
§ 29. Classical asymptotics in statistics

Last lecture we discussed systematic methods to find the best inequalities between different f -
divergence via their joint range. We showed that examining the binary cases is sufficient to derive
optimal inequalities. In this lecture we will further discuss lower bounds for statistical estimation
using f -divergences.

Outline:

• Variational representation of f -divergences.

– Convexity.

– Lower semi-continuity.

• (Specializing to χ2) Lower bounds for statistical estimation.

– Hammersley-Chapman-Robbins (HCR) lower bound.

– Cramér-Rao (CR) lower bound.

– Bayesian Hammersley-Chapman-Robbins (HCR) lower bound.

– Bayesian Cramér-Rao (CR) lower bound.

29.1 Hammersley-Chapman-Robbins (HCR) lower bound

In this section, we derive a useful statistical lower bound by applying the variational representation
of f -divergence in Section 7.5. Specifically, we will focus on the χ2-divergence for probability
distributions P and Q on R.1 By limiting the choice of function h to affine functions, the equality
(7.27) becomes an inequality. In particular, let h(x) = ax+ b and optimize over a, b ∈ R, we have

χ2(P‖Q) ≥ sup
a,b∈R

{
2(aEP (X) + b)− EQ[(aX + b)2]− 1

}
=

(EP [X]− EQ[X])2

VarQ(X)
. (29.1)

Note: The inequality (29.1) can be interpreted as follows: On the left hand side of the inequality
we have the χ2-divergence, a measure of the dissimilarity between two distributions. Looking at the
right hand side we see that if the two distributions are centered at very distant locations, then the
right hand side will be large. Due to (29.1), this will lead to a bigger χ2-divergence something that
was in fact expected.

The reason that the variance with respect to the Q distribution appears in the denominator is
to quantify how different the two means are relatively. Indeed, the standard deviation must appear
as a normalizing factor because the LHS is a numerical number. Also, the bound only involves the
variance under Q not P , which is consistent with the asymmetry of χ2-divergence.

1This can always be assumed by allowing the likelihood ratio function dP
dQ

which is a sufficient statistic.
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Using (7.27) we now derive the HCR lower bound on the variance of an estimator (possibly
randomized). To this end, assume that data X ∼ Pθ, where θ ∈ Θ ⊂ R. We use quadratic cost to
quantify the difference between the real and the predicted parameter, i.e., `(θ, θ̂) = (θ − θ̂)2. Then
the risk of estimator θ̂ when the real parameter is θ is given by Rθ(θ̂) = Eθ[(θ− θ̂)2]. Now, fix θ ∈ Θ.
For any other θ′ ∈ Θ we will use (29.1) with QX = Pθ and PX = Pθ′ . As a result we have that

χ2(Pθ′‖Pθ) = χ2(QX‖PX) ≥ χ2(Pθ̂‖Qθ̂) ≥
(Eθ[θ̂]− Eθ′ [θ̂])2

Varθ(θ̂)
(29.2)

Where the first inequality arises by using the data processing inequality and the second inequality
by (29.1). Finally, by swapping the denominator with the left hand side and taking the supremum
over all θ′ 6= θ, and since Varθ(θ̂) is not a function of θ′, we derive the final result.

Theorem 29.1 (Hammersley-Chapman-Robbins (HCR) lower bound). For the quadratic loss, any
estimator θ̂ satisfies

Rθ(θ̂) ≥ Varθ(θ̂) ≥ sup
θ′ 6=θ

(Eθ[θ̂]− Eθ′ [θ̂])2

χ2(Pθ′‖Pθ)
, ∀θ ∈ Θ. (29.3)

When {Pθ : θ ∈ Θ} have different support, consider the following version: Fix ε ∈ (0, 1). Similar
to (29.2), let us apply χ2-data processing to the pairs QX = ε̄Pθ + εPθ′ and PX = Pθ′ . By linearity
of expectation, we get

χ2(Pθ′‖ε̄Pθ + εPθ′) ≥ ε̄2
(Eθ[θ̂]− Eθ′ [θ̂])2

Varε̄Pθ+εPθ′ (θ̂)
(29.4)

Note that the LHS is equal to εε̄Dfε(Pθ′‖Pθ), which is a f -divergence defined by fε(x) = (x−1)2

εx+ε̄ .
Applying its local expansion from Theorem TODO, we get

Dfε(Pθ′‖Pθ) = I(θ)(θ′ − θ)2(1 + o(1)), θ′ → θ.

where we used the fact that f ′′ε (1) = 2.
Using the fact that Varε̄Pθ+εPθ′ (θ̂) = ε̄Varθ(θ̂) + εVarθ′(θ̂) + 2εε̄(Eθ[θ̂]−Eθ′ [θ̂])2, by first sending

θ′ → θ followed by ε→ 0, we conclude from (29.4) that, for unbiased θ̂,

Varθ(θ̂) ≥
1

I(θ)
.

29.2 Cramér-Rao (CR) lower bound

We now derive the Cramér-Rao lower bound as a consequence of the HCR lower bound. To this
end, we restrict the problem to unbiased estimators, where an estimator θ̂ is said to be unbiased if
Eθ[θ̂] = θ for all θ ∈ Θ. Then by applying the HCR lower bound we have that

Rθ(θ̂) = Varθ(θ̂) ≥ sup
θ′ 6=θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
≥ lim

θ′→θ

(θ − θ′)2

χ2(Pθ′‖Pθ)
. (29.5)

As θ′ → θ, we expect the denominator will go to zero quadratically as the numerator does. Recall
that

χ2(Pθ′‖Pθ) =

∫
(Pθ − Pθ′)2

Pθ
.
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Then by using the Taylor expansion for Pθ around θ′ we get that

Pθ − Pθ′ = (θ − θ′)dPθ
dθ

+ o[(θ − θ′)2],

for θ near θ′. Combining the above while ignoring the little-o terms we get that

χ2(Pθ′‖Pθ) = (θ − θ′)2

∫
(dPθdθ )2

Pθ
.

Plugging back in (29.5) we get the well-known Cramér-Rao (CR) lower bound.

Theorem 29.2. For any unbiased estimator θ̂ and any θ ∈ Θ

Varθ(θ̂) ≥
1

I(θ)
,

where I(θ) is the Fisher information given by

I(θ) =

∫
(dPθdθ )2

Pθ
.

An intuitive interpretation of I(θ) is that it is a measure of the information the data contains for
the estimation of the parameter when its true value is θ.

Example 29.1 (GLM). Let θ ∈ R and X ∼ Pθ = N (θ, 1). Define the standard normal density by
ϕ(x). Then the density of Pθ is pθ(x) = ϕ(x− θ). Next we calculate the Fisher information. By
shifting x to θ, note that

I(θ) =

∫
(∂pθ(x)

∂θ )2

pθ(x)
dx =

∫
(x− θ)2ϕ(x− θ)dx = 1.

Thus, I(θ) ≡ I(0) = 1 for all θ ∈ Θ. In general, this is for any location model where X = θ+Z, the
Fisher information is the same everywhere.

Remark 29.1. Another useful way of seeing the Fisher information is the following:

I(θ) =

∫
(∂Pθ(x)

∂θ )2

Pθ(x)
∂x = Eθ

[(
∂Pθ(X)
∂θ

Pθ(X)

)2]
= Eθ

[(
∂ logPθ(X)

∂θ

)2]
= Varθ

[
∂ logPθ(X)

∂θ

]
,

where the last equality holds after noticing that

Eθ
[
∂ logPθ(X)

∂θ

]
= 0.

29.3 Fisher information

The Fisher information is a way of measuring the amount of information that an observable random
variable X carries about an unknown, deterministic parameter θ upon which the distribution of the
observation X depends. Assume the probability density function of random variable X conditional
on the value of θ is pθ. The Fisher information is defined as
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Definition 29.1 (Fisher information). The Fisher information of the parameteric family of densiti-
ties {pθ : θ ∈ Θ} (with respect to µ) at θ is

I(θ) = E

[(
∂ log pθ
∂θ

)2
]

=

∫ (
∂pθ
∂θ

)2 1

pθ
dµ. (29.6)

Theorem 29.3 (Fisher information). Assume that pθ is twice differentiable with respect to θ and
satisfies the regularity condition:

∫
∂2pθ
∂θ2

dµ =
∂2

∂θ2

∫
pθdµ = 0.

The Fisher information can be written as

I(θ) = −Eθ
[
∂2 log pθ
∂θ2

]

Proof. Since

∂2 log pθ
∂θ2

=
∂2pθ
∂θ2

pθ
−
(
∂pθ
∂θ

pθ

)2

=
∂2pθ
∂θ2

pθ
−
(
∂ log pθ
∂θ

)2

and

E
[
∂2pθ
∂θ2

1

pθ

]
= 0

by assumption, we have

I(θ) = Eθ

[(
∂

∂θ
log pθ

)2
]

= −Eθ
[
∂2

∂θ2
log pθ

]
.

Theorem 29.4 (Fisher information: mutiple sample). Suppose random sample X1, . . . , Xn inde-
pendently and identically drawn from a distribution pθ. The Fisher information In(θ) provided by
random samples X1, . . . , Xn is

In(θ) = nI(θ),

where I(θ) is Fisher information provided by a single sample X1.

Proof. We first denote the joint pdf of X1, . . . , Xn as

pθ(x1, . . . , xn) =

n∏

i=1

pθ(xi).

Then the Fisher information In(θ) provided by X1, . . . , Xn is

In(θ) = Eθ

[(
∂pθ(X1, . . . , Xn)

∂θ

)2
]

=

∫
. . .

∫ (
∂pθ(x1, . . . , xn)

∂θ

)2

pθ(x1, . . . , xn)dx1dx2 . . . dxn,

which is an n-dimensional integral. Thus, by Theorem 29.3, the Fisher information provided by
X1, . . . , Xn can be calculated as

In(θ) = −Eθ
[
∂2 log pθ(X1, . . . , Xn)

∂θ2

]
= −Eθ

[
n∑

i=1

∂2 log pθ(Xi)

∂θ2

]
= −

n∑

i=1

Eθ
[
∂2 log pθ(Xi)

∂θ2

]
= nI(θ).
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29.4 Variations of HCR/CR lower bound

This section contains the following three versions of HCP/CR lower bound:

• Multiple Samples Version

• Multivariate Version

• Functional Version

29.4.1 Multiple-sample version

Suppose θ is some unknown, deterministic parameter and X1, . . . , Xn are n random variables iid
drawn from the distribution Pθ. The estimate θ̂ comes from X1, . . . , Xn. The relationships is shown
as follows:

θ → X1, . . . , Xn → θ̂.

Then the risk is lower bound by

Rθ(θ̂) ≥ Varθ(θ̂) ≥
(Eθθ̂ − Eθ′ θ̂)2

χ2(P⊗nθ′ ‖P⊗nθ )
.

For the HCR lower bound,

Rθ(θ̂) ≥ sup
θ 6=θ′

(θ − θ′)2

(1 + χ2(Pθ‖Pθ′))n − 1

θ′→θ
≥ 1

nI(θ)
.

29.4.2 Multivariate Version

We next show the multi-dimensional version of

χ2(P‖Q) ≥ (EPX − EQX)2

VarQX
.

Suppose P,Q are two distributions defined on Rp, then

χ2(P‖Q) = sup
g:Rp→R

[2EP g(X)− EQg2(X)− 1].

Furthter, if g(X) = 〈a,X〉+ 1, then

χ2(P‖Q) ≥ 2EP 〈a,X〉+ 1− EQ(〈a,X〉+ 1)2.

If we further assume EQX = 0 , then we have

χ2(P‖Q) ≥ 2 〈a,EPX〉 − aTEQ[XXT ]a.

Therefore, we finally have

χ2(P‖Q) ≥ (EPX − EQX)T
−1
cov
Q

(X)(EPX − EQX)

Let the loss function `(θ, θ̂) = ‖θ − θ̂‖22 and θ̂ be the unbiased estimate of θ, i.e., Eθθ̂ = θ. Then

(θ′ − θ)T −1
cov
θ

(θ̂)(θ′ − θ) ≤ χ2(Pθ′‖Pθ) θ
′→θ
= (θ′ − θ)T I(θ)(θ′ − θ) + ‖θ′ − θ‖22,
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where the equality follows from the Taylor expansion and Fisher information matrix is given as

I(θ) =

∫ ∇Pθ(∇Pθ)T
Pθ

.

If we take θ′ = θ + εu for an arbitrary unit vector u and ε→ 0, we have

uT
−1
cov
θ

(θ̂)u ≤ uT I(θ)u,

which is equivalent to
cov
θ

(θ̂) � I−1(θ),

and further indicates
Rθ(θ̂) = tr(cov

θ
(θ̂)) ≥ tr(I−1(θ)). (29.7)

Then we have

E‖θ − θ̂‖22 =

p∑

i=1

E(θ̂i − θi)2 ≥
p∑

i=1

1

Ii
, (29.8)

where Ii , Iii(θ), since
p∑

i=1

1

Ii(θ)
≤ tr(I−1(θ)).

Note that if we apply the one-dimensional CRLB for each coordinate we would get (29.8) which is
weaker than (29.7).

Finally, similar to Theorem 29.3, assuming the corresponding regularity of the Hessian, the
Fisher information matrix can be written as

I(θ) = Eθ[(∇ logPθ)(∇ logPθ)
T ] = cov

θ
(∇ logPθ) = −

(
Eθ
[
∂2 logPθ
∂θi∂θj

])
.

29.4.3 Functional Version

Assume that θ is an unknown parameter, that random variable X comes from the distribution Pθ
and that T̂ (X) is an estimation for T (θ), where T : Θ→ R. The relationship is shown as follows:

θ → X → T̂ .

If we further assume T̂ (θ) is an unbiased estimation for T (θ), then

Varθ(T̂ ) ≥ ‖∇T‖
2
2

I(θ)

29.5 Bayesian Cramér-Rao Lower Bound via data processing
inequality

The class will introduce two methods of proving Bayesian Cramér-Rao lower bound.

• Method 1: χ2 → Bayesian HCR→ Bayesian CR (next).

• Method 2: Classical Method.
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The notation used in this section is shown as follows:

• Θ = R

• `(θ, θ̂) = (θ − θ̂)2.

• π is a “nice” prior on R

The relationship can be described by the following Markov chain:

π → θ → X → θ̂.

Theorem 29.5 (Bayesian Cramér-Rao Lower Bound). Assuming suitable regularity conditions,
then

R∗ ≥ R∗π = inf
θ̂
Eπ(θ, θ̂)2 ≥ 1

Eθ∼πI(θ) + I(π)
,

where R∗π is the Bayes risk and I(π) =
∫
π′2
π is the Fisher information of the prior.

Proof. Consider the following comparison of experiments:

Q : π −→ θ
Pθ=QX|θ−−−−−−→ X −→ θ̂,

P : π̃ −→ θ
P̃θ=PX|θ−−−−−→ X −→ θ̂.

Then

χ2(PθX‖QθX) ≥ χ2(Pθθ̂‖Qθθ̂) data processing inequality

≥ χ2(Pθ−θ̂‖Qθ−θ̂) data processing inequality

≥ (EP (θ − θ̂)− EQ(θ − θ̂))2

Varπ(θ̂ − θ)
. by (??)

Let Tδ denote the pushforward of shifting by δ, that is, Tδ(PA) = PA+δ. Let us choose

Qθ = π,QX|θ = Pθ, Pθ = Tδπ, PX|θ = Pθ−δ,

then PX = QX which further indicates Pθ̂ = Qθ̂ and the mean of θ̂ under distribution of P equals

to the mean under the distribution under Q. Hence EP (θ − θ̂)− EQ(θ − θ̂) = δ! For the Bayesian
HCR lower bound,

R∗π ≥ sup
δ 6=0

δ2

χ2(PXθ‖QXθ)
≥ lim

δ→0

δ2

χ2(PXθ‖QXθ)
=

1

I(π) + Eθ∼π[I(θ)]
. (29.9)

The last step is justified as follows:

χ2(PXθ‖QXθ) =

∫
(PXθ −QXθ)2

QXθ
=

∫
[Pθ(PX|θ −QX|θ) + (Pθ −Qθ)QX|θ]2

QXθ

=

∫
P 2
θ

Qθ

∫
(PX|θ −QX|θ)2

QX|θ
+

∫
(Pθ −Qθ)2

Q2
θ

+ 2

∫
Pθ(Pθ −Qθ)

Qθ

∫
(PX|θ −QX|θ)

= χ2(Pθ‖Qθ) + E

[
χ2(PX|θ‖QX|θ) ·

(
Pθ
Qθ

)2
]

Then applying
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• χ2(Pθ‖Qθ) = χ2(Tδπ‖π) = δ2[I(π) + o(1)] by Taylor expansion,

• χ2(PX|θ‖QX|θ) = [I(θ) + o(1)]δ2 by Taylor expansion,

we obtain (29.9).

To end this part, we give a classical proof of the Bayesian Cramér-Rao Lower Bound (cf. [GL95a]):

Alternative Proof of Theorem 29.5. Note that

∫
θ̂(x)

∂

∂θ
(Pθ(x)π(θ)) dθ = 0, (29.10)

∫
θ
∂

∂θ
(Pθ(x)π(θ)) dθ = −

∫
Pθ(x)π(θ) dθ, (29.11)

where the first equation follows from the regularity condition, and the second equation follows from
integration by part.

Therefore,

E
[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
=

∫
µ(dx)

∫
(θ̂(x)− θ)∂(Pθ(x)π(θ))

∂θ

Pθ(x)π(θ)

Pθ(x)π(θ)
dθ

=

∫
µ(dx)

∫
Pθ(x)π(θ)dθ

= 1,

where the second line follows from (29.10) and (29.11).
By Cauchy-Schwarz inequality,

1 = E
[
(θ̂(X)− θ)∂ log(Pθ(X)π(θ))

∂θ

]
≤ E

[
(θ̂(X)− θ)2

]
E

[(
∂ log(Pθ(X)π(θ))

∂θ

)2
]
.

Hence

E
[
(θ̂(X)− θ)2

]
≥ 1

E
[(

∂ logPθ(X)
∂θ + ∂ log π(θ)

∂θ

)2
] =

1

E[I(θ)] + I(π)
.

29.6 Information Bound

In this section, we introduce the local version of the minimax lower bound. The local minimax risks
is defined in a quadratic form: inf θ̂ sup|θ−θ0|≤ε E(θ̂ − θ)2. Further, we have

inf
θ̂

sup
|θ−θ0|≤ε

E(θ̂ − θ)2 ≥ 1

I(θ) + nEθ∼π[I(θ)]

=
1 + o(1)

nEθ∼π[I(θ)]

If θ 7→ I(θ) is continuous, then

Eθ∼π[I(θ)] = I(θ0) + o(1) =
1 + o(1)

nI(θ)
.
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Assume the random variable Z coming from the distribution π, Z ∼ π. Let I(Z) , I(π). For

constant α, β 6= 0, then I(Z + α) = I(Z) and I(βZ) = I(Z)
β2 . If the π has the distribution of form

cos2 πx
2 , then minπ:[−1,1] I(π) = π2. If the distribution π has the form of cos2 π(x−θ0)

2ε , then I(θ) = π2

ε .
Then we have

inf
θ̂

sup
|θ0−θ|≤ε

E(θ̂ − θ)2 ≥ R∗π ≥
1

nEθ∼π[I(θ)] + I(π)
.

Now if we pick ε = n−1/4, we have

R∗ ≥ inf
θ̂

sup
|θ−θ0|≤n−1/4

Eθ(θ − θ̂)2 ≥ 1

nI(θ) + o(
√
n)

Optimize
=⇒ R∗ ≥ 1 + o(1)

n infθ0∈Θ I(θ0)
.

29.7 Example: Gaussian Location Model (GLM)

Let Xi = θ + Zi, where Zi ∼ N (0, 1), and θ ∼ π = N (0, s). Given i.i.d. observations X =
(X1, X2, · · · , Xn), we have

χ2(PθX ||QθX) = χ2(PθX̄ ||QθX̄)

= χ2(Pθ||Qθ) + EQ

[(
Pθ
Qθ

)2

χ2(PX̄|θ||QX̄|θ)
]

= (eδ
2/s − 1) + eδ

2/s(enδ
2 − 1)

= eδ
2(n+ 1

s
) − 1.

The first line follows from the fact that X̄ is a sufficient statistic (θ → X̄ → X), and the information
processing inequality. The second line follows from Lecture 7 (last equation, Page 5). The third line
follows from

χ2
(
N (θ, σ2)||N (θ + δ, σ2)

)
= eδ

2/σ2 − 1.

Therefore, by Bayesian HCR and Bayesian Cramér-Rao Lower Bound:

R∗π ≥ sup
δ 6=0

δ2

eδ
2(n+ 1

s
) − 1

= lim
δ→0

δ2

eδ
2(n+ 1

s
) − 1

=
1

n+ 1
s

=
s

sn+ 1
.

In this case, the lower bound is exact! (It has been verified that R∗π = s
sn+1 .) The minimax lower

bound is R∗ ≥ supsR
∗
π = 1

n .

29.8 An Alternative Information Inequality

If we choose a uniform prior in Theorem ??, the resulting lower bound is zero since the Fisher
information of uniform distribution is infinity. Nevertheless, it is possible to obtain an alternative
information inequality involving Eθ∼uniform[I(θ)]; however, it should be pointed out that the lower
bound applies to the minimax risk (not Bayes risk with respect to uniform prior) since the proof in
act involves two prior: uniform on the interval and uniform over the two endpoints.

Theorem 29.6. Assume the usual regularity condition:

∫
∂pθ
∂x

dx = 0.
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Then

R∗ = inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

Eθ[(θ − θ̂)2] ≥ 1

(ε−1 +
√
nĪ)2

where I denotes the average Fisher information:

I =
1

2ε

∫ θ0+ε

θ0−ε
I(θ) dθ.

Proof. See Problem 2 in Homework 1.

Remark 29.2. Theorem 29.6 is a strict improvement of the inequality of Chernoff-Rubin-Stein:2

inf
θ̂

sup
θ∈[θ0−ε,θ0+ε]

Eθ[(θ − θ̂)2] ≥ max
0<δ<1

min

{
δ2

4
,
1− ε
nĪ

}
=

1

(ε−1 +
√
nĪ + 1)2

.

Both this and Theorem 29.6 suffice to prove the optimal minimax lower bound.

29.9 Maximum Likelihood Estimator (MLE) and asymptotic
efficiency

We sketch the analysis of MLE in the classical large-sample asymptotics. LetX = (X1, X2, · · · , Xn)
i.i.d.∼

Pθ0 , define maximum likelihood estimator:

θ̂MLE = arg max
θ∈Θ

Lθ(X),

where

Lθ(X) = logP⊗nθ (X) =
n∑

i=1

logPθ(Xi).

Intuition:

Eθ0 [Lθ(X)− Lθ0(X)] = Eθ0

[
n∑

i=1

log
Pθ(Xi)

Pθ0(Xi)

]
= −nD(Pθ0 ||Pθ) ≤ 0.

So as long as θ0 6= θ, Lθ(X)−Lθ0(X) is a random walk with negative drift. From here the consistency
of MLE follows upon assuming appropriate regularity conditions.

Assuming more conditions one can obtain asymptotic normality and
√
n-consistency of MLE.

Next, we derive a local quadratic approximation of the log-likelihood function. By Taylor expansion,

Lθ(X) = Lθ0(X) +
n∑

i=1

∂ logPθ(Xi)

∂θ

∣∣∣∣
θ=θ0

(θ − θ0) +
1

2

n∑

i=1

∂2 logPθ(Xi)

∂θ2

∣∣∣∣
θ=θ0

(θ − θ0)2 + o((θ − θ0)2).

(29.12)

Recall that

E
[
∂ logPθ(Xi)

∂θ

]
= 0, E

[(
∂ logPθ(Xi)

∂θ

)2
]

= −E
[
∂2 logPθ(Xi)

∂θ2

]
= I(θ).

2This is given in [?, Lemma 1] without proof, which Chernoff credited to Rubin and Stein.
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By the Central Limit Theorem,

1√
nI(θ0)

n∑

i=1

∂ logPθ(Xi)

∂θ

d.−→ N (0, 1).

By the Weak Law of Large Numbers,
n∑

i=1

∂2 logPθ(Xi)

∂θ2
= −nI(θ0) + oP (n).

Substituting these quantities into (29.12), we obtain a local quadratic approximation of the log-
likelihood function:

Lθ(X) ≈ Lθ0(X) +
√
nI(θ0) · Z · (θ − θ0)− 1

2
nI(θ0)(θ − θ0)2,

where Z ∼ N (0, 1). Maximizing the right-hand side, we obtain:

θ̂MLE ≈ θ0 +
Z√
nI(θ0)

.

Therefore, MLE achieves the locally minimax lower bound R∗ ≥ 1+o(1)
nI(θ0) (see Section 7.5 in Lecture

7).

Remark 29.3. The general asymptotic theory of MLE and achieving information bound is due to
Hájek and LeCam.

29.10 Bayesian Lower Bounds for Functional Estimation

Next, we derive the Bayesian Cramér-Rao lower bound for functional estimation T̂ (X).

Theorem 29.7. Let T : Rp → R, and

θ → X
↓ ↓

T (θ) T̂ (X)

Then we have
R∗π ≥ (∇T )′I−1∇T.

Proof. By similar arguments in previous lectures,

χ2(PθX ||QθX) ≥ χ2(P
T−T̂ ||QT−T̂ ) ≥

(
EP [T − T̂ ]− EQ[T − T̂ ]

)2

VarQ[T − T̂ ]
. (29.13)

Let Q(θ) = π(θ), and P (θ) = π(θ − εu), where u ∈ Rp. In order to make the marginal distribution
of PX = QX , let Pθ(x) = Qθ−εu(x). Hence the numerator and the denominator in (29.13) satisfy:

(
EP [T − T̂ ]− EQ[T − T̂ ]

)2
= (EP [T ]− EQ[T ])2

=

(∫
π(θ)T (θ + εu) dθ −

∫
π(θ)T (θ) dθ

)2

=

(∫
π(θ) 〈∇T, εu〉+ o(ε)

)2

= ε2 〈Eπ∇T, u〉2 + o(ε2), (29.14)
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VarQ[T − T̂ ] ≤ EQ[(T − T̂ )2] = Rπ. (29.15)

The left-hand side of (29.13) satisfies

χ2(PθX ||QθX) = χ2(Pθ||Qθ) + EQ

[
χ2(PX|θ||QX|θ)

(
Pθ
Qθ

)2
]

=

∫
(π(θ − εu)− π(θ))2

π(θ)
dθ + Eπ

[∫
(Qθ−εu(x)−Qθ(x))2

Qθ(x)
dx

(
π(θ − εu)

π(θ)

)2
]

=

∫
ε2u′(∇π)(∇π)′u

π(θ)
dθ + Eπ

[∫
ε2u′(∇θQ)(∇θQ)′u

Qθ(x)
dx

]
+ o(ε2)

= ε2u′ (I(π) + Eπ[I(θ)])u+ o(ε2). (29.16)

Substituting (29.14), (29.15), and (29.16) into (29.13), we have

R∗π ≥
〈Eπ∇T, u〉2

u′ (I(π) + Eπ[I(θ)])u

Locally, Eπ∇T (θ) ≈ ∇T (θ0), and I(π) + Eπ[I(θ)] ≈ I(θ0). Hence

R∗π ≥ sup
u

〈∇T (θ0),u〉2
u′I(θ0)u = (∇T (θ0))′I−1(θ0)∇T (θ0).

The maximum is attained when u = I−1(θ0)∇T (θ0).3

Remark 29.4. The maximum likelihood estimator satisfies T (θ̂MLE) = T (θ0 + 1√
n
Z), where

Z ∼ N (0, I−1(θ0)). Hence

T (θ̂MLE) ∼ N
(
T (θ0),

1

n
(∇T (θ0))′I−1(θ0)(∇T (θ0))

)
.

The maximum likelihood estimator again asymptotically achieves the locally minimax lower bound.

29.11 Example: Classical asymptotics of entropy estimation

Corollary 29.1. Let X1, · · · , Xn
i.i.d.∼ p ∈Mk, whereMk denotes the set of probability distributions

over [k] = {1, . . . , k}. Then the minimax quadratic risk of entropy estimation satisfies

R∗ = inf
Ĥ

sup
P∈Mk

E[(Ĥ −H)2] =
1

n

(
max
p∈Mk

V (p) + o(1)

)
, n→∞

where

H(p) =

k∑

i=1

pi log
1

pi
= E

[
log

1

p(X)

]
,

V (p) = Var

(
log

1

p(X)

)

3This can be shown, for example, by letting ũ = I−
1
2 (θ0)u.
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Note: maxp∈Mk
V (p) ≤ log2 k for all k ≥ 3 (see [PPV10a, Eq. (464)]).

Proof. We have H : Θ → R+, where θ = (p1, p2, · · · , pk−1) (recall that pk = 1 − p1 − · · · − pk−1.)
Therefore,

∂H

∂pi
= log

pk
pi
, i = 1, 2, · · · , k − 1.

Next, we compute the Fisher Information matrix:

I(θ)ij = −E
[
∂2 log p(X)

∂pi∂pj

]
=

{
1
pi

+ 1
pk

if i = j
1
pk

if i 6= j
.

Therefore,

I(θ) =




1
p1

. . .
1

pk−1


+

1

pk
11′.

By the Matrix Inversion Lemma,4 we have

I−1(θ) =



p1

. . .

pk−1


+



p1
...

pk−1



[
p1 · · · pk−1

]
.

Therefore,

∇H ′I−1(θ)∇H =

k−1∑

i=1

pi log2 pk
pi
−
(
k−1∑

i=1

pi log
pk
pi

)2

=
k∑

i=1

pi log2 1

pi
+ log2 1

pk
− 2

k∑

i=1

pi log
1

pi
log

1

pk
−
((

k∑

i=1

pi log
1

pi

)
− log

1

pk

)2

=
k∑

i=1

pi log2 1

pi
−
(

k∑

i=1

pi log
1

pi

)2

= E
[
log2 1

p(X)

]
−
(
E
[
log

1

p(X)

])2

= Var

[
log

1

p(X)

]
= V (p).

Given n samples, the Fisher Information matrix is nI(θ). By Theorem 29.7,

R∗ ≥ 1 + o(1)

n
∇H ′I−1(θ)∇H =

1 + o(1)

n
V (p).

4(A+ UCV )−1 = A−1U(C−1 + V A−1U)−1V A−1.
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§ 30. Applications to statistical decision theory

In this lecture we discuss applications of information theory to statistical decision theory. Although
this lecture only focuses on statistical lower bound (converse result), let us remark in passing that
the impact of information theory on statistics is far from being only on proving impossibility results.
Many procedures are based on or inspired by information-theoretic ideas, e.g., those based on
metric entropy, pairwise comparison, maximum likelihood estimator and analysis, minimum distance
estimator (Wolfowitz), maximum entropy estimators, EM algorithm, minimum description length
(MDL) principle, etc.

We discuss two methods: LeCam-Fano (hypothesis testing) method and the rate-distortion
(mutual information) method.

We begin with the decision-theoretic setup of statistical estimation. The general paradigm is
the following:

θ︸︷︷︸
parameter

→ X︸︷︷︸
data

→ θ̂︸︷︷︸
estimator

The main ingredients are

• Parameter space: Θ 3 θ

• Statistical model: {PX|θ : θ ∈ Θ}, which is a collection of distributions indexed by the
parameter

• Estimator: θ̂ = θ̂(X)

• Loss function: `(θ, θ̂) measures the inaccuracy.

The goal is make random variable `(θ, θ̂) small either in probability or in expectation, uniformly
over the unknown parameter θ. To this end, we define the minimax risk

R∗ = inf
θ̂

sup
θ∈Θ

Eθ[`(θ, θ̂)].

Here Eθ denotes averaging with respect to the randomness of X ∼ Pθ.
Ideally we want to compute R∗ and find the minimax optimal estimator that achieves the

minimax risk. This tasks can be very difficult especially in high dimensions, in which case we will
be content with characterizing the minimax rate, which approximates R∗ within multiplicative
universal constant factors, and the estimator that achieves a constant factor of R∗ will be called
rate-optimal.

As opposed to the worst-case analysis of the minimax risk, the Bayes approach is an average-case
analysis by considering the average risk of an estimator over all θ ∈ Θ. Let the prior π be a
probability distribution on Θ, from which the parameter θ is drawn. Then, the average risk (w.r.t
π) is defined as

Rπ(θ̂) = Eθ∼πRθ(θ̂) = Eθ,X`(θ, θ̂).
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The Bayes risk for a prior π is the minimum that the average risk can achieve, i.e.

R∗π = inf
θ̂
Rπ(θ̂).

By the simple logic of “maximum ≥ average”, we have

R∗ ≥ R∗π (30.1)

and in fact R∗ = supπ∈M(Θ)R
∗
π whenever the minimax theorem holds, where M(Θ) denotes the

collection of all probability distributions on Θ. In other words, solving the minimax problem can be
done by finding the least-favorable (Bayesian) prior. Almost all of the minimax lower bounds boil
down to bounding from below the Bayes risk for some prior. When this prior is uniform on just two
points, the method is known under a special name of (two-point) LeCam or LeCam-Fano method.

Note also that when `(θ, θ̂) = ‖θ− θ̂‖22 is the quadratic `2 risk, the optimal estimator achieving R∗π
is easy to describe: θ̂∗ = E[θ|X]. This fact, however, is of limited value, since typically conditional
expectation is very hard to analyze.

30.1 Fano, LeCam and minimax risks

We demonstrate the LeCam-Fano method on the following example:

• Parameter space θ ∈ [0, 1]

• Observation model Xi – i.i.d. Bern(θ)

• Quadratic loss function:
`(θ̂, θ) = (θ̂ − θ)2

• Fundamental limit:
R∗(n) , sup

θ0∈[0,1]
inf
θ̂
E[(θ̂(Xn)− θ)2|θ = θ0]

A natural estimator to consider is the empirical mean:

θ̂emp(X
n) =

1

n

∑

i

Xi

It achieves the loss

sup
θ0

E[(θ̂emp − θ)2|θ = θ0] = sup
θ0

θ0(1− θ0)

n
=

1

4n
. (30.2)

The question is how close this is to the optimal.
First, recall the Cramer-Rao lower bound : Consider an arbitrary statistical estimation problem

θ → X → θ̂ with θ ∈ R and PX|θ(dx|θ0) = f(x|θ)µ(dx) with f(x|θ) is differentiable in θ. Then for

any θ̂(x) with E[θ̂(X)|θ] = θ + b(θ) and smooth b(θ) we have

E[(θ̂ − θ)2|θ = θ0] ≥ b(θ0)2 +
(1 + b′(θ0))2

JF (θ0)
, (30.3)

where JF (θ0) = Var[∂ ln f(X|θ)
∂θ |θ = θ0] is the Fisher information (5.4). In our case, for any unbiased

estimator (i.e. b(θ) = 0) we have

E[(θ̂ − θ)2|θ = θ0] ≥ θ0(1− θ0)

n
,
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and we can see from (30.2) that θ̂emp is optimal in the class of unbiased estimators.
Can biased estimators do better? The answer is yes. Consider

θ̂bias =
1− εn
n

∑

i

(Xi −
1

2
) +

1

2
,

where choice of εn > 0 “shrinks” the estimator towards 1
2 and regulates the bias-variance tradeoff.

In particular, setting εn = 1√
n+1

achieves the minimax risk

sup
θ0

E[(θ̂bias − θ)2|θ = θ0] =
1

4(
√
n+ 1)2

, (30.4)

which is better than the empirical mean (30.2), but only slightly.
How do we show that arbitrary biased estimators can not do significantly better? This is where

LeCam-Fano method comes handy. Suppose some estimator θ̂ achieves

E[(θ̂ − θ)2|θ = θ0] ≤ ∆2
n (30.5)

for all θ0. Then, setup the following probability space:

W → θ → Xn → θ̂ → Ŵ

• W ∼ Bern(1/2)

• θ = 1/2 + κ(−1)W∆n where κ > 0 is to be specified later

• Xn is i.i.d. Bern(θ)

• θ̂ is the given estimator

• Ŵ = 0 if θ̂ > 1/2 and Ŵ = 1 otherwise

The idea here is that we use our high-quality estimator to distinguish between two hypotheses
θ = 1/2± κ∆n. Notice that for probability of error we have:

P[W 6= Ŵ ] = P[θ̂ > 1/2|θ = 1/2− κ∆n] ≤ E[(θ̂ − θ)2]

κ2∆2
n

≤ 1

κ2

where the last steps are by Chebyshev and (30.5), respectively. Thus, from Fano’s inequality
Theorem 6.3 we have

I(W ; Ŵ ) ≥
(

1− 1

κ2

)
log 2− h(κ−2) .

On the other hand, from data-processing and golden formula we have

I(W ; Ŵ ) ≤ I(θ;Xn) ≤ D(PXn|θ‖Bern(1/2)n|Pθ)

Computing the last divergence we get

D(PXn|θ‖Bern(1/2)n|Pθ) = nd(1/2− κ∆n‖1/2) = n(log 2− h(1/2− κ∆n))

As ∆n → 0 we have
h(1/2− κ∆n) = log 2− 2 log e · (κ∆n)2 + o(∆2

n) .
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So altogether, we get that for every fixed κ we have
(

1− 1

κ2

)
log 2− h(κ−2) ≤ 2n log e · (κ∆n)2 + o(n∆2

n) .

In particular, by optimizing over κ we get that for some constant c ≈ 0.015 > 0 we have

∆2
n ≥

c

n
+ o(1/n) .

Together with (30.2), we have

0.015

n
+ o(1/n) ≤ R∗(n) ≤ 1

4n
,

and thus the empirical-mean estimator is rate-optimal.
We mention that for this particular problem (estimating mean of Bernoulli samples) the minimax

risk is known exactly:

R∗(n) =
1

4(1 +
√
n)2

(30.6)

but obtaining this requires different methods.1 In fact, even showing R∗(n) = 1
4n + o(1/n) requires

careful priors on θ (unlike the simple two-point prior we used above).2

We demonstrated here the essense of the Fano method of proving lower (impossibility) bounds
in statistical decision theory. Namely, given an estimation task we select a prior, uniform on finitely
many θ’s, which on one hand yields a rather small information I(θ;X) and on the other hand has
sufficiently separated points which thus should be distinguishable by a good estimator. For more
see [Yu97].

A natural (and very useful) generalization is to consider non-discrete prior Pθ, and use the
following natural chain of inequalities

f(Pθ, R) ≤ I(θ; θ̂) ≤ I(θ;Xn) ≤ sup
Pθ

I(θ;Xn) ,

where
f(Pθ, R) , inf{I(θ; θ̂) : Pθ̂|θ s.t. E[`(θ, θ̂)] ≤ R}

is the rate-distortion function. This method we discuss next.

1The easiest way to get this is to apply (30.1). . Fortunately, in this case if π is the β-distribution, computation of
conditional expectation can be performed in closed form, and optimizing parameters of the β-distribution one recovers
a lower bound that together with (30.4) establishes (30.6). Note that the resulting worst-case π is not uniform, and in
fact β →∞ (i.e. π concentrates in a small region around θ = 1/2).

2It follows from the following Bayesian Cramer-Rao lower bound [GL95b] : For any estimator θ̂ and for any prior
π(θ)dθ with smooth density π we have

Eθ∼π[(θ̂(X)− θ)2] ≥ (log e)2

E[JF (θ)] + JF (π)
,

where JF (θ) is as in (30.3), JF (π) , (log e)2
∫ (π′(θ))2

π(θ)
dθ. Then taking π supported on a n−1/4-neighborhood

surrounding a given point θ0 we get that E[JF (θ)] = n
θ0(1−θ0)

+ o(n) and JF (π) = o(n), yielding

R∗(n) ≥ θ0(1− θ0)

n
+ o(1/n) .

This is a rather general phenomenon: Under regularity assumptions in any iid estimation problem θ → Xn → θ̂ with
quadratic loss we have

R∗(n) =
1

infθ JF (θ)
+ o(1/n) .
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30.2 Mutual information method

The main workhorse will be

1. Data processing inequality

2. Rate-distortion theory

3. Capacity and mutual information bound

To illustrate the mutual information method and its execution in various problems, we will discuss
three vignettes:

• Denoise a vector;

• Denoise a sparse vector;

• Community detection.

Here’s the main idea of the mutual information method. Fix some prior π and we turn to lower
bound R∗π. The unknown θ is distributed according to π. Let θ̂ be a Bayes optimal estimator that
achieves the Bayes risk R∗π.

The mutual information method consists of applying the data processing inequality to the
Markov chain θ → X → θ̂:

inf
Pθ̃|θ:E`(θ,θ̃)≤R∗π

I(θ; θ̂) ≤ I(θ, θ̂)
dpi
≤ I(θ;X). (30.7)

Note that

• The leftmost quantity can be interpreted as the minimum amount of information required for
an estimation task, which is reminiscent of rate-distortion function.

• The rightmost quantity can be interpreted as the amount of information provided by the
data about the parameter. Sometimes it suffices to further upper-bound it by capacity of the
channel θ 7→ X:

I(θ;X) ≤ sup
π∈M(Θ)

I(θ;X). (30.8)

• This chain of inequalities is reminiscent of how we prove the converse in joint-source channel
coding (Section 27.3), with the capacity-like upper bound and rate-distortion-like lower bound.

• Only the lower bound is related to the loss function.

• Sometimes we need a smart choice of the prior.
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30.2.1 Denoising (Gaussian location model)

The setting is the following: given n noisy observations of a high-dimensional vector θ ∈ Rp,

Xi
i.i.d.∼ N(θ, Ip), i = 1, . . . , n (30.9)

The loss is simply the quadratic error: `(θ, θ̂) = ‖θ − θ̂‖22. Next we show that

R∗ =
p

n
, ∀p, n. (30.10)

Upper bound. Consider the estimator X̄ = 1
n

∑n
i=1Xi. Then X̄ ∼ N(θ, 1

nIp) and clearly
E‖X̄ − θ‖22 = p/n.

Lower bound. Consider a Gaussian prior θ ∼ N (0, σ2Ip). Instead of evaluating the exact Bayes
risk (MMSE) which is a simple exercise, let’s implement the mutual information method (30.7).
Given any estimator θ̂. Let D = E‖θ̂ − θ‖22. Then

p

2
log

σ2

D/p
= inf

Pθ̃|θ:E‖θ−θ̃‖22≤D
I(θ; θ̂) ≤ I(θ, θ̂) ≤ I(θ;X)

suff stat
= I(θ; X̄) =

p

2
log

(
1 +

σ2

1/n

)
.

where the left inequality follows from the Gaussian rate-distortion function (27.3) and the single-
letterization result (Theorem 26.1) that reduces p dimensions to one dimension. Putting everything
together we have

R∗ ≥ R∗π ≥
pσ2

1 + nσ2
.

Optimizing over σ2 (by sending it to ∞), we have R∗ ≥ p/n.

30.2.2 Denoising sparse vectors

Here the setting is identical to (30.9), expect that we have the prior knowledge that θ is sparse, i.e.,

θ ∈ Θ , {all p-dim k-sparse vectors} = {θ ∈ Rp : ‖θ‖0 ≤ k}

where ‖θ‖0 =
∑

i∈[p] 1{θi 6=0} is the sparisty (number of nonzeros) of θ.
The minimax rate of denoising k-sparse vectors is given by the following

R∗ � k

n
log

ep

k
, ∀k, p, n. (30.11)

Before proceeding to the proof, a quick observation is that we have the oracle lower bound R∗ ≥ k
n

follows from (30.10), since if the support of the θ is known which reduces the problem to k dimensions.
Thus, the meaning of statement (30.11) is that the lack of knowledge of the support contributes
(merely) a log factor.

To show this, again, by passing to sufficient statistics, it suffices to consider the observation
X ∼ N(θ, 1

nIp). For simplicity we only consider n = 1 below.
Upper bound. (Sketch) The rate is achieved by thresholding the observation X that only keep

the large entries. The intuition is that since the ground truth θ has many zeros, we should kill the
small entries in X. Since ‖Z‖∞ ≤ (2 + ε)

√
log p with high probability, hard thresholding estimator

that sets all entries of X with magnitude ≤ (2 + ε)
√

log p achieves a mean-square error of O(k log p),
which is rate optimal unless k = Ω(p), in which case we can simply apply the original X as the
estimator.
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Lower bound. In view of the oracle lower bound, it suffices to consider k = O(p). Next we
assume k ≤ p/16. Consider a p-dimensional Hamming sphere of radius k, i.e.

B = {b ∈ {0, 1}p : wH(b) = k},

where wH(b) is the Hamming weights of b. Let b be drawn uniformly from the set B and θ = τb,

where τ =
√

k
100 log p

k . Thus, we have the following Markov chain which represents our problem

model,
b→ θ → X → θ̂ → b̂.

Note that the channel θ → X is just p uses of the AWGN channel, with power τ2k
p , and thus

by Theorem 5.6 and single-letterization (Theorem 6.1) we have

I(θ; θ̂) ≤ I(θ;X) ≤ p

2
log

(
1 +

τ2k

p

)
≤ sup

θ∈G

log e

2
‖θ‖22 = ckτ2 ,

for some c > 0. We note that related techniques have been used in proving lower bound for stable
recovery in noiseless compressed sensing [PW12].

To give a lower bound for I(θ; θ̂), consider

b̂ = argmin
b∈B

‖θ̂ − τb‖22.

Since b̂ is the minimizer of ‖θ̂ − τb‖22, we have,

‖τ b̂− θ‖2 ≤ ‖τ b̂− θ̂‖2 + ‖θ − θ̂‖2 ≤ 2‖θ − θ̂‖2.

Thus,
τ2dH(b, b̂) = ‖τ b̂− θ‖22 ≤ 4‖θ − θ̂‖22,

where dH denotes the Hamming distance between b and b̂. Suppose that E‖θ̂ − θ‖22 = ετ2k. Then
we have EdH(b, b̂) ≤ 4εk. Our goal is to show that ε is at least a small constant by the mutual
information method. First,

I(b̂; b) ≥ min
EdH(b,b̂)≤4εk

I(b̂; b).

Before we bound the RHS, let’s first guess its behavior. Note that it is the rate-distortion function
of the random vector b, which is uniform over B, the Hamming sphere of radius k, and each entry is
Bern(k/p). Had the entries been iid, then rate-distortion theory ((27.1) and Theorem 26.1) would
yield that the RHS is simply p(h(k/p) − h(4εk/p)). Next, following the proof of (27.1), we show
that this behavior is indeed correct:

min
EdH(b,b̂)≤4εk

I(b̂; b) = H(b)− max
EdH(b,b̂)≤4εk

H(b|b̂)

= log

(
p

k

)
− max

EdH(b,b̂)≤4εk
H(b⊕ b̂|b̂)

≥ log

(
p

k

)
− max

EwH(W )≤4εk
H(W ).

The maximum-entropy problem is easy to solve:

max
EwH(W )=m,W∈{0,1}p

H(W ) = ph

(
m

p

)
. (30.12)
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The solution isW = Bern(m/p)⊗p. One way to get this is to writeH(W ) = p log 2−D(PW ‖Bern(1/2)⊗p)
and apply Theorem 14.3 with X = wH(W ), to get that optimal PW (w) ∼ exp{cwH(w)}. In the
end we get Combine this with the previous bound, we get

I(b̂; b) ≥ log

(
p

k

)
− ph(

4εk

p
).

On the other hand, we have

I(b̂; b) ≤ I(θ;Y ) ≤ cτ2 = c′k log
p

k
.

Note that h(α) � −α logα for α < 1
4 . WLOG, since k ≤ p

16 , we have ε ≥ c0 for some universal
constant c0. Therefore

R∗ ≥ ετ2k & k log
p

k
.

Combining with the result in the oracle lower bound, we have the desired.

R∗ & k + k log
p

k

or for general n ≥ 1

R∗ &
k

n
log

ep

k
.

Remark 30.1. Let R∗k,p = R∗. For the case k = o(p), the sharp asymptotics is

R∗k,p ≥ (2 + op(1))k log
p

k
.

To prove this result, we need to first show that for the case k = 1,

R∗1,p ≥ (2 + op(1)) log p.

Next, show that for any k, the minimax risk is lower bounded by the Bayesian risk with the block
prior. The block prior is that we divide the p-coordinate into k blocks, and pick one coordinate
from each p/k-coordinate uniformly. With this prior, one can show

R∗k,p ≥ kR∗1,p/k = (2 + op(1))k log
p

k
.

30.2.3 Community detection

We only consider the problem of a single hidden community. Given a graph of n vertices, a community
is a subset of vertices where the edges tend to be denser than everywhere else. Specifically, we
consider the planted dense subgraph model (i.e., the stochastic block model with a single community).
Let the community C be uniformly drawn from all subsets of [n] of cardinality k. The graph is
generated by independently connecting each pair of vertices, with probability p if both belong to the
community C∗, and with probability q otherwise. Equivalently, in terms of the adjacency matrix A,
Aij ∼ Bern(p) if i, j ∈ C and Bern(q) otherwise. Assume p > q. Thus the subgraph induced by C∗

is likely to be denser than the rest of the graph. We are interested in the large-graph asymptotics,
where both the network size n and the community size k grow to infinity.

Given the adjacency matrix A, the goal is to recover the hidden community C almost perfectly,
i.e., achieving

E[|Ĉ4C|] = o(k) (30.13)
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Given the network size n and the community size k, there exists a sharp condition on the edge
density (p, q) that says the community needs to be sufficient denser than the outside. It turns
out this is precisely described by the binary divergence d(p‖q). Under the assumption that p/q is
bounded, e.g., p = 2q, the information-theoretic necessary condition is

k · d(p‖q)→∞ and lim inf
n→∞

kd(p‖q)
log n

k

≥ 2. (30.14)

This condition is tight in the sense that if in the above “≥” is replaced by “>”, then there exists an
estimator (e.g., the maximal likelihood estimator) that achieves (30.13).

Next we only prove the necessity of the second condition in (30.14), again using the mutual
information method. Let ξ and ξ̂ be the indicator vector of the community C and the estimator
Ĉ, respectively. Thus ξ = (ξ1, . . . , ξn) is uniformly drawn from the set {x ∈ {0, 1}n : wH(x) = k}.
Therefore ξi’s are individually Bern(k/n). Let E[dH(ξ, ξ̂)] = εnk, where εn → 0 by assumption.
Consider the following chain of inequalities, which lower bounds the amount of information required
for a distortion level εn:

I(A; ξ)
dpi
≥ I(ξ̂; ξ) ≥ min

E[d(ξ̃,ξ)]≤εnk
I(ξ̃; ξ) ≥ H(ξ)− max

E[d(ξ̃,ξ)]≤εnk
H(ξ̃ ⊕ ξ)

(30.12)
= log

(
n

k

)
− nh

(
εnk

n

)
≥ k log

n

k
(1 + o(1)),

where the last step follows from the bound
(
n
k

)
≥
(
n
k

)k
, the assumption k/n is bounded away from

one, and the bound h(p) ≤ −p log p+ p for p ∈ [0, 1].
On the other hand, to bound the mutual information, we use the golden formula Corollary 4.1

and choose a simple reference Q:

I(A; ξ) = min
Q

D(PA|ξ‖Q|Pξ)

≤ D(PA|ξ‖Bern(q)⊗(n2)|Pξ)

=

(
k

2

)
d(p‖q).

Combining the last two displays yields lim infn→∞
(k−1)D(P‖Q)

log(n/k) ≥ 2.

30.3 Assouad’s method

Theorem 16.2 (Assouad’s lemma) provides another method for lower bounding the minimax risk
(especially popular for the high-dimensional questions, like density estimation). A high-level idea is
that in the (two-point) LeCam method we attempt to find two values which have small TV(Pθ0 , Pθ1)
implying that the minimax risk is bounded by the distance between θ0 and θ1. Assouad’s improvement
is that if we manage to find 2k pairs of such θ’s and arrange then adjacent on the vertices of the
hypercube, then the minimax risk is now bounded by k times the distance between adjacent θ’s.

Here is a formal description:

• Step 0. Consider a statistical problem θ ∈ Θ, X ∼ Pθ with a loss function `(θ, θ̂) (note that
this also models questions like estimating f(θ)).
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• Step 1. “Embedding the ε-hypercube in Θ”. Suppose 2k values θbk ∈ Θ, bk ∈ {0, 1}k were
selected so that one can convert any estimator θ̂(X) into an estimator B̂k so that for some
ε > 0:

εE[dH(B̂k, Bk)] ≤ E[`(θ, θ̂(X))] , (30.15)

where we have the space

Bk → θ → X → θ̂ → B̂k , Bi
i.i.d.∼ Bern(1/2), θ = θBk , X ∼ Pθ (30.16)

As an example, if Θ is a subset of a Hilbert space and `(θ̂, θ) = ‖θ̂ − θ‖2, one chooses
θbk = ε

∑k
i=1 biui where u1, . . . , uk are orthonormal in Θ.

• Step 2. “Bounding adjacent TV.” Suppose furthermore that for any bk, b̃k differing in one
coordinate we have

TV(Pθ
bk
, Pθ

b̃k
) ≤ c < 1 . (30.17)

• Step 3. Then we obtain a lower bound on the minimax risk:

inf
θ̂

sup
θ∈Θ

EX∼Pθ [`(θ̂(X), θ)] ≥ kε1− c
2

. (30.18)

Indeed, from Step 1 it is sufficient to lower-bound E[dH(B̂k(X), Bk)] which is a sum of

P[B̂i(X) 6= Bi] ≥ inf
f

P[f(X,B∼i) 6= Bi] ≥
1− c

2

where in the first step we allowed “decoder of Bi” to depend on side-information B∼i =
(Bj , j 6= i), and in the second step we used (30.17). The proof of (30.18) is then completed by
invoking (30.15).

As we described above, the key advantage here is the extra-factor k in (30.18) compared to the
LeCam method.

Example 30.1. Say the data X is distributed according to Pθ parameterized by θ ∈ Rk and let
θ̂ = θ̂(X) be an estimator for θ. The goal is to minimize the maximal risk supθ∈Θ Eθ[‖θ − θ̂‖1]. A

lower bound (Bayesian) to this worst-case risk is the average risk E[‖θ− θ̂‖1], where θ is distributed
to any prior. Consider θ uniformly distributed on the hypercube {0, ε}k with side length ε embedded
in the space of parameters. Then

inf
θ̂

sup
θ∈{0,ε}k

E[‖θ − θ̂‖1] ≥ kε

4
min

dH(θ,θ′)=1
(1− TV(Pθ, Pθ′)) . (30.19)

Explicitly, we have (WLOG assume ε = 1).

E[‖θ − θ̂‖1]
(a)

≥ 1

2
E[‖θ − θ̂dis‖1] =

1

2
E[dH(θ, θ̂dis)]

≥ 1

2

k∑

i=1

min
θ̂i=θ̂i(X)

P[θi 6= θ̂i]
(b)
=

1

4

k∑

i=1

(1− TV(PX|θi=0, PX|θi=1))

(c)

≥ k

4
min

dH(θ,θ′)=1
(1− TV(Pθ, Pθ′)) .
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Here θ̂dis is the discretized version of θ̂, i.e. the closest point on the hypercube to θ̂ and so
(a) follows from |θi − θ̂i| ≥ 1

21{|θi−θ̂i|>1/2} = 1
21{θi 6=θ̂dis,i}, (b) follows from the optimal binary

hypothesis testing for θi given X, (c) follows from the convexity of TV: TV(PX|θi=0, PX|θi=1) =

TV( 1
2k−1

∑
θ:θi=0 PX|θ,

1
2k−1

∑
θ:θi=1 PX|θ) ≤ 1

2k−1

∑
θ:θi=0 TV(PX|θ, PX|θ⊕ei) ≤ maxdH(θ,θ′)=1 TV(Pθ, Pθ′).

Alternatively, (c) also follows from by providing the extra information θ\i and allowing θ̂i = θ̂i(X, θ
\i)

in the second line.

30.3.1 Assouad’s lemma from the Mutual information method

One can integrate the Assouad’s idea into the mutual information method. Consider, the probabilistic
setting of (30.16). From the rate-distortion function of Bernoulli source (Section 27.1.1), we know
that for any B̂k and τ > 0 there is some τ ′ > 0 such that

I(Bk;X) ≤ k(1− τ) log 2 =⇒ E[dH(B̂k, Bk)] ≥ kτ ′ . (30.20)

Here τ ′ is related to τ by τ log 2 = h(τ ′). Thus, if the “ε-hypercube embedding” has already been
done, the bound similar to (30.18) will follow once we can bound I(Bk;X) away from k log 2.

Can we use the pairwise assumption (30.17) to do that? Yes! In fact we can recover exactly
(30.18). Notice that thanks to the independence of Bi’s we have3

I(Bi;X|Bi−1) = I(Bi;X,B
i−1) ≤ I(Bi;X,B\i) = I(Bi;X|B\i) .

Applying the chain rule leads to the upper bound

I(Bk;X) =
k∑

i=1

I(Bi;X|Bi−1) ≤
k∑

i=1

I(Bi;X|B\i) ≤ k
(

log 2− h
(

1− c
2

))
,

where in the last step we also used a fact that for any B ∼ Bern(1/2) we have

I(B;X) ≤ log 2− h
(

1− TV(PX|B=0, PX|B=1)

2

)
. (30.21)

This implies the desired (30.18) by the mutual information method. To see (30.21), simply note
that I(B;X) = E[log 2 − h(minb P [B = b|X])] ≤ log 2 − h(E[minb P [B = b|X]]) by concavity and
observe that E[minb P [B = b|X])] = 1

2

∫
(PX|B=0 ∧ PX|B=1) = 1−TV

2 .

In all, we may summarize Assouad’s method as a convenient method for bounding I(Bk;X) away
from the full entropy (k log 2) on the basis of distances between PX|Bk corresponding to adjacent

Bk’s.

3Equivalently, this also follows from the convexity of the mutual information in the channel (cf. Theorem 5.3).
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[Ç11] Erhan Çinlar. Probability and Stochastics. Springer, New York, 2011.

[Cho56] Noam Chomsky. Three models for the description of language. IRE Trans. Inform. Th.,
2(3):113–124, 1956.

[CK81a] I. Csiszár and J. Körner. Graph decomposition: a new key to coding theorems. IEEE
Trans. Inf. Theory, 27(1):5–12, 1981.

[CK81b] I. Csiszár and J. Körner. Information Theory: Coding Theorems for Discrete Memoryless
Systems. Academic, New York, 1981.

[CS83] J. Conway and N. Sloane. A fast encoding method for lattice codes and quantizers. IEEE
Transactions on Information Theory, 29(6):820–824, Nov 1983.

[Csi67] I. Csiszár. Information-type measures of difference of probability distributions and
indirect observation. Studia Sci. Math. Hungar., 2:229–318, 1967.

[CT06] Thomas M. Cover and Joy A. Thomas. Elements of information theory, 2nd Ed. Wiley-
Interscience, New York, NY, USA, 2006.

[Doo53] Joseph L. Doob. Stochastic Processes. New York Wiley, 1953.

[Eli55] Peter Elias. Coding for noisy channels. IRE Convention Record, 3:37–46, 1955.

[Eli72] P. Elias. The efficient construction of an unbiased random sequence. Annals of Mathe-
matical Statistics, 43(3):865–870, 1972.

[ELZ05] Uri Erez, Simon Litsyn, and Ram Zamir. Lattices which are good for (almost) everything.
IEEE Transactions on Information Theory, 51(10):3401–3416, Oct. 2005.

[ES03] Dominik Maria Endres and Johannes E Schindelin. A new metric for probability
distributions. IEEE Transactions on Information theory, 49(7):1858–1860, 2003.

[EZ04] U. Erez and R. Zamir. Achieving 1
2 log(1 + SNR) on the AWGN channel with lattice

encoding and decoding. IEEE Trans. Inf. Theory, IT-50:2293–2314, Oct. 2004.
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