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Abstract—Recently Tchamkerten et al. proposed a mathemati-
cal formulation of the problem of joint synchronization and error-
correction in noisy channels. A variation of their formulation in
this paper considers a strengthened requirement that the decoder
estimate both the message and the location of the codeword
exactly. It is shown that the capacity region remains unchanged
and that the strong converse holds. The finite blocklength regime
is investigated and it is demonstrated that even for moderate
blocklengths, it is possible to construct capacity-achieving codes
that tolerate exponential level of asynchronism and experience
only a rather small loss in rate compared to the perfectly
synchronized setting; in particular, the channel dispersion does
not suffer any degradation due to asynchronism.

Index Terms—Shannon theory, channel capacity, channel
coding, asynchronous communication, synchronization, strong
converse, non-asymptotic analysis, finite blocklength, discrete
memoryless channels

I. INTRODUCTION

The traditional approach to the problem of reliable com-

munication in the presence of noise typically assumes that

the decoder has access to a corrupted version of the original

waveform with the beginning and the end of the waveform

being perfectly known. In such setting modern sparse graph

codes achieve almost the best possible error correction and

continue to improve. It is natural, therefore, to reconsider

other sources of suboptimality in a communication system.

Namely, notice that the problem of synchronization is typically

solved via an additional frontend (or layer) which employs

special prefixes, suffixes and other methods, consuming both

the energy and the bandwidth. In this paper we discuss the

benefits of performing error-correction and synchronization

jointly.

Recently, motivated in part by the sensor networks in which

nodes exchange data very infrequently (thus, making constant

channel-tracking impractical), Tchamkerten et al [1] formu-

lated the problem in an elegant way and later demonstrated [2]

that there are indeed significant advantages in going beyond

the conventional synchronization approach.

Mathematically, the formulation of [1] is a generalization

of the change point detection problem [3], close in spirit to

the so called “detection and isolation” problem introduced

in [4], except that in the latter the set of distributions that

the original one can switch to is pre-specified whereas [1]

allows for an optimal codebook design. Such formulation is

quite different from the classical modeling of asyncronism in

point-to-point channels as random insertion-deletion [5], [6] or

randomly shifting back-to-back codewords [7]. In the context
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of multiple-access channels, treatments of both the frame-

asynchronism [8]–[10] and symbol-asynchronism [11] focused

on the case when the relative time offsets between the users

are perfectly known at the decoder (or remain constant across

multiple transmissions, which makes them reliably learnable

at the decoder). The problem addressed here, therefore, is

subsidiary to both of these traditional approaches. We refer

the reader to [1, Section II] for further background on the

history and motivation of the synchronization problem.

In this paper we consider a variation of the setup of [1],

[2]. In particular, we define the rate as the number of data bits

k divided by the time n the codeword occupies the channel

(as opposed to [1] that defines the rate as the ratio of k and

the time it takes the decoder to react to transmission). The

definition of rate as in this paper has also been considered in

the context of asynchronous communication in [12] and [13].

Unlike that setup, however, we require the decoder to output

the message block immediately after the actual transmission

terminates or otherwise the error is declared. This requirement

is natural since most systems would employ some sort of

acknowledgment (Ack) feedback and hence, the transmitter

will retransmit the message if the decoder is not sending an

Ack signal in time.

In this variation we show that the capacity region is un-

changed compared to the one in [12] (for the case when cost

of each symbol is 1), we prove the strong converse (with and

without the zero delay requirement) and investigate which of

the results carry over to finite blocklength. In particular, we

demonstrate that even for short blocklengths it is possible to

combat a gigantic (exponential) asynchronism while achieving

essentially the same performance as for the synchronous

setting: namely, the channel dispersion [14] is unchanged. .

The organization of the paper is as follows. Section II de-

fines the problem formally. Section III contains the asymptotic

results on the capacity and the strong converse. Section IV

presents a non-asymptotic achievability bound, evaluates it and

draws conclusions on channel dispersion. With the exception

of the non-asymptotic bound in Section IV the discussion

focuses on discrete memoryless channels (DMCs).

II. PROBLEM FORMULATION AND NOTATION

Consider a DMC with stochastic matrix W : X → Y and

a preselected symbol ⋆ ∈ X . We define its blocklength n

extension as

Wn(yn|xn) =

n∏

j=1

W (yj |xj) . (1)



Given a number An ≥ n we define an asynchronous random

transformation, denoted (Wn, An), as follows:

• input space is Xn

• output space is YAn

• the transformation acts as follows:

PY An |Xn(·|·) =
∑

t

Pτ (t)PY An |Xn,τ (·|·, t) ,

where τ is a random variable uniformly distributed on

{1, . . . , An} and

PY An |Xn,τ (y
An |xn, t) = Wn(yt+n−1

t |xn)
∏

j < t
j ≥ t + n

W (yj |⋆) ,

where yba = (ya, . . . , yb).

Definition 1: An M -code for the random transformation

(Wn, An) is a triplet

• An encoder function f : {1, . . . ,M} → Xn

• A stopping time θ ≥ n of the filtration generated by

{Yj , j = 1, . . . , An}. For convenience, we set

τ̂
△
= θ − n+ 1 ,

which marks the decoders estimate of τ .

• A decoder function g : Y τ̂+n−1 → {1, . . . ,M}
A code is said to be an (M, ǫ) code if

P[Ŵ = W , τ̂ ≤ τ ] ≥ 1− ǫ , (2)

where Ŵ = g(Y τ̂+n−1) and the probability space is con-

structed by taking W to be uniform on {1, . . . ,M} and

chaining all random transformations according to the directed

graphical model:
τ
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Including {τ̂ > τ} in the error event serves the purpose of

penalizing the code for declaring the decision late. In [12]

the delay conditions on the decoder were weaker and the

probability of error was defined (in essence) as

P[Ŵ = W , τ̂ ≤ τ + Ln] ≥ 1− ǫ , Ln = exp{o(n)} (3)

that is a delay Ln is allowed to be non-zero but required to

be pre-specified and sub-exponential in n. One of the results

of this paper is that codes with Ln = 0 exist and achieve the

same (asymptotic) performance as the best codes with weaker

Ln = exp{o(n)}.
Definition 2: A pair (R,A) is called ǫ-achievable if there

exist sequences of numbers An ≥ n and Mn ≥ 2 satisfying

lim inf
n→∞

1

n
logAn ≥ A , (4)

lim inf
n→∞

1

n
logMn ≥ R (5)

and a sequence of (Mn, ǫ) codes for random transformations

(Wn, An). The asynchronous ǫ-capacity at asynchronism A
is defined as

Cǫ(A)
△
= sup{R : (R,A) is ǫ-achievable} .

The asynchronous capacity at asynchronism A is defined as

C(A)
△
= lim

ǫ→0
Cǫ(A) .

The ǫ-synchronization threshold A◦,ǫ is defined as

A◦,ǫ
△
= sup{A : (0,A) is ǫ-achievable}

and the synchronization threshold is

A◦
△
= lim

ǫ→0
A◦,ǫ .

Remark: Note that (0,A) is ǫ-achievable if and only if there

exist a sequence of (n, 2, ǫ) codes for random transformations

(Wn, 2nA+o(n)).

The main difference with the model studied in [1], [2] is

that the definition of rate there was

R̃
△
=

logM

E [|τ̂ − τ + n|+] (6)

and correspondingly the error event was defined as just {Ŵ 6=
W}. With such modifications, one defines the capacity C̃(A)
in exactly the same manner as C(A); the key results of [1],

[2] provide upper and lower bounds on C̃(A) (but not C̃ǫ(A)).
The definition (6) was chosen, perhaps, to model the situation

when one wants to assess the minimal number of channel uses

(per data bit) that the channel remains under the scrutiny of

the decoder, whereas our definition

R
△
=

logM

n
(7)

serves the purpose of studying the minimal number of channel

uses (per data bit) that the channel remains occupied by the

transmitter. With such definition, our model can be interpreted

as the problem of communicating both the data W and the

state τ as in [15], except that the state is no longer a realization

of the discrete memoryless process and it enters the channel

law (Wn, An) in a different way.

The notation in this paper follows that of [16] and [14,

Section IV.A], in particular, D(P ||Q) denotes the relative

entropy between distributions P and Q; Wx(·) = W (·|x); for
a distribution P on X a distribution PW on Y is defined as

PW (y) =
∑

x W (y|x)P (x); we agree to identify distribution

Q on Y with a stochastic kernel Q : X → Y which is constant

on X , so under this agreement PWx = Wx; and I(P,W ) is

a mutual information between X ∼ P and Y ∼ PW and

coupled via PY |X = W : I(P,W ) = D(W ||PW |P ). We also

denote by Pn the product distribution on Xn and similarly

for Yn.



III. CAPACITY AND STRONG CONVERSE

We summarize the previously known results:

Theorem 1 ([1], [12]): For any DMC W we have

A◦ = max
x∈X

D(Wx||W⋆) . (8)

The asynchronous capacity of the DMC W under the proba-

bility of error criterion (3) is:

C(A) = max
P :D(PW ||W⋆)≥A

I(P,W ) , (9)

where we agree that the maximum is zero whenever A > A◦.
Our main asymptotic results are the following:

Theorem 2: For any DMC W we have under either (2)

or (3) definitions of probability of error

A◦,ǫ = A◦ , (10)

where A◦ is given by (8). The asynchronous capacity of the

DMC W under either (2) or (3) definitions of probability of

error is

Cǫ(A) = C(A) , (11)

where C(A) is given by (9).

Remark: As shown in [12, Theorem 5] the weak converse

in Theorem 1 is unchanged if τ is not precisely uniform

on exp{nA} atoms but rather is “essentially” such: namely,

the length ℓn of the optimal binary lossless compressor of τ

satisfies:
1

n
ℓn → A ,

where the convergence is in probability. In the proof below

we will show that the strong converse of Theorem 2 is

also unchanged if τ is non-uniform and satisfies a stronger

condition:

max
i

P[τ = i] =
1

An

exp{o(n)} . (12)

A. Discussion and comparison of results

Note that if A◦ = ∞ then according to (9)

C(A) = max
P

I(P,W )
△
= C , ∀A ≥ 0 , (13)

i.e. capacity can be achieved for all exponents A ≥ 0.
For example, consider the binary symmetric channel

BSC(δ) with X = {0, 1}, Y = {0, 1}, ⋆ = 0 and

W (y|x) =
{

1− δ , y = x

δ , y 6= x ,

For such a model, computation of (8)-(9) yield

A◦ = d(δ||1 − δ) , (14)

C(d(p ∗ δ||1− δ)) = h(p ∗ δ)− h(δ), p ∈ [0, 12 ](15)

where the latter is presented in parametric form and we have

defined

d(x||y) = x log
x

y
+ (1− x) log

1− x

1− y
, (16)

h(x) = x log
1

x
+ (1− x) log

1

1− x
, (17)

p ∗ δ = (1− p)δ + p(1− δ) . (18)

First, we compare results in Theorems 1 and 2:

• Theorem 2 proves achievability part under a more strin-

gent condition (2). Unlike [12] (and [2]) our proof relies

on showing a variant of the packing lemma, which among

other things should be useful for future investigations of

universality and error-exponent questions.

• Theorem 2 shows that a strong converse for the C(A)
holds under both conditions (2) and (3), and also under

non-uniform τ ’s as in (12). To that end we employ the

meta-converse framework [14, Section III.E] and [17,

Section 2.7], which results in a short proof and is known

to be quite tight non-asymptotically too, e.g. [14, Section

III.J4]. It is possible that our methods would also prove

useful for improving the bounds on the capacity C̃(A) in
the model (6).

Next, we compare to the results to the results in [1], [2],

which concern a different definition of rate (6):

• In both cases the synchronization threshold is given

by (8); see [1]. This is not surprising since (as remarked

above) A◦ is determined by the ability to communicate

with M = 2 codewords, for which the precise definition

of rate is immaterial.

• In both cases, there is a “discontinuity at R = C” in the

sense that C(A) = C for all A ≤ A1 with A1 > 0 if

and only if

D(P ∗
Y ||W⋆) > 0 ,

where P ∗
Y denotes the unique capacity achieving output

distribution. However, the precise value of this critical

exponent A1 is unknown for the model (6) even for the

BSC, whereas in the model (7) we always have

A1 = D(P ∗
Y ||W⋆) . (19)

• In both cases, for a certain natural class of synchro-

nization schemes based on preambles, see [2, Definition

3], we have A1 = 0, that is restricting communication

system design prevents achieving capacity with positive

asynchronism exponent. For the model (6) this is shown

in [2, Corollary 3], while for the model (7) this is simply

trivial: to combat a positive asynchronism exponent one

would require preamble of the size δn, but this penalizes

the rate to be at most C − δ.

• According to [2] there exist channels (and BSC is one

of them – see below) for which the capacity C̃(A) = 0
for some range of A < A◦. In such regime there exist

codes reliably sending M = exp{nR} codewords, but

the rate R̃, as defined in (6), remains zero. This strange

behavior, called “discontinuity at R = 0” in [2, Corollary

2] does not occur in the definition of rate (7): the capacity

is positive for all A < A◦.
• Somewhat counter-intuitively although in our model we

impose a seemingly strong condition {τ̂ ≤ τ} absent

in [1], [2], it turns out that the capacity vs. asynchronous

exponent region is larger. This is explained by noticing

that if τ̂ > τ then one typically has τ̂ = τ + exp{nǫ}.
Thus in the model (6), to avoid significant penalty in



0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

Asynchronism exponent A, log
2

C
a
p
a
c
it
y
 C

(A
),

 b
it
s
/c

h
.u

s
e

 

 

Asynchronous capacity

Outer bound (model of [1−2])

Inner bound (model of [1−2])

Fig. 1. BSC(0.11): The asynchronous capacity (15) compared with inner-
outer bounds of [2] for the different model (6).

rate the occurrence of τ̂ > τ should happen with

exponentially small probability.

Additionally, [13] considers the definition of rate as in (7)

but models asynchronism differently and restricts the decoders

to operate solely on the basis of each observed n-block.

Curiously, however, their region of rate vs. false alarm error-

exponent coincides with the region (9) of rate vs. asynchro-

nism exponent; see [13, Theorem 1].

To illustrate these points, in Fig. 1 we compare the re-

gion (9) with inner (achievability) and outer (converse) bounds

found in [2, Theorem 2 and Theorem 3], respectively, which

for the case of the BSC(δ) can be shown to be

C̃in(d(q||δ)) = h(p ∗ δ)− h(δ) (20)

C̃out

(
d(p ∗ δ||1− δ)d( 1

2
||δ)

d(p ∗ δ||1− δ) + pd( 1

2
||δ)

)

= h(p ∗ δ)− h(δ) (21)

where parameter runs over p ∈ [0, 1

2
] and in (20) q solves

d(q||p ∗ δ) = d(q||δ) .

Note that according to the C̃out bound the capacity in the

model (6) is zero between d( 1

2
||δ) and A◦ = d(1− δ||δ). This

demonstrates the above mentioned discontinuity at R = 0 for

the BSC and therefore closes the open question mentioned

after [2, Corollary 2].

B. Achievability

We omit a detailed proof in this extended abstract, but

mention the key ingredient.

The main problem in achieving a good error-correction

performance in the presence of asynchronism is the ability

to resolve partially aligned codewords. For example, suppose

that a codeword x ∈ Xn is being transmitted. Then, if there

is a k-symbol misalignment, 0 ≤ k < n, the decoder observes

outputs effectively generated by a shifted codeword x⋆k:

x⋆k △
= (⋆, . . . , ⋆

︸ ︷︷ ︸

k

, x1, . . . , xn−k) ∈ Xn . (22)

Thus, a good codebook for asynchronous communication

must be such that not only a given codeword x is far away

from all other codewords, but also all of its k-shifts x⋆k

are. The existence of such codebooks follows from a simple

generalization of a packing lemma [16, Lemma 2.5.1]:

Lemma 3: For every R > 0, δ > 0 and every type P of

sequences in Xn satisfying H(P ) > R, there exist at least

M = exp{n(R − δ)} distinct sequences ci ∈ Xn of type P

such that for every pair of stochastic matrices V : X → Y ,
V̂ : X → Y , every i and every 0 ≤ k < n we have
∣
∣
∣
∣
∣
∣

TV (c
⋆k
i ) ∩

⋃

j 6=i

T
V̂
(cj)

∣
∣
∣
∣
∣
∣

≤
∣
∣TV (c

⋆k
i )

∣
∣ exp{−n|I(P, V̂ )−R|+}

(23)

provided that n ≥ n0(|X |, |Y|, δ).
Remark: In fact, there is nothing special about the transfor-

mations c 7→ c⋆k. The lemma and the proof hold verbatim if

c⋆ki is replaced by f(ci), and clause “every 0 ≤ k < n” with

“every f ∈ Fn”, where Fn is an arbitrary collection of maps

f : Xn → Xn of subexponential size: |Fn| = eo(n).

C. Converse

Detailed proofs are omitted but we provide sketch of the

main steps.

First, we introduce the performance of the optimal binary

hypothesis test. Consider a X -valued random variable X

which can take probability measures P or Q. A randomized

test between those two distributions is defined by a random

transformation PZ|X : X 7→ {0, 1} where 0 indicates that the

test chooses Q. The best performance achievable among those

randomized tests is given by

βα(P,Q) = min
∑

x∈X
Q(x)PZ|X(1|x) , (24)

where the minimum is over all probability distributions PZ|X
satisfying

PZ|X :
∑

a∈X
P (x)PZ|X (1|x) ≥ α . (25)

The minimum in (24) is guaranteed to be achieved by the

Neyman-Pearson lemma. Thus, βα(P,Q) gives the minimum

probability of error under hypothesis Q if the probability of

error under hypothesis P is not larger than 1− α.

The proof of the converse relies on a pair of simple lemmas

of separate interest:

Lemma 4: If A◦ < ∞ then there exists V1 such that for

any input xn we have

βα(PY n|Xn=xn ,Wn
⋆ ) ≥

α

2
exp

{

−nD(W ||W⋆|P̂xn)−
√

2nV1

α

}

, (26)



where P̂xn is the composition of xn and

PY n|Xn=xn(·) △
= Wn(·|xn) ,

with Wn defined in (1).

Lemma 5: Consider a DMC W . If A◦ < ∞ then there

exists V1 such that for any synchronous (n,M, ǫ) code (max-

imal probability of error) with codewords {ci, i = 1, . . .M}
of constant composition P0 we have

βα(PY n ,Wn
⋆ ) ≥ M

α

4

α− 2ǫ

2− α

× exp

{

−nD(W ||W⋆|P0)−
√

4nV1

α− 2ǫ

}

(27)

provided that α > 2ǫ, where in (27) PY n denotes the output

distribution induced by the code:

PY n [·] = 1

M

M∑

j=1

Wn(·|ci) .

Converse part in Theorem 2 (sketch): Assume ǫ < 1
3 and

that

P[Ŵ = W , τ̂ ≤ τ |W = j] ≥ 1− ǫ , j = 1, . . . ,Mn .

(28)

Clearly, such a code must be synchronously decodable over

DMC W with maximal probability of error at most ǫ. By a

standard argument we may restrict to a subcode with a constant

composition Pn Then for some constant b3 > 0 (depending

only on W and ǫ)

logMn ≤ nI(Pn,W ) + b3
√
n . (29)

We now apply the meta-converse principle [14, Section

III.E], which consists of changing the channel and using the

event {Ŵ = W} as a binary hypothesis test between the two

channels. Namely, in addition to the true channel PY An |Xn,τ

we consider an auxiliary channel

QY An |Xn,τ = WAn

⋆

which outputs W⋆-distributed noise in all of An symbols,

regardless of Xn and τ . Obviously, under the Q-channel we

have

Q[τ − n < τ̂ ≤ τ ] =
n

An

(30)

by independence of τ̂ and τ , whereas under the P -channel we

have

P[τ − n < τ̂ ≤ τ ] ≥ 1− ǫ − 1

M ′
n

.

Using the test {τ − n < τ̂ ≤ τ} we show

β1−ǫ′(PY Anτ , QY Anτ ) ≤
n

An

, (31)

where we denoted for convenience ǫ′ = ǫ+ 1
Mn

. On the other

hand,

β1−ǫ′(PY Anτ , QY Anτ )

= β1−ǫ′(PY n|τ=1,W
n
⋆ ) (32)

≥ M ′
n exp

{
−nD(W ||W⋆|Pn)− b2

√
n
}
, (33)
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Fig. 2. BSC(0.11): Non-asymptotic performance of asynchronous codes
compared with the upper (converse) bound for the synchronous channel.

Probability of error ǫ = 10−3, asynchronism level An = 20.68n−5.25
√

n.

and by Lemma 5

log β1−ǫ′(PY n|τ=1,W
n
⋆ ) ≥

logMn − nD(W ||W⋆|Pn)) +O(
√
n) . (34)

We conclude that

R+A ≤ D(W ||W⋆|Pn) (35)

R ≤ I(Pn,W ) , (36)

which after trivial manipulations results in (9).

IV. NON-ASYMPTOTIC BOUND AND CHANNEL DISPERSION

One of the important conclusions is that the function

C(A) is constant on the interval [0;A1], where A1 is given

by (19). In other words, a certain level of asynchronism (up

to exp{nA1}) is completely unharmful to the capacity of the

channel. This surprising result has also been noticed in [2]

(the value of A1 is not known exactly for their model).

All the arguments so far were asymptotical and it is very

natural to doubt whether such effect is actually possible for

blocklengths of interest. To show that it does indeed happen for

practical lengths we will prove a non-asymptotic achievability

bound and show that it implies that the channel dispersion

is unchanged. First, however, we recall some of the results

of [14].

Let M∗(n, ǫ) be the maximal cardinality of a codebook

of blocklength n which can be (synchronously) decoded with

block error probability no greater than ǫ over the DMC defined

by (1). By Shannon’s theorem asymptotically we have

logM∗(n, ǫ) ≈ nC (37)

It has been shown in [14] that a much tighter approximation

can be obtained by defining an additional figure of merit

referred to as the channel dispersion:



Definition 3: The dispersion V (measured in squared infor-

mation units per channel use) of a channel with capacity C is

equal to

V = lim
ǫ→0

lim sup
n→∞

1

n

(nC − logM∗(n, ǫ))2

2 ln 1
ǫ

. (38)

For example, the minimal blocklength required to achieve a

given fraction η of capacity with a given error probability ǫ

can be estimated as:1

n &

(
Q−1(ǫ)

1− η

)2
V

C2
. (39)

The motivation for Definition 3 and estimate (39) is the

following expansion for n → ∞
logM∗(n, ǫ) = nC −

√
nV Q−1(ǫ) +O(log n) . (40)

As shown in [14] in the context of memoryless channels, (40)

gives an excellent approximation for blocklengths and error

probabilities of practical interest.

Theorem 6: Consider arbitrary random transformation

PY n|Xn : Xn → Yn. Then for any γ ≥ 0 and any input

distribution PXn on Xn there exists an (M, ǫ) code for the

random transformation (PY n|Xn , A) with

ǫ ≤ E
[
exp{−|r(Y n)− logA|+}

]

+ P [i(Xn;Y n) ≤ γ] + nM exp{−γ} , (41)

where P denotes probability with respect to the distribution

PXnY n(x, y) = PY n|Xn(y|x)PXn(x), E is the expectation

with respect to P and we also defined

r(yn)
△
= log

PY n(yn)

W⋆(yn)
(42)

i(xn; yn)
△
= log

PY n|Xn(yn|xn)

PY n(yn)
. (43)

Proof is omitted due to space constraints.

An interesting qualitative conclusion from Theorem 6 is the

following:

Corollary 7: Consider a DMC W with (synchronous) ca-

pacity C and dispersion V . Then for every 0 < ǫ < 1 there

exist capacity-dispersion optimal codes for the asynchronous

DMC at asynchronism An = 2nA1+o(n). More precisely the

number of messages Mn for such codes satisfies

logMn = nC −
√
nV Q−1(ǫ) +O(log n) , n → ∞ (44)

The proof is a simple application of Theorem 6 with a

capacity-achieving input distribution and Berry-Esseen esti-

mates.

Remark: As (40) demonstrates, it is not possible to improve

the second term in expansion (44) even in the synchronous

setting, see also [14, Theorem 48]. Corollary 7 demonstrates

that not only it is possible to communicate with rates close to

capacity and still handle an exponential asynchronism (up to

2nA1), but in fact one can even do so using codes which are

capacity-dispersion optimal.

1As usual, Q(x) =
∫∞

x
1√
2π

e−t2/2 dt .

Finally, in Fig. 2 we illustrate this last point numerically

by computing the bound of Theorem 6 for the BSC(δ)
and comparing it with the converse for the corresponding

synchronous channel [14, Theorem 35]. For the purpose of

this illustration we have chosen ǫ = 10−3, δ = 0.11 and,

somewhat arbitrarily,

An = exp

{

nD(P ∗
Y ||W⋆) +

√

nV (P ∗
Y ||W⋆)Q

−1( ǫ4 )

}

(45)

≈ 20.68n−5.25
√
n . (46)

In particular, the plot shows that it is possible to construct

asynchronous codes that do not lose much compared to the

best possible synchronous codes in terms of rate, but which

at the same time are capable of tremendous tolerance to

asynchronism. For example, already at n = 500 the decoder

is able to find and error-correct the codeword inside a noisy

binary string of unimaginable length 2221 ≈ 1066.
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