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ABSTRACT. The evolution of tokens through a deep transformer models can
be modeled as an interacting particle system that has been shown to exhibit
an asymptotic clustering behavior akin to the synchronization phenomenon
in Kuramoto models. In this work, we investigate the long-time clustering
of mean-field transformer models. More precisely, we establish exponential
rates of contraction to a Dirac point mass for any suitably regular initializa-
tion under some assumptions on the parameters of transformer models, any
suitably regular mean-field initialization synchronizes exponentially fast with
some quantitative rates.
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The (self-)attention mechanism, initially introduced by [BCB15], forms the foun-
dation of the transformer architecture developed in [Vas17]. This revolutionary ar-
chitecture has become fundamental for large language models (LLMs), catalyzing

remarkable advances in artificial intelligence.

Recently, [GLPR25] proposed to study how a deep stack of attention layers
processes information as a mean-field interacting particle system on the sphere S?—1
that exhibits long-time clustering properties; see also [SABP22, GLPR24, KPR24,

KBH24, $S24, CRMB24, GKPR24, BPA25, AST24, BKK*25, CACP25].

This model—called attention dynamics—captures the representation of tokens
as they evolve through the successive layers of a transformer. In particular, the
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clustering phenomenon put forward in [GLPR24, GLPR25] is critical to under-
standing the structure of internal representations for these pervasive models. More

specifically, in attention dynamics, n tokens z1,...,z, € S*! evolve as
1 n

(1.1) Ti(t) = Py, 1) E Zl )eai (t)7m7(t)>] t>0,i=1,...,n,
j=

where 8 > 0, P,[y] := y — {x,y)x denotes the projection of y € IR? onto the
hyperplane T,S?~! tangent to the sphere at x € ST~1. We refer to [GLPR25] for a
derivation of this model and its relationship to the attention mechanism and layer
normalization. When d = 2 and 8 = 0 attention dynamics coincide with the well-
known Kuramoto model [Kur75, KK84, ABPV 105, BCM14]. It was observed and
demonstrated in various situations that these tokens converge to a single token:
x;(t) — x4 as t — oo. This phenomenon is called synchronization or simply
clustering and we use these terms interchangeably.

Note that the system of ODEs (1.1) is of the mean-field type. Indeed token ¢
interact with all tokens only through their empirical distribution at time t. We
denote this distribution by u; and recall that

n
M = L 2 Ozi(t) -
"o

In turn, the evolution of pu; is governed by the continuity equation
(12) Qe+ div (X 9) =0, Xy p(a) = J P [y]e” ™ dpu(y),
Sd—l

where here and throughout the paper div = dide_1 denotes the divergence operator
on the sphere.

As pointed out in [GLPR25], equation (1.2) describes a Wasserstein gradient
flow that aims to maximize the functional

(1.3) p— Eglu *H P@w dp(a) dp(y)

where both integrals are over S?~!. It is easy to see that E is maximized at Dirac
point masses d,, for some z¢ € S9=1. This maximum energy state corresponds to a
clustering of the tokens into a single point. Thanks to these observations, clustering
of n tokens hinges on three classical tools from finite dimensional dynamical systems
theory: the dynamics for the the n-tuple (zy1(t),...,7,(t)) € (S¥71)" can be shown
to (i) converge by the Lojasiewicz inequality, and (ii) avoid saddle points from
almost every initialization by the center-stable manifold theorem. Moreover, all
stationary points are saddle points except for the global maximizers where x; =

- = xp; [GLPR25, KPR24, CRMB24, MTG17].

The number n of tokens that can be processed simultaneously by a transformer
model is called context length and scaling up its value is a major engineering en-
deavor because of its direct impact on performance—current frontier models handle
contexts with millions of tokens [Goo24|. However, past work on attention dynam-
ics has largely focused on studying asymptotics where ¢ — o0 and n remains finite
implicitly assuming that n « ¢.

In this work, we investigate clustering properties for a continuum of tokens cor-
responding to n = o0. The mean-field dynamics of the measure p; of tokens is
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governed by the continuity equation (1.2) but we focus on the case where it is ini-
tialized at a measure o that admits a density with respect to the uniform measure
on the sphere S*~1. We call' this setup mean-field attention dynamics. Despite re-
cent efforts [CACP25] to study convergence of the finite-particle system as n — oo,
existing results do not imply asymptotic clustering for the mean-field attention dy-
namics for lack of a convergence that is uniform in time. Our results overcome
this limitation by developing the infinite-dimensional tools necessary to studying
directly the mean-field dynamics.

More precisely, our contributions are as follows. First, we show that, echoing
the finite-dimensional case, stationary points for (1.2) are all saddle points for the
interaction energy E except for global maxima given by point masses. In particular,
our proof extends the approach of [CRMB24] by exhibiting escape directions for
continuous measures. However, in the absence of a counterpart to the center-stable
manifold theorem in infinite dimensions, this result is not sufficient to conclude to
clustering. In fact, while infinite-dimensional versions of the Lojasiewicz inequality
have been developed [Sim83, CM14], we show in Remark 2.2 that such inequalities
cannot hold in general at critical points of the interaction energy E.

Nevertheless, we demonstrate that a stronger version of the Y.ojasiewicz inequal-
ity, known as the Polyak-Lojasiewicz (PL) inequality, holds around point masses
for measures supported on a spherical cap. From such PL inequalities, it follows
readily that the Wasserstein gradient flow (1.2) converges exponentially fast to a
global maximizer of E when initialized on these measures with constrained support.

This PL inequality is employed in our main contribution, Theorem 2.4, which
establishes exponential rates of convergence for the mean-field attention dynam-
ics (1.2) initialized at any density fo € L2(S?"!) for sufficiently small temperature
parameter 8 < (o, where 5y > 0 depends on fy. Note that global convergence
to point masses cannot hold at arbitrary temperatures. Indeed, for 5 = 100, we
exhibit an equilibrium for mean-field attention dynamics that does not correspond
to a single cluster in Example 2.6. This qualitative behavior is in sharp contrast
with the Kuramoto model where 8 = 0 and for which it can be proved that any
regular initialization converges to to a point mass exponentially fast; see [MP22].

Our main results for mean-field attention dynamics are stated in the next section.
In fact, these results are corollaries for our general results stated in Section 3. These
convergence results cover more general dynamics that correspond to less simplified
versions of transformer models; see [GLPR25].

2. CLUSTERING IN MEAN-FIELD ATTENTION DYNAMICS

In this section, we present our main clustering results on mean-field attention
dynamics (1.2).

Recall from [GLPR25] that the mean-field attention dynamics form a reverse
Wasserstein gradient flow of the interaction energy Eg defined in (1.3): &), 53 =
WEg[u]—see [CNWR24, AGS05] for an introduction to Wasserstein gradient flows.

IWhile the term “mean-field" technically applies to the Vlasov PDE (1.2) with any initial-
ization, including a discrete one, it is common in the literature to use this term to denote such
an evolution initialized at the measure that is absolutely continuous with respect to the uniform
measure. To facilitate reading, we adopt the same abuse of language and use "mean-field" to
indicate such an initialization.
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Indeed, along (1.2) we have

d
(21) GEl = [ 1@ i) 0.

with equality if and only if X),, g(x) = 0 for p; almost every z € S9=1. This equality
case characterizes critical points of the energy Eg. The next result shows that the
only critical points that are local maxima for Eg are in fact single point masses.

Proposition 2.1. Let d > 3. For any B > 0, any local mazima of the interaction
energy Eg is a global mazima of the form p = 6., for some xg € Se-1,

Proposition 2.1 is a direct consequence of Theorem 3.1 and holds for more general
transformer models, including ones with learned parameters; see Section 3.

When p € P(S?1) consists of only a finite number of tokens, similar results on
the absence of nontrivial local maxima were described in [GLPR25, CRMB24| when
d = 3 following [MTG17]. Our proof of Proposition 2.1 is adapted from [CRMB24].
We note that this technique only applies to d > 3 and the clustering of n tokens
for attention dynamics has been recently extended to d = 2 in [PRY25| by refining
the strategy initiated in [GLPR25].

As mentioned in the introduction, this result is not sufficient to conclude to a
global convergence of the mean-field attention dynamics (1.2) to a point mass in
absence because of the infinite dimensional nature of the problem. Nevertheless,
using the Yojasiewicz structure theorem, one can see that critical points for Eg can
only be supported on a finite union of submanifolds of S%~! of dimension at most
d — 2; see for example Lemma E.5 of [BPA25|. In particular, no stationary points
of the mean-field attention dynamics admits a density with respect to the uniform
measure other than the uniform measure itself.

Additionally, even convergence of the mean-field attention dynamics to a single
limiting stationary point is unclear because of the infinite-dimensional nature of the
problem. Indeed, while it is a Wasserstein gradient flow, Eg lacks the Wasserstein
geodesic convexity/concavity properties to ensure convergence. In finite dimen-
sions, this limitation may be overcomed using Lojasiewicz inequality whenever the
objective function, say f on a compact manifold is analytic. Indeed, in this case,
[L.0j63] proved that for any critical point ¢ of f, there exists a neighborhood U
of Ty and constants ¢; € (1,0), ¢ > 0, such that for all z € U,

(2.2) |f(2) = f(@erit)| < 2 VF(2)]3" -

As a direct corollary, we see that the critical values of f are locally discrete because
if x € U and Vf(x) = 0, then (2.2) implies f(x) = f(2eris). This last observation
is instrumental in establishing convergence of gradient flows of analytic functions.
Unfortunately, this property does not hold in general for the energy functional Eg
as illustrated by the following example.

Example 2.2 (No Lojasiewicz inequality for Eg). Let d = 2 and consider the
energy function Eg for measures defined on the unit circle St = IR? identified to
IR/27Z. Take the sequence of measures jic = (1 —€)0z +ed_=z, €€ (0,1). Observe
that pe forms a sequence of critical points for Eg because WEg[pe](-) = 0 pe almost
everywhere. But Eg[u.] # Egluo] and Wa(ue, pio) — 0 as € — 0, where Wa denotes
the 2-Wasserstein distance. This implies that the critical values of Eg are not
necessarily locally discrete. Hence, a Wasserstein version of (2.2) cannot hold for
Es on P(S4Y) as argued above.
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Example 2.2 reveals a striking discrepancy between the mean-field dynamics
studied here and the ones for a finite number of tokens. Indeed, the map:

1 n

— § B w5y

(11,‘1,...,.’1,‘”) n2“ 16 T, T
)=

is analytic on the compact manifold (S~!)" so the Lojasiewicz inequality holds for
a finite number n of tokens. This discrepancy stems from the infinite-dimensional
nature of the space of probability measures.

The following result shows that if we rule out sequences that place mass outside
of a spherical cap around o then a strong version of the Lojasiewicz inequality,
called Polyak-Lojasiewicz (PL) holds.

Theorem 2.3 (Polyak-T.ojasiewicz inequality on a spherical cap). Fiz d = 2,8 >
0, € [0,7/2),u € ST and let St (u) = S1 denote the spherical cap of angle o
around u defined by

(2.3) SH(u) = {x eS| (z,u)y > cosa}.

Let p be a probability measure supported on ST (u). Then if 10(1 + +/B) tana < 1,
the following PL inequality holds

Eol0.] ~ Eali] <1067 |12, 5(0) (o).

As a result, the sequence of measures p,t = 0 initialized at pg = p supported on
St (u) and evolving according to (1.2) converges to a single point mass 0, with
(T, uy = cosa at an exponential rate given by

B
Wl b,) < 200 ([ 12,50 aute) )

Note that Eg[d,] = max,cpsa-1)Eglp] = €’. When p is a discrete measures
supported on a hemisphere of S?!, i.e., supp(u) < S%(u) for some u € S*1,
[GLPR25, Lemma 6.4] obtained a similar exponential synchronization result for
transformer models, but the convergence rate there also depends on the initial
positions of these tokens and becomes worse when the number of tokens increases.
Similar hemisphere initial position assumptions are classical in Kuramoto models
(d =2 and 8 = 0); see, e.g., [HHK10, CHIJK12, FL19, HKMP20, ABK"22].

We are now in a position to state our main result for initializations that need not
be supported on a spherical cap. As observed in [MP22] for the Kuramoto model,
such measures do not satisfy a PL inequality. Instead, the energy Eg satisfies a
second-order differential inequality along the flow u; defined in (1.2) with a vanish-
ing remainder term: if 1o has a density fo € L?(S?!) with respect to the uniform
measure,

d? d
—E <——E + Coe 4t for t> T

gz Eolie] < = Balpe] + Co 0
where Cy, Ty are constants depending on g, C7 is a universal constant. In turn,
this inequality enables us to establish the following result for any initial measure
that admits a density fo € L%(S?!) with respect to the uniform measure.
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Theorem 2.4. Fiz d > 2. Let u; evolve according to the mean-field attention
dynamics (1.2) initialized at po with mean such that

(2.4) Ry = | LH zdpo(z)], > 0.

Assume that pig admits a density fo € L*(S?1) with respect to the uniform measure,
then u also admits a density f; € L*>(S%™1) for all t > 0. Moreover, there exist
Bo, Co, Ty > 0, all depending on po, such that if |3| < Bo, there exists an o, € S41
for which

(2.5) Wa (e, 80,) < Coe™ ™0, for t>Tp.

Note that the convergence in Wasserstein distance to a point mass means that
(i) the variance of p; converges to zero exponentially fast, and (ii) its mean also
converges to Zys.

The proof of Theorem 2.4 relies on the approximation e?®¥ ~ 1 for 3 small. As
such, it can be generalized to more realistic scenarios where e#<*%” is replaced with
(@ Key) in the definition of the vector field X, s(z) as long as |Q¢ll2, [0:Q¢ll2,
| Kt|2, and |04 K¢]|2 are bounded by a small enough constant, uniformly in time and
space. We omit this extension in the present paper.

Theorem 2.4 follows as a special case of the more general Theorem 3.4 that
handles broader attention mechanisms. When 8 = 0, a qualitative mean-field con-
vergence result was proved in [FL19], and under additional symmetric assumptions
on the entire flow {f;(x)}:, an exponential convergence rate of the system was also
derived when 8 = 0. For Kuramoto models, [HKMP20, MP22] proved similar
mean-field exponential convergence results for small frequency terms when d = 2
and 8 = 0. Long-time behaviors of Kuramoto models have also been extensively
studied by [HHK10, HKPZ16, BCM14].

When § > 0, previous work on long-time convergence focused mostly on the case
of delta masses of finitely many tokens instead of the mean-field setting considered
here. To the best of our knowledge, Theorem 2.4 is the first result to provide quan-
titative rates of convergence for attention dynamics (mean-field or finite-particle)
under a general initial condition like Ry > 0. Indeed, for a finite number particles,
convergence is either established using soft arguments that do not yield conver-
gence rates [MTG17, PRY25] or exponential convergence is established under the
assumption that particles are initialized a hemisphere of S%~!, as we mentioned
after Theorem 2.3. However, as illustrated in Example 2.5, transformer models
starting from delta masses and mean-field densities can have different asymptotic
behavior.

Example 2.5 (No synchronization for finite particles). Fiz d = 2. We construct
an example on the unit circle St < IR? identified to R/27Z where particles do not
converge to a single cluster despite being initialized at pg that satisfies Ry > 0; see
Figure 1. To that end, define g = 5*105% + %(Lg_ng %5—%4-5 for an & € (0, ﬁ).

With this initialization, the initial velocity field X, g is given for any 6 € [0, 2m)

by2

27

(2.6) X 5(0) = — L sin( — w)e? 3 0=9) qu0(w).

2This expression follows from a simple change of variables; see [GLPR25, Section 7.1]
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Figure 1. Illustration of po in Example 2.5 with £ = .7. Circle radii
are proportional to mass at each point. The cross indicates the mean of
po with Rg > .7 and the arrows indicate velocity fields for initial angles.

It is easy to see that X, g(m/2) = 0 by symmetry. Moreover, X, s(—%5 —
§) = —Xuy58(—=5 +&) > 0 s0 long as B > 0, hence the two particles in the south
hemisphere get closer and py initialized at py eventually converges to piop = s—l()dg +
%6,% as t — o. The point of this example is that, although p; initialized at pg
does not converge to a single point mass, Theorem 2.4 implies that when B is small,
any initial measure with an L?(SY1)-density, which may be arbitrary close to pg,
contracts to a point mass at an exponential rate. In particular, we see that the
contraction rate in Theorem 2.4 must depend on fy.

We conclude this section by discussing an important limitation of Theorem 2.4,
namely that § is required to be small enough. It turns out that this assumption
is necessary, as there exists initializations pg for which Ry > 0 and that admit a
density fo € L?(S?!) for which the mean-field attention dynamics do not converge
to a single point mass. We describe such an initialization on the circle in the
following example.

Example 2.6 (No mean-field synchronization for large ). Fix d = 2. We construct
an example on the unit circle St < IR? identified to R/27Z where particles do not
converge to a single cluster when (8 is sufficiently large. To that end, let § = 100,
and consider the flow (1.2) started at pg that admits a density fo € L*(IR/27Z)
with respect to the Lebesgue measure.

We construct fo as follows. Fizn, & € (0, ﬁ) and let hy be a positive, even, and
smooth function supported on [—n,n] such that hy is strictly increasing on [—n,0].
We normalize hy such that §hy = 1/3. Similarly, let hy be a positive, even, and
smooth function supported on [—§,&] such that he is strictly increasing on [—&,0]
and normalized as { ho = 2/3. Finally, let fo be defined as fo(z) = hi(z)+ha(T+2);
see Figure 2 for an illustration.
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Figure 2. Illustration of fp in Example 2.6. The cross indicates the
mean of fo with Ry > 0, and the arrows indicate velocity fields at the
boundaries of the support of fy.

With this initialization, akin to Example 2.5, the initial velocity field X, 100 5
given for any 0 € [0,27) by

27
(2.7) Xyo100(0) = — J sin(f — w)et00 030w £ () dw .
0

Clearly, X,,,100(0) = Xy.100(m) = 0 by symmetry. Moreover, one can easily see
that X,,, 100 pulls points 6 € [m — &, m + {\{n} towards m because the main contri-
bution in X, 100 at those points comes from the integral on [r — &, m+&] in (2.7).
Similarly, even though (hy = 1/3 < 2/3 = (he and points in [1—&,m+&] are trying
to pull points in [—n,n] towards 7, their contribution is negligible compared to the
pull from antipodal points. Indeed, when £ < n,

Xiuo,100(17) =
3 n
= f sin(n — w)e 10— py () dw — f sin(n — w)e'?0cs M=) p (w) dw
—£ -
2 , n/2 ,
< 3 sin(2n)e 100 cos(2m) _ f sin(n — w)e!0cos=wIp, () dw
-7
2 —100cos(2n) _ L . (T1\ 100 cos(2n) < 1038
< 3 sin(2n)e 3 Sln(2)€ < —n-10%°.

By symmetry X, 100(—n) = —X5,100(n) and we see that the edge of the interval
[—n,n] gets pulled towards 0. Since trajectories of ODEs cannot cross, all the points
in [—n,n] get pulled towards 0. We can similarly discuss the case when & = 1. Using
a bootstrap argument, it can be shown that ps converges to po = %50 + %5,r.

3. CLUSTERING IN GENERAL TRANSFORMER MODELS

Despite its simplicity, the previous section shows that mean-field attention dy-
namics (1.2) captures the clustering phenomenon observed in practice. In practice,
the attention mechanism is parameterized by matrices that are learned from data
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during the training process. In general, the vector field X, g in (1.2) becomes

(3.1) Bula) = || PVislo(ra.) dputs).

where {V;, A;}; are learned matrices and ¢ is a known nonlinear function; see [GLPR25].
Such a time inhomogeneous system is difficult to study in full generality but we
make progress in this direction by considering the case where® V, = V and A4, = A
for all ¢.

3.1. Critical Points. In the case where V = A, the vector field /’Fu is a Wasserstein
gradient flow for the energy functional

(32) Eolu = 5 || 0 (CAn.) duo) au(w).

Here and throughout this paper, unless explicitly stated otherwise, integrals are
assumed to be taken over the set S?~!. We leverage this property to characterize
the stationary points of the mean-field attention dynamics (1.2) with the more
general vector field X/u in Section 3.1 under additional assumptions on the matrix
A.

Hereafter, we assume that ¢ is twice differentiable and that A is a d x d real sym-
metric matrix with eigenvalues A1 = Ao = - -+ = A\;—we allow for some eigenvalues
to be negative. The Wasserstein gradient of the interaction energy E, is given by

33) ) = WELe) = [ PolAnld’ (Ar.)dn(y), =S,
Consider the general mean-field attention dynamics
(3.4) Orpur + div(pe X[pe]) = 0,

and observe that they collapse to (1.2) when A = I; and ¢(z) = €% up to a time
speed up.

The following theorem provides a partial resolution of Conjecture 2 in [KPR24|
when adapted to non-causal attention dynamics.

Theorem 3.1. Fiz d > 3. Assume that the top three eigenvalues of A satisfy
A1 =X = A3 =A>0, and |A\g| < \. Assume further that ¢ is twice differentiable,
increasing and convex: ¢' >0, ¢” = 0. Then any local mazima of E4[p] must be a
global mazimum, that is, a point mass 0, for some xg € St such that Azg = Axg.

In the rest of Section 3.1, we prove Theorem 3.1. It relies on the first and
second variation formulas for E4[x], which are of independent interest in the study
of transformer models. We also note that if A\; is significantly smaller than —\,
then a global maximizer of Ey[-] need not be a Dirac measure, as shown by a
counterexample in Remark 3.5 of [BKK™25].

3Employing the same weights across layers has been used to reduce the complexity of trans-
former models [LCG120] and it has been shows that they demonstrate better reasoning properties
in certain tasks [ZBB*23]. This is the model initially studied in [SABP22]
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3.1.1. First and Second Variation Formulas for Eg. Let P(S~!) denote the space of
probability measures on S?! and let {X;(z), t = 0, = € ST} be a family of vector
fields on S?~!, continuously differentiable in (¢,2) and such that X;(z) € T,,S%*
for all (t,2) € Rxg x S¥~!. Note that {0;X;(x), t = 0, z € ST1} is also a family
of continuous vector fields in the tangent bundle of S, Let {y;}¢>0 be a curve in
P(S?1) starting from g € P(S?!) and evolving according the continuity equation
driven by {X,},:

(35) 8tut + d;V (,LLtXt) = O7 t>=0.

The PDE (3.5) is understood in the distribution sense: for any smooth function
h(z) on S%~1, we have

a
dt Jga—

h(x) dpu(r) = j (V7 oh(z), X)) dpe ().

gd—1

Here and throughout this paper, Vm h(z) denotes the Riemannian gradient of h
on S%'. Note that viewing S¢~! as an embedded manifold in IR? considerably
simplifies the Riemannian calculus on the sphere. Indeed, if H is a smooth extension
of h to a neighborhood of S9! in IR?, we have that V, h(z) = P,V H(z). In
particular, since X,(z) € T,S%!, we have (V h(z), Xi(z)) = (V. H(z), X:(z)).

Lemma 3.2 (First Variation Formula for Ey).

Salid = [[ () CAp, 00)) i) ),

Proof. Because A is a symmetric matrix, using (3.5), we have that

d

SEl) = [ [V 16 )] (0 (o) ().

where we used the fact that X;(z) € T,S%~!. The proof follows readily by computing
the gradient above. 0

Lemma 3.3 (Second Variation Formula for E4[ - ]).

(3:6) SpEolil = 5 | [ 0" (CA)) 1€y, XiGa) + A, 2D () 1)
(37) + ] ¢ can ) Ax @), 2w (o) ()
(38) -3 |[ oA s @B + 160 dueo) du)

(39) + [0 [(avaii@) + T t0))| (o) s,
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Proof. Taking the time derivative of the first variation formula, we get

gaebel = [[ O loCan A 2], 1) o) )
([ €A Ay ) ) ) )

n f j & ((Az, y)) Ay, 0,%,(2)) dpue () dpue(y).

The rest of the proof follows by direct computations, and we only highlight the key
points.
For <, as &;(x) € T,S?!, we get that
(Val Ay, Xy (2)), Xi(2)) = (V () [P2Ay], Xe(2)) + (Po Ay, Vo, (2) i ()
= (Vo) [P Ay), Xi(2)) + (Ay, Vi, (@) X ()
= —(Ay, )| Xi(2)[3 + (Ay, Vo, () Xi(2)),
where in the last equality, we used the fact that
and (z, X:(x)) = 0.
Similarly, for >, as X;(y) € T,SY !, we get that
(Vy(Ay, Xy(2)), Xe(y)) = (Vy (Ay, Xi(2)), Xi(y)) = (AX; (@), X (v))-
The final form of the second variation formula can be obtained from the symmetric

role of x and y. O

Equipped with the first and second variation formulas, we are now in a position
to prove Theorem 3.1.

3.1.2. Proof of Theorem 3.1. Let iy be a critical point of E4. We show that unless
1o is a point mass, there exists an escape direction, that is, a velocity field Xy such
that if p; evolves according to (3.5), then the value of E, increases. Since pg is a
stationary point, it is sufficient to check that

d2
—| E 0.
d¢2 o ¢'[:U’t] >
Since pg is a critical point, it follows from the first variation formula that
(3.10) J ¢' ((Aw,y)){ Ay, X(x)) dpo(x) dpo(y) = 0, ¥ X € C(TS*1).

At such critical points, taking X (z) = %Xo(m) Xo(x) in (3.10), the second variation
formula simplifies to

(3.11)

d2
az|,_

+ J %¢’(<Aw, ) [20AXo(2), Xo(y)) — (Az, ) (| Xo(2)[3 + | Xo () 13)] duo() dpo ().

Ealu] = [[ 5 (A1) KA. 2w + A, o)l o o) ()
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Recall that we assumed ¢” > 0 so we focus on establishing the positivity of the
second line in (3.11). To that end, following [MTG17, CRMB24], define Xy(x) =
P.(w) = w — (w,x)x where w € S¥~!. The second line in (3.11) becomes

(3.12)
] 50w [2eA%a@), 200w — Az ) (12002 + 126(0)]B)] o) da(y)

= JJ %¢/(<A$7 ¥)[2 ((Aw, w) — (w, x)(x, Aw) — (w, y)y, Aw) + (w, z){w, y)( Az, y))
— Az, ) (2 = (w,2)* = (w,1)?) ] dppo(x) dpro(y).

Pick {ei}?zl as an orthonormal basis of R? such that Ae; = \je; for i = 1,...,d.
We also write x,y in the coordinates of {e;}¢_;, that is, z = Zle zie; and y =
Z?zl y;e;. Choosing w = e; in (3.12) yields

(3.13)
[ 50 cAn ) atr = ot = 4) — vy (2= 2 42 = 200:) | dpo(a) A ).

We aim to prove the following inequality:

(3.14)

> [[ () 2201 = 22 = 42) = (Ao (2= a2 = 42 — 220) (o) doly) > 0,

with equality if and only if py = J, for some point u € S?~! satisfying Au = Au.
This inequality directly yields the desired conclusion, since (3.14) implies that there
is an ¢ € {1,2, 3} such that (3.12) with w = e; is strictly positive unless pg = §,, for
some point v € S¥1 with Au = \u.

To prove (3.14), we build up the pointwise inequality: for any z,y € S4~1,

3
(3.15) Z 2Xi(1— 2} —yf) — (Az,y) (2 — 27 — y7 — 23y:) = 0,
i=1
with equality if and only if the following conditions hold: for all j with |A;| < A,
we have z; = y; = 0; for j with A\; = A, we have z; = y;; for j with A\; = =\, we
have z; = —y;.

We now use (3.15) to prove (3.14). Suppose there exists u € supp(po) such that
Au # du. Writing v = Z?zl u;e;, this implies that there exists some ¢ such that
Xi < A and u; # 0. Choose a small neighborhood N' = S*~! around u, such that
Kz, e;y — w;| < |ui]/2 for any € . Then, for any z,y € N, the inequality (3.15)
is strictly positive because z,y don’t satisfy the equality condition. Therefore, the
integrand in (3.14) is strictly positive on N/ x N (since ¢’ > 0), and nonnegative
elsewhere by (3.15). This implies that (3.14) is strictly positive.

In the remaining case, suppose Au = Au for every u € supp(pg). Then, the
equality conditions in (3.15) imply that py must be a point mass. Otherwise, there
exists x # y in the support of ug, and (3.15) becomes strictly positive, yielding a
strictly positive value in (3.14). Hence, (3.14) is strictly positive unless pg = d,, for
some u € S satisfying Au = Au.
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The rest of this proof is devoted to the proof of (3.15) and its equality conditions.
Since A\; = A3 = A3 =: A > 0, the left hand side of (3.15) becomes

3 3
A (3 - D + y?)) — D Az, y) (2 — 27 -y} — 2ay:)
1=1 i=1

3 3
=2(A = (Az,p)) (3 - Z(ﬂr? + yf)) + Az, ) Y (uiy; — 7F — 7).

i=1

(3.16)

We claim that
3
(3.17) 2N ={Azx,y)) = A Z r3 +yi — 22).
i=1

Indeed |z]2 = |y|2 = 1 and A\; = A\ = A\3 = ) so that

d
2(A = (Az, ) = Mz )* + Aly[* — 2 ) Aiwiys

i=1

3 d

Zm +y? — 2wy;) + )\Zx +y2) 22/\%%.
=1 i—d

Hence, (3.17) is equivalent to

d d
(3.18) Z (2 +y3) =2 Z AiZiYi,
iz4 i—4

which holds since A = |\;| for all i. Moreover, note that the equality holds if and
only if: z; = y; for all ¢ = 4 with \; = \; x; = —y; for all ¢ > 4 with \; = —);
x; = y; = 0 for all ¢ = 4 with |\;] < A. Hence, by (3.16) and (3.17), we have that

3
D20 —af —yf) —(Aw,y) (2 — o — i - 20)

i=1

3
= (Z x? 4y — 2xiyi> (3)\ A Z ) <Ax,y>> .

i=1

(3.19)

Because [(Az, )] < Alzlalyls = A, and X2, (22 + 3?) < XL (22 + 42) = 2, we
see that the right hand side of (3.19) is nonnegative, and it can only be 0 when
X1 = Y1, T2 = Yo, T3 = y3. Hence, we complete the proof for (3.15). By examining
the equality conditions in (3.19) and (3.18), we conclude that equality in (3.15)
holds if and only if the following is satisfied: x; = y; = 0 for all ¢ with |\;| < X;
x; = y; for all 4 with A\; = A; and x; = —y; for all i with \; = —A.

3.2. Long Time Behavior. In this section, we consider a transformer model with
vector field (3.1) where V; = I; and A; = A for all ¢ > 0. Note that in absence
of the preconditioner V; = A, these dynamics may not be a Wasserstein gradient
flow. Moreover, we only consider measures that admit a density with respect to
the uniform measure on the sphere. To reflect this, it is convenient to consider the
evolution of a density rather than evolution of the measure (3.4).

Let {j:(x)}¢=0 be a curve of probability measures on S?~! satisfying the conti-
nuity equation

(3.20) e + div (1 Y[p]) = 0,
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where the vector field )[-] is defined for any positive measure v on S?~! by

Ba) V@) = [ Pl (Ae)dvly), aest

where A is a d x d real symmetric matrix.

Here and in the rest of this section, ¢’ is a smooth positive function on the
interval [—||A]2, |A|2]. In particular, we do not require monotonicity for ¢’ as in
Section 3.1.

We often abuse notation and write Yy = Y[f:] = Y[ut], and more generally,
we liberally switch between f; and g if p; has density f;. Define the C'-norm
of a continuously differentiable function i on an interval S < R as |h|c1(s) =
|R) Lo sy + 12| Lo sy The following theorem shows that, if ¢ is close to the constant
function 1 in Cl-norm on S = [—|| A2, |A|z2], then the flow (3.20) converges to a
delta mass exponentially fast. To that end, define

(3.22) o = (A2 +2) - |¢' = Llcrs)-

Note that when €4, = 0 and A = I, that is when ¢’ = 1, one recovers the Kuramoto
dynamics on the sphere. Recall that Ry measures the asymmetry of f; and is defined
in (2.4) and also in (3.24).

Theorem 3.4. Let fo € L2(S?1) be a probability density on ST=! and let {:(z)}+>0
denote the flow of probability measures where u; has density fi evolving according
to (3.20). There exist universal constants co, ¢, > 0, and two computable constants
Co, Ty depending on Ry, | follp2ga-1) such that if ey < cuRf, then there exists an
Top € S for which

W2 (/’Lta (;atgo) < Coeic(]ta vt = TO'

3.2.1. Main tools. We adapt a technique developed in [DV05] to obtain quantitative
convergence rates for non-convex (and non-concave) gradient flows. For Kuramoto
models, that is, when d = 2 and ¢’ = 1, this technique was employed to derive
a mean-field convergence result in [HKMP20, MP22]. Note, however, that this
technique heavily depends on the form of the vector field driving the probability
flow as already noted in [DV05]. In particular, the choice (3.21)—which is not
a gradient flow—together with the complexity of dynamics on high-dimensional
spheres brings substantial technical difficulties compared to the Kuramoto model
on the circle. These difficulties manifest themselves most prominently in the proofs
of Theorems 3.5 and 3.6.
For any t > 0, define

B2 M= | wdut) wd Vi) = PoMI = [ Plldu).

Interestingly, M; has a practical meaning: in encoder-only transformers such as
BERT [DCLT19] the average token position M; corresponds to the vector embed-
ding called mean-pooled embedding of an input prompt that is often employed in
further downstream tasks (classification, clustering, retrieval, etc.)

Moreover, define

M,
(3.24) Ry = |My|s, U= ft est !,
t
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and the following spherical caps with centers +U € S¢~1 for a € (0,7/2),
(3.25)
SHU) = {xesS™™ | (&, U) = cosa}, S,(U)={zeS™"| (x,~U)=cosa}.

The spherical caps become smaller as a — 0. For simplicity, we also write ST (t) =
S+ (Uy) and S (1) = S (Uy).

Define I; as
(3.26) o= [ 19wl o).
Direct calculation similar to Lemma 3.3 gives
(3.27) Oudy = J Qu, (z,y) dpe(z) dpe(y)

where for any positive measure v on S,
(3.28)
Qu(x,y) = 2[V[V](z), Ay) + V[v](y), Ax)] Y[v](z). y) - ¢" ((Az,y))
+ [200[v](2), Y1) — (o) (IDVIP]@)]3 + [VIW)I3) ] - ¢ ((Az,)).

We now state our two main tools.

Theorem 3.5. If ¢, A are such that ¢4 < 1/100, where 4 is defined in (3.22),
then for any a € (0, 55), we have that

(3.29) Ouly < —Ip +100p; (S™N\SH(Uy)) .

Theorem 3.5 holds for any measure along the flow, even for those that do not ad-
mit a density with respect to the uniform measure, but Theorem 3.6 below requires
a initial density in L2(S?71).

Theorem 3.6. Fiz o = 7/100. Assume that g has density fo and fo € L*(S?71).
There exist two universal constant c,,c; > 0, and two computable constants Cy, Ty
depending on Ry, | fol 2si-1) such that if ey < ¢, RS, it holds

pe (SIS () < Coem D9t vt > Ty,
Now, we can combine Theorem 3.5 and Theorem 3.6 to prove Theorem 3.4.

3.2.2. Proof of Theorem 3.4. By Theorem 3.5 and Theorem 3.6, we see that for any
t =Ty,

(3.30) I + 0.1 < 102Cpe— (@ Dert,

Multiply by ef on both sides and integrate Ty to t to get that for any t > T,
I < Ip ™=t £ 102Cy(t — Tp)emaxi=(d=Dert,—t}

where we used the fact that for any ¢t > Ty and any « € IR,

t
J e ds < (t — To)et'max{ﬁ’o}.
To

We see that I; — 0 exponentially fast as t — +oo0.
Also, recall that {u;}: solves the continuity equation

Qv () + div (e (2)Ve(2)) = 0.
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From [Vil09, Theorem 23.9], we have that for any s > Ty and almost all ¢ > s, the
Wasserstein distance between p; and p satisfies

1d .
53 WE i) == [ (Foreala), ila) din(o),
2dt Sd—1
where 1;_,s(z) is a potential function associated with the Wasserstein geodesic
connecting pu, ps, and Vi, ¢(x) satisfies that

|, I @) (o) = WE ).

By Cauchy-Schwarz, we see that for almost all t > s > Tp,

d 1
. S gjzv
dtWQ(Ntwu' ) t

where the right hand side goes to 0T exponentially fast as we proved earlier. Hence,
{ut}i=0 is a Cauchy sequence in the Wasserstein space. By completeness of the
Wasserstein space, there exists a probability measure u, € P(S~1) such that
Wt = top in Wo, and pe, satisfies that

| el o

By Theorem 3.6, p; (S“"\SF(U;)) — 0 as t — +00, so there is a Uy, € S*!
such that supp(ps) S ST (Uy), where we recall that ST (Uy) is the spherical cap
defined in (4.1). To conclude that p,, = §,, for some zo € S¥~! we use the
following Lemma.

Lemma 3.7. Let u be a probability measure on ST~1 with support supp(p) < S (U)
for some U € S4~1 a € (0, %) and such that

(3.31) |, D@ dute) - o
Then p = by, for some xg € St (U).

Proof. From (3.31), we know that

Vil(@) = [ Pululd’ (Ao 9)) du) = 0. Var € supp().

Multiplying both sides by U we obtain the following

332) | (@)= @aXe 0 (Ar)duts) =0, Vo e supp(i).

Next, take = xzp to be any minimizer of z — {z,U) on the supp(u) so that
Qy, Uy — {xo,y)Xxo, Uy = 0 for any y € supp(p). Thus, from (3.32) and ¢’ > 0, we
obtain that
W, U) = {xo, y){xo, U) = 0, Vy € supp(u).

Since supp(u) < St (U), we know that {(zg,U) > 0, and thus,
<o

<l‘0, U>
where in the first inequality, we use the definition of xg. Hence, the inequalities

in (3.33) are equalities, and then {(zq,y) = 1 for all y € supp(u), which implies that
w is a delta measure supported at xzg. [

(3.33) = (xo,y) <1,
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Finally, we remark that Cy, Tj in Theorem 3.4 and Theorem 3.6 can be sharpened
as follows.

Theorem 3.8. Fiz a = w/100. There exists a universal constant ¢, > 0, and a
Ty > 0 such that if 5 < ¢, RS, it holds

pe (STNSE (WD) < follpagomne T T VST,
Moreover, it is sufficient to take
Ty = [;O v (d— 1)] : [1041(d — 1Ry +10% R, % log Hfol\%z@d—l)] )
where a v b = max{a, b} for a,be R.
In Theorem 3.8, it is possible to achieve a better dependence on Ry, specifically

Ry 2 using more involved arguments. We omit this result for the benefit of space
and readability.

4. LOJASIEWICZ TYPE INEQUALITY: PROOF OF THEOREM 3.5 AND
THEOREM 2.3

This section is mainly devoted to the proof of Theorem 3.5. The same proof
together with Remark 4.2 gives the proof for Theorem 2.3.

Lemma 4.1. Assume that ¢, A are such that ¢, < 1/100, where ¢4 is defined
in (3.22), and assume that a positive measure v on S~ is such that there evists
UeS™t and o€ (0,35), such that

(4.1) supp(v) € ST (U) = {z eS* ! | (2,U) = cosa}.
Then

(4.2) j j Qu (2, y)dv(z)du(y) < —v(S7) j IV (0) 2w (y)

where Q, is defined in (3.28). In particular, taking v = p, this implies that if
supp(ut) € ST (U), the following entropy production inequality holds:

(4.3) oely < =1
where I, is defined in (3.26).

Remark 4.2. To be consistent with the assumptions in Theorem 3.6, we eventually
choose o = 155 and £4 < 1/100 in our proof for Theorem 3.4. One can also prove
the same result when €4 > /100, but one needs to assume that c is less than a
function in €4, which goes to 0 as €4 goes to +00. For example, for the attention
dynamics (1.2) where A = 51 and ¢'(r) = e” as in Theorem 2.3, the proof extends
s0 long as tan o < m, and B is any positive number. Also, one can replace

the right-hand side of (4.2) with *% Ssas 1V[p](2)[3 dp(a), which is notably better
when B is positive and large. Similar proofs and results in Lemma 4.1 also extend
to the case when 8 < 0 in the dynamics (1.2).

Proof of Lemma 4.1. Because both sides of (4.2) are homogeneous in constant mul-
tiplies of v of degree 4, we can assume that v is a probability measure, denoted u
for clarity, on S¢~1. Also, in this proof, we simplify our notation to Y := Y[u].
Take the standard orthonormal basis of IR? as {ej, ea, ..., eq}. Without loss of
generality, we assume that U = e;. We adopt the gnomonic projection to rewrite
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Figure 3. Illustration of gnomonic projection.

(4.2). Note that the gnomonic projection maps any geodesic (great circle) in the
upper hemisphere of S~! to a geodesic (straight line) on the hyperplane IR?~! x {1},
so that the tangent vectors on S?~! can be expressed as the difference of two points
on IR?~! x {1} under the inverse of the tangent map of the gnomonic projection. In
particular, for any x,y in the upper hemisphere of S¥~!, P, [y] can be characterized
by the geodesic connecting x,y, which enables us to rewrite P, [y] in the definition
of Y(x) in (3.21) in the following linear form (4.8), and gives an important equation
(4.11) in this proof for Lemma 4.1. Such a property is not satisfied by stereographic
projection and orthographic projection.

For an z = (z1,...,24) € SH(U) < S¥!, we define
L1 LTd—1 !

44 =(—,... — .
(1.4 G) = (20, 21

This map G(z) (or the map G(x) + eq4, so that its image is in the hyperplane
IR4~1 x {1}), is called the gnomonic projection. G gives a diffeomorphism from
SH(U) < S to the Euclidean ball B, < IRY™! centered at the origin and with
radius tan . Its inverse F' is given by

(4.5) F(u) = ¥(u +eq), Yu€ B,.

V1 [ul3

Here we identify u with a vector in R~! < IR?. A direct computation shows that,
the tangent map of F' at w is given by

(L + [u]$)X — <X wu — (X, upeq
(1+ [ul3)®

For a u € B,, we first find the preimage of Y(F(u)) under dF,. By (4.5), one
can first verify that, for any v € B,

(4.6)  dF,(X) = , VX e T,R¥1 ~ R4,

(u,vy+1

VIt [ul3y/1+[ol3

(4.7) (F(u), F(v))
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and then by (4.6)

(48) anuwm]=fw0—<F@me»Fm>=11|T§wz@—u>
Hence,

(4.9) Y(F(w)) = dF, (X (),

with

(4.10) X(u) = JB (v— M)L”u”%' ((AF (u), F(v))) dGyp(v),

V1 vl3

a vector in T, R*"1 =~ R?~1. Here, G4 is the pushforward measure of  induced
by the gnomonic projection G. By symmetry of u,v € B, and because A is a
symmetric matrix, we readily obtain the following important observation:

X(w) )
.La1+|u%dG#“()

(4.11) 3 b )Y (AF (), F(v)))
), J
=0

AG 4 1(v) Gy ()

VA [ull3) @+ [vl3)

Next, we rewrite the left hand side of (4.2) (or Q,(z,y)) in terms of X (u)’s by
replacing z,y € ST (U) with F(u), F(v) for u,v € B,. By (4.6) and (4.9), we obtain
the following identities:

_IX@IE - X (w),w)?

2
- P = Tl ~ W i
and
(4.13)
K X@) XX

WED)YERD = T i a + o) v+ [ 0+ o)

_ _X), vy X(u),v) | (X(w), X (v),v)Ku,v) +1)
V@ + 9133+ [ul3) V(@ +[03)3(1 + [ul3)3
Before we proceed, let us first explain our main ideas. Recall that o and €4 are
small parameters (o < 7/20, g4 < 1/100) so terms of the form (X (u),v) are small

when v € B,. Hence, after the change of variables (x,y) — (F(u), F(v)), the
leading term on the left hand side of (4.2) becomes

(X (u), X(v))
VA [l + [ol3)

X ()3, 1X()]3
1+ Hu||§ 1+ ||U||§> ] dGyp(u) dGyp(v).

A=LLfmwmﬂm¢

- . F o)

IX (w)[3
1+[ul?

the notations in the followings, we assume that tana = 4/ for some § € (0,1) to

We also notice that, when « is suitably small, |V(F(u))|3 ~

To simplify
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be determined later. In the following estimates, we frequently use the fact that
|ul3 < tan? o = §. We see that J; = Ji1 + Ji2, where

2

I == [[ 0 cap. Py o+ i ) | 0 - e

; |ul3 — Cu,v) X (v)]3
W) e D+ o) L+ Iol2

and the double integrals above are over B, x B, and with respect to G4 p & G4 p.

Clearly,
Jn<—(1 —5¢)f f
B, JB,

u 2
=202 [, g G

21gy) [ X3
< JB 1 [ug 40#H )

Jig = QJ ¢’ ((AF (u)

Xw) — X(v)
Lt fuld 1+ o3

2
dGpp(u) dGypu(v)
2

where the equality is by (4.11). Also,

T <1 | L(w)tt AG(u)

By setting a € (0, 55), so that § € (0, tan? 35), the above two displays imply that

(4.14) Jy < (15 + 2.5s¢)f||y[u]||2du

which gives us a buffer to handle the remaining terms when establishing (4.2).
To control these terms, observe that

] Qulerv) dute)antw) — 5 = 2+ 141
where
T [ ] 2@ A + G0 A0) D)9 - (Az,) d(o) duly)
<Al 10 = tlows) [ [ 200@IE+ P@LIYWIR) due) duto)
<des | V@It
and
tyo= || o €A FeD) - o o)
(G Wt (X))

L uf3)? (14 [v]3)?

;) 4G pulu) G puto)

<25(1+€¢)J X ()HQdG wlu),
Ba

1+ [ul3
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(X (u), 0 (X (0), )
Jy =2 (AF(u -

f f ¢ )< N BT
)XW,y (X(w),

_ w) (X (v),v) ((u,v) +1)
\/(1+ [013)2 (1 + fJul3) VA [03)P A+ Jul)?

<6501 +5¢,)f XIS 4.

B, 1+ |ul

) dGyp(u) dGyp(v)

s X (w3 .
Together with €4 < 135,06 < tan?(J5) and H1+(\|u)|\H§2 > |V(F(u))]3 in (4.12), we get

f Qu(z,y) du(r) du(y)
gd—1 Jgd—1

X 2
< — (1.5 — 2.5<€¢ — 4E¢ — 8(5(1 + €¢))J H (u)Hg dG#,u(u)
B, 1+ ]ul3

<= | DG =~ [ @)
This completes the proof of (4.2). O

Proof of Theorem 3.5. Fix t > 0 and define the positive measures v, v, on S?~! by

() =m0 ST(), va(-) = m(-\SL(t))
and let
(4.15)

Vi) = [ Pl (Ao i), Valo) = [ Plé! (Az) doaly).
We see that
Vile) = Va(a) + Vala).

By the explicit formula (4.15), we have the estimates that [V:(2)[2 < (1 + £4),
[Vi(@)]2 < (1 +eg), and [Ye(2) = Vi(@)|2 = [Va(z)]2 < (1 +eg)pe (ST\SZ (1))
for any z € S*~!. These bounds imply that

[Ve(), Vi(y)) — Vi(z), Vi(y))]
(4.16) = [(Vi(2), Va(y )>+<V2( ) 1(y)) + Va(z), Va(y))|
< 3(1 429 ("2 (1)

Hence, by (3.27), we have
ot < [[ |2 (@10 40 + T2, 40) i)y o7 (€A
+ (2V1(2), Vi(y) = G, (IVi@)[3 + IViw)l3) - ¢' (<Ax7y>)] dpe () dpa (y)

+24(1 + )3 (STNSE(®))
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We can further split the above integral over S¥~! x S4=! into integrals over S7 (¢) x
SE(t) and (S471 x STTH\(ST(t) x Sk (t)), and obtain that

Msj f [2 ((Vr(2), Ag) + (Vo (), Azy) (T (), ) - 6 ((Az, )
Sa(t) Isd ()

+ (2Vi(@), Vi(y) — (Vi@ 3 + [Vi®)l3)) - ¢’ (Az, ) ] dpe () dpe (y)

FA8(L 4 e0) e (SIS (1))
Together with Lemma 4.1, the above inequality yields

oty < = (8171) [ ITa@)Bdun @) + 4501 + 20 (5712 (0)

= —(1-m (s*Y) L V1 ()13 dvi () +48(1 + e6)° e (ST1\SZ (1))

N

[ T B ) 4900+ o) (7 SE (1),
S§d—1
Note that by (4.16), and the estimates that |V1(z)[2 < (1 +&4) and vy (S71) =
pe (STNSE (D)),
L m@Bane - [ V@@= [ 7@

§d-1 gd—1
> LH IV0(@)12 dpae(x) — 3(1+ £4)% s (STNSE () — (1 + £4) 2 (SIS (E)) -
Hence, because 49(1 + £4)% + 4(1 + £4)? < 100, we obtain that

6tIt < — Ldil Hyt(.’lf)”g d,ut(sc) + IOO[Lt (Sdil\sgg (t)) .

This completes the proof for Theorem 3.5.
O

To conclude this section, we complete the proof of Theorem 2.3 as a corollary of
Lemma 4.1 and Remark 4.2.

Proof of Theorem 2.3. Recall first that Eg[d,] = max,cpi-—1yEglu] by Proposi-
tion 2.1 (or Theorem 3.1). Let u; be the Wasserstein gradient flow initialized at
po = pi. For any t; > 0, we define the diffeomorphisms {¢;, ¢(7)}:=¢, on S¢~1 by
solving the ODE

at¢t1—>t(z) = Xﬂt7ﬁ(¢t1—>t(z))7 with (bt]—)tl ($) =, Vo € Sdil'

We first show that supp(u:) € ST (u) for any ¢ > 0. Fix an arbitrary ¢; > 0, and we

assume that supp(ue, ) S Si (u). Let z¢, € supp(p, ) achieve mingequpp(u,, ){Ts w,

then
d
dt

Gtasi(m1)w) = (X, pl@n) wy = | - (Pay, [y, wye T dpy, (y)

t

t1

(Y, uy — (e, Y@y, w))eP @Y dpy, ()

d—1

\Y%
T g

(<xt1 ) ’LL> - <xt1 ) y><zt1 ) u>) 66<xt1 v d:u‘tl (y) = 07

d—1
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where the last inequality is because (x¢,,uy > 0 and 1 > {(xt,,y) > 0 when y €
supp(pe,) S Sg(u). Hence, mingegupp(u,){,u) is nondecreasing in ¢, and then
supp(ut) € ST (u) for any ¢t = 0.

Define I; = ..y [ Xy, 5(x)[3 dpe(x) so that I, = 6,Ep[p]. Then, combine (3.27),

Lemma 4.1, and Remark 4.2, together giving that 0;I; < f%ft. As a consequence,

&P .
we see that I; < e~ 10t]y. Using similar arguments as in the proof of Theorem 3.4
in Section 3.2 we can show that there exists zo, € S¥ (u), such that Wa (s, 85, ) <

1 B, 1 . . .
:OO P dr < QOe*Be*%tIO"‘, which goes to 0 exponentially fast. Then, we integrate
Oy < f%It from 0 to +o0, and find that

eb

Iy=1,—1I) < o (—Epldz, ]+ Egln])-

5. SOME BASIC DERIVATIVES AND ESTIMATES FOR THE PROOF OF
THEOREM 3.6

If =1 in (3.21) so that Yy = V; from (3.23), then (3.20) coincides with the
classical Kuramoto model. Our main strategy is to study f; as a perturbation of
the Wasserstein gradient flow driven by Vi(z). In this section, we gather various
perturbative results in this direction. We first define the perturbation

Wi(z) = Vi(x) — Vi(x).

Recall that the size of this perturbation is controlled by the parameter €4 defined
as

(5.1) go = ([Al2+2) - [¢" = 1]cis) -

Observe that Y;(z), V;(z) can be viewed as vector fields defined on IR¢ although
we mainly care about 2 € S®~!. The following three kinds of terms appear in our
arguments.

Lemma 5.1. For any x € S%!, we have that

[Wi()l2 < g, [VWil2)]2 < &

where V is the standard gradient on IR?. Also,

< <€¢ 'It.

J;d,1<atvpg($)’JG(Q»>‘th($)

Proof. Because z,y € S%~! in (3.3), we see that
[We(@)llz = [Ve(@) = Ve(z)]2 = | LUH P.[yl(¢' ((Az,y)) — 1) due(y) ],

< ¢ — s j dun(y) < e
gd—1
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Similarly, we see that
IVWe ()2

], 16 €A = Dy @~ Gopta)

+¢" ((Az, ) (Ay ® Pu[y]) | due(v) ],

<16 = tlers (Al +2) [ dulo) = <5
Finally, direct computations show that

Wi (x) = s V. [Pelyl(¢" ((Az,y)) — 1] dpe(y)

= [ P06 €A~ 1) D) + 6 () A, o)) i)

Hence,

| f (W), V() dps (2)

- | [[ 16 (2.9 - 1w, )
+ 0" ((Az, ) (Aw, Ve(y) )y, Ve(@))] dpe (x) dpae(y)|
<5 [+ 1412216 = ters) (DB + DA@IB) dia(z) ()

— o | @A),
O

Lemma 5.2. For the derivatives of My and Ry, we have the following formulas:

ot = | Vi)
and

AR =2 | (D)3 = D). Walo)) o).
As a corollary, for any e4 > 0 we see that
]t —€¢ é’t( ) 3]15 +€35

Proof. The equations for d;M; and d;(R?) follow from direct computations, and we
can apply Lemma 5.1 to obtain the inequalities for d;(R?). O

Lemma 5.3. For the derivative of I, we also have the following formula:

o, = j j [204(@), %)) — <29 (1D (@) 2 + 1V W)I3)

+2(Vi(x), 0 Wi (2)) + VWi(z) (Vi(@), Ve(2)) | dpe () dpe (y).-
As a corollary, if 4 € (O, %), we have that
oy = —314.

(5.2)
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Figure 4. Examples of non-monotonic evolution of R;. The top row
shows R?, and the bottom row shows 0 (R?), for two different initial pro-
files. Each column corresponds to a different initial profile. These plots
illustrate that R? can exhibit non-monotonic behavior, with d; (R?) tak-
ing both positive and negative values over time. ¢((Axz,y)) = e*1=¥
in the plots.

In particular, for any to =t = 0,
I, > Itle_3(t2_t1).

Proof. (5.2) follows from direct computations. Similar computations also appear
in the proof of Lemma 3.3, so we omit the details here. We then apply Lemma 5.1
and obtain that 0;1; > —31;. O

6. ALMOST KURAMOTO MODEL: PROOF OF THEOREM 3.6

In this section, we analyze the dynamics (3.20) under the assumptions of Theo-
rem 3.4. Before moving on to the proofs, we first explain some basic schemes. For
the Kuramoto model, that is, ¢’ = 1, an important fact is that R; is nondecreasing.
We can also deduce that ¢; R; = 0 directly from Lemma 5.2. On the other hand, the
form of Lemma 5.2 cannot give 0;R; > 0 for our more general dynamics. In fact,
one does not expect that d;R; > 0 in general, as illustrated in Figure 4. For this
reason, we treat the case where 0;R; is large and the case where 0, R; is small (and
even negative) separately. In Section 6.1, we show that R; is almost increasing,
in the sense that it cannot decrease by more than a factor of Ry; in Section 6.2,
we show that when ¢, R; is small, U, is almost static, and the density around the
antipodal point —U; decreases exponentially fast.
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6.1. R; is almost increasing.

Lemma 6.1. Fiz a constant X € (0,1) and an angle o € (0,7/2). Assume that at
some time t1 = 0,

Ry, = ARy, O1Ry > %(Sm‘* Q)N R3.

t=t1
If ey <1073 sin® aA?R3, then 0,(R?) > 0 on [ty,t; + 1], and

2 2
Rt1+1 - Rtl >

100
Proof. Combine Lemma 5.2 and Lemma 5.3, we see that for any ¢ > ¢4,

1
at(R?) = It - 535 = It1€_3(t_t1) - 83 = 56_3(t_t1)(at(R?)|t=tl) — 2835

So, combining this inequality and the assumptions on Ry, , 0y R¢|i—¢, , €4, We see that

1
0i(R?) = (126_3(t_t1) -5 10_5> (sin a)\* R,
which is positive when ¢ € [t1,¢; + 1]. In particular, integrate the above inequality

on [t1,t1 + 1], we see that

.4
sin® «
R} ,,— R} > 100 MR3.
O
Lemma 6.2. For the derivative of Uz, we have the following formula:
1
atUt == ﬁPUt [5tMt] .
t
As a corollary,
1 1 1
2 2
Hé’tUtHg < Eftz < E Gt(Rt) + €¢.
Proof. Direct computations. ([l

We then define a smooth auxiliary function £u, o, (a) on R, such that &4, o, (a) =
1 when a > cosa; and &4, a,(a) = 0 when a < cosag, where 0 < a < ag < 7. It
is possible to construct such a cutoff function by mollifying indicator functions on
IR. We denote the derivative of &4, q,(a) with respect to a as &, . (a). A trivial

Q1,02
fact is that we can also assume that 0 < &, ,,(a) < 2/(cosa; — cos az).

Lemma 6.3. For the derivative of the measure on the negative spherical cap, we
have the following formula:

% Ld_l £a11a2 (_ <y7 Ut>) d:u‘t (y)

= Ld_l 5,0417012 (_ <y7 Ut>) (_ <y, atUt> — <Ut7 yt(y)>) dut(y)

2
< —— (|6Us]|2 — Rysin® oy +
= cosag — cosag (” Uelz e ! ¢)+

2 1
<—= [ =./0 RZ 2_R 102
COS (1] — COS iy <Rt V «(B) e tsinton 46

+

(6.1)

where uy = max{u,0} for ueR.
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Proof. The derivative equation in (6.1) is by direct computations. For the first
inequality, we notice that for those y € S~! such that — cosa; < {y,Us) < — cos a,
we have that

—(U, Vo)) = U, Vi(y)) = Us, Wi(y)) = = Re [Py [U][5 — U, Wi(y))
< —Rysinaq + Eg-
The second inequality follows from Lemma 6.2. O
Lemma 6.4. For any B € (0,7/2), we have that
Ry + (1 + cos B) e (S/;(t))

cos f3

sin? 3
2

2
- €¢.

0:(R?) = R?[1-

Proof. According to Lemma 5.2, we see that

SR = [ (Vi) + Wil = Vi) + Walo), Wiw)) ()

- L (V)13 + Vily), Wa(9))) dae(y)

1

Z3 Lm (IVe@)l5 = Wi (w)[3) dpe(w)

We notice that for y e S4=1\ (S;r (t) v Sy (t)), we have that |Vi(y)|2 = R?sin® 5.
Hence,

(6.2) 8,R? > R?sin® B (sd—l\(s; (t) U s;(t))) —e2.

On the other hand, by the definition of R;, we see that
Ry = J (y, Uy dpe(y)
gd—1
> cos B (5; (t)) — cos Bt (Sd—l\(sg (t)uS; (t))) . (55 (t))
= cos 3 — 2cos By (Sd_l\(Sg(t) v Sg(t))) — (1 + cos B) (SE(t)) ,

and so,

Ry + (1 +cos B)us ( S5 (t)
(6.3) (Sdfl\(S;(t) U Sg(t))) > % - 2 cos 8 ( : ) '

Combine the above inequality and (6.2), we can obtain the formula in Lemma 6.4.
O

Lemma 6.5. Fiz a constant A\ € (1 —1073,1) and an angle oy € [7/100,7/2).
Assume that at time t1, we have that Ry, = Ry, and there is a time window [t1,t2],
such that when t € [t1,t2],

O R < (sin4 a)\RY.

| =

Then, if
g5 <1073(1 — M)A?R2,
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we have that for any t € [t1,t2],
sin? 3
2cos 3

where (8 is an angle in (0,7/2) such that sin® B = %RO. As a corollary, we have
that for any t € [t1,t2],

(6.4)  o(RY) =

(Rt — ARo) <R? - g(l — A)Ro(R; + ARO)) ,

R: > ARy.

Proof. We use Lemma 6.4 to give a lower bound for d;R? on [t1, 2], for which we
actually need an upper bound for p; (Sg (t)) when ¢ € [tq, t2].

First, take § > 0 such that for ¢ € [¢;,¢1 + 0], we have that Ry > ARy. This is
possible for some small § > 0 first by the fact that R;, > Ry and the continuity of
the ODE solution R;. We show that we can extend the interval [t1,¢; + 6] a little
bit longer to an interval [t1,t1 + § + ¢] for some §’ > 0 small, such that R; = ARy
on [t1,t1 + 0 + ¢'].

Because £, < 1073(1 — A)A2RE and 0, R; < %(sin” 1) A3R3, we find that the
right hand side of (6.1) for any ¢ € [¢1,¢1 + J] satisfies that,

1 OtR
R [0u(R?) + €2 — Rysin® o + 64 < 4 /2 tht — Rysin® oy + 2%

1 2
< _5)\R0 Sil’l2 o1 + 1703(1 - )\))\RO

1 2 1
SARy | ———+ —=-—=] <0,
0 ( 5000 ' 10° 103>
where in the last inequality, we used the fact that sina; > sin {55 = 155 - % and
(1 — ) < 1073. Hence, by the continuity of the ODE flow again, there is a small
¢’ > 0 such that for t € [t1,t1 + ¢ + ¢'], we have that the right hand side of (6.1) is

0, that is

d
a gahaz (_ <y7 Ut>) d/"t(y) <0
§d—1

for any t € [t1,t1 + 0 + '] and any as € (a1, 7/2).
Now, for any 8 < a3 < ag < w/2 and t € [t1,t; + § + '], we have that

i (S50) < [ s (— 0V A0 < [ ori0s (- 00 i ()

< gy (STNSE () = e (S7(00)) + gy (SIS (02) U S5 (1)) -
On the other hand, we see that for any s > 0,

R, = Ld_1<y7Us>dus(y)
< s (S5(3)) + cos By (STIN(SS () © S5(5)) ) — cos s (S5 (5))
6.6) = (1= p (SINSE(s) U S5 () — e (55(9)))
+ cos B, (STI(SS () U S5 (5)) ) — cos s (S5 (5))
<1— (1 + cos B)us (Sg(s)) .

(6.5)
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Combine (6.2) and (6.6) for s = ¢, we see that when t € [t1,t; + 6 + ],

i (S50) < g, (S5(10)) + g (STISS (1) U S5 (1))
- 1—R,  0nR} +¢) - 1— Ry, €% .
L+cosf  REsin®B ~ l+cosf  R? sin®pB
Hence, Lemma 6.4 gives that when ¢ € [t1,t1 + § + ¢'],

;2
sin” 3
0(R;) > 5o (CR A+ BL)R) +clty))
where
1+cosf 4 2cos B ,
b(t1) = Ry, + 12 (ty) = — e2.
( 1) t1 COSB Rgl SiIlQﬁ ] C( 1) sin2 B ¢

To proceed, we first remark that if e, = 0, we see that b(t1) = Ry, +cos 3—1 < Ry,

and c(t;) = 0. In this case, we see that d;(R?) > QSICHOQS% RZ(b(t1) — Rt). The right
hand side is nonnegative once R; reaches b(t;). Hence, for ¢ € [t1,t1 + d + 0],
we have that Ry = b(t;) = Ro — %RO > ARy . This strict inequality gives a
little room when €4 # 0. As in the assumption, we have that sin? § = %RO,

g5 < 1073(1 — M)A?R2, and Ry, > Ry. So,

1—A 10 . 2
b(t)) = Ry — — 1073(1 = MN2R2
(t1) = Ro 5 o 0= VR, (107%( )N’ RE)
1—A 1—A 3
> Ry — 5 Ry — 5 ROZAR0+5(1—)\)RO,
and
10 -3 2 p2)2 3 23
c(tr) = T (1072(1 = M)A*R]) 5(1 MN RS
Hence, when t € [t1,# +  + '],
sin? 8 3 3
0:(R?) = S c0s (—R;” + (ARO + g(l — )\)RO) R? - 5(1 - A)VR%)
sin? 3 3
= 72COSﬁ (Rt — )\RO) (Rf — g(l — )\)Ro(Rt + /\RQ)) s

which is exactly (6.4). We also see that ARy is strictly larger than the roots of
the quadratic polynomial 2% — 2(1 — A)Ro(x + ARg) because A € (2,1). Because
R;, > Ry, as in the argument for ¢4, = 0, we see that when ¢ € [t1,t1 + 6 + ¢'],
R; = ARy.

We finally remark that the only assumption we made in the proof is that for
some 6 > 0 and for t € [t1,t; + §] we have that R; > ARy. Under this assumption,
we obtained a ¢ > 0 such that for ¢ € [t1,t; + § + '], we have that (6.4) holds
true and also R; > ARy. By taking [t1,t; + d] as the supremum interval on which
R; = ARy, we get that for any ¢ € [t1, 2], (6.4) holds true, and R, = ARy.

O

Lemma 6.6. Fiz a constant A€ (1 —1071R2,1). Then, if
g5 <1072(1 — M)A?RZ,
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we have that
R; = ARy,
for anyt = 0.

Proof. Fix an angle a € [7/100,7/2). We use Lemma 6.1 and Lemma 6.5. We first
remark that the assumption on €4 satisfies the assumptions we made in Lemma 6.1
and Lemma 6.5.

If for any ¢t > 0, we have that d;R; < %(sin4 a) N3 R}, we see that Ry > ARy for
any t > 0 by Lemma 6.5. Otherwise, assume that ¢; > 0 is the first time such
that 0, R¢|i—s, > %(sin® a)A\*R3. We have that R, > ARy on [0,t1], in particular,
R¢, = ARg. By Lemma 6.1, R, is increasing on [t1,t1 + 1]. By denoting n = 1— A2,
we have that
sin o 16

00 MRy = N2R2 + 1010
16 R

16 12R3
= R} <1fn+1010(1fn)21%3> > R} <1+ T 217) > Ry <1+ 101()0),

R} 1 >R} + MRS

. . 2 . .
where we also used the fact that sina > sin 175 = 15 - %, and the last inequality

2
is because n = 1 — A2 < 2(1 — \) < 120%, by the assumption of A\. Hence, we see
that Ry > ARy and Ry, 11 = Ry for t € [0,¢; + 1]. We can run this argument again
starting from ¢t = t; + 1 and extend the interval at least by 1. So, R; = ARy for

any t = 0. (Il

6.2. Measures on Negative Caps Decrease Exponentially Fast. In the fol-

lowing, we show an instability result for the negative spherical cap. Recall that pu,
has a density f; € L2(S?1).

Lemma 6.7. For any ay, as with 0 < a; < as < 7w, we have the following formula:

4
dt Jga-

61 = | o (-0 (= 080 = T 0D) F20)

Saan (=, UD) () dy

] o (@ U0) (= 1) Moy = divess Wily)) £2(0) s
§d—1
Also,
d
(6.8) Sl aimsy < (A= D(B: + o)l fillfaganny.

Proof. (6.7) is by direct computations. For the inequality, if we let oy — 7~ (or
just replace &, o, With the constant function 1), we see that

d .
Gl = [ ((@= D0y - divWiw) £ dy

< (d=1)(Ry + e4)| fell T2 (ga-1)-
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Lemma 6.8. Fiz a constant A € (2/3,1) and an angle ay € [7/100,7/2). If there
is a time window [t1,t2], such that when t € [t1,t2],

—_

R: > ARy, 0;R; < g(sin4a1))\3Rg,

and if
1
€p < 1—04/\2R(2J cos ay,

then, we have that for any t € [t1,ta],

O ( sm(n) < - TS o (6 1)),

Here, we define ft = SA f2(x)dx for any measurable set A < S?~1.

Proof. By Lemma 6.7, we see that for any as € (a1, 7/2), we have that

d
& Jgd—l goq,ag (_ <y; Ut>) ff(y) dy

< [ G (- @ UD) (18011~ Resin® o + =) £2(0) dy
S§d—1

* L €araz (=@ Up) (=(d = DRy cosaz + (d — 1)eg) f2(y) dy

Notice that we used the fact that (Uy, V;(y)) = R¢|P,[U:]|3 = Risin®a; when
cosag < —(y,Up) < cosay, and the fact that (M, y) < —R; cosay when cos as <

- <y7 Ut> < 1
Combine Lemma 6.2, we see that, similar to the proof of Lemma 6.5, by the
assumptions on Ry, 0 Ry, €4,

O R
2 ;%tt — Rysin oy +2Rt

2
1 . cos aip 1 /1 cos aip
< ARy | —=sin? 2L < ARy | =2
0[ g St 5000] Ol 2(50) T 5000

for any ¢ € [t1,t2], where we used the fact that sin ({55) = 2 - 155. Also,

H(?tUtHQ — R Sin2 al +ep <

)

00

1
—(d—1)Rycosas + (d—1)ey < (d—1)ARp <— cosag + — T 041)

€

Hence, combine the above two parts, we have that for any ¢
as € (a1,7/2),
d 2
& gal,az (_ <y7 Ut>) ft (y) dy
Sd—l

1
< (@ DA (~cosan + ggoosan ) [ o (-G 0D) £20)
i
We can then obtain the conclusion by sending as — a7 . O

Next, for any ¢; > 0, we define the diffeomorphisms {¢, ¢(z)}s=¢, on S%~! by
solving the ODE

at¢t1~>t(x) = yf(¢t14’t($>)’ with ¢t14’t1 (37) =7, Vo e Sd_l'
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Lemma 6.9. Fiz a constant A € (2/3,1) and an angle o € [w/100,70/2). If there is
a time window [t1,t2], such that when t € [t1, 2],

1
Ry > ARy, 0OR; < g(sin‘*a)A3R,3,
and if
L ovopo
€p < W)\ Ry sina,

then, for any ts,t4 € [t1,t2], t3 < ta, and v € S¥=! such that

Gra—ta(2) € ST\ (S5 (ta) L 53 (1))

we have that

d sin? a
(69) - <¢t A,t(.%‘), Ut> = )\R() .
dt|,_,, 3 4
As a corollary, if we define,
4
6.10 6 =06\ Ry,a0) = ————,
( ) ( 0,) AR sin? o

then if to —t1 = 6, we have that
¢t1—>t2 (Sd_l\sg(tl)) < S;r (t2)7 Sd_l\sg(tQ) < ¢t1—>t2 (S(;(h)) .

Proof. By Lemma 6.2, and the assumptions on Ry, 0: Ry, €4, we see that

% » (Pts—t(x), Up) = Vs (D151, (7)), Up) + Lty (x), 0:Us)

= Vi (P51, (2)) , Uy + Wi,y (D51, (%)), Up) + { bty 1, (2), 0:Uy)

1
> Ri, [Py, ., @[Ul5 — 6 = [P, ., ) [Ui] Hzg (\/ Op(RE)|e=ts + 5¢)
4

2

1.
> ARPs,, o0l (1P Uil gsin?a ) = S5es

1 2
= ARy (sin ) <sina ~3 sin? a) - )\—RO%
.92 . .92
sin” o sin a sin® o
> - > :
ARg 5 ARy 200 ARg 1

where in the first inequality, we used the fact that d;U; is in the tangent plane of
U and Py, [¢t,—t,(2)]]l2 = [Pg,, ., 2)[Ut]]2, and in the last inequality, we used

2 . p
that fact that 15 - £ < sin 15 < sina. O

Theorem 6.10. Fiz a constant A € (1 —1071°R2,1) and the angle o = 7/100. If
there is a time window [t1,ts], such that when t € [t1,ts],

1
Ry = ARy, 0iRy < g(sin4a))\3Rg,
and if

1
€p < W)\QR% sin o cos a,

then there is a T of the form
(611) T =Cut1 + CO
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where C., is a universal constant and Cy is a constant depending on Ry and || fo| L2 g1y
, such that either to —t1 < T orty = +00.

Proof. Assume that to —t1 > T > 0(A, Ry, «), where §(\, R, «) is defined in (6.10).
For any r € [t; + ,t2], by Lemma 6.9, we see that

Hr (Sd_l\sjv_ (T)) < fhr (¢r75,r (S; (T - 6))) = Hr—s (S(; (7‘ - 6)) .
By Lemma 6.8, we see that

_ _ (d=1)ARgcos r_§— _
P (Sar—0)<er TR (S0 (1)
Hence, by Holder’s inequality, we have that
_ _ (d=1)ARgcosa R _ 1
(6.12) pr (STTNSE(R)) < Cgrem a2 (S5 (0)]7

where Cy > 0 is a constant depending on d (actually the square root of the surface
measure of S~1, which is less than 10 for any d). By Lemma 6.7, we see that

1

[f2 (S2 (t1))]% < [ fellp2@a-ry < ™ foll 2oy
Also, by the choice of ¢ in (6.10), and a =

(d—1)ARg cos o
4

Too We see that

5§ <10%(d —1).
Hence,
(6.13)  p (STIN\SI(r)) <10-e”

On the other hand, by Theorem 3.5, we have that I; + 0,1y < 102y, (S“™1\SI (t)).
Multiply e on both sides and integrate from ¢; to 7, we obtain that

(d—1)ARgq cos - 4
g e(d 1)(2t1+10%) | HfOHL2 (s4-1)-

103 - e(d=1)(3t1+10%) |

HfOHLQ(Sd 1) —{d=DARg cosar
1 (d—1)ARg cos o .
- 4

I’r < Itle—r-f-t] 4

We notice that, if AR({#T is much larger than 3¢; + 10*, the right hand side of
the above inequality can be very small, and hence I,. is quantitatively small. Also,
notice that, by Lemma 5.2 and the assumption that R; > ARy, we have that for
any r € [t1 + 6, t2],

31, £3 31,

|, < + <
t=r 2AR, 2AR, 2AR

Combine the above two inequalities, and the fact that I; < 2 by its definition, we
can simplify the above expression by writing

6t Rt

+ 1073 \3 R sin® a.

Co CE! i _ .
8th|t= )\RO (r=8011-10%) + 10 8/\3R3 sin? a,
where Cj is a constant depending on Ry and | fo z2(ge-1) . Hence, for
T:d—llo <R4>+30t1+10

where C is a constant depending on Ry and | fo|p2(se-1y, we see that if t5 —
ty = T, then 0, R, is upper-bounded by a positive function which is smaller than
(sm a)A3R3 for any ¢t > ¢; + T, and we can repeat the above arguments until

+00. O

H‘oo\»—‘
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Proof of Theorem 3.6. Recall that a = {f5 now by our assumption. Fix the A =
1—107°RE > 1 - 10719RZ. We divide R> into pieces 0 = s_1 < tg < 89 <t <

1 <ty < S9---, where for any k >0

tp = inf { Sk_1

1
ORy > g(sin4 a))\3Rg} . Sp =1+ 1.

We first show that this construction must stop at some k,-th step. By Lemma 6.6,
we have that R; > ARy for all ¢t > 0. Actually, by Lemma 6.1 and the proof of
Lemma 6.6, we see that for any k£ > 0,
sin o sint o 12R2
MR§ = NRj + MR§ > R} 9.

100 0" o0 o " F o0
Hence, in Lemma 6.5, if we replace Ry with R, _,, we see that on [sg_1, tx], O: Rt <
é(sm Q)N RE < 8(sm )M R3 . and the assumption of Lemma 6.5 is satisfied,
and hence R;, > AR,, ,. Hence, we can use Lemma 6.1 and the proof of Lemma 6.6
again, and see that for any k > 0,

2 2
R, > R; +

SlIl [0}

2 2 4 4 2 P2 4 n4
Rsk > Rtk 100 ARy = A Rsk L 1010)\ Ry
16 12
2 2 4 2 6
RGk 1 AT -1+ 010>\ R = ng 1 OIORO'

Because R2, < 1, we must have that k, < 10°R;°. 6. Together with Theorem 6.10,
we see that for any k € [0, k], tx — sk—1 < Cysk—1 + Co, with C,, and Cj obtained
in Theorem 6.10, and tx, 1 = +00. Hence, we may set To = S,, which depends
on Ry and | fo[ z2(sa-1)- By (6.13) and its proof, the following inequality holds true

(6.14) pe (STINSH (1)) < Coe~bafot -y > Ty

where Cy is a constant depending on Ry and | follL2(se-1), and €1 is a universal
constant. If Ry > l the desired form of result in Theorem 3.6 follows directly by
identifying Ty = TO7 Co = Co and ¢; = ¢;. Otherwise, we define T1 T v %
such that the mass outside the cap S (Uz, ) is small: pg (SIN\ST (U5 »)) < 15 At

time Tl, we estimate the lower bound for RT1 as follows:
Ry = [ 0Un)dug )
> cosa g (SJ(ﬁ)) -l (Sd*l\Si(ﬁ))

(6.15)
=cosa— (1+cosa) p (Sd 1\,S'J’(T1)>
— cosa — 1.1
~ 10 107 2

Thus, we can reset the starting time of the estimate (6.14) to Ty. There exists
T> > 0, depending on | f3 [r2(se-1), and hence on | fo|r2(sa-1) and Ro via (6.8),
such that

e (SIS () < 506_%((1_1)51“_%1), Vi=To+ T

The desired result in Theorem 3.6 then follows by identifying T = Ty + T’l, Cy =
C’oe%(d’l)ElTl and ¢; = ¢1/2. O
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7. MORE ACCURATE Cy, Ty IN THEOREM 3.4: PROOF OF THEOREM 3.8

The assumptions in this section are the same as in Theorem 3.4, that is, we
have a family of L2(S%!) probability densities, {f;(z)}:>0 satisfying (3.20), and
g4 < ¢, RS. We notice that Cp, Ty in Theorem 3.4 (and Theorem 3.6) comes from
the proof for Theorem 6.10. In particular, the term T in (6.11) of Theorem 6.10
depends on t1. Because of this dependence, when t is in the interval where 0; R; >
%(sin4 )N R3, we lose control of the growth of fZ (S*"'\SI(t)). The following
arguments are mainly for fixing this issue. For this purpose, we carefully investigate
the characteristic flow associated with the dynamics (3.20). Our analysis is inspired
by the problems for the Kuramoto model considered in [HKMP20, MP22] where
d =2 and 8 = 0, but our more general dynamics (3.20) and the geometry of S9!
make the arguments more involved than the circle case.

We adopt the diffeomorphism notation we used in proving Lemma 6.9. That is,
for any t; > 0, we define the diffeomorphisms {¢;, ¢(7)}¢>¢, on S%~! by solving
the ODE

01, -t () = Vi(bt, -t (x)), With ¢y, o, (z) = 2, Vo e ST

After exploiting more properties of ¢, .+, we will be able to modify our Theo-
rem 6.10.

Lemma 7.1. For anyt > t; >0, and any measurable set B < S, we have that
d
G Gn=e(B) <2d 1) f7 (91,-0(B))

Proof. For simplicity, we prove the case where ¢;, ,+(B) has a smooth topological
boundary d¢;, ¢(B) in S?"!. The general cases for B can be done using the area
formula (change of variables), and similar computations were used to prove Lemma
A1 in [HHL25).

When 0¢y, +(B) is smooth, we notice that

d 2 _ d 2

&ft ((btl—)t(B)) T -Lnﬁf,(B) ft (x) dz

_ f F2(2) (@), ubey i (6L (@)))y dHP 2 () + f 2(f2(x)) da
0¢t, —t(B) Pt —t(B)

= J div (fZ(2)Ve(2)) dz + f O¢(f2(x)) da.
St —t(B)

bty —¢(B)

where n(z) is the outer unit normal vector of ¢, ¢(B) in S, and H"2(x)
is the Hausdorff measure. In the last line, we used the divergence theorem and
6t¢t1_,t(¢[ll_,t(x)) = V(). Because f; satisfies (3.20), we have that

d 2 2
G GuB) =~ [ e div i) do.

¢t1—>t(B)
By (3.21), we see that

—div ) = [ (@ 1)) aiv V@] i) ay
< (d—1)(a, My) + €4).

Combine the above inequalities and the fact that (z, M;) < 1, we get Lemma 7.1.
O
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In the following, we use Conv[S] to denote the geodesically convex hull of a set
S < S%1, that is, the intersection of all those closed geodesically convex subsets
of S%=! that contain S. The definition implies that Conv(S) is unique and closed.
We first need the following geometric fact:

Lemma 7.2. Let S < S9! be a closed subset. If inf, yes(x,y) > 72, then,
infac,yES<x7 y> = inf:}c,yEConv[S] <I, y>

Proof. Because S < Conv[S], we have that inf, yes(z,y) = inf, yeconv[s1(T,y). As-
sume that inf, yes{x,y) > inf, yeconv[s1{Z,¥), and inf, yeconv[s){T,y) is achieved
by Zy,Z5 € Conv[S], and we use 6 to denote the angle between Z;,Z,, that
is, cos = (Z,,Z) and 0 € [0,F). Notice that we can get 6§ < T, because
the maximal angle of points in S does not exceed 7. Assume that Z; ¢ S,
then we consider the spherical cap S(j (Z3), where we used the definition (4.1).
Because cos = inf, yeconv[s){,¥), we have that Conv[S] < S, (Zs). Hence,
S c S5 (Z5). We extend the geodesic from Z; to Z, further to a point Z3, such
that (Z1, Z3) = 0. Recall the triangle inequality on sphere: for any X1, Xo, X3 such
that X, X3 € S%(Xg), we have that 651 + 693 > 613, where 657 is the angle between
X5 and X, 693 is the angle between X5 and X3, and 60,3 is the angle between X
and X3. Hence, S, (Z2) S%'(Zg), and the boundaries of these two sets are only
tangent at Z;. Apparently, S < Conv[S] < S, (Z2) < S%(Zg). Because 7 ¢ S,
and the boundaries of Sy (Z>) and S%(Zg,) only intersect at Z;, we see that the
boundary of SJ%F(Zg) does not contain any point in S. Hence, we can take a very
e > 0, such that S < S%_G(Z:;). Because Sg_e(Zg) is also a closed geodesically
convex set, by the definition of Conv[S], we must have that Conv[S] < S%__e(Zg).

This is a contradiction, because Z; € Conv[S] but Z; ¢ Sg_E(Zg). O

Lemma 7.3. Fiz a time t; > 0 and a closed subset B < S%' which is properly
contained in a hemisphere of SY=1. Define

D(B)= (o),

z,y€Conv[dt, —+(

and T'(B) = py, (B)(1+ Dy, (B))—1. IfI'(B) > 0, Dy, (B) > 0, and if we have that
e3 < 1(1 =Dy, (B))T(B)?, then for any t > t1, we have that Dy(B) = Dy, (B), and

(7.1) xeCOnv%gf (B)]<x, M) = pe, (B) (1 + Di(B)) — 1 = I'(B),
and

—I(B) 4
(7.2) 1—Dy(B) < max{(l — Dy, (B))e 7 (=t F(B)2€i} :

Proof. The first inequality (7.1) basically follows from the fact that for any set
A < ST (¢, —i(A)) is a constant because f; satisfies (3.20) and ¢y, is its
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characteristic flow. More precisely,

inf (x, M) = inf Ld_l@, ywfi(y) dy

z€Conv[¢t, +(B)] z€Conv[¢t, +(B)]

> (e ) foly) dy - j fi(y) dy
] s

zeConv(ps, —¢(B)] .[conv[@ﬁt(B) d=1\Conv |y, ,+ (B)]
> Dy(B)pt (Conv[or, —¢(B)]) — (1 — fi (Conv[t, —+(B)]))
= ft (Conv[¢s, ~¢(B)]) (1 + Dy(B)) — 1
= pi (91, ¢(B)) (1 + Dy(B)) — 1 = e, (B) (1 + Dy(B)) — 1.

To prove the second inequality (7.2), we need to compute the derivatives of
Dy(B) in t. Let ¢, (), ¢r, - (y) be two points in Conv|[¢y, -+(B)], we have that

(7.3)
% <d)t1—>t(x)a ¢t1—>t(y)> = <yt(¢t1—>t(x))a ¢t1—>t(y)> + <¢t1—>t($)7 yt(¢t1—>t(y))>
= Vi1, -1(2)); G111 (Y)) + (D1, >t (), Vi(dt, - (¥)))

+ <Wt (¢t1ﬁt (.’E)), ¢t14’t (y)> + <¢t1ﬁt (CE), Wt((j)tl"t (y))>
= (M Py, 01—t ]) + (M1 Py, [Bre(@)])

+ (Wit 1(@)), P[00 W)] ) + (P o[04 ()] Wal 1, -1 (0)) )

If we let 6 € [0,7] such that cos(20) = (¢, (), dr, :(y)), then we see that
1Py, o) [Pt >t (y)]]2 = sin(20). Also, there is a Z € Conv[¢s, +(B)] < §i-1
such that Py, _, )[¢0t,(y)] + Py, _, () [¢t,e(x)] = 25in(0) sin(20) - Z. This Z is
actually the middle point on the shortest great circle connecting ¢¢, (), p¢, -1 (y).

Hence,

d
. — 9 — 2 i f 5 M -2 i 29 5
ar (Dty—t(T), Pt -1 (y)) zeconvfiw(g)]@ 1) — 2€4 sin(26)

where we also used Lemma 5.1. Because ¢, +(2), 1, »+(y) were chosen arbitrarily,

by writing sin(26) = 4/1 — cos2(260) and sin(6) = 4/ 17%3(29), we obtain that

d 5 1 — Dy(B) .

&Dt<B> = 24/1— Dt(B> < 72 zeconv%};iat(B)]<z,Mt> — €¢>
(7.4)

> 2\/1~ D,(B)? ( L= DB 1, (B) (1 + Du(BY) -1 - s¢> ,

where in the last step, we used the first inequality (7.1) which we just proved.
Assume that [t1,t3] is the maximal interval such that (7.2) holds true for any
t € [t1,t2], then we want to show that ¢ = +00. First, because we have (7.2) on
[t1,t2], we obtain that Dy(B) = Dy, (B) > 0 for any t € [t1,t2], where we also used
the assumption that si < 1(1- Dy, (B))I(B)2. If ts is a finite number, then we let
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t =ty in (7.4), and obtain that

Sl - pum) < —2yT- DL (BP ( LB (B) (14 D (3) -1 - %)
1— Dy, (B)

5 [, (B) (1 + Dy, (B)) — 1] = €¢>>

< —2v/1— Dy, (B)? (

— _2\/1= Dy, (B)? ( %Q(B)F(B) - %) .

Now, by the assumption of ¢35, we also have that

- 4 4
1= D (B) = max { (1= D (B FHet, Aol oo

[(B)"*f = T(B)
Hence,
Sl 0= DuB) < VT Du(B) - 11— D (B)(E) (V2 1)
<201~ D, (B)(B)

Because Dy, (B) < 1 as B is an open set in S¥~!, by the continuity of the solution,
there is a small time interval [to, t2 + 0] for some § > 0, such that for ¢ € [ta,t2 + ],
we have that

d 1

(1= Du(B)) < —1[1 - Di(B)IT(B).

Hence, for any t € [to,t2 + d], (7.2) also holds true, because

(B

1—D¢(B) < (1= D¢, (B))e” =
n(B)

_ A =D (B)eT ) if 1 - Dy (B) = (1= Dy, (B))e ™+ (t2=t),
ﬁ&f?p, if 1 — Dt2(B) = ﬁgi,

(t—t2)

- 4
< { (1= Dy (BYe 0, ed),
which contradicts to the assumption that [¢1,¢2] is the maximal interval on which
7.2) holds true for any ¢ € [t1, t2]. O
( y ,

Lemma 7.4. There is a Ty < 10*Ry3, such that if we let ay € (0,%) satisfy
sin?(ay) = 1072Ry, then the set By = Sa, (Ty) satisfies the assumptions for the
set B for t; = Ty in Lemma 7.3. Furthermore, if £, < 1072R3, then for any
t =Ty,

pe (Conv[6r,—(BL)]) = i, (B2) > 5 (1 " 1901%0) |

and
1

7.5 inf z,y) = Dy(By) = Dr, (By) = 1 — — Ry,
(7.5) z,yeconv[¢T*Ht(B*)]< v t(Bx) T*( %) 50 0
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and

(7.6) inf o M) > (Ba) (14 Dy(Ba) ~ 1 £ R,

zeConv([¢pry ¢ (Bx)]
Proof. We define
T, =inf{t >0 R, <107*R3}.

Because, 1 > Ry, — Ro > T,10™ 4R3, we have that Ty < 104R53. Also, by the
definition of Ty, we have that R; is strictly increasing on [0,T%], in particular,
Rt = RO fort e [O,T*]

In order to verify the assumptions in Lemma 7.3 for B, = S’;[* (Ty), we need to
get the corresponding D1, (By) and fr, (By). First, it is easy to see that

Dy, (By) = cos(204) = 1 — 251n2(a*) =1- %RO

Then, we are going to estimate 7, (By). By the same reason as in proving the first
inequality in (6.6), that is, divide the integral Ry, = §o._.{y,Ur,)fr, (y)dy into
integrals over Sy (T%), SA=1\ (S L (T) v S5, (Ty)), and S, (T%), we have that
Ry < Ry, < pir, (s;* (T*)> + cos(a )iz, (Sd—l\(s;* (Ty) U Sa, (T*)))
— cos(aw ), (sa* (T*))
= (1 + cos(a)) iz, (S;’* (T*)) + 2 cos(as) pr, (Sd_l\(s(;‘r* (Ty) U Sa, (T*)))
— cos(ay)
< 2pm, (84, (1)) + 240, (STI(SE, (T2) U S, (T14))) = cos(a).
Next, by the same reason as in proving (6.2), we have that

O RZ |-, + €3
HTy, (Sd*l\(sot* (Tx) v S,, (T*))> < M

20, Ry |- e 2.-107%R3  107%R2
_ t t‘; Ty + : ¢ < — 0 + — 0 _ 3 . 10_2R0~
Ry, (sin*(ay)) R7 (sm (ag))  Ro-1072Rq  1072R,

Combine the above two inequalities, and cos(ay) = cos?(ay) = 1 — sin(ay) =
1 —1072Ry, we see that

1 9
1 —7-107%Ry) = = (1 + —
(14+ Ro—7-10"%Ry) 2( +10R0)

l\D\»—l

ury (S14,(1) =
Hence,

(1+ Dy (8o, (Tx)) —

P (82, (1) = ry (S2,(T0) (
o) =)
;

1
7R0_ 0_7

4
10 100 1000 5 fto-
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Then, our assumption on 4 in Lemma 7.4 also implies the assumption on €4 in
Lemma 7.3, because

1 16
+ + iR >
7 (1 - DT*(SQ*(T*)) r (Sa*(T*)) > =R > 107'RY > <3,
By our Lemma 7.3, we can finish the proof for Lemma 7.4. O

Before we proceed, we need to give some further definitions. Let Ty, a. be the
time and the angle obtained in Lemma 7.4, and recall that By = S7_(Tx). Now

we define the set B; == ¢, (Bx), and its %—neighborhood set Et

R2
sup{z,y) = - }

By = e st
' {m yeB: 10t

The following lemma is a further step after Lemma 6.9.

Lemma 7.5. Fiz a constant A € (2/3,1) and an angle a € [7/100,7/2). Let Ty,
ay be the time and the angle obtained in Lemma 7.4. If there is a time window
[t1,t2], such that when t € [t1,ts],

1
R: > ARy, 0;R; < g(sin4a))\3R3,
and if
€4 < W)\QR% sin o cos a,
then, for any t3 — ty4 € [t1,ta], t3 < ta, and any x,y € S¥=! such that
R
¢t3—>t4(1") € Si(tﬁl)? Yy € B*ﬂ a‘nd <¢t3—>t4 ¢T*—>t4 > = - 17047

we have that

3
d ARE (cos? a)
(77) & <¢t3~>t QST*Ht (y)> = . <4 ( <¢t3~>t ¢T*~>t (y)>) .
t=ty
As a corollary, if we define,
4log (104R %)

(7.8) 5 = (A, R, ) = :
)\Rg (cos? )

then if to —t1 = g, we have that
¢tl"t2 (S;(tl)) < Etz'

Proof. Take any z € S%~! and any y € By such that {¢y, 1, (2), o1y —t,(y)) <
1-— % and ¢y, ¢, (x) € ST (ts). Notice that ¢y, ¢, () and ¢7, ¢, (y) are in the
same hemisphere, because (7.6) means that ¢7, ., (y) € S’%r (t4). By the same

computation as (7.3), we see that

d

T (Grn(@). 01, a(0) = 25in(6) sin(20)(Z, M)

t=ty

+ Wi Dtata (@), Py [01 s 0] + (P, )0t (@)], Wil by, () )
> 25sin(0) sin(20){Z, M) — 2e4 sin(26),
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where 6 € [0, Z] such that cos(260) = {¢s,1,(2), b1y 1, (y)), and Z € ST is the

)9
middle point on the shortest great circle connecting ¢y, ¢, (), ¢1, ¢, (y). Notice

that because (7.6) implies (¢, ¢, (), M;) > 0, we have that

<Z, Mt> _ <¢)ta—>t4 (33) + ¢T*—’t4 (y)aMt> > <¢tzﬂt4 ($)7 Mt> > COSO[Rt > COSQ)\RQ.
|ts—ta (2) + d1y—ts (y) 2 2 2 2
Also, we can write sin(20) = 4/1 — cos2(260) and Sin(ﬁ) = LS(%). By the

assumption, cos(26) = {bry 1, (%), 1y -4 (y)) <1 — 104, which implies that

R?2 cosa ARZ cos o
in(6)(Z, M) > 0 > 202 > 10e,.
sin(0)<Z, M) 2.10% 2 0 300 €
So,
d ARgcosa . .
T (btst (), o1yt (y)) = 0? sin (0) sin (26)
t=t4
_ ARpcosa

W (1 —cos(26))4/1 + cos(26).

Because we cannot rule out the case when cos(26) < 0, we need to get a lower bound

for 1 + cos(26). (7.6) implies (¢, s, (), My, > £ Ro. Because My, = Ry, Uy, and

Ry, <1, we see that (¢1, 1, (y),Us,) > 2 Ro. Because ¢y, 1, (x) € SJ (t4), we have

that {(¢1, 1, (2),Us, ) = cosa. We use the following fact: for any Z;, Zs, Z3 € S41,
(Zr, Z2) = Z1,Z3) 22, Z3) + (P z7,[Z1], P 2, Z2])

(7.9) = (Zy,Z3XZa,Z3) — Pz, [ Z1]l|2|P 25 [ Z2] | 2-

Hence,

c08(20) = {Pty—1,(2), Py -1, (¥))
= <¢T*Ht4 (y)’ Ut4><¢t39t4 (33)’ Ut4> 1= %RO cosa — 1.

Combine the above arguments, we obtain (7.7):

5 (o2

% (Drat(@), b1y 1 (y)) = W(l — cos(26)).

t=t4

Next, we show that if to—t; > 0 for the § defined in (7.8), we have ¢y, ¢, (3 (t1)) S
§t2. Because the assumptions on Ry, 0;R:, and €4 in Lemma 6.9 are also satisfied
here, by (6.9) in Lemma 6.9, we first know that ¢¢ . (ST (1)) € ST (¢) for any
time t € [t1,t2], because (6.9) means that for points already in S7 (¢1), those points
along the characteristic flow, that is, ¢, ., cannot escape the cap SI(t) for any
time t € [t1,t2]. By (7.7), we have that for any z € ST (¢1), y € By,

d )\R§ (cos? o)

( — Pty 1(2), b1t (y))) < I E— (1 = {Btyt(@), et (1))

as long as 1 — (¢4, —i(x), o1 -t (y)) 2 fgi. Hence, after at most § time, we
have that 1 — (¢s, —4(2), dry—i(y)) < 104 which implies that for any ¢ > t; + 9,
b1, -1, (ST (t1)) is contained in By, the W—nelghborhood of B;. O
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Lemma 7.6. Fiz a constant A € (2/3,1) and an angle « € [w/100,7/2). Let Ty,
ay be the time and the angle obtained in Lemma 7.4. Assume that there is a time
window [t1,t2], such that when t € [t1,ts],

R; > ARy, 0;R; < —(sin a)\3R3.

ool —

If

1
€4 < WAQR% sin o cos a,

and if ts —t1 = 8+ 0 for & defined in (6.10) in Lemma 6.9, and § defined in (7.8)
in Lemma 7.5, we have that

fa (Sd‘l\ﬁtz) < 12 (55 (1)) - HDEHD) g

_ (d*l)k?o cos o (t2_t1).

Proof. By Lemma 7.5, we have that ¢, 5 (S;f (te — 5)) C By,. Hence, because

¢, _5_,;, is a diffeomorphism on S%1 we see that
to—0—to

F2 (S 70B) < 2 (8", 5 (S5 (2= D)) = 22 (015 (S"1\SE (12 - D))
< e2(d=1)5 fi,S (Sdfl\sof (tg _ g)) ’
where in the second inequality, we used Lemma 7.1. Next, by Lemma 6.9, we have

that ST1\ST (5 — 0) < Pp§5ty—b (S,;(tg Sy - 5)) Using Lemma 7.1 again,
we have that

2 (qu\f%) < 2(d=1)5 iig (¢t2_5_5—>t2—3 (S;(tz Sy - 6)))

< Hd=10+0) 2 s (S;(tg Sy - 5)) .

By Lemma 6.8, we finally obtain that

72 (Sd—1\§t2) < f? (S‘(tl)) . e2(d=1)(5+9) _e—wU?—tl—é—a
2 1 «

Before we proceed, we need another auxiliary lemma similar to Lemma 7.4.

Lemma 7.7. Let Ty be the time obtained in Lemma 7.4 and take two times t1,t
such that Ty <t1 <t. Ifeg < 10_3R3, then

Mt (QStlat (Etl)) = % (1 + 190R0) )

and
~ 1
inf  {z,y) =Dy (By)=1-—Ry,
LyEConV[Qfotlﬂt(Btl)] ! ! 10
and
. ~ ~ 4
(7.10) inf o, M) > (Btl) (1 + Dtl(Btl)) ~1> R,

zeConv [d)tl ot (Btl ):I
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Proof. The proof is similar to the proof for Lemma 7.4. We need to verify the as-
sumptlons in Lemma 7.3 for the set Btl, for which we need to get the correspondlng
Dy, (By,) and f, (By,). First, take any 2,y € B,,, then by the definition of B;,,

there are corresponding z',y" € By, = ¢1, 1, (By), such that (x,2") > 1 — % and
2
y')=1- 1}%‘21. Using the inequality (7.9), we have that

(zyyy = o,y Yy y')y — 1 =y, y)?
= @y W, 2 Xy, y') — /1=y, )2 — /1= (@, a")2.

By (7.5) in Lemma 7.4, we have that (2’,y’) > 1 — £2. Hence, we have that

Ro R2 R2 9RZ R}

2 — - — - . 2

@) <1 50) < 104> (1 107 ) 2V 100 108
3Ry 3Ry > Ry \ﬁ

> .
100 100 10 2

=

~ ) . ~ Ro 2
Because x,y € B, are arbitrary, we have that 1nfz’y€Bt1<:c,y> =1-3¢ > %

By Lemma 7.2, we have that Dy, (By,) = inf, o cconv[B ]<:E,y> >1- If—g. Also, by
s t1
Lemma 7.4, we have that

B 1
t1 (Bt1> 2 Mtl(Btl) = IJ’T*(B*) = 2 (1 + 10R0>

Hence, to check the assumptions in Lemma 7.3, we see that

r (étl) = i, (étl) (1 + Dt1(§t1)> 1

1 9 Ro

> D Re) (210} 4
2( +10R0)< 10)
s 1 90

= 5oft0 ~ 5pfto = 5T > 3 RO'

Also, by the definition of By,, we see that Dy, (B;,) = infm7y600nv[§t1]<x,y> <

— W We get that
1 ~ ~\2_ 1 R? 16R?
1 (1=DuB))r(By) = 525 20 = e
1 ( t(Bu) h) Zq0f a5 T
We then finish the proof by Lemma 7.3. O

Proof of Theorem 3.8. Similar to the proof for Theorem 3.6, we fix the A =
107°RE > 1 - 1071°R2, o = 100> and divide IR>¢ into pieces 0 = s_1 < 1o < sp <
ty <81 <ty < Sg---, where for any k > 0

ty = inf { Sk—1

1
ORy > g(sin4 a))\3Rg} , S =1+ 1.

As in the proof for Theorem 3.6, we showed that this construction must stop at
some ky-th step and ky, < 109Ra6. After the time sy, , we already saw in the
proof of Theorem 3.6 that f; (Sdil\SOf (t)) starts to decay exponentially fast. To
go further, we estimate how large s, can be without using Theorem 6.10 directly.
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We first prove that there is an upper bound Cy depending on | fo||p2(ge-1) and
Ry, such that for any k € [—1, k], f2 (S5 (sk)) < Cyx. We fix a k € [—1, ky]. First,
if s < Ty for the Ty obtained in Lemma 7.4, by Lemma 7.1, we have that

2 (S5 (s1) < 2, (8"7Y) < olfa(gany - €270 < [ foll Fagany - 47D
Now, if s > Ty, take the [ such that the following two conditions are satisfied:
(1) Forany pe [l + 1kl (T ifl=k), tp —sp—1 < I + 5 for & defined in (6.10)
in Lemma 6.9, and 6 defined in (7.8) in Lemma 7.5.
(2) t1—(6+0) > 811> Ty or 5,1 < Ty < 5.
If the first case in the condition (2) above holds true, we apply the (7.10) in
Lemma 7.7, which implies that ¢4, (Et,) c S%(sk) Hence, because in this

case, sp —t; < (k—1)(6 + 6 + 1) + 1, by Lemma 7.1, we get that
5219 (S;(Sk)) < 52k (Sd_l\gbtlﬂsk (Etz)) < 62(d_1)[(k_l)(6+5+1)+1]ft21 (Sd_l\gtl) .
Now, combine this inequality with Lemma 7.6 for the interval [s;_1,t;], we get that

2 (S;(sk)) <e:s(d—1)[(k—z+1)(5+5+1)] 2 (55(8171».

Sk Si—1
Using this inequality, we can iteratively pull s; back to the time when the second
case in the condition (2) happens, and this iteration does not exceed ky-times. In
this case, we have that s,_1 < Ty < sp. If Ty < s — 0 — 3 — 1, we have that

12 (87 (0) < £ (89 NGy (Bur) ) < 20012 (1B, )

< e3(d—1)(6+5+1)f%* (S;(T*)) < 63(d_1)(6+5+1+T*)Hf()”%Z(Sd—l),
where the last inequality follows from Lemma 7.1 on [0, Ty]. If Ty > sp —0 — 56— 1,
then s — Ty <6 +d + 1. Using Lemma 7.1 again, we have that

P35 (83 (sk) < f2, (8T71\By,) < DT (ST7N\By)

< e2(d71)(6+3+1+T*)“f0|‘%2(sd71)'
Combine the above arguments in all possibilities, we obtain that for any k €
[—1, k], we have that

gk (Sa_(sk)) < 64(d_1)[k*(5+5)+T*] HfO

1Z2s0-1)-

Next, we need to estimate each tp—sg_1 for k € [0, ky]. Assume that tx—sg_1 > 9
for ¢ defined in (6.10) in Lemma 6.9. Because for t € [si_1,tx], by definition of ¢,
we have that 0;R; < (sin® @)A\*R§, we can then apply Lemma 6.9 to obtain that
for any r € [s5_1 + §,tx], STNSE(r) S @5, (S5 (r —6)). By the same reason
we obtained (6.12) in Theorem 6.10, we can obtain that
1

pir (S90S (1) <100 = RO (12 (50 (s )|

2
Sk—1

Applying the upper bound for (S (sg—1)) we got earlier, we see that

(7.11) pr (SIS (r) < e~ R (rmsi) | (A1) [kx G+ + T | £

for any r € [sg_1 + d,tx]. To simplify the notation in the proof, we let 7 =
~ 1
(@=DAMRocosar yy g A = 3@ Dhx(040)+7x] [l foll2(g2-1))]*- By Theorem 3.5, we

I 22 (sa-1ys
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have that I; + 0,1, < 10%, (ST=1\SF (t)) < 102Ae~"(t=5x-1). Multiply e’ on both
sides and integrate from sj;_1 to r, we obtain that

I < I, e "tenr 4 103 AeSlsnn)

Sk—1
where £ = nif n < 1 and £ = % if n > 1. Also, by the fact that I; < 2 using
its definition directly, we can simplify the above inequality and obtain that for any
r e [Sk_1 + 9, tk],

I, < 10 Aemt(rmsn-),
By Lemma 6.6, we have that R; >
re [Skfl + 9, tk],

ARy. Using Lemma 5.2, we have that for any

2
€

‘ < 3L, L G 31,

t=r 2AR, 2AR, 2ARy

In particular, we can pick r = t, and by the construction of ¢;, we must have that

Ot Ry + 1078)\3R8 sin? a.

1
g(sin4 QAN R3 < O Ry

’t:tk '
in the assumption, and A is very close to 1 by
and Itk s

Recall that we already fixed o = 175
our choice at the beginning. So, combine the two inequalities for 6th|
we have that

t=ty
sin o

o MRS < I, < 101 Aem ),

Hence,
(712) g(tk - Sk_l) < 3(d - 1)[k* ((5 + S) + T*] + IOg [1017R64Hf0HLQ((Sd—l))].
Using (7.12), we sum both sides from k£ = 1 to k = k, and obtain that
ES* <1+ 3(d - 1)](;* [k*(é + g) + T*] + k* log [1017Ra4Hf0HL2((Sd*1))]'
<10%(d — )Ry ™ + 10° Ry log [ fo p2((sa-1y)],
where we also used the fact that k, < 109R56, T, < 104R63, 6 < 104R61, and
6 < 102R;>. Hence, apply (7.11) for r € sy, + J, +o0] we see that
o (8052 () < e
Hence, if we set
Sy = 5_1 [1024(d — 1>R614 + 109R66 log (HfOHLZ(Sd—l))] s
we have that when r > S,
_ _(d=DRo . _
e (STINSE () < e s TS o pagganny.

We now eliminate the dependence on the initial radius Ry in the exponent by
further evolving the flow. Specifically, we define

SOa if HSo (S\S&L(So)) < 017

8
So + N log (10[ foll2(s)) » otherwise.
0

Then, as established in (6.15), we have Rg, > 1. Restart the flow at time S, and
we define

—d=DARgeosa (g, ) _e3(d—1)[k*(6+5)+T*]Hf0|‘L2((Sd71)).

S1 =

So =& [10%42M(d — 1) + 10°2%log (|| fs, | L2 (se-1)) ] »
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with £ = s v Land Ap = 1-1071927% For all r > S; + Sy, we then
have the estimate
_ _=D g
pir (SIS (r)) <em 1o TSR £g g, Iz (sa-1)

_d=D)
< e T6 ('I" 33(814—32)) .

I follz2sa-1)
where we used the bound | fs, 15, [ 22(se-1) < e2(d-DE1+52) £ |2(ga-1) from Lemma 7.1.
To estimate S1 + Sz, note from Lemma 7.1 that log (| fs, | r2sa-1)) < 2(d —1)S1 +
log (||f0HL2(§d—l)), which yields the upper bound
Sy < 10%1(d — 1) + 10" (d — 1)y + 10" log (|| fol p2(ga-1))

Combining with the definition of S; and noting that Ry < 1, we arrive at

16 _ _
CEE 1] (d— 1)[10*(d — 1) Ry ** + 10** Ry ® log (| foll 2 (sa-1))] -
Finally, if we set
16
Ty = | ———
0 [(d —1)Ry
we have that when r > T}
_ ENCETY PN
pr (STNSE (M) <em 1 7T fo]l pagany
and the result stated in Theorem 3.8 then follows. O

51+SQ<|:

v 1] (d—1)[10* (d — 1) Ry ™ + 10°° Ry ® log (|| fol p2(sa-1))],
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