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Abstract—Rényi entropy, Rényi divergence, and α-mutual
information are all generalizations of their classical counterparts
which have been useful in information theory and its applications.
A number of their interesting properties have been established in
the literature, and although they are similar in many respects to
their classical counterparts, they also suffer from some serious
disadvantages. One such property is the lack of a nice single-
letterization for these quantities. We compute capacities defined
with respect to α-mutual information for some simple channels,
and illustrate the lack of a single-letterization. We then examine
a potential application of Rényi entropy to the binary adder
MAC (multiple access channel). In spite of not improving existing
converse bounds due to a lack of single-letterization for Rényi
entropy, we establish some bounds that generalize classical
entropy sub-additivity (a form of single-letterization) in various
directions. These can be viewed as a non-standard form of single-
letterization.

Index Terms—Rényi entropy, α-mutual information, strong
converse, multiple access channel

I. INTRODUCTION

In [1], through an alternative set of axioms that a notion
of entropy must satisfy, Alfred Rényi generalized the classical
Shannon entropy as a measure of randomness of a probability
distribution:

Definition 1. For a discrete random variable X on alphabet
A, the Rényi entropy of order α ∈ [0,∞] is given by

Hα(X) =


log |{a ∈ A : PX(a) > 0}| α = 0
1

1−α log
(∑

a∈A PX(a)α
)

α ∈ (0, 1) ∪ (1,∞)

H(X) α = 1

mina∈A − logPX(a) α =∞
(1)

where the Shannon entropy H(X) = E[− logPX(x)].

Note that in the above definition, the behaviors at α ∈
{0, 1,∞} are justified from continuity. In the sequel, for
simplicity we shall omit these special cases unless they deserve
particular attention. Also, throughout this paper all random
variables are discrete unless otherwise noted.

Rényi also generalized the classical KL (Kullback-Leibler)
divergence, which results in a similar mathematical form:

Definition 2. For two distributions P and Q, the Rényi
divergence of order α ≥ 0 is given by

Dα(P ||Q) =
1

1− α
log

(∑
a∈A

P (a)αQ(a)1−α

)
. (2)

This definition may be used in the natural way to define
conditional Rényi divergences as well.

A number of proposals were made over the years regarding
an analogous generalization of mutual information [2], [3],
[4]. However, here the choice is less clear, and [5] provides
a summary of the various proposals. We follow [5] in our
choice to settle on a default definition of α-mutual information
(Arimoto’s proposal):

Definition 3. Let PX → PY |X → PY , where X ∈ X and
Y ∈ Y . The α-mutual information for α > 0 is:

Iα(X;Y ) = min
QY

Dα

(
PY |X ||QY |PX

)
A more explicit (non-variational) form is:

Iα(X;Y ) =
α

α− 1
log
∑
y∈Y

(∑
x∈X

PX(x)PαY |X=x(y)

) 1
α

(3)

Using α-mutual information, we may naturally define (anal-
ogously to the classical case) α-capacity for a fixed chan-
nel/kernel PY |X as:

Definition 4.

Cα
(
PY |X

)
= sup

PX

Iα(X;Y )

where PX → PY |X → PY and X ∈ X and Y ∈ Y .

From the explicit formula for α-mutual information, it is
clear that for a identity kernel PY |X ,

Iα(X;X) = H 1
α
(X) (4)

The importance of this equation will be clear later, as it links
the failure of single-letterization for Iα and Hα together.

We also note that for the purposes of determining capacity,
since log() is an increasing function, it suffices to maximize
(minimize) the following expression for α > 1 (α < 1)
respectively:

Jα(X;Y ) =
∑
y∈Y

(∑
x∈X

PX(x)PαY |X=x(y)

) 1
α

(5)

II. COMPUTATION OF SIMPLE SINGLE-LETTER
CAPACITIES

In this section, we compute the α-capacity for simple single-
letter channels. In [5], it is mentioned that the α-mutual
information is a concave function of PX for α ≥ 1, and that
a monotone transformation from Iα(X;Y ) to 1

α−1Jα(X;Y )
makes the function concave in PX for α > 0. This makes the
α-capacity determination a convex optimization problem for



α > 0. As such, for the simple single-letter channels (BSC
and BEC) considered here, the problem is easily solved for
all α. In order to present the results, we first recall the ideas
of majorization/smoothing and Karamata’s inequality:

Definition 5. Let ~p, ~q denote two vectors in Rd. We say that
~p majorizes ~q (symbolically ~p � ~q) iff:

p(1) ≥ q(1)
k∑
i=1

p(i) ≥
k∑
i=1

q(i) (∀ 2 ≤ k ≤ d− 1)

d∑
i=1

p(i) =

d∑
i=1

q(i)

where p(i) denotes the i-th order statistic of ~p in descending
order.

A nice, useful, equivalent characterization of majorization
is the following result (smoothing) [6]:

Theorem 1. Let ~p, ~q denote two vectors in Rd. Then ~p � ~q iff
there exists a consecutive sequence of “Robin-Hood” trans-
formations from ~p to ~q. A Robin-Hood transformation of ~p
consists of picking two distinct indices i, j, and replacing pi
by pi − ε, and pj by pj + ε, where 0 ≤ ε ≤ |pi−pj |

2 . Here
pi > pj without loss of generality.

The utility of defining majorization lies in Karamata’s
inequality:

Theorem 2. Let f denote a real-valued convex function de-
fined on some interval I of R. Let ~p � ~q. Then,

∑d
i=1 f(pi) ≥∑d

i=1 f(qi). An analogous inequality holds (with the sign
flipped) for concave functions.

We collect the results for the BSC(δ) and BEC(δ) in the
following theorem. Here, δ denotes the probability of bit-flip
and probability of erasure respectively:

Theorem 3. ∀α ≥ 0,
For the BSC(δ),

Cα(X;Y ) = δα

(
δ||1

2

)
, (6)

where δα(p||q) = 1
α−1 log

(
pαq1−α + (1− p)α(1− q)1−α

)
is

the binary Rényi divergence. Equality is achieved only when
PX is uniform on {0, 1}.

For the BEC(δ),

Cα(X;Y ) =
α

α− 1
log
(
δ + (1− δ)2

α−1
α

)
. (7)

Equality is achieved only when PX is uniform on {0, 1}.

Proof. Let PX = (1 − p, p) on (0, 1) respectively. For the
BSC,

Jα(X;Y ) = (pδα + (1− p)(1− δ)α) 1
α

+ ((1− p)δα + p(1− δ)α) 1
α .

Observe that the sum of the two terms that are being raised
to 1

α is δα+(1− δ)1−α, which is independent of p. Thus, we
may smooth (1− p, p) by (0.5, 0.5), since for α < 1, 1

α > 1,
for α > 1, 1

α < 1, and xa is concave (convex) for a < 1
(a > 1) respectively. This proves 6.

For the BEC,

Jα(X;Y ) = ((1− p)(1− δ)α) 1
α + (p(1− δ)α) 1

α + δ.

Like the above, the sum of the first two terms that are being
rasied to 1

α is independent of p. Thus, we may smooth (1−p, p)
by (0.5, 0.5) to get the desired result. This proves 7.

We also remark here that the single-letter Z channel capacity
does not have a nice closed form, and that the capacity
achieving input distribution for this channel varies with α,
unlike the BSC and BEC cases.

A more non-trivial application of smoothing is in solving
the cost-constrained BSC capacity for a single-channel use:

Theorem 4. ∀α ≥ 0,

Cα(X;Y ) =
α

α− 1
log
(
(Pδα + (1− P )(1− δ)α) 1

α

+ ((1− P )δα + P (1− δ)α) 1
α

)
.

for the BSC(δ) and cost constraint E[X] ≤ P , where (without
loss of generality) P ≤ 0.5.

Proof. We repeat the proof as in the unconstrained case. Here,
we may smooth till (1 − P, P ) and no more. More formally,
(1−P, P ) is the only extremal point with respect to the partial
order of majorization in this single-letter, cost-constrained
case.

III. GENERALIZATION TO MULTIPLE USES OF CHANNEL

In [5], it is mentioned that one can single-letterize capacity
in the case of discrete memoryless channels. This gives the
result that the (unconstrained) capacity of n uses of the channel
is nC, where C denotes the single-letter (i.e single use) ca-
pacity. However, this result does not extend to the case where
one places constraints on the input distributions, e.g Hamming
weight constraints on n uses of the BSC. An interesting idea
[7] allows one to single-letterize for memoryless channels
satisfying the following two constraints:

1) Iα
(
X2;Y 2

)
≤ Iα(X1;Y1) + Iα(X2;Y2) (X2 denotes

the joint (X1, X2)), i.e single-letterization for α-mutual
information

2) concavity in PX of Iα(X;Y ).
However, these conditions can’t be simultaneously met (for
α 6= 1). The second condition is met for all α ≥ 1 as noted
earlier. The first condition is not true for general channels,
though for specific channels it is possible that it could hold.
The reason for this is as follows. Consider the identity channel.
Then, by 4, the first condition becomes

H 1
α

(
X2
)
≤ H 1

α
(X1) +H 1

α
(X2).

Unfortunately, this subadditivity for Rényi entropy is not true.
In fact, simple modifications designed to obtain some sort of



single-letterization for Rényi entropy are bound to fail due to a
result in [8], which states that one can fix Hα(X) and Hα(Y )
and make Hα(X,Y ) go to ∞ by increasing the alphabet size.
This result is true for all orders of α 6= 1.

We also illustrate the lack of nice single-letterization with a
more non-trivial example of the BSC with cost constraints
(multi-letter case). First, we introduce some notation. Let
H(x, r) denote the Hamming ball of radius r centered at
the bit-vector x, i.e it is the set of all bit-vectors y of the
same length as x such that |x − y| ≤ r, where |x| denotes
the Hamming weight of x, and |x− y| denotes the Hamming
distance between bit-vectors x and y. We also introduce the
non-standard notation of “Hamming shell” S(x, r) to denote
the set of bit-vectors y such that |x− y| = r. Then, we have
the following theorem illustrating the lack of a nice single-
letterization for the multi-letter, cost-constrained BSC:

Theorem 5. Consider a BSC(δ), and cost constraint
E[|Xn|] ≤ nP . Then, ∀α ≥ 0, the capacity achieving input
distribution (caid) PXn∗ must be “spherically symmetric”, in
the sense that it should have a uniform distribution conditioned
on 1{S(0, r)} for each 0 ≤ r ≤ n. Moreover, ∀α 6= 1,
the capacity achieving input distribution is not a product
distribution.

Proof. Observe that the BSC(δ) has permutation symmetry,
in the sense that Iα(Xn;Y n) = Iα(PX

n;PY n), where
P denotes an arbitrary permutation of (1, 2, . . . , n). Now,
E[|Xn|] ≤ nP ⇔ E[|PXn|] ≤ nP . Thus, by the concavity
of 1

α−1Jα(X;Y ), we may then average over all permutations
of Xn to conclude that Iα(Xn∗;Y n∗) ≥ Iα(X

n;Y n) for
the “spherically symmetric” PXn

∗ obtained by averaging
over permutations of PXn . Now suppose that the capacity
achieving distribution is a product distribution. Observe that
the only “spherically symmetric” input distribution which is
also a product distribution is an i.i.d Bernoulli ensemble.
Furthermore, since Iα is additive over product distributions,
we may invoke Theorem 4 to conclude that Xn are distributed
i.i.d Ber(P ). However, take n = 2. It is easily checked that
∀α 6= 1, there exist input distributions which result in greater
mutual information than the above. These counterexamples
for n = 2 may be then combined with product distributions
over the remaining n− 2 letters to generate counterexamples
∀n ≥ 2.

IV. APPLICATIONS OF THE RÉNYI INFORMATION
MEASURES

In this section, we explore a possible application of Rényi
information measures to tightening the best-known converse
bound for the binary adder MAC. The binary adder MAC is
defined as follows. A = B = {0, 1} are the alphabets of the
two users. Y = A+B is the channel output, and is in {0, 1, 2}.
By using results in [9] and [5], one can tighten best known
converse [10] second order term from O(

√
n log n) to O(

√
n)

if the following conjecture is true:

Hα(Y
n) ≤ nHα(Y

∗) ∀α ∈ (0, 1), n ≥ 1 (8)

This follows from general converse bounds established in [5]
and [9], by taking the order of the Rényi entropy α = 1 −
O
(

1√
n

)
. Note that the α ≤ 1 assumption is necessary for the

conjecture. For α > 1 and n = 2, consider the family ~p =
{x, 0.5 − x, 0.5 − x, x} and ~q = {0.5 − x, x, x, 0.5 − x} for
some x ∈ [0, 0.5]. Then for α > 1, it may be easily checked
that x = 0.25 results in a local minimum of the joint Rényi
entropy, and so 8 is false for α > 1 and n = 2. Note that by
looking at product distributions for n > 2 and using the above
counterexample for n = 2, one generates counterexamples for
all n > 2 as well.

Unfortunately, 8 remains open. The best result we have
managed so far is that the conjecture is true for n = 1 and
for n = 2, α ≤ 0.5. Computer simulations indicate that the
conjecture is likely true till n = 5.

For n = 1, 8 is easy to verify via the following argument.
Let PA = {p, 1 − p} and PB = {1 − q, q}. A simple
manipulation of the resulting derivative expressions shows that
p = q for a local optimum. On p = q, the Rényi entropy
becomes an expression in a single variable, whose optimum
is easily checked to be at p = q = 0.5. Of course, the
necessary second derivative tests and boundary checks need
to be completed as well, which we omit.

For n = 2, α ≤ 0.5, the proof is technical and tedious and is
hence in an appendix. Note that this result is very pessimistic
from another perspective as well. The whole purpose of 8 is
to establish a tighter converse bound. As one can see in the
argument above, one is really interested in α = 1 − O( 1√

n
),

while 0.5 is much less than 1. Not much can be said about
this, since n = 2 is too small to conclude anything about
asymptotic behavior.

V. APPROACHES TOWARDS SINGLE-LETTERIZATION

As can be seen from above discussion, one of the key
difficulties with Rényi-like measures of information is the lack
of a nice single-letterization. This is to a large extent respon-
sible for the incomplete understanding of product channels
(i.e n uses) in terms of these measures, as well as the failed
attempt at tightening a converse bound for the binary adder
MAC. Shannon entropy and the related classical measures of
information offer a much cleaner picture in that respect, since
not only do the variational quantities such as capacity single-
letterize, but also the measures themselves in a very simple
fashion. In light of this, in spite of the negative result on single-
letterization of Rényi entropy [8], it is somewhat surprising
that one can still furnish some interesting bounds on Rényi
entropy:

Theorem 6. Let |X | =M, |Y| = N . Then:

Hα(PXY ) ≤ Hα(PX)+ max
1≤i≤M

Hα

(
PY |X=i

)
(∀α ∈ (0, 1)).

(9)

Hα(PXY ) ≤ log

(
M∑
i=1

exp
(
Hα

(
PY |X=i

)))
(∀α ∈ (0, 1)).

(10)



Hα(PXY ) ≤ t(Hα(QX) +Hα(RY ))

+ (1− t)

 1

1− α
log

∑
i,j

Pαij

(
Pij
QiRj

) tα
1−t


(11)

(∀α ∈ (0, 1), t ∈ (0, 1), QX , RY ).

In the special case as t→ 1 in 11, we get:

Hα(PXY ) ≤ Hα(QX)+Hα(RY )+
α

1− α
D∞(PXY ||QXRY ).

(12)
We also have:

Hα(PXY ) ≤ Hα(PX) +H 1
α
(PYα) (∀α ≥ 0), (13)

where

P[Yα = y] =
∑
x

PXY (x, y)
α exp[(α− 1)Hα(X,Y )].

More generally, for any 0 < u < v <∞, we have:

1− u
u

Hu(X,Y ) +
v − 1

v
Hv(X,Y ) ≤(

1

u
− 1

v

)
(Hu

v
(Xv) +H v

u
(Yu)). (14)

In particular, for α < 1, we have:

Hα(X,Y ) ≤ (1 + α)Hα2(X,Y )−Hα(X,Y )

≤ Hα(Xα) +H 1
α
(Yα2). (15)

Proof.

∑
i,j

Pαi,j =
∑
i

Pαi
∑
j

Pαj|i ≤

 max
1≤i≤M

∑
j

Pαj|i

∑
i

Pαi .

Taking logarithms and dividing everything by 1−α, we get 9.
Proof of 10 follows from Hölder’s inequality with conjugate
exponents 1

α , 1
1−α applied to the two sequences consisting

of the marginal PX and conditional PY |X respectively. Proof
of 11 follows from Hölder’s inequality applied to the product
of two sequences consisting of tilted joint distribution PXY ,
tilted product distribution QXRY , and with a degree of
freedom that enables one to pick t ∈ (0, 1). The special case 12
follows by considering the limiting behavior of the RHS as
t → 1. Moving to the other class of bounds, the general
statement 14 with arbitrary u, v follows from Minkowski’s
inequality for mixed lp − lq norms applied to the marginals
of the tilted joint distribution. The remaining statements 13
and 15 are various specializations of the general statement.
For instance, setting v = α, u = α2 yields 15.

IDEA: For a noiseless MAC, Tsallis entropy single-
letterization yields the following converse bound:

Mλ−1 ≥
[
1 + n

(∑
i pi

λ − 1
)]λ − ελ

(1− ε)λ
∀λ ∈ (0, 1) (16)

where pi denotes the single-letter channel output distribution.
One nice feature of this is seen when one Taylor-expands

∑
i pi

x about x = 1: zeroth order term cancels the 1, first order
term yields entropy, second order term something involving
varentropy, etc. As long as powers don’t mess things up, I
think this should yield a nice, strong converse bound. Note that
this bound uses the tighter inequalities for Rényi divergence
in your paper with Verdu.

VI. CONCLUSION

Although [5] presents many analogs of classical results that
hold for Rényi-like measures of information, some critical
aspects such as single-letterization lack the same structure. At
some level, this paper thus tempers the optimism surrounding
these Rényi-like measures of information, since it may be
argued that single-letterization of some sort is the “heart”
of information theory as applied in the traditional context of
communication. However, some of the successful applications
of Rényi entropy in particular have been in non-traditional
information theory applications, such as DNA sequencing [11],
target tracking [12], and guessing [13]. The successes above
demonstrate clearly that Rényi-like measures of information
are useful. Perhaps a study of these measures in application
domains apart from communication could yield more insight
into what sort of “information” do these measures capture.

At a more technical level, we feel that the bounds estab-
lished in this paper provide a useful first step in understanding
how one can single-letterize Rényi-like measures of informa-
tion. In future work, we plan to examine these bounds more
carefully.

APPENDIX A
PROOF FOR n = 2, α ≤ 0.5

Below we present a proof for n = 2, α ≤ 0.5. It was
initially hoped that the same ideas could be used for all α ≤ 1,
but we ran into difficulties. For the rest of this proof, we let
PA2 = {p0, p1, p2, p3} and likewise PB2 = {q0, q1, q2, q3}.
The labelling is based on base two representation (0 →
00, 1→ 01, 2→ 10, 3→ 11). Then, our conjecture is:

(p0q0)
α + (p1q1)

α + (p2q2)
α + (p3q3)

α + (p0q1 + p1q0)
α

+ (p0q2 + p2q0)
α + (p1q3 + p3q1)

α + (p2q3 + p3q2)
α

+ (p0q3 + p1q2 + p2q1 + p3q0)
α ≤ 1

4α
+

4

8α
+

4

16α
(17)

The idea is essentially “trading mass”. We “equalize”
(p0, p3) and (q0, q3) simultaneously. By “equalizing”, we
mean that we replace a pair (a, b) by

(
a+b
2 , a+b2

)
. We claim

that this increases the left hand side of the inequality. Observe
that (p0q1 + p1q0) + (p1q3 + p3q1) is invariant under this
operation. Likewise, (p0q2 + p2q0)+ (p2q3 + p3q2) is also in-
variant under this operation. Moreover, it is clear that the terms
p0q1+p1q0 and p1q3+p3q1 have been “equalized”. Similarly,
p0q2 + p2q0 and p2q3 + p3q2 have been “equalized” as well.
Thus, we have increased the sum of the corresponding four
terms of 17. The terms p1q1 and p2q2 are unaffected by this
operation. Thus, for the above claim, it suffices to check that
the sum of the remaining three terms in 17 has not decreased.
For this, observe that if (p0, p3) and (q0, q3) are “opposite



sorted” (terminology that is used regarding rearrangements of
sequences), we have a successful majorization:(

p1q2 + p2q1 + 2p0+p32
q0+q3

2 ≥ p0+p3
2

q0+q3
2 ≥ p0+p3

2
q0+q3

2

)
is majorized by
(p1q2 + p2q1 + p0q3 + p3q0 ≥ p0q0?p3q3),
where ‘?’ denotes an intermediate inequality that is not

needed to have a definite direction for the majorization to hold.
In the case of similar sorting, by the rearrangement inequal-

ity, it follows that the term p0q3 + p1q2 + p2q1 + p3q0 has not
decreased. Thus, it suffices to check that (p0q0)α + (p3q3)

α

has increased. For this, we depend critically on α ≤ 0.5.
By normalizing, we may assume that p0 + p3 = q0 + q3 =

2 without loss of generality, since the desired inequality is
homogenous. Thus, it suffices to check that for any variables
w, x, y, z such that w+z = x+y = 2, and α ≤ 0.5, we have:

(wx)α + (yz)α ≤
√
(w2α + z2α)(x2α + y2α)

≤
√
(w + z)(x+ y) ≤ 2,

using α ≤ 0.5 as desired.
Thus, we have the claim that the “0-3” equalization can’t

decrease the left hand side when α ≤ 0.5. By symmetry, we
may follow the “0-3” equalization by a “1-2” equalization to
further not decrease the left hand side. Thus, for 8 (under α ≤
0.5), it suffices to prove 8 for for all choices of 0 ≤ p, q ≤ 0.5,
where A2 takes the p.m.f (p, 0.5−p, 0.5−p, p), and B2 takes
the p.m.f (0.5− q, q, q, 0.5− q).

Let ~y denote the channel output distribution for the above
A2 and B2. Then,
~y = (2p(0.5−q)+2q(0.5−p), pq+(0.5−p)(0.5−q), pq+

(0.5−p)(0.5−q), pq+(0.5−p)(0.5−q), pq+(0.5−p)(0.5−
q), p(0.5− q), p(0.5− q), q(0.5− p), q(0.5− p)).

Suppose 2p(0.5−q)+2q(0.5−p) ≤ 0.25. Then, the equation
4r(0.5− r) = 2p(0.5− q)+2q(0.5− p) has a solution in 0 ≤
r ≤ 0.5. In this case, consider A∗2 = (r, 0.5−r, 0.5−r, r) and
B∗2 = (0.5 − r, r, r, 0.5 − r) respectively. Then, the channel
output
~y∗ = (4r(0.5 − r), r2 + (0.5 − r)2, r2 + (0.5 − r)2, r2 +

(0.5− r)2, r2+(0.5− r)2, r2+(0.5− r)2, r(0.5− r), r(0.5−
r), r(0.5− r), r(0.5− r).

This effectively “matches” the desired ~y. More precisely, it
is clear that the first term is the same in both vectors; r(0.5−r)
is the average of the sum of the last 4 terms of ~y; and hence
in fact the first five terms are the same in both vectors.

Putting these claims together, we have that ~y∗ is majorized
by ~y in this case.

Now suppose 2p(0.5− q) + 2q(0.5− p) > 0.25. Then, the
equation 2r2 +2(0.5− r)2 = 2p(0.5− q) + 2q(0.5− p) has a
solution in 0 ≤ r ≤ 0.5. In this case, consider A∗∗2 = (r, 0.5−
r, 0.5 − r, r) and B∗∗2 = (r, 0.5 − r, 0.5 − r, r) respectively.
Then, the channel output

~y∗∗ = (2r2+2(0.5− r)2, 2r(0.5− r), 2r(0.5− r), 2r(0.5−
r), 2r(0.5− r), r2, r2, (0.5− r)2, (0.5− r)2).

We claim that this effectively “matches” the desired ~y. The
first term is the same in both vectors by the choice of r. Also,
the sum of the last four terms is the same in both vectors.
Thus, the first five terms are the same in both vectors.

We now claim that |r2− (0.5−r)2| ≤ |p(0.5−q)−q(0.5−
p)|.

This claim shows that (r2, (0.5 − r)2) can be obtained by
“trading mass” between (p(0.5− q), q(0.5− p)).

We now prove the claim.
For ease of dealing with absolute values, we assume without

loss of generality that r ≥ 0.25 and p ≥ q.
Using the fact that r and 0.5 − r are the two roots of a

quadratic x2 + (0.5 − x)2 = p(0.5 − q) + q(0.5 − p), and
simplifying, we see that this is equivalent to:√

4p+4q−16pq−1
2 ≤ p− q.

Squaring both sides, it suffices to show that:
4p2 + 4q2 − 4p− 4q + 8pq + 1 ≥ 0, or equivalently,
(2p+ 2q − 1)2 ≥ 0, which is clearly true.
Collecting all these claims, we see that ~y∗∗ is majorized by

~y in this case.
Altogether, we have now reduced the task to proving two

single variable inequalities, one corresponding to ~y∗, and the
other corresponding to ~y∗∗ parametrized by the variable r.

These inequalities are easy to establish by derivative tests.
Thus, we have resolved the conjecture when n = 2, α ≤ 0.5.
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[1] A. Rényi, “On measures of entropy and information,” in Fourth Berkeley
symposium on mathematical statistics and probability, vol. 1, 1961, pp.
547–561.

[2] I. Csiszár, “Generalized cutoff rates and renyi’s information measures,”
Information Theory, IEEE Transactions on, vol. 41, no. 1, pp. 26–34,
1995.

[3] R. Sibson, “Information radius,” Zeitschrift für Wahrscheinlichkeitsthe-
orie und verwandte Gebiete, vol. 14, no. 2, pp. 149–160, 1969.

[4] S. Arimoto, “Information measures and capacity of order α for discrete
memoryless channels,” Topics in Information Theory, Proc. Coll. Math.
Soc. János Bolyai, pp. 41–52, 1975.
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