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Abstract

Traditional error correction and source coding has focused on the stochastic setting
where separation based schemes are optimal, and current solutions for applications
requiring both lossy compression and noise resilience reflect this approach. However,
in the adversarial setting, with worst case errors, separation based schemes are far
from being even asymptotically optimal. This work investigates fundamental limits,
achievability and converse bounds, practical codes, and algorithms for joint source
channel coding (JSCC) in the adversarial setting. Particular attention is paid to the
binary symmetric channel (BSC) and the binary erasure channel (BEC).
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Chapter 1

Background

Coding theory, more specifically, source and channel coding, has a long and fruitful
history paved with many seminal papers and culminating in comprehensive textbooks.
Traditionally, these coding problems have been divided into two categories, stochastic
and adversarial /combinatorial, based on the distortion measure, average for stochastic
and worst case for combinatorial. The focus of this work is combinatorial joint source-
channel coding (JSCC). In particular, CJSCC for the binary symmetric channel (BSC)
and the binary erasure channel (BEC) where the distortion measure of interest is the

Hamming distance.

1.1 Combinatorial Coding

In binary Hamming space, the combinatorial coding problem is a packing problem and
is addressed extensively in [11] and [18|. The packing problem secks the maximum
number of points with the distance between any two points greater than a given
minimal distance, or, equivalently, the maximum number of disjoint balls of a given
radius that can be packed into binary Hamming space of a given dimension. An exact
asymptotic solution is open, the best known lower bound is the Gilbert-Varshamov
bound and the best known upper bound is the MRRW bound [13|. The multiple
packing problem [3] is an extension of the packing problem wherein any Hamming

ball of a given radius cannot contain more than a given number of points.
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1.2 Combinatorial Compression

The corresponding compression or source coding problem is a covering problem, and
a near comprehensive treatment is given in |7]. Historically, the covering problem has
proven to be much more attainable than the packing problem and an exact asymp-
totic characterization has been found. Moreover, it is shown in [2] that the rate
distortion function in the stochastic and adversarial settings are equal. The combina-
torial covering problem is further subdivided into linear and nonlinear, i.e. whether
the collection of points form a subspace. The asymptotic rate of the optimal linear
covering is given in [5] for binary Hamming space and [6] for non binary Hamming
space. The techniques used in [6] also demonstrate that more general tilings, beyond

Hamming spheres, can be used as efficient covers.

1.3 Stochastic Joint Source-Channel Coding

As mentioned, the primary focus of this work is CJSCC and the literature on this
topic appears to be lacking. In the stochastic setting the separation principle [16], [15],
asymptotically there is no loss in separate source and channel coding, has supported
individual study for compression and coding. As such, research in stochastic JSCC has
been minimal, but in the interest of completeness we mention a few such endeavors.
In [21] and [4] joint coding techniques are used in estimation theory to derive new
lower bounds for signal parameter estimation. More recently, the nonasymptotic
performance of JSCC has been sharpened with the introduction of a second order
term called the JSCC dispersion [19], and the exponent of decay for probability of

success is given in [20].

1.4 Combinatorial Joint Source-Channel Coding

The adversarial joint source-channel problem and a framework for analysis were in-
troduced in [9] and expanded in [10]. An adversarial joint source-channel problem is

specified by an adversarial source and an adversarial channel. An adversarial source
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consists of a source alphabet with a given probability distribution, a reconstruction
alphabet and a distortion metric between source and reconstructed symbols. An ad-
versarial channel consists of an input alphabet, an output alphabet and a conditional
distribution. The adversary is restricted to outputs that are strongly typical given

the input with respect to the conditional distribution.

For the BSC, the alphabets are all binary Hamming space, the distortion metric
is the Hamming distance and the adversary is restricted to outputs whose hamming
distance to the input are bounded according to the channel parameter. The CJSCC
problem is characterized by choice of an optimal encoder-decoder pair. Error-reducing
codes, introduced in [17], are very similar to the CJSCC problem for the BSC and used
to construct traditional error-correcting codes. More specifically, an encoder-decoder
pair is an error-reducing code if it is a CJSCC over a window of values. Jointly
tailoring matched encoder-decoder pairs has been previously investigated, but, to the
author’s knowledge, not in the general framework presented in [9]. In particular, in
[14] a cryptographic based encoder-decoder pair is used to improve known results for

the adversarial channel with computationally bounded noise.

For the BSC and the BEC tradeoff between optimal distortion and bandwidth
expansion factor is sought. In [9] it is shown that the optimal JSCC for the BSC and
unit bandwidth expansion factor is the identity map and this is strictly better than
any separated scheme. For higher order bandwidth expansion factors an analog of the
identity scheme is the repetition code, and, unlike the traditional stochastic setting,
the performance of the repetition code is nontrivial. This observation instigated an
investigation into the repetition of other small dimension codes. In [8], the asymptotic
performance of repeating a small dimensional code and a more detailed analysis for
repetition of the perfect seven four Hamming code for the BSC is given. Repetition
of small order codes is much more straightforward for the BEC and the corresponding
asymptotics will be analyzed.

Given an encoder one can calculate the performance of and give an explicit rep-

resentation for the optimal decoder, and similarly for a given decoder. In particular,

for an encoder, the optimal decoder is the Chebyshev center of the preimage of a



Hamming ball dependent on the input. Unlike its Euclidean analog the Chebyshev
center is not unique, and determining the Chebyshev center and the corresponding
Chebyshev radius of a set in Hamming space is computationally intensive. There-
fore, practical implementations of JSCC will require efficient algorithms for finding
Chebyshev radii. These and similar questions are addressed in [12]|, where, among
other things, an efficient algorithm for calculating Chebyshev radii using a linear

programming relaxation is given.

10



Chapter 2

Preliminaries

The notation for the n fold product of the field of two elements [} is used for n
dimensional binary Hamming space, d(-,-) is the Hamming distance and w(+) is the
Hamming weight. Given a set S C F§ its Chebyshev radius is the radius of the

smallest Hamming ball containing all of its points

rad(S) = min maxd(z, y),

a point yo achieving this minimum is called a Chebyshev center, and its covering

radius is the radius of the smallest covering by points in S

COVS: .da .
Teov(S) max min (2,9)

These two quantities satisfy an important relation

rad(S) = n — reov(5).

Proof. Let ¢ be a Chebyshev center of S and choose s € S such that d(s,1 + ¢) <
cov(S), then

n=d(c,1+c) <d(e,s)+d(s,1+c) <rad(S) + cov(S).
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Suppose rad(S) + cov(S) > n, then there exists zy € F} such that

—rad(9) < S) = inwt = min wt :
n —rad(S) < cov(S) iré%é(rsnelgw(x—ks) ISIlelélw(Io—i—S)

Thus
rad(S) > meagc{n —wt(zg + 5)} = meakg(vvt((l +x9) + 9),

a contradiction. O
There are also some combinatorial quantities of interest:
e K(n,r)— minimal number of points covering Fj with radius r balls;

e A(n,d) — maximal number of points in F§ with distance between any two points

at least d;

e Ap(n,r) — the maximal number of points in Fj such that any ball of radius r

contains at most L points.
The two packing numbers are related A;(n,r) = A(n,2r + 1).
Lemma 1. For all x € F}
i) B.(z) = B.(0) + z;
ii) By (x) = By—r—1(z + 1).
Proof.

i) Let f(y) =y+x. Claim: f: B.(0) — B,(z) is an isomorphism. Suppose f(y) =
f(2), then y+2 = 24z andy = z. Let z € B.(z). Then z = (z—z)+z = f(z—x),
where d(z — xz,2) = w(z — 2z +z) = w(z) < r implies z — x € B,(x). Hence

B.(x) = f(B(0)) = B.(0) + 2.

ii) Similar to part i, BS(x) = BE(0) +x. Let g(y) = y+ 1. Claim: g : B,,_,_1(0) —
B(0) is an isomorphism. From part i, it is in injective. Let z € BY(0), then

z=f(z—1). Forally € F}, w(ly — 1) = w(y +1) = n — w(y). Therefore,

12



if w(z) > r+1, then w(z—1) <n—r—1and z—1 € B,_,_1(0). Thus
Brc<0) = f(Bn—r—l(O)) = Bn—r—l(o) + 1.

Lemma 2. Let {a,} and {b,} be sequences in R.

i) liminf, . (a, + b,) > liminf, . a, + liminf,_,.. b,, whenever liminf,_, a, +

liminf,,_,. b, ewists.
ii) For ay,,b, >0, liminf, . a,b, > (liminf, . a,) (liminf, . b,).
i) For 0 < A <1, liminf, o ajn, = liminf, . ay.
Proof.

i) As {(n,n) |n>k} C{(i,j) |i,j > n}, for all n

: S b —infa tinf b,
;igfb(a” +b,) > (i,j%ﬁg‘Zn(al + b)) gﬁ a; + jlgf b;

If liminf, a,, and liminf, b, are both finite, then a limit will distribute over the
sum. By assumption liminf, a, + liminf,, b, is well defined, i.e. infinite of the
same sign. It suffices to show that liminf, ,.(a, + b,) is infinite when either

liminf,_,. a, or liminf,_,. b, is infinite. This follows from the above equation.

ii) Similarly, by nonnegativity,

e e b e
Jhlanbe) 2. uls (oiti) = ples Lo

iii) {ajan} = {an}-

The floor function is superadditive.

Lemma 3. Forz,y € R

lz+y] > |z] + y].
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Proof. Let z,y € R, with « = n, +r, and y = n, + r, where n,,n, € Z and

0<rz1, <1 Then

[z +y| =ng+ny+ [re +1y) >np+n,=|2] + |y

The Chebyshev radius in Hamming space is additive.
Lemma 4. For allm,n € N, A C FJ* and B C F3, rad(A @ B) = rad(A) + rad(B).

Proof. Let x4 be a Chebyshev center for A and zp a Chebyshev center for B. Let

x € Aand y € B, then
d([zy], [zays]) = d(z,x4) + d(y, yp) < rad(A) + rad(B)

Hence rad(A @ B) < rad(A) + rad(B). Similarly, let [z 445 yasp] be a Chebyshev
center of A@ B. Forallz € Aand y € B

d(z, 2asp) + d(Y, yasp) = d([z Y], [taep yass]) < rad(A & B).
As this holds for all x,y

rad(A) +rad(B) < max d(v, zagp) + max d(y, yasp)
T Y

= max [d(7, Taep) + d(Y, YaeB)]

x’y

<rad(A @ B).

Hence rad(A & B) = rad(A) + rad(B). O
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Chapter 3

Binary Symmetry Channel

3.1 CJSCC for the BSC

Definition 1. Let k,n € N, E € {0,...,k} and A € {0,...,n}. A pair of maps
f:FY = F% and g : T3 — F5 is a (k,n; E,A) CJSCC if, for all (z,y) € F5 x F3,

d(f(x),y) <A = d(xag(y)) <E,
or, equivalently, E(A;k,n, f,g) < E, where

E(A;kn, f,g) = max d(x, .
( f,9) X (z,9())

In the sequel the £ and n may be dropped when understood from the context.
Moreover, the notation E(A;h) is used when h is either an encoder or decoder, an
encoder being a map from the source space to the channel space and a decoder being
a map from the channel space to the source space. In the interest of notational
consistency, typically, an encoder is denoted with an f, a decoder with a g, the source

dimension is k£ and the channel dimension is n.
Definition 2. The optimal distortion for a (k,n; E,A) CJSCC is
E*(Ask.n) = min E(A; f,g),
79
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with minimization over f : Fy — F2 and g : F} — F5.
The following is a simplified characterization of the CJSCC performance of en-

coders and decoders.

i) For all f:F% — F73,

B(A; f) = min B(A; f,g) = maxrad (£ Ba(y))
S

the optimal decoder is g*(y; A, f) € cen(f~'Ba(y)).

ii) For all g : F} — F%,

2€F% z€F} yeBa(2)

E(Asg) :=minE(A; f,g) = maxmin max d(g(y),z),

the optimal encoder is f*(x; A, g) € argmin.cry maxyep, (=) d(g(y), ).
Proof.

i)
max d(zx, =max max d(x,
(z,y):d(f (z),y)<A (z.9(1)) yeFy zef~1Ba(y) (. 9()

> maxmin  max d(z,2)
yEFy 2eFk zef~1Ba(y)

= maxrad(f ' Ba(y)),
yery

and g(y; A, f) € cen(f~'Ba(y)) achieves the bound.

i)
max d(z, =max max d(z,
eadiiX A 9W)) D e ) (z,9(y))

> maxmin max d(x
2 maxmin max (z,9(y)),

and f(z; A, g) € arg min.epy maxyep;, (-) d(z, g(y)) achieves the bound.

]

In the sequel, an encoder f : F5 — F2 (resp. decoder g : F§ — F%) may be called

a (k,n; E,A) CISCCif E(A;f) < E (resp. E(A;g9) < E).
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i) A function f : F¥ — F3is a (k,n; E,A) CJSCC if and only if, for all S C F%,
rad(S) < A implies rad(f(9)) < E.

ii) Let f:Fy — F2 be a (k,n; E,A) CISCC

a)
rad(f(5)) <A — rad(S) < E.

d(z,y) = 2E +1 = d(f(z), f(y)) = 2A + 1.

c) If f(0) =0, e.g. f is linear,

w(z) > 2E +1 — w(f(z)) > 2A+1.

The later implications are very weak necessity conditions for any CJSCC f and

comprise the basis for a series of converse bounds.

3.2 Converse Bounds

Two important converse bounds arise by studying the behavior of intrinsic combina-

torial objects, i.e. coverings and packings, under the action of a CJSCC.

3.2.1 Covering Converse

Theorem 1. (Covering Converse) If a (k,n; E,A) CJSCC exists, then
i) K(k,E) < K(n,A);
i) K(k,k—E—1)>K(n,n—A-1).

Proof.

i) Let C' C F3 be a minimal K (n, A) covering. Partition F} into {U. : ¢ € C'} with
rad(U,) < A for all c. By the CJSCC condition, {f~U.} is a partition of F}
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with rad(f~'U.) < E. For each ¢ choose a Chebyshev center ¢ of f~!U,. Let
C" = {c'}, then 1. (C") < E and thusly K (k, E) < |C'| = |C| = K(n, A).

ii) Suppose K(k,k—E—1) < K(n,n—A+1). Let S C F} be a minimal K (k, k —
E — 1) covering. Then |f(5)| < K(k,k— E —1) < K(n,n — A —1). Thus
rad(f(S)) < A and rad(f~'f(9)) > rad(S) = E + 1 > E, a contradiction.

The statements are equivalent by Theorem 4. O]

3.2.2 Packing Converse

Theorem 2. Let f be a (k,n;E,A) CJSCC. If an L-multiple packing of radius E

exists in F5, then its image under f is an L-multiple packing of radius A and

AL(]{?, E) S LAL(TZ, A)

Proof. Let C' be an L-multiple packing of radius E. Suppose f(C') is not an L-multiple
packing of radius A. Then there exists yo € F} such that |f(C) N Ba(yo)| > L. By
construction rad(f(C) N Ba(ys)) < A. Thus there exists xy such that f~1(f(C) N
Ba(yo)) C Bg(xg). For all ¢g € C,

flco) € fF(C)NBa(yo) = ¢ €CNfHf(C)N Balw))-

Hence [CNBg(xo)| > |CNfHf(C)NBal(yo))| > |f(C)NBa(yo)| > L, a contradiction.
The bound follows from |f~(f(c))| < L. O

With L = 1, this yields the coding converse of [9],

Ak, 2B + 1) = Ay(k, E) < Ay (n, A) = A(n, 2A + 1).
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3.3 Basic CJSCCs

3.3.1 (Psuedo)-Identity Code

The (pseudo)-identity code i, maps by identity the first min{k,n} bits and zero

pads the remaining n — min{k, n} bits.

Lemma 5. Let k,n € N and A € {0,...,n}. The distortion of the (pseudo)-identity

map Iy, : F5 — Fy is

E(A;I,) = min{k, A + max{0,k — n}}.

Proof. Let f = Ij,,. Suppose k < n. By construction, for all y € Fy, f~'Ba(y;n) =
S Ba([y¥ 0];n) = Buingr,ay (¥t ; k). Thus E(A; f) = min{k, A}. Suppose k > n.
By construction, for all y € F}, f~'Ba(y;n) = Ba(y; k) @ F5™. Thus E(A; f) =
A+ (k—n). O

3.3.2 Repetition Code

Let k,n € N. By the division algorithm there exists unique ¢, r such that n = ¢k +r
with 0 < r < k. The repetition codes repeats the i-th bit ¢ + 1 times if « < r and ¢
times if ¢ > r, i.e. x; — 332(1) g;fm)] where m € {q,q + 1}. Therefore, the first r
bits will be repeated ¢ + 1 times and the last k — r bits will be repeated ¢ times. As

such, the adversary will erase the later bits first and the corresponding distortion is

A 0<A<(k—1)[q/2
B(A:Ry,) = 4 7 ( )a/2]

AUeonlal2l L () ) (k—1r)[¢/2] <A<n

The case n = pk, p € N is called the p-repetition code and is denoted R, : F§ — Ing.
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3.3.3 Separated Code

For 2 < M < max{A(n,2A + 1),2}, the M-separated code Sy, sets a correspon-
dence between a radius E cardinality M covering in F§ and a radius A cardinality
M packing in F} and maps points according to their respective approximation point.

The resulting distortion is the largest F such that

K(k,E) < A(n,2A + 1).

3.3.4 Composition of Encoders

Lemma 6. (Composition Lemma) Let k,m,n € N and A € {0,...,n}. For all

leé%an andszgL%Fg

E(A; fao fi) S E(E(A; f2); fi)

and

E*(Ask,n) < E*(E*(Aym,n);k,m).

Proof. Let g; and g2 be the optimal Chebyshev decoders. Then d((fzo f1)(x),y) < A
implies d(f1(z), g2(y)) < E(A; f2) implies d(x, (g1 0 92)(y)) < E(E(A} f2); f1). The

second statement follows immediatley from the first using the optimal encoders. [J
Combined with the pseudo-identity code this establishes a weak continuity result.
Lemma 7. Let k,n,a,b € N.

i) For all A <n,
E*(Ask+a,n+b) < E*(A;k,n)+a.

ii) For all A > b,
E*(Ask+a,n+b) > E(A—=b;k,n).

Proof.
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i) Let f be a (k,n; E*(A;k,n),A) CJSCC. By Lemmas 6 and 5

E(A ; In,n+b o f o ]k-l—a,k:) S E(-E(E(A ; In,n—l—b) ; f) ; ]k-i—a,k) = E(A ; f) +a.

ii) Similarly, let f be a (k+a,n+b; E*(A;k+a,n+b),A) CJISCCandT' = A —b.
By Lemmas 6 and 5

E(; Inypnofolyire) < E(E(E(; Lnvon) s )i Iopra) = E(T+0; f) = E(A f).

3.4 Linear Encoders

A linear (k,n; E,A) CJSCC is an n x k matrix A € F3** and satisfies, as A0 = 0,

for all z € F%,
w(x) >2E+1 == w(Az) > 2A + 1. (3.1)

The structural conditions imposed by a linear encoder induce an equivalence relation
on the preimage of Hamming balls thereby reducing the number of points that need

to be evaluated. In particular when evaluating the distortion of A,

E(A; A) = max rad(A™'Ba(y)),

yelry

one can restrict to a subset of F} consisting of the coset leaders of A(F%) with weight
less than or equal to A.

The performance of the repetition code, in particular, for odd p, has proven to
be nontrivial. In the class of linear codes where all of the rows have unit weight,
the repetition code assigns equal favor to all coordinates. Moreover, one can show
that the repetition code or some permutation thereof is the unique linear code such

that wt(Az) = pwt(z) for all p. The following technical Lemma and its practical
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extension establish that the repetition code is asymptotically optimal in the class of

linear codes with unit weight rows for odd p.

Lemma 8. Let p > 0, {¢c; e N: 1 <i <k} withey <y < ... < ¢y andezlci:

|pk]. For all0 <m <k

“ lpk] +1
;(Ci/ﬂ < B ——m.

I =

Proof. Let 7 = |pk]/k. As the ¢; are integers,

2
=1
Thus
k m k
D Tei/21 =D [ei/21+ ) Tei/2]
i=1 i=1 i=m+1
T+ 1 T+1 T+1
k— = k
> 5 m + 5 ( m) 5k
a contradiction. O

Proposition 1. Let A : F¥ — FS". If wt(a;) = 1, for alli, then for all A € {0,...,n}

p@iA) zmin{ |2 a-1) k.

Proof. Let {¢; : 1 < i < k} be the sums of the k columns of A. By construction
Zle ¢i = pk. WLOG assume ¢ < ... < ¢,, CJSCC performance is unaffected
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by permutation of rows and columns. If all of the rows have weight one, then the
adversary’s only option is to distort individual bits in F, i.e. flip [¢;/2] bits in F5"
wheres ¢; is the number of bits in column i thereby distorting bit ¢ in F5. Thus,
the adversary will flip bits in order of the smallest column weights according to the

following maximization

M = max{m ; zm:(cz/ﬂ < A}.

The corresponding distortion is
E(A;A) = min{M, k}.

By Lemma 8,
M+1

A<§j/ﬂ<——w+m

and thusly M > [ A — 1-‘ O]

Lemma 9. Let A € F3** and X a k-dimensional vector of i.i.d. Bernoulli(q) random
variables. Then

Blu(AX)] = 5 - SVa(1 - 2)

where V4 1s a generating function for the weight of the rows of A.

Proof. Let a; be an enumeration of the rows of A and V4 the corresponding generating

function.



where (a) follows because, for all j > 0,

E

ij mod 2] = %(1 — (1 —2¢)).

The following simple Proposition follows immediately.

Proposition 2. (Conservation of weight) For all A € Fy**

Z w(Azx) = %T(A) Z w(zx),

z€Fs z€F%

where zr(A) is the number of identically zero rows of A.

Proof. Let {X;|1=1,...,k} be a sequence of i.i.d. Bernoulli 1/2 random variables,
X = (X1,...,X}) a vectorization and A € F3**. By Lemma 9,

Blo(AX)] = 5 = 3Va(0)
_n- zr(A)
2
- n—zr(A)k  n—zr(A)
— o Blw(X)]

As all sequences are equiprobable, multiplying both sides by 2* gives the result. [

If n = pk, then the previous theorem is more succinctly erﬂf’g w(Azx) < p erﬂf’g w(x).

Thus there does not exist a linear encoder A such that w(Az) > pw(x) for all x.
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3.5 Duality

3.5.1 Dual Problem

The adversarial CJSCC problem is
E* A,k,n :min max d z,
( ) [.9 (2,y)€FEXFL : d(f(x),y)<A ( g(y))

= minmaxmin max d(z,2)
I EF} 2eFk vef-1Baly)

— mj d(f'B
min max ra (/7 Baly))

= minmax min max d(z,x),
9 xeF yeFy z€9Ba(y)

where f : F§ — F% and g : F§ — F%. The corresponding dual problem is
A*(E;k,n) +1=max min d(f(z),y)
19 (2,y)€F5XFY :d(z,g(y))>E+1

= maxminmax min d(y, z)
9 zeFk 2€F3 yeg—1BE(2)

= max min Tcov<g_1Bg($))
g xeF’g

= maxminmax min d(z,y),

I y€Fy zeFk 2B (x)

where f : F¥ — F% and g : F? — F%. A few basic properties of binary Hamming

space provide an immediate relationship between the primal and dual problem.

Theorem 3. (Duality)

A" (E;kn)=n—E(k—-E—-1;nk)—1.
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Proof. For S C FY, reoy(S) = n —rad(S). Combined with Lemma 1

A*(E ik, TL) + 1 = maxmin Tcov(g_lBg(x))

g w€F§

=n —minmax rad(¢ ' By_p_1 (7 + 1))
g mEFg

=@ pn — minmax rad(¢ ' By_p_1(z))
9 zeF%

= —E*(k—E—1;n,k),
where (a) follows because Fy + 1 = F3 and (b) follows because the minimization is
over g : Fy — Fk. O

We collect some equivalent conditions and a few more implications and relation-

ships between the primal and dual problems.
Lemma 10.

i) E*(I';k,n) < F if and only if A*(F;k,n) >T.
i) If EX(T' +1;k,n) > F+1, then A*(F;k,n) <T.
iii) If A*(F —1;k,n) <T —1, then E*(I";k,n) > F.
Proof.

i) Suppose E*(I';k,n) < F. Let f* and ¢g* be the maps achieving E*(I"; k,n).
Then, by the contrapositive to the JSCC condition, d(z, g*(y)) > E*(I'; k,n) +1
implies d(f*(z),y) > '+ 1. Thus, as F' > E*(I"; k,n),

A*(F;k,n)+ 1 =max min d(f(z),y)
£,9 (2,y)E€FE xFY : d(z,9(y))>F+1

> min d(f*(z),y
(2.9)EFE XFY :d(z,9* (5) > F+1 (/@) )

>T 4+ 1.

Suppose A*(F;k,n) > I'. Let f* and ¢g* be the maps achieving A*(F;k,n).
Then d(z, g*(y)) > F + 1 implies d(f*(x),y) > A*(F;k,n) + 1.
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ii) Let Ag = A*(F';k,n). Suppose Ag > I'+1. Let f* and ¢* be the maps achieving
Ay. Then d(z,¢*(y)) > F + 1 implies d(f*,y) > A¢g+ 1. Thus EX(I'+1;k,n) <
E*(Ag; k,n) < F, a contradiction.

iii) Let Fy = E*(I'; k,n). Suppose Fy < E—1. Let f* and ¢g* be the maps achieving
Ey. Then d(f*(z),y) < I' implies d(z,g*(y)) < Ey. Thus A*(F — 1;k,n) >

A*(Ey; k,n) > T, a contradiction.

Corollary 1.

)
E*(Ask,n) = Ea,

where En is the smallest F' such that A*(F;k,n) > A.

ii)
A" (E;k,n) = Ag,

where Ag is the largest T such that E*(T'; k,n) < E.
Proof. Let E*(-) :== E*(-; k,n) and A*(-) :== A*(-; k,n).

ii) E*(Ap) < E = A*(E) > Ag and E*(Ap+1) > E+1 = A*(E) < Ap.

Corollary 2.
A(k—E—-1;kn)=n—Ap—1,

where Ag is the smallest I such that E*(n — ' —1;k,n) <k—FE — 1.

Corollary 3. If E*(A+1;k,n) > E*(A;k,n), then

A (E*(Ask,n);k,n) =A.
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Proposition 3.

E*(E*(Ask,n);n k) = Ag,
where Ag is the smallest I such that E*(n — ' —1;k,n) <k— E*(A;k,n)—1.
Proof. Combining the results of Corollary 2 and Theorem 3

E*(E*(Ak,n);n k) =n—A"(k— E*(A;k,n)—1;kn)—1

3.5.2 Operational Duality

The following Theorem provides a correspondence between achievable distortion points

at source-channel dimensions (k,n) and (n, k).

Theorem 4. (Operational Duality) A (k,n;E,A) CJSCC exists if and only if an
(n,k;n—A—-1,k—FE—1) CJISCC exists.

Proof. If the pair (f,g) is a (k,n; E,A) CJSCC then the pair (g + 14, f + 1,,) is an
(n,k;n—A—1,k— E —1) CJISCC. More specifically, for all (x,y) € Fy x Fk,

The reverse implication follows by symmetry. O]
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Chapter 4

Asymptotics for the BSC

Asymptotically we allow the user to choose the optimal sequence of source and channel

dimensions for a given bandwidth expansion factor p > 0.

Definition 3. For bandwidth expansion factor p > 0, the asymptotically optimal
CJSCC is

1
D*(0;p) == nf lim inf —E* A ks o),

where the infimum is over unbounded sequences of natural numbers {k,,}, {n,} and

{A,, €{0,...,n,}} such that

lim LAm =0 lim — =p.
m—00 Ny, m—ro0
A triplet of sequences ({A,.}, {kn}, {nm}) satisfying the conditions of Definition
3 is said to be a admissible (4, p) source-channel sequence. The point (D, d) is asymp-
totically achievable if there exists a sequence of (k,,, npy, ; Em, Ap) CISCCs (fin, gim)
such that 1 i-Em — D and A — d. The region of asymptotically achievable (D, J)
with bandw1dth expansion factor p is lower bounded by the curve (D*(§; p), ). More-
over, the region is completely characterized by this lower boundary, i.e. a (k,n; E,A)
CJSCC is a (k,n; F,T') CJSCC for all F > FE and " < A.
The following Lemma provides an approximation for the limit of a sequence of

functions acting on a sequence. This result is used to extend nonasymptotic results,
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in particular converse bounds, into an asymptotic setting.

Lemma 11. Let {f, : R — R} be a sequence of functions, {x, € R} a sequence,
{nr € N} a subsequence and x = liminfy_,o x,, . Suppose there is an interval (a,b)
where the f, are nonincreasing and liminf, . f, is bounded below by a real valued

right continuous function g. If a < x < b, then

lim sup f,,, (zn,) > g(2).

k—o0

Proof. Let ¢ > 0 and Ky € N. Let hy = inf,,>¢ f,,, and h = lim;_, hy. By right
continuity of g on (a, b), there exists d. > 0 such that, for all § < ., |g(z+0)—g(x)| <
e. Fix a §p < min{d.,z — a,b — x}. Since h > g > —o0, hy converges pointwise on
(a,b). Thus, there exists K7 > K such that, for all k > K, |hi(x+0d0)—h(z+d)| < €.
Thus, for all £k > K,

hi(z + do) > h(z + do) — € > gz + do) — € > g(z) — 2.

There exists Ky > K; such that, for all k > Ky, x,, > x—0d, and there exists K3 > K,

such that z,, < x+ dy. Hence, as the f, are nonincreasing on (a,b),
an3 (an5> > an3 (& + 60) > hK3(£ + 50) > g(£) — 2e.
]

Corollary 4. Let {f, : R — R} be a sequence of functions, {x,, € R} a sequence,
{nr, € N} a subsequence and x = liminfy_,o x,,. Suppose there is an interval (a,b)
where the f, are nondecreasing and limsup,, . fn is bounded above by a real valued

right continuous function g. If a < x < b, then
liminf f,, () < ().
k—o0

Corollary 5. Let {a,} be a sequence, {ny} a subsequence and {X,} an i.i.d. sequence

30



of random variables. If liminfy_, - a,, < E[X], then

k—o00

1 &
limsup Pr | — X, >a, | =1.

Proof. By the law of large numbers

4.1 Asymptotic Converse Bounds

This section serves primarily to extend the known converse bounds of [9] and any
converses explicitly named reference converses given therein. The nonasymptotic

converse bounds of the preceding chapter are extended by analyzing the limit of their

normalized rate.

The information theoretic converse (IT) and asymptotic coding converse (CC) are

;

Din(d; p) == (1= p(1=h()[F) 0<6<3
2 1<d<1
and ,
Lh 1 (1—pRurrw(20)) 0<d <1
Dcc(65p) = 1 Los<l, @)
: l<s<i

\

where h(z) := —xzlogx — (1 — x) log(1l — x) with base 2 logarithms and

~

RMRRW((S) ‘= min 1+ h(UQ) - il(UQ + 2(1 + U)(S),

0<u<1-25

where h(u) := h((1—+/1 — ©)/2). The maximum of these two lower bounds represents
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the current state of the art, and our contribution is an improvement for all § and p,

excluding the combination of § < 1/2 and p < 1, where the IT converse is optimal.

4.1.1 Asymptotic Covering Converse

Asymptotically Theorem 1 and Lemma 11 yield a lower-bound on D*(J; p) given by

the following function:

h=H (L = p(1 = h(8))[*) 0 <

Deov(6; p) = : (4.2)
L—h7 (1= p(L = h(1=0))[") &>

N[ =

N =

Corollary 6. For all0 <0 <1 and p > 0,
D*(0;p) = Deon(0; p),

where, D .oy(05p) 2 [0,1] = [0,1], Deow(d5p) :=

(

0 0<do<1-6,
h=H(1 — p(1 — h(4)) 1-6,<0<1)/2

1—h'(1—p(1—h(1-08)) 1/2<6<9,

1 ,<d<1

\

and 0, is the largest v such that h(1 —~) >1—1/p.

Proof. Let ({An},{kn},{nm}) be an admissible (4, p) source-channel sequence, 9,, =
%Am, D,, = ﬁE*(Am s kmy ), D = liminf,, .o D,, and f,, : [0,1] — [0,1],
fm(x) := L log K (m, |wm]). Then lim,, o fmn is the limit of the normalized rate for

the asymptotically optimal covering and, see e.g. [7] ch. 12, this limit exists

1—h(z) 0<az<1/2
f(x) = lim f,(2)= :
0 1)2<z<1
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Thus, as f,, is nonincreasing, f,,(x) satisfies the conditions of Lemma 11 and f,,(1—x)

satisfies the conditions of Corollary 4. Combined with the result of Theorem 1

f(D) < limsup fi,, (D) < limsup =, (3) = pf(6),

m—r0o0 m—o0

where the equality follows because f is continuous and ¢,, converges. Similarly

f(1 — D) > liminf f,, (1 — Dy — 1/ky,) > liminf Z—mfnm(l — O — 1/ny) = pf(1—9).
m—ro0 m—00 m

]

It should be noted that, for 1/2 < § < 1, D¢ (d;p) is monotonically increasing
in p with Doy (d;p) > 0 for p > 1 and

S
=)
IA
>,
A

N[ =

il_r)% DCOV((Sap) ) hm DCOV(é‘)p)

p—00

o[
>,
Il

D=

—
N
N
(o)
IA
—_

Thus, for all § > 1/2,
lim D*(§;p) =1

pP—00
and combined with (4.6), for all 6 < 1/2,

lim D*(6; p) = 3.

p—0

4.1.2 Asymptotic L-Multiple Packing Converse

With L = 1, Theorem 2 is asymptotically equivalent to (4.1), and the novelty here is
using it for § > 1/4 or L > 1. As per the numerical evaluations given in Section 4.5,
using L = 2 gives the best asymptotic converse bound in 0 < ¢ < 1/4. Lemma 14
gives an explicit characterization of the bound.

The following Theorem shows that coding with non-unit bandwidth expansion

factor p # 1 probably yields no gain in the region 1/4 < ¢ < 1/2.
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Theorem 5. Let p > 0.

i) (Plotkin-Levenshtein) Provided an infinite sequence of Hadamard matrices exists

in k-space, for all m € N,

ii) (Blinovsky) For all ¢ € N,
/1 2\, 1 2\
. —p) > (1= .
o (a0 ()7) ) 22 (-0
Proof. (Sketch)

i) Evaluate the coding converse using the Plotkin-Levenshtein solution to A(n,d),

[11] ch. 7.3.

ii) Evaluate Blinovsky’s upper and lower bounds at the endpoint of the upper bound

for ranging values of L.

The full proof is given below.
Theorem 6. [3] (Blinovsky Achievability) Let

204+ 1\ .,
fee — logz ( ) /2z+1)

Fug(s) =1+ i(fe,ds) — sf(5));

20
/—1
fo,é(s) = —lOg <Z <2f) _ZS/ 20) + (2€£> 2—3/2—1) :
=0
Fou(s) =1+ %L(foe( ) — sfL(5))-
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For all ¢ € N and s € [0, 00),

log Age(n, fi ,(s)n) > nFe(s) + o(n);

log Agr—1(n, f, 4(s)n) > nF,(s) 4 o(n).

Theorem 7. /3] (Blinovsky Converse) Let

-1 .
ge(N) == Z <2ZZ) i —il_ 1(>\(1 — )

i=1

For all ¢ € N and X € [0,1/2],
log A1 (n, ge(A)n) < n(1 — h(A)) + o(n).

where L 1s either 2¢ or 20 — 1.

Lemma 12. Let ay,¢c;; > 0 for 1 < k < n and g(s) = 1+ Y ,_, cke”**. Then

—log g(s) is strictly increasing with a continuous strictly decreasing derivative.

Proof. Let f(s) = —logg(s). Then f is real analytic on [0,00), as g is real analytic
on R, log is real analytic on [1,00) and g¢(s) € [1,00). Therefore f'(s), f"(s) are
continuous on [0, 00), and it suffices to show that f’(s) > 0 and f”(s) < 0 on (0, 0).
By construction ¢g(s),¢”(s) > 0 on (0,00) and ¢'(s) < 0 on (0,00). Thus the first

derivative f'(s) = —¢'(s)/g(s) is strictly positive on (0,00). The second derivative is

f//(s) —




By Cauchy-Schwarz

n 2
d(s)? = Zakcke_a’“s>
k=1

n
- Z‘\/Cke_a’“s
k=1

< che_o‘ks> <Z aicke_“’“s
= (g(s) = 1)g"(s).

Qy \/cke—aks

j
)

Therefore, —g(s)g"(s) + ¢'(s)?> = —g"(s) and thusly f”(s) < 0 on (0, 00).

Lemma 13. Forall? > 1

Y () XL i) S

Y () X G5 a0 :gi 2i “a(i41).
1+ 1

Proof. Expanding the numerator and denominator of the first term

() -5 () -3 (- ()

with ratio 3 (1 — (%')27%). Similarly for the second term

20 20\ = [20—1\ 1720\ 1., 1[2
1)) -2 ) () — ()
-1
20\ 1(20\ 1(., (2 120\ 1.,
> (1) (1) -3 (- (1) 3 (0) -2

7

ZZI

=1

/—\

N

I
=)

with ratio % (1 — (2;)2_%). The Catalan series is

i(zz) 1, 1-y1—4z

z = 9
— 141 2z
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for |z| < 1/4. Thus the final term is

/-1 . fe’e) .
21 1 , 1 21 1 ,
_2*2(’+1) = 12— 2721
Z; <z)z+ 1 4 Z; i)i+1 ’

1= K2

and it suffices to show that

io: 2 1 2722’71 — 2€ 272@
i)i+1 1 '

=0

This follows from
2t 9—20 _ 2(0+1) 9—2(6+1) _ 20 9-20-1 o _ 1 aral (20 +2)!
l (0+1) B 220! (C+ 1)1+ 1)

(+)

- () (-2
(o) (
(%)

_2€+1
(+1

Corollary 7. For all ¢ € N
i) fi, and f, , are continuous and strictly decreasing on [0, 00).
i) F.p and F,y are continuous and strictly increasing on [0, 00).
iii) g is continuous and strictly decreasing on [0,1/2].
) f1,00) = £1,(0) = ge(1/2) = 5 (1 = (¥)27%)
v) Fey(0) = F,,(0) = 0.

Proof. Parts i and i follow from Lemma 12 and parts ‘v and v follow from Lemma 13.

Part iii follows because A\(1 — \) is continuous and strictly increasing on [0,1/2]. O

Lemma 14. Let ¢ € N and § € g,([0,1/2]). If there exists an admissible (9, p) source-
channel sequence ({Ap}, {km}, {nm}) such that liminf,, tE(Am sk, im) < g0(1/2),
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then
D*(35p) > (fop0 F ) (p(1 = (hog ')(5)))

and

D*(0:p) = (for 0 Fo )(p(1 = (ho g, 7)(9))).

Proof. Let ({An}, {km}, {nm}) be any such admissible (¢, p) source-channel sequence,
Om = #Am, D,, = ﬁE*(Am Ky un), D = liminf,, o0 Diy, frn(2) = L log Agg(m, [xm])
and I, = (0, ,(1/2)). By Corollary 7, fee(s) < fer(0) = g¢(1/2) and f.,(s) is invert-
ible. Moreover, lim, o fes(s) = 0. Thus F,. 4o ( e,,€>_1 is well defined on I, and, by
Theorem 6, for all = € I, liminfy_o frm(2) > (Fero (fl,)~")(2). Therefore, as the

fm are nonincreasing, combining the results of Lemma 11, Theorem 2 and Theorem

7

(Fego (f2)")(D) < limsup fi,, (D)

k—o0
. N, 1
< limsup | — fu,. (0) + — log 2¢

< timsup (120 Hgr" () + o))

k—o00 m

— p(1— (g (9))).

The given expression follows from Corollary 7 part 4, 7 and extension to f; , and Fy ¢

follows by symmetry. O

Theorem 8. (Plotkin) For 2d > n,
A(n,d) <2d/(2d —n).

Theorem 9. (Levenshtein) Provided enough Hadamard matrices exist

i) If d is even and 2d > n > d

Al ) =2| o

2d —n
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i) If d is odd and 2d+1>n > d

A(n,d)ZZL 1 J

2d+1—n

Proof of Theorem 5

i) Let ({Am}, {km}, {nn}) be an admissible (4, p) source-channel sequence, D,,, =
ﬁE*(Am i ks ), D = liminf,, o Dy,

fm(x):mm{h 2 +1/m JLL 2+ 2/m J}

xr—14+2/m r—143/m

and A = {3525 : n € N}. Then, for 1/4 <z < 1/2,

2n

[ ] g A

4r—1

f(z):= lim f,(z)=2

m—r0o0

uiflj—l reA

as 2x/(4x — 1) is strictly decreasing. By Theorem 2, A(ky,,2Dyky + 1) <
A(ny,, 2A,, +1). Thus

F(D) < limsup fy,, (Do)

m—r0o0
<® lim sup A(ky,, 2Dk + 1)

m—0o0
< limsup A(np,, 24, + 1)

m—0o0
20, +1

<@ 2 -
= S SUA, F 22—
2
45— 17

where (a) is Lemma 11, (b) is Theorem 9 and (c¢) is Theorem 8. Therefore, for

allm €N, 6 > 2™ implies D > -7~ if D¢ Aand D > ;™1 _if D € A.

2m—1 22m—1 22(m+1)—1

1 . . 1
Hence, for all m € N, 0 > 555 implies D > 557"
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ii) By Lemma 14, for all € > 0,

D*(ge(8) = €5p) = (fer 0 Fr ) p(1 = hlg;  (9:(6) = €))))

and by Corollary 7 all functions on the RHS are continuous.

4.1.3 Repetition Scheme Converse

An L-repetition scheme f®F : F* — FL™ is the L times concatenation of a based
code f : F§ — F%. Previous results [9] have demonstrated that repeating a small base
code may yield good CJSCC. The asymptotic performance of L-repetition schemes
is characterized in [8, Thm. 2| where it is shown that, for all p > 0, k¥ € N and

£ Fk — F¥" the limit function

D3 %) = Jim, ﬁE(MLkaJJ o8

exists and is concave in ¢. The concavity in § and the covering converse, Do (4 ;p),
yield the following lower bound on the asymptotic performance of any repetition

scheme:

Lemma 15. Let 0 < 8 <1, p> 0. For all f : Fk — F¥*,

M& 0<6d<d
DEs: Fo) > o , (4.3)
Deo(85p) 69 <6 <1

where dy is the unique solution in 1/2 < 0 < 6, to

6D, (6;0) — Deow(d5p) =0

cov

and 0, is the largest v such that h(1 —~) >1—1/p.

Proof. Let h,(0) := Deoy(0; p). By the covering converse and [8, Thm. 2|, D(J; f¢)

is lower bounded by the least concave function upper bounding h,(d) and thus it
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suffices to show that this is the given function. Let I, = (1/2,0,) C (0,1). A
necessity of concavity on [0,1] is £},(0)0 < h,(d). The binary entropy function h
is strictly increasing and strictly concave on (0,1/2) and thusly its inverse h™! is
strictly increasing and strictly convex on (0,1). Therefore, h, : I, — (1/2,1) is

strictly increasing and strictly concave. Let g(d) = 0h},(0) — h,(d), then
g'(0) = N, (6) 4 0R}(0) — h},(0) = h7(0) <0,

since R} is strictly concave and § € I,. Thus g(6) is strictly decreasing. Using the

inverse function theorem
(1 —9)
(o) = e
T NO)

where 1/(8) = log 5%, Furthermore, A’ is strictly decreasing on (0, 1/2) with limg o A(8) =
oo and h/(1/2) = 0. Therefore as h'(1 — 6,) is bounded and h,(6,) = 1/2

(Sli/rglp h,(0) =0,

and, by L’Hopital’s rule,

N : —ph"(1 —9)
| =1
s, 1o (0) = Sl =~ o)) 0)

= lim —ph"(1 = 9) im !
—oNa/2 —h(1 — hy(8)) a\a/2 h(6)

Thus limg\ 12 1, (6) = \/p, and

51\1"rlr}2g(5) =1/2(y/p—1) >0, 611}101’)9(5) =—1.

Hence by continuity of g there exists a unique 6y € I, such that g(dy) = 0. Linear

interpolation up to dy yields a concave function. n

This bound is increasing in p, strictly greater than ¢ for all p > 1 and shows that
repetition schemes are suboptimal for low distortion and large bandwidth expansion

factor, e.g. when compared to separated schemes.
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4.2 Asymptotic Linear Encoders

For linear encoders we can sharpen the double staircase result given by the multiple
packing bound and established a restriction on the weights of rows for a sequence of

linear encoders achieving zero distortion. We begin with a technical Lemma.

Lemma 16. Let A be a linear (k,n; E,A) CJSCC. For all 0 < ¢ <1,

w(A)

1 %(1—(1—2q)k)n q<

2A+1 an g >

N

Pr(w(AX) >2E+1) <

D=

n

where X is a k-dimensional i.i.d. Bernoulli(q) vector, w(A) := >, w(a;) and {a;}

1s an enumeration of the rows of A.

Proof. Using (3.1),

Elw(AX)] = Elw(AX), w(X) < 2E] + Elw(AX), w(X) > 2F]

> Flw(AX): w(X)>2F]Pr(w(X)>2F)

> (2A+ 1) Pr(w(X) > 2E).
By Lemma 9
Bwi(AX)] = 5 - 2Va(1 - 2)

where V4 is a generating function for the weight of the rows of A. Let a = 1 — 2p.

Then
Va(l - 2p) = Via(a) = 3 av@).
i=1

If ¢ < 1/2, then « is positive, V4(«) is convex in w(a;) and
Vala) = nl z”: (@) > e/
[t B

If ¢ > 1/2, then « is nonpositive and, as w(a;) € {0,...,n}, the least positive term

1S «. ]
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Theorem 10. For allp > 0 and 1/4 < 6 < 1/2, the asymptotically optimal distortion

for linear encoders is bounded

Dy, (05 p) > 0.

Proof. Let ({An}, {kn}, {nm}) be an admissible (4, p) source-channel sequence, E,, =
Ef (A ks i), Ay alinear (K, n 5 By Ayy) CISCC, D = liminf,, %Em and
X,, a k,, dimensional i.i.d. Bernoulli(¢) vector. Choose ¢ > max{2D,1/2}. By

m

Lemma 16,

qNm
P X )>2E,+1) < ——.
(W(X) 2 2B, +1) € g

Taking limits
1 =limsupPr(w(X,,) >2E,+1) < i,
where the equality is Lemma 11 and the law of large numbers. Hence ¢ > 24, and

thusly D > 9. m

Proposition 4. Let ({A,}, {kn}, {nm}) be an admissible (9, p) source-channel se-
quence for p >0 and 0 < 0 < 1/4 and {A,} a sequence of (kp, M s E(Ap 3 A, Ar)
CJSCCs. If limsup,,_, ﬁw(Am) < 00, then

PR |
llmnl_}OI(l)f EE(Am 1Ay > 0.
Proof. Let E,, = E(A,,; Ay), D = liminf,, ﬁEm and M = limsup,, . ﬁw(Am).

If D > 1/4 the assertion follows. Suppose D < 1/4. Choose ¢ < 1/2 such that

q>2D. Let X,, be a k,, dimensional i.i.d. Bernoulli(¢) vector. By Lemma 16

1 1, (1—(1—2¢q)@Am)/1m)

P X )>2F 1)<
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Therefore, by Corollary 5,

17,,(1 — (1 — 2q)@Am)/nm)

1 <limsup =
1 —liminf,, (1 — 2q)«(Am)/mm
B 45
el L= (1= 2q)M/°
- 46 ’

where (a) follows because (1—2¢)* is decreasing and continuous. Rearranging provides

q > 5 [1—exp(plog(l —45)/M)]| >0,

DO | —

as 0 < < 1/4. Hence D > 0. O

In particular, a linear encoder with vanishing density of ones in every row cannot

achieve zero distortion for a positive channel parameter.

4.3 D — ) Trade-Off as a Function of p

In the information theoretic setting there is both monotonicity and continuity in p.
This section partially extends these properties to the combinatorial setup. A basis
for this analysis is the performance of CJSCCs combined by composition.

Of particular interest is the canonical admissible (d, p) source-channel sequence
([d|pk]|], k, |pk]). To facilitate in the analysis of such sequences we define upper and

lower limits

e(0:p) i=limsup L E*(|5Lok) | k. Lok )
and

€55 p) = timinf -+ B*((5]pk] |, Lok,

The notation e(d; p) is used in statements that apply to both.
An immediate application of the composition Lemma shows that e(d ; p) is more

or less impervious to finite deviations and provides a limited monotonicity result.
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Proposition 5. For all p >0, a,b e N and 0 <§ <1

e(0—;p) < liminf

k—o0 + a

E*([6(Lpk] +b)]; k+a, [pk]4b) < e(d+;p),

and

26— p) < imsup 1 B*((6(Lok] + )] :h-+a, [ph] +D) < 25+ :p).

k—so0 a
Proof. If § = 0 or § = 1, then the statement is vacuous. Suppose 0 < § < 1. Let
Ar = |0(|pk] +b)] and 0 < € < min{d,1 — §}. There exists K; such that, for all
k> Ky, [(0 —¢)|pk|] < A — b and there exists K3, such that, for all & > Ko,
A < | (6 +¢)|pk]]. There exists K3 € N such that, for all k¥ > K3, b < A, < |pk].
Let K = max{K;, Ky, K3}. By Lemma 7, for all k > K,

E*([(6 —e)lpk]] sk, [pk]) < E* (A — b3k, [ pk])
< E*(Agsk+a, [ pk| +b)
< E*(Agsk, | pk])+a
< EX(L(0+e)pk]] i k. [ok]) + a.
Taking limits gives the result. [

Proposition 6. Let p, 7 > 0 and 0 < § < 1. Iflimsup;_, ﬁE*(LékaJJ TR [ pk]) <
d, then €(d;p) <e(0+;7).

Proof. Lete > 0. Let Ay = | (6+¢)|7k]|, By = E*(Agsk, |7k]), E = limsup,_, +Ex,
Uy = [0pk]], Fi = E*(Ty; [k, [pk]), F = limsupy,_,, ;57 Fk- There exists K1 € N
such that for all £ > K, Ey < (F + ¢)k. By assumption, F' < §. Thus there exists
K5 such that, for all & > Ky, Fj, < Ag. Let K3 = max{K;, K5}. Using Lemma 6
with m = |7k| and n = |pk], for all k > Kj,

E*(Ty sk, |pk)) < E*(Fy b, |7k]) < E* (A ik, |7h]) < (85 + e:57) + e)k.
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Lemma 17. For all p,7 € Q

A&, Lok )} © o UL+ [70], [(p/7)n] + Lob])},

where p = p/q and T = r/s are the unique representation of p and T as the quotient

of relatively prime integers.

Proof. Any k € N can be expressed as k = ags + b where 0 < b < ¢s. Therefore,

Lpk| = |p/q(ags + )] = [pas + pb/q] = pas + |pb/q] = pags + [pb],

|7k| = Tags + | TD]

and

{(L7k], Lok])} = {(raq + [7b], pas + [pb])}.

Let n € {agr : a € N}

{(n, L(p/T)n])} = {(agr, [((ps)/(qr))(agqr)])} = {(agr, psa)}.

Lemma 18. Let {c,(\) : n € N, A € A} where for all A

limsup ¢, () < a.

n—o0

Let ay, = ¢y, (A\n,) where {ny} is any subsequence. If A is finite then

limsupa, < a.
k—o00

Proof. Let ¢ > 0. For each A\ € A, there exists N, such that, for all n > N,,
cn(A) < a+e. Let N = maxyepa Ny. As np > k and {ar} C Uyep{cn(N)}, for all
k>N, a, <a+e. O
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Lemma 19. If p,7 € Q, then

: I . _
limsup —— E*(|8|pk | ; [ K], Lpk)) < 26+ p/7).
k—o00 |_7-kJ
Proof. Combine the results of Lemmas 17, 18 and Proposition 5. O]

4.4 Achievable Asymptotic Curves

The operational duality established in Section 3.5.2 yields an inverse function relation
between the asymptotically achievable (D, d) at bandwidth expansion factors p and
1/p. By Theorem 4, the point (D,d) is asymptotically achievable with bandwidth
expansion factor p if and only if the point (1 — 4,1 — D) is asymptotically achievable
with bandwidth expansion factor 1/p.

Lemma 20. If the curve (D(0),0) is asymptotically achievable with bandwidth expan-
sion factor p and D(0) is left continuous at D~*(1—0), then the point (1—D~1(1-4), )
is asymptotically achievable with bandwidth expansion factor 1/p, where D7(5) is a

generalized inverse

D=Y(8) := sup{v : D(y) < 4}.

Proof. By Theorem 4, for 0 < ¢t < 1, the curve (1 —¢,1 — D(t)) is asymptotically
achievable at 1/p. Parametering ¢t(6) = D~'(1 — §), the curve

(1-D*'(1-9),1-D(D*(1-9)))

is asymptotically achievable at 1/p. Choose an increasing sequence {7,} € {v :
D(vy) <1 — 6§} such that v, » D7'(1 —§). By left continuity of D(6) at D~(1 — §)

D(D'(1—-46)) = lim D(v,) <1-4,

n—oo

where the inequality follows by construction of {v,}. Hence 1 — D(D7}(1 —§)) > ¢
and thusly (1 — D71(1 — §),6) is asymptotically achievable. O
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Lemma 21. If the point (D, §) is asymptotically achievable, then, for all 0 < e <,
the point (D, 0 — €) is asymptotically achievable using the canonical (0 — ¢, p) source-

channel sequence (| (6 —e)|pk|], k, | pk]).

Proof. Let 0 < e < 6. Let (fm, gm) be a sequence of (K, Ny, 3 By Ap) CISCCs such
that

Thus n,, = |pkn]| + a, and A, = || pkn] | + by, where a,, and b, are o(k,,). There
exists M € N such that, for all m > M,

1 (6 — &) pkm]] < [0 pkm]] + by — max{0, a,,} = A,, — max{0, a,,}.
Using a (psuedo)-identity code and the composition Lemma, for all m > M,

E*([(6 = &) Lok | o Lol ]) < E* (A — masc{0, ape} s b ki)
< E(Am - maX{O? am} ) IkamH-am,kamJ © fm)
< E<E<Am - HlaX{O, am} ) [kamj—i-am,kamJ) ; fm)

For any sequence {k,, € N}, {([|pkm ], km, [pkm])} C {(|0|pk] ], k, [pk])}. Thus

1 1
e(0 —e;p) <liminf —E*([(§ — &) | pkm] ]| ; km, | pkm]) < liminf k_Em =D.

m—ro0 m m—o0 m

Corollary 8. For all 0 <& <9,

e(d—e;p) <D*(0;p) <e(d;p).

A continuity relation between p and ¢§ follows.
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Proposition 7. Let 0 <6 <1 and p > 0. For all0 <e <{§(1 —6),

D (5(1-5)0) < (045 )

Proof. By the composition Lemma, Lemma 6,

B (L0 —e)lok) )ik, | (1= 5) Lok]])
< B (10— ) lok)) + Lok) = [ (1= 3) Lokl | sk, Lok])

For all ¢’ < ¢, there exists K such that for all £ > K

[0 =e)lok)] + Lok) = [ (1=3) Lok) | < [(5—2'+5) Lok] |-

Thus
D (-5 <2250

and the result follows by Corollary 8. [

4.5 Numerical Evaluations

The section collects numerical evaluations comparing simple achievable schemes with

the best known converse bounds.

4.5.1 Asymptotic Performance of Basic CJSCCs

e The distortion of the asymptotic (pseudo)-identity map I, is

D(6;1,) = min{1, pd + max{0,1 — p}}. (4.4)

e The distortion of the asymptotic p-repetition code R, is

D(6; R,) = min {1, ﬁé} . (4.5)
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e The distortion of the asymptotic separated p-code S, is |9, Sec. III-C| D(4;S,) =

h=H(J1 = p(1 = h(20))[F) 0<6<

1

2

P

(4.6)

IN

0 <

=
N[

The correspondence between achievable (D, ) with bandwidth expansion factors

p and 1/p of Lemma 20 yields dual versions of the preceding CJSCCs. The dual

separated p-code is of particular interest.

e The distortion of the asymptotic dual (pseudo)-identity code I pL is
D(; [pl) = min{1, pd}.
e For p € 1/N, the distortion of the asymptotic dual p-repetition code le is
D(6; R;) = max {0, p[1/(2p)16 + (1 = p[1/(2p)])} -
e The distortion of the asymptotic dual separated p-code Sj is, for 1/2 <6 <1,
D(535) = 1= 1h71(11 = p(1 = h(1 = 2))[*). (4.7)

Together the dual separated code and the covering converse, 4.7 and 4.2, establish

the maximal ¢ asymptotically achieving nontrivial distortion D < 1 for bandwidth
+
) (4.8)

Figure 4-1 gives the best known converse and achievability bounds for bandwidth

expansion factor p

1
S (1—;p)=1-n"! ’1——
(I=3p) ( ;

4.5.2 Comparison for p =3

expansion factor p = 3. The dotted black line represents the uncoded or p = 1 case
where the identity scheme is optimal. Deviation from this line is of interest.

The achievability bound is given as follows:
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0 < § 5 0.185 — the separated 3-code (4.6);

0.185 5 0 < 1/3 — the 3-repetition code (4.5);

1/3 <6 < 1/2 — the separated 3-code (4.6);

1/2 <6 <1 - the dual separated 3-code (4.7).
The converse bound is given as follows:

e 0 < ¢ < 1/4 — the asymptotic L multiple packing converse Theorem 2 using
L = 2 and the upper bound from [1];

e 1/4 < § < 1/2 — the interlacing of the bounds in Theorem 5;

e 1/2 < § <1 — the asymptotic covering converse Theorem 1.
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1
3/4
1/2|
14+ S e
——  Achievability
Y —  New Converse
/" - Old Converse
/ —— Repetition Converse
0V | | Identity
0 1/4 1/2 3/4 1

Figure 4-1: Best known achievability and converse bounds for p = 3.
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Chapter 5

Binary Erasure Channel

5.1 CJSCC for the BEC

Definition 4. Elements z,y € {0,1,7}" are said to be equivalent modulo an index

set I C [n] ={1,2,...,n}, denoted x; = y;, if v; = y; for all i € I.
Definition 5. The set of achievable erasure points given an element y € Fy and an
index set I C [n] is

5[(3/) = {Z € {0, 1,?}” ‘ 21 = Y1, Zn)\I E?}

Definition 6. Let k,n € N, E € {0,...,k} and € € {0,...,n}. A pair of maps
[ Fs — F3 and g - {0,1,?7}" — F% is a (k,n; E,E) CISCC if, for all x € FE,
I C [n] with [I| > n—& and y € {0,1,7} such that y € &E(f(x)), d(z,g9(y)) < E.

Equivalently

E(:k,n, f,g) == max max max  d(x, < FE.
( /:9) {zeFs} {T:|I|2n—E} {ye&r (f ()} (#.9()

In the sequel the k and n may be dropped when understood from the context.

Definition 7. The I plane around an element y € F} is

Cily;n) :=={z€Fy | z; = yr}.
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Theorem 11. For all f : F¥ — F% and € € {0,...,n}
D(E; f):=infD(E; f,g) = max max rad(f 'Cr(f(x))),
9

xEFlg I:|I|=n—-&

where the minimization is over g : {0,1,?7}" — F%.

Proof. For all I C [n], the following two sets are equal

{(z,y) |z € Fs, y € &(f()} = {(z,y) | yr € {0, 11, ypps =2, f(2)r =1}

Therefore, an equivalent maximization is the following

max max d(x, = max max d(z,
{ze{0,1}*} {ye&r(f(=))} (9(9)) {y:yre{0, 1311y =73 {z: f (@) 1=yr} (@ 9())
> max min  max d(z,2)
{y:yr {0,111y =7} {z€F5} {z:f (=) 1=yr}
—(@) max rad({x : f(z); = yr
{y:yre{0, 131y =7} ( (=) )
= max rad(f'C(y))

{y:yle{ovl}lll YYm\I= ?}

where (a) follows by definition of the Chebyshev radius and g(y) € cen(f~*(B(y)))
achieves this bound independent of I because I is known. Moreover, for all y such

that y; € {0, 1} and Yt =7

fﬁlc’[(f(l'o)) Ell’o s.t. yr = f(l’())]

0 else

f1Ciy) =

Thus it suffices to maximize over f(F%). Combining provides

D(E;f) = max max rad(f 'Ci(f(x))).

L|I|>n—& zeFk

If J O I, thenforally € F4 C;(y) C Cr(y). Thus maximizing over {I : |I| > n—|en]}

is equivalent to maximizing over {I : |[I| =n — |en]|}. O
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In the sequel, we focus attention on the case f : F§ — F% and g the Chebyshev
decoder. Moreover, the characterization of the previous theorem is taken to be the

definition of a (k,n; E,&) CJSCC and the optimal CJSCC is

E*(&;k,n):= mfinE(é’ ik,n, f).

5.2 Converse Bounds
A few of the BSC converse bounds carry over with appropriate factors of 1/2.

Lemma 22. (2-point converse) Let f be a (k,n; E,E) CJSCC. Then
doy) 22B+1 = d(f(e), fg) 2 E+1.

Proof. 1t d(f(x), f(y)) < &, then there exists Iy such that |Ij] > n — & and f(y) €
C1,(f(x)). Moreover, for all S C F%, diam(S) < 2rad(S). O

Lemma 23. Let Ey, = E*(E;k,n). Then
A(k,2E, +1) < A(n, £+ 1).

Proof. Let f be a (k,n;Ey, &) CISCC and C C F} achieve A(k,2E) + 1). Then
d(xz,z) > 2E, + 1 implies d(f(z), f(2)) > £ + 1, and thusly f is injective when
restricted to C. Thus A(k,2E, +1) = |C| = |f(C)] < A(n,E +1). O

5.3 L-repetition

As a corollary to the repetition converse for the BSC and as the repetition code
achieves £ = & for the BEC, the performance of any L-repetition scheme is no
better than the repetition code. In the interest of completeness a characterization of

L-repetition schemes is given. In particular, the L-repetition distortion diagonalizes.
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Theorem 12. Let f be a (k,n; E,E) CJSCC. The distortion of its L-repetition is

E(&; %) =  max ZESZ,f

E1+..+ELLSE 4

Proof. Let fr := f®F. For all L,

E(&;f1) = max max rad(f;'Cr(fi(x))).

erE‘Lk L:|I|>Ln—&

Consider the 2-repetition encoding fo

E(E;f) = max — max rad(fy Cr([f(z1) f(z2)]))

[x1 xz]EF%k I:|I|>2n—-&

= max  max rad(fT'Cn(f(z1))® [T'CL(f(22)) (I =LUDL)

[-'El I2]€F§k I|]\22n—€

= max max rad (f~'Cy,(f(z1))) +rad (f'Cr(f(22))) (Lemma 4).

[z1 m2]€F2® I:|I|>2n—E

By induction

L

BE: )= s, s, 2 med (1710 @).

where x = [x; ... xy] and I = [ U...U I}. The result follows as

{[C[Ln]:|[|2Ln—8}:{U[j:[jc[n], |Ij]2n—5j,28j§8}.

j=1 j=1

5.3.1 Asymptotics

Lemma 24. For all f : F§ — F%, as a function of ¢,

lim sup leE(LgLnJ ) <inf{o | ké(-/n) > E(-; f), ¢ — concave nondecreasing}.
L—o0
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Proof. Let k¢(-/n) > E(-; f) be a concave nondecreasing function. For all L

L

E(leLn); f") = max > E(&;f)

E1+..+E€L<|eLn] =1

L

< max kZ¢(c€z/n) (ko(-/n) > E(-5 f))

E1t.+EL<|eln] L=

L
=Lk P(&;
E1+.. +5L<|_5Lnj Z /n

L
1
< Lk‘ - 1
- E1t. +SL<LsLnJ (Ln ZZ1 g) (¢ concave)

a2

) (¢ nondecreasing)

< Lk (e).

and this holds in the limit limsup,_, ., 7 E(|eLn]; f®) < ¢. Hence, as ¢ was arbi-

trary, the inequality holds over the infimum of such functions. m

To better coincide with the limiting case we consider parameterizations.

Lemma 25. For all0 <e <1,

E([eLk|; f") =  max_ > E(|eik]; f),

e1+...+ep<eL <
=1

where 0 < g; < 1.

Proof. 1t suffices to show that
L 1 L
{(61,...,(2,;) |e; €N, Zle < LsLnJ} = {(Lzlnj,..., Lzzn]) | 2 € [0, 1], 52% gg}.

For the forward containment, consider a vector (ey,...,e,). Let z; = %, then |zn] =

e; and

b«l
hl

L e, L [5LnJ
;5: ; ' Ln ==
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For the reverse containment, by Lemma 3 and monotonicity of floor,

g {Z Zin J < |eLn] .

Lemma 26. For all f : F5 — F}, liminf, o 7 E(leLn]; fF) upper bounds the

base distortion +E(|en]; f) and is concave nondecreasing.

Proof. Let D(¢) := +E(len]; f), Di(e) := £ E(leLn] ; f®*) and Deo(e) := liminf; o Dy (e).
By Lemma 25, for all L,

e1t..ter<Le L

D)= max — > D) 2 %Zp(g) — D(e)

and thusly, this holds in the limit. Let X (¢) = {z € [0,1]t: %Zle 2 < 5} and,
Lo [0,1)F = [0,1], gr(2) == ﬁziil E(lzin]; f). Then Dp(e) = max.cx, () 9r(2).
Let 0 < A<1landed€|0,1]

Xp(e + (1= A)6)

1 [AL] 1 ALI+L(1-A)L] .
D) z m izlzi S g, m il.)\Z[/J_ﬂ Zi S 5, ZL)\LJ—FL(I—)\)LH—I =0
L 1 [ALJ+|AL)
D4z L 273@' <€, m Z zi <0, Z[)\LJ+[/\LJ+1 0
1= i=|AL]

AL AL 1-\L
= {th be Xy (6)} n {ZLLALJJ::——lt( e X (5)} N =By 1anem =0}
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where the first containment follows from |z | < x. Similarly, g7(z) decomposes as

ll

gr(z) = ! ZD(Zi)

INEY AR (1—xnL] 1 el

-+ % > D(z)

i=|AL|+[(1=\)L]+1

IAL] \L [(1—=\)L] ALJ+|(1-A\)L
= ATQL/\LJ (zlL J) + (1 - )\)WQL(I—A)LJ (ZLLALJJLL( : J>

L

+ % > D(z).

i=| AL+ (1=A)L|+1
Combining these two decomposition and the fact that D(0) =0

Du(e+ (129 > M D e+ 1 )

%D L=z (6)-

Using the properties of the limit inferior from Lemma 2

Do(Ae+ (1 —N)o) > liLIILiOI.}f [ %DLALJ () +(1— )\)%DL(I—/\)LJ (5)]

(
.. AL .
>\ <hll/rilorolf I <hLIgl£fDL)‘LJ (5))

+(1-)) (lim inf %) (tim inf Dy x2(9))

L—oo (1
— ADoo(e) + (1 — \)Doo(2).

Hence D, is concave. O

Proposition 8. For all f : F* — F3, the limit D(e ; f®) := limy_,o 7 D(|eLn] ; f¥F)

exists and is equal to the upper convexr envelop of %E(Lz—:nj 1),
Llim D(-; f®%) =inf{¢ | ké(-/n) > E(-; f), ¢ — concave nondecreasing}.
—00
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Proof. Let Dy(e) := - E(|eLn]; f®). Combining the results of Lemmas 24 and 26
limsup Dy, < inf{¢ | ké(-/n) > E(-; f), ¢ — concave nondecreasing} < lign inf Dy.
L—o0 00

Since liminf < lim sup these inequalities are equalities and the assertion follows. [

5.4 Linear Encoders

Lemma 27. Let k,n € N and £ € {0,...,n}. If f : F5 — F% is linear, then

E(&;f)= max rad(f'C;(0)).

L[I|=n—¢
Proof. For all x € F§
FCH(f (@) = {= | f(2)1 = f(a)1}
={z]f(z —%)r =0}
={z|z—we f7'CH0)}
= fﬁlc[<0) -+ xZ,
and rad(f~'Cr(0) + z) = rad(f~'C(0)). O

Proposition 9. Let k,n € N and € € {0,...,n}. The optimal distortion minimizing
over linear f : F5 — F3 CJSCCs is

E;.(E;k,n) = min max rad(ker(Aj)).
AeFy»F I:|I|=n—¢

Proof. Let A € F3** be a linear (k,n; E(E; f),€) CISCC. Then
A_IC[(O) = {l’ S Fg | [AJI][ = O[} = keI‘(A[),

where Aj is the |I| x k matrix consisting of the rows of A with indices in I. The

result follows by Lemma 27. O
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The following sections find the optimal linear encoder for a given (k,n) through

exhaustive simulation.

54.1 k=4andn=25

There are 4 achievable distortion patterns

( )
1 2 3 3 4
1 2 2 3 4
112 3 4
012 3 4

\ /

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is achievable.

4 >
y
d
/
e
y
y
3| |
N oo2f — |
/////j/
/////
/////j/
1 / |
| | |
1 2 3 4 5

The single parity check uniquely achieves this optimum | 0 1 2 3 4 |, the
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green line,

_ o O O

- o O = O

=
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54.2 k=4and n=26

There are 6 achievable distortion patterns

—_
_ = NN

N

N NN N W
N NWwWw W W W
w W w w w w

e

\ /

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is achievable.
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Two matrices achieve

o =R O O O
o = O O
- o o = o O

o o O

01 2 2

_ o o O =

3 4 ], the green line,

= = o O = O
= o O = O O
= o = O O O
= = O O O

= = o O = O
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54.3 k=4and n=7

There are 11 achievable distortion patterns

.

7

1233 3 3 4
122 3 3 3 4
112 33 3 4
0123334
122 2 3 3 4
1122 3 34
0122334
0112334
1112334
0112234
(002233 4

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is not achievable.
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The red line [ 00 2 23 3 4 ] is achieved uniquely by the Hamming code.
Two matrices achieve [ 0112 2 3 4 }, the green line,

-1000- _1000-
0100 0100
0010 0010
0001 0001
1 100 1100
1110 0011
_1111_ _1111_
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544 k=4and n=28

There are 19 achievable distortion patterns

( 3\

123333 3 4 \

11123334
122333 3 4

11122334
11233334

01122334
01233334

00222334
1222 33 3 4

00122334
112233 3 4

122 223 3 4
01223334

01112334
01123334

00223334
112223 34

00022334
\01222334) Ny

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is not achievable.
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The red line [() 00 2 2 3 3 4} is achieved uniquely by the extended

Hamming code. Three matrices achieve [ 01 1 12 3 3 4],thegreen line,

1 000 1 000 1 000
0100 0100 0100
0010 0010 0010
0001 0001 0001
1110 1 100 1100
1101 1110 0011
1111 1111 1111
_1100_ _1010_ _1110_
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545 k=4andn=9

There are 31 achievable distortion patterns

;

S/

—_
—_
—_
—_

_ O =
—_ = = = = =

— = N = = =N = = NN
N\
o o o o O

R NN FNDNNNNDNNDNND NN W

=R = T = S e S B =
—_

—_
—_

o O O =B = O O O OO = == ==

i (SR (G R R G (O N R O T S AR NG
NN NN NN W NN NN NN NN
NN W NN WNNDNN NN W W NN
W W W W W W W W W w w wWw w w w
W W W W W W W W wWw w w w w w w
e N L T T T N

S N NN OO N

o o o O

RN NN NN NN N NN NN NN W W w w
W N NN NN DD DN W W Ww w w w w w

W W W W W W W W W W W W W w w w
W W W W W W W W W W W W wWw w w w
W W W W W W W W W W W W w w w w
= ks R e e e e s s R

_ o O O
= o O =

7
.

Observing the following plot, of the superposition of all achievable distortions, the

optimal distortion of Theorem 9 is achievable.
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&

Two matrices achieve | 0 0 0 1 2 2 3 3 4 |, the green line,

1 000 1000
0100 0100
0010 0010
0 001 0001
1 100 1111
1 010 1 110
1 001 1101
0111 1011
_1111_ _0111_
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5.5 Double Identity Code

Consider p = 2 and let f;, : F¥ — F2¥ where fi(z) = Apr = []K [_k]Ta: For all
r €
2w(z) w(x) is even

w(fr(x)) = :
k w(zx) is odd
Follows from w(fy(z)) = w(lyz) +w(Ilz). Any given x has w(x) nonzero entries and
in the multiplication I,z these nonzero entries will coincide with w(z) rows with one
zero and k — w(x) rows with no zeros. Thus, if w(x) is even this results in w(x) odd
sums, giving one, and k — w(x) even sums, giving zero. Similarly, if w(x) is odd this
yields w(zx) zeros and k — w(x) ones.

Distortion, for 0 < & < k

pie g0 - masf|£] - 1.0).

Given &£ erasures the adversary can erase at most all of the codewords of even weight
supported on any |£] positions in F5. If |£] is even choose any z, with an odd
number of ones and, if L%j is odd choose any zy with an even number of ones. In
either case, the antipodal of x(, on these positions, has odd weight, but L%J —1is
achievable by some codeword of even weight.

Parameterizing £ this yields

%Q%J —1) = (k] - 1),

This beats repetition for all k£, but asymptotically they coincide.
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