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Preview of main result

Consider Markov chain:
W-X->Y

X,Y €R
X — Y is additive (over R) noise channel Y = X + 7

e moment-constraint: E|X [P <~

Data-processing tells us:

I(W;Y) < I(W; X)
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Preview of main result

Consider Markov chain:
W-X->Y

X,Y €R
X — Y is additive (over R) noise channel Y = X + 7

e moment-constraint: E|X [P <~

Data-processing tells us:
I(W;Y) < I(W; X)

This work:

I(W;Y)< FI(W;X)) and F(t) <t
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Data processing inequality

e KL divergence
PX PY
N omx S
X Y
/! N\
Qx Qy

e mutual information

= D(Py||Qy) < D(Px||Qx)

U—X—>Y=IUY)<IU:X)
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Strong data processing inequality

e KL divergence
PX PY
\ Py|X /
X Y
/! N\
Qx Qy

e mutual information

= D(Py||Qy) < nkr.D(Px||Qx)

U= XY =IUY) < lIU;X)

[Ahlswede-Gacs'76], [Anantharam-Gohari-Kamath-Nair'13]
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Strong data processing inequality

Px Py
N e S
X Y
/ \

Qx Qv

e For fixed Py |x, KL contraction ratio:

NMKL = Sup w: sup M
pry20x D(Px||Qx) voxoy I(U;X)

Theorem (Ahlswede-Gacs)

k1 < 1 iff zero-error capacity Cy = 0.
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Dobrushin coefficient

e total variation

1
1P~ Qly =5 [ 1dP - dq)
e Dobrushin coefficient

1Py — Qy |l
T]TV = sup —=———=— = sup P _ _P _ .
P2 Py = Qg S IBvix=r = Prix=arlhy
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Dobrushin coefficient

e total variation

1
1P~ Qly =5 [ 1dP - dq)
e Dobrushin coefficient

1Py — Qy |l
77TV= sup —=———=— = sup P _ _P _ .
P2 Py = Qg S IBvix=r = Prix=arlhy

Theorem (Cohen-lwasa-Rautu-Ruskai-Seneta-Zbdganu'93)

NKL < TV

e Not tight, but easy to compute. Example:

NKL = (1 — 25)2

BSC(6) : B
nrv = ‘1 — 25|
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Application 1: mixing of Markov chains

Consider a M.C. with invariant dist. P*:
X()—)Xl—)Xg*)'--

Contraction:

| Px,, — P*|lp, < (77v)" (Dobrushin)
X2 (Px, [P < (2)" - x*(Pxo || P¥) (spectral gap)
D(Px, || P*) < (nxv)" - D(Px, || P*) (log-Sobolev)
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Application 2: Dissipation of information

If nkr, < 1, then

I(Xo; Xn) < I(X0; Yn1) < mice I (Xo; Xpo1) < -+ < ity ' T(Xo3 X1)
— 0 exponentially
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Application 2: Dissipation of information

If nkr, < 1, then

I(Xo; Xn) < I(X0; Yn1) < mice I (Xo; Xpo1) < -+ < ity ' T(Xo3 X1)
— 0 exponentially

Converse bound on computation via noisy gates

Theorem (Pippenger'88, Feder'89, Evans-Schulman’99)
Circuits of gates with fan-in k perturbed by BSC(d) are not reliable if

1 1
0> -———.
2

2Vk
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Dobrushin coefficient for amplitude constraint

Two types of input constaints:
e Amplitude constraint: X € [—A, A] almost surely.

”N(x7 1) _N(xlv 1)HTV

This is easy:

NKL < v = sup
z,x'€[—A,A]
1-2Q(4) <1 Quy2 [ et
= —_ €Tr) = —€
V2T

e Power constraint:

E[X? < P.

Strong data-processing in additive-noise channels
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No contraction under E[X?] < P

e Consider:

Px = (1—1t)dg + to Bt _ Py — Qyll.,

—1
Qx = (1—-1)d —l-t(si\/Pf/t [1Px — Qx Iy

e Similarly, for KL
D(Px = N|Qx * N)

e DR
e ... and for Ml
sup W, X+2) _,
w-x-v:gx2<p  1(W;X)
Punchline:

NKL = N1 =nrv =1
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Revisit strong data-processing

PX PY
N ome S
X Y
/ N

Qx Qy

e Strong D.P.
D(Py||Qy) < nxrD(Px||Qx)

e More precise characterization: joint range
(Px,Qx) = (D(Px||Qx), D(Py||Qy)) € RZ
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output divergence

input divergence

Yury Polyanskiy and Yihong Wu
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input divergence
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output divergence

input divergence
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Joint range

output divergence

input divergence

Yury Polyanski
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output divergence

Yury Polyanskiy and Yihong Wu

input divergence
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Is joint range curved?

output divergence

input divergence

Want: joint range bounded away from diagonal.
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Is joint range curved?

output divergence

input divergence

Want: joint range bounded away from diagonal.

e Sad news: For KL the boundary Fkp,(t) =t
e Good news: For TV the boundary Fry(t) <t (!)

Fry(t),t € [0,1] — Dobrushin curve of the channel ]
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Dobrushin curve

Q)

1Py — Qv lipy

Z ~ N(0,1)
N\ | /! Y

t=|Px — Qxlpy

e Upper boundary:

Fry(t) = sup Py — Qv |l
HPX_QXHT\/St

with constraint:
Epy ’X‘Q +Eox ‘X‘Z <2P

e Dobrushin coefficient v = maximal slope of Dobrushin curve Fry
16
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Dobrushin curve of AWGN

Theorem (P.-Wu'14) s}
Under power constraint E| X |? < P, A e

wooel) |1

where Q = complementary normal CDF.

v

Note:

e Fpy smooth but not analytic: Fr/(0) = 1, Fry®(0) =0
e iterative mapping:

1
logn

||PXn - QXnHTV S FTV OFTV"' OFTV(]-) = O(
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output divergence

input divergence

Yury Polyanskiy and Yihong Wu

Strong data-processing in additive-noise channels



output divergence

N

input divergence
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output divergence

input divergence
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output divergence

input divergence
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Application to chain of AWGN relays

7] ‘
o1

Theorem (P.-Wu'14)

For any processors { f,} s.t. E[X2] < P:

Plogl
CPlog ogn_>0

I(Xo: X,,) <
(Xo; Xn) logn
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Summary so far

Px Z ~ N(0,1) Py

\XHéHY/ EX?2<P
/! N\

QRx Qy
For additive noise (non-discrete) channels:
e Contraction coeffs:
nrv =KL =nr =1

e Joint range:

Fu(t) =t
FTV(t) <t

e Last question: Joint range for mutual info.
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Fr-curve: trivial bounds

I(W;Y)

I(W; X)

Fr(t)2 sup I(W;Y)
I(W;X)<t

st W—-X-Y and E|X?| <P

Trivially:
Fr(t) <t (data-processing)

Fit)y<Cc C#4& I(X;Y)~ it
1(t) < o, (X;Y)—capacity

Strong data-processing in additive-noise channels
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Main result

I(W;Y)

1(W; X)

There exist g4(t) > 0 and gp(t) > 0:

Fr(t) <t —ga(t)
Fi(t) < C — ga(t)

23
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Main result

Fy

I(W;Y)

I(W;X)

There exist g4(t) > 0 and gp(t) > 0:

Fr(t) <t—ga(t) (Fr bounded from diagonal)
Fi(t) < C = galt) (F7 bounded from capacity)

e Also holds for all Pz s.t. Py Y Py,
e Also holds for other constraints E|X [P < v

23
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Behavior of g4 and gy,

Fy

I(W;Y)

I(W;X)

There exist g4(t) > 0 and gp(t) > 0:

<t-—
(t) < C —gn(t)

For the AWGN channel (w/ F. Calmon, cf. ISIT'15):

clogt

gd(t)% to, t—0

gn(t) memerePleat) gy oo
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Proof: Diagonal bound

Goal:
I(W;Y) < I(W; X) W-o-X->Y=X+7
High level idea:
e small scale: local information in I(W; X) is blurred away by noise
e large scale: E|X| restricts contribution to I(W; X) from tails
e Hardest case: I(W;X) — 0.

Yury Polyanskiy and Yihong Wu Strong data-processing in additive-noise channels 25



Proof: Diagonal bound

Goal:
IW;Y)<IW:X) WoX-oY=X+Z
High level idea:
e small scale: local information in I(W; X) is blurred away by noise
e large scale: E|X| restricts contribution to I(W; X) from tails
e Hardest case: I(W;X) — 0.
Key definition:
o Let n(A) = KL coeff. for the amplitude A constrained channel:

D(P x Pz||Q x Pz)
n(A) £ su
A e DEIQ)

e By Dobrushin for AWGN we have

n(A) <1-2Q(A) ~ 1 — e 4%/2

o ...eg n(3) <3
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Large scale bound (truncation) J

Two simplifying assumptions:

e Assume W — X is determinstic. Want to prove:

I(X;Y) < H(X)

° Assume X takeS Va|ue5 on some A—g”d (i.e. no “small scale” details in X.)
Steps:

e Introduce £ £ 1{|X| > A} and € = P[|X| > 4]

I(X;Y) < I(X;Y,E)
< HE)+e(X;Y|IE=1)+e- I(X;Y|E=0)

Yury Polyanskiy and Yihong Wu Strong data-processing in additive-noise channels

26



Large scale bound (truncation) J

Two simplifying assumptions:
e Assume W — X is determinstic. Want to prove:
I(X;Y) < H(X)

(i.e. no “small scale” details in X.)

e Assume X takes values on some A-grid.

Steps:
e Introduce £ £ 1{|X| > A} and € = P[|X| > 4]

I(X;Y) < I(X;Y,E)
< HE)+e(X;Y|E=1)+e- [(X;Y|E=0)
< hle)+eH(X|E=1)+ €-n(A)H(X|E =0) contraction!

26
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Large scale bound (truncation) J

Two simplifying assumptions:
e Assume W — X is determinstic. Want to prove:

I(X;Y) < H(X)
° Assume X takeS Values on some A—g”d (i.e. no “small scale” details in X.)

Steps:
e Introduce £ £ 1{|X| > A} and € = P[|X| > 4]

I(X;Y) < I(X:;Y, E)
< HE)+(X;Y|E=1)+¢ I[(X;V|E=0)
< h(e)+eH(X|E=1)+ € -n(A)H(X|E =0) contraction!
= H(X)-7(A)(H(X)—h(e) — eH(X|E =1))
e Entropy H(X|E = 1) is small by max-entropy exercise:

A

1
HU)<(EUl+1Dh| ——— log2 VU € Z
W) < @1+ 08 (g ) +loe2 90 €
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Large scale bound (truncation) J

Steps:
e With £ 2 1{|X| > A} and € = P[|X| > A]:
I(X:Y) < I(X;Y, E)
= H(X)- ﬁ(A)(H(X) —h(e) —eH(X|E = 1))

cEIX|<1 = c=P[X|>4]<]
.. plus max-entropy exercise:
2log A
h(e) + eH(X|E=1) < ‘jf . A1

o Take A>1st. (---) > ( ) and conclude

I(X:Y) < H(X) — e H(X), A%4H1(X) log 7705

27
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Small scale bound (quantization) J

e The truncation argument works also w/o assumptions:
I(W;Y) < I(W; X) = ij(A) (I(W; X) = h(e) — el (W; Y|E = 1))
e Problem: I(W;Y|E =1) <I(W;X|E = 1) will not do.

Yury Polyanskiy and Yihong Wu Strong data-processing in additive-noise channels
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Small scale bound (quantization) J

e The truncation argument works also w/o assumptions:
I(W;Y) < I(W; X) = ij(A) (I(W; X) = h(e) — el (W; Y|E = 1))
e Problem: I(W;Y|E =1) <I(W;X|E = 1) will not do.

Forany W — X — Y over AWGN:

I07;¥) < H(|3X]) + 5 1(W; X)

Proof: Let Q = [3X] be i-quantization of X. Then:
W;Y) < I@Y)+I1(W:Y|Q)
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Small scale bound (quantization) J

e The truncation argument works also w/o assumptions:
I(W;Y) < I(W; X) = ij(A) (I(W; X) = h(e) — el (W; Y|E = 1))
e Problem: I(W;Y|E =1) <I(W;X|E = 1) will not do.

Forany W — X — Y over AWGN:

I07;¥) < H(|3X]) + 5 1(W; X)

Proof: Let Q = [3X] be i-quantization of X. Then:
W;Y) < I(Q;Y)+ 1(W;Y|Q)

1
I(Q;)Y) + gl(W;X|Q) contraction on [—;

A
=
=

H(Q) + 310W; X)

IN
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Small scale bound (quantization) J

IW;Y) <I(W;X) —7(A)(I(W;X) — h(e) — el (W;Y|E = 1))

From Lemma

Imaym:q)gH@mmE:n+%nwmmE:n

Again, by max-entropy exercise

2log A
h(e) + eH([3X]|E =1) < f . A1
e and /(W X|E=1) <I(W;X):
2
IW;Y) STI(W; X) — e 5 I(W; X) i IOiA < %I(W; X)
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Proof: Horizontal bound

e We will prove:
IW;Y)=C-0 = I(W;X) >g(0),

Notation: Py—caid, Py—caod. (Gaussian for the AWGNC)
First:

d=C—I1(W;Y) > D(Pyl||Py)+ I[(X;Y|W)
.= Py v Py (Pinsker)

% _
and Py =y ~ Pzis since

IC6GYIW) = [ Py (,0)D(Prel Pryw—)
Main idea: deconvolution
PxP;~Q«xP; — P=Q
Then Px =~ P% (diffuse) but Pxy =~ ¢, (atomic) so
I(X; W) = D(Pxw || Px|Pw) > 1
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Lemma (Deconvolution lemma)

For every “regular” Py there is €() s.t.

|P* Pz —Qx* Pz, <0 = |P(B)—Q(B)| <e(d) Vsmall balls B.

e Now go carefully. By Pinsker

/ APy Pris — Pew—ul?, S 6
so w.h.p. (over Py ):

||PY|W:U) - PZ‘FLEQ(U))H”[‘\/ rs \/g
e But
Pyiw—w = Pxyw=w*Fz
PZ+:co = 5:50*PZ
e So by Lemma:

3B : Pxjw—u(B) 21— €(V3)
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Lemma (Deconvolution lemma)

For every “regular” Py there is () s.t.

|P* Pz —Qx* Pz, <0 = |P(B)—Q(B)| <e(d) Vsmall balls B.

e On the other hand:
PY = PX * PZ
Py = PyxxPy
e Assume P% — diffuse (!) then

li P%(B) =0
A, sup x(B)

(Levi's concentration function.)
e So by Lemma:

VB : Px(B) < P%(B) + €(V6) 2 €(5)
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Proof: Horizontal bound (finish)

e So for Py-many w we have a ball B, s.t.

1—e¢ (1)
€ (2)

PX|W:w(Bw)
Px(By)

NV

e Thus, by data-processing:
I(X;W) = D(Pxywl||Px|Pw)

1
> d(1—€lle) =log— —
€

~

e The only assumption so far: caid P% — has no atoms.
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Deconvolution Lemma:
e Regularity of Pz: (a) bounded density, (b) 3g; : RT — R™ s.t.

Leb{w : [¥z(w)| < Vu, || < g1(u)} < Vg1(u)
IOW: characteristic func. Wy is rarely zero.
e From boundedness of density and Plancherel:

(*) /\‘I’P(w) ~ Vo)1 Pz(W) S 1P * Pz —Q* Pzl -
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Deconvolution Lemma:
e Regularity of Pz: (a) bounded density, (b) 3g; : RT — R™ s.t.

Leb{w : [¥z(w)| < Vu, || < g1(u)} < Vg1(u)
IOW: characteristic func. Wy is rarely zero.
e From boundedness of density and Plancherel:

(*) / [Up(w) = Vo)’ |Pz(W)* S 1P+ Pz —Q* Pzl .

e Instead of ball B we consider “smooth” version:

P([xg, 0 + 8]) = Eplvs(X — z0)],
w022 (1-en()

e Note that |vs| < 1 and by Fourier:
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Deconvolution Lemma:
e Regularity of Pz: (a) bounded density, (b) 3g; : RT — R™ s.t.

Leb{w : [¥z(w)| < Vu, || < g1(u)} < Vg1(u)
IOW: characteristic func. Wy is rarely zero.
e From boundedness of density and Plancherel:

(*) /\‘I’P(w) ~ VoW)P|Pz(W) S 1P * Pz - Q* Pzl

e Instead of ball B we consider “smooth” version:

P([zo, 20 +6]) ~ Eplvs(X — z0)],
w122 e (2)

e Note that |vs| < 1 and by Fourier:

[Eplvs(X)] = Eqlus(X)]| < 5/ [Wp(w) = Vo(w)| (1 = d|w|) dw

Oq\b—l
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Deconvolution Lemma:
e Regularity of Pz: (a) bounded density, (b) 3g; : RT — R™ s.t.

Leb{w : [¥z(w)| < Vu, || < g1(u)} < Vg1(u)
IOW: characteristic func. Wy is rarely zero.
e From boundedness of density and Plancherel:

(*) /\‘I’P(w) ~ VoW)P|Pz(W) S 1P * Pz - Q* Pzl

e Instead of ball B we consider “smooth” version:

P([zo, 20 +6]) ~ Eplvs(X — z0)],
w122 e (2)

e Note that |vs| < 1 and by Fourier:

[Eplvs(X)] = Eqlus(X)]| < 5/ [Wp(w) = Vo(w)| (1 = d|w|) dw

Oq\b—l

.. Apply (*) on {|¥z(w)| > v}
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Take-away message

linear strong data processing
inequality

nonlinear strong data processing
inequality

Yury Polyanskiy and Yihong Wu
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