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Abstract

Source coding is accomplished via the mapping of consecutive source symbols (blocks)
into code blocks of fixed or variable length. The fundamental limits in source coding intro-
duces a tradeoff between the rate of compression and the fidelity of the recovery. However,
in practical communication systems many issues such as computational complexity, mem-
ory capacity, and memory access requirements must be considered. In conventional source
coding, in order to retrieve one coordinate of the source sequence, accessing all the encoded
coordinates are required. In other words, querying all of the memory cells is necessary.

We study a class of codes for which the decoder is local. We introduce locally decodable
source coding (LDSC), in which the decoder need not to read the entire encoded coordi-
nates and only a few queries suffice to retrieve any of the source coordinates. Both cases
of having a constant number of queries and also a scaling number of queries with the block
size are studied. Also, both lossless and lossy source coding are considered. We show that
with constant number of queries, the rate of (almost) lossless source coding is one, meaning
that no compression is possible. We also show that with logarithmic number of queries in
block length, one can achieve Shannon entropy rate. Moreover, we provide achievability
bound on the rate of lossy source coding with both constant and scaling number of queries.

Thesis Supervisor: Prof. Muriel Médard
Title: EECS Professor

Thesis Supervisor: Prof. Yury Polyanskiy
Title: EECS Assistant Professor






Acknowledgments

I would like to thank my advisors Prof. Muriel Médard and Prof. Yury Polyanskiy. I value
our discussions on different research challenges as well as their insightful guidance. They
have been extremely supportive mentors, both professionally and personally. I also want to
thank Dr. Shao-Lun Huang for his valuable comments on this thesis. I am also grateful to
Prof. Pablo Parrilo, my academic mentor, for his valuable advices during my master study.

I could not have come this far without the love of my family. I am always grateful to

my parents, my sisters, and my wonderful friends for theirs endless love and support.






Contents

3.1

32

1 Introduction
.1 Motivation . . . . . . . . . .. e e
2 Background and Literature Review
2.1 SourceCoding . . . . . . . . . ...
2.1.1  Almost Lossless Source Coding . . . ... ... ... .......
2.1.2 LossySource Coding . . . . . . . . .. .. ... ...
2.2 Locally Encodable Source Coding . . . . ... ... ... .........
22.1 LosslessLESC . . . ... .. ... ... .. ... ... ...
222 Lossy LESC . . . . . . . . .
2.3 Succinct Date Structure . . . . . . ...

Locally Decodable Source Coding

Lossless Locally Decodable Source Coding . . . . . ... .. ... ....
31,1 LDSC . . e
3.1.2 Average LDSC . . . . . . . ..
3.1.3 LinearEncoder . . . . .. ... ... ... ... . . ...,
3.14 LinearDecoder . . . . .. ... ... ... ... ...
3.1.5 General Encoder-Decoder . . . . ... ... ..., . ......
3.1.6  On the Bounded Degree Bipartite Graph . . . . . . ... ... ...
3.1.7 Scaling Number of Queries . . . . . . . .. ... .. .. ......
Lossy Locally Decodable Source Coding . . . . . . . .. ... ... ....

3.2.1 Scaling number of queries . . . . . .. ... ... ...

11
12

15
15
15
17
19
19
22
23



3.2.2 Fixed Numberofqueries . . . . . . ... ... ... ........ 43

3.3 LDLSC for Excess Distortion . . . . . . ... .. ... .. ......... 45
3.4 Fixed to Variable Length Local Encoding-Decoding . . . . . ... ... .. 48
3.5 Information Preserving Transformations . . . . . . . . ... ... ... .. 54
3.6 Storage on Memories with AccessCost . . . . . . ... .. ... ... .. 56
4 Conclusions and future works 61



List of Figures

1-1

2-1
2-2

3-1
3-2
3-3

Typical structure of a communication system . . . . . ... ... ..... 12
Locally Encodable Source Coding . . . . .. .. ... ... ........ 19
Locally encodable Source Coding: Definition of Locality . . . . . ... .. 20
Locally Decodable Source Coding . . . . .. ... .. ... ........ 26
Comparison of an approximation of upper bounds, p = .11,d = 1/15 . .. 44
Comparison of an approximation of upper bounds, p = .11,d =1/20 . .. 45
Local Encoder-Decoder . . . . . . . ... ... ... ... ... . ... 49



10



Chapter 1

Introduction

The block structure for a typical communication system is illustrated in 1-1. The source
generates a sequence X", the source encoder maps the sequence, X", into the bitstream,
Y*. The bitstream is transmitted over a possibly erroneous channel and the received bit-
stream Y'* is processed by the source decoder in order to produce the decoded source

sequence X".

The error probability of the channel is controlled by the channel encoder, which adds
redundancy to the bits at the source encoder output, Y*. Typically, there is a modulator
and a demodulator. The modulator maps the channel encoder output to an analog signal,
which is suitable for transmission over a physical channel. The demodulator interprets the
received, often analog, signal as a digital signal, which is fed into the channel decoder. The
channel decoder processes the digital signal and produces the received bitstream V'*, which
may be identical to Y* even in the presence of channel noise. According to separation
results [23, 22], source coding and channel coding can be constructed separately without
loss of throughput in the overall system. The focus of this work is on the source encoder
and decoder parts. This part of communication system is called source coding. The main
goal of source coding is to compress data source in a way to be recoverable with a high

fidelity.
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Figure 1-1: Typical structure of a communication system

1.1 Motivation

The basic communication problem may be expressed as transmitting source data with a
high fidelity without exceeding an available bit rate, or it may be expressed as transmitting
the source data using the lowest bit rate possible while maintaining a specified reproduc-
tion fidelity [23]. In either case, a fundamental trade-off is made between bit rate and
distortion/error level. Source coding is primarily characterized by rate and distortion /error
of the code. However, in practical communication systems,many issues such as compu-
tational complexity, memory limitation, memory access requirements must be considered.
For instance, in a typical systems, a small change in one coordinate of the input sequence
leads to a large change in the encoded output. Moreover, in order to retrieve one symbol of
the source sequence, accessing all the encoded coordinates are required. The latter issue is

the main topic of this work.

One way to confront these issues is to place constraints on the encoder/decoder. In
particular, in order to address the issue of memory access requirement, we study a class of
codes for which the decoder is local (in a sense that will be defined later). A long line of
research has addressed a similar problem from a data structure perspective. For example,

Bloom filters [2] are a popular data structure for storing a set in a compressed form while
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allowing membership queries to be answered in constant time. The rank/select problem
[18, 8] and dictionary problem in the field of succinct data structures are also examples of
problems involving both compression and the ability to efficiently recover a single element
of the input. In particular, [20] gives a succinct data structure for arithmetic coding that
supports efficient recovery of source. In all of these works the efficiency is interpreted in
terms of the decoding time whereas in this work it is interpreted in terms of memory access
requirement. In this work, we formulate this problem from an information theoretic view
and study the fundamental trade-offs between locality and the rate of source coding.

IA topic closely related to source coding with local decoding is the problem of source
coding with local encoding. This problem has been studied in many works in both the data
structure and information theoretic literatures. This line of research addresses the following
challenge: In order to be able to update an individual source symbol efficiently, we must
study compression schemes that have some continuity property, meaning that a change in
a single coordinate of the input sequence leads to a small change in the encoded sequence.
Varshney et al. [25] analyzed continuous source codes from an information theoretic point
of view . Also, Mossel and Montanari [16] have constructed source codes based on nonlin-
ear sparse graph codes. Sparse linear codes has been studied by Mackay [13], in which a
class of local linear encoders are introduced. Also, Mazumdar et all [15] has studied update
efficient codes which studies channel coding problem with local encoders.

Causal Source Coding is another close topic to source coding with local decoder, which
studies the source coding problem with causal encoder/decoder. In causal source coding
the constraint on the decoder is not being local, but, being causal [17, 9].

Locally decodable codes (LDC)( [26]) is another close topic to source coding with local
decoder. An LDC encodes n-bit source sequence to k-bit codewords in such a way that
one can recover any bit x; from a corrupted codeword by querying only a few bits of that
codeword. Therefore, LDC introduces redundancy to combat the corruption of the code
word.

Moreover, Locally repairable codes( [19]) study the case where the encoded coordinates,y;’s,
gets erased with some erasure probability. We wish to produce another y; to replace a

erased y; by accessing a few number of y;’s. Reference [19] introduces a trade-off between
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locality, code distance, and the rate of code.
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Chapter 2

Background and Literature Review

In this chapter we present some fundamental concepts of source coding. We introduce the
class of Locally Encodable Source Coding (LESC) which studies the problem of source
coding with a local encoder. Also, we overview the results of Succinct Date Structure. In
the next chapter we shall revisit these results from an information theoretic point of view

and compare them to our results.

2.1 Source Coding

The primary task of source coding is to represent a source with the minimum number of
(binary) symbols without exceeding an acceptable level of distortion, which is determined
by the application. Two types of source coding techniques are typically named almost

lossless source coding and lossy source coding.

2.1.1 Almost Lossless Source Coding

Almost Lossless Source Coding refers to a type of source coding that allow the exact recon-
struction of the original source from the compressed data for almost all the source outputs.
Almost lossless source coding are also called asymptotically lossless source coding or some
times by abuse of name we call them lossless coding. Although that lossless compression

such as Lempel-Ziv [28] exists as is generally markedly different in construction. Lossless
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source coding can provide a reduction in bit rate compared to the original source, when

the original data source contains dependencies or statistical properties such as redundancy,

sparsity, and correlation that can be exploited for data compression . A well-known use for

this type of compression for picture and video sources is JPEG-LS. Next, a fundamental

bound for the minimum average codeword length per source symbol that can be achieved

with lossless coding is introduced. Let X € X be a random variable with probability

measure Py, where X is a finite alphabet set. Also let X denotes n i.i.d copies of X.

Definition 1. An (n, k, €)-SC is a pair consist of encoder f : X" — {0, 1}* and decoder

g:{0,1}* — X" such that
Plg(f(X")) # X" < e

Also let
kio(n,e) = min{k : 3 (n,k,e) — SC},
k*
RSC’(”? E) = SC(n’ 6) )
n
and
Rgc(€) £ limsup Rge(n, €).
n—o0
The rate is

RSC’ é lim Rgc(e),
e—0

where SC stands for source coding.

For any X with probability measure Py, we have

Rsc = H(X),

2.1

where H(X) denotes the entropy of a random variable ( [4], chapter 5). The following

theorem from [11, 24] characterizes the finite block length results on the rate.
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Theorem 1. ([11, 24]) For any X with probability measure Px, we have

Rcn ) = HOX) 7o 10 + 0(%E™) 22

where V(V) = Var(log Px(X)) and Q™" is the functional inverse of the Q-function,

2
where Q(z) = \/%7 /. e dy.

2.1.2 Lossy Source Coding

Lossy source coding refers to a type of source coding where a source is represented by
a loss of information. In this case, only an approximation of the original source can be
reconstructed from the compressed data. Lossy coding is the primary coding type for the
compression of speech, audio, picture, and video signals, where an exact reconstruction of
the source data is not required. A well-known application of lossy coding techniques is
JPEG. A measure of the quality of the approximation, is referred to as the distortion.

The minimum number of bits per source symbol that are required for representing a
given source without exceeding a given distortion level is called rate distortion.

To measure the quality of an approximation, distortion measures are defined to express
the differences between a reconstructed source and the corresponding original data source
as a non-negative real value. A smaller distortion corresponds to a higher approximation
quality. A distortion of zero specifies that the reproduced symbols are identical to the cor-
responding original symbols. In this work, we restrict our considerations to the important
class of additive distortion measures. The distortion between a single reconstructed symbol
# € X and the corresponding original symbol = € X is dened as a function d(x, %) < 0,
with equality if and only if x = Z. Given such a distortion measure d(x, z), the distortion

between a sequence 2" and z" is defined as

For binary sources where X' = X = {0, 1}, the most commonly used additive distortion

measure is the indicator distortion defined as 1{z # 2 }. Next, we formally define the rate

17



of an average distortion code for a given source.

Definition 2. A (n, k, D)—LSC is a pair consist of an encoder f : X™ — {0,1}" and a
decoder g : {0,1}F — X™ such that

E[d(X", X™)] < D.

Let
ki..(n,D) 2 min{k : 3 (n,k, D) — LSC},

kf (n,D
Rlsc<n7 D) é %7

and the rate is

Rise(D) 2 limsup Rys.(n, D),

n—o0

where Isc stands for lossy source coding.

For any X with probability measure Py, the characterization of the rate distortion is
given by
Ri..(D) = min I(X; X). (2.3)

Pgx + Eld(X,X)]<D

The following theorem characterizes the finite block length results on the rate of lossy

source coding.

Theorem 2. ([27]) For any X with probability measure Px, we have

logn logn

Rlsc(n> d) < Rlsc(D) + + 0(

n n

); (2.4)

where Rys.(D) is given in (2.3).

We shall use the finite length results in the next chapters when we study locally decod-

able lossy source coding.
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Figure 2-1: Locally Encodable Source Coding

2.2 Locally Encodable Source Coding

We term Locally Encodable Source Coding (LESC) source coding where the encoder is
local (The name that we use is not found the literature). In particular, [13, 16] study the
case where, for any 7, X; influences only a constant number (%) of Y;’s. This class of source
codes is depicted in Figure 2-1. In this figure, we connect Y; to X; if X, contributes to
evaluate Y; (we shall define this formally later). As shown in the figure, the source nodes
have bounded degree determined by the locality. In this section, we formally define LESC

and give the results in the literature for both lossless and lossy settings.

2.2.1 Lossless LESC

A lossless coding is defined as a pair of encoder f and decoder g, where, f : X" s {0, 1}F
and g : {0,1}* — X™. The encoder is called local if each coordinate of the input affects a
bounded number of coordinates of output. Formally, Let f,, fora € {1, ..., k}, be the a—th
component of the encoding function. Assume f, depends on X" only through the vector
XN = {X; : j e NY} forsome NY C {1,....n}. Also fori € {1,...,n}, let N;X be

the set of output coordinates that depend on z. Thus,

NS ={ac{l,..,k} : iec NV}
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Figure 2-2: Locally encodable Source Coding: Definition of Locality

For any given ¢, an encoder is called t—local if [N;X| < ¢ forany i € {1,...,n}. Figure 2?

illustrates A" and NX.

Definition 3. An (n, k,t,e)—LESC is a pair consist of t—local encoder f : X" +— {0, 1}F
and a decoder g : {0,1}* +— X", such that P[g(f(X")) # X"] < e. Also, define

k.(n,t,€) = min{k : (n,k,t ¢e) — LESC},

k. (n,t,
Ri(t,€) = lim sup M,
n

n—oo
and

Rle (t) é hm Rle<t, 6),
e—0
where the subscript, le, stands for local encoder.

Next, we present relevant results in the literature about source coding with a local en-
coder.

Assume a Bernoulli(p) i.i.d. source. The following result is derived in [13].

Theorem 3 (Mackay, very good codes, [13]). Assume X is a Bernoulli(p) i.i.d. source
with entropy h(p). For any given rate R > h(p), there exists an integer t(h(p), R) > 3 such
that for any desired block error € > (), there exists an integer ng such that for any n > nyg

there exists a (n,nR,t (h(p), R) ,e) —LESC. Moreover, this encoder is linear encoder.

Note 1. A Linear encoder for a Bernoulli source is a binary n x k matrix G such that

Y = X G mod 2. This encoder is t—local if the weight of each row is at most t.
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Given a Bern(p) i.i.d. source and any rate R > h(p), we have R;.(t(h(p), R),€) < R.
Therefore, R.(t(h(p), R)) < R. As aresult, for any R > h(p), there exists t = t(h(p), R)
such that R () = R, meaning

h(p) = inf{R : 3 LESC with rate R}.

Thus, we obtain a rate arbitrarily close to entropy using LESC.

Source coding with local encoding is also studied in [16], considering a non-linear
encoding function. In order to state the results we need the following definition. Let X be
a source taking values from a finite set X. For any integer k£ > 1, let Dy (X') denote the
set of probability measures Px over X, such that there exists a function f : X* — X for
which the following holds. If X, ..., X}, are i.i.d with measure P, then f(X7) is uniform
in X. Clearly, Dy (X) is finite and increasing in k, and D(X) = U, Dy (X) is dense in the
|X — 1|]—dimensional simplex of probability measures over X’.

The main result of [16] is as following.

Theorem 4 ([16]). Let X be a an i.i.d source over X with probability measure Px. If

Px € Di(X), then there exists t*(Px) such that for any t > t*(Px ) we have

H(Px) =inf{R : 3 LESC with rate R and t — local encoder}.

This theorem shows that, if the probability measure of the source comes from D(X) (
a dense set on the space of probability distributions), then LESC achieves the fundamental

limit, H(X).

Note 2. Unlike Theorem 3, the encoder proposed in Theorem 4 is not linear. Moreover, in
Theorem 3, in order to approach entropy, we need to increase the locality t. In other words,
the locality, t, is a function of both rate and probability measure, whereas in Theorem 4 the

locality is only a function of probability measure.

The number of queries, ¢ can also be a growing function of the block length, n. We

shall consider this case later.
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2.2.2 Lossy LESC

Let f : X" — {0,1}* and g : {0,1}* — X" be an encoder and a decoder, respectively.
The encoder is called local if each coordinate of the input affects a bounded number of
coordinates of output. This definition is the same as the previous one. Note that X € X
and X € X. Assume a probability measure on X, Px. A separable distortion measure
d: X x X — RYis given.

An (n,k,t, D)—LELSC is a pair of t—local encoder f : X™ + {0,1}* and a decoder
g :{0,1}* — X", such that E[d(X", X™)] < D. Also, define

ki (n,t,D) = min{k : (n,k,t, D) — LESC},

and

k t, D
Rie(t, D) & limsup —ZE(n’ ’ )
n

n—oo

Next, we state the results in the literature about lossy source coding with local encoder.
Dimakis et. al. [7] discuss the case where the source has an 1.1.d. Bern(%) distribution. The
following theorem from [7] states that, if we choose the linear encoder generating matrix
randomly, then with high probability the achievable rate by linear local encoder is bounded
away from Shannon rate distortion. A Low Density Generating Matrices (LDGM) is used
to guarantee locality. An LDGM is a G, x; matrix that maps sequences of length n to
sequences of length k. It has locality (low density) of ¢ if each column of it has at most ¢

non-zeros.

Theorem 5 ([7]). Let X be a i.i.d source with Bern(3) distribution. Consider linear
encoders that are chosen randomly from the set of all LDGMs with locality t . With high

probability (wrt the ensemble) the achieved rate-distortion pair (R, D) satisfies:
1

(1-D)t \
1 - eXp <_Rle(t’D)>

Note that Theorem 5 gives a bound on the average rate that a randomly chosen code

Rle(t>D) Z (1 - h(D)) (25)

can achieve and does not apply to individual codes. The authors of [12] generalized this
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result by using a counting argument to individual linear local encoders. They showed that,
for any linear local encoder with locality ¢, the performance is strictly bounded away from
the Shannon rate-distortion function. However, the rate approaches rate-distortion as ¢

increases. Formally,
For any R > 1—h(D), there exists t(R), such that the rate R can be achieved with locality .

Note that here, in order to approach the Shannon rate distortion function, we should in-

crease the locality, 7.

2.3 Succinct Date Structure

The problem of locally decodable (efficiently recoverable) compressed data structure (also
called succinct data structure) is studied in many works from a database point of view. In
succinct data structures we are concerned with the design of space efficient and dynamic
data structures for storing a data source. For example, in a very large database, We may
need the source data to be represented as compactly as possible to minimize storage, which
is often highly constrained in these scenarios. On the other hand, we wish to retrieve any
coordinate of data source efficiently . Therefore, we are interested in data structures for
storing sequences of length n produced by a source in a compressed manner and being
able to read the source coordinates efficiently. Reference [20, 3] study this problem and
the authors develop space bounds for data compression, i.e. storing a sequence of integers
in a compressed binary format. They additionally seek to design compressed data indices
to decode any small portion of the data or search for any pattern as a substring of the data,
without decompressing the binary stored sequence entirely. Patrascu, [20] considered the
problem of mapping a sequence, X", into a sequence, Y, and recovering X" from Y*,
where any ; only depends on O(logn) of Y;s. This approach is very close to our locally
decodable source coding scheme. We shall state the following result in the literature, in

order to compare it to the results of LDSC in next chapter.

Theorem 6. (/20]) Consider a sequence of n elements from an alphabet X, and let f, be
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the number of occurrences of letter x in the sequence. On a RAM with cells of (log n) bits,

we can represent the sequence by

+ O(n**log n®*)

n n
O(|x|10gm) + 3 frloa() +

reX t
bits of memory, supporting single-element access in O(t). Each RAM is a sequence of bits
with length O(logn). Single-element access in O(t), means that each coordinate of the

input sequence can be recovered by reading from O(t) RAMs.

We shall elaborate on this result and reformulate it in a information theoretic form in
the next chapter, where we shall develop the machinery to provide information theoretic

explanation of succinct data structure, and in particular of Theorem 6.

24



Chapter 3

Locally Decodable Source Coding

The problem of locally decodable source coding (LDSC) is studied in this chapter where
a source sequence r1, xs, ..., taking values from the source alphabet X', is mapped into a
sequence ¥1, ¥s2, ... of symbols taking values in the compression alphabet ). These symbols
are then used to produce the reproduction sequence 71, Zo, ... in the alphabet X. The rate
of the source coding is defined as the ratio of the length of the output sequence to the input
sequence. The decoding scheme is called ¢—local if, for any ¢ = 1, 2, ..., the reproduced
symbol, z; only depends on ¢ of y1, s, ... (f is called the number of queries). In conventional
source coding, Xn depends on Y*inan arbitrary manner. In this work, we characterize the
source coding rate for the setting when the decoder is constrained to ask only ¢ queries to
reproduce any reproduction source coordinate , i.e., ;. Figure 3-1 demonstrate the problem
formulation. As it shows, any y; is an arbitrary function of 1, x5, ... and any z; is a function
of only ¢ of y1, o, ....

This problem appears in many applications in distributed data management. For in-
stance, assume a given source is stored in some storage cells. Since writing on data storage
cells is generally costly, we use source coding to decrease the number of cells used. If
we wish to recover a part of the original source (in our case one coordinate of the source
sequence) we may need to read the entire encoded data on all of the data storage cells.
Therefore, we need to query all the cells. However, we know that reading from the storage
cells is generally costly, so we wish to read as few blocks as possible. Clearly, there is a

trade off between the number of used storage cells to store the entire original source (rate)
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Figure 3-1: Locally Decodable Source Coding

and the number of cells we need to access in order to recover a coordinate of the original
source sequence (locality, ¢). Characterizing this trade-off is one of our goals.

In another example, assume that we encode a source and then store it on some data
storage cells. We want to reveal the information about one coordinate of the source to
some party, but, we do not want to reveal the information about the entire source symbols.
If we use a conventional source coding, we may have to reveal all the encoded data. Thus,
a honest but curious party may have access to the entire original source sequence. On the
other hand, in LDSC we provide only a small part of the encoded data, so the party can
only recover the desired part of original source symbols without capability of extracting

the other symbols.

3.1 Lossless Locally Decodable Source Coding

In this section, we study lossless source coding in the presence of local decoders. We

formally define LDSC and study its rate.

3.1.1 LDSC

A local decoder is a decoder that only asks a few number of queries to decode any symbol
of the source sequence. The number of queries is denoted by ¢. The formal definition is as

follows. A lossless LDSC is defined as a pair consisting of an encoder, f, and a decoder,
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g, where, f : X" +— {0,1}* and g : {0,1}* — X™. The decoder is called local if each
coordinate of the output is affected by a bounded number of input coordinates. Formally,
Let g,, for a € {1,...,n}, be the a—th component of the decoding function. Assume g,
depends on Y* only through the vector Yo = {V; : j € NX} forsome NV € {1,..., k},
meaning that

For any 4" and v/*, g, (%) = g.(y"*) if yNe = yNe,

for any given ¢, a decoder is called t—local if |[NY'| < ¢ foranyi € {1,...,n}.

Definition 4. An (n, k,t,¢)—LDSC is a pair consisting of an encoder f : X™ s {0,1}*
and a t—local decoder g : {0,1}F — X™, such that

Plg(f(X")) # X"] <. 3.1
Using a similar notation to that of [21], let
kiy(n,e,t) £ min{k : 3 (n,k, e t) — LDSC}. (3.2)

Where the subscript , ld, stands for local decoder. The best rate of local code for a given n,

t and e, is given by

Rig(n, e, t) = W (3.3)
Also let
Rig(e,t) & ligis:ip Ria(n, e, t). (3.4)
We define the rate as
Ry(t) £ lim Ria(e, 1). (3.5)

Lemma 1. Given a (n, k, e, t) — LDSC with randomized encoder and decoder; there exists

an (n, k,€,t) — LDSC code with deterministic encoder and decoder.
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Proof: Let M and N be two random variables, and consider randomized encoder and

decoder f(M) and g(N), respectively. Equation (3.1) then becomes
Plg(f(X™, M),N) # X"] = E[P[g(f(X", M), N) # X"]|[M,N] < e.

Since the probability in equation (3.1) is less than or equal to €, then there exist m, n such
that
Plg(f(X™, M),N) # X;|M =m,N =n] <,

implying that f(m) and g(n) are our desired sort of encoder and decoder, respectively, and

the proof is complete. U

Note 3. Using Lemma 1, in the rest of the text, we assume the encoder and decoder are

deterministic.

3.1.2 Average LDSC

Instead of assuming the number of queries to recover any X; is bounded, consider the
case where the average number of queries asked to recover all the X; s is bounded. We
term this Average Locally Decodable Source Coding (ALDSC). The formal definition is the

following.

Definition 5. For any given t, a decoder is called t—average local if + 3" NY| < t. An
(n, k,t,e€)—ALDSC is a pair consisting of an encoder f : X" — {0,1}* and a t— average
local decoder, g : {0,1}* — X™, such that

Plg(f(X™)) # X" <€
Similarly, define
kfy(n,e,t) = min{k: Fan(n,k,et) — ALDSC},

where the subscript, ald, stands for average local decoder. The best rate of local code for a
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given n, t and ¢, is given by:

ko (n, et
Rald(n,e,t) Y %_

Also,

Raa(e, t) = limsup Ryq(n, €, t).

n—o0

We define the rate as
Rald(t) = lim Rald(ea t).
e—0

The following result establishes a relation between Ry4(t) and Ry4(t).
Proposition 1. For any 0 < X < 1, we have kj;(n, e, t) > kX, (An, k, e, 7).

Proof: The proof follows from sorting the number queries for all of the source symbols
and then selecting the first A fraction of them. Let (n, k, ¢, €) be an ALDSC. Let ¢; denote

IN;| for 1 < i < n. Without loss of generality, assume t; < ¢, < ... < t,. We have

%Z?:l t; < t. Therefore, we get |\, < ﬁ The corrsponding decoder and encoder
introduces a (| An ], k, 55, €) — LDSC. Hence,
t
{k|3(n,k,e,t) — ALDSC} C { k| 3([An], k¢, ﬁ> — LDSC}
t
= k:ld(n7 €, t) > kl*d( L)\’IIJ ) k’ S ﬁ)
The proof is complete. U
Corollary 1. Forany 0 < A < 1, we have AR4([1551) < Rawa(t).
Proof: Using Proposition 1,
t ka(Anloe ) k(b6 t)
AR ([——1) = A < 72 = Raa(t),
a(ly—1) gy < . 1d(t)
which concludes the proof. U
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This corollary states that, once we have a lower bound on the rate of LDSC, we obtain
a lower bound on the rate of ALDSC. Implying that we would not gain much by using

ALDSC instead of LDSC. We shall quantify this notion in the next sections.

3.1.3 Linear Encoder

Source coding with a linear encoder and local decoder is the subject of this section. We
focus on binary sources where X = {0, 1}. We show that, for a linear encoder, the rate
of LDSC is one instead of the entropy rate, Implying no compression is possible. Before

proving this fact, we introduce the influence matrix of an encoder.

Definition 6. Ler f : {0,1}" — {0,1} be a Boolean function defined on {0,1}". The

influence of X; (the i component of f) on f is defined as

Infi(f) 2 Plf(z +e) # f() (3.6)

An encoder f : X™ — {0,1}* can be treated as collection of k Boolean functions on
{0,1}". If we denote the j function by f;, then f(x) = (fi(x), ..., fu(x)). The influence
matrix of the encoder f : X™ +— {0,1}* is an n x k, matrix, A, defined as A;; = Inf;(f;).

We illustrate a relation between a function Influence and its ability to decode a particular

bit by an example.

Example 1. In this example, we show that two functions f, and fy may recover X1, while
having almost zero information about X. Let f; = X1+...+ X,,, and fo = Xo+ ...+ X,
where the summation is in Fo. Here, we have perfect recovery by X1 = f1 + fo. We have
Infi(fi1) = 1 while I(Xy; f1) = h(3(1 — (1 = 2p)") — h(3(1 — (1 — 2p)"~*') which is
very close to zero for large n. On the other hand, Inf,(fs) = 0 and also 1(X1; fo) = 0.

Therefore, influence of X1 may be either 0 or 1, while the mutual information remains zero.

Next, we prove a converse bound on the a rate of LDSC with linear encoding. In order

to prove the theorem, we use the following lemma.
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Lemma 2. Let Fy be a vector space over Fo. Define a probability function over % accord-
ing to Pv] = p1®(1 — p)" ) where H (v) represent the Hamming weight of v € Fj. If

U is a k- dimensional sub-space of F3, we have
(max{p,1 - p})"™* > P[U] > (min{p,1 - p})"~".

Proof: We first prove the lower bound. Define £ = {v € V|H(v) = 1}. Since the

dimension of U is k, there is £’ a subset of £ with n — &k elements such that

UaU =Ty
UnuU' = {0},

where U’ = span{E'} and @& denotes the direct sum of two sub spaces. For each v’ € U’
define Uy = U + u'. Itis clear that Uy, N Uy, = O for u) # uy. Now we shall bound
P(Uy). Suppose H(u') = r, then we have:

PlUS] = ) Plu] =) Plu+u]

5o (Y (sl

Since Uys are disjoint and for each v/ € U’, we have H(u') < n — k and the following

equation holds

1 =P[F] = PUperrUs] = > P[U]

u'elU’
< 3 p (i) S (1) (St
=20 (14 %) i (mW 67

Changing the second line of (3.7), the upper bound is proved similarly. [

Theorem 7. Assume X has a Bern(p) distribution and (n, k, €, t) is a LDSC for this source
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with a linear encoder. If ¢ < min{p, 1 — p}!, then k > n.

Proof: Let GG be the corresponding influence matrix of the encoder. The encoding is
then as the following:

z +— 2G.

Since the encoder is linear, the entries of the influence matrix are either O or 1, meaning
G € Fy**. G is a mapping from {0, 1}" to {0, 1}*. Without loss of generality, assume that
X, is recovered by Y7, ..., Y, and the decoder maps 0° to X 1 = 0. Consider the induced
linear mapping 7 : X" — Y, we have dim(ker(G)) > n — t. Note that 0" € ker(r). If
there exists 2" € ker(m) such that 1 = 1, then half of the vectors in ker(m) have x; = 0
and half of them have z; = 1. Since the decoder maps 0' to Xl = 0, then the vectors
in ker(m) with z; = 1 are erroneous . Eliminate the first coordinate and consider all the
vectors in ker () such that x; = 1, they will form a subspace of dimension at least n —¢ — 1

is a paces of dimension n — 1. Therefore using Lemma 2
P[X" £ X") > P[X; # Xi] > P[S] > (min{p, 1 —p})"~" """V = (min{p, 1 - p})".

Which is a contradiction.

Hence, for any 2" € ker(7), x1 = 0. This means that, if we look at a sub-matrix of G of
dimension n X t consisting of the first ¢ columns, the first row is not in the span of the rest
of rows. This implies that, in the matrix G, the first row is not in the span of the rest of
rows. If we apply the same argument for any X;, we conclude that the rows of the matrix

G are independent, resulting in £ > n. U

Corollary 2. Using linear encoder, for any t, we have R;4(t) = 1. Moreover, by using

Proposition 1, we have Ry q(t) = 1.

Proof: It directly follows from Theorem 7 and Corollary 1.
In contrast with Theorem 4 about LESC, LDSC does not achieve the fundamental limit on
the rate, which is entropy, meaning that we can not compress data, expecting to recover it
locally.

Note that Theorem 7 also proves that using a linear encoder and local decoder, we can only
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have lossless (with zero error ) codes.

3.1.4 Linear Decoder

In this section, we assume that the decoder is local and linear. We show that, for a linear
decoder, even without forcing the decoder to ask a limited number of queries, the rate of

compression is 1. This implies that, if the decoder is linear, then no compression is possible.

Theorem 8. Let X have Bern (p) distribution. Assume the decoder is linear. We have

B log(1 —¢)
log (max{p, 1 - p})

ki.(n,e) >n (3.8)

Proof:

Consider a (n, k, €)- SC. Assume e, ..., e, are the canonical basis of {0, 1}*. Decoder
can only recover Span{g(e1), ..., g(ex)} and we have error for all other inputs. Thus, using

Lemma 2

Plg(f(X™) # X" > 1 — P[Span{g(e1), ..., g(ex)}] > 1 — (max{p,1 — p})"*

we also know Plg(f(X"™)) # X"| < e. Therefore,

log(1 —¢)

k>n— .
" log max{p,1 — p}

Taking the minimum over all choices of codes, we get

log(1 —¢)

ki (n,e) >n— :
(. ) log (max{p,1 —p})

and the proof is complete. U
Let X be a Bern(p) source and f : X™ +— {0,1}* and g : {0,1}* — X™ be the general
encoder and linear decoder. Theorem 8 shows that that R,. = 1. In other words, if we

employ linear decoding, the rate of compression is always one, instead of entropy rate.
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Therefore, for any t—local decoder we have
Ri(t) = 1.
Moreover, using Corollary 1 for a linear decoder, we obtain

Raa(t) = 1.

3.1.5 General Encoder-Decoder

In previous sections, we showed that assuming a linear encoder or linear encoder the rate
of LDSC is 1. We study the same problem for a general encoder-decoder. First, by using

an example, we show the existence of good non-linear encoder with local decoder.

Example 2. Consider the following f:
fo=Xior Xoor...or X,,, fi=X,or(Xyor..X;qorX;i0r..orX, + 1)

The recovery is as

Xi = fo and f;.

In this example we have zero error and k = n + 1. This shows the existence of completely

non-linear codes.
The following theorem focuses on the special case of ¢ = 2.

Theorem 9. Let X be a Bern (p) source and f : X™ + {0,1}F and g : {0,1}* — X" be a
general encoder and t-local decoder. Also assume a (n, k, €,t)-LDSC for this source. For

t =2 ife < p? thenk > n.

Proof: We prove this by contradiction. For the sake of contradiction, assume n > k,
we show that ¢ > p?, which is a contradiction.
The claim is that if the code can recover X! i.i.d Bern(p) with a local map from Y}* on a
set with probability p(k), then p(k) < 1 — p?. Note that this is enough to prove the theorem

because € = 1 — p(k)
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By induction on k, we show that p(k) < 1 — p*. It can be shown that p(1) < 1 — p?. Let
p(k — 1) < 1 — p% Assume X is recovered by Y] and Y,. Without loss of generality,
assume that ¢1(0,0) = 0, where for any 1 < i < n, g; is a mapping, with two inputs, that

produces X;. Here are the all possible cases:

1. ¢1(0,1) = 0. In this case, if we consider the induced map from Y} to X5*! by
replacing 0 with Y} in all the mappings that use Y] as one of their inputs, we end up
with a local mapping on a set with maximum probability of p(k —1). Similarly, since
g1(1,1) = ¢1(1,0) = 1, if we replace 1 with Y], we get another local mapping on a set
with maximum probability p(k—1). Therefore, p(k) < p.p(k—1)+1 —p.p(k—1) =
p(k—1) <1-p”

2. g1(1,0) = 0. In this case, replace 0 with Y3 and construct a mapping from Y3, Y.¥ to

X5, Similarly, it can be shown that p(k) < 1 — p?.

3. ¢1(1,1) = 0. In this case, replace Y; by Y in all the mappings that use Y; as one of

their inputs. Similarly, we obtain p(k) < 1 — p?.

4. g1(1,0) = ¢1(0,1) = ¢1(1,1) = 1. In this case, g;1(Y7,Y2) = Y7.Ys. This case

requires more details which will follows.

We call 1.V, Y1.Ys, V1.Y,, and Y;.Y5 a product form. The discussion which we provided
before shows that if only one of the £ + 1 mappings is not of the product form, then the
above argument proves p(k) < 1 — p®. Now, assume all the mappings are in the product
form. If Y; is once used as X;, = Y;.Y; and once as X;, = Y;.Yi, then X; = X5 =1
cannot be recovered. Implying p(k) <1-p* <1-p*(p < %). Therefore, without loss of
generality, we assume that all the mapping functions are of the form Y;.Y;.

There are k + 1 mappings, so the number of arguments of all these mappings is 2(k +
1). Also, note that there are k Y;’s. Thus, three mappings can be found as X;, = Y;Y},
Xi, = YiYy, and X, = Y}Y,. If X;, = 1, then we can find a mapping from Yf‘l, Y;’_“H
to Xi', X%} on a set with maximum probability p(k — 1). Also note that X;, = 0,
X;, = X;, = 11is not possible to recover. Therefore, p(k) < p.p(k — 1) + p.p? <1 — p?
The proof is complete for ¢ = 2. U
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Corollary 3. Let X be a Bern(p) source and f : X™ — {0,1}F and g : {0,1}* — X™ be

the general encoder and t-local decoder. Fort = 2, Rj4(t) = 1.

Proof: It directly follows from Theorem 9.
Also, for ALDSC we obtain the following.

Corollary 4. Let X be a Bernoulli (p) source and f : X™ + {0,1}* and g : {0, 1}* — X"

be the general encoder and decoder. Fort = 2, Ry4(t) = 1.

Proof: It follows from Theorem 9 and Corollary 1. U
Considering the bipartite graph describing the relation between input and output of a gen-
eral decoder, one way to generalize this proof to ¢ > 3 is to find a small number of encoded
coordinates that are connected to a small number of recovered source coordinates. The fol-
lowing section discusses this idea. We have the following conjecture for any given ¢ > 2:
Let X be a Bern(p) source and f : X™ ~— {0,1}* and g : {0,1}* — X" be a general
encoder and ¢-local decoder. For any ¢, we have Rj4(t) = 1. As a result of Corollary 1,

Raa(t) = 1.

3.1.6 On the Bounded Degree Bipartite Graph

In previous section, in the case of t = 2, we found two )A(i’s which are connected to only
two of Y;’s. Then we considered all the possibilities for this sub-mapping and then did
induction to prove Theorem 9. If we can find a subset of the X;’s with size s which are
connected to a small number of ¥;’s such as s + O(1) and we would follow the same
approach as of the proof of Theorem 10. The following result rules out this approach.

Let G(U,V, E) be a bipartite graph, where U and V' are two set of nodes connected with

the edges from F.

Definition 7. We call a bipartite graph G(U,V, E) a t — regular bipartite graph if any
node in'V has a degree equal to t. Moreover, let the set G(n,m,t) = {G(U,V,E) t —

regular such that |U| =m, |V|=n}.

For a given subset of the nodes V' such as I, let N (I) denote the neighbors of the nodes

in /.
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Definition 8. For any given [, let

N(l,n,m,t) = max min N(I).
GeG(nim,t) I:]I|=l

In order to obtain insight about N (I, n, m,t), consider the following example.

Example 3. If m > nt, then N(l,n,m,t) = It and the graph that achieves this is the one
for which all nodes in V' are connected to disjoint set of t nodes of U. If m is very small

relative to n, then N (l,n,m,t) is below L.

We are interested in the case where m = n — 1. The question we try to answer is the
following: for a given ¢ and [, what is N(I,n,n — 1,t), for large enough n. The following
theorem shows that the number of neighbors of a set of size [ is growing at least linearly

with [.

Theorem 10. For any given t, § and I, there exists no(t,l) such that, for n > ny(t,1,9)
N(l,n,n—1,t) > (t—1—9)l.

Therefore, N (l,n,n — 1,t) grows linearly with I, for a given t.

Proof: Let the set X = {1,....n — 1} denote the nodes in U. Let Ay, ..., A; be k
sub-sets of X, each of them with ¢ elements corresponding to the neighbors of the v in X,
where v € V. Also, assume that the union of any [ of these subsets has at least (t — 1 — )]
many elements. We must show that, for large n, there exists a collection of size n of these
subsets, i.e. k can be equal to or larger than n. We use a probabilistic approach to show this.
Assume that the subsets are chosen uniformly from X. Let 1{| U'_, A; | < (t — 1 —4)l}
be the indication function which is one if its argument holds and is zero otherwise. Now,

consider the following expectation for a given k, n, t, [:
B[S UL, Ayl < (1= 1-0)1))
$1yee0y?]

If this quantity is less than one, then for the given k, n, ¢, [ there exists a bipartite graph in

G(k,n — 1,t) such that, for any subset of [ nodes of V, the union of their neighbors has
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more than or equal to (t — 1 — §){ node. Thus, in order to complete the proof, we show that
there exists ny(t, [, d) for which, if n > ng(t, 1, ), then the expectation becomes less than
one for k = n.

We have
k
E z:lﬂULV%J<@—1—6ﬂ4::Q)PUULV&M<@—1—®H.

Let N(¢,1) denote the number of different ways in which one can choose [ subsets of a set

with (¢ — 1 — J)l elements, each of them having ¢ elements. We obtain

(")

P[|Uis Al < (t—1-0)I] = )

N(t,1).

Hence,

E

I , L [k ((til;—lé)l>
> U Ayl < (-1 5>Z}]—(Z)—(n?)l Nt 1)

l
) (Y N (t,1)

- kl (n _ 1)(t—1—5)l
- ((n—l—t)t>l
]

Comparing the exponent of n in the numerator and denumerator, there exists ny(t, [, )

n(n —1)t=1-9)
(n—1—t)

Nt 1) < (

(some number which depends on ¢, [, and ) with the property given in the theorem. U

3.1.7 Scaling Number of Queries

As we mentioned before, the number of queries, ¢ can be a growing function of n. In the
conventional source coding ( not necessarily local) ¢(n) is a linear function of n. Therefore,
the regime of our interest is the one where ¢(n) grows sub linearly with n. In order to
establish the results on LDSC with scaling number of queries, we need the following results
on the error exponent of source coding to establish an achievability bound on the rate. This

approach is motivated by the achievability bound given in reference [15].

Note 4. For the sake of convenience we use the same notation as of the rate of codes with
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constant number of queries, for scaling number of queries. Therefore, we show the rate by

Ry4(t(n)), knowing that this is not a function of n.

Theorem 11. (/6]) For a discrete memoryless source with probability measure Px and a
source encoding with rate R, we have:
For any e > 0,3 K, such that for any n > 0 there exists an encoding-decoding pair f,, and
gn Such that

Plgn(fa(X")) # X" < K270, (3.9)

Where

Ey(R) = Q:g(lg)lZRD(QHP)-

Moreover, this bound is asymptotically tight.

Now, consider the following construction of an encoder-decoder for a sequence of
length n of the source Bern(p):
Let the rate R be equal to (1 4 ) H(X). Let X™ be a sequence of source symbols. Divide
this sequence into blocks of length ¢(n) and apply the encoder-decoder pair found by The-
orem 11 to each block separately. Form an encoder-decoder for X" by cocatenating these
% (for the sake of convenience we drop ceil and floor in this analysis) pairs of encoder-
decoder. We now analyze the error of the concatenated source coding. Using a union bound

we obtain

o n n n it(n ) n t(n n
PX" # X" = PIU R i # X0 e} < S P 2 X

Using, (3.9) for any €, we obtain

[X” 4 X" < —)K 2t (B (R)=e)

Since R > H(X), Ef(R) = A > 0. Thus, we have

[Xn ?é Xn] (—)K2 t(n)(A—E)‘

Choose € < A and denote A — e by I'. We want to see for which choices of ¢(n), this bound
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goes to zero. This happens when

: n
nhi& I't(n) — log ) 00

resulting in

t(n) > C'logn,

for some constant C. Therefore, we have the following result.

Proposition 2. Let X be a Bern (p) source and f : X" — {0,1}* and g : {0,1}F — X7

be an encoder and t(n)-local decoder. For any R > H(X), there exists a C' and ng such

that for n > ny, there exist a (n,nR,C'logn,€)-LDSC for any €. Moreover, for any t(n)
t(n)

such that lim,,_, . fogn — OO we have

h(p) = inf{R : 3 LDSC with rate R and t(n) — local decoder}.

This theorem states that with number of queries (log n) that is small compared to n, the
rate of LDSC approaches the optimal rate i(p).

The same results also holds for linear codes. In particular, we use the following results.

Theorem 12. ([5]) For a given source with probability measure Px, n, and k there exists

a linear encoder, f : X" — X ¥ and and a decoder such that

P[Xn £ X7 < 2 ((B-HE)-2x [ log =)

Using this theorem we get the following result for linear encoders and local decoders.

Corollary 5. Let X be a Bern(p) source and let f : X™ — {0,1}F and g : {0,1}F — X"
be a linear encoder and t(n)-local decoder, respectively. For any R > H(X), there exists a
C' and ny such that for n > nyg there exist a (n,nR, C'logn, €)-LDSC for any €. Moreover,

1) _ o e have

for any t(n) such that limy, o 1o =

h(p) = inf{R : 3 LDSC with rate R, linear encoder and t(n) — local decoder}.
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3.2 Lossy Locally Decodable Source Coding

In this section, Locally Decodable Lossy source Coding (LDLSC) is studied. First, we
formally define the problem.
Consider a separable distortion metric defined as d(X", X") = L3 d(X, X))

Definition 9. A (n, k,d, t)-LDLSC is a pair of encoder f : X" — Y* and decoder g :
Yk — X", where the decoder is t-local. The distortion is bounded, E[d(X™, g(f(X™)))] <
d.
Let

ki, (n,d,t) £ min{k such that 3(n, k,d,t) — LDLSC }, (3.10)

where the subscript ,ld, stands for local decoder; also

Ria(d,t) 2 limsup Kia(n, d,t) 3.11)
n

n—o0

Note 5. We assume a binary source, F = Fy with d(X, X) = 1{X # X . In this case, we

have

Bld(X", g(/(X")) = 5 Y PN # X < d

which is the same as assuming the bit error rate is bounded (relative to the block error rate

in the definition of LDSC).

3.2.1 Scaling number of queries

In this section, we consider the scaling of number of queries. Therefore, let #(n) shows
the number of queries. The following is an upper bound on the rate for scaling number of

queries.

Theorem 13. For a Bernoulli(p) source, a distortion level d, and any increasing number

of queries t(n)

log t(n)
t(n)

logt(n)

t(n)

Rig(n,d,t(n)) < h(p) — h(d) +

+ of ) (3.12)

41



Proof: Recall the finite block length results on source coding ([27]) thereof for a

Bern(p) source, and distortion level d, there exists a code such that

logn logn

Rise(n, d) < h(p) — h(d) + +o(

). (3.13)
n n

t(n)

obtained from (3.13) to each block. Concatenate these o) pairs to obtain an encoder-

decoder for X". The average distortion of the overall code is also bounded by d, and its

Now, divide the sequence X" into blocks of length ¢(n). Apply the encoder-decoder

rate is bounded by

(% (t(n) (h(p) —h(d) + 105(2()71) 4 o(lotg(i()n ) )) )> /n,

which shows the theorem. ]
Theorem 13 shows that, for any number of queries #(n), if lim,,_,, t(n) = oo, then there
exists (n, k, D, t(n))-LDLSC such that & < n(h(p) — h(D)) + logn + o(log n). Note that

for the sake of convenience we dropped ceiling and floor.

Corollary 6. For the special case t(n) = tlogn, we have

logtlogn logtlogn
R d,tl < h(p) — h(d 3.14
w(n; d; tlogn) < hip) = h(d) + tlogn ol tlogn ) (3.14)
Proof: The result of Theorem 13, (3.13) for t(n) = tlogn. O

Patrascu ([20]) studies the problem of storage of bits with local recovery of bits (with the
same definition of locality we use here). Those results are based on a generic transformation

of augmented B-trees to succinct data structures. He shows that

Theorem 14 ([20]). Consider an array of length n from alphabet X. We can represent this

array with a number of bits

n
(logn)t

t

O(|X|logn) + nH + + O(n**logn®4), (3.15)

supporting single bit recovery in tlogn queries, where H denotes the empirical entropy

(the entropy of the empirical distribution). Moreover, we can represent a binary sequence
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of length u, with n ones, using

log (Z) + (é T O(u¥* log /) (3.16)

t

bits, for which a decoder exists querying only tlog u bits. Note that the encoder/decoder

knows n and u beforehand.

Reference [20] essentially studies the case of ¢t(n) = tlogn. We now compare the
bound given in corollary 6 with the bound suggested by Theorem 14.
Using Theorem 14 and identity log () = nh(p) + O(log n), for any d, we obtain

n
pn

logn 1 log n3/4
)+ (logn)t +O( nl/4 )

Ri(n,d,tlogn) < h(p) + O( (3.17)

It is clear that, for any fixed d, the bound given by (3.14) is asymptotically tighter than
(3.17). The comparison is illustrated in Figures 3-2, 3-3. The curves are approximations
of the bounds, because we omit the last term of each of them. As it can be seen in the
figures, for any large enough n, the bound (3.14) is tighter than (3.17); for small n and
small distortion level, d, the bound given in (3.17) can be tighter. One may consider the

case where d goes to zero as n goes to infinity. Assume both bounds hold for this case as

well. We show that if d(n) = O(=), then (3.17) is tighter than (3.14). For large enough

logn

n, there exists ¢; and ¢, such that

1 loglogn < loglogn B logn

< R
Md(n) < erd(n) log d(n) — = logn — logn n

Therefore, for d(n) = O(-) and large enough n we get:

logn

ogn og n3/*
h(p) +OCE™) 4 s +OCS17) < () = () +

t

logtlogn logtlogn

)

)
tlogn tlogn

3.2.2 Fixed Number of queries

For a given number of queries, we show that one can achieve any rate above the rate dis-

tortion function, using a large enough locality. Consider the following construction.
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Figure 3-2: Comparison of an approximation of upper bounds, p = .11, d = 1/15

Assume that the source sequence is the i.i.d. product of X with probability measure Py
(Px» = P%). For a given d, we wish to show that there exists ¢, such that a LDLSC with
locality ¢ achieves the rate (1 + ¢)(R(d)) with average distortion bounded by d. From The-
orem 2, we can get the bound R..(t,d) < R(d) + 21ngt for large enough ¢. Also let ¢ be

large enough such that 21°Tgt < 0R(d). Therefore, ether exists ¢ such that
Rise(t,d) < R(d)(1+9).

Therefore, there exists an encoder and decoder pair for X, such that the rate of the code is
less that (1 + ) R(d) and the distortion is bounded by d. Now, consider n pair, of the same
encoder-decoder. Concatenate these encoder-decoder pairs to form an encoder-decoder for

X" In this way, we obtain a source coding for X" with distortion

1
E[—Zd(xz,xz)] ZE (X0 s XT )] < d.
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Figure 3-3: Comparison of an approximation of upper bounds, p = .11, d = 1/20

and rate

R(nt,d) = R(d)(1+ 0).

Therefore, there exists a ¢t-local LDLSC with rate (1 + §)R(d) and average distortion

bounded by d for this source.
Proposition 3. For any source X with probability measure Px and any distortion measure,
and distortion level, d,

R(d) = inf{R : 3t and a sequence of t — LDLSC with rate R}.

This proposition states that, in order to achieve the rate (1 + 0) R(d), one need ¢ to be

roughly #@l)'

3.3 LDLSC for Excess Distortion

In rate distortion theory, we usually consider the expected distortion for the best code of

block length n and rate less than or equal to R, where R > 0 is some fixed number. Instead
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of this, we shall consider the probability of the event that the distortion exceeds a level
d > 0, if the best code of block length n and rate R is used. We still wish for the decoder

to be local. A formal definition is the following.

Definition 10. A (n, k,d, t, €)-LDLSC for excess distortion is a pair of encoder f : X" —
Y* and decoder g : Y* — X™ , where the decoder is t-local. The excess distortion is
bounded,

PLA(X", g(F(X™))) > d] < c.

Fix €, d and blocklength n. The minimum achievable code size and the finite block length

rate distortion function (excess distortion) are defined by, respectively

ki (n,d,t,€) = min{k : 3(n,k,d,t,€) — LDLSC for excess distortion}, (3.18)

N ki (n,d,t,€)

Rig(n,d,te) & 22227 (3.19)
n
Also, we define
Rig(d,t,€) = limsup Riy(n,d,t,€), Ri(dt) = lim Rig(d,t, ). (3.20)
n—00 €~

If we denote the rate of lossy source coding without the local constraint of the decoder
by R(d), then it is known that ([4]), for any X with probability measure Py, the character-
ization of the rate is as

A

R(d) = min  I1(X; X). (3.21)

Py x ¢ Eld(X,X)]<d

This means that, for any rate R > minIP>X L+ E[d(X,X)]<d I(X; X ), the error goes to zero. The

|
error exponent is given by the following thorem.

Theorem 15 ([14]). For source with distribution Px and a distortion level d, we have:
for any €, 3 K, such that for any n > 0 there exists encoding-decoding pair f, and g, such
that

Pld(g,(fn(X™)), X™) > d] < K2 "FalR)=), (3.22)
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where,

Fy(R) = min{D(Q||P) : R(Q.d) > R}.

We use this theorem to design locally decodable codes for excess distortion. Consider a

source sequence of length n. Divide the sequence into sequences of length ¢(n). Therefore,

we have # blocks of length #(n). Consider the corresponding encoder-decoder pair to

each block of length ¢(n), obtained from Theorem 15. Form an encoder-decoder pair for

the whole sequence by concatenating these encoder-decoder pairs. Using the union bound,

we obtain

n
t

Pld(g(f(X™), X™) > d] < Plu/_ {d(g(f(X!

| W
) XD ) > dY] < 2R

(j—-1)t+1 t(n)

We need t(n) to be such that

Therefore, if

then the error goes to zero. We have the following result.

Proposition 4. Let X be a Bern(p) source and f : X" — {0,1}* and g : {0,1}7 X" be
encoder and t(n)—local decoder. For any R > R(d), there exists a constant C' and ng
such that for n > ng there exists a (n,nR,Clogn,d,e)— LDLSC for excess distortion.

Moreover, for any t(n) € w(logn), we have

R(D) = inf{R : 3 LDLSC for excess distortion with rate R and locality t(n)}.

This theorem states that, with a very small number of queries, w(log n), relative to n,

we can achieve any rate above the rate distortion.
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3.4 Fixed to Variable Length Local Encoding-Decoding

In this section, we study fixed to variable length source coding, where a sequence of source
symbols is mapped to a sequence of bits. We assume that the overall encoder-decoder is lo-
cal . The definition that follows is motivated by the work [17]. For the sake of convenience
we call this setting local encoding-decoding.

A source code operate as follows. The encoder takes the source sequence X, Xs, ... and
produces a sequence of bits W, where I/ is a function of X{'. The decoder takes W and
produces reproductions X1, X, ... of X1, Xo, ... with symbols in a set X called the repro-
duction alphabet. Note that X, is a function of W. In general, a source code is a system
that takes the source symbols {X;}7_, and produces {X;}™_,. Therefore, a source code can
be characterized by a family of functions {g;}?; called reproduction functions such that

the ™ reproduction symbol, X, is
Xk:gk(X?), k’Zl,Q,...,
where fj maps A7 to X.

Definition 11. A source code {gi.}}_, is t — local if, for any k, there exists a subset Sy, of

indices {1,2, ...,n} such that
gr(xh) = gr(a")), if x; =, forany i€ Sy,
and |Sy| < t.

Figure 3-4 illustrate the relation between the source, encoded sequence of bits and
reproduced symbols via a bipartite graph.

Assume a separable distortion function between elements of X' and X, d(z™ z") =
LS 1 d(z;#;). When a source code with source code functions { f; } is applied to a source

{X}}, the average distortion is defined as

d({gi}ioy) £ Eld(X", X")). (3.23)
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Another measure of the performance of a source code is the rate of code. Let |I¥| denote

the length of W. Therefore, the number of bits for reproducing 21, ..., Z, is
Ly(a}) £ Jw(a7)|
The average rate of a source code is defined as
n A 1 n
r({geti=r) = E[La(X")]. (3.24)

Clearly, there is a tradeoff between average distortion and average rate of a source code.

We aim to formulate this tradeoff.

Definition 12. Assume an i.i.d source with the probability measure Px. A (r, D,n,t)jcq—
source coding is a pair of encoder-decoder with t—local reproduction functions {g;}!,

such that the average rate is r, and the average distortion is D. Moreover,

riq(D,n,t) = min{r such that 3(r, D,n,t),q — source code}.

(D, t)ea £ limsup rha(D,n,t), (3.25)

n—oo

where the subscript, led, stands for local encoder-decoder.

We may now characterize the average rate for a given source, distortion level (D), and
locality (%).

Note that, based on our definition, the average distortion and locality are properties of the

source: K & ® - N
decoded: ’% /Xi/\ 0 %&\

deg < 't deg <t

Figure 3-4: Local Encoder-Decoder
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reproduction coder functions, {gx}. Although the average rate is not defined explicitly by
the reproduction coder functions, we show the following theorem, that characterizes the

average rate in terms of reproduction functions.

Theorem 16. For a given source, X, with probability measure Px and for a given t and

distortion level D, we have

1 A
r(D,t)eq = limsu inf —H(X7 3.26
( )l d n_mop {gr} t—local M ( 1) ( )
d({grx})<D

Proof: We first prove the converse. For any given (r, D, n, t);.q-source code, X" is
fully represented by a sequence of bits denoted by WW. Using, the main result of [1], we
obtain

r(n,D,t) > (H(X”) —log (H(X”) + 1) —log e>

SRS

Since this holds for any source code, taking the infimum of both sides, we obtain

1 . .
T;ed<n7 D7 t) > inf - <H(Xn) - log <H(Xn) + 1) — log 6) .
{gr} t—local N
d({gx})<D

Taking limit of both sides, we obtain

Tea(D,t) > limsup  inf 1 (H(X”) — log (H(X”) + 1) — log e)

n—oo 19k} t—local T

d({gr})<D
1 . 1 .
> lim su inf —H(X?)—limsu inf —(log(H(X?)+1
- n—>oop {gr} t—local T ( 1) n—>oop {gx} t—local n( g( ( ! ) ))
d{gr})<D d({gx})<D

15 log(nlog|X| + 1
>limsup  inf —H(X") — limsup og(nlog|X| +1)
n—oo {9k} t—local M 00 n
d({gs})<D

1 .
= limsu inf ZH(X™M. 397
n—>oop {gr} t—local N ( 1 ) ( )
d({gx <D

To show the achievabilty, consider a t—local mapping with the output X™. There exists

an encoding-decoding of the random variable X" with the average number of bits, not
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greater than H (X ™) ([1]). Denote this encoding and decoding by en and de, respectively.
Now, construct the following (7, D, n, t);.q—source code: the encoder is en(g(z")) and the

decoder the same as de. For this source code, we have r(D,n,t) < +H (X™). Therefore,

1 N
f(D,nt) < inf  —H(XT
7’led( ) T, )— {gk}utlflocal n ( 1)

d({gx})<D

Taking the limit as n goes to co we obtain

1 A
Ted(D,t) <limsup inf —H(X7)+e O (3.28)
n—oo 19k} t—local 1
d({gr})<D

We now analyze the rate of a local source coding by analyzing

1 -
li inf —H(X7).
I W )
d({geH)<D

Note that this quantity is only a function of the reproduction coders and does not depend
on the encoder that maps the source symbols to bits and the decoder that maps it back to

reproduction symbols.

Example 4. Let X be a uniform random variable on X = {1,2,3,4}. Also let D = %, and
t =1, and d(x,z) = 1{z # x}. We find r(D,t) for this source. First, note that there are

only four types of encoder for this source.

1. )
1, fX=1
1, ifX =2,
W = /
L, ifX =3,
L, if X =4,

\

in this case H(X) = 0 and E[d(X, X)] = g
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(
1 X =1
1, ifX =2,
W = /
L ifX =3,
| 4 X =4
in this case H(X) = h(}) and E[d(X, X)] = L.
3.
(
1 X =1
1, ifX =2,
W = /
3, ifX =3,
| 4 X =4
in this case H(X) = H($,1.%) and E[d(X,X)] = 5
4. )
1 X =1
2, ifX =2,
W = < /
3, fX =3,
4, fX =4,

\

~

in this case H(X) = H(3,%,1, 1) and E[d(X,X)] = 0.

Now let «; fraction of the encoders be of the form i (1 < 1 < 4). Then we have
Sn on 3 2 1
Eld(X", X")] = a1 () + aa() + as() + 2a(0),

and

H(X™) = a1(0) + ag(h(i)) + Olg(g log 2) 4+ ay(21log 2).
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Solving the following linear programming

1 3
min Oég(h(z)) + a3(§ log 2) + ay(2log 2)

3 2 1 1
S.1. C‘él(zl) + 062(1) + 043(1) < 5
a1+ o+ a3+ oag = 1, (329)

1

we obtain oy = % and oy = 3, meaning that

2
Tled(Da t) = 5 lOg 2.
Now consider the following quantity

1 A
RD,)2 inf ~H(XY.
{gk}z‘:l
d({gx})<D

For any given D, this quantity gives a corresponding rate. Therefore, we obtain pairs of
(D, R). Consider the pair (0,2log2) and (2,0). With a time sharing between these two

points we get the point %(0, 2log2) + %(%, 0) which is the optimal point we got before.
In the following, we generalize this idea to a general setting.

Definition 13. For a given source, distortion measure, and locality t consider the set of all

points (D, R) such that

1 N
S(D,R) ={(D, R) such that R = { 1?tf —H(X})}.
9k S k=1
d{g =D

Define R(D,t) to be the inner convex hull of the points in S(D, R).
The following proposition characterizes 7;.4(D, t) in terms of R(D, ).

Proposition 5. For any source, distortion measure, locality t, and distortion level D, we

have

’f’led(D,t) S E(D,t) (330)
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Proof: Consider a point on R(D,t), generated by two points (R, D;) and (R, Ds)
such that D = AD; + (1 = A)Dy and R = ARy + (1 — A)Ry for some 0 < A < 1. Also
let f; and f> be the corresponding reproduction functions of these points. Now consider
an encoding-decoding scheme for X" obtained by dividing X™ into n/t blocks of length
t and then applying f; to a A fraction of these blocks and f; to the rest of them. By
this construction, we get a t—local decoder with rate R = AR; + AR, and distortion
D = AD; + AD,. Hence, the best rate of t—local decoder for this source is below the
achieved rate. Therefore,

Tled(Da t) S B(D7 t)

This concludes the proof. U
We conjecture that R(D, ) is also a lower bound on 7,¢4(D, t), meaning that R(D,t) =
rea(D,t). Note that, this conjecture is closely related to Conjecture ??. The connection
is motivated by a class of transformations terms as information preserving transformations

which is defined next. We shall discuss the connection in the next section.

3.5 Information Preserving Transformations

In this section, we introduce a class of information preserving transformations and claim
that local transformation are within this class. This class of transformations are quite useful.
In particular, this may help us to obtain insight about the conjecture given in Section 3.1.5.
Consider two random variables X and Y, where X € X and Y € ). Also, let X* and
Y* be k—fold cartesian products of X and Y, respectively. Let Y* and X* be measurable
spaces with measure probabilities Py« and Py, respectively. Let f : Y* — X* be a
transformation between these two spaces. We know that, under transformation, entropy is
non-increasing i.e.

H(Y") > H(X").

We are interested in to know the conditions under which the entropy does not decay much.

We formulate the problem formally in the following.
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Definition 14. A triple (Pxx, Py, f) is called information preserving if
H(Y*") < H(X*) 4 o(k). (3.31)

We now study the information preserving transformations. Mainly, we propose a class
of local transformations and claim that, with some assumptions on the measure Px, they

are information preserving.

Definition 15. A transformation f : Y* — X* is t—local if forany 1 < i < k, X, is a

function of only t of the components of Y'*.
First, we illustrate by an example the reasoning for the assumptions we shall have.

Example 5. In this example we illustrate that only being local is not sufficient for a trans-
formation to be information preserving. We also need some assumptions on the resulting
probability distribution on X*. Let X; = Y] forall 1 <i < k, then H(X") = H(Y}) <<
H(Y").

Therefore, we assume that the resulting distribution of X* is very close to i.i.d in the

following sense.

Definition 16. A probability measure, Pxn, on X" is called e-i.i.d. if || Pxn — Ixn|| < €,
where ||.|| denotes the total variation distance between two measures and Ixn is some i.i.d

measure on X".
Note that these assumptions are not sufficient as illustrated in the next example.

Example 6. Let X =) = {0, 1,2,3} and X* i.i.d with distribution Px = (1/2,1/2,0,0).
Also let Y; be defined as the following

0, ifXy1=Xy=0
L, ifXo1=1,X9=0
2, ifXp1=0Xy=1
3, if Xoi1=Xo =1,
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Y2 is then distributed i.i.d according to Py = (1/4,1/4,1/4,1/4). Let Y's for Fr1<
i < k be distributed i.i.d with the same probability measure. X" is obtained by a local
mapping of Y3, where t = 1. We have H(X*) = klog2and H(Y*) = klog4, therefore,
we have H(X") << H(Y'%).

The issue of this example is that, Py is degenerate. In general, even if the distributions
are not degenerate, the sets X and ) play an important role in this definition of information
preserving transformation. For instance, if we assume that || is much larger than |X|,
then we can always construct an example similar to Example 6. Consider the following

example.

Example 7. Let X be some non-degenerate random variable on X. Let ) = X X X X
X. Now we have a local transformation from Y* to X*, where H(X*) = kH(X) and
H(Y®) = 3kH(X) >> H(X").

Therefore, we must assume that X and ) have the same cardinality and both random
variables X and Y are non-degenerate. We have the following conjecture on information
preserving mappings:

Let |X| = |Y|. For small enough ¢, if Py« is e-i.i.d. and f is a t— local map, then
(Pxx, Pyx, f) is an information preserving mapping.

Assuming this conjecture is true, one can work out to prove the conjecture given in Section
3.1.5 on the rate of LDSC with fixed number of queries. Moreover, the conjecture of the

previous section is the the analogy of this conjecture for lossy setting.

3.6 Storage on Memories with Access Cost

In this section, we study a problem of storing source sequence on two memories of different
types as defined in the following. We have two different types of memories. One is the
original memory where the bits are stored, denoted by M, and the other one is a cache
memory, denoted by M.. We Also know that the cost of querying one bit from M, is
higher than the cost of querying from M, (cache memory is faster). Moreover, the cost

of occupying M, is less than the cost of occupying M. (cache memory is rare). The goal
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is to find the trade-off between cost of occupying the memories and cost of querying the
memories in the reconstruction of the source.

Let f : X™ +— {0, 1}* be the encoder. The decoder is a set of n functions g; : {0, 1}* x
X" — {0, 1}, where g; denotes the ith coordinate of g. Assume the cost of querying the
original memory is C, and the cost of querying cache memory is C.. We wish to have a
bounded recovery error P[X™ # X"| < e. This setting is called a (n, k, C, €)-cost code,
where the average cost of querying is bounded by a given C. In other words, if ¢; and
t; denotes the number of queries g; asks from {0, 1}* and X", respectively. The cost of
g; is then C,t; + C.t; and the cost of the whole decoder is Z?zl C,t; + C.t;. Note that
if we wanted to ask some queries from X" to recover X;, the we only need one query.
Therefore, we either have {; = 1 and ¢, = O or {; = 0 and t; > 1. We seek to reduce the
cache usage under the assumption that in the storage system, cost of using cache memory
is much higher that non-cache memory. The following is the formal definition of the code

rate for this problem.

Definition 17. Ler k*

cost

(n,e,C) £ min{k such that 3(n, k,C¢€) cost code},
and

k*
Rcost(n, €, C) = M.

n

Also, define the rate as
Rcost<0) = 11_13(% Rcost(€7 C>7

where

Reost(€,C) = limsup Reost(n, €, C).

n—oo

First, note that in the case where the cost of reading from original memory is C, and
the cost of reading from cache memory is C. = 0, the rate is R..s:(C) = (1 — C%)h(p)
We now consider the case where the cost of reading from cache memory is not zero. In this
case we can normalize all the costs and assume the cost of reading from cache memory is

1 and the cost of reading from original memory is C,,.

Proposition 6. For any 0 < X\ < 1, we have the following relationship between a cost code
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and ALDSC:
k*

cost

(n, e, \Cy + At) < kX (An, €, t).

Proof: Let (An, k,€,t) be an ALDSC with encoder f and decoder g. Assume ¢’ is the
same as g for X;, where 1 < ¢ < An and is identical for A\n < ¢ < n. Form a cost code

with encoder f and defined decoder ¢’. We have

An
1.
-nC, t: <\ At
nnC’—i— E C,+

and also the average of error is still bounded by e. Thus, we find a (n, k, \C,, + \t, €)— cost

code. Therefore,

{k|3(Mn, k, e t)-ALDSC} C { k | I(n, k, \C, + M, €)-cost code} (3.32)

= kcost (TL, €, S‘Co + )\t) < k:ld()‘nv €, t)

Corollary 7. For any 0 < X\ < 1, we have R (ACy + tA) < ARya(t).
Proof: Using Proposition 6, we obtain

k*

cost

(n, 6, \Cy + t)) )\kald(/\n €,t)

n An

Reost (6, ACy +1tA) < ARyql(e, t)

Reost(ACy +1tN) < ARua(t).

Proposition 7. There exists 0 < A\ < 1 for which

k;ld <)‘n7 € w) < k; (n7 €, C)

cost

Proof: Consider a (n, k, €, C')-cost code. Assume A fraction of bits are recovered from
memory and the rest of them are recovered from cache memory. Without loss of generality,
assume the first \ fraction are recovered directly from the memory and the rest of the bits

are recovered by ¢; queries ((1 — \)

Thus, we can extract a ((1 — A\)n, k, €, AC)") ALDSC. An argument 51m11ar to the proof
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of Proposition 6 completes the proof.
Corollary 8. There exists 0 < X\ < 1 for which

C — )G,

S\Ram(m

) S Rcast<c) .

Moreover, because of the cost constraint we have
AC, + (1 =N)C. < C.

Proof: The proof follows directly form Proposition 7.

Theorem 17. Using linear encoder, If C, > 0, then R, (C) = £=%

Proof: Using Corollary 8 and the fact that the rate of Average LDSC under linear

encoder is 1, we have R, (C) > (1 — A) such that (1 — A)Rald(%) < Reost(C).

Solving this minimization problem to find the smallest (1—\), we obtain R, (C) = g __CC"O
which concludes the proof. [

Assume a storage problem with two types of memories when one of the memories is a
cache memory and the other one is a regular memory. The result of this section shows that,
the optimal policy to reduce the cost of recovery is to store as much bits as the budget, C,
allows on the cache memory without encoding, and then store the rest of bits in the non-

cache memory. Therefore, designing any encoder-decoder function for this problem does

not give a better result than the naive way of storing the bits without coding.
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Chapter 4

Conclusions and future works

We have formulated and studied the problem of source coding with some constraints on
the encoder-decoder. Based on the results in the literature, when the encoder is local, there
exist codes that achieve fundamental entropy rate with and without linear encoders. Also,
the results in the literature characterize the tradeoff between locality of encoder and the rate
of a lossy source coding. The focus of this work is on the source coding with local decoder.

The following summarizes the main results we showed in this work:
e Almost lossless source coding:

— Constant locality: It is shown that the rate of source coding with linear en-
coder/decoder is one, meaning that no compression is possible. Also for small

locality (¢ = 2), the rate of any encoder-decoder is one.
— Scaling locality: Any given rate above the Shannon fundamental entropy rate is
achievable with logarithmic locality in the block-length.

e Lossy source coding:

— Constant locality: Any given rate above the Shannon fundamental rate distor-
tion is achievable with constant locality which is a growing function of the

distance of the given rate to rate distortion.

— Scaling locality: Any given rate above the Shannon fundamental rate distortion

is achievable with any scaling locality (lim, .., t(n) = oo) and the rate of
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convergence is upper bounded as in Theorem 13. Moreover, for lossy source
coding with excess distortion, logarithmic locality suffices to achieve any rate

above the rate distortion.

We also studied fixed to variable length local encoder-decoder. One application of the re-
sults is given in the context of data storage management.

There are connections between locally decodable codes and finitary codes [10] that re-
quires exploration. The locally decodable source coding applied to non i.i.d sources such
as Markov sources is another future topic to be studied.

There are several interesting unsolved problems about local codes.

e We proved converse bound on the rate of LDSC with fixed number of queries. We
established this converse for the following cases: linear encoder, linear decoder, and
general encoder-decoder with locality ¢ = 2. We conjectured that for any general

encoder-decoder and any ¢, the converse bound holds .

e We introduced the class of information preserving mappings. We then, conjectured
that local mappings are in this class. Proving this conjecture holds, shows that the

previous conjecture also holds.

e We introduced fixed to variable local encoding-decoding. We formulated the rate
of this source code, which is given in Theorem 16. We conjectured that, asymptot-
ically the best t—local source code is given by combining two source codes which
are designed for source sequences of length ¢. This conjecture establishes a con-
verse bound on the rate of fixed to variable local coding. The achievability bound is
given in Proposition 5. Note that these two bounds are equal, implying that we can

characterize the rate of the code.
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