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Abstract
Source coding is accomplished via the mapping of consecutive source symbols (blocks)
into code blocks of fixed or variable length. The fundamental limits in source coding intro-
duces a tradeoff between the rate of compression and the fidelity of the recovery. However,
in practical communication systems many issues such as computational complexity, mem-
ory capacity, and memory access requirements must be considered. In conventional source
coding, in order to retrieve one coordinate of the source sequence, accessing all the encoded
coordinates are required. In other words, querying all of the memory cells is necessary.
We study a class of codes for which the decoder is local. We introduce locally decodable
source coding (LDSC), in which the decoder need not to read the entire encoded coordi-
nates and only a few queries suffice to retrieve any of the source coordinates. Both cases
of having a constant number of queries and also a scaling number of queries with the block
size are studied. Also, both lossless and lossy source coding are considered. We show that
with constant number of queries, the rate of (almost) lossless source coding is one, meaning
that no compression is possible. We also show that with logarithmic number of queries in
block length, one can achieve Shannon entropy rate. Moreover, we provide achievability
bound on the rate of lossy source coding with both constant and scaling number of queries.
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Chapter 1

Introduction

The block structure for a typical communication system is illustrated in 1-1. The source

generates a sequence Xn, the source encoder maps the sequence, Xn, into the bitstream,

Y k. The bitstream is transmitted over a possibly erroneous channel and the received bit-

stream Ŷ k is processed by the source decoder in order to produce the decoded source

sequence X̂n.

The error probability of the channel is controlled by the channel encoder, which adds

redundancy to the bits at the source encoder output, Y k. Typically, there is a modulator

and a demodulator. The modulator maps the channel encoder output to an analog signal,

which is suitable for transmission over a physical channel. The demodulator interprets the

received, often analog, signal as a digital signal, which is fed into the channel decoder. The

channel decoder processes the digital signal and produces the received bitstream Ŷ k, which

may be identical to Y k even in the presence of channel noise. According to separation

results [23, 22], source coding and channel coding can be constructed separately without

loss of throughput in the overall system. The focus of this work is on the source encoder

and decoder parts. This part of communication system is called source coding. The main

goal of source coding is to compress data source in a way to be recoverable with a high

fidelity.

11



Source

Encoder

Source

Decoder

Channel

Decoder

Channel

Channel

Encoder

Xn

X̂n

Y k
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Figure 1-1: Typical structure of a communication system

1.1 Motivation

The basic communication problem may be expressed as transmitting source data with a

high fidelity without exceeding an available bit rate, or it may be expressed as transmitting

the source data using the lowest bit rate possible while maintaining a specified reproduc-

tion fidelity [23]. In either case, a fundamental trade-off is made between bit rate and

distortion/error level. Source coding is primarily characterized by rate and distortion /error

of the code. However, in practical communication systems,many issues such as compu-

tational complexity, memory limitation, memory access requirements must be considered.

For instance, in a typical systems, a small change in one coordinate of the input sequence

leads to a large change in the encoded output. Moreover, in order to retrieve one symbol of

the source sequence, accessing all the encoded coordinates are required. The latter issue is

the main topic of this work.

One way to confront these issues is to place constraints on the encoder/decoder. In

particular, in order to address the issue of memory access requirement, we study a class of

codes for which the decoder is local (in a sense that will be defined later). A long line of

research has addressed a similar problem from a data structure perspective. For example,

Bloom filters [2] are a popular data structure for storing a set in a compressed form while
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allowing membership queries to be answered in constant time. The rank/select problem

[18, 8] and dictionary problem in the field of succinct data structures are also examples of

problems involving both compression and the ability to efficiently recover a single element

of the input. In particular, [20] gives a succinct data structure for arithmetic coding that

supports efficient recovery of source. In all of these works the efficiency is interpreted in

terms of the decoding time whereas in this work it is interpreted in terms of memory access

requirement. In this work, we formulate this problem from an information theoretic view

and study the fundamental trade-offs between locality and the rate of source coding.

IA topic closely related to source coding with local decoding is the problem of source

coding with local encoding. This problem has been studied in many works in both the data

structure and information theoretic literatures. This line of research addresses the following

challenge: In order to be able to update an individual source symbol efficiently, we must

study compression schemes that have some continuity property, meaning that a change in

a single coordinate of the input sequence leads to a small change in the encoded sequence.

Varshney et al. [25] analyzed continuous source codes from an information theoretic point

of view . Also, Mossel and Montanari [16] have constructed source codes based on nonlin-

ear sparse graph codes. Sparse linear codes has been studied by Mackay [13], in which a

class of local linear encoders are introduced. Also, Mazumdar et all [15] has studied update

efficient codes which studies channel coding problem with local encoders.

Causal Source Coding is another close topic to source coding with local decoder, which

studies the source coding problem with causal encoder/decoder. In causal source coding

the constraint on the decoder is not being local, but, being causal [17, 9].

Locally decodable codes (LDC)( [26]) is another close topic to source coding with local

decoder. An LDC encodes n-bit source sequence to k-bit codewords in such a way that

one can recover any bit xi from a corrupted codeword by querying only a few bits of that

codeword. Therefore, LDC introduces redundancy to combat the corruption of the code

word.

Moreover, Locally repairable codes( [19]) study the case where the encoded coordinates,yi’s,

gets erased with some erasure probability. We wish to produce another yi to replace a

erased yj by accessing a few number of yi’s. Reference [19] introduces a trade-off between

13



locality, code distance, and the rate of code.
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Chapter 2

Background and Literature Review

In this chapter we present some fundamental concepts of source coding. We introduce the

class of Locally Encodable Source Coding (LESC) which studies the problem of source

coding with a local encoder. Also, we overview the results of Succinct Date Structure. In

the next chapter we shall revisit these results from an information theoretic point of view

and compare them to our results.

2.1 Source Coding

The primary task of source coding is to represent a source with the minimum number of

(binary) symbols without exceeding an acceptable level of distortion, which is determined

by the application. Two types of source coding techniques are typically named almost

lossless source coding and lossy source coding.

2.1.1 Almost Lossless Source Coding

Almost Lossless Source Coding refers to a type of source coding that allow the exact recon-

struction of the original source from the compressed data for almost all the source outputs.

Almost lossless source coding are also called asymptotically lossless source coding or some

times by abuse of name we call them lossless coding. Although that lossless compression

such as Lempel-Ziv [28] exists as is generally markedly different in construction. Lossless
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source coding can provide a reduction in bit rate compared to the original source, when

the original data source contains dependencies or statistical properties such as redundancy,

sparsity, and correlation that can be exploited for data compression . A well-known use for

this type of compression for picture and video sources is JPEG-LS. Next, a fundamental

bound for the minimum average codeword length per source symbol that can be achieved

with lossless coding is introduced. Let X ∈ X be a random variable with probability

measure PX , where X is a finite alphabet set. Also let Xn denotes n i.i.d copies of X .

Definition 1. An (n, k, ε)-SC is a pair consist of encoder f : Xn → {0, 1}k and decoder

g : {0, 1}k → Xn such that

P[g(f(Xn)) 6= Xn] ≤ ε.

Also let

k∗SC(n, ε) , min{k : ∃ (n, k, ε)− SC},

RSC(n, ε) ,
k∗SC(n, ε)

n
,

and

RSC(ε) , lim sup
n→∞

RSC(n, ε).

The rate is

RSC , lim
ε→0

RSC(ε),

where SC stands for source coding.

For any X with probability measure PX , we have

RSC = H(X), (2.1)

where H(X) denotes the entropy of a random variable ( [4], chapter 5). The following

theorem from [11, 24] characterizes the finite block length results on the rate.
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Theorem 1. ([11, 24]) For any X with probability measure PX , we have

RSC(n, ε) = H(X) +

√
V (X)

n
Q−1(ε) + Θ(

log n

n
), (2.2)

where V (V ) = V ar(logPX(X)) and Q−1 is the functional inverse of the Q-function,

where Q(x) = 1√
2π

∫∞
x
e−

y2

2 dy.

2.1.2 Lossy Source Coding

Lossy source coding refers to a type of source coding where a source is represented by

a loss of information. In this case, only an approximation of the original source can be

reconstructed from the compressed data. Lossy coding is the primary coding type for the

compression of speech, audio, picture, and video signals, where an exact reconstruction of

the source data is not required. A well-known application of lossy coding techniques is

JPEG. A measure of the quality of the approximation, is referred to as the distortion.

The minimum number of bits per source symbol that are required for representing a

given source without exceeding a given distortion level is called rate distortion.

To measure the quality of an approximation, distortion measures are defined to express

the differences between a reconstructed source and the corresponding original data source

as a non-negative real value. A smaller distortion corresponds to a higher approximation

quality. A distortion of zero specifies that the reproduced symbols are identical to the cor-

responding original symbols. In this work, we restrict our considerations to the important

class of additive distortion measures. The distortion between a single reconstructed symbol

x̂ ∈ X̂ and the corresponding original symbol x ∈ X is dened as a function d(x, x̂) ≤ 0,

with equality if and only if x = x̂. Given such a distortion measure d(x, x̂), the distortion

between a sequence x̂n and xn is defined as

d(xn, x̂n) =
1

n

n∑
i=1

d(xi, x̂i).

For binary sources where X = X̂ = {0, 1}, the most commonly used additive distortion

measure is the indicator distortion defined as 1{x 6= x̂}. Next, we formally define the rate
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of an average distortion code for a given source.

Definition 2. A (n, k,D)−LSC is a pair consist of an encoder f : Xn → {0, 1}n and a

decoder g : {0, 1}k → Xn such that

E[d(Xn, X̂n)] ≤ D.

Let

k∗lsc(n,D) , min{k : ∃ (n, k,D)− LSC},

Rlsc(n,D) ,
k∗lsc(n,D)

n
,

and the rate is

Rlsc(D) , lim sup
n→∞

Rlsc(n,D),

where lsc stands for lossy source coding.

For any X with probability measure PX , the characterization of the rate distortion is

given by

Rlsc(D) = min
PX̂|X : E[d(X,X̂)]≤D

I(X; X̂). (2.3)

The following theorem characterizes the finite block length results on the rate of lossy

source coding.

Theorem 2. ([27]) For any X with probability measure PX , we have

Rlsc(n, d) ≤ Rlsc(D) +
log n

n
+ o(

log n

n
), (2.4)

where Rlsc(D) is given in (2.3).

We shall use the finite length results in the next chapters when we study locally decod-

able lossy source coding.
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Figure 2-1: Locally Encodable Source Coding

2.2 Locally Encodable Source Coding

We term Locally Encodable Source Coding (LESC) source coding where the encoder is

local (The name that we use is not found the literature). In particular, [13, 16] study the

case where, for any i, Xi influences only a constant number (t) of Yi’s. This class of source

codes is depicted in Figure 2-1. In this figure, we connect Yi to Xj if Xj contributes to

evaluate Yi (we shall define this formally later). As shown in the figure, the source nodes

have bounded degree determined by the locality. In this section, we formally define LESC

and give the results in the literature for both lossless and lossy settings.

2.2.1 Lossless LESC

A lossless coding is defined as a pair of encoder f and decoder g, where, f : Xn 7→ {0, 1}k

and g : {0, 1}k 7→ Xn. The encoder is called local if each coordinate of the input affects a

bounded number of coordinates of output. Formally, Let fa, for a ∈ {1, ..., k}, be the a−th

component of the encoding function. Assume fa depends on Xn only through the vector

XN
Y
a = {Xj : j ∈ N Y

a } for some N Y
a ⊂ {1, ..., n}. Also for i ∈ {1, ..., n}, let NX

i be

the set of output coordinates that depend on i. Thus,

NX
i = {a ∈ {1, ..., k} : i ∈ N Y

a }.

19



X̂2X̂1

Xn

X̂n

X1

Y1

decoded:

encoded:

source:

YkYa

N Y
aNX

i

Xi

Figure 2-2: Locally encodable Source Coding: Definition of Locality

For any given t, an encoder is called t−local if |NX
i | ≤ t for any i ∈ {1, ..., n}. Figure ??

illustrates N Y
a and NX

i .

Definition 3. An (n, k, t, ε)−LESC is a pair consist of t−local encoder f : Xn 7→ {0, 1}k

and a decoder g : {0, 1}k 7→ Xn, such that P[g(f(Xn)) 6= Xn] ≤ ε. Also, define

k∗le(n, t, ε) , min{k : (n, k, t, ε)− LESC},

Rle(t, ε) , lim sup
n→∞

k∗le(n, t, ε)

n
,

and

Rle(t) , lim
ε→0

Rle(t, ε),

where the subscript, le, stands for local encoder.

Next, we present relevant results in the literature about source coding with a local en-

coder.

Assume a Bernoulli(p) i.i.d. source. The following result is derived in [13].

Theorem 3 (Mackay, very good codes, [13]). Assume X is a Bernoulli(p) i.i.d. source

with entropy h(p). For any given rateR > h(p), there exists an integer t(h(p), R) ≥ 3 such

that for any desired block error ε > 0, there exists an integer n0 such that for any n > n0

there exists a (n, nR, t (h(p), R) , ε)−LESC. Moreover, this encoder is linear encoder.

Note 1. A Linear encoder for a Bernoulli source is a binary n × k matrix G such that

Y = XG mod 2. This encoder is t−local if the weight of each row is at most t.
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Given a Bern(p) i.i.d. source and any rate R > h(p), we have Rle(t(h(p), R), ε) ≤ R.

Therefore, Rle(t(h(p), R)) ≤ R. As a result, for any R > h(p), there exists t = t(h(p), R)

such that Rle(t) = R, meaning

h(p) = inf{R : ∃ LESC with rate R}.

Thus, we obtain a rate arbitrarily close to entropy using LESC.

Source coding with local encoding is also studied in [16], considering a non-linear

encoding function. In order to state the results we need the following definition. Let X be

a source taking values from a finite set X . For any integer k ≥ 1, let Dk(X ) denote the

set of probability measures PX over X , such that there exists a function f : X k 7→ X for

which the following holds. If X1, ..., Xk are i.i.d with measure PX , then f(Xn
1 ) is uniform

in X . Clearly, Dk(X ) is finite and increasing in k, and D(X ) = ∪kDk(X ) is dense in the

|X − 1|−dimensional simplex of probability measures over X .

The main result of [16] is as following.

Theorem 4 ([16]). Let X be a an i.i.d source over X with probability measure PX . If

PX ∈ Dk(X ), then there exists t∗(PX) such that for any t ≥ t∗(PX) we have

H(PX) = inf{R : ∃ LESC with rate R and t− local encoder}.

This theorem shows that, if the probability measure of the source comes from D(X ) (

a dense set on the space of probability distributions), then LESC achieves the fundamental

limit, H(X).

Note 2. Unlike Theorem 3, the encoder proposed in Theorem 4 is not linear. Moreover, in

Theorem 3, in order to approach entropy, we need to increase the locality t. In other words,

the locality, t, is a function of both rate and probability measure, whereas in Theorem 4 the

locality is only a function of probability measure.

The number of queries, t can also be a growing function of the block length, n. We

shall consider this case later.
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2.2.2 Lossy LESC

Let f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ X̂n be an encoder and a decoder, respectively.

The encoder is called local if each coordinate of the input affects a bounded number of

coordinates of output. This definition is the same as the previous one. Note that X ∈ X
and X̂ ∈ X̂ . Assume a probability measure on X , PX . A separable distortion measure

d : X × X̂ 7→ R+ is given.

An (n, k, t,D)−LELSC is a pair of t−local encoder f : Xn 7→ {0, 1}k and a decoder

g : {0, 1}k 7→ X̂n, such that E[d(Xn, X̂n)] ≤ D. Also, define

k∗le(n, t,D) , min{k : (n, k, t,D)− LESC},

and

Rle(t,D) , lim sup
n→∞

k∗le(n, t,D)

n
.

Next, we state the results in the literature about lossy source coding with local encoder.

Dimakis et. al. [7] discuss the case where the source has an i.i.d. Bern(1
2
) distribution. The

following theorem from [7] states that, if we choose the linear encoder generating matrix

randomly, then with high probability the achievable rate by linear local encoder is bounded

away from Shannon rate distortion. A Low Density Generating Matrices (LDGM) is used

to guarantee locality. An LDGM is a Gn×k matrix that maps sequences of length n to

sequences of length k. It has locality (low density) of t if each column of it has at most t

non-zeros.

Theorem 5 ([7]). Let X be a i.i.d source with Bern(1
2
) distribution. Consider linear

encoders that are chosen randomly from the set of all LDGMs with locality t . With high

probability (wrt the ensemble) the achieved rate-distortion pair (R,D) satisfies:

Rle(t,D) ≥ (1− h(D))
1

1− exp
(
− (1−D)t
Rle(t,D)

) . (2.5)

Note that Theorem 5 gives a bound on the average rate that a randomly chosen code

can achieve and does not apply to individual codes. The authors of [12] generalized this
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result by using a counting argument to individual linear local encoders. They showed that,

for any linear local encoder with locality t, the performance is strictly bounded away from

the Shannon rate-distortion function. However, the rate approaches rate-distortion as t

increases. Formally,

For any R > 1−h(D), there exists t(R), such that the rate R can be achieved with locality t.

Note that here, in order to approach the Shannon rate distortion function, we should in-

crease the locality, t.

2.3 Succinct Date Structure

The problem of locally decodable (efficiently recoverable) compressed data structure (also

called succinct data structure) is studied in many works from a database point of view. In

succinct data structures we are concerned with the design of space efficient and dynamic

data structures for storing a data source. For example, in a very large database, We may

need the source data to be represented as compactly as possible to minimize storage, which

is often highly constrained in these scenarios. On the other hand, we wish to retrieve any

coordinate of data source efficiently . Therefore, we are interested in data structures for

storing sequences of length n produced by a source in a compressed manner and being

able to read the source coordinates efficiently. Reference [20, 3] study this problem and

the authors develop space bounds for data compression, i.e. storing a sequence of integers

in a compressed binary format. They additionally seek to design compressed data indices

to decode any small portion of the data or search for any pattern as a substring of the data,

without decompressing the binary stored sequence entirely. Patrascu, [20] considered the

problem of mapping a sequence, Xn, into a sequence, Y k, and recovering X̂n from Y k,

where any x̂i only depends on O(log n) of Yis. This approach is very close to our locally

decodable source coding scheme. We shall state the following result in the literature, in

order to compare it to the results of LDSC in next chapter.

Theorem 6. ([20]) Consider a sequence of n elements from an alphabet X , and let fx be
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the number of occurrences of letter x in the sequence. On a RAM with cells of (log n) bits,

we can represent the sequence by

O(|X | log n) +
∑
x∈X

fx log(
n

fx
) +

n

( logn
t

)t
+O(n3/4 log n3/4)

bits of memory, supporting single-element access in O(t). Each RAM is a sequence of bits

with length O(log n). Single-element access in O(t), means that each coordinate of the

input sequence can be recovered by reading from O(t) RAMs.

We shall elaborate on this result and reformulate it in a information theoretic form in

the next chapter, where we shall develop the machinery to provide information theoretic

explanation of succinct data structure, and in particular of Theorem 6.
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Chapter 3

Locally Decodable Source Coding

The problem of locally decodable source coding (LDSC) is studied in this chapter where

a source sequence x1, x2, ..., taking values from the source alphabet X , is mapped into a

sequence y1, y2, ... of symbols taking values in the compression alphabet Y . These symbols

are then used to produce the reproduction sequence x̂1, x̂2, ... in the alphabet X̂ . The rate

of the source coding is defined as the ratio of the length of the output sequence to the input

sequence. The decoding scheme is called t−local if, for any i = 1, 2, ..., the reproduced

symbol, x̂i only depends on t of y1, y2, ... (t is called the number of queries). In conventional

source coding, X̂n depends on Ŷ k in an arbitrary manner. In this work, we characterize the

source coding rate for the setting when the decoder is constrained to ask only t queries to

reproduce any reproduction source coordinate , i.e., x̂i. Figure 3-1 demonstrate the problem

formulation. As it shows, any yi is an arbitrary function of x1, x2, ... and any x̂i is a function

of only t of y1, y2, ....

This problem appears in many applications in distributed data management. For in-

stance, assume a given source is stored in some storage cells. Since writing on data storage

cells is generally costly, we use source coding to decrease the number of cells used. If

we wish to recover a part of the original source (in our case one coordinate of the source

sequence) we may need to read the entire encoded data on all of the data storage cells.

Therefore, we need to query all the cells. However, we know that reading from the storage

cells is generally costly, so we wish to read as few blocks as possible. Clearly, there is a

trade off between the number of used storage cells to store the entire original source (rate)
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Figure 3-1: Locally Decodable Source Coding

and the number of cells we need to access in order to recover a coordinate of the original

source sequence (locality, t). Characterizing this trade-off is one of our goals.

In another example, assume that we encode a source and then store it on some data

storage cells. We want to reveal the information about one coordinate of the source to

some party, but, we do not want to reveal the information about the entire source symbols.

If we use a conventional source coding, we may have to reveal all the encoded data. Thus,

a honest but curious party may have access to the entire original source sequence. On the

other hand, in LDSC we provide only a small part of the encoded data, so the party can

only recover the desired part of original source symbols without capability of extracting

the other symbols.

3.1 Lossless Locally Decodable Source Coding

In this section, we study lossless source coding in the presence of local decoders. We

formally define LDSC and study its rate.

3.1.1 LDSC

A local decoder is a decoder that only asks a few number of queries to decode any symbol

of the source sequence. The number of queries is denoted by t. The formal definition is as

follows. A lossless LDSC is defined as a pair consisting of an encoder, f , and a decoder,
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g, where, f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn. The decoder is called local if each

coordinate of the output is affected by a bounded number of input coordinates. Formally,

Let ga, for a ∈ {1, ..., n}, be the a−th component of the decoding function. Assume ga

depends on Y k only through the vector Y NX
a = {Yj : j ∈ NX

a } for someN Y
a ⊂ {1, ..., k},

meaning that

For any yk and y′k, ga(yk) = ga(y
′k) if yNa = y′Na .

for any given t, a decoder is called t−local if |N Y
a | ≤ t for any i ∈ {1, ..., n}.

Definition 4. An (n, k, t, ε)−LDSC is a pair consisting of an encoder f : Xn 7→ {0, 1}k

and a t−local decoder g : {0, 1}k 7→ Xn, such that

P[g(f(Xn)) 6= Xn] ≤ ε. (3.1)

Using a similar notation to that of [21], let

k∗ld(n, ε, t) , min{k : ∃ (n, k, ε, t)− LDSC}. (3.2)

Where the subscript , ld, stands for local decoder. The best rate of local code for a given n,

t and ε, is given by

Rld(n, ε, t) ,
k∗ld(n, ε, t)

n
. (3.3)

Also let

Rld(ε, t) , lim sup
n→∞

Rld(n, ε, t). (3.4)

We define the rate as

Rld(t) , lim
ε→0

Rld(ε, t). (3.5)

Lemma 1. Given a (n, k, ε, t)− LDSC with randomized encoder and decoder, there exists

an (n, k, ε, t)− LDSC code with deterministic encoder and decoder.
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Proof: Let M and N be two random variables, and consider randomized encoder and

decoder f(M) and g(N), respectively. Equation (3.1) then becomes

P[g(f(Xn,M), N) 6= Xn] = E[P[g(f(Xn,M), N) 6= Xn]|M,N ] ≤ ε.

Since the probability in equation (3.1) is less than or equal to ε, then there exist m,n such

that

P[g(f(Xn,M), N) 6= Xi|M = m,N = n] ≤ ε,

implying that f(m) and g(n) are our desired sort of encoder and decoder, respectively, and

the proof is complete. �

Note 3. Using Lemma 1, in the rest of the text, we assume the encoder and decoder are

deterministic.

3.1.2 Average LDSC

Instead of assuming the number of queries to recover any Xi is bounded, consider the

case where the average number of queries asked to recover all the Xi s is bounded. We

term this Average Locally Decodable Source Coding (ALDSC). The formal definition is the

following.

Definition 5. For any given t, a decoder is called t−average local if 1
n

∑n
a=1 |N Y

a | ≤ t. An

(n, k, t, ε)−ALDSC is a pair consisting of an encoder f : Xn 7→ {0, 1}k and a t− average

local decoder, g : {0, 1}k 7→ Xn, such that

P[g(f(Xn)) 6= Xn] ≤ ε.

Similarly, define

k∗ald(n, ε, t) , min{k : ∃ an(n, k, ε, t)− ALDSC},

where the subscript, ald, stands for average local decoder. The best rate of local code for a
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given n, t and ε, is given by:

Rald(n, ε, t) ,
k∗ald(n, ε, t)

n
.

Also,

Rald(ε, t) , lim sup
n→∞

Rald(n, ε, t).

We define the rate as

Rald(t) , lim
ε→0

Rald(ε, t).

The following result establishes a relation between Rld(t) and Rald(t).

Proposition 1. For any 0 ≤ λ ≤ 1, we have k∗ld(n, ε, t) ≥ k∗ald(λn, k, ε,
t

1−λ).

Proof : The proof follows from sorting the number queries for all of the source symbols

and then selecting the first λ fraction of them. Let (n, k, t, ε) be an ALDSC. Let ti denote

|Ni| for 1 ≤ i ≤ n. Without loss of generality, assume t1 ≤ t2 ≤ ... ≤ tn. We have
1
n

∑n
i=1 ti ≤ t. Therefore, we get tbλnc ≤ t

1−λ . The corrsponding decoder and encoder

introduces a (bλnc, k, t
1−λ , ε)− LDSC. Hence,

{ k | ∃(n, k, ε, t)− ALDSC} ⊆ { k | ∃(bλnc, k, ε, t

1− λ)− LDSC}

⇒ k∗ald(n, ε, t) ≥ k∗ld(bλnc, k, ε,
t

1− λ).

The proof is complete. �

Corollary 1. For any 0 ≤ λ ≤ 1, we have λRld(d t
1−λe) ≤ Rald(t).

Proof: Using Proposition 1,

λRld(d
t

1− λe) = λ
k∗ld(bλnc, ε, t

1−λ)

λn
≤ k∗ald(n, k, ε, t)

n
= Rald(t),

which concludes the proof. �
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This corollary states that, once we have a lower bound on the rate of LDSC, we obtain

a lower bound on the rate of ALDSC. Implying that we would not gain much by using

ALDSC instead of LDSC. We shall quantify this notion in the next sections.

3.1.3 Linear Encoder

Source coding with a linear encoder and local decoder is the subject of this section. We

focus on binary sources where X = {0, 1}. We show that, for a linear encoder, the rate

of LDSC is one instead of the entropy rate, Implying no compression is possible. Before

proving this fact, we introduce the influence matrix of an encoder.

Definition 6. Let f : {0, 1}n 7→ {0, 1} be a Boolean function defined on {0, 1}n. The

influence of Xi (the ith component of f ) on f is defined as

Infi(f) , P[f(x+ ei) 6= f(x)] (3.6)

An encoder f : Xn 7→ {0, 1}k can be treated as collection of k Boolean functions on

{0, 1}n. If we denote the jth function by fj , then f(x) = (f1(x), ..., fk(x)). The influence

matrix of the encoder f : Xn 7→ {0, 1}k is an n× k, matrix, A, defined as Aij = Infi(fj).

We illustrate a relation between a function Influence and its ability to decode a particular

bit by an example.

Example 1. In this example, we show that two functions f1 and f2 may recover X1, while

having almost zero information about X1. Let f1 = X1 + ...+Xn, and f2 = X2 + ...+Xn,

where the summation is in F2. Here, we have perfect recovery by X1 = f1 + f2. We have

Inf1(f1) = 1 while I(X1; f1) = h(1
2
(1 − (1 − 2p)n) − h(1

2
(1 − (1 − 2p)n−1) which is

very close to zero for large n. On the other hand, Inf1(f2) = 0 and also I(X1; f2) = 0.

Therefore, influence of X1 may be either 0 or 1, while the mutual information remains zero.

Next, we prove a converse bound on the a rate of LDSC with linear encoding. In order

to prove the theorem, we use the following lemma.
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Lemma 2. Let Fn2 be a vector space over F2. Define a probability function over Fn2 accord-

ing to P[v] = pH(v)(1− p)n−H(v) where H(v) represent the Hamming weight of v ∈ Fn2 . If

U is a k- dimensional sub-space of Fn2 , we have

(max{p, 1− p})n−k ≥ P[U ] ≥ (min{p, 1− p})n−k.

Proof: We first prove the lower bound. Define E = {v ∈ V |H(v) = 1}. Since the

dimension of U is k, there is E ′ a subset of E with n− k elements such that

U ⊕ U ′ = Fn2

U ∩ U ′ = {0},

where U ′ = span{E ′} and ⊕ denotes the direct sum of two sub spaces. For each u′ ∈ U ′

define Uu′ = U + u′. It is clear that Uu′1 ∩ Uu′2 = Ø for u′1 6= u′2. Now we shall bound

P (Uu′). Suppose H(u′) = r, then we have:

P[Uu′ ] =
∑
u∈Uu′

P[u] =
∑
u∈U

P[u+ u′]

≥
∑
u∈U

P[u]

(
min{p, 1− p}
max{p, 1− p}

)r
= P[U ]

(
min{p, 1− p}
max{p, 1− p}

)r

Since Uu′s are disjoint and for each u′ ∈ U ′, we have H(u′) ≤ n − k and the following

equation holds

1 = P[Fn2 ] = P[∪u′∈U ′Uu′ ] =
∑
u′∈U ′

P[Uu′ ]

≤
∑
u′∈U ′

P[U ]

(
max{p, 1− p}
min{p, 1− p}

)r
= P[U ]

n−k∑
r=0

(
n− k
r

)(
max{p, 1− p}
min{p, 1− p}

)r
= P[U ]

(
1 +

max{p, 1− p}
min{p, 1− p}

)n−k
= P[U ]

(
1

min{p, 1− p}

)n−k
(3.7)

Changing the second line of (3.7), the upper bound is proved similarly. �

Theorem 7. AssumeX has aBern(p) distribution and (n, k, ε, t) is a LDSC for this source
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with a linear encoder. If ε < min{p, 1− p}t, then k ≥ n.

Proof: Let G be the corresponding influence matrix of the encoder. The encoding is

then as the following:

x 7→ xG.

Since the encoder is linear, the entries of the influence matrix are either 0 or 1, meaning

G ∈ Fn×k2 . G is a mapping from {0, 1}n to {0, 1}k. Without loss of generality, assume that

X1 is recovered by Y1, ..., Yt and the decoder maps 0t to X̂1 = 0. Consider the induced

linear mapping π : Xn → Y t, we have dim(ker(G)) ≥ n − t. Note that 0n ∈ ker(π). If

there exists xn ∈ ker(π) such that x1 = 1, then half of the vectors in ker(π) have x1 = 0

and half of them have x1 = 1. Since the decoder maps 0t to X̂1 = 0, then the vectors

in ker(π) with x1 = 1 are erroneous . Eliminate the first coordinate and consider all the

vectors in ker(π) such that x1 = 1, they will form a subspace of dimension at least n−t−1

is a paces of dimension n− 1. Therefore using Lemma 2

P[X̂n 6= Xn] ≥ P[X̂1 6= X1] ≥ P[S] ≥ (min{p, 1− p})n−1−(n−t−1) = (min{p, 1− p})t.

Which is a contradiction.

Hence, for any xn ∈ ker(π), x1 = 0. This means that, if we look at a sub-matrix of G of

dimension n× t consisting of the first t columns, the first row is not in the span of the rest

of rows. This implies that, in the matrix G, the first row is not in the span of the rest of

rows. If we apply the same argument for any X̂i, we conclude that the rows of the matrix

G are independent, resulting in k ≥ n. �

Corollary 2. Using linear encoder, for any t, we have Rld(t) = 1. Moreover, by using

Proposition 1, we have Rald(t) = 1.

Proof: It directly follows from Theorem 7 and Corollary 1.

In contrast with Theorem 4 about LESC, LDSC does not achieve the fundamental limit on

the rate, which is entropy, meaning that we can not compress data, expecting to recover it

locally.

Note that Theorem 7 also proves that using a linear encoder and local decoder, we can only
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have lossless (with zero error ) codes.

3.1.4 Linear Decoder

In this section, we assume that the decoder is local and linear. We show that, for a linear

decoder, even without forcing the decoder to ask a limited number of queries, the rate of

compression is 1. This implies that, if the decoder is linear, then no compression is possible.

Theorem 8. Let X have Bern (p) distribution. Assume the decoder is linear. We have

k∗sc(n, ε) ≥ n− log(1− ε)
log (max{p, 1− p}) (3.8)

Proof:

Consider a (n, k, ε)- SC. Assume e1, ..., ek are the canonical basis of {0, 1}k. Decoder

can only recover Span{g(e1), ..., g(ek)} and we have error for all other inputs. Thus, using

Lemma 2

P [g(f(Xn)) 6= Xn] ≥ 1− P[Span{g(e1), ..., g(ek)}] ≥ 1− (max{p, 1− p})n−k

we also know P [g(f(Xn)) 6= Xn] ≤ ε. Therefore,

k ≥ n− log(1− ε)
log max{p, 1− p} .

Taking the minimum over all choices of codes, we get

k∗sc(n, ε) ≥ n− log(1− ε)
log (max{p, 1− p}) ,

and the proof is complete. �

Let X be a Bern(p) source and f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn be the general

encoder and linear decoder. Theorem 8 shows that that Rsc = 1. In other words, if we

employ linear decoding, the rate of compression is always one, instead of entropy rate.
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Therefore, for any t−local decoder we have

Rld(t) = 1.

Moreover, using Corollary 1 for a linear decoder, we obtain

Rald(t) = 1.

3.1.5 General Encoder-Decoder

In previous sections, we showed that assuming a linear encoder or linear encoder the rate

of LDSC is 1. We study the same problem for a general encoder-decoder. First, by using

an example, we show the existence of good non-linear encoder with local decoder.

Example 2. Consider the following f :

f0 = X1 or X2 or ... or Xn, fi = Xi or (X1 or ...Xi−1 or Xi+1 or ... or Xn + 1).

The recovery is as

X̂i = f0 and fi.

In this example we have zero error and k = n + 1. This shows the existence of completely

non-linear codes.

The following theorem focuses on the special case of t = 2.

Theorem 9. Let X be a Bern (p) source and f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn be a

general encoder and t-local decoder. Also assume a (n, k, ε, t)-LDSC for this source. For

t = 2, if ε < p2, then k ≥ n.

Proof: We prove this by contradiction. For the sake of contradiction, assume n > k,

we show that ε > p2, which is a contradiction.

The claim is that if the code can recover Xk+1
1 i.i.d Bern(p) with a local map from Y k

1 on a

set with probability p(k), then p(k) < 1−p2. Note that this is enough to prove the theorem

because ε = 1− p(k)
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By induction on k, we show that p(k) < 1 − p2. It can be shown that p(1) ≤ 1 − p2. Let

p(k − 1) ≤ 1 − p2. Assume X1 is recovered by Y1 and Y2. Without loss of generality,

assume that g1(0, 0) = 0, where for any 1 ≤ i ≤ n, gi is a mapping, with two inputs, that

produces Xi. Here are the all possible cases:

1. g1(0, 1) = 0. In this case, if we consider the induced map from Y k
2 to Xk+1

2 by

replacing 0 with Y1 in all the mappings that use Y1 as one of their inputs, we end up

with a local mapping on a set with maximum probability of p(k−1). Similarly, since

g1(1, 1) = g1(1, 0) = 1, if we replace 1 with Y1, we get another local mapping on a set

with maximum probability p(k−1). Therefore, p(k) ≤ p.p(k−1)+1− p.p(k−1) =

p(k − 1) ≤ 1− p2.

2. g1(1, 0) = 0. In this case, replace 0 with Y2 and construct a mapping from Y1, Y
k

2 to

Xk+1
2 . Similarly, it can be shown that p(k) ≤ 1− p2.

3. g1(1, 1) = 0. In this case, replace Y1 by Y2 in all the mappings that use Y1 as one of

their inputs. Similarly, we obtain p(k) ≤ 1− p2.

4. g1(1, 0) = g1(0, 1) = g1(1, 1) = 1. In this case, g1(Y1, Y2) = Ȳ1.Ȳ2. This case

requires more details which will follows.

We call Y1.Y2, Ȳ1.Y2, Y1.Ȳ2, and Ȳ1.Ȳ2 a product form. The discussion which we provided

before shows that if only one of the k + 1 mappings is not of the product form, then the

above argument proves p(k) ≤ 1 − p2. Now, assume all the mappings are in the product

form. If Yi is once used as Xi1 = Yi.Yj and once as Xi2 = Ȳi.Yk, then X1 = X2 = 1

cannot be recovered. Implying p(k) ≤ 1− p̄2 ≤ 1− p2 (p < 1
2
). Therefore, without loss of

generality, we assume that all the mapping functions are of the form Yi.Yj .

There are k + 1 mappings, so the number of arguments of all these mappings is 2(k +

1). Also, note that there are k Yi’s. Thus, three mappings can be found as Xi1 = YiYj ,

Xi2 = YiYk, and Xi3 = YjYl. If Xi1 = 1, then we can find a mapping from Y i−1
1 , Y k

i+1

to X i1
1 , X

k+1
i1+1 on a set with maximum probability p(k − 1). Also note that Xi1 = 0,

Xi2 = Xi3 = 1 is not possible to recover. Therefore, p(k) ≤ p.p(k − 1) + p̄.p2 ≤ 1 − p2.

The proof is complete for t = 2. �
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Corollary 3. Let X be a Bern(p) source and f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn be

the general encoder and t-local decoder. For t = 2, Rld(t) = 1.

Proof: It directly follows from Theorem 9.

Also, for ALDSC we obtain the following.

Corollary 4. LetX be a Bernoulli (p) source and f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn

be the general encoder and decoder. For t = 2, Rald(t) = 1.

Proof: It follows from Theorem 9 and Corollary 1. �

Considering the bipartite graph describing the relation between input and output of a gen-

eral decoder, one way to generalize this proof to t ≥ 3 is to find a small number of encoded

coordinates that are connected to a small number of recovered source coordinates. The fol-

lowing section discusses this idea. We have the following conjecture for any given t > 2:

Let X be a Bern(p) source and f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn be a general

encoder and t-local decoder. For any t, we have Rld(t) = 1. As a result of Corollary 1,

Rald(t) = 1.

3.1.6 On the Bounded Degree Bipartite Graph

In previous section, in the case of t = 2, we found two X̂i’s which are connected to only

two of Yj’s. Then we considered all the possibilities for this sub-mapping and then did

induction to prove Theorem 9. If we can find a subset of the X̂i’s with size s which are

connected to a small number of Yi’s such as s + O(1) and we would follow the same

approach as of the proof of Theorem 10. The following result rules out this approach.

Let G(U, V,E) be a bipartite graph, where U and V are two set of nodes connected with

the edges from E.

Definition 7. We call a bipartite graph G(U, V,E) a t − regular bipartite graph if any

node in V has a degree equal to t. Moreover, let the set G(n,m, t) = {G(U, V,E) t −
regular such that |U | = m, |V | = n}.

For a given subset of the nodes V such as I , let N(I) denote the neighbors of the nodes

in I .
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Definition 8. For any given l, let

N(l, n,m, t) = max
G∈G(n,m,t)

min
I:|I|=l

N(I).

In order to obtain insight about N(l, n,m, t), consider the following example.

Example 3. If m ≥ nt, then N(l, n,m, t) = lt and the graph that achieves this is the one

for which all nodes in V are connected to disjoint set of t nodes of U . If m is very small

relative to n, then N(l, n,m, t) is below lt.

We are interested in the case where m = n − 1. The question we try to answer is the

following: for a given t and l, what is N(l, n, n− 1, t), for large enough n. The following

theorem shows that the number of neighbors of a set of size l is growing at least linearly

with l.

Theorem 10. For any given t, δ and l, there exists n0(t, l) such that, for n ≥ n0(t, l, δ)

N(l, n, n− 1, t) ≥ (t− 1− δ)l.

Therefore, N(l, n, n− 1, t) grows linearly with l, for a given t.

Proof: Let the set X = {1, ..., n − 1} denote the nodes in U . Let A1, ..., Ak be k

sub-sets of X , each of them with t elements corresponding to the neighbors of the v in X ,

where v ∈ V . Also, assume that the union of any l of these subsets has at least (t− 1− δ)l
many elements. We must show that, for large n, there exists a collection of size n of these

subsets, i.e. k can be equal to or larger than n. We use a probabilistic approach to show this.

Assume that the subsets are chosen uniformly from X . Let 1{| ∪lj=1 Aij | < (t − 1 − δ)l}
be the indication function which is one if its argument holds and is zero otherwise. Now,

consider the following expectation for a given k, n, t, l:

E[
∑
i1,...,il

1{| ∪lj=1 Aij | < (t− 1− δ)l}].

If this quantity is less than one, then for the given k, n, t, l there exists a bipartite graph in

G(k, n − 1, t) such that, for any subset of l nodes of V , the union of their neighbors has
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more than or equal to (t− 1− δ)l node. Thus, in order to complete the proof, we show that

there exists n0(t, l, δ) for which, if n ≥ n0(t, l, δ), then the expectation becomes less than

one for k = n.

We have

E

[ ∑
i1,...,il

1{| ∪lj=1 Aij | < (t− 1− δ)l}
]

=

(
k

l

)
P
[
| ∪li=1 Ai| < (t− 1− δ)l

]
.

Let N(t, l) denote the number of different ways in which one can choose l subsets of a set

with (t− 1− δ)l elements, each of them having t elements. We obtain

P
[
| ∪li=1 Ai| < (t− 1− δ)l

]
=

(
n−1

(t−1−δ)l

)(
n−1
t

)l N(t, l).

Hence,

E

[ ∑
i1,...,il

1{| ∪lj=1 Aij | < (t− 1− δ)l}
]

=

(
k

l

)( n−1
(t−1−δ)l

)(
n−1
t

)l N(t, l)

≤ kl
(n− 1)(t−1−δ)l(

(n−1−t)t
t!

)l N(t, l) ≤
(
n(n− 1)(t−1−δ)

(n− 1− t)t
)l

(t!)lN(t, l)

Comparing the exponent of n in the numerator and denumerator, there exists n0(t, l, δ)

(some number which depends on t, l, and δ) with the property given in the theorem. �

3.1.7 Scaling Number of Queries

As we mentioned before, the number of queries, t can be a growing function of n. In the

conventional source coding ( not necessarily local) t(n) is a linear function of n. Therefore,

the regime of our interest is the one where t(n) grows sub linearly with n. In order to

establish the results on LDSC with scaling number of queries, we need the following results

on the error exponent of source coding to establish an achievability bound on the rate. This

approach is motivated by the achievability bound given in reference [15].

Note 4. For the sake of convenience we use the same notation as of the rate of codes with
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constant number of queries, for scaling number of queries. Therefore, we show the rate by

Rld(t(n)), knowing that this is not a function of n.

Theorem 11. ([6]) For a discrete memoryless source with probability measure PX and a

source encoding with rate R, we have:

For any ε > 0,∃Kε such that for any n ≥ 0 there exists an encoding-decoding pair fn and

gn such that

P[gn(fn(Xn)) 6= Xn] ≤ Kε2
−n(E∗b (R)−ε). (3.9)

Where

E∗b (R) = min
Q:H(Q)≥R

D(Q||P ).

Moreover, this bound is asymptotically tight.

Now, consider the following construction of an encoder-decoder for a sequence of

length n of the source Bern(p):

Let the rate R be equal to (1 + δ)H(X). Let Xn be a sequence of source symbols. Divide

this sequence into blocks of length t(n) and apply the encoder-decoder pair found by The-

orem 11 to each block separately. Form an encoder-decoder for Xn by cocatenating these
n
t(n)

(for the sake of convenience we drop ceil and floor in this analysis) pairs of encoder-

decoder. We now analyze the error of the concatenated source coding. Using a union bound

we obtain

P[X̂n 6= Xn] = P[∪n/t(n)
i=1 {X̂ it(n)

(i−1)t(n)+1 6= X
it(n)
(i−1)t(n)+1}] ≤

n

t(n)
P[X̂ t(n) 6= X t(n)].

Using, (3.9) for any ε, we obtain

P[X̂n 6= Xn] ≤ n

t(n)
Kε2

−t(n)(E∗b (R)−ε).

Since R > H(X), E∗b (R) = ∆ > 0. Thus, we have

P[X̂n 6= Xn] ≤ n

t(n)
Kε2

−t(n)(∆−ε).

Choose ε < ∆ and denote ∆−ε by Γ. We want to see for which choices of t(n), this bound
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goes to zero. This happens when

lim
n→∞

Γt(n)− log
n

t(n)
=∞

resulting in

t(n) > C log n,

for some constant C. Therefore, we have the following result.

Proposition 2. Let X be a Bern (p) source and f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn

be an encoder and t(n)-local decoder. For any R > H(X), there exists a C and n0 such

that for n > n0, there exist a (n, nR,C log n, ε)-LDSC for any ε. Moreover, for any t(n)

such that limn→∞
t(n)
logn

=∞ we have

h(p) = inf{R : ∃ LDSC with rate R and t(n)− local decoder}.

This theorem states that with number of queries (log n) that is small compared to n, the

rate of LDSC approaches the optimal rate h(p).

The same results also holds for linear codes. In particular, we use the following results.

Theorem 12. ([5]) For a given source with probability measure PX , n, and k there exists

a linear encoder, f : X n → X k and and a decoder such that

P[X̂n 6= Xn] ≤ 2−n((R−H(P ))−2|X |2 log n+1
n ).

Using this theorem we get the following result for linear encoders and local decoders.

Corollary 5. Let X be a Bern(p) source and let f : Xn 7→ {0, 1}k and g : {0, 1}k 7→ Xn

be a linear encoder and t(n)-local decoder, respectively. For anyR > H(X), there exists a

C and n0 such that for n > n0 there exist a (n, nR,C log n, ε)-LDSC for any ε. Moreover,

for any t(n) such that limn→∞
t(n)
logn

=∞ we have

h(p) = inf{R : ∃ LDSC with rate R, linear encoder and t(n)− local decoder}.
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3.2 Lossy Locally Decodable Source Coding

In this section, Locally Decodable Lossy source Coding (LDLSC) is studied. First, we

formally define the problem.

Consider a separable distortion metric defined as d(Xn, X̂n) = 1
n

∑n
i=1 d(Xi, X̂i).

Definition 9. A (n, k, d, t)-LDLSC is a pair of encoder f : Xn 7→ Y k and decoder g :

Y k 7→ Xn , where the decoder is t-local. The distortion is bounded, E[d(Xn, g(f(Xn)))] ≤
d.

Let

k∗ld(n, d, t) , min{k such that ∃(n, k, d, t)− LDLSC }, (3.10)

where the subscript ,ld, stands for local decoder, also

Rld(d, t) , lim sup
n→∞

k∗ld(n, d, t)

n
. (3.11)

Note 5. We assume a binary source, F = F2 with d(X, X̂) = 1{X 6= X̂}. In this case, we

have

E[d(Xn, g(f(Xn)))] =
1

n

n∑
i=1

P[Xi 6= X̂i] ≤ d,

which is the same as assuming the bit error rate is bounded (relative to the block error rate

in the definition of LDSC).

3.2.1 Scaling number of queries

In this section, we consider the scaling of number of queries. Therefore, let t(n) shows

the number of queries. The following is an upper bound on the rate for scaling number of

queries.

Theorem 13. For a Bernoulli(p) source, a distortion level d, and any increasing number

of queries t(n)

Rld(n, d, t(n)) ≤ h(p)− h(d) +
log t(n)

t(n)
+ o(

log t(n)

t(n)
) (3.12)
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Proof: Recall the finite block length results on source coding ([27]) thereof for a

Bern(p) source, and distortion level d, there exists a code such that

Rlsc(n, d) ≤ h(p)− h(d) +
log n

n
+ o(

log n

n
). (3.13)

Now, divide the sequence Xn into n
t(n)

blocks of length t(n). Apply the encoder-decoder

obtained from (3.13) to each block. Concatenate these n
t(n)

pairs to obtain an encoder-

decoder for Xn. The average distortion of the overall code is also bounded by d, and its

rate is bounded by

(
n

t(n)

(
t(n)

(
h(p)− h(d) +

log t(n)

t(n)
+ o(

log t(n)

t(n)
)

)))
/n,

which shows the theorem. �

Theorem 13 shows that, for any number of queries t(n), if limn→∞ t(n) = ∞, then there

exists (n, k,D, t(n))-LDLSC such that k ≤ n(h(p)− h(D)) + log n+ o(log n). Note that

for the sake of convenience we dropped ceiling and floor.

Corollary 6. For the special case t(n) = t log n, we have

Rld(n, d, t log n) ≤ h(p)− h(d) +
log t log n

t log n
+ o(

log t log n

t log n
) (3.14)

Proof: The result of Theorem 13, (3.13) for t(n) = t log n. �

Patrascu ([20]) studies the problem of storage of bits with local recovery of bits (with the

same definition of locality we use here). Those results are based on a generic transformation

of augmented B-trees to succinct data structures. He shows that

Theorem 14 ([20]). Consider an array of length n from alphabet X . We can represent this

array with a number of bits

O(|X | log n) + nH̃ +
n

( logn
t

)t
+O(n3/4 log n3/4), (3.15)

supporting single bit recovery in t log n queries, where H̃ denotes the empirical entropy

(the entropy of the empirical distribution). Moreover, we can represent a binary sequence
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of length u, with n ones, using

log

(
u

n

)
+

u

( log u
t

)t
+O(u3/4 log u3/4) (3.16)

bits, for which a decoder exists querying only t log u bits. Note that the encoder/decoder

knows n and u beforehand.

Reference [20] essentially studies the case of t(n) = t log n. We now compare the

bound given in corollary 6 with the bound suggested by Theorem 14.

Using Theorem 14 and identity log
(
n
pn

)
= nh(p) +O(log n), for any d, we obtain

Rl(n, d, t log n) ≤ h(p) +O(
log n

n
) +

1

( logn
t

)t
+O(

log n3/4

n1/4
). (3.17)

It is clear that, for any fixed d, the bound given by (3.14) is asymptotically tighter than

(3.17). The comparison is illustrated in Figures 3-2, 3-3. The curves are approximations

of the bounds, because we omit the last term of each of them. As it can be seen in the

figures, for any large enough n, the bound (3.14) is tighter than (3.17); for small n and

small distortion level, d, the bound given in (3.17) can be tighter. One may consider the

case where d goes to zero as n goes to infinity. Assume both bounds hold for this case as

well. We show that if d(n) = O( 1
logn

), then (3.17) is tighter than (3.14). For large enough

n, there exists c1 and c2 such that

h(d(n)) ≤ c1d(n) log
1

d(n)
≤ c2

log log n

log n
≤ log log n

log n
− log n

n

Therefore, for d(n) = O( 1
logn

) and large enough n we get:

h(p) +O(
log n

n
) +

1

( logn
t

)t
+O(

log n3/4

n1/4
) ≤ h(p)− h(d(n)) +

log t log n

t log n
+ o(

log t log n

t log n
)

3.2.2 Fixed Number of queries

For a given number of queries, we show that one can achieve any rate above the rate dis-

tortion function, using a large enough locality. Consider the following construction.
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Figure 3-2: Comparison of an approximation of upper bounds, p = .11, d = 1/15

Assume that the source sequence is the i.i.d. product of X with probability measure PX
(PXn = PnX). For a given δ, we wish to show that there exists t, such that a LDLSC with

locality t achieves the rate (1 + δ)(R(d)) with average distortion bounded by d. From The-

orem 2, we can get the bound Rlsc(t, d) ≤ R(d) + 2 log t
t

for large enough t. Also let t be

large enough such that 2 log t
t
≤ δR(d). Therefore, ether exists t such that

Rlsc(t, d) ≤ R(d)(1 + δ).

Therefore, there exists an encoder and decoder pair for X t, such that the rate of the code is

less that (1 + δ)R(d) and the distortion is bounded by d. Now, consider n pair, of the same

encoder-decoder. Concatenate these encoder-decoder pairs to form an encoder-decoder for

Xnt. In this way, we obtain a source coding for Xnt with distortion

E[
1

nt

nt∑
i=1

d(xi, x̂i)] =
1

n

n∑
j=1

E[d(Xjt
(j−1)t+1, X̂

jt
(j−1)t+1)] ≤ d.
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Figure 3-3: Comparison of an approximation of upper bounds, p = .11, d = 1/20

and rate

R(nt, d) = R(d)(1 + δ).

Therefore, there exists a t-local LDLSC with rate (1 + δ)R(d) and average distortion

bounded by d for this source.

Proposition 3. For any sourceX with probability measure PX and any distortion measure,

and distortion level, d,

R(d) = inf{R : ∃ t and a sequence of t− LDLSC with rate R}.

This proposition states that, in order to achieve the rate (1 + δ)R(d), one need t to be

roughly 1
δR(d)

.

3.3 LDLSC for Excess Distortion

In rate distortion theory, we usually consider the expected distortion for the best code of

block length n and rate less than or equal to R, where R > 0 is some fixed number. Instead
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of this, we shall consider the probability of the event that the distortion exceeds a level

d ≥ 0, if the best code of block length n and rate R is used. We still wish for the decoder

to be local. A formal definition is the following.

Definition 10. A (n, k, d, t, ε)-LDLSC for excess distortion is a pair of encoder f : Xn 7→
Y k and decoder g : Y k 7→ Xn , where the decoder is t-local. The excess distortion is

bounded,

P[d(Xn, g(f(Xn))) > d] ≤ ε.

Fix ε, d and blocklength n. The minimum achievable code size and the finite block length

rate distortion function (excess distortion) are defined by, respectively

k∗ld(n, d, t, ε) , min{k : ∃(n, k, d, t, ε)− LDLSC for excess distortion}, (3.18)

Rld(n, d, t, ε) ,
k∗ld(n, d, t, ε)

n
. (3.19)

Also, we define

Rld(d, t, ε) , lim sup
n→∞

Rld(n, d, t, ε), Rld(d, t) , lim
ε→ 0

Rld(d, t, ε). (3.20)

If we denote the rate of lossy source coding without the local constraint of the decoder

by R(d), then it is known that ([4]), for any X with probability measure PX , the character-

ization of the rate is as

R(d) = min
PX̂|X : E[d(X,X̂)]≤d

I(X; X̂). (3.21)

This means that, for any rate R ≥ minPX̂|X : E[d(X,X̂)]≤d I(X; X̂), the error goes to zero. The

error exponent is given by the following thorem.

Theorem 15 ([14]). For source with distribution PX and a distortion level d, we have:

for any ε, ∃Kε such that for any n ≥ 0 there exists encoding-decoding pair fn and gn such

that

P[d(gn(fn(Xn)), Xn) > d] ≤ Kε2
−n(Fd(R)−ε), (3.22)
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where,

Fd(R) = min{D(Q||P ) : R(Q, d) ≥ R}.

We use this theorem to design locally decodable codes for excess distortion. Consider a

source sequence of length n. Divide the sequence into sequences of length t(n). Therefore,

we have n
t(n)

blocks of length t(n). Consider the corresponding encoder-decoder pair to

each block of length t(n), obtained from Theorem 15. Form an encoder-decoder pair for

the whole sequence by concatenating these encoder-decoder pairs. Using the union bound,

we obtain

P[d(g(f(Xn)), Xn) > d] ≤ P[∪
n
t
j=1{d(g(f(Xjt

(j−1)t+1)), Xjt
(j−1)t+1) > d}] ≤ n

t(n)
2−t(n)(Fd(R)−ε).

We need t(n) to be such that

lim
n→∞

n

t(n)
2−t(n)(Fd(R)−ε) = 0.

Therefore, if

lim
n→∞

t(n)

log n
=∞,

then the error goes to zero. We have the following result.

Proposition 4. Let X be a Bern(p) source and f : Xn → {0, 1}k and g : {0, 1}→Xn be

encoder and t(n)−local decoder. For any R > R(d), there exists a constant C and n0

such that for n > n0 there exists a (n, nR,C log n, d, ε)− LDLSC for excess distortion.

Moreover, for any t(n) ∈ ω(log n), we have

R(D) = inf{R : ∃ LDLSC for excess distortion with rate R and locality t(n)}.

This theorem states that, with a very small number of queries, ω(log n), relative to n,

we can achieve any rate above the rate distortion.
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3.4 Fixed to Variable Length Local Encoding-Decoding

In this section, we study fixed to variable length source coding, where a sequence of source

symbols is mapped to a sequence of bits. We assume that the overall encoder-decoder is lo-

cal . The definition that follows is motivated by the work [17]. For the sake of convenience

we call this setting local encoding-decoding.

A source code operate as follows. The encoder takes the source sequence X1, X2, ... and

produces a sequence of bits W , where W is a function of Xn
1 . The decoder takes W and

produces reproductions X̂1, X̂2, ... of X1, X2, ... with symbols in a set X̂ called the repro-

duction alphabet. Note that X̂i is a function of W . In general, a source code is a system

that takes the source symbols {Xi}ni=1 and produces {X̂i}ni=1. Therefore, a source code can

be characterized by a family of functions {gi}ni=1 called reproduction functions such that

the kth reproduction symbol, X̂k is

X̂k = gk(X
n
1 ), k = 1, 2, ...,

where fk maps X n
1 to X̂ .

Definition 11. A source code {gk}nk=1 is t − local if, for any k, there exists a subset Sk of

indices {1, 2, ..., n} such that

gk(x
n
1 ) = gk(x

′n
1 ), if xi = x′i for any i ∈ Sk,

and |Sk| ≤ t.

Figure 3-4 illustrate the relation between the source, encoded sequence of bits and

reproduced symbols via a bipartite graph.

Assume a separable distortion function between elements of X and X̂ , d(xn, x̂n) =

1
n

∑n
i=1 d(xix̂i).When a source code with source code functions {fk} is applied to a source

{Xk}, the average distortion is defined as

d({gk}nk=1) , E[d(Xn, X̂n)]. (3.23)

48



Another measure of the performance of a source code is the rate of code. Let |W | denote

the length of W . Therefore, the number of bits for reproducing x̂1, . . . , x̂n is

Ln(xn1 ) , |w(xn1 )|

The average rate of a source code is defined as

r({gk}nk=1) ,
1

n
E[Ln(Xn)]. (3.24)

Clearly, there is a tradeoff between average distortion and average rate of a source code.

We aim to formulate this tradeoff.

Definition 12. Assume an i.i.d source with the probability measure PX. A (r,D, n, t)led−
source coding is a pair of encoder-decoder with t−local reproduction functions {gi}ni=1

such that the average rate is r, and the average distortion is D. Moreover,

r∗led(D,n, t) , min{r such that ∃(r,D, n, t)led − source code}.

r(D, t)led , lim sup
n→∞

r∗led(D,n, t), (3.25)

where the subscript, led, stands for local encoder-decoder.

We may now characterize the average rate for a given source, distortion level (D), and

locality (t).

Note that, based on our definition, the average distortion and locality are properties of the

X̂2X̂1

Xn

X̂n

X2X1

deg ≤ tdeg ≤ t

decoded:

source:

Figure 3-4: Local Encoder-Decoder
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reproduction coder functions, {gk}. Although the average rate is not defined explicitly by

the reproduction coder functions, we show the following theorem, that characterizes the

average rate in terms of reproduction functions.

Theorem 16. For a given source, X , with probability measure PX and for a given t and

distortion level D, we have

r(D, t)led = lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 ) (3.26)

Proof: We first prove the converse. For any given (r,D, n, t)led-source code, X̂n is

fully represented by a sequence of bits denoted by W . Using, the main result of [1], we

obtain

r(n,D, t) ≥ 1

n

(
H(X̂n)− log

(
H(X̂n) + 1

)
− log e

)

Since this holds for any source code, taking the infimum of both sides, we obtain

r∗led(n,D, t) ≥ inf
{gk} t−local
d({gk})≤D

1

n

(
H(X̂n)− log

(
H(X̂n) + 1

)
− log e

)
.

Taking limit of both sides, we obtain

rled(D, t) ≥ lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n

(
H(X̂n)− log

(
H(X̂n) + 1

)
− log e

)
≥ lim sup

n→∞
inf

{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 )− lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n
(log(H(X̂n

1 ) + 1))

≥ lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 )− lim sup
n→∞

log(n log |X |+ 1)

n

= lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 ). (3.27)

To show the achievabilty, consider a t−local mapping with the output X̂n. There exists

an encoding-decoding of the random variable X̂n with the average number of bits, not
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greater than H(X̂n) ([1]). Denote this encoding and decoding by en and de, respectively.

Now, construct the following (r,D, n, t)led−source code: the encoder is en(g(xn)) and the

decoder the same as de. For this source code, we have r(D,n, t) ≤ 1
n
H(X̂n). Therefore,

r∗led(D,n, t) ≤ inf
{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 )

Taking the limit as n goes to∞ we obtain

rled(D, t) ≤ lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 ) + ε. � (3.28)

We now analyze the rate of a local source coding by analyzing

lim sup
n→∞

inf
{gk} t−local
d({gk})≤D

1

n
H(X̂n

1 ).

Note that this quantity is only a function of the reproduction coders and does not depend

on the encoder that maps the source symbols to bits and the decoder that maps it back to

reproduction symbols.

Example 4. Let X be a uniform random variable on X = {1, 2, 3, 4}. Also let D = 1
2
, and

t = 1, and d(x, x̂) = 1{x̂ 6= x}. We find r(D, t) for this source. First, note that there are

only four types of encoder for this source.

1.

W =



1, if X = 1

1, if X = 2,

1, if X = 3,

1, if X = 4,

in this case H(X̂) = 0 and E[d(X̂,X)] = 3
4
.
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2.

W =



1, if X = 1

1, if X = 2,

1, if X = 3,

4, if X = 4,

in this case H(X̂) = h(1
4
) and E[d(X̂,X)] = 1

2
.

3.

W =



1, if X = 1

1, if X = 2,

3, if X = 3,

4, if X = 4,

in this case H(X̂) = H(1
4
, 1

2
, 1

4
) and E[d(X̂,X)] = 1

4
.

4.

W =



1, if X = 1

2, if X = 2,

3, if X = 3,

4, if X = 4,

in this case H(X̂) = H(1
4
, 1

4
, 1

4
, 1

4
) and E[d(X̂,X)] = 0.

Now let αi fraction of the encoders be of the form i (1 ≤ i ≤ 4). Then we have

E[d(X̂n, Xn)] = α1(
3

4
) + α2(

2

4
) + α3(

1

4
) + α4(0),

and

H(X̂n) = α1(0) + α2(h(
1

4
)) + α3(

3

2
log 2) + α4(2 log 2).
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Solving the following linear programming

min α2(h(
1

4
)) + α3(

3

2
log 2) + α4(2 log 2)

s.t. α1(
3

4
) + α2(

2

4
) + α3(

1

4
) ≤ 1

2

α1 + α2 + α3 + α4 = 1, (3.29)

we obtain α1 = 2
3

and α4 = 1
3
, meaning that

rled(D, t) =
2

3
log 2.

Now consider the following quantity

R(D, t) , inf
{gk}tk=1

d({gk})≤D

1

t
H(X̂ t

1).

For any given D, this quantity gives a corresponding rate. Therefore, we obtain pairs of

(D,R). Consider the pair (0, 2 log 2) and (3
4
, 0). With a time sharing between these two

points we get the point 1
3
(0, 2 log 2) + 2

3
(3

4
, 0) which is the optimal point we got before.

In the following, we generalize this idea to a general setting.

Definition 13. For a given source, distortion measure, and locality t consider the set of all

points (D,R) such that

S(D,R) = {(D,R) such that R = inf
{gk}tk=1

d({gk})≤D

1

t
H(X̂ t

1)}.

Define R(D, t) to be the inner convex hull of the points in S(D,R).

The following proposition characterizes rled(D, t) in terms of R(D, t).

Proposition 5. For any source, distortion measure, locality t, and distortion level D, we

have

rled(D, t) ≤ R(D, t) (3.30)
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Proof: Consider a point on R(D, t), generated by two points (R1, D1) and (R2, D2)

such that D = λD1 + (1− λ)D2 and R = λR1 + (1− λ)R2 for some 0 ≤ λ ≤ 1. Also

let f1 and f2 be the corresponding reproduction functions of these points. Now consider

an encoding-decoding scheme for Xn obtained by dividing Xn into n/t blocks of length

t and then applying f1 to a λ fraction of these blocks and f2 to the rest of them. By

this construction, we get a t−local decoder with rate R = λR1 + λ̄R2 and distortion

D = λD1 + λ̄D2. Hence, the best rate of t−local decoder for this source is below the

achieved rate. Therefore,

rled(D, t) ≤ R(D, t).

This concludes the proof. �

We conjecture that R(D, t) is also a lower bound on roeld(D, t), meaning that R(D, t) =

rled(D, t). Note that, this conjecture is closely related to Conjecture ??. The connection

is motivated by a class of transformations terms as information preserving transformations

which is defined next. We shall discuss the connection in the next section.

3.5 Information Preserving Transformations

In this section, we introduce a class of information preserving transformations and claim

that local transformation are within this class. This class of transformations are quite useful.

In particular, this may help us to obtain insight about the conjecture given in Section 3.1.5.

Consider two random variables X and Y , where X ∈ X and Y ∈ Y . Also, let Xk and

Y k be k−fold cartesian products of X and Y , respectively. Let Y k and Xk be measurable

spaces with measure probabilities PY k and PXk , respectively. Let f : Y k 7→ Xk be a

transformation between these two spaces. We know that, under transformation, entropy is

non-increasing i.e.

H(Y k) ≥ H(Xk).

We are interested in to know the conditions under which the entropy does not decay much.

We formulate the problem formally in the following.
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Definition 14. A triple (PXk , PY k , f) is called information preserving if

H(Y k) ≤ H(Xk) + o(k). (3.31)

We now study the information preserving transformations. Mainly, we propose a class

of local transformations and claim that, with some assumptions on the measure PXk , they

are information preserving.

Definition 15. A transformation f : Y k 7→ Xk is t−local if for any 1 ≤ i ≤ k, Xi is a

function of only t of the components of Y k.

First, we illustrate by an example the reasoning for the assumptions we shall have.

Example 5. In this example we illustrate that only being local is not sufficient for a trans-

formation to be information preserving. We also need some assumptions on the resulting

probability distribution on Xk. Let Xi = Y1 for all 1 ≤ i ≤ k, then H(Xk) = H(Y1) <<

H(Y k).

Therefore, we assume that the resulting distribution of Xk is very close to i.i.d in the

following sense.

Definition 16. A probability measure, PXn , on Xn is called ε-i.i.d. if ||PXn − IXn|| ≤ ε,

where ||.|| denotes the total variation distance between two measures and IXn is some i.i.d

measure on Xn.

Note that these assumptions are not sufficient as illustrated in the next example.

Example 6. Let X = Y = {0, 1, 2, 3} and Xk i.i.d with distribution PX = (1/2, 1/2, 0, 0).

Also let Yi be defined as the following

Yi =



0, if X2i−1 = X2i = 0

1, if X2i−1 = 1, X2i = 0

2, if X2i−1 = 0, X2i = 1

3, if X2i−1 = X2i = 1,
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Y
k
2 is then distributed i.i.d according to PY = (1/4, 1/4, 1/4, 1/4). Let Y is for k

2
+ 1 ≤

i ≤ k be distributed i.i.d with the same probability measure. Xk is obtained by a local

mapping of Y
k
2 , where t = 1. We have H(Xk) = k log 2 and H(Y k) = k log 4, therefore,

we have H(Xk) << H(Y k).

The issue of this example is that, PX is degenerate. In general, even if the distributions

are not degenerate, the sets X and Y play an important role in this definition of information

preserving transformation. For instance, if we assume that |Y| is much larger than |X |,
then we can always construct an example similar to Example 6. Consider the following

example.

Example 7. Let X be some non-degenerate random variable on X . Let Y = X × X ×
X . Now we have a local transformation from Y k to Xk, where H(Xk) = kH(X) and

H(Y k) = 3kH(X) >> H(Xk).

Therefore, we must assume that X and Y have the same cardinality and both random

variables X and Y are non-degenerate. We have the following conjecture on information

preserving mappings:

Let |X | = |Y|. For small enough ε, if PXk is ε-i.i.d. and f is a t− local map, then

(PXk , PY k , f) is an information preserving mapping.

Assuming this conjecture is true, one can work out to prove the conjecture given in Section

3.1.5 on the rate of LDSC with fixed number of queries. Moreover, the conjecture of the

previous section is the the analogy of this conjecture for lossy setting.

3.6 Storage on Memories with Access Cost

In this section, we study a problem of storing source sequence on two memories of different

types as defined in the following. We have two different types of memories. One is the

original memory where the bits are stored, denoted by Mo, and the other one is a cache

memory, denoted by Mc. We Also know that the cost of querying one bit from Mo is

higher than the cost of querying from Mc (cache memory is faster). Moreover, the cost

of occupying Mo is less than the cost of occupying Mc (cache memory is rare). The goal
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is to find the trade-off between cost of occupying the memories and cost of querying the

memories in the reconstruction of the source.

Let f : Xn 7→ {0, 1}k be the encoder. The decoder is a set of n functions gi : {0, 1}k ×
Xn 7→ {0, 1}, where gi denotes the ith coordinate of g. Assume the cost of querying the

original memory is Co and the cost of querying cache memory is Cc. We wish to have a

bounded recovery error P[Xn 6= X̂n] ≤ ε. This setting is called a (n, k, C, ε)-cost code,

where the average cost of querying is bounded by a given C. In other words, if ti and

t̂i denotes the number of queries gi asks from {0, 1}k and Xn, respectively. The cost of

gi is then Cot̂i + Ccti and the cost of the whole decoder is
∑n

i=1Cot̂i + Ccti. Note that

if we wanted to ask some queries from Xn to recover Xi, the we only need one query.

Therefore, we either have t̂i = 1 and ti = 0 or t̂i = 0 and ti ≥ 1. We seek to reduce the

cache usage under the assumption that in the storage system, cost of using cache memory

is much higher that non-cache memory. The following is the formal definition of the code

rate for this problem.

Definition 17. Let k∗cost(n, ε, C) , min{k such that ∃(n, k, C, ε) cost code},
and

Rcost(n, ε, C) =
k∗cost(n, ε, C)

n
.

Also, define the rate as

Rcost(C) = lim
ε→0

Rcost(ε, C),

where

Rcost(ε, C) = lim sup
n→∞

Rcost(n, ε, C).

First, note that in the case where the cost of reading from original memory is Co and

the cost of reading from cache memory is Cc = 0, the rate is Rcost(C) = (1− C
C1

)h(p).

We now consider the case where the cost of reading from cache memory is not zero. In this

case we can normalize all the costs and assume the cost of reading from cache memory is

1 and the cost of reading from original memory is Co.

Proposition 6. For any 0 < λ < 1, we have the following relationship between a cost code
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and ALDSC:

k∗cost(n, ε, λ̄Co + λt) ≤ k∗ald(λn, ε, t).

Proof: Let (λn, k, ε, t) be an ALDSC with encoder f and decoder g. Assume g′ is the

same as g for Xi, where 1 ≤ i ≤ λn and is identical for λn ≤ i ≤ n. Form a cost code

with encoder f and defined decoder g′. We have

1

n
λ̄nCo +

1

n

λn∑
i=1

ti ≤ λ̄Co + λt

and also the average of error is still bounded by ε. Thus, we find a (n, k, λ̄Co+λt, ε)− cost

code. Therefore,

{ k | ∃(λn, k, ε, t)-ALDSC} ⊆ { k | ∃(n, k, λ̄Co + λt, ε)-cost code} (3.32)

⇒ k∗cost(n, ε, λ̄Co + λt) ≤ k∗ald(λn, ε, t)

Corollary 7. For any 0 ≤ λ ≤ 1, we have Rcost(λ̄Co + tλ) ≤ λRald(t).

Proof: Using Proposition 6, we obtain

k∗cost(n, ε, λ̄Co + tλ)

n
≤ λ

k∗ald(λn, ε, t)

λn

Rcost(ε, λ̄Co + tλ) ≤ λRald(ε, t)

Rcost(λ̄Co + tλ) ≤ λRald(t).

Proposition 7. There exists 0 ≤ λ ≤ 1 for which

k∗ald

(
λ̄n, ε,

C − λCo
λ̄

)
≤ k∗cost(n, ε, C)

Proof: Consider a (n, k, ε, C)-cost code. Assume λ fraction of bits are recovered from

memory and the rest of them are recovered from cache memory. Without loss of generality,

assume the first λ fraction are recovered directly from the memory and the rest of the bits

are recovered by ti queries ((1− λ)n ≤ i ≤ n). Therefore, C = λCo + (1−λ)
(1−λ)n

∑(1−λ)n
i=1 ti.

Thus, we can extract a ((1 − λ)n, k, ε, C−λCo

(1−λ)
) ALDSC. An argument similar to the proof
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of Proposition 6 completes the proof.

Corollary 8. There exists 0 ≤ λ ≤ 1 for which

λ̄Rald(
C − λCo
(1− λ)

) ≤ Rcost(C).

Moreover, because of the cost constraint we have

λCo + (1− λ)Cc ≤ C.

Proof: The proof follows directly form Proposition 7.

Theorem 17. Using linear encoder, If Cc > 0, then Rcost(C) = C−Co

Cc−Co
.

Proof: Using Corollary 8 and the fact that the rate of Average LDSC under linear

encoder is 1, we have Rcost(C) ≥ (1 − λ) such that (1 − λ)Rald(
C−λCo

(1−λ)
) ≤ Rcost(C).

Solving this minimization problem to find the smallest (1−λ), we obtainRcost(C) = C−Co

Cc−Co

which concludes the proof. �

Assume a storage problem with two types of memories when one of the memories is a

cache memory and the other one is a regular memory. The result of this section shows that,

the optimal policy to reduce the cost of recovery is to store as much bits as the budget, C,

allows on the cache memory without encoding, and then store the rest of bits in the non-

cache memory. Therefore, designing any encoder-decoder function for this problem does

not give a better result than the naive way of storing the bits without coding.
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Chapter 4

Conclusions and future works

We have formulated and studied the problem of source coding with some constraints on

the encoder-decoder. Based on the results in the literature, when the encoder is local, there

exist codes that achieve fundamental entropy rate with and without linear encoders. Also,

the results in the literature characterize the tradeoff between locality of encoder and the rate

of a lossy source coding. The focus of this work is on the source coding with local decoder.

The following summarizes the main results we showed in this work:

• Almost lossless source coding:

– Constant locality: It is shown that the rate of source coding with linear en-

coder/decoder is one, meaning that no compression is possible. Also for small

locality (t = 2), the rate of any encoder-decoder is one.

– Scaling locality: Any given rate above the Shannon fundamental entropy rate is

achievable with logarithmic locality in the block-length.

• Lossy source coding:

– Constant locality: Any given rate above the Shannon fundamental rate distor-

tion is achievable with constant locality which is a growing function of the

distance of the given rate to rate distortion.

– Scaling locality: Any given rate above the Shannon fundamental rate distortion

is achievable with any scaling locality (limn→∞ t(n) = ∞) and the rate of
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convergence is upper bounded as in Theorem 13. Moreover, for lossy source

coding with excess distortion, logarithmic locality suffices to achieve any rate

above the rate distortion.

We also studied fixed to variable length local encoder-decoder. One application of the re-

sults is given in the context of data storage management.

There are connections between locally decodable codes and finitary codes [10] that re-

quires exploration. The locally decodable source coding applied to non i.i.d sources such

as Markov sources is another future topic to be studied.

There are several interesting unsolved problems about local codes.

• We proved converse bound on the rate of LDSC with fixed number of queries. We

established this converse for the following cases: linear encoder, linear decoder, and

general encoder-decoder with locality t = 2. We conjectured that for any general

encoder-decoder and any t, the converse bound holds .

• We introduced the class of information preserving mappings. We then, conjectured

that local mappings are in this class. Proving this conjecture holds, shows that the

previous conjecture also holds.

• We introduced fixed to variable local encoding-decoding. We formulated the rate

of this source code, which is given in Theorem 16. We conjectured that, asymptot-

ically the best t−local source code is given by combining two source codes which

are designed for source sequences of length t. This conjecture establishes a con-

verse bound on the rate of fixed to variable local coding. The achievability bound is

given in Proposition 5. Note that these two bounds are equal, implying that we can

characterize the rate of the code.
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