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Chapter 1

Introduction

1.1 Wireless Communication and Fading Channels

A common statistical model for a wireless communication medium is the fading chan-
nel, which generalizes the AWGN by introducing multiplicative fading coefficients to
model multipath interference effects. The model is flexible, allowing for different fad-
ing distributions (E.g. Rayleigh (richly scattered) or Rician (line of sight)), types of
fading processes (block fading, quasi-static, fast fading), types of channel state infor-
mation (available at the transmitter, receiver, both, or none), and for the inclusion
of multiple antennas at the transmitter or receiver (the fading process accounts for
independently faded signal paths between the transmitter and receiver). This model
is well studied in information theory literature, its capacity is known in all the above
scenarios (for an overview see [2]).

Amongst the most notable successes of this channel model is the discovery that
using multiple antennas at both the transmitter and receiver boosts the capacity of
the channel linearly, proportional to the minimum number of transmit and receive
antennas. This discovery opened up huge new potential gains in communication sys-
tems, since power and bandwidth are often so strictly constrained. This also led to
the investigation of space time codes, which are communication schemes that take
advantage of having multiple antennas. More recently, as new hardware is developed,
new MIMO systems are becoming possible. For example Mega-MIMO [13] which
attempts to make many independent transmitters act as if they were a single MIMO
system (through synchronization) in order to gain rate benefits, or Large Scale An-
tenna Systems (LSAS) [7], which places a very large number of antennas at a base
station in order to improve downlink communication.

We are interested in characterizing the fundamental communication limits of this
class of channels. The classical fundamental limits of fading channels (i.e. their capac-
ity) are well known in most cases, and these limits tell code designers the maximum
possible near-error-free data rate achievable through these channels. However, these
classical fundamental limits make the assumption that the communication system is
able to use arbitrarily long coding blocks. The decoder must wait until it has received
the entire block in order to decode. In many applications, namely when there are
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delay constraints (e.g. voice or video), the system cannot wait very long before de-
coding each block. So the channel capacity gives us a maximum possible transmission
rate, but if we can only use coding blocks of length n, then the capacity may be quite
an inaccurate estimate of the actual achievable rate.

Although the capacity of these fading channels is well known, finding achievable
rates at finite blocklength is a new area of study in information theory (at least, it
has been revitalized recently, but has been addressed off and on before), and finite
blocklength results are only known for a small subset of the possible fading channel
models. Knowledge of these limits will guide code designers in the search for the
optimal codes, as well as show how these limits scale with power, bandwidth, and
number of antennas. Recent powerful techniques [9] have been developed in order
to analyze the maximum cardinality of the codebook that achieves block length n
and error probability ǫ, denoted by logM∗(n, ǫ). Knowledge of logM∗(n, ǫ) com-
pletely characterized the limits of communication over a channel, but it is infeasible
to commute directly. Instead, the quantity must be bounded from above and below.

As a resolution of this computational difficulty [9] proposed a closed-form normal
approximation, based on the asymptotic expansion:

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(logn) , (1.1)

where capacity C and dispersion V are two intrinsic characterstics of the channel and
Q−1(ǫ) is the inverse of the Q-function1. One immediate consequence of the normal
approximation is an estimate for the minimal blocklength (delay) required to achieve
a given fraction η of channel capacity:

n &

(
Q−1(ǫ)

1− η

)2
V

C2
. (1.2)

Asymptotic expansions such as (1.1) are rooted in the central-limit theorem and have
been known classically for discrete memoryless channels [4,15] and later extended in
a wide variety of directions; see [10] for a survey.

We are interested in extending this dispersion analysis to fading channels. Specif-
ically, we analyze the dispersion of the MISO Coherent block fading channel with
channel state information available to the receiver and isotropic fading fading (the
channel model is described in detail in Chapter ??). This model may represent the
downlink channel from a cell tower to a mobile receiver, where the tower has the
space to have many antennas, while the mobile device only can only have one an-
tennas. The isotropic noise assumption means that the communication is in a “rich
scattering“ environment where the signal has no line of sight path to the receiver.
A special case of this assumption is the common Rayleigh Fading process, where all
fading coefficients have i.i.d. Gaussian distribution.

We notice that this MISO block fading channel has non-unique capacity achiev-
ing input distributions. This non-uniqueness hasn’t appeared in any other finite

1As usual, Q(x) =
∫∞

x
1√
2π

e−t2/2 dt .
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blocklength analysis done thus far, so handling this problem is new, and turns out
to be non-trivial. Specifically, orthogonal designs (for example, Alamouti’s scheme)
achieve capacity in this channel for dimensions where they exist. It turns out that
Var[i(X ; Y,H)|X ] is an achievable dispersion for any capacity achieving input dis-
tribution PX . For the AWGN channel, there was only one input distribution that
achieved capacity, and the conditional variance with this input gave the true disper-
sion. In this case there are non unique input distributions that achieve capacity, and
it will be shown that orthogonal designs minimize the conditional variance over all
distributions that achieve capacity. Orthogonal designs were introduced into the field
of communications by Tarokh et al in [16], where it was showed that, in a MIMO
channel, orthogonal designs achieve the maximum diversity order of the channel while
having a simple liner decoder. This thesis provides a theoretical justification for the
optimally of orthogonal designs from finite blocklength analysis, in the given channel.

This thesis is organized as follows: Chapter 2 gives the channel model and notation
used throughout the thesis, Chatper 3 describes the multiple non-unique capacity
achieving input distribution for this channel, as well as computes its conditional
variance, Chapter 4 gives the proof of achievable dispersion and compares the result
to error exponents, and Chapter 5 discusses Orthogonal Designs and their relation to
the achievable dispersion.
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Chapter 2

Channel Model and Basic

Definitions

The main object of study in this thesis is the coherent MISO (Multiple-Input Single-
Output) block fading channel. This channel models a wireless communication channel
where the transmitter has multiple antennas and the receiver only has one. In this
chapter, we will give the definitions and notation necessary to define a communication
channel (Section ??), a brief description of the many statistical models of wireless
channels (Section ??), and then describe the coherent MISO block fading channel
model (Section ??).

2.1 The Coherent MISO Block Fading Channel

In this work, we examine the block fading with channel state information available
to the receiver (CSIR) where the system is MISO (Multiple-Input-Single-Output, i.e.
multiple antennas at the transmitter and a single antenna at the receiver). Motivated
by a recent surge of orthogonal frequency division (OFDM) technology, this thesis
focuses on the frequency-nonselective coherent real block fading discrete-time channel.

The situation where this channel is most practical is in the downlink of a commu-
nication system where there is no line of sight between the transmitter and receiver.
Here, a base station is able to have many antennas whereas smaller receivers (such as
cell phones) only have the space for one antenna. In any urban environment, there
will likely be no direct line of sight between the base station and the mobile device,
so the signal will reflect off various buildings and such before reaching the receiver.

Formally, let nt ≥ 1 be the number of transmit antennas and T ≥ 1 be the
coherence time of the channel. The input-output relation at block j (spanning time
instants (j − 1)T + 1 to jT ) with j = 1, . . . , n is given by

Yj = HjXj + Zj , (2.1)

where {Hj, j = 1, . . .} is a 1×nt vector-valued random fading process, Xj is a nt×T
matrix channel input, Zj is a 1×T Gaussian random vector with independent entries
of variance 1, and Yj is the 1 × T vector-valued channel output. The process Hj is
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assumed to be i.i.d. with isotropic distribution PH (that is, H ∼ HU for any nt × nt

orthogonal matrix U) satisfying

E[‖H‖2] = 1 . (2.2)

Note that because of merging channel inputs at time instants 1, . . . , T into one matrix-
input, the block-fading channel becomes memoryless. We assume coherent demodu-
lation so that the channel state information Hj is fully known to the receiver (CSIR).
Now we give the definition of a code for this channel.

Definition 1. An (nT,M, ǫ, P )CSIR code of blocklength nT , probability of error ǫ
and power-constraint P is a pair of maps: the encoder f : {1, . . . ,M} → (Rnt×T )n

and the decoder g : (R1×T )n × (R1×nt)n → {1, . . . ,M} such that the probability of
decoding incorrectly satisfies

P[W 6= Ŵ ] ≤ ǫ . (2.3)

and the codewords must satisfy the power constraint

n∑

j=1

‖Xj‖2F ≤ nTP P-a.s. ,

( ‖A‖2F =
∑

ij |aij |2 is the Frobenius norm of the matrix) on the probability space

W → Xn → (Y n, Hn) → Ŵ ,

Where W is uniform on {1, . . . ,M}, Xn = f(W ), Xn → (Y n, Hn) is as described
in (2.1), and Ŵ = g(Y n, Hn).

We will focus on the real where all quantities are real valued, the analysis is very
similar in the complex case.

2.2 Capacity

Under the isotropy assumption on PH , the capacity C appearing in (1.1) of this
channel is given by [17]

C(P ) = E

[

CAWGN

(
P

nt
‖H‖2

)]

, (2.4)

where CAWGN(P ) = 1
2
log(1+P ) is the capacity of the additive white Gaussian noise

(AWGN) channel with SNR P .
With this, we define a capacity achieving input distribution (CAID), which will

play a large role in this work.

Definition 2. A distribution PX satisfying the power constraint E[‖X‖2F ] ≤ TP is a
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capacity achieving input distribution if

I(PX , PY H|X) = C(P ) (2.5)

Where I(PX , PY |X) is the mutual information when the channel input has distribution
PX .

We will show in Chapter 3 that many input distributions achieve capacity, in-
cluding orthogonal designs. Then we will analyze which input gives the best finite
blocklength performance over this set of distributions.

2.3 Dispersion

A channel code maps a message space {1, . . . ,M} into a sequence of n symbols which
are sent over the channel. The decoder waits to receive all n symbols, then decodes to
the most likely message. Classically, the capacity of a channel tells us the maximum
data rate we can send over a channel with arbitrarily small error probability, given
that the blocklength n can be arbitrarily large. In practice, this means the decoder
must wait a very long time before decoding a block, causing long delay. If we insist
that the code can only use blocklength n, then for most cases, we cannot achieve
data rates arbitrarily close to capacity. The channel dispersion quantifies the “rate
penalty” incurred for transmitting at a fixed blocklength n and error probability ǫ.

The dispersion V was formally defined in [9] as

V = lim
ǫ→0

lim sup
n→∞

1

n

(
nC − logM∗(n, ǫ)

Q−1(ǫ)

)2

(2.6)

For DMC’s, it was shown in [9] that the dispersion is given by the variance of the
information density

Var(i(X, Y )) (2.7)

Where PX is a capacity achieving input distribution, and the information density is
defines as

i(x; y) , log
PY |X(y|x)
PY (y)

(2.8)

Where PY =
∫
PY |X(y|x)dPX is the output distribution induced through the channel

by input PX . For the AWGN channel and the SISO coherent fading channel, the
dispersion was shown to instead be the conditional variance of the information density

EXVar(i(X ; Y )|X) (2.9)

This will be denoted by simply Var[i(X ; Y )|X ]. Note that for a DMC, quantities
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(2.7) and (2.9) are the same, since we can expand (2.7) as

Var(i(X ; Y )) = EVar(i(X ; Y )|X) + Var (E[i(X ; Y )|X ]) (2.10)

In the second term above, for all inputs x, E[i(x, Y )] = C for a DMC, where C is
the capacity of the channel. Hence this term is the variance of a constant, which is
zero. We’ll show that for the MISO coherent block fading channel, Var[i(X ; Y,H)|X ]
is achievable, and then we’ll look at minimum over the set of input distributions that
achieve capacity.
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Chapter 3

Characterizing the Channel

The coherent MISO block fading channel has an interesting property: the capacity
achieving input distribution (CAID) P ∗

X is not unique. All the channels with a known
dispersion, e.g. BSC, BEC, AWGN, SISO coherent fading channel, have a unique
capacity achieving input distribution. In these channels, the dispersion turns out
to be either Var[i(X ; Y )] (discrete case) or Var[i(X ; Y )|X ] (cost constrained case),
where in both the distribution of X was simply chosen as he unique CAID. However,
when the are multiple CAIDs, the question becomes: do some capacity achieving
input distributions give better dispersion than others? If so, which ones?

In this chapter, we’ll give necessary and sufficient conditions for the channel input
X to achieve capacity for the general MISO fading channel with nt transmit antennas
and coherence time T . We will compute the conditional variance of the information
density of this channel, which will be shown to be achievable in Chapter 4.

3.1 Motivation Example:

Alamouti’s Scheme vs Independent Gaussians

As a motivating example, we first consider a special case of nt = T = 2, meaning
there are 2 antennas at the transmitter and the coherence time is 2. As argued by
Telatar [17], the following input achieves capacity

X =

√

P

2

[
ξ1 ξ3
ξ2 ξ4

]

, (3.1)

where here and below ξj are i.i.d. standard normal random variables. Reflecting upon
ingenious scheme of Alamouti [1] we observe that the following input is also capacity
achieving:

X =

√

P

2

[
ξ1 −ξ2
ξ2 ξ1

]

(3.2)

The Alamouti scheme sends two data symbol in two timeslots (i.e. achieves a
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multiplexing gain of 2 and a diversity gain of 2). The iid Gaussian scheme sends
four symbols in two time slots (multiplexing gain of 4 and diversity gain of 1). The
channel only has one degree of freedom per timeslot, so both schemes use all available
degrees of freedom.

The intuition why both of these distributions achieve capacity is as follows (see
Figure 3-1). The independent Gaussian scheme sends two vectors (one R

2 vector
in each time slot), each independently isotropically distributed. The channel acts by
projecting each input vector onto the vector of fading coefficients H , effectively killing
all information sent in the direction orthogonal to H . With this, sometimes we get
lucky and both transmitted vectors are nearly parallel with H , and sometimes we’re
unlucky and both vectors are nearly orthogonal. The Alamouti scheme sacrifices
multiplexing gain (only sends 2 symbols instead of 4), but is more robust to fading.
Alamouti’s scheme sends two orthogonal data vectors, so that if one happens to be
nearly orthogonal to H , the other will be nearly parallel. With this, the magnitude
of the projection onto H is the same regardless of the angle of the data vectors. This
intuition will be useful later when we discuss the dispersion achieved by each of these
inputs.

(H1, H2) (ξ1, ξ2) (H1, H2)

(ξ3, ξ4) (ξ1, ξ2) (−ξ2, ξ1)

Independent Gaussian Scheme Alamouti’s Scheme

Figure 3-1: (Left) The independent Gaussian scheme transmits two vectors, each
isotropically distributed independently, while (Right) Alamouti’s scheme transmits
two perpendicular vectors.

It will be shown that Alamouti’s scheme achieves the smaller value of Var[i(X ; Y,H)|X ]
than Teletar’s i.i.d. Gaussian input. In Chapter 4, we’ll show that Var[i(X ; Y,H)|X ]
is achievable, and thus the Alamouti’s scheme gives a strictly better dispersion. We
are then lead to the question: is there a CAID for nt = T = 2 that gives a better
dispersion than Alamouti’s scheme? Fefore we analyze the dispersion of these inputs,
we first characterize all capacity achieving input distributions for the channel.

15



3.2 Capacity Achieving Input Distributions

We saw that both the input X with i.i.d. Gaussian entries and the input based on
Alamouti’s scheme achieve capacity in the MISO block fading channel. The follow-
ing proposition gives necessary and sufficient conditions for an input distribution to
achieve capacity. An immediate consequence of this proposition is that if any nt × T
orthogonal design exists in indeterminates x1, . . . , xT (for T ≥ nt), then the input
distribution with this structure achieves capacity.

Proposition 1. PX is a capacity achieving input distribution iff all rows and columns
of X are jointly Gaussian and either of the following holds

1. Let Ri denote the i-th row of X, then:

E[RT
i Ri] =

P

nt
IT , i = 1, . . . , nt (3.3)

E[RT
i Rj ] = −E[RT

j Ri], i 6= j (3.4)

2. Let Ci be the i-th column of X, then:

E[CiC
T
i ] =

P

nt
IT , i = 1, . . . , T (3.5)

E[CiC
T
j ] = −E[CjC

T
i ], i 6= j (3.6)

Example: In the nt = T = 2 case, the set of jointly Gaussian CAIDs is given by

{√

P

2

[
ξ1 −ρξ2 +

√

1− ρ2ξ3
ξ2 ρξ1 +

√

1− ρ2ξ4

]

: −1 ≤ ρ ≤ 1

}

(3.7)

Where ξ1, ξ2, ξ3, ξ4 ∼ N (0, 1) iid. Note that there are CAIDs that are not joinly
Gaussian (although all rows and columns are jointly Gaussian), for example if we
take a mixture of two CAIDS from the collection above.

Remark 1. These conditions imply that if X is caid, then XT and any submatrix of
X are caids too (for different nt and T ). Elementwise, these conditions require that
all elements in a row are pairwise independent, all elements in a column are pairwise
independent, each 2 × 2 minor has equal and opposite correlation across diagonal
entries, and each of the entries have the same distribution Xij ∼ N (0, P

nt
).

Proof. Observe that distribution PX achieves capacity iff for PH-almost every h0 it
induces the optimal output distribution

P ∗
Y |H=h0

= N
(

0,

(

1 +
P

nt
‖h0‖2

)

IT

)

Indeed, note that

I(X ; Y,H) = h(Y |H)− h(Z) , (3.8)
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where h(·) is a differential entropy [?, Chapter 9]. Since this expression only depends
on PY |H, then PX is optimal if it induces P ∗

Y |H . Conversely, maximizing (3.8) is

equivalent to maximizing h(Y |H) given a second moment constraint. We know that
for any PX and any fixed H = h0

h(Y |h0) ≤ h

(

N
(

0, (1 +
P

nt

‖h0‖2)It
))

(3.9)

i.e. iid Gaussian maximizes entropy subject to a second moment constraint, with

equality iff PY ∼ N
(

0,
(

1 + P
nt
‖h0‖2

)

IT

)

. Hence, in order to attain capacity (2.4),

PY |H must coincide with P ∗
Y |H for PH-almost every h0.

Next, fix a capacity achieving distribution PX and let E0 be an almost sure set of
those h0 for which PY |H=h0

= P ∗
Y |H=h0

. Let {Uk, k = 1, . . .} be a dense subset of all

orthogonal nt×nt matrices. By isotropy of PH we have PH [Uk(E0)] = 1 and therefore

E
△
= E0 ∩

∞⋂

k=1

Uk(E0)

is also almost sure: PH [E] = 1. By assumption (2.2) E must contain a non-zero
element, and hence (by density of {Uk}), must also be dense in some sphere in R

1×nt ,
which without loss of generality we assume to have radius 1. Now take an h0 ∈
S
nt−1 ∩ E. Then since h0X + Z is Gaussian, a theorem of Cramer [3, Theorem 1]

implies that h0X must itself be jointly Gaussian. Equivalently, by uniqueness of the
characteristic function, for arbitrary θ ∈ R

1×nt we have

E [eih0XθT ] = e
− P

2nt
‖θ‖2‖h0‖2 (3.10)

Since the characteristic function is continuous in h0, identity (3.10) must hold for all
h0 ∈ R

1×nt (by density of E and scaling h0 7→ λ · h0). Consequently, for every h0 we
have

h0X ∼ N
(

0,
P

nt

‖h0‖2IT
)

(3.11)

In particular, we have (denoting components of h0 by hi, i = 1, . . . nt)

E[(h0X)T (h0X)] = E

[
nt∑

i,j=1

hihjR
T
i Rj

]

=
P

nt

(
nt∑

i=1

h2
i

)

IT .

Intepreting the last equation as equality of bilinear forms yields the set of conditions
1), 2) follows similarly. Since (3.10) holds for all θ and h0, choosing these appropriately
shows that the rows and columns of X must be jointly Gaussian.

Remark 2. The characteristic function E[ei tr(s
TX)] where s ∈ R

nt×T , isn’t fully spec-
ified. (3.10) only gives its value for those s such that s = hT

0 ⊗ θ for row vectors
h0 ∈ R

nt , θ ∈ R
T , and ⊗ denotes the tensor product. This set is equivalent to all
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nt×T rank 1 matrices, which is clearly not equal to all of Rnt×T . So some non-jointly
Gaussian relations between entries of X can occur when s has rank greater than 1.

We will explore orthogonal designs in depth in Chapter 5, but to show the use of
this proposition, we will quickly show that any orthogonal design input distribution
achieve capacity. Any real orthogonal design can be represented as the sum

∑k
i=1 xiVi

where {x1, . . . , xk} are indeterminates, and {V1, . . . , Vk} is a collection of n × n real
matrices satisfying Hurwitz-Radon conditions:

V T
i Vi = In (3.12)

V T
i Vj + V T

j Vi = 0 (3.13)

Suppose nt ≤ T . Given such a collection of T × T Vi’s, form the orthogonal design
input distribution by

X =
[
V T
1 ξT · · ·V T

k ξT
]T

(3.14)

Where the row vector ξ ∼ N (0, P
nt
IT . Then each row and column is jointly Gaussian,

and applying the CAID conditions (3.3) and (3.4), we see immediately

E[RT
i Ri] = V T

i E[ξT ξ]Vi =
P

nt

V T
i Vi =

P

nt

IT (3.15)

E[RT
i Rj ] = V T

i E[ξT ξ]Vj = V T
i Vj = −V T

j Vi = −E[RT
j Ri] (3.16)

So that the orthogonal design input distribution X satisfies the CAID condition, and
hence achieves capacity. Note the striking resemblance between the CAID condi-
tions (3.3) and (3.4) and the Hurwitz-Radon conditions (3.12) and (3.13).

3.3 Information Density and Conditional Variance

A key tool for finite blocklength results is the information density, from which the
mutual information and conditional variance can be derived. It is defined as follows:

Definition 3. For a joint distribution PXY , the information density is given by

i(x; y) = log
dPY |X=x(y)

dPY (y)
(3.17)

and i(x, y) = ∞ for all x where PY |X=x is not absolutely continuous with respect to
PY .

It is instructive to interpret the information density as a log likelihood ratio be-
tween the channel output distribution PY |X=x induced when x is sent over the channel,
and the “average noise” PY . Note too that E[i(X ; Y )] = I(X ; Y ). Later we will be
interested in the second and even third moments of the information density. We first
calculate the information density for the channel under study.
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For any channel, all CAIDs induce the same output distribution, since CAOD
(capacity achieving output distribution – the distribution induced by P ∗

X through the
channel) is always unique. For the coherent MISO fading channel, the CAOD induced

by one coherent block has distribution P ∗
Y |H=h ∼ N

(

0,
(

P
nt
‖h‖2 + 1

)

IT

)

where IT is

the T × T identity matrix. Hence over n blocks, the CAOD is

P ∗
Y n|Hn=hn ∼ N

(

0,
P

nt

A+ InT

)

(3.18)

Where A is a diagonal matrix nT × nT matrix with each of the T × T submatrices
along A’s diagonal are ‖hi‖2IT for i = 1, . . . , n.

Letting hj represent the 1×nt real vector of fading coefficients for the j-th block,
and xi bet the nt × T real input matrix for the j-th block, then the information
density over n fading blocks is

i(x; y, h) =
T

2

n∑

j=1

log

(

1 +
P

nt
‖hj‖2

)

+
1

2

‖hjxj‖2 + 2hjxjZ
T
j − P

nt
‖hj‖2‖Zj‖2

1 + P
nt
‖hj‖2

(3.19)

where Z = hx − y is a 1 × T real vector. This can be computed simply by tak-
ing the log of the ratio of densities N ([h1x1, · · · , hnxn], InT ) and P ∗

Y |H=h from (3.18).

Note that indeed taking 1
T
E[i(X ; Y )] gives the channel capacity. For finite blocke-

length analysis, we’re interested in the conditional variance of the information density,
Var[i(X ; Y,H)|X ]. This will be shown to be achievable in Chapter 4. The following
two propositions compute the more general Var(i(x; Y,H)), and then the conditional
variance, both of which will be useful later. Although the computation is mainly
algebraic manipulation, it’s an essential piece of many arguments in this thesis, so we
give the full derivation.

Proposition 2. For the information density given in (3.19), (Y n, Hn) ∼ PHnP ∗
Y n|Hn,

1

nT
Var(i(xn; Y n, Hn)) = TVar

(

CAWGN

(
P

nt
‖H‖2

))

+ E

[

VAWGN

(
P

nt
‖H‖2

)]

+
χ0

ntnT

(
‖xn‖2F − nTP

)
+

1

4nT

n∑

j=1

Var





(

‖H̃jxj‖2 − TP
nt

)

‖Hj‖2

1 + P
nt
‖Hj‖2





(3.20)

19



And the last term reduces to

1

4nT

n∑

j=1

Var





(

‖H̃jxj‖2 − TP
nt

)

‖Hj‖2

1 + P
nt
‖Hj‖2



 (3.21)

=
1

nT

n∑

j=1

χ1E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

− χ2

(‖xj‖2F
nt

− TP

nt

)2

(3.22)

Where H̃j ,
Hj

‖Hj‖
is the normalized fading vector for the j-th block, and

χ0 , 4E

[(

λ

(
P

nt

‖H‖2
)

‖H‖
)2
]

(3.23)

χ1 , E

[(

λ

(
P

nt

‖H‖2
)

‖H‖2
)2
]

(3.24)

χ2 , E
2

[

λ

(
P

nt
‖H‖2

)

‖H‖2
]

(3.25)

CAWGN(P ) ,
1

2
log(1 + P ) (3.26)

VAWGN(P ) ,
1

2

(

1−
(

1

1 + P

)2
)

(3.27)

λ(P ) ,
1

2(1 + P )
=

dCAWGN(P )

dP
(3.28)

The last three quantities are the AWGN capacity, dispersion, and optimal Lagrange
multiplier λ(P ) in the optimization

sup
PX :E[‖X‖2]≤P

I(X ; Y ) (3.29)

Proof. Note that since the channel is memoryless, each fading block is independent
of the others, so we only need to consider a single fading block,

Var(i(xn; Y n, Hn)) =
n∑

j=1

Var(i(xj ; Yj, Hj)) (3.30)

Now, the variance distributes over the sum in the information density since the first
term is independent of Z (hence zero covariance):

Var(i(xj ; Yj, Hj)) = Var

(
T

2
log

(

1 +
P

nt
‖Hj‖2

))

+Var

(

1

2

‖Hjxj‖2 + 2HjxjZ
T
j − P

nt
‖Hj‖2‖Zj‖2

1 + P
nt
‖Hj‖2

)

(3.31)

20



The first term in (3.31) is T 2Var(CAWGN(
P
nt
‖H‖2)). For the second term, we use the

“iterated variance” identity. Let f(x,H, Z) represent the second term in (3.31), then

Var(f(xj, Hj, Zj)) = EHj
VarZj

(f(xj, Hj, Zj)|Hj)
︸ ︷︷ ︸

1

+VarHj
EZj

[f(xj , Hj, Zj)|Hj]
︸ ︷︷ ︸

2

(3.32)

We deal with each piece separately. Recall that Zj ∼ N (0, IT ) and Hj is isotropically
distributed, and both Hj and Zj are independent from all other variables. First, term
1 is

EHj
VarZj

(f(xj , Hj, Zj)|Hj) =
1

4
EHj






4‖Hjxj‖2 + 2T
(

P
nt

)2

‖Hj‖4
(

1 + P
nt
‖Hj‖2

)2




 (3.33)

Massaging this into a more useful form give

=
1

2
EHj







(

2‖Hjxj‖2 − 2T P
nt
‖Hj‖2

)

+

(

2T P
nt
‖Hj‖2 + T

(
P
nt

)2

‖Hj‖4
)

(

1 + P
nt
‖Hj‖2

)2







(3.34)

= EHj






‖Hjxj‖2 − T P
nt
‖Hj‖2

(

1 + P
nt
‖Hj‖2

)2




+

1

2
EHj






2T P
nt
‖Hj‖2 + T

(
P
nt

)2

‖Hj‖4
(

1 + P
nt
‖Hj‖2

)2




 (3.35)

= EHj






(‖H̃jxj‖2 − T P
nt
)‖Hj‖2

(

1 + P
nt
‖Hj‖2

)2




+

T

2
EHj



1−
(

1

1 + P
nt
‖Hj‖2

)2


 (3.36)

Note that the second term here is now TE
[

VAWGN

(
P
nt
‖Hj‖2

)]

. Since Hj is isotropi-

cally distributed, H̃j =
Hj

‖Hj‖
is independent from ‖Hj‖2. To see this, for scalar a ∈ R,

unit vector b ∈ R
nt , and orthogonal matrix U :

P

[

‖H‖2 = a

∣
∣
∣
∣

H

‖H‖ = b

]

= P

[

‖UH‖2 = a

∣
∣
∣
∣

UH

‖UH‖ = b

]

= P

[

‖H‖2 = a

∣
∣
∣
∣

H

‖H‖ = UT b

]

(3.37)

Since UT acts transitively on the support of H
‖H‖

(i.e. unit vectors in R
nt), this

quantity is the same for all b’s, hence ‖H‖2 is independent from H
‖H‖

. With this, 1 in
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(3.32) becomes

E

[

‖H̃jxj‖2 −
TP

nt

]

E






‖Hj‖2
(

1 + P
nt
‖Hj‖2

)2




+ TE

[

VAWGN

(
P

nt
‖Hj‖2

)]

(3.38)

We can take the expectation over Hj in E

[

‖H̃jxj‖2 − TP
nt

]

. Let H l
j, l = 1, . . . , nt

be the elements of the vector Hj, and xlm
j be the elements of the matrix xj , for

l = 1, . . . , nt and m = 1, . . . , T . Then

E[‖H̃jxj‖2] = E





T∑

m=1

(
nt∑

l=1

H̃ l
jx

lm
j

)2


 =
nt∑

l=1

nt∑

k=1

E[H̃ l
jH̃

k
j ]

T∑

m=1

xlm
j xkm

j (3.39)

Now, since H̃ is isotropically distributed (in fact, since H̃ is normalized, it is uniform
on the sphere Snt−1), (H̃ l

j, H
k
j ) ∼ (−H̃k

j , H̃
l
j), since this is simply a 90 degree rotation.

So if l 6= k, then E[H̃ l
jH̃

k
j ] = −E[H̃ l

jH̃
k
j ] = 0. And since E[‖H̃j‖2] = 1, by symmetry

E

[(

H̃ l
j

)2
]

= 1
nt
. Summarizing:

E[H̃ l
jH̃

k
j ] =

{
1
nt

if k = l

0 if k 6= l
(3.40)

With this, the sum in (3.39) becomes

=
1

nt

nt∑

l=1

T∑

m=1

(
xlm
j

)2
=

‖xj‖2F
nt

(3.41)

Applying this to (3.38), we recover the term in the proposition

χ0

nt

(
‖xj‖2F − TP

)
+ TE

[

VAWGN

(
P

nt
‖Hj‖2

)]

(3.42)

Now we move the 2 in (3.32):

VarHj
EZj

[f(xj , Hj, Zj)|Hj] =
1

4
Var

(

‖Hjxj‖2 − TP
nt
‖Hj‖2

1 + P
nt
‖Hj‖2

)

=
1

4
Var

(

(‖H̃jxj‖2 − TP
nt
)‖Hj‖2

1 + P
nt
‖Hj‖2

)

(3.43)

Substituting (3.43) and (3.38) into (3.31) gives the first statement of the proposition.
For the second statement, we decompose (3.43) using the iterated variance identity
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once more, this time in terms of H̃j and ‖Hj‖2. With this, (3.43) becomes

=
1

4
E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

Var

(

‖Hj‖2
1 + P

nt
‖Hj‖2

)

+
1

4
Var

(

‖H̃jxj‖2 −
TP

nt

)

E
2

[

‖Hj‖2
1 + P

nt
‖Hj‖2

]

(3.44)

Expanding the second variance using Var(X) = E[X2]− E
2[X ],

=
1

4
E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

Var

(

‖Hj‖2
1 + P

nt
‖Hj‖2

)

(3.45)

+
1

4

(

E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

− E
2

[

‖H̃jxj‖2 −
TP

nt

])

E
2

[

‖Hj‖2
1 + P

nt
‖Hj‖2

]

(3.46)

Combining like terms gives

=
1

4
E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

E





(

‖Hj‖2
1 + P

nt

)2


− 1

4
E
2

[

‖H̃jxj‖2 −
TP

nt

]

E
2

[

‖Hj‖2
1 + P

nt
‖Hj‖2

]

(3.47)

In the notation of the proposition, the first term in (3.47) is

χ1E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

(3.48)

For the second term in (3.47), we can evaluate the first expectation. Using the same
argument as (3.39) - (3.41), we see that

E
2

[

‖H̃jxj‖2 −
TP

nt

]

=

(‖xj‖2F
nt

− TP

nt

)2

(3.49)

And hence (3.47) reduces to

χ1E

[(

‖H̃jxj‖2 −
TP

nt

)2
]

− χ2

(‖xj‖2F
nt

− TP

nt

)2

(3.50)

As claimed in the Proposition.

Next, we want to know the conditional expectation V ar[i(X ; Y,H)|X ] where X
has the distribution of a capacity achieving input distribution. This is simply the
expectation over X of the expression from Proposition 2. This quantity will be
essential in later chapters and is computed in the follow proposition.
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Proposition 3. For the MISO nt×T block fading CSIR channel PY H|X , and capacity
achieving input X, the conditional variance is given by

1

T
Var[i(X ; Y,H)|X ] = V1(P )− χ2

n2
tT

Var(‖X‖2F ) (3.51)

where V1(P ) is independent of the capacity achieving input distribution X, and

V1(P ) , TVar

(

CAWGN

(
P

nt

‖H‖2
))

+ E

[

VAWGN

(
P

nt

‖H‖2
)]

+ 2χ1

(
P

nt

)2

(3.52)

And the rest of the notation is from Proposition 2.

Proof. We take the expectation over X in the expression given in Proposition 2. The
first two terms are immediate since they do not dependent on X :

TVar

(

CAWGN

(
P

nt

‖H‖2
))

+ E

[

VAWGN

(
P

nt

‖H‖2
)]

(3.53)

The third term vanishes since for all CAIDs, E[‖X‖2F ] = TP , so

χ0

ntnT
E[‖X‖2F − nTP ] = 0 (3.54)

The third term, which is

χ1E

[(

‖H̃X‖2 − TP

nt

)2
]

(3.55)

To compute this expectation, we notice P ∗
Y |H=h ∼ N (0, (1+ P

nt
‖h‖2)IT ) for any CAID.

To see this, take the characteristic function of Y to find the distribution of hX for a
fixed h:

E[eitY ] = E[eitHX ]E[eitZ ] (3.56)

Since Z is i.i.d standard normal, it’s characteristic function has no zeroes, hence we
can solve as

E[eitHX ] =
E[eitY ]

E[eitZ ]
(3.57)

The characteristic function of an N (0, σ2) random variables is e−
1
2
σ2t2 , hence

E[eitHX ] =
e

1
2
( P
nt

‖h‖2+1)t2

e
t2

2

= e
1
2

P
nt

‖h‖2t2
(3.58)

Hence we conclude by the inversion theorem for characteristic functions that hX ∼
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N (0, P
nt
‖h‖2IT ) for all CAIDs X . This allows us to evaluate (3.55). First, this implies

for fixed unit vector h̃,

E[‖h̃X‖2] = TP

nt
‖h̃‖2 = TP

nt
(3.59)

So that (3.55) reduces to

χ1E

[(

‖H̃X‖2 − TP

nt

)2
]

= χ1EH|XEX

[(

‖H̃X‖2 − TP

nt

)2
∣
∣
∣
∣
∣
H̃

]

(3.60)

= χ1Var(‖H̃X‖2|H) (3.61)

= 2χ1T

(
P

nt

)2

E[‖H̃‖4] (3.62)

= 2χ1T

(
P

nt

)2

(3.63)

Where H̃4 = 1 deterministically. This along with (3.53) gives V1(P ) in the proposi-
tion. For the final term, from Propsition 2,

−χ2E

[(‖X‖2F
nt

− TP

nt

)2
]

(3.64)

And since E[‖X‖2F ] = TP for any CAID, this becomes

−χ2

n2
t

Var(‖X‖2F ) (3.65)

Which completes the proof of the Proposition.

So we’ve derived the expression for Var[i(X ; Y,H)|X ]. We will show that this
dispersion is achievable. Proposition (3) shows that this dispersion depends on the
CAID through −Var(‖X‖2). Hence to minimize the dispersion, we want the CAID
that maximizes Var(‖X‖2). In Chapter 4 we will show achievability, and in Chapter 5
we will minimize the dispersion over all CAIDs.
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Chapter 4

Achievable Dispersion

The goal of this section is to prove that a class of dispersions are achievable for the
coherent MISO fading channel. The proof relies on the κβ bound [9, Theorem 25]. To
understand this bound, first we must give some definitions, notation, and properties
for binary and composite hypothesis tests (Section 4.1). Then in Section 4.2 we state
and prove the main achievability theorem.

4.1 Binary and Composite Hypothesis Testing

Many finite blocklength results are derived by considering an optimal hypothesis
between appropriate distributions. A binary hypothesis test PZ|W : W → {0, 1} is a
test that, given a sample w from a space W, chooses (perhaps non-deterministically)
one of two distributions P or Q that could have generated w. Z = 1 indicates that
the test choose P to be the true distribution, while Z = 0 indicates the test chooses
Q. This is sometimes written as

H0 : W ∼ Q (4.1)

H1 : W ∼ P (4.2)

Two types of errors can be made in a binary hypothesis test: we can mistakenly
choose P when Q is the actual distribution, or we can choose Q when P is the true
distribution. These errors depends on the choice of test PZ|W , and in general are
asymmetric. Here we will use the convention that we always consider the error when
the test chooses P when the actual distribution is Q.

We define βα(P,Q) to be the minimum error probability of all statistical tests
PZ|W between distributions P and Q, given that the test chooses P when P is correct
with at least probability α. Formally:

βα(P,Q) = inf
PZ|W :

∫

W PZ|W (1|w)dP (w)≥α

∫

W

PZ|W (1|w)dQ(w) (4.3)

The Neyman Pearson Lemma tells us that for a given α, an optimal test P ∗
Z|W
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achieving error βα exists, and has the form of a ratio test, i.e.

βα(P,Q) = Q

[
dP

dQ
> γ

]

(4.4)

Where γ is chosen to satisfy

α = P

[
dP

dQ
> γ

]

(4.5)

In a composite hypothesis test, P and Q are now parametric families of distribu-
tions, {Pθ1}θ1∈Θ1 and {Qθ2}θ2∈Θ2, i.e.

H0 : W ∼ Qθ2 s.t. θ2 ∈ Θ2 (4.6)

H1 : W ∼ Pθ1 s.t. θ1 ∈ Θ1 (4.7)

In words: the test sees a sample w and must decide whether the distribution gener-
ating that sample was from the Pθ1 family or the Qθ2 family. Similar to the binary
hypothesis testing case, we denote the minimum error probability of a test PZ|W given
that the test chooses H1 when H1 is true for any θ1 ∈ Θ1 with at least probability τ .
Formally:

κτ (Θ1,Θ2) = inf
PZ|W :infθ1∈Θ1

{
∫

W PZ|W (1|w)dPθ1
(w)≥τ}

sup
θ2∈Θ2

∫

W

PZ|W (1|w)dQθ2 (4.8)

Our main case of interest will be between the set of distributions {PY |X=x}x∈F and
a single distribution QY . We will denote the minimum error probability in the com-
posite hypothesis test in this case as κτ (F,QY ).

Now that we have the basic definintions, we’ll need a few bounds that will be used
in the next section. First, we can lower bound the minimum error in a composite
hypothesis test by the minimum error of a binary hypothesis test. This is useful
because often it is difficult to evaluate κτ , but for βα the Neyman-Pearson lemma
gives us the form of the optimal test.

Lemma 4. For a composite hypothesis test between {PY |X=x}x∈F and QY , and any

distribution PX̃ such that F ⊂ supp(X̃) = A,

κτ (F,QY ) ≥ βτP
X̃
[F ](PX̃ ◦ PY |X , QY ) (4.9)

Here, PX ◦ PY |X ,
∫
PY |X=xdPX(x).

Proof. Let PZ|Y be any test for the composite hypothesis test between {PY |X=x}x∈F
and QY satisfying

inf
x∈F

∑

y∈B

PY |X(y|x)PZ|Y (1|y) ≥ τ (4.10)

Where Z = 1 indicates the test choses {PY |X=x}x∈F . Then we use this test PZ|Y for
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testing PY vs QY , where now Z = 1 indicates the test chooses PY . The corresponding
probability of choosing PY when PY is correct is (note PY = PX ◦PY |X by assumption)

∑

y∈B

PY (y)PZ|Y (1|y) =
∑

y∈B

(
∑

x∈A

PX(x)PY |X(y|x)
)

PZ|Y (1|y) (4.11)

≥
∑

y∈B

(
∑

x∈F

PX(x)PY |X(y|x)
)

PZ|Y (1|y) (4.12)

≥
∑

x∈F

PX(x)

(

inf
x∈F

∑

y∈B

PY |X(y|x)PZ|Y (1|y)
)

≥ PX [F ]τ (4.13)

Since this hold for all tests PZ|Y for the composite HT, it holds for the test achieving
κτ . Since βτPX [F ] lower bounds the π1|0 error of all test for PY vs QY , it lower bounds
κτ .

Furthermore, we can lower bound βα from a binary hypothesis test in terms of
the divergence between D(P ||Q) using the data processing inequality:

Lemma 5. For all distributions P,Q s.t. P ≪ Q, and all α ∈ [0, 1],

βα(P,Q) ≥ exp

(

−D(P ||Q) + hB(α)

α

)

(4.14)

Proof. Use the data processing inequality with the kernel PZ|W from our hypothesis
test:

D(P ||Q) ≥ d(α||βα) = −h(α) + α log
1

β
+ (1− α) log

1

1− β
≥ −h(α) + α log

1

β
(4.15)

Where d(p||q) is the divergence between a Bernoulli(p) and Bernoulli(q) distribution.
The lemma follows from solving for βα.

Finally, we are interested the case when P and Q are product distribution P =
∏n

i=1 Pi and Q =
∏n

i=1Qi. When this is the case, with a few regularity conditions
we can expand βα in terms of it’s dependence on n by the following lemma from [11,
Lemma 14], which we give here

Lemma 6. Let P =
∏n

i=1 Pi and Q =
∏n

i=1Qi with Pi ≪ Qi be two measures on a
measurable space An such that the third moment of log dP

dQ
is bounded, then

log βα(P,Q) = −nDn −
√

nVnQ
−1(α) + o(

√
n) (4.16)
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Where

Dn =
1

n

n∑

i=1

D(Pi||Qi) =
1

n

n∑

i=1

E

[

log
dPi

dQi

]

(4.17)

Vn =
1

n

n∑

i=1

V (Pi||Qi) =
1

n

n∑

i=1

Var

(

log
dPi

dQi

)

(4.18)

The proof is an application of the Berry-Esseen Theorem, which quantifies the
error in approximating the CDF of a sum of independent random variables by a
Gaussian distribution as in the Central Limit Theorem.

4.2 Achievability Theorem

In this section, we prove the achievability coding theorem for the coherent MISO
channel. To prove achievability for channels with input constraints, the best known
method is to use the κβ-bound from [9], restated here:

Theorem 7 (κβ-bound). For any distribution QY on B, and ǫ, τ such that 0 < τ <
ǫ < 1, there exists an (M, ǫ) code with codewords in F ⊂ A (A is the input space of
the channel) satisfying

M ≥ κτ (F,QY )

supx∈F β1−ǫ+τ (PY |X=x, QY )
(4.19)

The “art” of applying this theorem is in choosing F and QY appropriately. The
intuition in choosing these is as follows: although we know the distributions in the
collection {PY |X=x}x∈F , we don’t know which x is actually was sent, so if QY is in
the “center” of the collection, then the two hypotheses can be difficult to distinguish,
making the numerator large. However, for a given x, PY |X=x vs QY may still be easily
to distinguish, making the denominator small. The main principle for applying the
κβ-bound is thus: Choose F and QY such that PY |X=x vs QY is easy to distinguish
for any given x, yet {PY |X=x}x∈F vs QY is hard to distinguish.

The main theorem of this section gives achievable rates for the coherent MISO
fading channel:

Theorem 8 (Achievability). For the coherent MISO fading channel

logM∗(nT, ǫ, P ) ≥ nTC(P )−
√

nTV (P )Q−1(ǫ) + o(
√
n) (4.20)

Where for any nt × T capacity achieving input distribution X,

C(P ) =
1

2
E

[

log

(

1 +
P

nt
‖H‖2

)]

(4.21)

V (P ) =
1

T
Var[i(X ; Y,H)|X ] (4.22)
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We first give the main structure of the proof, then the more technical steps follow
as lemmas.

Proof. We apply the κβ bound (4.19). First we bound the numerator κτ (Fn, QY n).
From Lemmas 4 and 5, we can lower bound κτ (Fn, QY n) for any Fn, PX̃n and QY n

satisfying the above lemmas by

κτ (Fn, QY n) ≥ exp

(

−D(PX̃n ◦ PY nHn|Xn ||QY n) + log 2

τPX̃n [Fn]

)

(4.23)

This allows us to lower bound κτ , by upper bounding D(PX̃n ◦ PY nHn|Xn||QY n).
The next lemma shows that for a certain choice of PX̃n and QY n, the divergence in
(4.23) converges to a constant as n → ∞, hence κτ is bounded away from zero for
all n. Note that choosing PX̃n to be i.i.d. will never work if QY n is i.i.d., since the
divergence will go to infinity. Instead, we choose PX̃n to be on a “shell” around QY .

Lemma 9. Let X be any CAID for the channel. For

PX̃n ∼ Xn

‖Xn‖F
√
nTP (4.24)

and QY the (unique) CAOD (QY = PX ◦ PY |X), we have as n → ∞

D(PX̃n ◦ PY nHn|Xn ||Qn
Y ) → O(1) (4.25)

For the lower bound (4.23) to be meaningful, we must have PX̃n [Fn] bounded away
from zero. To choose the set Fn appropriately, we look to the denominator in the κβ
bound. Using Lemma 6, we can expand the denominator in terms of n as follows:

− sup
x∈Fn

log βα(PY nHn|Xn=xn, QY nHn) = − sup
x∈Fn

(

−nDn(x
n) +

√

nVn(xn)Q−1(α) + o(
√
n)
)

= inf
x∈Fn

(

nDn(x
n)−

√

nVn(xn)Q−1(α) + o(
√
n)
)

(4.26)

Where now Dn and Vn depends on xn through PY nHn|Xn=xn. We use (4.26) to help
choose the set Fn. From the cost constraint on the channel, Fn ⊂ {xn : ‖xn‖2F ≤
nTP}. Considering the first term

Dn(x
n) =

1

n

n∑

j=1

E

[

log
PYj |Hj ,Xj=xj

(Yj|Hj)

P ∗
Yj |Hj

(Yj|Hj)

]

=
1

n

n∑

j=1

E[i(xj , Yj, Hj)] (4.27)

The expression for the information density is given in (3.19). As shown in (3.39)-

(3.41), E[‖H̃jxj‖2] = ‖xj‖2F
nt

, so we discover the dependence on the input xn in Dn(x
n)

= TE

[

CAWGN

(
P

nt
‖Hj‖2

)]

+
c0
2n

(‖xn‖2F
nt

− nTP

nt

)

(4.28)
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Where c0 > 0 is a constant that doesn’t depend on xn. In order to maximize the
O(n) term in our expansion, we require Fn ⊂ {xn : ‖xn‖2F = nTP} (i.e. xn lies on the
surface of a “sphere”) on which Dn(x

n) is TC(P ). Now, let V represent our “target”
dispersion, and choose Fn so that (4.26) is forced to give this target dispersion. To
do this, for arbitrary δ > 0, take Fn to be

Fn = {xn : ‖xn‖2F = nTP} ∩ {xn :
1

T
Vn(x

n) ≤ V + δ} (4.29)

Where

Vn(x
n) =

1

n

n∑

j=1

Var(i(xj ; Yj, Hj)) (4.30)

Then (4.26) becomes

− sup
x∈F

log βα(PY nHn|Xn=xn, QY nHn) ≤ nTC(P )−
√

nT (V + δ)Q−1(ǫ− τ) + o(
√
n)

(4.31)

We require that Fn from (4.29) satisfies PX̃ [Fn] > c > 0, which is stated as the
following lemma

Lemma 10. For X CAID, X̃n distributed as Xn

‖Xn‖F

√
nTP ,

P

[∣
∣
∣
∣

1

T
Vn(X̃

n)− V (P )

∣
∣
∣
∣
≥ δ

]

→ 0 as n → ∞ (4.32)

Where V (P ) = 1
T
Var(i(X ; Y,H)|X).

Applying this lemma shows that PX̃n [Fn] tends to 1 asymptotically

PX̃n [Fn] = P

[
1

T
V (X̃n) ≤ V (P ) + δ

]

→ 1 (4.33)

Thus for large enough n, there exists a constant k1 > 0 such that

κτ ≥ exp

(

−k1
τ

)

(4.34)

All together, the κβ bound gives

logM∗(nT, ǫ, P ) ≥ nTC(P )−
√

nT (V (P ) + δ)Q−1(ǫ− τ) + o(
√
n)− k1

τ
(4.35)

Since δ and τ are arbitrary, we recover the statement in the Theorem.

Now we prove the two lemmas used in the Theorem.
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Proof of Lemma 9. We want to show, forX CAID and X̃ = X
‖X‖F

√
nTP , and channel

law PY nHn|Xn , that the divergence between the output distribution induced by PX̃

and QY is asymptotically upper bounded by some constant:

D(PX̃n ◦ PY nHn|Xn ||PXn ◦ PY nHn|Xn) → O(1) (4.36)

Here, PX̃n ◦ PY nHn|Xn describes the output distribution of the “modified” channel

Yj = Hj
Xj

‖Xj‖F
√
nTP + Zj, j = 1, . . . , n (4.37)

We can equivalently describe this distribution on (Y n, Hn) through this modified
channel in terms of the CAID X by

PX̃n ◦ PY nHn|Xn = PXn ◦ P̃Y nHn|Xn (4.38)

Where now

P̃Y nHn|Xn=xn(yn, hn) ∼ PHn(hn)N
(√

nTP

‖xn‖F
[h1x1, . . . , hnxn] , InT

)

(4.39)

With this representation, the divergence in (4.36) takes a simpler form

D(PXn ◦ P̃Y nHn|Xn||PXn ◦ PY nHn|Xn) = D(P̃Y nHn|Xn||PY nHn|Xn |PXn) (4.40)

This is the average over the divergence between two standard normal distributions
with different means. Recall that for any means a, b ∈ R

n,

D (N (a, In)||N (b, In)) =
1

2
‖a− b‖2 (4.41)

Where the norm is the standard Euclidean norm. Applying this to (4.40), i.e. to

D

(

N
(√

nTP

‖xn‖F
[h1x1, . . . , hnxn] , InT

)∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
N ([h1xn, . . . , hnxn], InT )

∣
∣
∣
∣
∣
PXn

)

(4.42)

Yields

1

2
E

[(

‖Xn‖F −
√
nTP

)2 ‖[H1X1, . . . , HnXn]‖2
‖Xn‖2F

]

(4.43)

We argue that (4.43) converges to a constant as n → ∞. Taking the expectation over
Hn while holding Xn fixed gives

1

2
E






(

‖Xn‖F −
√
nTP

)2

‖Xn‖2F
E
[
‖[H1X1, . . . , HnXn]‖2

∣
∣Xn

]




 (4.44)
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As computed in (3.39)-(3.41), the inner expectation simplifies to

E
[
‖[H1X1, . . . , HnXn]‖2

∣
∣Xn = xn

]
=

‖xn‖2F
nt

(4.45)

Hence (4.43) becomes

1

2nt
E

[(

‖Xn‖F −
√
nTP

)2
]

(4.46)

We show that this converges to a constant for any CAID X . The basic idea is that
this behaves like the variance of a χn random variable, which converges to a constant
as n → ∞. First, we expand as

=
1

2

(

Var(‖Xn‖F ) +
(√

nTP − E[‖Xn‖F ]
)2
)

(4.47)

For the first term here, we use the concavity of the square root to get an upper bound
in terms of a χn random variable. Expanding the first term gives

Var(‖Xn‖F ) = E[‖Xn‖2F ]− E[‖Xn‖F ]2 = nTP − E[‖Xn‖F ]2 (4.48)

Now, for any CAID X , let Xjk
i be the (j, k)-th entry in the i-th block of the matrix

Xn, then

E[‖Xn‖F ]2 = E





√
√
√
√

n∑

i=1

nt∑

j=1

T∑

k=1

(Xjk
i )2





2

(4.49)

= ntTE





√
√
√
√

nt∑

j=1

T∑

k=1

1

ntT

n∑

i=1

(Xjk
i )2





2

(4.50)

≥ ntT





nt∑

j=1

T∑

k=1

1

ntT
E





√
√
√
√

n∑

i=1

(Xjk
i )2









2

(4.51)

Now since Xn is block i.i.d. (each block with distribution X), and each entry of Xn

has distribution N (0, P
nt
), the sequence (Xjk

1 , . . . , Xjk
n ) is i.i.d. N (0, P

nt
). Letting µn

be the mean of χn distribution (i.e. µn =
√
2
Γ(n+1

2
)

Γ(n
2
)
), we find

E[‖Xn‖F ]2 ≥ ntT
P

nt

µ2
n = µ2

nTP (4.52)

Applying this bound to (4.48) gives

Var(‖Xn‖F ) ≤ nTP − µ2
nTP → TP

2
(4.53)
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(This is simply the variance of a χn random variable). Now, the second term in (4.47)
goes to zero since

Var(‖Xn‖F ) = (
√
nTP − E[‖Xn‖F ])(

√
nTP + E[‖Xn‖F ]) →

TP

2
(4.54)

=⇒
√
nTP − E[‖Xn‖F ] → 0 (4.55)

Hence we’ve shown that (4.46) convergence to a constant, which completes the proof.

Proof of Lemma 10. We want to show, for any CAIDX , and where X̃n ∼ Xn

‖X‖F

√
nTP ,

P

[

Vn(X̃
n)− V (P ) ≥ δ

]

→ 0 as n → ∞ (4.56)

Where

Vn(X̃
n) =

1

nT
Var

(

i(X̃n; Y n, Hn)|X̃n
)

(4.57)

V (P ) =
1

T
Var ((i(X ; Y,H)|X) = E[V1(X)] (4.58)

The key is that as n → ∞, ‖Xn‖F →
√
nTP (by LLN), so that

X̃j

‖X F

√
nTP → Xj

4.3 Error Exponents

In this section, we show that Gallager’s Error Exponent [5, Section 7.3] analysis is
consistent with our result that orthogonal design input distributions preform better
from a finite blocklength perspective. We will introduce error exponents for input
constrained channel, compute these exponents for both the i.i.d. Gaussian input and
orthogonal design input, then compare the two to see that the exponent for orthogo-
nal designs is always larger.

The method of error exponents give a non-asymptotic upper bound (achievability
bound) on the probability of error when using M = enR codewords and blocklength
n. Gallager shows us that for an arbitrary discrete-time memoryless channel with
input constraint

∑n
i=1 f(xi) ≤ nP , exists an (n, enR, ǫ) code satisfying

ǫ ≤
(
erδ

µ

)1+ρ

exp(−n(E0(ρ, PX , r)− ρR)) (4.59)

E0(ρ, PX , r) is called the random coding exponent defined below, and the prefactor
(erδ/µ)1+ρ grows with n as n(1+ρ)/2 for fixed r and δ, so it does not effect the ex-
ponential dependence of the above bound. The tightest bound on error probability
in (4.59) is given by maximizing over ρ ∈ (0, 1), r ≥ 0, and PX satisfying the input
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constraint. The bound exponential dependence on the input distribution PX is only
though E0(ρ, PX , r), given as follows:

Definition 4. For ρ ∈ [0, 1], r ≥ 0, input PX and channel PY |X with power constraint
∑n

i=1 f(xi) ≤ nP , the random coding exponent is

E0(ρ, PX , r) = − log

∫ (∫

PX(x)e
r(f(x)−P )PY |X(y|x)

1
1+ρdx

)1+ρ

dy (4.60)

The following argument will show that in the MISO block fading channel, taking
input PX as an orthogonal design input distribution gives a strictly better random
coding exponent than the independent Gaussian input, for all values of ρ and r.
This agrees with our result in Chapter 5 that orthogonal designs preform better from
a finite blocklength standpoint. Hence this result could have been discovered with
the classical method of error exponents rather than the more modern method of
dispersion.

4.3.1 Computation of i.i.d. Gaussian and Orthogonal Design

Exponents

Here we derive the expressions for the error exponent when the MISO channel input is
i.i.d. Gaussian and when it is an orthogonal design. The full computation is given for
completeness. The following proposition gives the expression for the random coding
exponent for both the i.i.d. Gaussian input and the orthogonal design input.

Proposition 11. The error exponents for the i.i.d. Gaussian input and the Orthog-
onal Design input are given by, respectively

E0(ρ, PXG
, r) = rTP (1 + ρ) +

T (nt + ρnt − ρ)

2
log

(

1− 2r
P

nt

)

+
ρT

2
E log

(

1− 2r
P

nt

+
P
nt
‖H‖2
1 + ρ

)

(4.61)

and

E0(ρ, PXOD
, r) = rT

P

nt
(1 + ρ) +

T

2
log

(

1− 2r
P

nt

)

+
ρT

2
E log

(

1− 2r
P

nt
+

P
nt
‖H‖2
1 + ρ

)

(4.62)

Proof. The objective is to compute, for the respective input distributions,

E0(ρ, PX , r) = − log

∫ (∫

PX(x)e
‖x‖2

F
−TP )PY H|X(y, h|x)

1
1+ρdx

)1+ρ

dydh (4.63)

Note that we can decompose the channel transition kernel into PHPY |HX and pull out
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PH to get to a simpler form

−EH log

∫ (∫

PX(x)e
r(‖x‖2F−TP )PY |HX(y|h, x)

1
1+ρdx

)1+ρ

dy (4.64)

i.i.d. Gaussian input: Throughout, we will compute the integrals by viewing
them as finding the output distribution through a “modified” channel. The “tilted”

channel, P
1

1+ρ

Y |HX , has conditional density

P
1

1+ρ

Y |HX =
1

√
2π

T (1+ρ)
e

−‖y−hx‖2

2(1+ρ) =
√

1 + ρ
T√

2π
ρT
1+ρN (hx, (1 + ρ)IT ) (4.65)

We can think of this as instead the channel

Y = HX +
√

1 + ρZ (4.66)

The input PXG
is also tilted:

PXG
er(‖x‖

2
F−TP ) = er(‖x‖

2
F−TP ) 1

√

2π P
nt

ntT
e
−

‖x‖2
F

2 P
nt =

e−rTP

√

1− 2r P
nt

ntT
N
(

0,
P
nt

1− 2r P
nt

IT ⊗ Int

)

(4.67)

Here, ⊗ denotes the tensor product. The inner integral of (4.64) is the output distri-
bution through channel (4.66) induced by the i.i.d Gaussian input, each entry having
variance P

nt

1
1−2r P

nt

, so

∫

PX(x)e
r(‖x‖2F−TP )PY |HX(y|h, x)

1
1+ρdx = c0N

(

0,

(

1 + ρ+
P
nt
‖h‖2

1− 2r P
nt

)

IT

)

(4.68)

Where the constant c0 is

c0 =
e−rTP

√

1− 2r P
nt

ntT

√

1 + ρ
T√

2π
ρT
1+ρ (4.69)

For the outer integral from (4.64), again we extract the appropriate constant to obtain
the integral of a Gaussian density. Let PY be the normal distribution from (4.68),
then the outer integral is

c1+ρ
0

∫

P 1+ρ
Y dy = c1+ρ

0 c1 (4.70)
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With constant

c1 =
(√

2πv
ρT√

1 + ρ
T
)−1

(4.71)

And v is the variance of PY , i.e.

v = 1 + ρ+
P
nt
‖h‖2

1− 2r P
nt

(4.72)

Putting the constants together, the error exponent for the Gaussian input is

E0(ρ, PXG
, r) = −E log

(
c1+ρ
0 c1

)
(4.73)

= E log

( √
1 + ρ

T√
2πv

ρT

√
1 + ρ

ρT+T√
2π

ρT

√

1− 2r
P

nt

ntT (1+ρ)

erTP (1+ρ)

)

(4.74)

= rTP (1 + ρ) +
ntT (1 + ρ)

2
log

(

1− 2r
P

nt

)

+ E
ρT

2
log

(

1 +
P
nt
‖H‖2

(1− 2r P
nt
)(1 + ρ)

)

(4.75)

A trivial rearrangement of this gives (4.61) from the proposition. Note this expression
is only valid when 0 ≤ r ≤ 1

2 P
nt

.

Orthogonal Design input: The orthogonal design error exponent even easier.
When the input is an orthogonal design, the channel is equivalent to a SISO block
fading channel. More concretely, if an orthogonal design of dimension nt × T is used
for the MISO block fading channel with power constraint TP and fading vector H ,
the equivalent SISO channel has the same coherence time T , but now with power
constraint

∑n
j=1 ‖Xj‖2 ≤ nT P

nt
and scalar fading coefficient ‖H‖ for a length T block

of symbols, i.e. one block of length T is given by

Yj = ‖H‖Xj + Zj (4.76)

Where Xj ∼ N (0, P
nt
IT ). Hence we can calculate the error exponent of this SISO

channel to give the error exponent for orthogonal design inputs in the MISO channel.

The steps are very similar to the i.i.d. Gaussian case above. The tilted channel is

P
1

1+ρ

Y |HX =
√

1 + ρ
T√

2π
ρT
1+ρN (‖h‖x, (1 + ρ)IT ) (4.77)

The tilted input distribution is

PXe
r(‖x‖2−T P

nt
)
=

e
−rT P

nt

√

1− 2r P
nt

T
N
(

0,
P
nt

1− 2r P
nt

IT

)

(4.78)
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With these, the inner integral of (4.64) is

∫

PX(x)e
r(‖x‖2F−TP )PY |HX(y|h, x)

1
1+ρdx = c0N

(

0,

(

1 + ρ+
P
nt
‖h‖2

1− 2r P
nt

)

IT

)

(4.79)

Where

c0 =
e
−rT P

nt

√

1− 2r P
nt

T

√

1 + ρ
T√

2π
ρT
1+ρ (4.80)

The outer integral of (4.64) is, with PY as the Gaussian piece of (4.79),

c1+ρ
0

∫

P 1+ρ
Y dy = c1+ρ

0

∫
1

√
2πv

(1+ρ)T
e
−

‖y‖2

2 v
1+ρ = c1+ρ

0 c1 (4.81)

Where

c1 =
(√

2πv
ρT√

1 + ρ
T
)−1

(4.82)

And v is the same variance as (4.72). Putting the constants together, the error
exponent is

E0(ρ, PXOD
, r) = −E log(c1+ρ

0 c1) (4.83)

= E log

( √
2πv

ρT√
1 + ρ

T

√
2π

ρT√
1 + ρ

T+ρT

√

1− 2r
P

nt

T (1+ρ)

e
rT P

nt
(1+ρ)

)

(4.84)

= rT
P

nt

(1 + ρ) +
T

2
log

(

1− 2r
P

nt

)

+ E
ρT

2
log

(

1− 2r
P

nt

+
P
nt
‖H‖2
1 + ρ

)

(4.85)

Which matches expression (4.62) in the proposition. Note this expression is only valid
when 0 ≤ r ≤ 1

2 P
nt

.

4.3.2 Comparison of Error Exponents

We’re interested whether the i.i.d. Gaussian input or the orthogonal design input give
a larger random coding exponent. It turns out that the orthogonal design exponent
is larger for all ρ, r, and P , as we show now.
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We will show E0(ρ, PXG
, r)− E0(ρ, POD, r) ≤ 0. Expanding this difference:

E0(ρ, PXG
, r)− E0(ρ, POD, r) = rTP (1 + ρ)

(

1− 1

nt

)

+
1

2
(ntT + ρntT − ρT − T ) log

(

1− 2r
P

nt

)

(4.86)

We can simplify this to a non-negative coefficient and a polynomial in nt:

= − T (1 + ρ)

nt log

(

1
√

1−2r P
nt

)







n2
t − nt







1 +

rP

log

(

1
√

1−2r P
nt

)








+
rP

log

(

1
√

1−2r P
nt

)








(4.87)

Factoring the polynomial gives

= − T (1 + ρ)

nt log

(

1
√

1−2r P
nt

)







(nt − 1)







nt −

rP

log

(

1
√

1−2r P
nt

)















(4.88)

The factor nt − 1 is always non-negative (i.e. there is always at least one transmit
antenna), so to show E0(ρ, PXG

, r)− E0(ρ, POD, r) ≤ 0, we need to show the second
factor is also non-negative for all 0 ≤ r ≤ 1

2 P
nt

:

nt ≥
rP

log

(

1
√

1−2r P
nt

) (4.89)

To show this, we use the inequality

log

(
1

1− x

)

≥ x (4.90)

Applying this inequality to (4.89) gives

rP

log

(

1
√

1−2r P
nt

) =
2rP

log

(

1
1−2r P

nt

) ≤ 2rP

2r P
nt

= nt (4.91)

The inequality used is strict unless r = 0. These results are summarized in the
following proposition.

Proposition 12. For all ρ ∈ [0, 1], P ≥ 0, r ∈ [0, 1
2 P
nt

], E0(ρ, PXG
, r) ≤ E0(ρ, POD, r)

with equality iff r = 0.
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Summarizing, we have shown that the random coding exponent for an orthogonal
design input distribution is larger than the i.i.d. Gaussian input, hence it gives a
tighter achievability bound using the method of error exponents. Furthermore, the
orthogonal design random coding exponent is strictly larger when r 6= 0. Hence this
classical method shows that orthogonal designs should have a better finite blocklength
preformance. This result is analyzed from the perspective of dispersion in much more
detail in the next chapter.
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Chapter 5

Orthogonal Designs Minimize

Achievable Dispersion

In Chapter 4, we saw that for any capacity achieving input distribution (CAID) X ,
the conditional variance

V (P ) =
1

T
Var[i(X ; Y,H)|X ] (5.1)

was achievable in the sense that there exists an (n,M, ǫ) code for the MISO block
fading channel satisfying

logM(nT, ǫ) ≥ nTC(P )−
√

nTV (P )Q−1(ǫ) + o(
√
n) (5.2)

Where C(P ) is the capacity of the channel. In this chapter, we answer the question:
over all CAIDs X (recall from Chapter 3 that X is not unique), which one minimizes
the conditional variance for the nt × T MISO channel? This minimizer will give us
the tightest bound in (5.2), and will also give insight to the best coding schemes for
the MISO channel.

5.1 Minimizing the Dispersion

We start from the expression for the conditional variance. From Proposition 3 in
Chapter 3, the conditional variance has the form

1

T
Var(i(X ; Y,H)|X) = V1(P )− χ2

n2
tT

Var(‖X‖2F ) (5.3)

Where V1 is independent of the CAID X and χ2 is a non-negative constant. In this
form, the dependence of the dispersion on the input distribution is explicit: in order
to minimize the dispersion, we maximize Var(‖X‖2F ) over the set of CAIDs. We can
expand Var(‖X‖2F ) as a sum of covariances which will be easier to deal with. This is
captured in the following definition, then use to define Vmin as the minimal disperison
over the set of CAIDs.
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Definition 5. For the MISO channel with nt transmit antennas and coherence time
T we define

v∗(nt, T ) , max
PX :I(X;Y,H)=C

nt∑

i=1

nt∑

j=1

T∑

k=1

T∑

l=1

ρ2ikjl (5.4)

where

ρ2ikjl =
Cov(X2

ik, X
2
jl)

Var(X2
11)

(5.5)

The notation ρikjl is appropriate since whenever X is jointly Gaussian, ρ2ikjl is the
squared correlation coefficient between Xik and Xjl. However, there are non-jointly
Gaussian CAIDs where this isn’t the case. For instance, when nt = T = 2, for
v ∼ Ber(1/2) and A,B i.i.d. N (0, P/2), the following achieves capacity

X =

[
A −(−1)vB
B (−1)vA

]

(5.6)

Here, the correlation coefficient between X11 and X22 is 0, however (5.5) gives ρ
2
1122 =

1. Now Vmin, the minimal dispersion, is given in terms of v∗(nt, T ).

Proposition 13. The minimal dispersion of an nt × T block-fading MISO channel
is given by

Vmin
△
= inf

X-caid

1

T
Var[i(X ; Y,H)|X ] = V1(P )− 2χ2P

2

n4
tT

v∗(nt, T ) (5.7)

where V1 and χ2 are from (3.51).

Proof. The only term that depends on X in (3.51) is Var(‖X‖2F ). We can expand
this as a sum of covariance terms:

Var(‖X‖2F ) =
nt∑

i=1

nt∑

j=1

T∑

k=1

T∑

l=1

Cov(X2
ik, X

2
jl) (5.8)

Writing this in terms of the ρ2ikjl, and using V ar(X2
ik) = 2(P/nt)

2 from (5.5) yields

Var(‖X‖2F ) = 2

(
P

nt

)2 nt∑

i=1

nt∑

j=1

T∑

k=1

T∑

l=1

ρ2ikjl (5.9)

Maximizing this term over the set of CAIDs gives 2(P/nt)
2v∗(nt, T ), and putting

this into the expression for the conditional variance from Proposition 3 gives Vmin

above.

Therefore intuitively, minimizing dispersion is equivalent tomaximizing the amount
of correlation amongst the entries of X when X is jointly Gaussian. In a sense, this
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asks for the capacity achieving input distribution having the least amount of ran-
domness. Next we must characterize v∗(nt, T ). The manifold of CAIDs is not a
particularly nice manifold to optimize over, one must account for all the indepen-
dence constraints on the rows and columns, the covariance constraints on the 2 × 2
minors, positive definite and symmetric constraints, etc. Our strategy instead will be
to given an upper bound on v∗(nt, T ), then show that for most of the pairs (nt, T ),
the upper bound is tight. The crux of the upper bound is the following simple lemma.

Lemma 14. Let (A1, . . . , An) and (B1, . . . , Bn) be i.i.d. random vectors that may
have arbitrary correlation between them, then

n∑

i=1

n∑

j=1

Cov(Ai, Bj) ≤ nσ2 (5.10)

With equality iff
∑n

i=1Ai =
∑n

i=1Bi almost surely.

Proof. Simply use the fact that covariance is a bilinear function and apply the Cauchy-
Schwarz inequality:

n∑

i=1

n∑

j=1

Cov(Ai, Bj) = Cov(
n∑

i=1

Ai,
n∑

j=1

Bj) (5.11)

≤

√
√
√
√Var(

n∑

i=1

Ai)Var(

n∑

j=1

Bj) (5.12)

=
√

(nVar(A1))(nVar(B1)) (5.13)

= nσ2 (5.14)

We have equality in Cauchy-Schwarz when
∑n

i=1Ai and
∑n

i=1Bi are propositional,
and since these sums have the same distribution, the constant of proportionality must
be 1, so we have equality iff

∑n
i=1Ai =

∑n
i=1Bi.

We will use this lemma shortly to upper bound Var(‖X‖2F ). But before stating
the main theorem of the section, we review orthogonal designs.

5.1.1 Orthogonal Designs

Historical Introduction

In this section we will give some relevant background on orthogonal designs, since
they will play a large role in this work. For some historical background, Hurwitz was
interested the existence of a “composition formula” for positive integers (r, s, n) [14]

(x2
1 + · · ·+ x2

r)(y
2
1 + · · ·+ y2s) = (z21 + · · ·+ z2n) (5.15)
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Where each zi is a bilinear form in the xi’s and yi’s. For example, a (2, 2, 2) compo-
sition formula is

(x2
1 + x2

2)(y
2
1 + y22) = (x1y1 − x2y2)

2 + (x1y2 + x2y1)
2 (5.16)

Let x, y, z denote the r, n, s length vector of the xi, yi, zi’s respectively, then the con-
dition that zi is a bilinear form of the xi’s and yi’s means that z can be written as
z = Ay where the entries of A (n× s) are some linear combinations of xi’s. In which
case (5.15) is restated as

zT z = yTATAy = xTxyTy (5.17)

Which must hold for all indeterminants in y, so the existence condition reduces to
the existence of an n × s matrix A with entries that are linear combinations of the
xi’s such that

ATA =

r∑

i=1

x2
i Is (5.18)

Thus yielding (5.15) as desired

n∑

i=1

z2i =

(
r∑

i=1

x2
i

)(
s∑

i=1

y2i

)

(5.19)

Hurwitz-Radon Families

A real n × n orthogonal design of size k is defined to be an n × n matrix A with
entries given by linear forms in x1, . . . , xk and coefficients in R satisfying

ATA =

(
k∑

i=1

x2
i

)

In (5.20)

In other words, all columns of A have squared Euclidean norm
∑k

i=1 x
2
i , and all

columns are pairwise orthogonal. Orthogonal designs may be represented as the sum
A =

∑k
i=1 xiVi where {V1, . . . , Vk} is a collection of n × n real matrices satisfying

Hurwitz-Radon conditions:

V T
i Vi = In (5.21)

V T
i Vj + V T

j Vi = 0 i 6= j

The main theorem on Hurwitz-Radon families gives the largest k such that a family
satisfying the above conditions exists, as stated in the following theorem from [6,12].

Theorem 15 (Radon-Hurwitz). There exists a family of n×n real matrices {V1, . . . , Vk}
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satisfying (5.21) iff k ≤ ρ(n), where

ρ(2ab) = 8
⌊a

4

⌋

+ 2amod 4, a, b ∈ Z, b–odd . (5.22)

In particular, ρ(n) ≤ n and ρ(n) = n only for n = 1, 2, 4, 8.

So the maximal size of a n × n orthogonal design is the Hurwitz-Radon number
ρ(n). As in [16], we can generalize the definition of orthogonal designs to be a rect-
angular n × k matrix A (we will assume n ≥ k) with indeterminants that are linear
forms in x1, . . . , xk, and A satisfies (5.20). These non-square orthogonal designs are
again constructed by a Hurwitz-Radon family {V1, . . . , Vk} with Vi ∈ R

n×n of size k
(5.21) via

A = [V1x · · · Vkx] (5.23)

Where x = [x1, . . . , xk] is the vector of indeterminates. It follows immediately from
this construction that (5.20) is satisfied.

We use this classical theorem to prove the main theorem of this section, which
upper bounds the conditional variance and gives conditions for when this bound is
tight. The proof and following discussion show that when the bound is tight, full
rate orthogonal designs achieve the bound, and i.i.d Gaussian inputs preform strictly
worse.

5.1.2 Main Theorem on Minimizing Achievable Dispersion

The main theorem of the chapter states that, for dimensions where orthogonal designs
exist, the dispersion is minimized if and only if the input is an orthogonal design
distribution.

Theorem 16. For any pair of positive integers nt, T we have

v∗(T, nt) = v∗(nt, T ) ≤ ntT min(nt, T ) . (5.24)

Furthermore, the bound (5.24) is tight if and only if nt ≤ ρ(T ) or T ≤ ρ(nt).

Proof. v∗(nt, T ) = v∗(T, nt) follows from the symmetry to transposition of CAID-
conditions on X (see Proposition 1) and symmetry to transposition of (5.4). From
now on, without loss of generality we assume nt ≤ T .

For the upper bound, since the rows and columns of X are i.i.d, we can apply
Lemma 14 to the rows (or columns) of X , giving

nt∑

i=1

nt∑

j=1

T∑

k=1

T∑

l=1

ρ2ijkl =
1

Var(X2
11)

nt∑

i=1

nt∑

j=1

T∑

k=1

T∑

l=1

Cov(X2
ik, X

2
jl) (5.25)

≤
nt∑

i=1

nt∑

j=1

T (5.26)

= n2
tT (5.27)
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We can apply Lemma 14 instead to the columns of X to obtain the bound T 2nt,
hence the smallest upper bound is ntT min(nt, T ). Note that (5.25) implies that if
X achieves the bound (5.24), then removing the last row of X achieves (5.24) as an
(nt − 1)× T design. In other words, if (5.24) is tight for nt × T then it is tight for all
n′
t ≤ nt.
With this observation in mind, take nt = ρ(T ) and a maximal Hurwitz-Radon

family {Vi, i = 1, . . . , nt} of T × T matrices. Let ξ ∼ N (0, IT ) be i.i.d. normal
row-vector. Consider

X =
[
V T
1 ξT · · ·V T

nt
ξT
]T

(5.28)

The definition of orthogonal design (5.21) implies that rows of X satisfy condi-
tions (3.3)-(3.4). Thus X is capacity achieving. On the other hand, in represen-
tation (5.28) the matrix V T

j Vi contains the correlation coefficients between rows i and
j of X , since E[(ξVj)

T (ξVi)] = V T
j Vi, so

‖V T
j Vi‖2F =

T∑

k=1

T∑

l=1

ρ2ikjl (5.29)

Therefore we can represent the sum of squared correlation coefficients as

∑

i,j,k,l

ρ2ijkl = tr





(
nt∑

i=1

ViV
T
i

)2


 (5.30)

Since Vi are orthogonal, ViV
T
i = IT and hence the trace above equals n2

tT , match-
ing (5.24).

Conversely, suppose X is capacity achieving and attains (5.24). Let (X1, . . . , XT )
be the first row of X , we will show that

XXT =

(
T∑

i=1

X2
i

)

Int
a.s. (5.31)

By definition, this relation means that X is an orthogonal design, and hence nt ≤
ρ(T ) or T ≤ ρ(nt) by Theorem 15. From Lemma 14, the equality condition from
the Cauchy-Schwarz inequality tells us that the bound (5.24) is tight iff for all j ∈
{1, . . . , nt},

‖Rj‖2 =
T∑

i=1

X2
i a.s. (5.32)

Where Rj is the j-th row of X , and ‖ · ‖ is the Euclidean norm. So the Euclidean
norms of all rows must be almost surely equal. Hence the diagonal entries of XXT ,
which are the random variables RiR

T
i , are all

∑T
i=1X

2
i . In order for (5.31) to hold,

we must show that the off diagonal entries RiR
T
j = 0 a.s. for i 6= j.

If a CAID X achieves the bound, then any left-rotation of X also achieves the
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bound, i.e. UX achieves the bound for any nt × nt orthogonal matrix U . To see this,
notice that left rotations do not change the channel statistics, since H is rotationally
invariant by assumption:

Y = H(UX) + Z = (HU)X + Z ∼ HX + Z (5.33)

Let u1, . . . , unt
be the rows of any nt × nt orthogonal matrix U . Take the orthogonal

matrix that mixes row i and j, and leaves the other rows untouched, i.e.

ui = [0, . . . ,
1√
2
, . . . ,

1√
2
, . . . 0] (5.34)

uj = [0, . . . ,
1√
2
, . . . ,− 1√

2
, . . . 0] (5.35)

And all other rows uk are the standard basis vectors with a 1 in the k-th position
and 0’s elsewhere. The matrix UX has row i as uiX and row j as ujX , which have
Euclidean norm:

‖uiX‖2 =
nt∑

k=1

nt∑

l=1

uikuil〈Rk, Rl〉 =
T∑

i=1

X2
i + 〈Ri, Rj〉 (5.36)

‖ujX‖2 =
nt∑

k=1

nt∑

l=1

ujkujl〈Rk, Rl〉 =
T∑

i=1

X2
i − 〈Ri, Rj〉 (5.37)

Where 〈·, ·〉 is the standard Euclidean inner product. Since UX achieves the bound,
we must have the almost sure equality condition

‖u1X‖2 = ‖u2X‖2 (5.38)

And hence we see that almost surely

〈Ri, Rj〉 = −〈Ri, Rj〉 (5.39)

And therefore 〈Ri, Rj〉 = 0 almost surely. Summarizing, if X is a CAID and achieves
the bound (5.24), almost surely we have

RiR
T
i =

T∑

i=1

X2
i (5.40)

RiR
T
j = 0, i 6= j (5.41)

And thus almost surely (5.31) holds.

Remark 3. This proof shows that, even if a CAID X is a non-jointly Gaussian, for
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example

X =

[
A −(−1)vB
B (−1)vA

]

(5.42)

We still know that if X achieves the bound (5.24), then it is an orthogonal design, i.e.
that all rows have the same norm almost surely, and all pairs of rows are orthogonal
almost surely. In a way, this show that orthogonal designs are very naturally tied to
the MISO block fading channel.

Remark 4. Note that the input distribution where all entries are i.i.d. Gaussian
certainly does not satisfy

XXT =
T∑

i=1

X2
i Int

a.s. (5.43)

Where (X1, . . . , XT ) is the first row of X . Hence this input is strictly worse than an
orthogonal design input.

Remark 5. The condition for tightness in Theorem 16 is that nt ≤ ρ(T ) (assuming
nt ≤ T ), one may ask, how often is this satisfied? From the definition of the ρ function
in (5.22), we see that ρ(n) is increasing, which means that for any number of transmit
antennas nt, eventually the bound will be tight. Often the coherence time is much
larger than the number of antennas, so this in this regime, the bound will very likely
be tight.

Remark 6. Elementary results on orthogonal designs show that the conditions for
tightness of (5.24) are satisfied if and only if a full rate real orthogonal design of
dimensions nt × T or T × nt exists, cf. [16] or [8, Proposition 4]. Consequently, each
full-rate orthogonal design yields a CAID X that achieves minimal dispersion. Some
examples (ξj are i.i.d. N (0, 1)) for the nt = T = 4 and the nt = 4, T = 3 case are

X =

√

P

4







ξ1 ξ2 ξ3 ξ4
−ξ2 ξ1 −ξ4 ξ3
−ξ3 ξ4 ξ1 −ξ2
−ξ4 −ξ3 ξ2 ξ1







(5.44)

X =

√

P

4







ξ1 ξ2 ξ3
−ξ2 ξ1 −ξ4
−ξ3 ξ4 ξ1
−ξ4 −ξ3 ξ2







5.1.3 Dimensions Where Orthogonal Designs Do Not Exist

For pairs (nt, T ) where nt > ρ(T ), an orthogonal design does not exist, yet we can
still ask: which capacity achieving input distribution still minimizes the dispersion?
The minimizer won’t be an orthogonal design, but won’t be an i.i.d. Gaussian CAID
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either (as shown in the next section). Hence we’ll get some new object. The question
of exactly which distributions minimize the conditional variance in these cases is still
open. The following gives a construction of input distributions that achieve a smaller
dispersion than i.i.d. Gaussian in these cases.

Note that for the designs with entries ±ξj , with ξj being independent Gaussians,
computation of the sum (5.4) is simplified:

∑

ijkl

ρ2ikjl =

d∑

t=1

(ℓt)
2 , (5.45)

where ℓt is the number of times ±ξt appears in the description of X . By this obser-
vation and the remark after Proposition 1 we can obtain lower bounds on v∗(nt, T )
for nt > ρ(T ) via the following truncation construction:

1. Take T ′ > T such that ρ(T ′) ≥ nt and let X ′ be a corresponding ρ(T ′) × T ′

full-rate orthogonal design (with entries ±ξ1, . . .± ξT ′).

2. Choose an nt×T submatrix of X ′ maximizing the sum of squares of the number
of occurrences of each of ξj, cf. (5.45).

As an example of this method, by truncating a 4× 4 design (5.44) we obtain the
following 2× 3 and 3× 3 submatrices:

X =

√

P

3





ξ1 ξ2 ξ3
−ξ2 ξ1 ξ4
−ξ3 −ξ4 ξ1



 X =

√

P

2

[
ξ1 ξ2 ξ3
−ξ2 ξ1 ξ4

]

(5.46)

By independent methods we were able to show that designs (5.46) are dispersion-
optimal out of all jointly Gaussian CAIDs, and attain v∗(3, 3) = 21 and v∗(2, 3) = 10.
Note that in these cases the bound (5.24) is not tight, illustrating the “only if” part
of Theorem 16.

Orthogonal designs were introduced into communication theory by Tarokh et al
[16] as a natural generalization of Alamouti’s scheme [1]. In cases when full-rate
designs do not exist, there have been various suggestions as to what could be the best
solution, e.g. [8]. Thus for non full-rate designs the property of minimizing dispersion
(such as (5.46)) could be used for selecting the best design for cases nt > ρ(T ).

5.1.4 Numerical Values for Minimal Dispersion

Our current knowledge about v∗ is summarized in Table 5.1. The lower bounds for
cases not handled by Theorem 16 were computed by truncating the 8x8 orthogonal
design [16, (5)]. Based on the evidence from 2 × T and 3 × 3 we conjecture this
construction to be optimal.

Finally, returning to the original question of the minimal delay required to achieve
capacity, see (1.2), we calculate the value of Vmin

C2 in Table 5.2.
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Table 5.1: Values for v∗(nt, T )
nt \ T 1 2 3 4 5 6 7 8

1 1 2 3 4 5 6 7 8
2 8 10 16 18 24 26 32
3 21 36 [39,45) [46,54) [57,63) 72
4 64 [68,80) [80,96) [100,112) 128
5 [89,125) [118,150) [155,175) 200
6 [168,216) [222,252) 288
7 [301,343) 392
8 512

Note: Table is symmetric about diagonal; intervals [a, b) mark entries for which dispersion-optimal
input is unknown.

Table 5.2: Values of Vmin

C2 (when known) at SNR = 20 dB
nt \ T 1 2 3 4 5 6 7 8

1 0.38 0.60 0.82 1.05 1.27 1.49 1.72 1.94
2 0.35 0.39 0.52 0.60 0.73 0.82 0.94 1.03
3 0.38 0.42 0.45 0.49 0.79
4 0.42 0.43 0.44 0.45 0.69
5 0.46 0.48 0.64
6 0.50 0.51 0.62
7 0.54 0.55 0.61
8 0.59 0.59 0.59 0.60 0.60 0.60 0.61 0.61

From the proof of Theorem 16 it is clear that Telatar’s i.i.d. Gaussian (as in (3.1))
is never dispersion optimal, unless nt = 1 or T = 1. Indeed, for Telatar’s input
ρikjl = 0 unless (i, k) = (j, l). Thus embedding even a single Alamouti block (3.2)
into an otherwise i.i.d. nt × T matrix X strictly improves the sum (5.4).

We note that the value of V
C2 entering (1.2) can be quite sensitive to the suboptimal

choice of the design. For example, for nt = T = 8 and SNR = 20 dB estimate (1.2)
shows that one needs

• around 600 channel inputs (that is 600/8 blocks) for the optimal 8×8 orthogonal
design, or

• around 850 channel inputs for Telatar’s i.i.d. Gaussian design

in order to achieve 90% of capacity. This translates into a 40% longer delay (or
battery spent in running the decoder) with unoptimized transmitter.

Thus, curiously even in cases where pure multiplexing (that is maximizing trans-
mission rate) is needed – as is often the case in modern cellular networks – transmit
diversity enters the picture by enhancing the finite blocklength fundamental limits.
We remind, however, that our discussion pertains only to cases when the transmitter
(base-station) is equipped with more antennas than the receiver (user equipment).
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5.2 Linear Decoders for Orthogonal Designs

One major advantage about using an orthogonal design in a MISO system is that the
decoder can decouple all data stream by using a linear transformation. The following
theorem shows that this is possible if and only if

Theorem 17. Suppose X is an nt × T full rate orthogonal design with entries
d1, . . . , dT for the channel Y = hX +Z, then there exists a T ×T matrix B such that

1

‖h‖Y B = ‖h‖d+ Z̃i (5.47)

Where d = [d1, . . . , dT ] and Z̃i ∼ N (0, IT ), and B is a T × T orthogonal design with
entries that are linear combinations of {0, h1, . . . , hnt

}. Furthermore, if X is any
input that contains more than T independent symbols, then no such B exists.

Note that the i-th entry of the transformed received vector 1
‖h‖

Y B only depends
on di, hence B decouples the data streams.

Proof. Represent hX as hX = dA, where A is a T × T matrix with entries as linear
forms of h and d = [d1, . . . , dT ]. This can be done for any matrix X given that X
has entries that are linear forms of d, simply by solving for the aij’s entry-wise. Now

suppose X is a full rate orthogonal design, i.e. satisfies XXT =
∑T

i=1 d
2
i Int

. Then

dAATdT = hXXThT (5.48)

=

(
T∑

i=1

d2i

)(
nt∑

i=1

h2
i

)

(5.49)

= d

(
nt∑

i=1

h2
i IT

)

dT (5.50)

Since the left and right hand side are equal as quadratic forms, AAT =
∑nt

i=1 h
2
i ,

hence A is an orthogonal design, and

Y B = hXB + ZB = dAAT + ZB = ‖h‖2d+ ZB (5.51)

Finally, note that 1
‖h‖

B is an orthogonal matrix, and since and the distribution

N (0, IT ) is invariant under orthogonal transformations, 1
‖h‖

ZB ∼ N (0, IT ).

Conversely, suppose X contains l data symbols {d1, . . . , dl} where l > T . Again
we can find A such that hX = dA (again, simply by solving entry-wise equations),
where A has dimension T × l. If a linear decoding matrix B of dimension l× T were
to exist, it would satisfy

dAB = d‖h‖2 =⇒ AB = ‖h‖2IT (5.52)

But since l > T , the determinant of the left hand side is zero while the right hand
size is non zero, hence such a B cannot exist.
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Example: Take the nt = 3, T = 4 case with CAID

X =





ξ1 ξ2 ξ3 ξ4
−ξ2 ξ1 −ξ4 ξ3
−ξ3 ξ4 ξ1 −ξ2



 (5.53)

Which is a full rate orthogonal design. Solving hX = dA for A where h = [h1, h2, h3]
and d = [ξ1, ξ2, ξ3, ξ4] yields

A =







h1 h2 h3 0
−h2 h1 0 −h3

−h3 0 h1 h2

0 h3 −h2 h1







(5.54)

This is a 4×4 orthogonal design of size 3 in h1, h2, h3. Upon receiving Y = HX+Z =
dA+ Z, the decoder computes

R , Y
AT

‖h‖ =
dAA4

‖h‖ +
ZAT

‖h‖ = d‖h‖+ Z̃ (5.55)

Since A is an orthogonal design, AAT =
(∑3

i=1 h
2
i

)
I4 = ‖h‖2I4, and since 1

‖h‖
AT is

an orthogonal matrix, the additive noise Z̃ is still white. Hence the independent data
streams are completely decoupled at the receiver, since Ri = ‖h‖ξi + Z̃i.
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Appendix A

Proof
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Appendix B

Figures
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