
Prime-Sized Multilevel Flash Memory with
Non-Binary LDPC

by

Mohammed Al Ai Baky
Submitted to the Department of Electrical Engineering and

Computer Science
in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

April 2018

c○ Massachusetts Institute of Technology 2018. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

April 10, 2018

Certified by .
Dr. James Fitzpatrick

Engineering Fellow at Western Digital Corporation
Thesis Supervisor

April 10, 2018

Certified by .
Yury Polyanskiy

Associate Professor
Thesis Supervisor

April 10, 2018

Accepted by .
Christopher Terman

Chairman, Masters of Engineering Thesis Committee

2

Prime-Sized Multilevel Flash Memory with Non-Binary LDPC

by

Mohammed Al Ai Baky

Submitted to the Department of Electrical Engineering and Computer Science
on April 10, 2018, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

Flash memory companies are increasing the number of bits per cell to obtain higher
information capacity per cell, starting from 1 bit/cell and going to 4 bits/cell re-
cently. This scaling is enabled by the advancements in flash semiconductor tech-
nology, specifically the Bit Cost Scalable (BiCS) technology. However, capacity per
cell scaling comes with performance, reliability, and endurance challenges. The
industry has only used integer number of bits per cell, which makes the tradeoff
between the capacity and the other system features less flexible than using frac-
tional bits. This project explores programming 13 levels of charge (3.7 bits) into
a QLC flash cell that normally carries 16 levels of charge (4 bits). We evaluate the
13-ary scheme against the 16-ary one and we show that the 13-ary has the same
reliability at a lower SNR as the 16-ary, or the 13-ary has higher reliability than
the 16-ary at the same SNR. We design binary and non-binary Quasi-Cyclic LDPC
codes and implement Belief Propagation decoders for them.

Thesis Supervisor: Dr. James Fitzpatrick
Title: Engineering Fellow at Western Digital Corporation

Thesis Supervisor: Yury Polyanskiy
Title: Associate Professor

3

4

Acknowledgments

I’d like to extend my deep appreciation to everyone that helped me with this work.

First, I’d like to thank Western Digital Corporation and the MIT VI-A program for

offering the opportunity of conducting this work. I’m deeply grateful to Seishi

Takamura, of Nippon Telegraph and Telephone Corporation, for his help with fast

implementations of Non-Binary LDPC decoders. I’m also grateful to Dariush Di-

vsalar, of NASA JPL, for his LDPC code design suggestions. I am indebted to Idan

Alrod who made his computational resources available to me. Special thanks to

Ahmed Hareedy, from the Laboratory for Robust Information Systems at UCLA,

for his insights on the cutting edge research in the LDPC codes area.

I am equally indebted to the experts at Western Digital, specifically Rick Gal-

braith for openly sharing all his research work with me. I also appreciate Majid

Nemati’s remarks on LDPC for flash memory. Thank you to these people at MIT

and Western Digital: Bruce Kaufman, Dudy Avraham, Henry Yip, John Jackson,

Niranjay Ravindran, Jonas Goode, Manish Madhukar, Mostafa El Gamal, Nima

Mokhlesi, Ravi Kumar, Steven Aronson, Angela Liu, Nancy Semanko, Tomas Pala-

cios, and Kathleen Sullivan.

Finally, I’d like to express my sincere gratitude to my advisors: Jim Fitzpatrick

and Yury Polyanskiy for connecting me to world class experts in this research area,

and helping me finish this project in a tight schedule.

5

6

Contents

1 Flash Memory Systems Introduction 13

1.1 Flash Memory Physics and Technologies 13

1.1.1 Bit Cost Scalable (BiCS) Technology 15

1.2 Channel Model and Channel Detector 17

1.2.1 Channel Detector . 19

2 Low-Density Parity-Check (LDPC) Codes 23

2.1 Error Correction Codes and Linear Block Codes 23

2.1.1 Minimum Distance . 26

2.1.2 Tanner Graph Representation 27

2.2 Decoding LDPC code . 28

2.2.1 Belief Propagation and the Sum-Product Algorithm 29

2.3 Quasi-Cyclic LDPC Codes QC-LDPC 34

2.3.1 Quasi-Cyclic Code Construction 35

2.3.2 Circulant Progressive Edge Growth (CPEG) 37

2.4 Non-Binary LDPC (NB-LDPC) . 40

2.4.1 Belief Propagation with NB-LDPC 40

3 Experiment and Evaluation 47

3.1 Non-Binary Scheme . 47

3.2 Modulation Codes and Programming 13-ary Symbols 50

3.3 Channel Model . 51

3.3.1 State Transition Matrix (STM) 52

7

3.3.2 Channel Capacity . 54

3.3.3 Signal-to-Noise Ratio (SNR) Definition 55

3.3.4 A More Sophisticated Channel Model 55

3.3.5 Soft Information . 56

3.4 Experiment . 58

3.5 Results . 60

3.6 Conclusion . 63

8

List of Figures

1-1 Floating-gate transistor. 14

1-2 NAND flash architecture. 14

1-3 Simplified model of charge distributions in flash memory. (a) 16

levels of charge in QLC. (b) 8 levels of charge in TLC. (c) 4 levels

of charge in MLC. (d) 2 levels of charge in SLC. Note that each dis-

tribution is Gaussian plotted on a log scale. Note S0 and S15 have

higher variance than the other distributions. Note also the x-axis is

voltage, called the Threshold Voltage (Vt), and it is proportional to the

stored charge. 16

1-4 Bit Cost Scalable (BiCS) memory [1]. 17

1-5 The distributions of NAND voltage levels collected from real hard-

ware [2]. The figure shows the distributions after different P/E cycle

points. Note the variance of a distribution increases with the num-

ber of P/E cycles. Note only three levels are shown in this figure. . . 18

1-6 This figure shows three symbols of QLC flash. The Gray encoding

guarantees one bit flip between the adjacent symbols to minimize

the BER when a symbol is misread. 18

1-7 Program Disturb. (a) Before Program Disturb. (b) After Program

Disturb. Program Disturb increases the voltage of the neighboring

programmed cells. 19

1-8 Data Retention. (a,b) Before Data Retention. (c,d) After Data Reten-

tion. Note the dashed line represents the point in the voltage space

that the distribution move towards with data retention. 20

9

1-9 The channel detector decides the symbol transmitted is 1001 with

high probability if the cell voltage is detected between the red and

blue thresholds. If the cell is detected in the symbols to the right

or left from the middle one, but 1001 was actually transmitted, then

there will be a single bit flip only due to the Gray coding. 20

2-1 (a) The Tanner graph of our example code. (b) The parity check

matrix of our example code . 27

2-2 BSC(p) Binary Symmetric Channel with parameter (p). 28

2-3 Variable node processing. The message qt
ij2

is the variable node vi

message to check node cj2 at iteration t. qt
ij2

depends on the mes-

sages from the channel and from the neighboring check nodes to vi

excluding the check node transmitted to cj2 at the previous iteration

t − 1. Note Vi = {j1, j2, j3}. 31

2-4 Check node processing. The message rt
ij2

is the check node ci mes-

sage to variable node vj2 at iteration t. rt
ij2

depends on the mes-

sages from the neighboring variable nodes to ci excluding the vari-

able node transmitted to vj2 at the previous iteration t − 1. Note

Ci = {j1, j2, j3}. 32

2-5 Quasi-cyclic matrix of size 16 × 32 with circulant size 8. Note the

all-zero circulants and cyclically permuted identity matrices. 34

2-6 Protograph lifting. Starting from the protograph on the left, which

is copied, then the edges are permuted. This graph has Z = 3 and

6×9 H-matrix. 36

2-7 This figure shows the tree expanded from vi to depth l. The un-

shaded squares represent the check nodes in the LDPC graph that

are not within the l-deep tree extended from vi. 38

10

2-8 Variable node processing. The message qt
ij2

is the variable node vi

message to the permutation node Hj2i at iteration t. The permutation

node permutes the incoming message from the variable node and

sends the resulting message qpt
ij2

to check node cj2 . It depends on the

messages from the channel and from the neighboring check nodes to

vi except the check node transmitted to cj2 at the previous iteration

t − 1. Note Vi = {j1, j2, j3}. 42

2-9 Check node processing. The message rt
ij2

is the check node ci mes-

sage to the permutation node Hij2 at iteration t. The permutation

node permutes the incoming message from the check node and sends

the resulting message rpt
ij2

to variable node vj2 . It depends on the

messages from the neighboring variable nodes to ci except the vari-

able node transmitted to vj2 at the previous iteration t − 1. Note

Ci = {j1, j2, j3}. 43

3-1 The first architecture. Non-Binary scheme with binary LDPC. 48

3-2 The second architecture. Non-Binary scheme with non-binary LDPC. 49

3-3 Basic binary scheme. It uses binary LDPC. 50

3-4 The coderate of modulation at different values of m, the correspond-

ing value of n in each case is maximized such that coderate ≤ 1. . . . 52

3-5 Flash channel model with 16-ary signal constellation. Note S0 mean

is fixed at 0 and S15 mean is fixed at 1. Note the symbol distributions

are not equally separated, but the difference in separation is very

small that it is hard to see on the figure. 53

3-6 Flash channel model with 13-ary signal constellation. Note S2 mean

is fixed at 2
15 = 0.1333 and S14 mean is fixed at 14

15 = 0.9333. Note the

symbol distributions are not equally separated, but the difference in

separation is very small that it is hard to see on the figure. 53

3-7 Signal-to-Noise Ration (SNR) calculation. 56

11

3-8 Flash channel model with 16-ary signal constellation. Note S0 and

S15 have higher variance. The separation between these two sym-

bols and the other symbols is relatively high to balance out the raw

error rate and maximize the channel capacity. The dots represent

the rest of the 16 symbols with variance σ. Note the labels on the

figure are twice the variance. 56

3-9 Single read. The cell is detected in S6 region. The channel detector

gives high belief the symbol transmitted is S6. Note the belief is

non-zero in the other symbols as their distributions overlap in the

detection area. The detector gives low beliefs in S5 and S7, and much

lower beliefs in the rest. 57

3-10 Three reads. The cell is detected in the wide region of S6. The

channel detector gives high belief the symbol transmitted is S6, and

lower beliefs in the rest. 57

3-11 Three reads. The cell is detected in a narrow S6 region close to S7

region. The channel detector gives comparable beliefs in the symbol

transmitted being S6 and S7, and lower beliefs in the rest. 58

3-12 Symbol-based bit LLR assignment. Bits that change according to

the Gray code if the adjacent symbol is transmitted are given lower

confidence than the other bits . 60

3-13 Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note

the soft information decoding in the 13-ary scheme is done with

three reads. 61

3-14 Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note

the results from the simple and sophisticated channel models in the

16-ary scheme are almost the same. We believe the slight discrep-

ancy comes from defining the noise of a channel that adds Gaussian

noise with different variance to different symbols. 63

12

Chapter 1

Flash Memory Systems Introduction

1.1 Flash Memory Physics and Technologies

Flash memory was invented by Fujio Masuoka of Toshiba in the early 1980s. In-

tel and Toshiba started to commercialize the new technology in the late 1980s.

Flash memory penetration in consumer and enterprise products has been increas-

ing since then. All memory cards used in digital camera and mobile phones are

flash-based storage devices, and the same is true for USB flash drives. In addition,

Solid-state Drives (SSDs) are flash-based storage devices similar to Hard-disk Drives

(HDDs), but have a better performance than HDDs. In the late 2000s, SSDs started

to replace HDDs in personal laptops for their desired features [3]. SSDs are also

used in enterprise storage, such as data centers [4].

Historically, the basic unit, the cell, of flash memory consists of the floating-gate

transistor that stores electrical charge (shown in Figure 1-1). The information is en-

coded in the amount (level) of this charge. In most of the flash products, these

transistors are connected in the NAND configuration that resembles the NAND

gate architecture (shown in Figure 1-2). These cells are laid in two-dimensional

configuration and packaged into integrated chips. In fact, the term NAND has be-

come interchangeable with flash, and we use it interchangeably in this monograph.

The floating-gate of the transistor is isolated and surrounded by an insulator,

so that it traps the charge. A high voltage is applied to pass a charge across the

13

Figure 1-1: Floating-gate transistor.

Figure 1-2: NAND flash architecture.

insulator into the gate, in a process called Programming. The floating-gate tran-

sistor is a noisy medium, resulting in a difference between the amount of charge

programmed (written) to the transistor and the amount charge sensed (read). In

programming, the exact charge passing into the gate is not deterministic, as the

crossing through insulator is a complex statistical process [5].

The medium imposes challenges on the flash technology. There is a reliabil-

ity issue preventing the stored charge levels from having deterministic values, in-

stead they are approximated by a Gaussian distributions (shown in Figure 1-3).

Endurance is another problem in which the gate insulator degrades gradually due

to the high programming voltage applied across it. Endurance is measured in the

number of Program/Erase (P/E) cycles the flash can sustain meeting a certain relia-

bility condition. These challenges are tackled with signal processing and coding.

We focus on the latter in this work, refer to Chapter 2 and Section 3.2. In addition,

flash silicon fabrication processes can be improved to mitigate these challenges, as

14

in the technology in Section 1.1.1.

At the beginning of the flash technologies, all the products used the Single-level

Cell (SLC), in which a cell carries a single bit only represented by two levels. To

increase the capacity of the cell, MLC consumer flash products with 4 levels fol-

lowed in the late 90s (Figure 1-3), and were deployed in enterprise business around

a decade after[6]. Adding more charge levels is very difficult because it decreases

the reliability, endurance, and performance of the cell and the cell array. For the

performance, the cells need to be programmed more slowly and precisely to result

in narrower charge distributions in the same voltage space. The read performance

also goes down as there are more charge levels to be read. The reliability, inversely

proportional to the Bit Error Rate (BER), decreases as the number of levels increases

because the overlap between the distributions increases. For a similar reason, the

endurance in terms of program/erase (P/E) cycles decreases with higher number

of levels as well.

1.1.1 Bit Cost Scalable (BiCS) Technology

A further increase in the capacity density (bits/mm2) has been developed to re-

duce the bit cost and meet the market demands for flash storage. Traditionally, the

number of bits/mm2 has increased through reductions in the feature size, but as

the number of electrons in a cell has become very small, new technologies were

necessary to scale up the capacity density of the NAND.

In 2007, Toshiba announced the BiCS technology, in which the memory cell

arrays are fabricated in three dimensions (3D) with 64 and 96 layers of NAND

cells, to scale up the capacity density [7], as shown in Figure 1-4. BiCS replaces the

floating gate in the basic memory unit with a charge trapping layer [8]. For this

reason and the fact that the spaces between the cells in BiCS are wider, the inter-

cell coupling is lower in BiCS than in 2D NAND, and the inter-bitline coupling is

significantly lower than inter-wordline coupling in BiCS. The coupling reduction

results in increased reliability and endurance for BiCS, enabling BiCS cells to carry

15

Figure 1-3: Simplified model of charge distributions in flash memory. (a) 16 levels
of charge in QLC. (b) 8 levels of charge in TLC. (c) 4 levels of charge in MLC. (d)
2 levels of charge in SLC. Note that each distribution is Gaussian plotted on a log
scale. Note S0 and S15 have higher variance than the other distributions. Note also
the x-axis is voltage, called the Threshold Voltage (Vt), and it is proportional to the
stored charge.

16

3 bits in TLC cells and 4 bits in QLC cells. Therefore, BiCS improves the bits/mm2

by carrying more information per cell and placing more cells per unit area.

Since the flash channel always has some raw BER, an Error Correction Code

(ECC) layer needs to be added on top of the NAND to maintain the integrity of

the data stored in flash memory (Section 2).

Figure 1-4: Bit Cost Scalable (BiCS) memory [1].

1.2 Channel Model and Channel Detector

The information stored in flash is encoded in analog voltage levels, called Cell Volt-

ages, proportional to the charge carried by the flash cells. The observed cell voltage

levels are shown in Figure 1-5. The flash cell introduces noise approximated as

Additive White Gaussian Noise (AWGN).

17

Figure 1-5: The distributions of NAND voltage levels collected from real hardware
[2]. The figure shows the distributions after different P/E cycle points. Note the
variance of a distribution increases with the number of P/E cycles. Note only three
levels are shown in this figure.

The signal constellation used with the flash channel is Pulse-Amplitude Mod-

ulation (PAM). The AWGN noise associated with different symbols from the sig-

nal constellation has different variance, with the first and last symbols having the

most noticeable difference (Figure 1-3). In QLC, every 4-bit string of user data in

encoded into one of the 16-ary symbols stored in the flash channel. Gray Code is

used for this encoding to minimize raw BER of the flash, as detailed in 1.2.1.

Figure 1-6: This figure shows three symbols of QLC flash. The Gray encoding
guarantees one bit flip between the adjacent symbols to minimize the BER when a
symbol is misread.

The means of the symbol distributions are not static but they move due to dif-

ferent effects during the lifetime of the NAND. One effect is the Program Disturb

(PD), in which programming cells will disturb the already programmed neigh-

boring cells. The program disturb increases the variance of the levels and move

18

them to the right in the voltage space, as shown in Figure 1-7. Another effect is

called Data Retention (DR), which is a time effect where the variance of the levels

increases and the means move towards some point near the zero voltage. This

means the levels to the right of the point moves to the left and vice versa, as shown

in Figure 1-8. The characterization of these effects depends on the NAND silicon

and the fabrication process.

Figure 1-7: Program Disturb. (a) Before Program Disturb. (b) After Program Dis-
turb. Program Disturb increases the voltage of the neighboring programmed cells.

1.2.1 Channel Detector

The information is read from the flash in discrete voltage levels, Read Thresholds.

We set a number of these threshold voltages at the channel detector, and the de-

tector returns the information if the flash cell voltage level is above or below these

thresholds, as shown in Figure 1-9. This means the flash channel does not only de-

pend on the flash physical characteristics, but also the place of the read thresholds.

The positions of the thresholds are optimized to maximize the channel capacity

19

Figure 1-8: Data Retention. (a,b) Before Data Retention. (c,d) After Data Retention.
Note the dashed line represents the point in the voltage space that the distribution
move towards with data retention.

(section 3.3.2). When a certain symbol is written to the cell, but misread as the

adjacent or second adjacent symbol, the number of user data bit flips is minimized

by the Gray encoding, as shown in Figure 1-9.

Figure 1-9: The channel detector decides the symbol transmitted is 1001 with high
probability if the cell voltage is detected between the red and blue thresholds. If
the cell is detected in the symbols to the right or left from the middle one, but 1001
was actually transmitted, then there will be a single bit flip only due to the Gray
coding.

The Gaussian behavior of the flash memory is characterized by writing random

data symbols and observing the analog voltage levels of the cells. The voltages are

collected in a histogram that will converge to the channel probability distribution

when the sample size is large and random (Glivenko-Cantelli lemma [9]). The

probability model P(yi received|xi transmitted) is constructed based on this data

20

and the set read thresholds. P(xi transmitted|yi received) is also computed from

the former model using Bayes’ rule. The latter probability is the output of the

channel detector and the input to the LDPC decoder 2.2.1. To clarify, observing

the cell voltages is different from reading the cell with the read thresholds. The

former is a reading mode over a continuous range of voltage and the latter results

in discrete values depending on the read thresholds.

The channel detector of the cell passes a q-vector (P(xi = 0), P(xi = 1), ..., P(xi =

q − 1) transmitted|yi received), where q is the size of the symbol alphabet. To get

more information from the channel, another read of the cell is issued but with

slightly different threshold. This increases the resolution of detection, and allows

the detector to give lower probabilities to the points detected close to the threshold

between two distributions (Figure 3-11), as explained in section 3.3.5.

21

22

Chapter 2

Low-Density Parity-Check (LDPC)

Codes

2.1 Error Correction Codes and Linear Block Codes

Information is encoded in bits and transmitted over a channel to a receiver. The

problem is some bits could be modified by the channel. To maintain the integrity of

the information, the data sent should have the information bits plus some redun-

dant bits computed from the information bits. The purpose is that the redundancy

helps recovering the bits modified by the channel.

The scheme of encoding these redundant bits is called Error Correction Codes

(ECC). There are different categories of ECC, and the one we are concerned with

in this work is Linear Block Codes. They are defined over Galois Fields (finite fields)

which are closed under addition and multiplication. GF(q) denotes a Galois Field

of order q, which is the size of its elements set. A Galois field exists if and only if

it has an order that is prime number q = p, or a power of a prime number q = pn,

where n ∈ Z+

In this chapter, we explain binary (GF(2)) ECC concepts first, including LDPC,

in Sections (2.1 - 2.3), then we introduce non-binary (GF(q)) LDPC in the last sec-

tion (Section 2.4).

23

In binary linear block codes, a group of size k bits of information, called informa-

tion bits, is encoded into a block, hence the name, of size n bits of data. This block

is called a codeword. The extra m = n − k bits are called parity bits. Each parity bit

is computed by XORing, i.e. addition over a binary field, a number of information

bits. The coderate (r) is defined as (r = k
n).

For example, consider a codeword of length n = 7, and k = 4, and let pi denotes

the i-th parity bit. In this example, there are 3 parity bits, and let the example code

constrain them this way:

p0 = x0 + x1 + x3

p1 = x0 + x2 + x3

p2 = x0 + x1 + x2

Note the addition is over GF(2). So we take 4 information bits and encode them

into a codeword of 7 bits. If we start with 1101, then 1101100 is the codeword that

satisfies the code in our example.

The ECC is called Systematic Code when the codeword consists of information

bits and appended to them are the parity bits. The ECC codes do not have to be

systematic, and the parity bits could be placed non-contiguously anywhere in the

codeword. For implementation simplicity, systematic codes are the most popular

in practical systems, including flash storage systems [10].

A codeword that belongs to a code must satisfy all the parity check equations

of that code. We write the parity equations in a form where one hand side is zero

and all the other non-zero terms are on the other side. This form is more suitable

for linear algebra and matrix operations. In this form, the parity check equations

of our example will be:

p0 + x0 + x1 + x3 = 0

p1 + x0 + x2 + x3 = 0

24

p2 + x0 + x1 + x2 = 0

The magnitude on the left-hand-side of these equations is called, the syndrome,

and the parity-check is satisfied if the syndrome equals to zero. We represent a

codeword by a row vector x of size 1 × n. The linear block code is defined by a

Parity Check Matrix (H) of size m × n where each row represents a parity check

equation. Hij = 1 if the j-th bit in the codeword is present in the i-th parity check

equation, and Hij = 0 otherwise. The coderate of this matrix is r = n−m
n . The code

has (k = n − m) degrees of freedom, so it has 2nr codewords belong to it. The

H-matrix of our example is:

H =


1 1 0 1 1 0 0

1 0 1 1 0 1 0

1 1 1 0 0 0 1


Let C be a code with HC, and Let x be a codeword. x is a valid codeword iff:

HCxT = 0 (2.1)

Assume x ∈ C and y ∈ C. Then:

HCxT = 0

HCyT = 0
⇒ HC(xT + yT) = 0

Therefore, xT + yT is a valid codeword, and the all-zero codeword 0 is also a

valid codeword. This means every linear combination of valid codewords in a

code is also a valid codeword in that code, the reason why these codes are called

linear.

The main benefit of Linear Block Codes is their efficient implementation in

practical systems, as they take less memory to store than other codes [11]. A gen-

eral code with length n and coderate r takes n2nr bits of memory. However, with

the linear structure, the code could be defined by a matrix H taking nm bits only.

We use a special and widely popular type of Linear Block Codes in this work.

25

These are called Low-Density Parity-Check (LDPC) codes. There are only few 1’s in

each row and each column of the code parity check matrix (H). In other words,

the matrix is sparse or low-density. The LDPC codes reduces the decoding com-

plexity [12], and performs better with the belief propagation decoding algorithm

as explained in Section 2.2.1. LDPC codes approaches the channel capacity asymp-

totically [12]. Refer to Section 3.3.2 for the channel capacity.

2.1.1 Minimum Distance

The Hamming distance D(x, y) between two codewords x and y is the number of

bits with different values between x and y. The important quantity is the Minimum

Distance of a certain code (d), which is the lowest Hamming distance between two

codewords over the entire range of codewords of that code. The larger the mini-

mum distance, the more bits in a codeword could be flipped in transmission and

corrected by the code at the receiver, as the transmitted codeword will converge to

the closest valid codeword. If the minimum distance is small, the received code-

word could decode to a different codeword from the one transmitted. We define

the weight w(x) of a codeword x as the number of 1′s in x. The minimal weight

of a code is the weight of the codeword of lowest non-zero weight. The minimum

distance of a linear code is the minimal weight of the code. To see this, let x and y

be two codewords in a linear code C and let the Hamming distance d(x, y) between

them be the minimum distance of the code. Then:

d(x, y) = w(x − y) (definition of Hamming distance)

But (x − y) ∈ C, since C is linear, and w(x − y) = d(x − y, 0). Therefore:

d(x, y) = d(x − y, 0)

26

2.1.2 Tanner Graph Representation

A linear block code with HC of size m× n is represented by a bipartite graph, called

the Tanner Graph, with n Variable Nodes and m Check Nodes. Each variable node

corresponds to a single bit in the code, and each check node corresponds to a parity

check constraint and is connected to the variable nodes of the that parity check.

Therefore, HC is the Adjacency Matrix of the graph. The graph representation is

useful to study linear block codes and their properties under belief propagation

decoding, as we will see in Section 2.2.1. The Tanner graph of our example code in

Section 2.1 is shown in Figure 2-1(b).

(a)

(b)

Figure 2-1: (a) The Tanner graph of our example code. (b) The parity check matrix
of our example code

The degree of a node is defined as the number of edges connected to the node.

In a certain code, if all check nodes have the same degree, and all variable nodes

have the same degree, then the code is called Regular. Otherwise, it is called Irreg-

ular. For a regular code, we denote by dc its check degree, also called row weight,

27

and by dv its variable degree, also called column weight. Irregular LDPC codes

have higher error correction power than regular ones. However, this difference

becomes insignificant in high coderate codes. In this work, we use a regular LDPC

with coderate r = 0.9.

2.2 Decoding LDPC code

We explain the decoding problem on data transmitted over a Binary Symmetric

Channel (BSC). This makes the decoding problem simpler to explain than using

other channels, and the solution generalizes to other channel models. We denote

by BSC(p) a binary symmetric channel of parameter p ≤ 0.5. This parameter is the

bit flip probability of transmission across the channel. Figure 2-2 shows a diagram

of the BSC channel.

Figure 2-2: BSC(p) Binary Symmetric Channel with parameter (p).

Let us go back to the decoding problem, let the codeword x of block length n

be transmitted over a BSC(p), and let y be the received codeword. The decoding

question is: what is x given y is observed? The natural answer is the most likely

x′ given y and the channel model. Mathematically speaking, this is the codeword

x′ = xMAP that maximizes the Maximum A Posteriori (MAP) distribution of all

codewords x′ ∈ C.

28

xMAP = argmax
x′∈C

P(x′|y)

= argmax
x′∈C

P(y|x′)P(x′)
P(y)

(2.2)

And:

P(y|x′) = pd(y,x′)(1 − p)n−d(y,x′) (2.3)

We know that P(x′) is a constant when the codeword transmitted is randomly

selected (i.e. uniform distribution), and P(y) is a constant for a certain y. There-

fore, the decoding problem reduces to selecting xMAP = x′ that maximizes P(y|x′),

which is the one closest in distance to y. Note this computation requires iterating

over all the codewords ∈ C, which is slow and complex to implement in a prac-

tical system. In Section 2.2.1, we explain belief propagation decoding algorithms

that are sub-optimal to MAP decoding, but have lower complexity, making them

practical for implementation.

Note that xMAP ̸= x if y is closer in distance to another codeword ∈ C. In this

case, this is called Undetected Error. In practical systems, the codeword contains

Cyclic Redundancy Check (CRC) which is a group of bits computed as a hash func-

tion of the rest of the codeword. After the codeword is decoded, the hash function

is computed for the decoded codeword to verify if it the transmitted one or not.

2.2.1 Belief Propagation and the Sum-Product Algorithm

Belief propagation reduces the complexity of MAP computation over a high-dimensional

space by performing local computations at the check and variable nodes. Each

node computes probability messages and exchanges them with the neighboring

nodes. These messages are used to compute the bits of the decoded codeword at

the variable nodes [13].

The probability message considered in this work, and most widely used in re-

search and practice, is Log-Likelihood Ratio (LLR), defined as:

29

LLR(x) = ln
P(x = 0)
P(x = 1)

Where x ∈ {0, 1} is a random variable. ln denote the natural logarithm.

Before describing the steps of the belief propagation algorithm. We introduce

some notations. Let qi be the belief of variable node vi, qij be the message from

variable node vi to check node cj and rij be the message from check node ci to

variable node vj. A superscript symbol t on the message quantities, qt
ij, rt

ij, and qt
i ,

denotes the message at the t-th iteration. Let Vi denotes the set of indices of check

neighbors to variable node vi, and Ci the set of indices of variable neighbors to

check node ci. Let also chi denotes the i-th channel node that carries the received

bit LLR(xi|yi) (Figure 2-3 and 2-4).

Consider an m × n code C. Let the n-sized data string x be transmitted over

some channel, and received as y. The m-sized syndrome vector s of x is computed

based on the code and given as an input to the belief propagation algorithm. The

flow of the belief propagation algorithm to decode y is as follows:

1- Variable Node Message Initialization: Each variable node vi initializes its

outgoing messages q0
ij to its neighboring checks cj’s as:

q0
ij = LLR(xi|yi), ∀i ∈ {1, ..., n}, j ∈ Vi (2.4)

This is the channel message transmitted from chi to vi (Figure 2-3). Note that

P(xi|yi), thus LLR(xi|yi), is based on the channel model.

2- Variable Node Message Computation: Each variable node vi computes its

outgoing messages qij to its neighboring checks cj’s as:

qt
ij = LLR(xi|yi) + ∑

j′∈Vi/{j}
rt−1

j′i , ∀i ∈ {1, ..., n}, j ∈ Vi (2.5)

In other words, the variable node message depends on the messages it receives

from the channel and the neighboring check nodes except the one it is transmitting

30

to (Figure 2-3).

Figure 2-3: Variable node processing. The message qt
ij2

is the variable node vi mes-
sage to check node cj2 at iteration t. qt

ij2
depends on the messages from the channel

and from the neighboring check nodes to vi excluding the check node transmitted
to cj2 at the previous iteration t − 1. Note Vi = {j1, j2, j3}.

3- Check Node Message Computation: Each check node ci computes its out-

going messages rij to its neighboring variable nodes vj’s (Figure 2-4) as (see [14]

for derivation):

rt
ij = 2si ∏

j′∈Ci/{j}
tanh(

1
2

qt−1
j′i), ∀i ∈ {1, ..., m}, j ∈ Ci (2.6)

where:

si =

1 if ci syndrome is 0

−1 if ci syndrome is 1

This is the check node message biased depending on the syndrome. Note that

passing the syndrome vector is only possoible for code simulation. In a practi-

31

Figure 2-4: Check node processing. The message rt
ij2

is the check node ci message to
variable node vj2 at iteration t. rt

ij2
depends on the messages from the neighboring

variable nodes to ci excluding the variable node transmitted to vj2 at the previous
iteration t − 1. Note Ci = {j1, j2, j3}.

cal system, this vector cannot be reliably transmitted over the channel. Instead

the data string transmitted is constrained by the code into a codeword such that

the syndrome vector is the all-zero vector. At the decoder, all the check nodes

are biased to the zero syndrome. In simulation, we compute the syndrome of a

data string given the H-matrix rather than generate codewords. The latter requires

finding the generating matrix of H with matrix Gaussian elimination.

4- Variable Node Belief Computation and Bit Decision: Each variable node vi

computes its belief qi as:

qi = LLR(xi|yi) + ∑
j′∈Vi

rj′i, ∀i ∈ {1, ..., n}, j ∈ Vi (2.7)

x
′
i =

0 if qi > 0

1 if qi < 0

Where x
′
i is the i-th decoded bit.

Note that the exchanged messages are all in the log-domain described above.

32

Note also we decide the bit is zero when its associated belief is positive and vice

versa. This has to do with the way we defined the LLR. Using the LLR domain

results in simpler implementation that uses adders instead of multipliers if the

belief propagation was done in the probability domain. In addition, digital circuit

implementation uses fixed-point arithmetic where decoding in the LLR domain

results in better error correction power [15].

After step 4 is finished, the decoded codeword is usually checked if it is valid

Hx
′T = 0 in which case the algorithm terminates. Otherwise, another iteration

through steps 2-4 is performed. A maximum number of iterations is specified, after

which the decoding is stopped and failure to decode y is declared. Otherwise, if no

maximum number of iterations is specified, the algorithm could run forever. The

belief propagation algorithm described above is called the Sum-Product Algorithm

(SPA) [13], and it is the algorithm we use in our experiment 3. Variants of this algo-

rithm, such as min-sum, are used in research and industry. These variants explore

different tradeoffs, ranging between error correction performance, complexity, and

speed. In fact, the min-sum algorithm is the one most commonly implemented in

flash storage systems [16].

For the belief propagation algorithm described above to be equivalent to MAP-

decoding, it requires in every node computation, the neighboring messages events

are independent. After few decoding iterations, this is no longer the case, since

the LDPC graph always contains cycles [12]. The events at different nodes will be

correlated due to circulating messages between nodes via cycles and throughout

the decoding iterations. Therefore, the longer the shortest cycle, called the girth, of

a code is, the better it performs with belief propagation algorithms. Due to their

sparsity, deeper trees can be extended from the nodes of LDPC codes compared to

denser linear codes, where a tree is a graph structure with no cycles. This makes

LDPC perform better with belief propagation than the other linear codes [12].

33

2.3 Quasi-Cyclic LDPC Codes QC-LDPC

Quasi-Cyclic codes have a structure that enables decoding parallelism in digital

implementations. The parity check matrix H of a quasi-cyclic code consists of

smaller submatrices, called Circulants, as shown in Figure 2-5. A circulant could

be the all-zero matrix 0 or a cyclically permuted identity matrix [17]. A cyclically

permuted identity matrix Ik of size Z × Z is an identity matrix, but with every row

shifted to the right by k. In other words, if aij is an entry of Ik, then:

aij = 1 i f f j ≡ (i + k) mod Z, f or 0 ≤ i, j ≤ Z − 1

This is an example for I2 of size 7 × 7:

I2 =



0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0



Figure 2-5: Quasi-cyclic matrix of size 16 × 32 with circulant size 8. Note the all-
zero circulants and cyclically permuted identity matrices.

Note the identity matrix is a circulant matrix with zero-shift I = I0. For a quasi-

cyclic regular (dv,dc)-code with circulant size Z, the parity check matrix H is of size

34

m × n, where m = dvZ and n = dcZ,

H =


P0,0 P0,1 · · · P0,dc−1

P1,0 P1,1 · · · P1,dc−1
...

...

Pdv−1,0 Pdv−1,1 · · · Pdv−1,dc−1


Where Pi,j = Il is a Z × Z matrix, i ∈ {0, 1, ..., dv − 1}, j ∈ {0, 1, ..., dc − 1}, and

l ∈ {0, 1, ..., Z − 1}, or Pi,j = 0 (all-zero matrix). An example of 16× 32 quasi-cyclic

matrix of circulant size 8 is shown in Figure 2-5.

Quasi-cyclic codes take less memory to store by storing each circulant permu-

tation only. The messages computed at a certain step of belief propagation (Section

2.2.1) are stored in memory, then fetched in the next step that depends on the mes-

sages from the previous one. If the messages are stored in a single memory block,

then reading and writing messages will be a bottleneck because it happens sequen-

tially due to the address-based architecture of the memory. To enable parallelism,

QC-codes are used with multiple memory blocks corresponding to circulants. Each

node fetches the messages from multiple neighbors at the same time, as they are

stored in multiple blocks [18].

2.3.1 Quasi-Cyclic Code Construction

To construct QC-codes, we start from a small Tanner graph, called a Protograph

[17]. We lift this protograph into the desired QC-LDPC graph. The process of lift-

ing includes copying this protograph Z times (Figure 2-6), where Z is the Lifting

Factor, which is also the circulant size of the constructed code. Copying the pro-

tograph means copying the nodes and the edges. The copies of a single edge is

called an Edge Group. Next, we permute the edges in each edge group, resulting

in the cyclically permuted identity matrices introduced in Section 2.3. Figure 2-6

illustrates the lifting process.

As mentioned in Section 2.2.1, our goal of LDPC code design is to maximize

35

Figure 2-6: Protograph lifting. Starting from the protograph on the left, which is
copied, then the edges are permuted. This graph has Z = 3 and 6×9 H-matrix.

the girth of the code. We define the girth as the length of the shortest cycle in the

graph. A 2l-cycle in a graph could be associated with a sequence of circulants and

their permutation matrices, as:

Pi0,j0 , Pi0,j1 , Pi1,j1 , ..., Pil−1,jl−1 , Pil−1,j0 (2.8)

For 1 ≤ k ≤ l − 1, ik ̸= ik−1 and jk ̸= jk−1. Also, il−1 ̸= i0 and jl−1 ̸= j0. Other

than these conditions, the permutation matrices in the sequence could be repeated

more than once, as a cycle could traverse a circulant more than once. Let us use

φ(Pi,j) to denote the cyclic shift to the left associated with Pi,j.

A necessary and sufficient condition for the existence of a 2l-cycle [19] [20] [21]

is:

l−1

∑
k=0

(φ(Pik,jk)− φ(Pik+1,jk)) ≡ 0 mod Z (2.9)

Note Pil,jl = Pi0,j0 . Therefore, for an m × n graph with girth ≥ 2(l + 1), and

circulant size Z, we need:

l−1

∑
k=0

(φ(Pik,jk)− φ(Pik+1,jk)) ̸≡ 0 mod Z, ∀ 0 ≤ ik ≤
m
Z
− 1, 0 ≤ jk ≤

n
Z
− 1

(2.10)

The higher Z is, the easier it is to satisfy 2.10 for a given girth. Note it is very

computationally-intensive to iterate through all the circulants to make sure is 2.10

36

satisfied and find the minimum circulant size to achieve a certain girth. In the

next section, we introduce a practical method for constructing QC-codes with high

girth.

2.3.2 Circulant Progressive Edge Growth (CPEG)

As we saw in the previous section, it is computationally hard to choose the circu-

lant permutations to maximize the girth. Instead, we use another method based on

a greedy algorithm, called Circulant Progressive Edge Growth (CPEG). The method

is sub-optimal, but it is computationally practical [22].

Before introducing the algorithm, we introduce some notation. For an LDPC

code with matrix H, let Nl
vi

denotes the set of all the check nodes in the tree rooted

at variable node vi and extended to depth l. Its complementary set Nl
vi

is the set of

all the check nodes in the graph except Nl
vi

(Figure 2-7).

The input to the CPEG is the number of variable nodes t and check nodes r, a

degree profile (dv, dc) and lifting factor Z. You can think of this input as an r × t

protograph with degree profile (dv, dc), but without specified edges. The output is

a graph m × n, where m = Zr and n = Zt. CPEG chooses the edges in the lifted

m × n graph with the goal of large girth. The algorithm is as follows [23]:

1: for i = 0 : t − 1 do

2: for j = 0 : dvi − 1 do

3: if j == 0 then

4:
E0

iZ : (ck, viZ), where ck is a randomly selected check node from the lowest degree

check nodes in the current state of the graph.
5: for l = 1:Z-1 do

6: El
iZ+l : (cZ(k/Z)+mod(k+l,Z), viZ+l)

7: end for

8: else

9: Extend a tree from viZ up to some depth L such that:

37

Figure 2-7: This figure shows the tree expanded from vi to depth l. The unshaded
squares represent the check nodes in the LDPC graph that are not within the l-deep
tree extended from vi.

38

either: NL
viZ

̸= φ, but NL+1
viZ

= φ

or: the cardinality of NL
viZ

stops increasing and is smaller

than m the cardinality of the set of all check nodes.

Choose ck as a randomly selected check node among the smallest degree nodes

∈ NL
viZ

10: if current degree of ck < dck then

11: Ej
iZ : (ck, viZ)

12: for l = 1:Z-1 do

13: El
iZ+l : (cZ(k/Z)+mod(k+l,Z), viZ+l)

14: end for

15: else

16: Delete E0
iZ, ..., E0

(i+1)Z−1 and go to step (4)

17: end if

18: end if

19: end for

20: end for

Where Et
vi

: (cj, vi) denotes an edge between cj and vi and this edge is the

t − th incident edge on vi in the order of CPEG progress. Basically, the algorithm

iterates over all the variables in the input protograph (line 1), then adds edges to

each variable based on the input dv. The lifted graph is considered when adding

edges to these nodes with each variable node being the first in its circulant column.

There are two cases in assigning these edges. The first case is when the edge is the

first one (line 3-4) and assigned to a randomly selected check node from the lowest

degree check nodes in the lifted graph. The second case deals with edges added

after the first edge (line 9). After every edge added to the first variable node in a

circulant, an edge is added between the variable nodes and check nodes in the rest

of the circulant separately, and in a circular fashion (lines 5-7 and 12-14).

The variable degree profile of the resultant graph is guaranteed by the fact that

the edges assignment in the algorithm is guided by this degree profile. In (line 10),

the check nodes degree profile dc constraint is checked to make sure it is satisfied.

39

Note this step is dropped in some variants of the CPEG algorithm where the check

nodes degree profile is not constrained.

Note dv and dc are vectors of sizes t and r respectively, and dvi and dcj denotes

the i-th variable node degree and the j-th check node degree respectively.

2.4 Non-Binary LDPC (NB-LDPC)

LDPC codes could be defined over a Galois field of any order, and the codeword

transmitted consists of symbols over that field. What we have seen so far are codes

over GF(2) only, or binary codes, where we call the symbols transmitted, bits, in

this case. The LDPC code defined over GF(q) where q > 2 is called, Non-Binary

LDPC Code (NB-LDPC). Let C be a NB-LDPC code over GF(q), and codeword x ∈

C. The parity check matrix Hm×n of C consists of entries in GF(q). Each row is a

parity check equation:

n−1

∑
j=0

aij ̸=0

aijxj = 0, ∀ i ∈ {0, 1, ..., m − 1}

The parity check equation is a linear combination of codeword symbols weighted

by the H-matrix entries. Note we do not write the weights in the binary parity

check, as they are all 1’s, which is the identity of the multiplication operation. An

example of a small H-matrix over GF(5) is:

H =


1 2 0 4 1 0 0

3 0 2 1 0 4 0

2 2 1 0 0 0 3


2.4.1 Belief Propagation with NB-LDPC

The concept of exchanging belief messages between graph nodes to reinforce or

undermine certain bits (or symbols) of the codeword in binary decoding 2.2.1 is

also the basis of the NB-LDPC belief propagation. However, there are differences

40

in the message content and the node equations to serve the purpose of multi-

symbol decoding.

Let us consider decoding LDPC code over GF(q). First, we present the general

algorithm with the multiple vector convolution, then we present a trick of partial

sums to implement this convolution. The straightforward convolution has a com-

plexity of O(qdc) per check node, where dc is the degree of that node. dc = 30

The code we design for the experiment in Section 3.4. The partial sums technique

reduces the complexity to O(q2).

In non-binary belief propagation, the messages exchanged are q-tuples of prob-

ability (P(x = 0), P(x = 1), ..., P(x = q − 1)). Note this tuple has one redundant

entry, as the probabilities add up to 1, but we keep it this way to simplify the im-

plementation, especially the convolution as we will see.

Let x = (x1, x2, ..., xn) be the data string transmitted and y = (y1, y2, ..., yn) is

the received one, where x and y are over GF(q). The syndrome vector s is given to

the algorithm too. We use a similar notation for the messages as in 2.2.1, but with a

modified superscript. For instance, ql,(a)
ij denotes the message from vi to cj holding

the probability of symbol a ∈ GF(q) at the l-th iteration. We describe the steps of

the algorithm:

1- Variable Node Message Initialization: Each variable node vi initializes its

outgoing messages q0
ij to its neighboring checks cj’s as:

q0
ij = (P(xi = 0), P(xi = 1), ..., P(xi = q − 1)|yi), ∀i ∈ {1, ..., n}, j ∈ Vi (2.11)

This is the channel message transmitted from chi to vi (Figure 2-8). Note that

(P(xi = 0), P(xi = 1), ..., P(xi = q − 1)|yi) is based on the channel model.

2- Variable Node Message Computation: Each variable node vi computes its

outgoing messages qij to its neighboring checks cj’s as:

41

ql,(a)
ij = P(xi = a|yi) ∏

j′∈Vi/{j}
rpl−1,(a)

j′i , ∀i ∈ {1, ..., n}, j ∈ Vi (2.12)

In other words, the variable node message depends on the messages it receives

from the channel and the neighboring check nodes except the one it is transmitting

to, as shown in Figure 2-8.

Figure 2-8: Variable node processing. The message qt
ij2

is the variable node vi mes-
sage to the permutation node Hj2i at iteration t. The permutation node permutes
the incoming message from the variable node and sends the resulting message
qpt

ij2
to check node cj2 . It depends on the messages from the channel and from

the neighboring check nodes to vi except the check node transmitted to cj2 at the
previous iteration t − 1. Note Vi = {j1, j2, j3}.

3- H-matrix Multiplication (Permutation): The multiplication over a finite field

results in a permuted vector of the original one.

qpl,(a)
ij = Hjiq

l,(a)
ij , ∀i ∈ {1, ..., n}, j ∈ Vi (2.13)

4- Check Node Message Computation: Each check node ci computes its out-

going messages rij to its neighboring variable nodes vj’s (figure 2-9) as:

42

rl,(a)
ij = ∑

w∈cn f (a,si)
∏

j′∈Ci/{j}
a′∈w

qpl−1,(a′)
j′i , ∀i ∈ {1, ..., m}, j ∈ Ci (2.14)

Where cn f (a, si) is the set of all vectors w of size dci − 1 such that ∑i wi + a =

si. In other words, cn f (a, si) is the configuration set of all the possible weighted

symbol values of the neighboring nodes to ci can take such that the parity check is

satisfied with syndrome si and one of the neighboring nodes is fixed at symbol a.

Figure 2-9: Check node processing. The message rt
ij2

is the check node ci message
to the permutation node Hij2 at iteration t. The permutation node permutes the
incoming message from the check node and sends the resulting message rpt

ij2
to

variable node vj2 . It depends on the messages from the neighboring variable nodes
to ci except the variable node transmitted to vj2 at the previous iteration t− 1. Note
Ci = {j1, j2, j3}.

Equation 2.14 is basically a dci − 1-fold convolution of message vectors qj′i, since

it is a summation of products of the vectors components such that these compo-

nents sum up to z − a in each product term. The straightforward computation

of dci − 1-fold convolution is O(qdc−1) and we need to compute dc messages per

43

check node, therefore, the total complexity per check node is O(qdc). This compu-

tation repeatedly computes the same smaller sub-problems. Davey and MacKay

[24] proposed a method of computing solutions for these repeated problems once

and re-using that in the repeated instances of these problems. This reduces the

complexity to O(q2). We use this method in our software decoder. We describe

this method as:

Define σik = ∑j≤k qpij, and ρik = ∑j≥k qpij. Choose k > j as two successive

indices in Ci, then:

P(σik = a) = ∑
z,t:t+z=a

P(σij = z)qpt
ik

Similarly choosing k < j, we have:

P(ρik = a) = ∑
z,t:t+z=a

P(ρij = z)qpt
ik

Equation 2.14 becomes:

ra
ij = P(σi(j−1) + ρi(j+1) = si − a) = ∑

z+t=si−a
P(σi(j−1) = z)P(ρi(j+1) = t),

∀i ∈ {1, ..., m}, j ∈ Ci

(2.15)

The complexity of computing P(σi(j−1) is O((j − 1)q) and similarly for ρi(j+1)

assuming 1-indexing. Therefore, the complexity of computing rij is O(nq2).

5- H-matrix inverse Multiplication (Permutation):

rpl,(a)
ij = H−1

ji rl,(a)
ij , ∀i ∈ {1, ..., m}, j ∈ Ci (2.16)

6- Variable Node Belief Computation and Bit Decision: Each variable node vi

computes its belief qi as:

qa
i = P(xi = a|yi) ∏

j′∈Vi

rpa
j′i, ∀i ∈ {1, 2, ..., n}, j ∈ Vi (2.17)

44

This belief is normalized to:

qna
i =

qa
i

∑
q−1
a′=0 qa′

i

∀i ∈ {1, 2, ..., n}, j ∈ Vi

Then the decoding decision is:

x
′
i = argmaxa(qna

i), ∀i ∈ {1, 2, ..., n}

Where x
′
i is the i-th decoded bit, and P(xi = a|yi) from the channel message.

Note that if the code is defined over GF(q) such that q = 2p, where p is prime,

then the convolution could be replaced by a product by transforming the problem

into the Fourier Transform domain over a finite field, also called Number-theoretic

Transform (NTT). This reduces the complexity to O(q log2(q)), and the domain con-

version is done with Cooley-Tukey algorithm [25]. In the case of GF(p), there are

algorithms for NTT, such as Blueshtein’s [26] and Rader’s [27] algorithms. How-

ever, these are more complex to implement and could be more costly than the

partial sums implementation for small field sizes, such as GF(13), which we use in

this project.

In this chapter, we covered the LDPC concepts necessary for our experiment

in Section 3.4. We started with binary LDPC codes and showed their graph rep-

resentation in Section 2.1. We described the binary LDPC decoding using a belief

propagation concept and the sum-product algorithm in Section 2.2. We explained

that LDPC codes with larger girth perform better under belief propagation decod-

ing. For this reason, we introduced the CPEG algorithm for designing quasi-cyclic

codes with maximized girth in Section 2.3.2. Finally, we generalize LDPC codes

to the non-binary field order, and provide an efficient implementation of the sum-

product algorithm algorithm for non-binary decoding in Section 2.4.

In the next chapter, we describe our experiment on a model of a flash memory

channel, in which we compare two flash storage schemes: one with binary LDPC

and 16 levels of charge per cell (QLC); and the other with non-binary LDPC over

GF(13) and 13 levels of charge per cell. We use the flash concepts explained in

45

Chapter 1 to develop the channel model of the experiment in Chapter 3. We design

binary and non-binary LDPC codes with CPEG and we implement an binary and

non-binary decoders in C to simulate the two schemes.

46

Chapter 3

Experiment and Evaluation

3.1 Non-Binary Scheme

The goal of this work is to compare the storage of non-binary number of states in

the flash cell against the traditional binary number. The comparison evaluates the

two schemes in terms of error correction performance with the LDPC module. In

this project we compare a 13-ary scheme against the 16-ary (QLC) scheme. For a

fixed error correction power, the non-binary scheme operates at a lower SNR than

the 16-ary scheme, where we define the SNR in section 3.3.3. We explain these

results in detail in section 3.5 and discuss what it means for the non-binary scheme

to support lower SNR in relation to the physical properties of the flash.

In practical systems, programming non-binary states in the flash requires a spe-

cial architecture to interface between the binary world of user data and the non-

binary flash memory. We propose two different architectures to achieve this, and

we choose one of them and explain why it is the best to choose.

The first architecture is shown in Figure 3-1, where the writing process is as

follows:

1. Encode the user binary data with binary LDPC into binary codewords.

47

2. Encode the binary data into 13-ary symbols with the modulation en-

coder.

3. Program the 13-ary non-binary symbols into the NAND.

The reading process is the reverse of writing:

1. The 13-ary symbols are read from the NAND.

2. The 13-ary symbols are decoded into binary data with the modulation

decoder.

3. The binary is decoded with the LDPC decoder into the user binary data.

Figure 3-1: The first architecture. Non-Binary scheme with binary LDPC.

In the second architecture , shown in Figure 3-2, we flip the order of the modu-

lation and LDPC. The writing process becomes:

1. Encode the user binary data into 13-ary symbols with the modulation

encoder.

2. Encode the 13-ary symbols into 13-ary codewords with a non-binary

LDPC.

3. Program the 13-ary non-binary symbols into the NAND.

48

Figure 3-2: The second architecture. Non-Binary scheme with non-binary LDPC.

And the reading process is the reverse of writing.

The first architecture has the disadvantage of error propagation. A group of bits

are modulated together into a smaller sized group of 13-ary symbols. This makes

any symbol flip in the symbols read (step 4) propagate to a possibly longer string

of binary bit flips, which could be the entire group of bits modulated together, after

the symbols are decoded by the modulation decoder (step 5). Note the initial sym-

bol flip is due to noise introduced by the NAND. The second architecture does not

result in error propagation, since the modified symbols are corrected by the LDPC

decoder before the modulation decoding. However, this architecture requires the

non-binary LDPC decoder that is more complex to implement.

The error propagation in the first architecture can be mitigated using smart

modulation code design and other techniques, such as interleaving [28] and Gray

coding. On the other hand, the second architecture is more complex, but it is more

powerful in terms of error correction, since it does not get exposed to the error

propagation. This architecture is chosen for its reliability, especially in a flash sys-

tem with 0.9 LDPC coderate and where a decoding failure is extremely expensive.

The second architecture will be compared against a basic binary scheme with bi-

nary LDPC (Figure 3-3).

49

Figure 3-3: Basic binary scheme. It uses binary LDPC.

3.2 Modulation Codes and Programming 13-ary Sym-

bols

Modulation coding is the mapping of data symbols between two domains with

different constraints. In the context of this project, we map binary data symbols

(bits) to 13-ary data symbols. In this case, the two constraints of the two domains

are data symbols over GF(2) and GF(13), respectively. We call the mapping from

binary to 13-ary, modulation encoding, and the opposite mapping, modulation

decoding. Note that modulation does not have to be between domains of different

field orders. For instance, there are modulations between two binary domains

in magnetic recording, where the constraints are on the length of the strings of

consecutive ones.

A basic way of mapping binary to 13-ary is to take the binary data string as one

value and repeatedly divide it by the new base, that is 13, until the value becomes

zero. The remainder of each division is a 13-ary symbol in the new data string with

the first remainder being the least significant symbol. This method is called Base

Conversion, and an example is shown here:

50

When we map n bits to m 13-ary symbols, the coderate is 2n

13m . The coderate ≤ 1

because the mapping is injective. In other words, the number of elements in the

set of n-bit strings must not exceed the number of elements in the set of m-symbol

strings, so there is no information loss in the modulation process. Note coderate

̸= 1 if m and n are integers. Therefore, there are some m-symbol data strings

that are not used in any modulation code. In fact, the modulation code could be

optimized to use the noisier symbols less often, if some symbols are noisier than

others. Indeed, this is the case in the flash memory channel (section 1.2) where

different symbols have different noise variance. This optimized modulation code

is implemented with a look up table in digital hardware, which maps n-bit data

strings into m-symbol strings. In this work, we do not focus on designing and

evaluating modulation codes, especially that all the 13-ary distributions have the

same variance in our channel model.

Figure 3-4 shows the coderate of modulation at different values of m, the cor-

responding value of n in each case is maximized such that coderate ≤ 1. Note as

m increases, the modulation encoder and decoder need more hardware resources

to implement. On the other hand, low-valued (m = 1, m = 2) have low coder-

ate, therefore, low channel capacity for the system. In this work, we evaluate the

second architecture with non-binary LDPC code (steps (2-5) in Figure 3-2). We sug-

gest m = 10, n = 37 modulation code for its high code rate (0.997). m = 3, n = 11

is good for lower complexity and high coderate.

3.3 Channel Model

We model the flash memory channel as an AWGN channel, and we use PAM signal

constellation as described in section 1.2.1. In this model, the total voltage space of

the flash cell is normalized to 1, and all the symbols have the same variance.

We compare two signal constellations: One with 16 symbols; and the other with

13 symbols. The lowest mean (S0 mean) in the 16-ary constellation is fixed at 0 and

the highest (S15 mean) is fixed at 1, and the rest of the symbol means are distributed

51

Figure 3-4: The coderate of modulation at different values of m, the corresponding
value of n in each case is maximized such that coderate ≤ 1.

in between, as shown in Figure 3-5. The means of the S1, ..., S14 distributions are

optimized to balance out the error of misreading a symbol as another symbol for

all the 16 symbols. Note S1, ..., S14 will not simply be equally separated, since S0

and S15 only overlap with one neighboring symbol instead of two in the case of

S1, ..., S14.

The 13-ary constellation is similar to the 16-ary one, but with the first two sym-

bols and the last one removed and the total voltage space normalized to 14−2
15 = 12

15 ,

as shown in Figure 3-6. The means of the symbols S3, ..., S13 are optimized to bal-

ance out the error as in the 16-ary case. This choice of the removed symbols is only

significant in the more sophisticated model (section 3.3.4), where the symbol dis-

tributions have different variance. We follow the same choice here for consistency.

Note we still refer to the symbols by the same label in both cases.

3.3.1 State Transition Matrix (STM)

Let X be the symbol transmitted through the flash channel. X is a discrete random

variable ∈ 0, 1, ..., q − 1, where q is the symbol alphabet size. U is a continuous

random variable over the flash cell voltage space. This is the variable observed

52

Figure 3-5: Flash channel model with 16-ary signal constellation. Note S0 mean is
fixed at 0 and S15 mean is fixed at 1. Note the symbol distributions are not equally
separated, but the difference in separation is very small that it is hard to see on the
figure.

Figure 3-6: Flash channel model with 13-ary signal constellation. Note S2 mean
is fixed at 2

15 = 0.1333 and S14 mean is fixed at 14
15 = 0.9333. Note the symbol

distributions are not equally separated, but the difference in separation is very
small that it is hard to see on the figure.

before the channel detector. The channel detector takes U as input and computes

Y based on the read thresholds Vt1 , ..., Vtq−1 as an output (section 1.2.1). Y is the

received symbol, which is a discrete random variable ∈ 0, 1, ..., q − 1.

P(U = u|X = i) =
1√

2πσ2
i

e
− (u−µi)

2

2σ2
i (3.1)

Y =


0 if u < Vt1

i if Vti < u < Vti+1

q − 1 if u > Vtq−1

(3.2)

53

P(Y = j|X = i) =


ΦU|X=i(Vt1) if j = 0

ΦU|X=i(Vtj+1)− ΦU|X=i(Vtj) if 0 < j < q − 1

1 − ΦU|X=i(Vtq−1) if j = q − 1

(3.3)

Where ΦX(x) is the CDF of the probability distribution of X at x. The State

Transition Matrix (STM) is a t × r matrix, where r is the size of received symbols

alphabet and t is the size of transmitted symbols alphabet. Note the two alphabets

could be different and have different sizes, as in section 3.3.5. Each element aij in

this matrix is aij = P(Y = j|X = i). In our experiment, this matrix simulates the

transition from the transmitted codewored to the received data. It is also used to

assign LLR(X|Y) = ln P(X=0|Y)
P(X=1|Y) values, after computing P(X = i | Y = j) from the

STM using Bayes’ rule:

P(X = i|Y = j) =
P(Y = j|X = i)P(X = i)

P(Y = j)
(3.4)

Where P(Y = j) = ∑
q−1
i=0 P(Y = j|X = i)P(X = i)

3.3.2 Channel Capacity

Let X and Y be two discrete random variables representing the transmitted and

received symbols over a channel, respectively. The channel capacity C is then de-

fined as:

C = sup
P(x)

I(X; Y) = sup
P(x)

∑
y∈Y

∑
x∈X

P(x, y)log(
P(x, y)

P(x)P(y)
) (3.5)

Where I(X; Y) is the mutual information of two random variables X and Y.

The definition states that the channel capacity is the mutual information between

the transmitted and received data maximized over the distribution of the trans-

mitted data. Note that C depends on the read thresholds through its dependence

54

on P(x, y) and P(y). The read thresholds are optimized to maximize the channel

capacity.

We also define the Effective Channel Capacity Ce f f , as the mutual information of

X and Y for a certain distribution P(X):

Ce f f = IP(X)(X; Y) (3.6)

In our experiment, we assume a uniform distribution P(X = i) = 1
q . Note that

when a symbol i has a relatively high transition probability to a symbol j, j ̸= i,

we can transmit it less often, i.e. have a non-uniform P(x), through modulation

encoding (section 3.2). This is beyond the scope of this thesis and we will stick with

the uniform P(x). Note the channel capacity computations of AWGN channels

must carried out on a computer to evaluate cumulative distribution function of

the Gaussian random variables.

3.3.3 Signal-to-Noise Ratio (SNR) Definition

SNR = 20 log10
(µr − µl)

σ
(3.7)

Where µl and µr are the lowest and highest means of the signal constellation,

respectively, which you could think of as the power of the signal in this context.

σ is the standard deviation of the noise in the channel. The SNR is a logarithmic

with units in decibel (dB).

Note the SNR captures the characteristics of AWGN channel. Therefore, the

model has the same characteristics as the physical channel although the voltage

space (signal power) and noise variance are different. In fact, this is what we have

in our model, as we normalized the voltage space to 1.

3.3.4 A More Sophisticated Channel Model

We present a closer model to the behavior of the flash channel, which is similar to

the basic model, but with different variance for the symbols. S0 having variance

55

Figure 3-7: Signal-to-Noise Ration (SNR) calculation.

σ2
S0

, S15 having σ2
S15

, and all the other symbols having σ2, such that σ2
S0

> σ2
S15

> σ2,

as shown in Figure 3-8. Note the distributions means are optimized to maximize

the effective channel capacity. This results in relatively higher separation between

the high variance distributions and the rest of the distributions. We evaluate both

models in section 3.5.

Figure 3-8: Flash channel model with 16-ary signal constellation. Note S0 and S15
have higher variance. The separation between these two symbols and the other
symbols is relatively high to balance out the raw error rate and maximize the chan-
nel capacity. The dots represent the rest of the 16 symbols with variance σ. Note
the labels on the figure are twice the variance.

3.3.5 Soft Information

We read with q − 1 read thresholds when we have a symbol alphabet of size q.

The information we get with these thresholds are called Hard Information. When

56

we read again with a different set of q − 1 thresholds, each received symbol region

will be divided into regions giving different beliefs of the symbol transmitted as

shown in Figure 3-10 and Figure 3-11. We call this belief information obtained with

multiple reads, Soft Information.

Figure 3-9: Single read. The cell is detected in S6 region. The channel detector gives
high belief the symbol transmitted is S6. Note the belief is non-zero in the other
symbols as their distributions overlap in the detection area. The detector gives low
beliefs in S5 and S7, and much lower beliefs in the rest.

Figure 3-10: Three reads. The cell is detected in the wide region of S6. The channel
detector gives high belief the symbol transmitted is S6, and lower beliefs in the
rest.

As with the original set of read thresholds, the goal of choosing the other sets

associated with the multiple reads is maximizing the effective channel capacity.

The support set of the received symbol random variable Y increases with the num-

ber of reads nreads. It becomes nreadsq − 2 where each received symbol corresponds

to a region between two adjacent read thresholds. In reference to section 3.3.1,

the STM that captures the flash channel with multiple reads has higher column

57

Figure 3-11: Three reads. The cell is detected in a narrow S6 region close to S7
region. The channel detector gives comparable beliefs in the symbol transmitted
being S6 and S7, and lower beliefs in the rest.

dimension than row dimension. Therefore, we get higher resolution beliefs of the

symbols transmitted through the channel, which makes the LDPC decoder decode

more codewords and converge faster, i.e. with fewer iterations.

The transmitted symbols are associated with the same type of distribution (Gaus-

sian), and the distributions have approximately the same variance. Therefore, the

read thresholds associated with multiple reads are only related by a shift factor δ.

In other words:

V j
ti
= Vk

ti
+ δj,k

Where Vtj
i denotes the Vti of the j-th read. This makes the numerical optimiza-

tion to maximize the effective channel capacity easier than the case with different

offset for every single read threshold.

3.4 Experiment

We compare two schemes: a 13-ary flash system with non-binary LDPC against a

16-ary system with binary LDPC. We use the channel distributions (S2 − S14) in the

13-ary case. We also compare both channel models, simplified and sophisticated,

in the 16-ary case. In the sophisticated channel, we choose σS0 = 1.5σ and σS15 =

1.2σ, where σ is the standard deviation of the rest of the symbols. Note there is

58

only one model in the 13-ary case as we do not use S0 and S15.

We do not focus on the modulation code design in this work, but we suggest

using a code with n = 37 bits mapped to m = 10 13-ary symbols, for its very high

coderate (0.997) with 3.7 bits/symbol. In this case, the non-binary LDPC code-

word size has to be a multiple of 10. The binary LDPC codeword size n = 16000,

that is 2K bytes, a common codeword size in the flash storage systems. The non-

binary codeword size is n = 4320 symbols. This is the size of the binary codeword

divided by the 3.7 bits per symbol use and rounded to the nearest multiple of 10.

This is to guarantee a fair comparison between the two schemes by having roughly

the same size codeword from the user binary world perspective, i.e. number of

bits/codeword. Note that the codeword size is an important characteristic consid-

ered with the LDPC code performance, since the longer the codeword, the better

the code performs [12].

Both the binary and non-binary LDPC codes are quasi-cyclic codes designed

with the CPEG algorithm described in section 2.3.2, starting from a 4 × 40 proto-

graph with coderate r = 0.9 and column weight = 3. This protograph is lifted with

CPEG using lift factor Z = 400 to make the binary code, and lift factor Z = 108 to

make the non-binary one. Note we do not specify the edge connections of the pro-

tograph given as an input to CPEG (Section 2.3.2). The coefficients in the NB-LDPC

H-matrix are assigned randomly over GF(13).

Another fairness measure taken in comparing the two schemes is to assign

the received bits LLRs based on the 16-ary symbol channel model in the binary

scheme. This means not all the received 1’s will be given the same LLR, and the

same is true for 0’s, as illustrated in Figure 3-12. This gives the binary decoder

more accurate channel beliefs of the bits similar to the channel beliefs supplied to

the non-binary decoder, which are naturally based on the 13-ary channel model.

The LDPC decoder maximum number of iterations is set to 20, and 105 de-

coding trials are simulated per SNR point. In each trial, data is generated ran-

domly, syndrome is computed for the data, and noise is generated according to

the channel model and added to the data. The decoder and data generation are

59

Figure 3-12: Symbol-based bit LLR assignment. Bits that change according to the
Gray code if the adjacent symbol is transmitted are given lower confidence than
the other bits

implemented in C. The simulation was run on a computation farm of multiple

computers of multi-core processors, with MATLAB Distributed Computing Server

tools used for task scheduling.

3.5 Results

First, we compare the 13-ary scheme with NB-LDPC against the 16-ary scheme

with Binary LDPC and the simple channel model (Section 3.3). The bit LLR as-

signment in the 16-ary scheme is done symbol-based as explained in section 3.4.

The results are shown in Figure 3-13 below. Here we introduce the definition of

Decoding Failure Rate, which is the number of times the decoder fails to decode

a codeword per total number of decoding trials. The Decoding Failure Rate only is

only meaningful when it is specified for a certain SNR point in the AWGN channel

case, or some channel characteristic measure in general.

There is approximately 2.3 dB gain in hard information decoding of the 13-

60

Figure 3-13: Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note
the soft information decoding in the 13-ary scheme is done with three reads.

ary scheme over the 16-ary one. Note there is a 1.94 dB decrement in the SNR of

the 13-ary scheme, since it has lower signal amplitude 0.8 in the cell normalized

voltage space. This decrement is computed as 20(log10
0.8
σ − log10

1
σ) = −1.94dB.

The extra 0.36 dB is the gain due to the higher error correction power of the NB-

LDPC over the binary LDPC. To better understand this, if the 13-ary distributions

are expanded in the voltage space so the signal has the same amplitude of 1 as in

the 16-ary case, the SNR of the 13-ary signal will increase by 1.94 dB. However,

since the NB-LDPC is better by 2.3 dB, it is providing an extra .36 dB benefit. There

is approximately 0.88 dB gain in soft information decoding with three reads over

the hard information decoding in the 13-ary scheme. Note all the read thresholds

are optimized to maximize the effective channel capacity.

The decoding at a lower SNR in the 13-ary scheme with the same decoding fail-

ure rate means the system tolerates higher noise than in the 16-ary case. For a fixed

SNR, if the 13-ary scheme distributions are expanded over the same amplitude as

in the 16-ary scheme, the variance of the distribution needs to increase to keep the

SNR constant. This is interpreted as the 13-ary scheme operating at higher P/E

cycles or longer data retention causing increased noise variance (section 1.2).

61

The results clearly demonstrates the benefit of NB-LDPC. Practically, this comes

at the cost of implementing a NB-LDPC decoder, which takes more silicon area for

the same throughput in terms of decoding iterations per clock cycle. Refer to Sec-

tion 2.4.1 for see the complexity of decoding NB-LDPC. We suggest that the choice

of using NB-LDPC in a flash product is driven by the cost and benefit. Although

the benefit is always decoding at some lower SNR, this means different things

depending on the flash technology and the flash product specification. For in-

stance, higher endurance is needed in enterprise flash products than in consumer

products. The flash technology also matters such that the flash channel noise can

already be so low that the benefit from NB-LDPC is not so high, and vice versa.

Other use cases of the 13-ary scheme includes increasing the yield of the fabri-

cation process. Some QLC flash wafer may not qualify due to low reliability, i.e.

high BER, but this reliability can sufficiently increase to pass the qualification if the

wafer is used with the 13-ary scheme. In addition, a mix of 13-ary and 16-ary flash

could be used in a single SSD, or 16-ary flash can be turned into 13-ary after being

exposed to a certain number of P/E cycles to restore reliability. The complexity of

implementing these different use cases is outside the scope of this work.

Note The binary and non-binary codes are constructed the same way using the

same CPEG algorithm. This is a measure of fairness in the experiment to compare

the benefit of decoding over higher orders specifically, and not other factors in the

LDPC code structures.

Now we add another result of hard information decoding of the 16-ary scheme

with the more sophisticated model introduced in section 3.3.4. The result is shown

in Figure 3-14 below.

The noise standard deviation of the sophisticated model σ is calculated as:

σ =
1.5σS0 + 14σ + 1.2σS15

16

The average standard deviation of all the symbols. The two curves of the simple

and sophisticated channel models in the 16-ary scheme are almost the same. We

62

Figure 3-14: Decoding Failure Rate results of the 13-ary and 16-ary schemes. Note
the results from the simple and sophisticated channel models in the 16-ary scheme
are almost the same. We believe the slight discrepancy comes from defining the
noise of a channel that adds Gaussian noise with different variance to different
symbols.

believe the slight discrepancy is due to the definition of the noise standard devia-

tion of the sophisticated model. The equivalent noise of a multi-variance channel

like this could be different from the average above although the average gives a

very close result.

3.6 Conclusion

We compared two schemes of storing information in QLC flash memory: One

stores 4 bits/cell occupying the full QLC capacity with 16 levels of charge; and

the other stores around 3.7004 bits/cell using 13 charge levels per cell. The non-

binary scheme also has a modulation overhead, for which we presented a modu-

lation code that makes this overhead very small, storing 3.7 bit/cell with a 0.0004

bits/cell loss only.

The coderate of the binary LDPC in the 16-ary scheme and that of the NB-LDPC

in the 13-ary scheme were equalized to compare the error correction power of the

63

two LDPC codes. In addition, the modulation coderate of the 13-ary scheme is

designed to be very close to 1 (0.997), so that the entire 13-ary scheme has a very

close coderate to the 16-ary scheme, and the two schemes can be compared using

the same codeword size.

Although the 13-ary scheme results in lower cell capacity, it increases the cell

endurance and reliability. In this work, the 13-ary scheme was designed by remov-

ing the first two S0 and S1 and the last S15 symbols from the 16-ary scheme 3.3. We

assume we can move the means of the 13-ary distributions freely in the voltage

space. Therefore, we can expand the 13-ary distributions over the entire space to

boost the SNR of the flash cell. Different other choices of symbols removal can be

made, and these choices can be better than ours, especially if the system hardware

restricts the movement of the distributions or changes the noise characteristics of

the distributions depending on their means.

64

Bibliography

[1] Anton Shilov. Sandisk, toshiba begin to purchase equipment to make bics 3d
nand, 2015.

[2] Yu Cai, Erich F Haratsch, Onur Mutlu, and Ken Mai. Threshold voltage distri-
bution in mlc nand flash memory: Characterization, analysis, and modeling.
In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2013,
pages 1285–1290. IEEE, 2013.

[3] Simon Aughton. Dell gets flash with ssd option for laptops, 2007.

[4] Sun Microsystems. Solaris zfs enables hybrid storage pools-shatters economic
and performance barriers, 2008.

[5] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, and Angelo Visconti. In-
troduction to flash memory. Proceedings of the IEEE, 91(4):489–502, 2003.

[6] Zsolt Kerekes. Are mlc ssds ever safe in enterprise apps?, 2008.

[7] H Tanaka, M Kido, K Yahashi, M Oomura, R Katsumata, M Kito, Y Fukuzumi,
M Sato, Y Nagata, Y Matsuoka, et al. Bit cost scalable technology with punch
and plug process for ultra high density flash memory. In VLSI Technology,
2007 IEEE Symposium on, pages 14–15. IEEE, 2007.

[8] Ya-Chin King, Tsu-Jae King, and Chenming Hu. Charge-trap memory device
fabricated by oxidation of si/sub 1-x/ge/sub x. IEEE Transactions on Electron
Devices, 48(4):696–700, 2001.

[9] Hao Yu. A glivenko-cantelli lemma and weak convergence for empirical pro-
cesses of associated sequences. Probability theory and related fields, 95(3):357–
370, 1993.

[10] Shu Lin and Daniel J Costello. Error control coding. Pearson Education India,
2004.

[11] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge
university press, 2008.

[12] Robert Gallager. Low-density parity-check codes. IRE Transactions on informa-
tion theory, 8(1):21–28, 1962.

65

[13] Achilleas Anastasopoulos. A comparison between the sum-product and the
min-sum iterative detection algorithms based on density evolution. In Global
Telecommunications Conference, 2001. GLOBECOM’01. IEEE, volume 2, pages
1021–1025. IEEE, 2001.

[14] Joachim Hagenauer, Elke Offer, and Lutz Papke. Iterative decoding of bi-
nary block and convolutional codes. IEEE Transactions on information theory,
42(2):429–445, 1996.

[15] Henk Wymeersch, Heidi Steendam, and Marc Moeneclaey. Log-domain de-
coding of ldpc codes over gf (q). In Communications, 2004 IEEE International
Conference on, volume 2, pages 772–776. IEEE, 2004.

[16] Guiqiang Dong, Ningde Xie, and Tong Zhang. On the use of soft-decision
error-correction codes in nand flash memory. IEEE Transactions on Circuits and
Systems I: Regular Papers, 58(2):429–439, 2011.

[17] Jeremy Thorpe. Low-density parity-check (ldpc) codes constructed from pro-
tographs. IPN progress report, 42(154):42–154, 2003.

[18] Zhongfeng Wang and Zhiqiang Cui. Low-complexity high-speed decoder
design for quasi-cyclic ldpc codes. IEEE Transactions on Very Large Scale Inte-
gration (VLSI) Systems, 15(1):104–114, 2007.

[19] Madiagne Diouf, David Declercq, Marc Fossorier, Samuel Ouya, and Bane
Vasić. Improved peg construction of large girth qc-ldpc codes. In Turbo Codes
and Iterative Information Processing (ISTC), 2016 9th International Symposium on,
pages 146–150. IEEE, 2016.

[20] Marc PC Fossorier. Quasicyclic low-density parity-check codes from circu-
lant permutation matrices. IEEE Transactions on Information Theory, 50(8):1788–
1793, 2004.

[21] Yige Wang, Jonathan S Yedidia, and Stark C Draper. Construction of high-
girth qc-ldpc codes. In Turbo Codes and Related Topics, 2008 5th International
Symposium on, pages 180–185. IEEE, 2008.

[22] Xiao-Yu Hu, Evangelos Eleftheriou, and Dieter-Michael Arnold. Regular and
irregular progressive edge-growth tanner graphs. IEEE Transactions on Infor-
mation Theory, 51(1):386–398, 2005.

[23] Zongwang Li and BVK Vijaya Kumar. A class of good quasi-cyclic low-
density parity check codes based on progressive edge growth graph. In Sig-
nals, Systems and Computers, 2004. Conference Record of the Thirty-Eighth Asilo-
mar Conference on, volume 2, pages 1990–1994. IEEE, 2004.

[24] Matthew C Davey and David MacKay. Low-density parity check codes over
gf (q). IEEE Communications Letters, 2(6):165–167, 1998.

66

[25] David Declercq and Marc Fossorier. Decoding algorithms for nonbinary ldpc
codes over gf (q). IEEE Transactions on Communications, 55(4):633–643, 2007.

[26] Leo Bluestein. A linear filtering approach to the computation of discrete
fourier transform. IEEE Transactions on Audio and Electroacoustics, 18(4):451–
455, 1970.

[27] Charles M Rader. Discrete fourier transforms when the number of data sam-
ples is prime. Proceedings of the IEEE, 56(6):1107–1108, 1968.

[28] Giuseppe Caire, Giorgio Taricco, and Ezio Biglieri. Bit-interleaved coded
modulation. IEEE transactions on information theory, 44(3):927–946, 1998.

67

