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Upper bound on list-decoding radius of binary codes
Yury Polyanskiy

Abstract—Consider the problem of packing Hamming balls of
a given relative radius subject to the constraint that they cover
any point of the ambient Hamming space with multiplicity at
most L. For odd L ≥ 3 an asymptotic upper bound on the rate
of any such packing is proven. The resulting bound improves
the best known bound (due to Blinovsky’1986) for rates below a
certain threshold. The method is a superposition of the linear-
programming idea of Ashikhmin, Barg and Litsyn (that was used
previously to improve the estimates of Blinovsky for L = 2) and
a Ramsey-theoretic technique of Blinovsky. As an application it
is shown that for all odd L the slope of the rate-radius tradeoff
is zero at zero rate.

Index Terms—Combinatorial coding theory, list-decoding, con-
verse bounds

I. MAIN RESULT AND DISCUSSION

One of the most well-studied problems in information

theory asks to find the maximal rate at which codewords can

be packed in binary space with a given minimum distance

between codewords. Operationally, this (still unknown) rate

gives the capacity of the binary input-output channel subject

to adversarial noise of a given level. A natural generalization

was considered by Elias and Wozencraft [1], [2], who allowed

the decoder to output a list of size L. In this paper we provide

improved upper bounds on the latter question.

Our interest in bounding the asymptotic tradeoff for the list-

decoding problem is motivated by our study of fundamental

limits of joint source-channel communication [3]. Namely,

in [4, Theorem 6] we proposed an extension of the previous

result in [3, Theorem 7] that required bounding rate for the

list-decoding problem.

We proceed to formal definitions and brief overview of

known results. For a binary code C ⊂ F
n
2 we define its list-size

L decoding radius as

τL(C)
△
=

1

n
max{r : ∀x ∈ F

n
2 |C ∩ {x+ Bn

r }| ≤ L} ,

where Hamming ball Bn
r and Hamming sphere Sn

r are defined

as

Bn
r

△
= {x ∈ F

n
2 : |x| ≤ r} , (1)

Sn
r

△
= {x ∈ F

n
2 : |x| = r} (2)

with |x| = |{i : xi = 1}| denoting the Hamming weight of x.

Alternatively, we may define τL as follows:1

τL(C) =
1

n

(

min

{

rad(S) : S ∈

(
C

L+ 1

)}

− 1

)

,
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(C
j

)

denotes the set of all subsets of C of size j.

where rad(S) denotes radius of the smallest ball containing

S (known as Chebyshev radius):

rad(S)
△
= min

y∈F
n

2

max
x∈S

|y − x| .

The asymptotic tradeoff between rate and list-decoding

radius τL is defined as usual:

τ∗L(R)
△
= lim sup

n→∞
max

C:|C|≥2nR

τL(C) (3)

R∗
L(τ)

△
= lim sup

n→∞
max

C:τL(C)≥τ

1

n
log |C| (4)

The best known upper (converse) bounds on this tradeoff

are as follows:

• List size L = 1: The best bound to date was found by

McEliece, Rodemich, Rumsey and Welch [5]:

R∗
1(τ) ≤ RLP2(2τ) , (5)

RLP2(δ)
△
= min log 2− h(α) + h(β) , (6)

where h(x) = −x log x−(1−x) log(1−x) and minimum

is taken over all 0 ≤ β ≤ α ≤ 1/2 satisfying

2
α(1− α)− β(1− β)

1 + 2
√

β(1 − β)
≤ δ

For rates R < 0.305 this bound coincides with the

simpler bound:

τ∗1 (R) ≤
1

2
δLP1(R) , (7)

δLP1(R)
△
=

1

2
−
√

β(1 − β) , R = log 2− h(β) , (8)

where β ∈ [0, 1
2 ].

• List size L = 2: The bound found by Ashikhmin, Barg

and Litsyn [6] is given as2

R∗
2(τ) ≤ log 2− h(2τ) +Rup(2τ, 2τ) ,

where Rup(δ, α) is the best known upper bound on rate

of codes with minimal distance δn constrained to live

on Hamming spheres Sn
αn. The expression for Rup(δ, α)

can be obtained by using the linear programming bound

from [5] and applying Levenshtein’s monotonicity, cf. [7,

Lemma 4.2(6)]. The resulting expression is

R∗
2(τ) ≤

{

RLP2(2τ) , τ ≤ τ0

log 2− h(2τ) + h(u(τ)), τ > τ0 ,
(9)

where τ0 ≈ 0.1093 and

u(τ) =
1

2
−

√

1

4
− (

√

τ − 3τ2 − τ)2

2This result follows from optimizing [6, Theorem 4]. It is slightly stronger
than what is given in [6, Corollary 5].
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(cf. [7, (9)]).

• For list sizes L ≥ 3: The original bound of Blinovsky [8]

appears to be the best (before this work):

τ∗L(R) ≤

⌈L/2⌉
∑

i=1

(
2i−2
i−1

)

i
(λ(1 − λ))i , R = 1− h(λ) ,

(10)

where λ ∈ [0, 12 ]. Note that [8] also gives a non-

constructive lower bound on τ∗L(R). Results on list-

decoding over non-binary alphabets are also known,

see [9], [10].

In this paper we improve the bound of Blinovsky for lists

of odd size and rates below a certain threshold. To that end

we will mix the ideas of Ashikhmin, Barg and Litsyn (namely,

extraction of a large spectrum component from the code) and

those of Blinovsky (namely, a Ramsey-theoretic reduction to

study of symmetric subcodes).

To present our main result, we need to define exponent of

Krawtchouk polynomial Kβn(ξn) = exp{nEβ(ξ) + o(n)}.

For ξ ∈ [0, 12 −
√

β(1 − β)] the value of Eβ(ξ) was found

in [11]. Here we give it in the following parametric form,

cf. [12] or [13, Lemma 4]:

Eβ(ξ) = ξ log(1− ω) + (1 − ξ) log(1 + ω)− β logω (11)

ξ =
1

2
(1− (1 − β)ω − βω−1) , (12)

where

ω ∈

[

β

1− β
,

√

β

1− β

]

.

Our main result is the following:

Theorem 1. Fix list size L ≥ 2, rate R and an arbitrary

β ∈ [0, 1/2] with h(β) ≤ R. Then any sequence of codes

Cn ⊂ {0, 1}n of rate R satisfies

lim sup
n→∞

τL(Cn) ≤

max
j,ξ0

ξ0gj

(

1−
ξ1
2ξ0

)

+ (1− ξ0)gj

(
ξ1

2(1− ξ0)

)

, (13)

where maximization is over ξ0 satisfying

0 ≤ ξ0 ≤
1

2
−
√

β(1 − β) (14)

and j ranging over {0, 1, 3, . . . , 2k + 1, . . . , L} if L is odd

and over {0, 2, . . . , 2k, . . . L} if L is even. Quantity ξ1 =
ξ1(ξ0, δ, R) is a unique solution of

R+ h(β)− 2Eβ(ξ0) =

h(ξ0)− ξ0h

(
ξ1
2ξ0

)

− (1− ξ0)h

(
ξ1

2(1− ξ0)

)

, (15)

on the interval [0, 2ξ0(1−ξ0)] and functions gj(ν) are defined

as

gj(ν)
△
=

1

L+ j

(
Lν − E [|2W − L− j|+]

)
,W ∼ Bino(L, ν)

(16)

As usual with bounds of this type, cf. [14], it appears that

taking h(β) = R can be done without loss. Under such choice,
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Fig. 1. Comparison of bounds on R∗
L(τ) for list size L = 3

TABLE I
RATES FOR WHICH NEW BOUND∗ IMPROVES STATE OF THE ART

List size L Range of rates

L = 3 0 < R ≤ 0.361
L = 5 0 < R ≤ 0.248
L = 7 0 < R ≤ 0.184
L = 9 0 < R ≤ 0.136
L = 11 0 < R ≤ 0.100

∗ This is computation of (13) with h(β) = R.

our bound outperforms Blinovsky’s for all odd L and all rates

small enough (see Corollary 3 below). The bound for L = 3 is

compared in Fig. 1 with the result of Blinovsky numerically.

For larger odd L the comparison is similar, but the range

of rates where our bound outperforms Blinovsky’s becomes

smaller, see Table I.

Evaluation of Theorem 1 is computationally possible, but

is somewhat tedious. Fortunately, for small L the maximum

over ξ0 and j is attained at ξ0 = 1
2 −

√

β(1 − β) and j = 1.

We rigorously prove this for L = 3:3

Corollary 2. For list-size L = 3 we have

τ∗L(R) ≤
3

4
δ −

1

16

(
(2δ − ξ1)

3

δ2
+

ξ31
(1− δ)2

)

, (17)

where δ ∈ (0, 1/2] and ξ1 ∈ [0, 2δ(1− δ)] are functions of R
determined from

R = h

(
1

2
−
√

δ(1− δ)

)

, (18)

R = log 2− δh

(
ξ1
2δ

)

− (1− δ)h

(
ξ1

2(1− δ)

)

(19)

Another interesting implication of Theorem 1 is that it

allows us to settle the question of slope of the curve R∗
L(τ) at

zero rate. Notice that Blinovsky’s converse bound (10) has a

negative slope, while his achievability bound has a zero slope.

Our bound always has a zero slope for odd L (but not for even

L, see Remark 2 in Section II-C):

3Notice that proofs of each of the two Corollaries below contain different
relaxations of the bound (13), e.g. (22), which are easier to evaluate. Notice
also that in Table I for the last two entries (L = 9, 11) at the high endpoint

of rate the maximum over ξ0 is attained not at 1

2
−

√

β(1 − β).
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Corollary 3. Fix arbitrary odd L ≥ 3. There exists R0 =
R0(L) > 0 such that for all rates R < R0 we have

τ∗L(R) ≤ g1(δLP1(R)) , (20)

where g1(·) is a degree-L polynomial defined in (16). In

particular,

d

dτ

∣
∣
∣
∣
τ=τ∗

L
(0)

R∗
L(τ) = 0 , (21)

where the zero-rate radius is τ∗L(0) =
1
2 − 2−L−1

(
L

L−1

2

)
.

Before closing our discussion we make some additional

remarks:

1) The bound in Theorem 1 can be slightly improved by

replacing δLP1(R), that appears in the right-hand side

of (14), with a better bound, a so-called second linear-

programming bound δLP2(R) from [5]. This would

enforce the usage of the more advanced estimate of

Litsyn [15, Theorem 5] and complicate analysis sig-

nificantly. Notice that δLP2(R) 6= δLP1(R) only for

rates R ≥ 0.305. If we focus attention only on rates

where new bound is better than Blinovsky’s, such a

strengthening only affects the case of L = 3 and results

in a rather minuscule improvement (for example, for rate

R = 0.33 the improvement is ≈ 3 · 10−5).

2) For even L it appears that h(β) = R is no longer

optimal. However, the resulting bound does not appear

to improve upon Blinovsky’s.

3) When L is large (e.g. 35) the maximum in (13) is not

always attained by either j = 1 or ξ0 = δLP1(R).
It is not clear whether such anomalies only happen

in the region of rates where our bound is inferior to

Blinovsky’s.

4) The result of Corollary 3 follows by weakening (13) (via

concavity of gj , Lemma 8) to

lim sup
n→∞

τL(Cn) ≤ max
j,ξ0

gj (ξ0) = max
j

gj(δLP1(R)) .

(22)

The R < R0(L) condition is only used to show that

the maximum is attained at j = 1. Note also that

weakening (22) corresponds to omitting the extra Elias-

Bassalygo type reduction, which is responsible for the

extra optimization over ξ1 in (13).

Finally, at the invitation of anonymous reviewer we give

our intuition about why our bound outperforms Blinovsky’s

for odd L. It is easiest to compare with the weakening (22)

of our bound. Now compare the two proofs:

1) Blinovsky [8] first uses Elias-Bassalygo reduction to

restrict attention to a subcode C′ situated on a Hamming

sphere of radius ≈ δGV (R) = h−1(1 − R). Then he

proves an upper bound for τL(C
′) valid as long as

|C′| ≫ 1 via a Plotkin-type argument together with a

great symmetrization idea.

2) Our bound (following Ashikhmin, Barg and Litsyn [6])

instead uses a Kalai-Linial [11] reduction to select a

subcode C′′ situated on a Hamming sphere of radius

≈ δLP1(R). We then proceeded to prove a (Plotkin-

type) upper bound on a strange quantity:

τoL(C
′′) =

1

n

(

min

{

rad({0} ∪ S) : S ∈

(
C

L

)}

− 1

)

,

which corresponds to a requirement that the code contain

not more than L−1 codewords in any ball of radius τoL,

but only for those balls that happen to also contain the

origin.

Notice that the sphere returned by Kalai-Linial is bigger

than that of Elias-Bassalygo (which is the reason our bound

deteriorates at large rates), but the good thing is that the

subcode C′′ has another codeword c0 at the center of the

Hamming sphere. Now, intuitively τoL is roughly equivalent

to τL−1. The zero-rate (Plotkin) radius for a list-L decoding

of binary codes on Hamming sphere Sn
ξn is given by

pL(ξ) =
E [min(Wξ, L+ 1−Wξ)]

L+ 1
,Wξ ∼ Bino(L+ 1, ξ) .

So intuitively, we expect that Blinovsky’s bound should give

τ∗L(R) . pL(δGV (R))

while our bound should give

τ∗L(R) . pL−1(δLP1(R)) .

Finally, it is easy to check that for even L we have pL = pL−1,

while for odd L, pL > pL−1. This is the main intuitive reason

why our bound succeeds in improving Blinovsky’s, but only

for odd L.

II. PROOFS

A. Proof of Theorem 1

Consider an arbitrary sequence of codes Cn of rate R. As

in [6] we start by using Delsarte’s linear programming to select

a large component of the distance distribution of the code.

Namely, we apply result of Kalai and Linial [11, Proposition

3.2]: For every β with h(β) ≤ R there exists a sequence

ǫn → 0 such that for every code C of rate R there is a ξ0
satisfying (14) such that

Aξ0n(C)
△
=

1

|C|

∑

x,x′∈C

1{|x− x′| = ξ0n}

≥ exp{n(R+ h(β)− 2Eβ(ξ0) + ǫn)} . (23)

Without loss of generality (by compactness of the interval

[0, 1/2−
√

β(1− β)] and passing to a proper subsequence of

codes Cnk
) we may assume that ξ0 selected in (23) is the same

for all blocklengths n. Then there is a sequence of subcodes

C′
n of asymptotic rate

R′ ≥ R+ h(β)− 2Eβ(ξ0)

such that each C′
n is situated on a sphere c0+Sξ0 surrounding

another codeword c0 ∈ C. Our key geometric result is: If there

are too many codewords on a sphere c0+Sξ0 then it is possible

to find L of them that are includable in a small ball that also

contains c0. Precisely, we have:
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Lemma 4. Fix ξ0 ∈ (0, 1) and positive integer L. There exist

a sequence ǫn → 0 such that for any code C′
n ⊂ Sξ0n of rate

R′ > 0 there exist L codewords c1, . . . , cL ∈ C′
n such that

1

n
rad(0, c1, . . . , cL) ≤ θ(ξ0, R

′, L) + ǫn , (24)

where

θ(ξ0, R
′, L)

△
= max

j
θj(ξ0, R

′, L) (25)

θj(ξ0, R
′, L)

△
= ξ0gj

(

1−
ξ1
2ξ0

)

+ (1 − ξ0)gj

(
ξ1

2(1− ξ0)

)

,

(26)

with ξ1 = ξ1(ξ0) found as unique solution on interval

[0, 2ξ0(1− ξ0)] of

R′ = h(ξ0)− ξ0h

(
ξ1
2ξ0

)

− (1 − ξ0)h

(
ξ1

2(1− ξ0)

)

, (27)

functions gj are defined in (16) and j in maximization (25)

ranging over the same set as in Theorem 1.

Equipped with Lemma 4 we immediately conclude that

lim sup
n→∞

τL(Cn) ≤ max
ξ0∈[0,δ]

θ(ξ0, R+h(β)−2Eβ(ξ0), L) . (28)

Clearly, (28) coincides with (13). So it suffices to prove

Lemma 4.

B. Proof of Lemma 4

Let TL be the (2L − 1)-dimensional space of probability

distributions on F
L
2 . If T ∈ TL then we have

T = (tv, v ∈ F
L
2 ) tv ≥ 0,

∑

v

tv = 1 .

We define distance on TL to be the L∞ one:

‖T − T ′‖
△
= max

v∈F
L

2

|tv − t′v| .

Permutation group SL acts naturally on F
L
2 and this action

descends to probability distributions TL. We will say that T
is symmetric if

T = σ(T ) ⇐⇒ tv = tσ(v) ∀v ∈ F
L
2

for any permutation σ : [L] → [L]. Note that symmetric T is

completely specified by L+1 numbers (weights of Hamming

spheres in F
L
2 ):

∑

v:|v|=j

tv , j = 0, . . . , L .

Next, fix some total ordering of F
n
2 (for example, lexico-

graphic). Given a subset S ⊂ F
n
2 we will say that S is given

in ordered form if S = {x1, . . . , x|S|} and x1 < x2 · · · < x|S|

under the fixed ordering on F
n
2 . For any subset of codewords

S = {x1, . . . , xL} given in ordered form we define its joint

type T (S) as an element of TL with

tv
△
=

1

n
|{j : x1(j) = v1, . . . , xL(j) = vj}| ,

where here and below y(j) denotes the j-th coordinate of

binary vector y ∈ F
n
2 . In this way every subset S is associated

to an element of TL. Note that T (S) is symmetric if and

only if the L×n binary matrix representing S (by combining

row-vectors xj ) has the property that the number of columns

equal to [1, 0, . . . , 0]T is the same as the number of columns

[0, 1, . . . , 0]T etc. For any code C ⊂ F
n
2 we define its average

joint type:

T̄L(C) =
1

L! ·
(
|C|
L

)

∑

σ

∑

S∈(CL)

σ(T (S)) .

Evidently, T̄L(C) is symmetric.

Our proof crucially depends on a (slight extension of the)

brilliant idea of Blinovsky [8]:

Lemma 5. For every L ≥ 1, K ≥ L and δ > 0 there exist

a constant K1 = K1(L,K, δ) such that for all n ≥ 1 and all

codes C ⊂ F
n
2 of size |C| ≥ K1 there exists a subcode C′ ⊂ C

of size at least K such that for any S ∈
(
C′

L

)
we have

‖T (S)− T̄L(C
′)‖ ≤ δ . (29)

Remark 1. Note that if S′ ⊂ S then every element of T (S′) is

a sum of ≤ 2L elements of T (S). Hence, joint types T (S′) are

approximately symmetric also for smaller subsets |S′| < L.

Proof. We first will show that for any δ1 > 0 and sufficiently

large |C| we may select a subcode C′ so that the following

holds: For any pair of subsets S, S′ ⊂ C′ s.t. |S| = |S′| ≤ L
we have:

‖T (S)− T (S′)‖ ≤ δ1 (30)

Consider any code C1 ⊂ F
n
2 and define a hypergraph

with vertices indexed by elements of C and hyper-edges

corresponding to each of the subsets of size L. Now define

a δ1/2-net on the space TL and label each edge according to

the closest element of the δ1/2-net. By a theorem of Ramsey

there exists KL such that if |C1| ≥ KL then there is a subset

C′
1 ⊂ C such that |C′

1| ≥ K and each of the internal edges,

indexed by
(
C′

1

L

)
, is assigned the same label. Thus, by triangle

inequality (30) follows for all S, S′ ∈
(
C′

1

L

)
.

Next, apply the previous argument to show that there is a

constant KL−1 such that for any C2 ⊂ F
n
2 of size |C2| ≥ KL−1

there exists a subcode C′
2 of size |C′

2| ≥ KL satisfying (30) for

all S, S′ ∈
(

C′

2

L−1

)
. Since C′

2 satisfies the size assumption on C1
made in previous paragraph, we can select a further subcode

C′′
2 ⊂ C′

2 of size ≥ KL so that for C′′
2 property (30) holds for

all S, S′ of size L or L− 1.

Continuing similarly, we may select a subcode C′ of arbi-

trary C such that (30) holds for all |S| = |S′| ≤ L provided

that |C| ≥ K1.

Next, we show that (30) implies

‖T (S0)− σ(T (S0))‖ ≤ Cδ1 , (31)

where S0 ∈
(
C′

L

)
is arbitrary and C = C(L) is a constant

depending on L only.

Now to prove (31) let T (S0) = {tv, v ∈ F
L
2 } and consider

an arbitrary transposition σ : [L] → [L]. It will be clear that

our proof does not depend on what transposition is chosen, so
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for simplicity we take σ = {(L− 1) ↔ L}. We want to show

that (30) implies

|tv − tσ(v)| ≤ δ1 . ∀v ∈ F
L
2 (32)

Since transpositions generate permutation group SL, (31) then

follows. Notice that (32) is only informative for v whose last

two digits are not equal, say v = [v0, 0, 1]. Suppose that S0 =
{c1, . . . , cL} given in the ordered form. Let

S = {c1, . . . cL−1} , (33)

S′ = {c1, . . . , cL−2, cL} (34)

Joint types T (S) and T (S′) are expressible as functions of

T (S0) in particular, the number of occurrences of element

[v0, 0] in S is t[v0,0,1]+ t[v0,0,0] and in S′ is t[v0,0,0]+ t[v0,1,0].
Thus, from (30) we obtain:

|(t[v0,0,1] + t[v0,0,0])− (t[v0,0,0] + t[v0,1,0])| ≤ δ

implying (32) and thus (31).

Finally, we show that (31) implies (29). Indeed, consider

the chain

‖T (S)− T̄L(C
′)‖

=

∥
∥
∥
∥
∥
∥
∥

T (S)−
1

L! ·
(
|C′|
L

)

∑

σ

∑

S′∈(C
′

L)

σ(T (S′))

∥
∥
∥
∥
∥
∥
∥

(35)

≤
1

L! ·
(
|C′|
L

)

∑

σ

∑

S′∈(C
′

L)

‖T (S)− σ(T (S′))‖ (36)

≤
1

L! ·
(
|C′|
L

)

∑

σ

∑

S′∈(C
′

L)

‖T (S)− T (S′)‖

+ ‖T (S′)− σ(T (S′))‖ (37)

≤ (1 + C)δ1 , (38)

where (36) is by convexity of the norm, (37) is by triangle

inequality and (38) is by (30) and (31). Consequently, setting

δ1 = δ
1+C we have shown (29).

Before proceeding further we need to define the concept of

an average radius (or a moment of inertia):

rad(x1, . . . , xm)
△
= min

y

1

m

m∑

i=1

|xi − y| .

Note that the minimizing y can be computed via a per-

coordinate majority vote (with arbitrary tie-breaking for even

m). Consider now an arbitrary subset S = {c1, . . . , cL} and

define for each j ≥ 0 the following functions

hj(S)
△
=

1

n
rad(0, . . . , 0

︸ ︷︷ ︸

j times

, c1, . . . , cL) .

It is easy to find an expression for hj(S) in terms of the joint-

type of S:

hj(S) =
1

L+ j

(
E [W ]− E [|2W − L− j|+]

)
(39)

P[W = w] =
∑

v:|v|=w

tv , (40)

where tv are components of the joint-type T (S) = {tv, v ∈
F
L
2 }. To check (39) simply observe that if one arranges L

codewords of S in an L × n matrix and also adds j rows of

zeros, then computation of hj(S) can be done per-column:

each column of weight w contributes

min(w,L + j − w) = w − |2w − L− j|+

to the sum. In view of expression (39) we will abuse notation

and write

hj(T (S))
△
= hj(S) .

We now observe that for symmetric codes satisfying (29)

average-radii hj(S) in fact determine the regular radius:

Lemma 6. Consider an arbitrary code C satisfying conclu-

sion (29) of Lemma 5. Then for any subset S = {c1, . . . , cL} ⊂
C we have
∣
∣
∣
∣
rad(0, c1, . . . , cL)− n ·max

j
hj(T̄L(C))

∣
∣
∣
∣
≤ 2L(1 + δn) ,

(41)

where j in maximization (41) ranges over {0, 1, 3, . . . , 2k +
1, . . . , L} if L is odd and over {0, 2, . . . , 2k, . . . L} if L is

even.

Proof. For joint-types of size L and all j ≥ 0 we clearly have

(cf. expression (39))

|hj(T1)− hj(T2)| ≤ 2L−1‖T1 − T2‖ , ∀T1, T2 ∈ TL .
(42)

We also trivially have

1

n
rad(0, c1, . . . , cL) ≥ hj(S) ∀j ≥ 0 . (43)

Thus from (29) and (42) we already get

1

n
rad(0, c1, . . . , cL) ≥ max

j
hj(T̄L(C))− 2L−1δ .

It remains to show

1

n
rad(0, c1, . . . , cL) ≤ max

j
hj(T̄L(C)) + δ +

2L

n
. (44)

This evidently requires constructing a good center y for

the set {0, c1, . . . , cL}. To that end fix arbitrary numbers

q = (q0, . . . , qL) ∈ [0, 1]L. Next, for each v ∈ F
L
2 let Ev ⊂ [n]

be all coordinates on which restriction of {c1, . . . , cL} equals

v. On Ev put y to have a fraction q|v| of ones and remaining

set to zeros (rounding to integers arbitrarily). Proceed for all

v ∈ F
L
2 . Call resulting vector y(q) ∈ F

n
2 .

Denote for convenience c0 = 0. We clearly have

rad(c0, c1, . . . , cL) ≤ min
q

max
p

L∑

i=0

pi|ci − y(q)| , (45)

where p = (p0, . . . , pL) is a probability distribution.

Denote

T (S) = {tv, v ∈ F
L
2 } (46)

T̄L(C) = {t̄v, v ∈ F
L
2 } (47)
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We proceed to computing |ci − y(q)|.

|ci − y(q)| ≤ n
∑

v∈F
L

2

tv(q|v|1{v(i) = 0}

+ (1 − q|v|)1{v(i) = 1}) + 2L , (48)

where 2L comes upper-bounding the integer rounding issues

and we abuse notation slightly by setting v(0) = 0 for all v
(recall that v(i) is the i-th coordinate of v ∈ F

L
2 ).

By (29) we may replace tv with t̄v at the expense of

introducing 2Lδn error, so we have:

|ci − y(q)| ≤ n
∑

v∈F
L

2

t̄v(q|v|1{v(i) = 0}

+ (1− q|v|)1{v(i) = 1}) + 2L(1 + δn) . (49)

Next notice that the sum over v only depends on whether

i = 0 or i 6= 0 (by symmetry of t̄v). Furthermore, for any

given weight w and i 6= 0 we have

∑

v:|v|=w

1{v(i) = 1} =

(
L

w

)
w

L
.

Thus, introducing the random variable W̄ , cf. (39),

P[W̄ = w]
△
=

∑

v:|v|=w

t̄v ,

we can rewrite:

∑

v∈F
L

2

t̄v(q|v|1{v(i) = 0}+ (1 − q|v|)1{v(i) = 1})

=
1

L
E [W̄ + (L − 2W̄ )qW̄ ] . (50)

For i = 0 the expression is even simpler:

∑

v∈F
L

2

t̄v(q|v|1{v(0) = 0}+ (1− q|v|)1{v(0) = 1}) = E [qW̄ ] .

Substituting derived upper bound on |ci − y(q)| into (45)

we can see that without loss of generality we may assume

p1 = · · · = pL, so our upper bound (modulo O(δ) terms)

becomes:

min
q

max
p1∈[0,L−1]

(1 − Lp1)E [qW̄ ] + p1E [W̄ + (L− 2W̄ )qW̄ ]

= min
q

max
p1∈[0,L−1]

p1E [W̄ ] + E [qW̄ (1− 2W̄p1)]

By von Neumann’s minimax theorem we may interchange min

and max, thus continuing as follows:

= max
p1∈[0,L−1]

min
q

p1E [W̄ ] + E [qW̄ (1 − 2W̄p1)] (51)

= max
p1∈[0,L−1]

p1E [W̄ ]− E [|2W̄p1 − 1|+] . (52)

The optimized function of p1 is piecewise-linear, so op-

timization can be reduced to comparing values at slope-

discontinuities and boundaries. The point p1 = 0 is easily

excluded, while the rest of the points are given by p1 = 1
L+j

with j ranging over the set specified in the statement of

Lemma4. So we continue (52) getting

= max
j

1

L+ j

(
E [W̄ ]− E [|2W̄ − L− j|+]

)
(53)

We can see that expression under maximization is exactly

hj(T̄L(C)) and hence (44) is proved.

Lemma 7. There exist constants C1, C2 depending only on L
such that for any C ⊂ F

n
2 the joint-type T̄L(C) is approximately

a mixture of product Bernoulli distributions5, namely:

∥
∥
∥
∥
∥
T̄L(C)−

1

n

n∑

i=1

Bern⊗L(λi)

∥
∥
∥
∥
∥
≤

C1

|C|
, (54)

where λi = 1
|C|

∑

c∈C 1{c(i) = 1} be the density of ones in

the j-th column of a |C| × n matrix representing the code. In

particular,

∣
∣
∣
∣
∣
∣

hj(T̄L(C))−
1

n

∑

j

gj(λj)

∣
∣
∣
∣
∣
∣

≤
C2

|C|
, (55)

where functions gj were defined in (16).

Proof. Second statement (55) follows from the first via (42)

and linearity of hj(T ) in the type T , cf. (39). To show the

first statement, let M = |C|, Mi = λiM and pw – total

probability assigned to vectors v of weight w by T̄L(C). Then

by computing pw over columns of M × n matrix we obtain

pw =
1

n

n∑

i=1

(
Mi

w

)(
M−Mi

L−w

)

(
M
L

) .

By a standard estimate we have for all w = {0, . . . , L}:

(
Mi

w

)(
M−Mi

L−w

)

(
M
L

) =

(
L

w

)

λw
i (1− λi)

L−w +O(
1

M
) ,

with O(·) term uniform in w and λi. By symmetry of the type

T̄L(C) the result (54) follows.

Lemma 8. Functions gj defined in (16) are concave on [0, 1].

Proof. Let Wλ ∼ Bino(L, λ) and Vλ ∼ Bino(L − 1, λ).
Denote for convenience λ̄ = 1−λ and take j0 to be an integer

4The difference between odd and even L occurs due to the boundary point
p1 = 1

L
not being a slope-discontinuity when L is odd, so we needed to add

it separately.
5Distribution Bern⊗L(λ) assigns probability λ|v|(1−λ)L−|v| to element

v ∈ F
L
2

.
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between 0 and L. We have then

∂

∂λ
E [|Wλ − j0|

+]

=

L∑

w=j0+1

(
L

w

)

(w − j0)λ
wλ̄L−w

{
wλ−1 − (L− w)λ̄−1

}

(56)

=

(
L

j0 + 1

)

(j0 + 1)λj0 λ̄L−j0−1

+

L−1∑

w=j0+1

[(
L

w + 1

)

(w + 1− j0)(w + 1)

−

(
L

w

)

(w − j0)(L− w)

]

λwλ̄L−w−1 (57)

= L

(
L− 1

j0

)

λj0 λ̄L−1−j0 + L

L−1∑

w=j0+1

(
L− 1

w

)

λwλ̄L−1−w

(58)

= LP[Vλ ≥ j0] , (59)

where in (57) we shifted the summation by one for the first

term under the sum in (56), and in (58) applied identities
(

L
w+1

)
=

(
L
w

)
L−w
w+1 =

(
L−1
w

)
L

w+1 . Similarly, if θ ∈ [0, 1) we

have

∂

∂λ
E [|Wλ−j0−θ|+] = LP[Vλ ≥ j0+1]+L(1−θ)P[Vλ = j0] .

(60)

Similarly, one shows (we will need it later in Lemma 9):

∂

∂λ
P[Wλ ≥ j0] = LP[Vλ = j0 − 1] . (61)

Since clearly the function in (60) is strictly increasing in λ
for any j0 and θ we conclude that

λ 7→ E [|Wλ − j0 − θ|+]

is convex. This concludes the proof of concavity of gj .

Proof of Lemma 4. Our plan is the following:

1) Apply Elias-Bassalygo reduction to pass from C′
n to a

subcode C′′
n on an intersection of two spheres Sξ0n and

y + Sξ1n.

2) Use Lemma 5 to pass to a symmetric subcode C′′′
n ⊂ C′′

n

3) Use Lemmas 7-8 to estimate maxima of average radii

hj over C′′′
n .

4) Use Lemma 6 to transport statement about hj to a

statement on τL(C
′′′
n ).

We proceed to details. It is sufficient to show that for some

constant C = C(L) and arbitrary δ > 0 estimate (24) holds

with ǫn = Cδ whenever n ≥ n0(δ). So we fix δ > 0 and

consider a code C′ ⊂ Sξ0n ⊂ F
n
2 with |C′| ≥ exp{nR′+o(n)}.

Note that for any r , even m with m/2 ≤ min(r, n − r) and

arbitrary y ∈ Sn
r intersection {y + Sn

m} ∩ Sn
r is isometric to

the product of two lower-dimensional spheres:

{y + Sn
m} ∩ Sn

r
∼= Sr

r−m/2 × Sn−r
m/2 . (62)

Therefore, we have for r = ξ0n and valid m:

∑

y∈Sn
r

|{y + Sn
m} ∩ C′| = |C′|

(
ξ0n

ξ0n−m/2

)(
n(1− ξ0)

m/2

)

.

Consequently, we can select m = ξ1n−o(n), where ξ1 defined

in (27), so that for some y ∈ Sn
r :

|{y + Sn
ρn} ∩ C′| > n .

Note that we focus on solution of (27) satisfying ξ1 < 2ξ0(1−
ξ0). For some choices of R, δ and ξ0 choosing ξ1 > 2ξ0(1−ξ0)
is also possible, but such a choice appears to result in a weaker

bound.

Next, we let C′′ = {y + Sn
ρn} ∩ C′. For sufficiently large n

the code C′′ will satisfy assumptions of Lemma 5 with K ≥ 1
δ .

Denote the resulting large symmetric subcode C′′′.

Note that because of (62) column-densities λi’s of C′′′,

defined in Lemma 7, satisfy (after possibly reordering coordi-

nates):

ξ0n∑

i=1

λi = ξ1n/2 + o(n),
∑

i>ξ0n

λi = ξ1n/2 + o(n) .

Therefore, from Lemmas 7-8 we have

hj(T̄L(C
′′′)) ≤ ξ0gj

(

1−
ξ1
2ξ0

)

+ (1 − ξ0)gj

(
ξ1

2(1− ξ0)

)

+ ǫ′n +
C1

|C′′′|
, (63)

where ǫ′n → 0. Note that by construction the last term in (63)

is O(δ). Also note that the first two terms in (63) equal θj
defined in (25).

Finally, by Lemma 6 we get that for any codewords

c1, . . . , cL ∈ C′′′, some constant C and some sequence ǫ′′n → 0
the following holds:

1

n
rad(0, c1, . . . , cL) ≤ θ(ξ0, R

′, L) + ǫ′′n + Cδ .

By the initial remark, this concludes the proof of Lemma 4.

C. Proof of Corollary 3

Lemma 9. For any odd L = 2a+ 1 there exists a neighbor-

hood of x = 1
2 such that

max
j

gj(x) = g1(x) , (64)

maximum taken over j equal all the odd numbers not exceed-

ing L and j = 0. We also have for some c > 0

g1(x) =
1

2
−2−L−1

(
L

L−1
2

)

+cx+O((2x−1)2), x →
1

2
.

(65)

Proof. First, the value g1(1/2) is computed trivially. Then

from (60) we have

d

dx
gj(x) =

L

L+ j

(

1− 2P

[

Vx ≥
L+ j

2

])

, (66)

where j ≥ 1 and Vx ∼ Bino(x, L− 1). This implies (65). For

future reference we note that (69) (below) and (61) imply

d

dx
g0(x) = 1− 2P[Vx ≥

L+ 1

2
]− P[Vx =

L− 1

2
],

Vx ∼ Bino(x, L − 1) . (67)
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By continuity, (64) follows from showing

g1(1/2) > max
j∈{0,3,5,...L}

gj(1/2) . (68)

Next, consider Wx ∼ Bino(x, L) and notice the upper-bound

gj(x) ≤
1

L+ j
E [Wx1{Wx ≤ a}+ (L+ j −Wx)1{Wx ≥ a+ 1}] .

Then, substituting expression for g1(x) we get

g1(x) − g0(x) =
1

L
(P[Wx ≥ a+ 1]− g1(x)) (69)

g1(x)− gj(x) ≥
j − 1

L+ j
(g1(x) − P[Wx > a+ 1]) . (70)

Thus, to show (68) it is sufficient to prove that for x = 1/2
we have

P[W 1

2

> a+ 1] < g1(1/2) < P[W 1

2

≥ a+ 1] . (71)

The right-hand inequality is trivial since P[W 1

2

≥ a + 1] =
1/2 while from (65) we know g1(1/2) < 1/2. The left-hand

inequality, after simple algebra, reduces to showing

a−1∑

u=0

(2a+ 1− 2u)

(
2a+ 1

u

)

< (2a+ 1)

(
2a+ 1

a

)

. (72)

Notice, that

(n− 2u)

(
n

u

)

= n

[(
n− 1

u

)

−

(
n− 1

u− 1

)]

∀u ≥ 0

and therefore

∑

u≤ℓ

(n− 2u)

(
n

u

)

= n

(
n− 1

ℓ

)

.

Plugging this identity into the right-hand side of (72) we get

a−1∑

u=0

(2a+ 1− 2u)

(
2a+ 1

u

)

= (2a+ 1)

(
2a

a− 1

)

< (2a+ 1)

(
2a

a

)

< (2a+ 1)

(
2a+ 1

a

)

(73)

completing the proof of (72).

Proof of Corollary 3. We first show that (20) implies (21).

To that end, fix a small ǫ > so that 1
2 − ǫ belongs to the

neighborhood existence of which is claimed in Lemma 9.

Choose rate so that δLP1(R) = 1/2 − ǫ and notice that this

implies

R = h(ǫ2 + o(ǫ2)) , (74)

By Lemma 9, the right-hand side of (20) is

τ∗L(0)− const · ǫ + o(ǫ) ,

which together with (74) implies (21).

To prove (20) we use Theorem 1 with δ = δLP1(R). Next,

use concavity of gj’s (Lemma 8) to relax (13) to

lim sup
n→∞

τL(Cn) ≤ max
j,ξ0

gj(ξ0) .

From (66) and (67) it is clear that ξ0 7→ gj(ξ0) is monoton-

ically increasing for all j ≥ 0 on the interval [0, 1/2]. Thus,

we further have

lim sup
n→∞

τL(Cn) ≤ max
j

gj(δLP1(R)) . (75)

Bound (75) is valid for all R ∈ [0, 1] and arbitrary (odd/even

L). However, when R is small (say, R < R0) and L is odd,

δLP1(R) belongs to the neighborhood of 1/2 in Lemma 9 and

thus (20) follows from (75) and (64).

Remark 2. It is, perhaps, instructive to explain why Corol-

lary 3 cannot be shown for even L (via Theorem 1). For even

L the maximum over j of gj(1/2− ǫ) is attained at j = 0 and

g0(
1

2
− ǫ) = τ∗L(0) + cǫ2 +O(ǫ3) , ǫ → 0 (76)

Therefore, for δLP1(R) = 1
2 − ǫ we get from (76) that the

right-hand side of (75) evaluates to

τ∗L(0)− const · ǫ2 log
1

ǫ
. (77)

Thus, comparing (77) with (74) we conclude that for even L
our bound on R∗

L(τ) has negative slope at zero rate. Note that

Blinovsky’s bound (10) has negative slope at zero rate for both

odd and even L.

D. Proof of Corollary 2

Proof. Instead of working with parameter δ we introduce β ∈
[0, 1/2] such that

δ =
1

2
−
√

β(1− β) .

We then apply Theorem 1 with h(β) = R. Notice that the

bound on ξ0 in (14) becomes

0 ≤ ξ0 ≤ δ .

By a simple substitution ω =
√

β
1−β we get from (11)

Eβ(δ) =
1

2
(log 2− h(δ) + h(β)) .

Therefore, when ξ0 = δ we notice that

R+ h(β)− 2Eβ(ξ0) = R − log 2 + h(δ)

implying that defining equation for ξ1, i.e. (15), coincides

with (19).

Next for L = 3 we compute

g0(ν) = ν(1− ν) , (78)

g1(ν) =
3

4
ν −

1

2
ν3 , (79)

g3(ν) =
1

2
ν . (80)

Note that the right-hand side of (17) is precisely equal to

δg1

(

1−
ξ1
2δ

)

+ (1− δ)g1

(
ξ1

2(1− δ)

)

.
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So this corollary simply states that for L = 3 the maximum

in (13) is achieved at j = 1, ξ0 = δ. Let us restate this last

statement rigorously: The maximum

max
j∈{0,1,3}

max
ξ0∈δ

ξ0gj

(

1−
x

2ξ0

)

+ (1− ξ0)gj

(
x

2(1− ξ0)

)

(81)

is achieved at j = 1, ξ0 = δ. Here x = x(ξ0, β) is a solution

of

2(h(β)− Eβ(ξ0))

= h(ξ0)− ξ0h

(
x

2ξ0

)

− (1− ξ0)h

(
x

2(1− ξ0)

)

. (82)

For notational convenience we will denote the function under

maximization in (81) by gj(ξ0, x).
We proceed in two steps:

• First, we estimate the maximum over ξ0 for j = 0 as

follows:

max
ξ0

g0(ξ0, x) ≤
log 2−R

4 log 2
·

(

1−
1− δ

amax(1− amax)

)

+ (1 − δ)g0(amin) , (83)

where amax, amin ≤ 1
2 are given by

amax = h−1(log 2−R) , (84)

amin = h−1

(

log 2−
R

1− δ

)

. (85)

• Second, we prove that for j = 1 function

ξ0 7→ gj(ξ0, x(ξ0))

is monotonically increasing.

Once these two steps are shown, it is easy to verify (for

example, numerically) that g1(δ, x(δ)) exceeds both 1
2δ (term

corresponding to j = 3 in (81)) and the right-hand side of (83)

(term corresponding to j = 0). Notice that this relation holds

for all rates. Therefore, maximum in (81) is indeed attained

at j = 1, ξ0 = δ.

One trick that will be common to both steps is the following.

From the proof of Lemma 4 it is clear that the estimate (24) is

monotonic in R′. Therefore, in equation (82) we may replace

Eβ(ξ) with any upper-bound of it. We will use the well-known

upper-bound, which leads to binomial estimates of spectrum

components [15, (46)]:

Eβ(ξ0) ≤
1

2
(log 2 + h(β)− h(ξ0)) . (86)

Furthermore, it can also be argued that maximum cannot be

attained by ξ0 so small that

h(β) −
1

2
(log 2 + h(β) − h(ξ0)) < 0 .

So from now on, we assume that

h−1(log 2− h(β)) ≤ ξ0 ≤ δ ,

and that x = x(ξ0) ≤ 2ξ0(1 − ξ0) is determined from the

equation:

log 2−R = ξ0h

(
x

2ξ0

)

+ (1 − ξ0)h

(
x

2(1− ξ0)

)

(87)

(we remind R = h(β)).
We proceed to demonstrating (83). For convenience, we

introduce

a1
△
= 1−

x

2ξ0
, (88)

a2
△
=

x

2− 2ξ0
. (89)

By constraints on x it is easy to see that

0 ≤ a2 ≤ min(a1, 1− a1) .

Therefore, we have

log 2−R = ξ0h(a1) + (1− ξ0)h(a2) ≥ h(a2)

and thus a2 ≤ amax defined in (84). Similarly, we have

log 2−R = ξ0h(a1)+(1−ξ0)h(a2) ≤ ξ0 log 2+(1−ξ0)h(a2) ,

and since ξ0 ≤ δ we get that a2 ≥ amin defined in (85).

Next, notice that
h(x)

x(1−x) is decreasing on (0, 1/2]. Thus, we

have

h(a1) ≥ g0(a1)4 log 2 (90)

h(a2) ≥ h(amax)
g0(a2)

g0(amax)

=
log 2−R

amax(1− amax)
g0(a2)

△
= c · g0(a2) , (91)

where in the last step we introduced c > 4 log 2 for conve-

nience. Consequently, we get

log 2−R

= ξ0h(a1) + (1− ξ0)h(a2) (92)

≥ 4 log 2 · ξ0g0(a1) + (1− ξ0)c · g0(a2) (93)

= 4 log 2 · g0(ξ0, x) + (1− ξ0)(c− 4 log 2) · g0(a2) (94)

≥ 4 log 2 · g0(ξ0, x) + (1− δ)(c− 4 log 2) · g0(amin) . (95)

Rearranging terms yield (83).

We proceed to proving monotonicity of (82). The technique

we will use is general (can be applied to L > 3 and j > 1),

so we will avoid particulars of L = 3, j = 1 case until the

final step.

Notice that regardless of the function g(ν) we have the

equivalence:

d

dξ0
ξ0g(a1) + (1− ξ0)g(a2) ≥ 0 ⇐⇒

1

2

dx

dξ0
(g′(a2)− g′(a1)) ≥

a1∫

a2

(1− x)(−g′′(x))dx − g′(a2) ,

(96)

where we recall definition of a1, a2 in (88)-(89). Differentiat-

ing (87) in ξ0 (and recalling that R is fixed, while x = x(ξ0)
is an implicit function of ξ0) we find

dx

dξ0
= −2

log 1−a2

a1

log 1−a2

a2

a1

1−a1

< 0 .

Next, one can notice that the map (ξ0, x, R) 7→ (a1, a2) is

a bijection onto the region

{(a1, a2) : 0 ≤ a1 ≤ 1, 0 ≤ a2 ≤ a1(1− a1)} . (97)
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With the inverse map given by

ξ0 =
a2

1− a1 + a2
, x =

2a22
1− a1 + a2

,

R = log 2− ξ0h(a1)− (1− ξ0)h(a2) .

Thus, verifying (96) can as well be done for all a1, a2
inside the region (97). Substituting g = g1 into (96) we get

that monotonicity in (82) is equivalent to a two-dimensional

inequality:

− 2 log
1− a2
a1

· (a21 − a22)

≥ (2a21 −
4

3
(a31 − a32)− 1) log

1− a2
a− 2

a1
1− a1

. (98)

It is possible to verify numerically that indeed (98) holds on

the set (97). For example, one may first demonstrate that it is

sufficient to restrict to a2 = 0 and then verify a corresponding

inequality in a1 only. We omit mechanical details.
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