connected in the NAND configuration that resembles the NAND
gate architecture (shown in Figure 1-2). These cells are laid in two-dimensional
configuration and packaged into integrated chips. In fact, the term NAND has be-
come interchangeable with flash, and we use it interchangeably in this monograph.

The floating-gate of the transistor is isolated and surrounded by an insulator,

so that it traps the charge. A high voltage is applied to pass a charge across the

13

Insulating
Oxide

Figure 1-1: Floating-gate transistor.

Bit Line

Ground Bit Lime
Select Word
Transistor

Word
Line 1
é

Figure 1-2: NAND flash architecture.

insulator into the gate, in a process called Programming. The floating-gate tran-
sistor is a noisy medium, resulting in a difference between the amount of charge
programmed (written) to the transistor and the amount charge sensed (read). In
programming, the exact charge passing into the gate is not deterministic, as the

crossing through insulator is a complex statistical process [5].

The medium imposes challenges on the flash technology. There is a reliabil-
ity issue preventing the stored charge levels from having deterministic values, in-
stead they are approximated by a Gaussian distributions (shown in Figure 1-3).
Endurance is another problem in which the gate insulator degrades gradually due
to the high programming voltage applied across it. Endurance is measured in the
number of Program/Erase (P/E) cycles the flash can sustain meeting a certain relia-
bility condition. These challenges are tackled with signal processing and coding.
We focus on the latter in this work, refer to Chapter 2 and Section 3.2. In addition,

flash silicon fabrication processes can be improved to mitigate these challenges, as

14

in the technology in Section 1.1.1.

At the beginning of the flash technologies, all the products used the Single-level
Cell (SLC), in which a cell carries a single bit only represented by two levels. To
increase the capacity of the cell, MLC consumer flash products with 4 levels fol-
lowed in the late 90s (Figure 1-3), and were deployed in enterprise business around
a decade after[6]. Adding more charge levels is very difficult because it decreases
the reliability, endurance, and performance of the cell and the cell array. For the
performance, the cells need to be programmed more slowly and precisely to result
in narrower charge distributions in the same voltage space. The read performance
also goes down as there are more charge levels to be read. The reliability, inversely
proportional to the Bit Error Rate (BER), decreases as the number of levels increases
because the overlap between the distributions increases. For a similar reason, the
endurance in terms of program/erase (P/E) cycles decreases with higher number

of levels as well.

1.1.1 Bit Cost Scalable (BiCS) Technology

A further increase in the capacity density (bits/mm?) has been developed to re-
duce the bit cost and meet the market demands for flash storage. Traditionally, the
number of bits/mm? has increased through reductions in the feature size, but as
the number of electrons in a cell has become very small, new technologies were

necessary to scale up the capacity density of the NAND.

In 2007, Toshiba announced the BiCS technology, in which the memory cell
arrays are fabricated in three dimensions (3D) with 64 and 96 layers of NAND
cells, to scale up the capacity density [7], as shown in Figure 1-4. BiCS replaces the
floating gate in the basic memory unit with a charge trapping layer [8]. For this
reason and the fact that the spaces between the cells in BiCS are wider, the inter-
cell coupling is lower in BiCS than in 2D NAND, and the inter-bitline coupling is
significantly lower than inter-wordline coupling in BiCS. The coupling reduction

results in increased reliability and endurance for BiCS, enabling BiCS cells to carry

15

S(J Sl‘ 2 SS Sd» SS SG S?‘ SB 59 10/ -1 Sl 513 54\515

AL
NN

(d)

m .

Voltage

Figure 1-3: Simplified model of charge distributions in flash memory. (a) 16 levels
of charge in QLC. (b) 8 levels of charge in TLC. (c) 4 levels of charge in MLC. (d)
2 levels of charge in SLC. Note that each distribution is Gaussian plotted on a log
scale. Note Sp and S5 have higher variance than the other distributions. Note also
the x-axis is voltage, called the Threshold Voltage (V;), and it is proportional to the
stored charge.

16

3 bits in TLC cells and 4 bits in QLC cells. Therefore, BiCS improves the bits /mm?
by carrying more information per cell and placing more cells per unit area.

Since the flash channel always has some raw BER, an Error Correction Code
(ECC) layer needs to be added on top of the NAND to maintain the integrity of

the data stored in flash memory (Section 2).

Y-cut: X-cut:

Select Gates

Figure 1-4: Bit Cost Scalable (BiCS) memory [1].

1.2 Channel Model and Channel Detector

The information stored in flash is encoded in analog voltage levels, called Cell Volt-
ages, proportional to the charge carried by the flash cells. The observed cell voltage
levels are shown in Figure 1-5. The flash cell introduces noise approximated as

Additive White Gaussian Noise (AWGN).

17

0.08 T |

c S g . |—1kCycle |
'% 0.05- 1 z Pl 3k Cyele |
= \ Bk Cycle
‘- 0.04r | — 15k Cycle :
@ — 20k Cycle
§ 0.03f — 30k Cycle |
—40k Cycle

£0.02 — Y
T
=
5 0.01
o

0

Threshold voltage

Figure 1-5: The distributions of NAND voltage levels collected from real hardware
[2]. The figure shows the distributions after different P/E cycle points. Note the
variance of a distribution increases with the number of P/E cycles. Note only three
levels are shown in this figure.

The signal constellation used with the flash channel is Pulse-Amplitude Mod-
ulation (PAM). The AWGN noise associated with different symbols from the sig-
nal constellation has different variance, with the first and last symbols having the
most noticeable difference (Figure 1-3). In QLC, every 4-bit string of user data in
encoded into one of the 16-ary symbols stored in the flash channel. Gray Code is

used for this encoding to minimize raw BER of the flash, as detailed in 1.2.1.

1001
**e* J110 1011\, *°*°*

v

Voltage

Figure 1-6: This figure shows three symbols of QLC flash. The Gray encoding
guarantees one bit flip between the adjacent symbols to minimize the BER when a
symbol is misread.

The means of the symbol distributions are not static but they move due to dif-
ferent effects during the lifetime of the NAND. One effect is the Program Disturb
(PD), in which programming cells will disturb the already programmed neigh-

boring cells. The program disturb increases the variance of the levels and move

18

them to the right in the voltage space, as shown in Figure 1-7. Another effect is
called Data Retention (DR), which is a time effect where the variance of the levels
increases and the means move towards some point near the zero voltage. This
means the levels to the right of the point moves to the left and vice versa, as shown
in Figure 1-8. The characterization of these effects depends on the NAND silicon

and the fabrication process.

(a)

(b)

Voltage

Figure 1-7: Program Disturb. (a) Before Program Disturb. (b) After Program Dis-
turb. Program Disturb increases the voltage of the neighboring programmed cells.

1.2.1 Channel Detector

The information is read from the flash in discrete voltage levels, Read Thresholds.
We set a number of these threshold voltages at the channel detector, and the de-
tector returns the information if the flash cell voltage level is above or below these
thresholds, as shown in Figure 1-9. This means the flash channel does not only de-
pend on the flash physical characteristics, but also the place of the read thresholds.

The positions of the thresholds are optimized to maximize the channel capacity

19

(c)

Voltage Voltage

Figure 1-8: Data Retention. (a,b) Before Data Retention. (c,d) After Data Retention.
Note the dashed line represents the point in the voltage space that the distribution
move towards with data retention.

(section 3.3.2). When a certain symbol is written to the cell, but misread as the
adjacent or second adjacent symbol, the number of user data bit flips is minimized

by the Gray encoding, as shown in Figure 1-9.

Voltage

Figure 1-9: The channel detector decides the symbol transmitted is 1001 with high
probability if the cell voltage is detected between the red and blue thresholds. If
the cell is detected in the symbols to the right or left from the middle one, but 1001
was actually transmitted, then there will be a single bit flip only due to the Gray
coding.

The Gaussian behavior of the flash memory is characterized by writing random
data symbols and observing the analog voltage levels of the cells. The voltages are
collected in a histogram that will converge to the channel probability distribution
when the sample size is large and random (Glivenko-Cantelli lemma [9]). The

probability model P(y; received|x; transmitted) is constructed based on this data

20

and the set read thresholds. P(x; transmitted|y; received) is also computed from
the former model using Bayes’ rule. The latter probability is the output of the
channel detector and the input to the LDPC decoder 2.2.1. To clarify, observing
the cell voltages is different from reading the cell with the read thresholds. The
former is a reading mode over a continuous range of voltage and the latter results
in discrete values depending on the read thresholds.

The channel detector of the cell passes a g-vector (P(x; = 0),P(x; = 1), ..., P(x; =
g — 1) transmitted|y; received), where g is the size of the symbol alphabet. To get
more information from the channel, another read of the cell is issued but with
slightly different threshold. This increases the resolution of detection, and allows
the detector to give lower probabilities to the points detected close to the threshold

between two distributions (Figure 3-11), as explained in section 3.3.5.

21

22

Chapter 2

Low-Density Parity-Check (LDPC)
Codes

2.1 Error Correction Codes and Linear Block Codes

Information is encoded in bits and transmitted over a channel to a receiver. The
problem is some bits could be modified by the channel. To maintain the integrity of
the information, the data sent should have the information bits plus some redun-
dant bits computed from the information bits. The purpose is that the redundancy

helps recovering the bits modified by the channel.

The scheme of encoding these redundant bits is called Error Correction Codes
(ECC). There are different categories of ECC, and the one we are concerned with
in this work is Linear Block Codes. They are defined over Galois Fields (finite fields)
which are closed under addition and multiplication. GF(gq) denotes a Galois Field
of order g, which is the size of its elements set. A Galois field exists if and only if
it has an order that is prime number g = p, or a power of a prime number g = p",

wheren € Z+

In this chapter, we explain binary (GF(2)) ECC concepts first, including LDPC,
in Sections (2.1 - 2.3), then we introduce non-binary (GF(gq)) LDPC in the last sec-
tion (Section 2.4).

23

In binary linear block codes, a group of size k bits of information, called informa-
tion bits, is encoded into a block, hence the name, of size n bits of data. This block
is called a codeword. The extra m = n — k bits are called parity bits. Each parity bit
is computed by XORing, i.e. addition over a binary field, a number of information
bits. The coderate (r) is defined as (r = £).

For example, consider a codeword of length n = 7, and k = 4, and let p; denotes

the i-th parity bit. In this example, there are 3 parity bits, and let the example code

constrain them this way:

Po = Xo + X1 + X3
p1 = Xo + X2 + X3
p2 = X0+ X1+ X2

Note the addition is over GF(2). So we take 4 information bits and encode them
into a codeword of 7 bits. If we start with 1101, then 1101100 is the codeword that
satisfies the code in our example.

The ECC is called Systematic Code when the codeword consists of information
bits and appended to them are the parity bits. The ECC codes do not have to be
systematic, and the parity bits could be placed non-contiguously anywhere in the
codeword. For implementation simplicity, systematic codes are the most popular
in practical systems, including flash storage systems [10].

A codeword that belongs to a code must satisty all the parity check equations
of that code. We write the parity equations in a form where one hand side is zero
and all the other non-zero terms are on the other side. This form is more suitable
for linear algebra and matrix operations. In this form, the parity check equations

of our example will be:

po+xo+x1+x3=0
p1+xo+x2+x3=0

24

p2+x0+x1+x =0

The magnitude on the left-hand-side of these equations is called, the syndrome,
and the parity-check is satisfied if the syndrome equals to zero. We represent a
codeword by a row vector x of size 1 X n. The linear block code is defined by a
Parity Check Matrix (H) of size m x n where each row represents a parity check
equation. H;; = 1 if the j-th bit in the codeword is present in the i-th parity check
equation, and Hj; = 0 otherwise. The coderate of this matrix is r = *.**. The code
has (k = n — m) degrees of freedom, so it has 2" codewords belong to it. The

H-matrix of our example is:

1101100
H=11011010
1110001

Let C be a code with Hc, and Let x be a codeword. x is a valid codeword iff:

HexT =0 (2.1)

Assume x € Cand y € C. Then:

Hex! =0
= He(x"+y") =0
HCyT =0

Therefore, xT + yT is a valid codeword, and the all-zero codeword 0 is also a
valid codeword. This means every linear combination of valid codewords in a
code is also a valid codeword in that code, the reason why these codes are called
linear.

The main benefit of Linear Block Codes is their efficient implementation in
practical systems, as they take less memory to store than other codes [11]. A gen-
eral code with length n and coderate r takes n2""" bits of memory. However, with
the linear structure, the code could be defined by a matrix H taking nm bits only.

We use a special and widely popular type of Linear Block Codes in this work.

25

These are called Low-Density Parity-Check (LDPC) codes. There are only few 1’s in
each row and each column of the code parity check matrix (H). In other words,
the matrix is sparse or low-density. The LDPC codes reduces the decoding com-
plexity [12], and performs better with the belief propagation decoding algorithm
as explained in Section 2.2.1. LDPC codes approaches the channel capacity asymp-
totically [12]. Refer to Section 3.3.2 for the channel capacity.

2.1.1 Minimum Distance

The Hamming distance D(x, y) between two codewords x and y is the number of
bits with different values between x and y. The important quantity is the Minimum
Distance of a certain code (d), which is the lowest Hamming distance between two
codewords over the entire range of codewords of that code. The larger the mini-
mum distance, the more bits in a codeword could be flipped in transmission and
corrected by the code at the receiver, as the transmitted codeword will converge to
the closest valid codeword. If the minimum distance is small, the received code-
word could decode to a different codeword from the one transmitted. We define
the weight w(x) of a codeword x as the number of 1’s in x. The minimal weight
of a code is the weight of the codeword of lowest non-zero weight. The minimum
distance of a linear code is the minimal weight of the code. To see this, let x and y
be two codewords in a linear code C and let the Hamming distance d(x, y) between

them be the minimum distance of the code. Then:

d(x,y) =w(x —y) (definition of Hamming distance)

But (x — y) € C, since C is linear, and w(x — y) = d(x — y,0). Therefore:

d(x,y) =d(x —y,0)

26

2.1.2 Tanner Graph Representation

A linear block code with H of size m x n is represented by a bipartite graph, called
the Tanner Graph, with n Variable Nodes and m Check Nodes. Each variable node
corresponds to a single bit in the code, and each check node corresponds to a parity
check constraint and is connected to the variable nodes of the that parity check.
Therefore, Hc is the Adjacency Matrix of the graph. The graph representation is
useful to study linear block codes and their properties under belief propagation
decoding, as we will see in Section 2.2.1. The Tanner graph of our example code in

Section 2.1 is shown in Figure 2-1(b).

Variable Nodes

Check Nodes

(a)

1 1 0

1
1 0 1 1
1 1 1 0

- = =
= = O
—_ 2 O

(b)

Figure 2-1: (a) The Tanner graph of our example code. (b) The parity check matrix
of our example code

The degree of a node is defined as the number of edges connected to the node.
In a certain code, if all check nodes have the same degree, and all variable nodes
have the same degree, then the code is called Regular. Otherwise, it is called Irreg-

ular. For a regular code, we denote by d. its check degree, also called row weight,

27

and by d, its variable degree, also called column weight. Irregular LDPC codes
have higher error correction power than regular ones. However, this difference
becomes insignificant in high coderate codes. In this work, we use a regular LDPC

with coderate r = 0.9.

2.2 Decoding LDPC code

We explain the decoding problem on data transmitted over a Binary Symmetric
Channel (BSC). This makes the decoding problem simpler to explain than using
other channels, and the solution generalizes to other channel models. We denote
by BSC(p) a binary symmetric channel of parameter p < 0.5. This parameter is the
bit flip probability of transmission across the channel. Figure 2-2 shows a diagram

of the BSC channel.

Transmitter Receiver

Figure 2-2: BSC(p) Binary Symmetric Channel with parameter (p).

Let us go back to the decoding problem, let the codeword x of block length n
be transmitted over a BSC(p), and let y be the received codeword. The decoding
question is: what is x given y is observed? The natural answer is the most likely
x" given y and the channel model. Mathematically speaking, this is the codeword
x' = xMAP that maximizes the Maximum A Posteriori (MAP) distribution of all

codewords x’ € C.

28

xMAP — argmax P(x'|y)
x'eC
P(y|x')P(x') (22)
= argmax —_—
x'eC P(y)
And:
P(y|x') = p?Wx) (1 — p)n—dux) (2.3)

We know that P(x’) is a constant when the codeword transmitted is randomly
selected (i.e. uniform distribution), and P(y) is a constant for a certain y. There-

P = ¥’ that maximizes P(y|x'),

fore, the decoding problem reduces to selecting xM4
which is the one closest in distance to y. Note this computation requires iterating
over all the codewords € C, which is slow and complex to implement in a prac-
tical system. In Section 2.2.1, we explain belief propagation decoding algorithms
that are sub-optimal to MAP decoding, but have lower complexity, making them
practical for implementation.

Note that xMAP £ x if y is closer in distance to another codeword € C. In this
case, this is called Undetected Error. In practical systems, the codeword contains
Cyclic Redundancy Check (CRC) which is a group of bits computed as a hash func-

tion of the rest of the codeword. After the codeword is decoded, the hash function

is computed for the decoded codeword to verity if it the transmitted one or not.

2.2.1 Belief Propagation and the Sum-Product Algorithm

Belief propagation reduces the complexity of MAP computation over a high-dimensional
space by performing local computations at the check and variable nodes. Each
node computes probability messages and exchanges them with the neighboring
nodes. These messages are used to compute the bits of the decoded codeword at
the variable nodes [13].

The probability message considered in this work, and most widely used in re-

search and practice, is Log-Likelihood Ratio (LLR), defined as:

29

_ . P(x=0)
LLR(x) = In P=T)

Where x € {0,1} is a random variable. In denote the natural logarithm.

Before describing the steps of the belief propagation algorithm. We introduce
some notations. Let g; be the belief of variable node v;, g;; be the message from
variable node v; to check node c¢; and r;; be the message from check node ¢; to
variable node v;. A superscript symbol t on the message quantities, qf]., rf]., and ¢!,
denotes the message at the t-th iteration. Let V; denotes the set of indices of check
neighbors to variable node v;, and C; the set of indices of variable neighbors to
check node c;. Let also ch; denotes the i-th channel node that carries the received
bit LLR(x;|y;) (Figure 2-3 and 2-4).

Consider an m x n code C. Let the n-sized data string x be transmitted over
some channel, and received as y. The m-sized syndrome vector s of x is computed
based on the code and given as an input to the belief propagation algorithm. The

flow of the belief propagation algorithm to decode y is as follows:

1- Variable Node Message Initialization: Each variable node v; initializes its

outgoing messages q?j to its neighboring checks ¢;’s as:

g = LLR(xily;), Vie{l,..n},j eV (2.4)

This is the channel message transmitted from ch; to v; (Figure 2-3). Note that

P(x;|y;), thus LLR(x;|y;), is based on the channel model.

2- Variable Node Message Computation: Each variable node v; computes its

outgoing messages ¢;; to its neighboring checks ¢;’s as:

qi; = LLR(x;lyi) +) r]f.,;l, Vie {1,..,n},j€V, (2.5)
j'evi/ i}

In other words, the variable node message depends on the messages it receives

from the channel and the neighboring check nodes except the one it is transmitting

30

to (Figure 2-3).

LLR(x;|y:)

Figure 2-3: Variable node processing. The message quz is the variable node v; mes-
sage to check node ¢}, at iteration ¢. quz depends on the messages from the channel

and from the neighboring check nodes to v; excluding the check node transmitted
to c;j, at the previous iteration t — 1. Note V; = {j1, j2,j3 }-

3- Check Node Message Computation: Each check node c; computes its out-
going messages 7;; to its neighboring variable nodes v;’s (Figure 2-4) as (see [14]

for derivation):

1
=25 |1 tanh(iqj,;l), Vie {1,..,m},j€C (2.6)
j'€Ci/{j}

where:
1 if ¢; syndromeis 0
5; =
—1 if ¢; syndromeis 1
This is the check node message biased depending on the syndrome. Note that

passing the syndrome vector is only possoible for code simulation. In a practi-

31

Figure 2-4: Check node processing. The message rf]-z is the check node c; message to

variable node v;, at iteration ¢. rf].Z depends on the messages from the neighboring
variable nodes to ¢; excluding the variable node transmitted to v}, at the previous
iteration t — 1. Note C; = {j1, /2,3 }-

cal system, this vector cannot be reliably transmitted over the channel. Instead
the data string transmitted is constrained by the code into a codeword such that
the syndrome vector is the all-zero vector. At the decoder, all the check nodes
are biased to the zero syndrome. In simulation, we compute the syndrome of a
data string given the H-matrix rather than generate codewords. The latter requires

tinding the generating matrix of H with matrix Gaussian elimination.

4- Variable Node Belief Computation and Bit Decision: Each variable node v;

computes its belief g; as:

gi=LLR(xily) + Y rji, Vie{l,.,n},j€eV (2.7)
j'eV;
, 0 if qi > 0
xi —
1 if qi < 0

Where x; is the i-th decoded bit.

Note that the exchanged messages are all in the log-domain described above.

32

Note also we decide the bit is zero when its associated belief is positive and vice
versa. This has to do with the way we defined the LLR. Using the LLR domain
results in simpler implementation that uses adders instead of multipliers if the
belief propagation was done in the probability domain. In addition, digital circuit
implementation uses fixed-point arithmetic where decoding in the LLR domain

results in better error correction power [15].

After step 4 is finished, the decoded codeword is usually checked if it is valid
Hx'T = 0 in which case the algorithm terminates. Otherwise, another iteration
through steps 2-4 is performed. A maximum number of iterations is specified, after
which the decoding is stopped and failure to decode y is declared. Otherwise, if no
maximum number of iterations is specified, the algorithm could run forever. The
belief propagation algorithm described above is called the Sum-Product Algorithm
(SPA) [13], and it is the algorithm we use in our experiment 3. Variants of this algo-
rithm, such as min-sum, are used in research and industry. These variants explore
different tradeoffs, ranging between error correction performance, complexity, and
speed. In fact, the min-sum algorithm is the one most commonly implemented in

flash storage systems [16].

For the belief propagation algorithm described above to be equivalent to MAP-
decoding, it requires in every node computation, the neighboring messages events
are independent. After few decoding iterations, this is no longer the case, since
the LDPC graph always contains cycles [12]. The events at different nodes will be
correlated due to circulating messages between nodes via cycles and throughout
the decoding iterations. Therefore, the longer the shortest cycle, called the girth, of
a code is, the better it performs with belief propagation algorithms. Due to their
sparsity, deeper trees can be extended from the nodes of LDPC codes compared to
denser linear codes, where a tree is a graph structure with no cycles. This makes

LDPC perform better with belief propagation than the other linear codes [12].

33

2.3 Quasi-Cyclic LDPC Codes QC-LDPC

Quasi-Cyclic codes have a structure that enables decoding parallelism in digital
implementations. The parity check matrix H of a quasi-cyclic code consists of
smaller submatrices, called Circulants, as shown in Figure 2-5. A circulant could
be the all-zero matrix 0 or a cyclically permuted identity matrix [17]. A cyclically
permuted identity matrix Iy of size Z x Z is an identity matrix, but with every row

shifted to the right by k. In other words, if 4;; is an entry of I, then:

a; =1 iff j=(i+k) modZ, for 0<ij<Z-1

This is an example for I, of size 7 X 7:

00100°O0O0
00010O0O0
00001O0O0
L=]100000T10
000O0O0GO01
1000000
01 00O0O0O

Figure 2-5: Quasi-cyclic matrix of size 16 x 32 with circulant size 8. Note the all-
zero circulants and cyclically permuted identity matrices.

Note the identity matrix is a circulant matrix with zero-shift I = I,. For a quasi-

cyclic regular (d,,d.)-code with circulant size Z, the parity check matrix H is of size

34

m X n,wherem =d,Zandn =d.Z,

Po,o Pon -+ Poa.-1
H— P10 Pii - Prg.—1
Pg,—10 Pa,—11 - Pa,—1,d.-1

Where P;; = [;isa Z x Z matrix, i € {0,1,..,d, —1},j € {0,1,...,dc — 1}, and
1€{0,1,..,Z—1},o0r P;; = 0 (all-zero matrix). An example of 16 x 32 quasi-cyclic
matrix of circulant size 8 is shown in Figure 2-5.

Quasi-cyclic codes take less memory to store by storing each circulant permu-
tation only. The messages computed at a certain step of belief propagation (Section
2.2.1) are stored in memory, then fetched in the next step that depends on the mes-
sages from the previous one. If the messages are stored in a single memory block,
then reading and writing messages will be a bottleneck because it happens sequen-
tially due to the address-based architecture of the memory. To enable parallelism,
QC-codes are used with multiple memory blocks corresponding to circulants. Each
node fetches the messages from multiple neighbors at the same time, as they are

stored in multiple blocks [18].

2.3.1 Quasi-Cyclic Code Construction

To construct QC-codes, we start from a small Tanner graph, called a Protograph
[17]. We lift this protograph into the desired QC-LDPC graph. The process of lift-
ing includes copying this protograph Z times (Figure 2-6), where Z is the Lifting
Factor, which is also the circulant size of the constructed code. Copying the pro-
tograph means copying the nodes and the edges. The copies of a single edge is
called an Edge Group. Next, we permute the edges in each edge group, resulting
in the cyclically permuted identity matrices introduced in Section 2.3. Figure 2-6
illustrates the lifting process.

As mentioned in Section 2.2.1, our goal of LDPC code design is to maximize

35

G G

Figure 2-6: Protograph lifting. Starting from the protograph on the left, which is
copied, then the edges are permuted. This graph has Z = 3 and 6 x9 H-matrix.

the girth of the code. We define the girth as the length of the shortest cycle in the
graph. A 2[-cycle in a graph could be associated with a sequence of circulants and

their permutation matrices, as:

Pio,iO' Pio,ilf Pilfil' s Pi171,i171' Piquio (2.8)

Forl <k <I—-1, i # ix_q and jx # jx_1. Also, i;_1 # ipand j;_1 # jo. Other
than these conditions, the permutation matrices in the sequence could be repeated
more than once, as a cycle could traverse a circulant more than once. Let us use
¢(P;;) to denote the cyclic shift to the left associated with P; ;.

A necessary and sufficient condition for the existence of a 2/-cycle [19] [20] [21]

-1
Y (¢(Pi i) —¢(Pi,5)) =0 mod Z (2.9)
k=0

Note Pj ;, = Pj,;,. Therefore, for an m x n graph with girth > 2(I + 1), and

circulant size Z, we need:

=1 . m . n
Y (¢(Pij) — (P 1)) #0 mod Z, V 0<ip < 7L 0<jis- -1
k=0

(2.10)

The higher Z is, the easier it is to satisfy 2.10 for a given girth. Note it is very

computationally-intensive to iterate through all the circulants to make sure is 2.10

36

satisfied and find the minimum circulant size to achieve a certain girth. In the
next section, we introduce a practical method for constructing QC-codes with high

girth.

2.3.2 Circulant Progressive Edge Growth (CPEG)

As we saw in the previous section, it is computationally hard to choose the circu-
lant permutations to maximize the girth. Instead, we use another method based on
a greedy algorithm, called Circulant Progressive Edge Growth (CPEG). The method

is sub-optimal, but it is computationally practical [22].

Before introducing the algorithm, we introduce some notation. For an LDPC
code with matrix H, let Nzl)i denotes the set of all the check nodes in the tree rooted
at variable node v; and extended to depth /. Its complementary set N_zl,l is the set of

all the check nodes in the graph except Nzl,i (Figure 2-7).

The input to the CPEG is the number of variable nodes t and check nodes r, a
degree profile (dy,d.) and lifting factor Z. You can think of this input as an r x t
protograph with degree profile (dy, d.), but without specified edges. The output is
a graph m x n, where m = Zr and n = Zt. CPEG chooses the edges in the lifted
m x n graph with the goal of large girth. The algorithm is as follows [23]:

1: fori=0:t—-1do
2: forj=0:d, —1do
3: if j == 0 then

EY, : (ck, viz), where ¢y is a randomly selected check node from the lowest degree

¥ check nodes in the current state of the graph.

5: forl=1:Z-1do

6: Ely i1 (C2(k/2)4mod(es1,2) Viz 1)

7: end for

8: else

9: Extend a tree from v;7 up to some depth L such that:

37

Figure 2-7: This figure shows the tree expanded from v; to depth /. The unshaded
squares represent the check nodes in the LDPC graph that are not within the /-deep
tree extended from v;.

38

either: N}, # ¢, but NI = ¢
or: the cardinality of NZ%Z stops increasing and is smaller
than m the cardinality of the set of all check nodes.

Choose ¢k as a randomly selected check node among the smallest degree nodes

e N,
10: if current degree of ¢, < d, then
11: Egz : (Ck, UiZ)
12: forl1=1:Z-1do
13: Ely: (CZ(k/Z)+mod(k+1,2), Viz+1)
14: end for
15: else
16: Delete EY,, ..., E?z’+1)Z—1 and go to step (4)
17: end if
18: end if
19: end for

20: end for

Where Ef,l, : (cj,v;) denotes an edge between c; and v; and this edge is the
t — th incident edge on v; in the order of CPEG progress. Basically, the algorithm
iterates over all the variables in the input protograph (line 1), then adds edges to
each variable based on the input d,. The lifted graph is considered when adding
edges to these nodes with each variable node being the first in its circulant column.
There are two cases in assigning these edges. The first case is when the edge is the
tirst one (line 3-4) and assigned to a randomly selected check node from the lowest
degree check nodes in the lifted graph. The second case deals with edges added
after the first edge (line 9). After every edge added to the first variable node in a
circulant, an edge is added between the variable nodes and check nodes in the rest

of the circulant separately, and in a circular fashion (lines 5-7 and 12-14).

The variable degree profile of the resultant graph is guaranteed by the fact that
the edges assignment in the algorithm is guided by this degree profile. In (line 10),

the check nodes degree profile d. constraint is checked to make sure it is satisfied.

39

Note this step is dropped in some variants of the CPEG algorithm where the check
nodes degree profile is not constrained.
Note d, and d, are vectors of sizes t and r respectively, and d,, and dc]- denotes

the i-th variable node degree and the j-th check node degree respectively.

2.4 Non-Binary LDPC (NB-LDPC)

LDPC codes could be defined over a Galois field of any order, and the codeword
transmitted consists of symbols over that field. What we have seen so far are codes
over GF(2) only, or binary codes, where we call the symbols transmitted, bits, in
this case. The LDPC code defined over GF(q) where g > 2 is called, Non-Binary
LDPC Code (NB-LDPC). Let C be a NB-LDPC code over GF(g), and codeword x €
C. The parity check matrix Hy,x, of C consists of entries in GF(g). Each row is a

parity check equation:

n—1
Z ajx; =0, VvV i€{0,1,..,m—1}
j=0
aiﬁéo
The parity check equation is a linear combination of codeword symbols weighted
by the H-matrix entries. Note we do not write the weights in the binary parity
check, as they are all 1’s, which is the identity of the multiplication operation. An

example of a small H-matrix over GF(5) is:

1204100
H=(3 021040
2210003

241 Belief Propagation with NB-LDPC

The concept of exchanging belief messages between graph nodes to reinforce or
undermine certain bits (or symbols) of the codeword in binary decoding 2.2.1 is

also the basis of the NB-LDPC belief propagation. However, there are differences

40

in the message content and the node equations to serve the purpose of multi-

symbol decoding.

Let us consider decoding LDPC code over GF(g). First, we present the general
algorithm with the multiple vector convolution, then we present a trick of partial
sums to implement this convolution. The straightforward convolution has a com-
plexity of O(g%) per check node, where d, is the degree of that node. d. = 30
The code we design for the experiment in Section 3.4. The partial sums technique

reduces the complexity to O(g?).

In non-binary belief propagation, the messages exchanged are g-tuples of prob-
ability (P(x = 0),P(x = 1),..., P(x = g — 1)). Note this tuple has one redundant
entry, as the probabilities add up to 1, but we keep it this way to simplify the im-

plementation, especially the convolution as we will see.

Let x = (x1, X2, ..., X,) be the data string transmitted and v = (y1,y2, ..., Yn) is
the received one, where x and y are over GF(g). The syndrome vector s is given to
the algorithm too. We use a similar notation for the messages as in 2.2.1, but with a

(a)

modified superscript. For instance, qf] denotes the message from v; to ¢; holding

the probability of symbol a € GF(g) at the [-th iteration. We describe the steps of
the algorithm:

1- Variable Node Message Initialization: Each variable node v; initializes its

outgoing messages q?]. to its neighboring checks ¢;’s as:

g = (P(x; =0),P(x; =1),.., P(xi =q = Dy;), Vie{l,.,n}jeV; (211)

This is the channel message transmitted from ch; to v; (Figure 2-8). Note that

(P(x; =0),P(x; =1),..., P(x; = g — 1)|y;) is based on the channel model.

2- Variable Node Message Computation: Each variable node v; computes its

outgoing messages ¢;; to its neighboring checks ¢;’s as:

41

L, 1-1, . .
" =P =aly) T])", vie{l,.n}jeV (2.12)
j'evi/ it
In other words, the variable node message depends on the messages it receives
from the channel and the neighboring check nodes except the one it is transmitting

to, as shown in Figure 2-8.

Figure 2-8: Variable node processing. The message quz is the variable node v; mes-
sage to the permutation node Hj,; at iteration f. The permutation node permutes
the incoming message from the variable node and sends the resulting message
qpf-jz to check node ¢j,. It depends on the messages from the channel and from

the neighboring check nodes to v; except the check node transmitted to ¢;, at the
previous iteration t — 1. Note V; = {j1, 2, j3 }-

3- H-matrix Multiplication (Permutation): The multiplication over a finite field

results in a permuted vector of the original one.

ap;” = Hugi!”, Vie {1,.,n},jeV; (2.13)

4- Check Node Message Computation: Each check node c; computes its out-

going messages 7;; to its neighboring variable nodes v;’s (figure 2-9) as:

42

ﬁ}c(“): Y TII qu.,;l'(“'), Vie{l,.,m},jeC (214)

weenf(as;) j'€Ci/{j}

a'cw

r

Where cnf(a,s;) is the set of all vectors w of size d;, — 1 such that }_;w; +a =
s;. In other words, cnf(a,s;) is the configuration set of all the possible weighted
symbol values of the neighboring nodes to c; can take such that the parity check is

satisfied with syndrome s; and one of the neighboring nodes is fixed at symbol a.

Figure 2-9: Check node processing. The message rsz is the check node c; message
to the permutation node Hj;, at iteration t. The permutation node permutes the
incoming message from the check node and sends the resulting message rplt-jz to

variable node vj,. It depends on the messages from the neighboring variable nodes
to c; except the variable node transmitted to v;, at the previous iteration f — 1. Note

Ci - {jl/jZ/jS}-

Equation 2.14 is basically a d., — 1-fold convolution of message vectors g;;, since
it is a summation of products of the vectors components such that these compo-
nents sum up to z — a in each product term. The straightforward computation

dc—l)

of d¢, — 1-fold convolution is O(gq and we need to compute d, messages per

43

check node, therefore, the total complexity per check node is O(g%). This compu-
tation repeatedly computes the same smaller sub-problems. Davey and MacKay
[24] proposed a method of computing solutions for these repeated problems once
and re-using that in the repeated instances of these problems. This reduces the
complexity to O(g%). We use this method in our software decoder. We describe
this method as:

Define oy = Y.<k qpij, and pjx = Yj>x qpij. Choose k > j as two successive

indices in C;, then:

Plog=a)= Y Plo;=2z)qpy

z,t:it+z=a

Similarly choosing k < j, we have:

Ploge=a)= Y Plpij=2)qpj

z,t:t+z=a

Equation 2.14 becomes:

1l = P(0(j—1) + pij+1y = i —a) =), P(oij—1) = 2)Ppij1) = 1),
z+t=s;—a (215)

Vie{1,..m},jeC;

The complexity of computing P(c;;_1) is O((j — 1)9) and similarly for p;j,1)
assuming 1-indexing. Therefore, the complexity of computing 7;; is O(nqz).

5- H-matrix inverse Multiplication (Permutation):

Y = HLHY Vie {1, m),j e (2.16)

6- Variable Node Belief Computation and Bit Decision: Each variable node v;

computes its belief g; as:

q? = P(xi = a]yi) H TP?/Z', Vi e {1,2,...,71},j S Vl (217)
jev,

44

This belief is normalized to:

q‘? . i
gt = W Vie {1,2,..,n},j€V;
a'=0"1i

Then the decoding decision is:

x; = argmax,(qn?), vie{1,2,..n}

Where x; is the i-th decoded bit, and P(x; = aly;) from the channel message.

Note that if the code is defined over GF(q) such that g = 27, where p is prime,
then the convolution could be replaced by a product by transforming the problem
into the Fourier Transform domain over a finite field, also called Number-theoretic
Transform (NTT). This reduces the complexity to O(glog,(q)), and the domain con-
version is done with Cooley-Tukey algorithm [25]. In the case of GF(p), there are
algorithms for NTT, such as Blueshtein’s [26] and Rader’s [27] algorithms. How-
ever, these are more complex to implement and could be more costly than the
partial sums implementation for small field sizes, such as GF(13), which we use in
this project.

In this chapter, we covered the LDPC concepts necessary for our experiment
in Section 3.4. We started with binary LDPC codes and showed their graph rep-
resentation in Section 2.1. We described the binary LDPC decoding using a belief
propagation concept and the sum-product algorithm in Section 2.2. We explained
that LDPC codes with larger girth perform better under belief propagation decod-
ing. For this reason, we introduced the CPEG algorithm for designing quasi-cyclic
codes with maximized girth in Section 2.3.2. Finally, we generalize LDPC codes
to the non-binary field order, and provide an efficient implementation of the sum-
product algorithm algorithm for non-binary decoding in Section 2.4.

In the next chapter, we describe our experiment on a model of a flash memory
channel, in which we compare two flash storage schemes: one with binary LDPC
and 16 levels of charge per cell (QLC); and the other with non-binary LDPC over
GF(13) and 13 levels of charge per cell. We use the flash concepts explained in

45

Chapter 1 to develop the channel model of the experiment in Chapter 3. We design
binary and non-binary LDPC codes with CPEG and we implement an binary and

non-binary decoders in C to simulate the two schemes.

46

Chapter 3

Experiment and Evaluation

3.1 Non-Binary Scheme

The goal of this work is to compare the storage of non-binary number of states in
the flash cell against the traditional binary number. The comparison evaluates the
two schemes in terms of error correction performance with the LDPC module. In
this project we compare a 13-ary scheme against the 16-ary (QLC) scheme. For a
tixed error correction power, the non-binary scheme operates at a lower SNR than
the 16-ary scheme, where we define the SNR in section 3.3.3. We explain these
results in detail in section 3.5 and discuss what it means for the non-binary scheme
to support lower SNR in relation to the physical properties of the flash.

In practical systems, programming non-binary states in the flash requires a spe-
cial architecture to interface between the binary world of user data and the non-
binary flash memory. We propose two different architectures to achieve this, and

we choose one of them and explain why it is the best to choose.

The first architecture is shown in Figure 3-1, where the writing process is as

follows:

1. Encode the user binary data with binary LDPC into binary codewords.

47

2. Encode the binary data into 13-ary symbols with the modulation en-

coder.

3. Program the 13-ary non-binary symbols into the NAND.

The reading process is the reverse of writing:

1. The 13-ary symbols are read from the NAND.

2. The 13-ary symbols are decoded into binary data with the modulation

decoder.

3. Thebinary is decoded with the LDPC decoder into the user binary data.

User 1 2
Binary Binary
LDPC Enc. Codeword Modulation

Binary Encoder

Non-Binary 3,4
Symbols

6 ECC- 5

User encoded Non-Binary
Binary LDPC Dec. Data Modulation Symbols
Data Binary Binary Decoder

Figure 3-1: The first architecture. Non-Binary scheme with binary LDPC.

In the second architecture , shown in Figure 3-2, we flip the order of the modu-

lation and LDPC. The writing process becomes:

1. Encode the user binary data into 13-ary symbols with the modulation

encoder.

2. Encode the 13-ary symbols into 13-ary codewords with a non-binary

LDPC.

3. Program the 13-ary non-binary symbols into the NAND.

48

Non-Binary Non-Binary 3,4
Modulation Symbols LDPC Enc. Symbols
Encoder Non-Bin

Non-Binary Non-Binary

Modulation Symbols LDPC Dec. B Symbols
Decoder Non-Bin)

Figure 3-2: The second architecture. Non-Binary scheme with non-binary LDPC.

And the reading process is the reverse of writing.

The first architecture has the disadvantage of error propagation. A group of bits
are modulated together into a smaller sized group of 13-ary symbols. This makes
any symbol flip in the symbols read (step 4) propagate to a possibly longer string
of binary bit flips, which could be the entire group of bits modulated together, after
the symbols are decoded by the modulation decoder (step 5). Note the initial sym-
bol flip is due to noise introduced by the NAND. The second architecture does not
result in error propagation, since the modified symbols are corrected by the LDPC
decoder before the modulation decoding. However, this architecture requires the

non-binary LDPC decoder that is more complex to implement.

The error propagation in the first architecture can be mitigated using smart
modulation code design and other techniques, such as interleaving [28] and Gray
coding. On the other hand, the second architecture is more complex, but it is more
powerful in terms of error correction, since it does not get exposed to the error
propagation. This architecture is chosen for its reliability, especially in a flash sys-
tem with 0.9 LDPC coderate and where a decoding failure is extremely expensive.
The second architecture will be compared against a basic binary scheme with bi-

nary LDPC (Figure 3-3).

49

User
Binary Binary

cod g ECC-encoded Binary
Data LDPC Enc. peewer - Data LDPC Dec. Data
Binary Binary Binary

Figure 3-3: Basic binary scheme. It uses binary LDPC.

User

3.2 Modulation Codes and Programming 13-ary Sym-
bols

Modulation coding is the mapping of data symbols between two domains with
different constraints. In the context of this project, we map binary data symbols
(bits) to 13-ary data symbols. In this case, the two constraints of the two domains
are data symbols over GF(2) and GF(13), respectively. We call the mapping from
binary to 13-ary, modulation encoding, and the opposite mapping, modulation
decoding. Note that modulation does not have to be between domains of different
tield orders. For instance, there are modulations between two binary domains
in magnetic recording, where the constraints are on the length of the strings of
consecutive ones.

A basic way of mapping binary to 13-ary is to take the binary data string as one
value and repeatedly divide it by the new base, that is 13, until the value becomes
zero. The remainder of each division is a 13-ary symbol in the new data string with
the first remainder being the least significant symbol. This method is called Base

Conversion, and an example is shown here:

1101111110, — 53A,3

remainder
1101111110/ 13 = A
1000100 /13 » 3
101 /13 » 5

0

50

When we map 7 bits to m 13-ary symbols, the coderate is é—nm The coderate < 1
because the mapping is injective. In other words, the number of elements in the
set of n-bit strings must not exceed the number of elements in the set of m-symbol
strings, so there is no information loss in the modulation process. Note coderate
1 if m and n are integers. Therefore, there are some m-symbol data strings
that are not used in any modulation code. In fact, the modulation code could be
optimized to use the noisier symbols less often, if some symbols are noisier than
others. Indeed, this is the case in the flash memory channel (section 1.2) where
different symbols have different noise variance. This optimized modulation code
is implemented with a look up table in digital hardware, which maps n-bit data
strings into m-symbol strings. In this work, we do not focus on designing and
evaluating modulation codes, especially that all the 13-ary distributions have the
same variance in our channel model.

Figure 3-4 shows the coderate of modulation at different values of m, the cor-
responding value of n in each case is maximized such that coderate < 1. Note as
m increases, the modulation encoder and decoder need more hardware resources
to implement. On the other hand, low-valued (m = 1,m = 2) have low coder-
ate, therefore, low channel capacity for the system. In this work, we evaluate the
second architecture with non-binary LDPC code (steps (2-5) in Figure 3-2). We sug-
gest m = 10, n = 37 modulation code for its high code rate (0.997). m = 3,n = 11

is good for lower complexity and high coderate.

3.3 Channel Model

We model the flash memory channel as an AWGN channel, and we use PAM signal
constellation as described in section 1.2.1. In this model, the total voltage space of
the flash cell is normalized to 1, and all the symbols have the same variance.

We compare two signal constellations: One with 16 symbols; and the other with
13 symbols. The lowest mean (Sp mean) in the 16-ary constellation is fixed at 0 and

the highest (S5 mean) is fixed at 1, and the rest of the symbol means are distributed

51

1 T =37 (Desired Point |

=11 (Desired Point)

08r

coderate
o
=
o

e
~

065

06|

055

0.5

m

Figure 3-4: The coderate of modulation at different values of m, the corresponding
value of 7 in each case is maximized such that coderate < 1.

in between, as shown in Figure 3-5. The means of the Sy, ..., S14 distributions are
optimized to balance out the error of misreading a symbol as another symbol for
all the 16 symbols. Note Sy, ..., S14 will not simply be equally separated, since Sy
and Si5 only overlap with one neighboring symbol instead of two in the case of
S1, .. S14.

The 13-ary constellation is similar to the 16-ary one, but with the first two sym-
bols and the last one removed and the total voltage space normalized to % = %,
as shown in Figure 3-6. The means of the symbols S3, ..., S13 are optimized to bal-
ance out the error as in the 16-ary case. This choice of the removed symbols is only
significant in the more sophisticated model (section 3.3.4), where the symbol dis-

tributions have different variance. We follow the same choice here for consistency.

Note we still refer to the symbols by the same label in both cases.

3.3.1 State Transition Matrix (STM)

Let X be the symbol transmitted through the flash channel. X is a discrete random
variable € 0,1,...,4 — 1, where g is the symbol alphabet size. U is a continuous

random variable over the flash cell voltage space. This is the variable observed

52

!

HAANNIAOO

Voltage

Figure 3-5: Flash channel model with 16-ary signal constellation. Note Sy mean is
fixed at 0 and S5 mean is fixed at 1. Note the symbol distributions are not equally
separated, but the difference in separation is very small that it is hard to see on the
tigure.

0.1333 0.9333
Voltage

Figure 3-6: Flash channel model with 13-ary signal constellation. Note S, mean
is fixed at 12—5 = 0.1333 and Sy4 mean is fixed at % = 0.9333. Note the symbol
distributions are not equally separated, but the difference in separation is very
small that it is hard to see on the figure.

before the channel detector. The channel detector takes U as input and computes
Y based on the read thresholds V;, ..., V; ,1 s an output (section 1.2.1). Y is the

received symbol, which is a discrete random variable € 0,1, ..., — 1.

1 (u—p;)

P(U=ulX=1i) = e (3.1)

(

0 ifu <V

Y =14i ifVti<u<V (3.2)

i+1

g—1 ifu>V,

\

53

(

‘Du|xzz‘(th) ifj=0

P(Y =j|X =1i) = CI)u|X:i(ij+1) - qDU\X:i(th) if0<j<g—1 (3.3)

| 1= Pupx=i(V,) ifj=g-1

Where ®x(x) is the CDF of the probability distribution of X at x. The State
Transition Matrix (STM) is a t X r matrix, where r is the size of received symbols
alphabet and t is the size of transmitted symbols alphabet. Note the two alphabets
could be different and have different sizes, as in section 3.3.5. Each element 4;; in
this matrix is a;; = P(Y = j|X = i). In our experiment, this matrix simulates the
transition from the transmitted codewored to the received data. It is also used to
assign LLR(X|Y) = In f)g%m values, after computing P(X =i | Y =) from the
STM using Bayes’ rule:

P(Y = j|X = i)P(X = i)

P(X=ilY =) = Py =) (3.4)

Where P(Y = j) = Y1, (=j|X =i)P(X =1)

3.3.2 Channel Capacity

Let X and Y be two discrete random variables representing the transmitted and
received symbols over a channel, respectively. The channel capacity C is then de-

fined as:

P(x,y)
C = I(X;Y) = Y Y P(x,y)log(——~=r~ 3.5
81(11? (Sl(llierxEX x y Og(()P(y)) ()

Where I(X;Y) is the mutual information of two random variables X and Y.
The definition states that the channel capacity is the mutual information between
the transmitted and received data maximized over the distribution of the trans-

mitted data. Note that C depends on the read thresholds through its dependence

54

on P(x,y) and P(y). The read thresholds are optimized to maximize the channel
capacity.

We also define the Effective Channel Capacity C,sy, as the mutual information of
X and Y for a certain distribution P(X):

Cerr = Ip(x)(X;Y) (3.6)

In our experiment, we assume a uniform distribution P(X = i) = % Note that
when a symbol i has a relatively high transition probability to a symbol j,j # i,
we can transmit it less often, i.e. have a non-uniform P(x), through modulation
encoding (section 3.2). This is beyond the scope of this thesis and we will stick with
the uniform P(x). Note the channel capacity computations of AWGN channels
must carried out on a computer to evaluate cumulative distribution function of

the Gaussian random variables.

3.3.3 Signal-to-Noise Ratio (SNR) Definition
SNR = 20log,, (V%”l) (3.7)

Where y; and y, are the lowest and highest means of the signal constellation,
respectively, which you could think of as the power of the signal in this context.
o is the standard deviation of the noise in the channel. The SNR is a logarithmic
with units in decibel (dB).

Note the SNR captures the characteristics of AWGN channel. Therefore, the
model has the same characteristics as the physical channel although the voltage
space (signal power) and noise variance are different. In fact, this is what we have

in our model, as we normalized the voltage space to 1.

3.3.4 A More Sophisticated Channel Model

We present a closer model to the behavior of the flash channel, which is similar to

the basic model, but with different variance for the symbols. Sg having variance

55

M1z — HUg
[- |

SRR

M

15

SNR = 20 zogm(@)

Figure 3-7: Signal-to-Noise Ration (SNR) calculation.

Ugo, S15 having (fgls, and all the other symbols having o2, such that Ugo > 0§15 > 02,

as shown in Figure 3-8. Note the distributions means are optimized to maximize
the effective channel capacity. This results in relatively higher separation between
the high variance distributions and the rest of the distributions. We evaluate both

models in section 3.5.

2(}; ene ene 2 !

Figure 3-8: Flash channel model with 16-ary signal constellation. Note Sp and S15
have higher variance. The separation between these two symbols and the other
symbols is relatively high to balance out the raw error rate and maximize the chan-
nel capacity. The dots represent the rest of the 16 symbols with variance ¢. Note
the labels on the figure are twice the variance.

3.3.5 Soft Information

We read with g — 1 read thresholds when we have a symbol alphabet of size 4.

The information we get with these thresholds are called Hard Information. When

56

we read again with a different set of 4 — 1 thresholds, each received symbol region
will be divided into regions giving different beliefs of the symbol transmitted as
shown in Figure 3-10 and Figure 3-11. We call this belief information obtained with

multiple reads, Soft Information.

Voltage

Figure 3-9: Single read. The cell is detected in Sg region. The channel detector gives
high belief the symbol transmitted is S¢. Note the belief is non-zero in the other
symbols as their distributions overlap in the detection area. The detector gives low
beliefs in S5 and Sy, and much lower beliefs in the rest.

Voltage

Figure 3-10: Three reads. The cell is detected in the wide region of S¢. The channel
detector gives high belief the symbol transmitted is S, and lower beliefs in the
rest.

As with the original set of read thresholds, the goal of choosing the other sets
associated with the multiple reads is maximizing the effective channel capacity.
The support set of the received symbol random variable Y increases with the num-
ber of reads 1,,,4s. It becomes 1,,,4:9 — 2 where each received symbol corresponds
to a region between two adjacent read thresholds. In reference to section 3.3.1,

the STM that captures the flash channel with multiple reads has higher column

57

LI 54 55 55 5? 59 LN

Voltage

Figure 3-11: Three reads. The cell is detected in a narrow Sg region close to Sy
region. The channel detector gives comparable beliefs in the symbol transmitted
being S¢ and Sy, and lower beliefs in the rest.

dimension than row dimension. Therefore, we get higher resolution beliefs of the
symbols transmitted through the channel, which makes the LDPC decoder decode
more codewords and converge faster, i.e. with fewer iterations.

The transmitted symbols are associated with the same type of distribution (Gaus-
sian), and the distributions have approximately the same variance. Therefore, the
read thresholds associated with multiple reads are only related by a shift factor 4.

In other words:

Vi = Vi +

Where Vt{.' denotes the Vt; of the j-th read. This makes the numerical optimiza-
tion to maximize the effective channel capacity easier than the case with different

offset for every single read threshold.

3.4 Experiment

We compare two schemes: a 13-ary flash system with non-binary LDPC against a
16-ary system with binary LDPC. We use the channel distributions (S, — S14) in the
13-ary case. We also compare both channel models, simplified and sophisticated,
in the 16-ary case. In the sophisticated channel, we choose o5, = 1.5¢ and 05, =

1.20, where ¢ is the standard deviation of the rest of the symbols. Note there is

58

only one model in the 13-ary case as we do not use Sg and S;5.

We do not focus on the modulation code design in this work, but we suggest
using a code with n = 37 bits mapped to m = 10 13-ary symbols, for its very high
coderate (0.997) with 3.7 bits/symbol. In this case, the non-binary LDPC code-
word size has to be a multiple of 10. The binary LDPC codeword size n = 16000,
that is 2K bytes, a common codeword size in the flash storage systems. The non-
binary codeword size is n = 4320 symbols. This is the size of the binary codeword
divided by the 3.7 bits per symbol use and rounded to the nearest multiple of 10.
This is to guarantee a fair comparison between the two schemes by having roughly
the same size codeword from the user binary world perspective, i.e. number of
bits/codeword. Note that the codeword size is an important characteristic consid-
ered with the LDPC code performance, since the longer the codeword, the better
the code performs [12].

Both the binary and non-binary LDPC codes are quasi-cyclic codes designed
with the CPEG algorithm described in section 2.3.2, starting from a 4 x 40 proto-
graph with coderate r = 0.9 and column weight = 3. This protograph is lifted with
CPEG using lift factor Z = 400 to make the binary code, and lift factor Z = 108 to
make the non-binary one. Note we do not specify the edge connections of the pro-
tograph given as an input to CPEG (Section 2.3.2). The coefficients in the NB-LDPC
H-matrix are assigned randomly over GF(13).

Another fairness measure taken in comparing the two schemes is to assign
the received bits LLRs based on the 16-ary symbol channel model in the binary
scheme. This means not all the received 1’s will be given the same LLR, and the
same is true for 0’s, as illustrated in Figure 3-12. This gives the binary decoder
more accurate channel beliefs of the bits similar to the channel beliefs supplied to
the non-binary decoder, which are naturally based on the 13-ary channel model.

The LDPC decoder maximum number of iterations is set to 20, and 10° de-
coding trials are simulated per SNR point. In each trial, data is generated ran-
domly, syndrome is computed for the data, and noise is generated according to

the channel model and added to the data. The decoder and data generation are

59

Lower LLR

Higher LLR magnitude
magnitude

Voltage

Figure 3-12: Symbol-based bit LLR assignment. Bits that change according to the
Gray code if the adjacent symbol is transmitted are given lower confidence than
the other bits

implemented in C. The simulation was run on a computation farm of multiple
computers of multi-core processors, with MATLAB Distributed Computing Server

tools used for task scheduling.

3.5 Results

First, we compare the 13-ary scheme with NB-LDPC against the 16-ary scheme
with Binary LDPC and the simple channel model (Section 3.3). The bit LLR as-
signment in the 16-ary scheme is done symbol-based as explained in section 3.4.
The results are shown in Figure 3-13 below. Here we introduce the definition of
Decoding Failure Rate, which is the number of times the decoder fails to decode
a codeword per total number of decoding trials. The Decoding Failure Rate only is
only meaningful when it is specified for a certain SNR point in the AWGN channel
case, or some channel characteristic measure in general.

There is approximately 2.3 dB gain in hard information decoding of the 13-

60

2.3dB

vk '\ 0.88dB]

ure Rale

Decoding Fa

—13-ary/INB-LDPC/Hard Info
~—13-ary/NB-LDPC/Soft Info
16-ary/Binary LDPC/Hard Info/Simple Model|

1 1 1 1 1 1
3 335 34 M5 5 355 % 3.5 ar
SNR (dB)

Figure 3-13: Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note
the soft information decoding in the 13-ary scheme is done with three reads.

ary scheme over the 16-ary one. Note there is a 1.94 dB decrement in the SNR of
the 13-ary scheme, since it has lower signal amplitude 0.8 in the cell normalized
voltage space. This decrement is computed as 20(log;, %8 —log,, 1) = —1.94dB.
The extra 0.36 dB is the gain due to the higher error correction power of the NB-
LDPC over the binary LDPC. To better understand this, if the 13-ary distributions
are expanded in the voltage space so the signal has the same amplitude of 1 as in
the 16-ary case, the SNR of the 13-ary signal will increase by 1.94 dB. However,
since the NB-LDPC is better by 2.3 dB, it is providing an extra .36 dB benefit. There
is approximately 0.88 dB gain in soft information decoding with three reads over
the hard information decoding in the 13-ary scheme. Note all the read thresholds

are optimized to maximize the effective channel capacity.

The decoding at a lower SNR in the 13-ary scheme with the same decoding fail-
ure rate means the system tolerates higher noise than in the 16-ary case. For a fixed
SNR, if the 13-ary scheme distributions are expanded over the same amplitude as
in the 16-ary scheme, the variance of the distribution needs to increase to keep the
SNR constant. This is interpreted as the 13-ary scheme operating at higher P/E

cycles or longer data retention causing increased noise variance (section 1.2).

61

The results clearly demonstrates the benefit of NB-LDPC. Practically, this comes
at the cost of implementing a NB-LDPC decoder, which takes more silicon area for
the same throughput in terms of decoding iterations per clock cycle. Refer to Sec-
tion 2.4.1 for see the complexity of decoding NB-LDPC. We suggest that the choice
of using NB-LDPC in a flash product is driven by the cost and benefit. Although
the benefit is always decoding at some lower SNR, this means different things
depending on the flash technology and the flash product specification. For in-
stance, higher endurance is needed in enterprise flash products than in consumer
products. The flash technology also matters such that the flash channel noise can

already be so low that the benefit from NB-LDPC is not so high, and vice versa.

Other use cases of the 13-ary scheme includes increasing the yield of the fabri-
cation process. Some QLC flash wafer may not qualify due to low reliability, i.e.
high BER, but this reliability can sufficiently increase to pass the qualification if the
wafer is used with the 13-ary scheme. In addition, a mix of 13-ary and 16-ary flash
could be used in a single SSD, or 16-ary flash can be turned into 13-ary after being
exposed to a certain number of P/E cycles to restore reliability. The complexity of

implementing these different use cases is outside the scope of this work.

Note The binary and non-binary codes are constructed the same way using the
same CPEG algorithm. This is a measure of fairness in the experiment to compare
the benefit of decoding over higher orders specifically, and not other factors in the

LDPC code structures.

Now we add another result of hard information decoding of the 16-ary scheme
with the more sophisticated model introduced in section 3.3.4. The result is shown

in Figure 3-14 below.

The noise standard deviation of the sophisticated model ¢ is calculated as:

1.505, + 140 +1.205
7= 16

The average standard deviation of all the symbols. The two curves of the simple

and sophisticated channel models in the 16-ary scheme are almost the same. We

62

Decoding Failure Rate

——13-ary/NB-LDPC/Hard Info
——13-ary/NB-LDPC/Soft Info

16-ary/Binary LDPC/Hard Info/Simple Model
——16-ary/Binary LDPC/Hard Info/Sophisticated Model

34 345
SNR (dB)

Figure 3-14: Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note
the results from the simple and sophisticated channel models in the 16-ary scheme
are almost the same. We believe the slight discrepancy comes from defining the
noise of a channel that adds Gaussian noise with different variance to different
symbols.

believe the slight discrepancy is due to the definition of the noise standard devia-
tion of the sophisticated model. The equivalent noise of a multi-variance channel
like this could be different from the average above although the average gives a

very close result.

3.6 Conclusion

We compared two schemes of storing information in QLC flash memory: One
stores 4 bits/cell occupying the full QLC capacity with 16 levels of charge; and
the other stores around 3.7004 bits/cell using 13 charge levels per cell. The non-
binary scheme also has a modulation overhead, for which we presented a modu-
lation code that makes this overhead very small, storing 3.7 bit/cell with a 0.0004
bits/cell loss only.

The coderate of the binary LDPC in the 16-ary scheme and that of the NB-LDPC

in the 13-ary scheme were equalized to compare the error correction power of the

63

two LDPC codes. In addition, the modulation coderate of the 13-ary scheme is
designed to be very close to 1 (0.997), so that the entire 13-ary scheme has a very
close coderate to the 16-ary scheme, and the two schemes can be compared using
the same codeword size.

Although the 13-ary scheme results in lower cell capacity, it increases the cell
endurance and reliability. In this work, the 13-ary scheme was designed by remov-
ing the first two Sp and S; and the last S;5 symbols from the 16-ary scheme 3.3. We
assume we can move the means of the 13-ary distributions freely in the voltage
space. Therefore, we can expand the 13-ary distributions over the entire space to
boost the SNR of the flash cell. Different other choices of symbols removal can be
made, and these choices can be better than ours, especially if the system hardware
restricts the movement of the distributions or changes the noise characteristics of

the distributions depending on their means.

64

Bibliography

[1]

2]

[3]
[4]

[5]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

Anton Shilov. Sandisk, toshiba begin to purchase equipment to make bics 3d
nand, 2015.

Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Threshold voltage distri-
bution in mlc nand flash memory: Characterization, analysis, and modeling.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013,
pages 1285-1290. IEEE, 2013.

Simon Aughton. Dell gets flash with ssd option for laptops, 2007.

Sun Microsystems. Solaris zfs enables hybrid storage pools-shatters economic
and performance barriers, 2008.

Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti. In-
troduction to flash memory. Proceedings of the IEEE, 91(4):489-502, 2003.

Zsolt Kerekes. Are mlc ssds ever safe in enterprise apps?, 2008.

H Tanaka, M Kido, K Yahashi, M Oomura, R Katsumata, M Kito, Y Fukuzumi,
M Sato, Y Nagata, Y Matsuoka, et al. Bit cost scalable technology with punch

and plug process for ultra high density flash memory. In VLSI Technology,
2007 IEEE Symposium on, pages 14-15. IEEE, 2007.

Ya-Chin King, Tsu-Jae King, and Chenming Hu. Charge-trap memory device
fabricated by oxidation of si/sub 1-x/ge/sub x. IEEE Transactions on Electron
Devices, 48(4):696-700, 2001.

Hao Yu. A glivenko-cantelli lemma and weak convergence for empirical pro-
cesses of associated sequences. Probability theory and related fields, 95(3):357—
370, 1993.

Shu Lin and Daniel] Costello. Error control coding. Pearson Education India,
2004.

Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge
university press, 2008.

Robert Gallager. Low-density parity-check codes. IRE Transactions on informa-
tion theory, 8(1):21-28, 1962.

65

[13] Achilleas Anastasopoulos. A comparison between the sum-product and the
min-sum iterative detection algorithms based on density evolution. In Global
Telecommunications Conference, 2001. GLOBECOM'01. IEEE, volume 2, pages
1021-1025. IEEE, 2001.

[14] Joachim Hagenauer, Elke Offer, and Lutz Papke. Iterative decoding of bi-
nary block and convolutional codes. IEEE Transactions on information theory,
42(2):429-445, 1996.

[15] Henk Wymeersch, Heidi Steendam, and Marc Moeneclaey. Log-domain de-
coding of 1dpc codes over gf (q). In Communications, 2004 IEEE International
Conference on, volume 2, pages 772-776. IEEE, 2004.

[16] Guiqgiang Dong, Ningde Xie, and Tong Zhang. On the use of soft-decision
error-correction codes in nand flash memory. IEEE Transactions on Circuits and
Systems I: Regular Papers, 58(2):429-439, 2011.

[17] Jeremy Thorpe. Low-density parity-check (ldpc) codes constructed from pro-
tographs. IPN progress report, 42(154):42-154, 2003.

[18] Zhongfeng Wang and Zhiqgiang Cui. Low-complexity high-speed decoder
design for quasi-cyclic ldpc codes. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 15(1):104-114, 2007.

[19] Madiagne Diouf, David Declercq, Marc Fossorier, Samuel Ouya, and Bane
Vasi¢. Improved peg construction of large girth qc-ldpc codes. In Turbo Codes
and Iterative Information Processing (ISTC), 2016 9th International Symposium on,
pages 146-150. IEEE, 2016.

[20] Marc PC Fossorier. Quasicyclic low-density parity-check codes from circu-
lant permutation matrices. IEEE Transactions on Information Theory, 50(8):1788—
1793, 2004.

[21] Yige Wang, Jonathan S Yedidia, and Stark C Draper. Construction of high-
girth qc-1dpc codes. In Turbo Codes and Related Topics, 2008 5th International
Symposium on, pages 180-185. IEEE, 2008.

[22] Xiao-Yu Hu, Evangelos Eleftheriou, and Dieter-Michael Arnold. Regular and
irregular progressive edge-growth tanner graphs. IEEE Transactions on Infor-
mation Theory, 51(1):386-398, 2005.

[23] Zongwang Li and BVK Vijaya Kumar. A class of good quasi-cyclic low-
density parity check codes based on progressive edge growth graph. In Sig-
nals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilo-
mar Conference on, volume 2, pages 1990-1994. IEEE, 2004.

[24] Matthew C Davey and David MacKay. Low-density parity check codes over
gf (q). IEEE Communications Letters, 2(6):165-167, 1998.

66

[25] David Declercq and Marc Fossorier. Decoding algorithms for nonbinary ldpc
codes over gf (q). IEEE Transactions on Communications, 55(4):633-643, 2007.

[26] Leo Bluestein. A linear filtering approach to the computation of discrete
fourier transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451—
455, 1970.

[27] Charles M Rader. Discrete fourier transforms when the number of data sam-
ples is prime. Proceedings of the IEEE, 56(6):1107-1108, 1968.

[28] Giuseppe Caire, Giorgio Taricco, and Ezio Biglieri. Bit-interleaved coded
modulation. IEEE transactions on information theory, 44(3):927-946, 1998.

67

