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Abstract. The evolution of tokens through a deep transformer models can
be modeled as an interacting particle system that has been shown to exhibit
an asymptotic clustering behavior akin to the synchronization phenomenon
in Kuramoto models. In this work, we investigate the long-time clustering
of mean-field transformer models. More precisely, we establish exponential
rates of contraction to a Dirac point mass for any suitably regular initializa-
tion under some assumptions on the parameters of transformer models, any
suitably regular mean-field initialization synchronizes exponentially fast with
some quantitative rates.
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1. Introduction

The (self-)attention mechanism, initially introduced by [BCB15], forms the foun-
dation of the transformer architecture developed in [Vas17]. This revolutionary ar-
chitecture has become fundamental for large language models (LLMs), catalyzing
remarkable advances in artificial intelligence.

Recently, [GLPR25] proposed to study how a deep stack of attention layers
processes information as a mean-field interacting particle system on the sphere Sd´1

that exhibits long-time clustering properties; see also [SABP22, GLPR24, KPR24,
KBH24, SS24, CRMB24, GKPR24, BPA25, AST24, BKK`25, CACP25].

This model—called attention dynamics—captures the representation of tokens
as they evolve through the successive layers of a transformer. In particular, the
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clustering phenomenon put forward in [GLPR24, GLPR25] is critical to under-
standing the structure of internal representations for these pervasive models. More
specifically, in attention dynamics, n tokens x1, . . . , xn P Sd´1 evolve as

(1.1) 9xiptq “ Pxiptq

“ 1

n

n
ÿ

j“1

xjptqeβxxiptq,xjptqy
‰

t ě 0, i “ 1, . . . , n ,

where β ě 0, Pxrys :“ y ´ xx, yyx denotes the projection of y P IRd onto the
hyperplane TxSd´1 tangent to the sphere at x P Sd´1. We refer to [GLPR25] for a
derivation of this model and its relationship to the attention mechanism and layer
normalization. When d “ 2 and β “ 0 attention dynamics coincide with the well-
known Kuramoto model [Kur75, KK84, ABPV`05, BCM14]. It was observed and
demonstrated in various situations that these tokens converge to a single token:
xiptq Ñ x8 as t Ñ 8. This phenomenon is called synchronization or simply
clustering and we use these terms interchangeably.

Note that the system of ODEs (1.1) is of the mean-field type. Indeed token i
interact with all tokens only through their empirical distribution at time t. We
denote this distribution by µt and recall that

µt –
1

n

n
ÿ

i“1

δxiptq .

In turn, the evolution of µt is governed by the continuity equation

Btµt ` d̊iv pµtXµt,βq “ 0 , Xµt,βpxq –

ż

Sd´1

Pxryseβxx,yy dµtpyq ,(1.2)

where here and throughout the paper d̊iv “ d̊ivSd´1 denotes the divergence operator
on the sphere.

As pointed out in [GLPR25], equation (1.2) describes a Wasserstein gradient
flow that aims to maximize the functional

(1.3) µ ÞÑ Eβrµs –
1

2β

ĳ

eβxx,yy dµpxqdµpyq ,

where both integrals are over Sd´1. It is easy to see that E is maximized at Dirac
point masses δx0

for some x0 P Sd´1. This maximum energy state corresponds to a
clustering of the tokens into a single point. Thanks to these observations, clustering
of n tokens hinges on three classical tools from finite dimensional dynamical systems
theory: the dynamics for the the n-tuple px1ptq, . . . , xnptqq P pSd´1qn can be shown
to (i) converge by the Łojasiewicz inequality, and (ii) avoid saddle points from
almost every initialization by the center-stable manifold theorem. Moreover, all
stationary points are saddle points except for the global maximizers where x1 “

¨ ¨ ¨ “ xn; [GLPR25, KPR24, CRMB24, MTG17].
The number n of tokens that can be processed simultaneously by a transformer

model is called context length and scaling up its value is a major engineering en-
deavor because of its direct impact on performance—current frontier models handle
contexts with millions of tokens [Goo24]. However, past work on attention dynam-
ics has largely focused on studying asymptotics where t Ñ 8 and n remains finite
implicitly assuming that n ! t.

In this work, we investigate clustering properties for a continuum of tokens cor-
responding to n “ 8. The mean-field dynamics of the measure µt of tokens is
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governed by the continuity equation (1.2) but we focus on the case where it is ini-
tialized at a measure µ0 that admits a density with respect to the uniform measure
on the sphere Sd´1. We call1 this setup mean-field attention dynamics. Despite re-
cent efforts [CACP25] to study convergence of the finite-particle system as n Ñ 8,
existing results do not imply asymptotic clustering for the mean-field attention dy-
namics for lack of a convergence that is uniform in time. Our results overcome
this limitation by developing the infinite-dimensional tools necessary to studying
directly the mean-field dynamics.

More precisely, our contributions are as follows. First, we show that, echoing
the finite-dimensional case, stationary points for (1.2) are all saddle points for the
interaction energy E except for global maxima given by point masses. In particular,
our proof extends the approach of [CRMB24] by exhibiting escape directions for
continuous measures. However, in the absence of a counterpart to the center-stable
manifold theorem in infinite dimensions, this result is not sufficient to conclude to
clustering. In fact, while infinite-dimensional versions of the Łojasiewicz inequality
have been developed [Sim83, CM14], we show in Remark 2.2 that such inequalities
cannot hold in general at critical points of the interaction energy E.

Nevertheless, we demonstrate that a stronger version of the Łojasiewicz inequal-
ity, known as the Polyak-Łojasiewicz (PL) inequality, holds around point masses
for measures supported on a spherical cap. From such PL inequalities, it follows
readily that the Wasserstein gradient flow (1.2) converges exponentially fast to a
global maximizer of E when initialized on these measures with constrained support.

This PL inequality is employed in our main contribution, Theorem 2.4, which
establishes exponential rates of convergence for the mean-field attention dynam-
ics (1.2) initialized at any density f0 P L2pSd´1q for sufficiently small temperature
parameter β ă β0, where β0 ą 0 depends on f0. Note that global convergence
to point masses cannot hold at arbitrary temperatures. Indeed, for β “ 100, we
exhibit an equilibrium for mean-field attention dynamics that does not correspond
to a single cluster in Example 2.6. This qualitative behavior is in sharp contrast
with the Kuramoto model where β “ 0 and for which it can be proved that any
regular initialization converges to to a point mass exponentially fast; see [MP22].

Our main results for mean-field attention dynamics are stated in the next section.
In fact, these results are corollaries for our general results stated in Section 3. These
convergence results cover more general dynamics that correspond to less simplified
versions of transformer models; see [GLPR25].

2. Clustering in mean-field attention dynamics

In this section, we present our main clustering results on mean-field attention
dynamics (1.2).

Recall from [GLPR25] that the mean-field attention dynamics form a reverse
Wasserstein gradient flow of the interaction energy Eβ defined in (1.3): Xµ,β “

∇∇Eβrµs—see [CNWR24, AGS05] for an introduction to Wasserstein gradient flows.

1While the term “mean-field" technically applies to the Vlasov PDE (1.2) with any initial-
ization, including a discrete one, it is common in the literature to use this term to denote such
an evolution initialized at the measure that is absolutely continuous with respect to the uniform
measure. To facilitate reading, we adopt the same abuse of language and use "mean-field" to
indicate such an initialization.



4 S. CHEN, Z. LIN, Y. POLYANSKIY, AND P. RIGOLLET

Indeed, along (1.2) we have
d

dt
Eβrµts “

ż

Sd´1

}Xµt,βpxq}
2
2 dµtpxq ě 0 ,(2.1)

with equality if and only if Xµt,βpxq “ 0 for µt almost every x P Sd´1. This equality
case characterizes critical points of the energy Eβ . The next result shows that the
only critical points that are local maxima for Eβ are in fact single point masses.

Proposition 2.1. Let d ě 3. For any β ą 0, any local maxima of the interaction
energy Eβ is a global maxima of the form µ “ δx0 for some x0 P Sd´1.

Proposition 2.1 is a direct consequence of Theorem 3.1 and holds for more general
transformer models, including ones with learned parameters; see Section 3.

When µ P PpSd´1q consists of only a finite number of tokens, similar results on
the absence of nontrivial local maxima were described in [GLPR25, CRMB24] when
d ě 3 following [MTG17]. Our proof of Proposition 2.1 is adapted from [CRMB24].
We note that this technique only applies to d ě 3 and the clustering of n tokens
for attention dynamics has been recently extended to d “ 2 in [PRY25] by refining
the strategy initiated in [GLPR25].

As mentioned in the introduction, this result is not sufficient to conclude to a
global convergence of the mean-field attention dynamics (1.2) to a point mass in
absence because of the infinite dimensional nature of the problem. Nevertheless,
using the Łojasiewicz structure theorem, one can see that critical points for Eβ can
only be supported on a finite union of submanifolds of Sd´1 of dimension at most
d ´ 2; see for example Lemma E.5 of [BPA25]. In particular, no stationary points
of the mean-field attention dynamics admits a density with respect to the uniform
measure other than the uniform measure itself.

Additionally, even convergence of the mean-field attention dynamics to a single
limiting stationary point is unclear because of the infinite-dimensional nature of the
problem. Indeed, while it is a Wasserstein gradient flow, Eβ lacks the Wasserstein
geodesic convexity/concavity properties to ensure convergence. In finite dimen-
sions, this limitation may be overcomed using Łojasiewicz inequality whenever the
objective function, say f on a compact manifold is analytic. Indeed, in this case,
[Łoj63] proved that for any critical point xcrit of f , there exists a neighborhood U
of xcrit and constants c1 P p1,8q, c2 ą 0, such that for all x P U ,

(2.2) |fpxq ´ fpxcritq| ď c2}∇fpxq}
c1
2 .

As a direct corollary, we see that the critical values of f are locally discrete because
if x P U and ∇fpxq “ 0, then (2.2) implies fpxq “ fpxcritq. This last observation
is instrumental in establishing convergence of gradient flows of analytic functions.
Unfortunately, this property does not hold in general for the energy functional Eβ

as illustrated by the following example.

Example 2.2 (No Łojasiewicz inequality for Eβ). Let d “ 2 and consider the
energy function Eβ for measures defined on the unit circle S1 Ď IR2 identified to
IR{2πZ. Take the sequence of measures µε “ p1 ´ εqδπ

2
` εδ´ π

2
, ε P p0, 1q. Observe

that µε forms a sequence of critical points for Eβ because ∇∇Eβrµεsp¨q “ 0 µε almost
everywhere. But Eβrµεs ‰ Eβrµ0s and W2pµε, µ0q Ñ 0 as ε Ñ 0, where W2 denotes
the 2-Wasserstein distance. This implies that the critical values of Eβ are not
necessarily locally discrete. Hence, a Wasserstein version of (2.2) cannot hold for
Eβ on PpSd´1q as argued above.
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Example 2.2 reveals a striking discrepancy between the mean-field dynamics
studied here and the ones for a finite number of tokens. Indeed, the map:

px1, . . . , xnq ÞÑ
1

n2

n
ÿ

i,j“1

eβxxi,xjy

is analytic on the compact manifold pSd´1qn so the Łojasiewicz inequality holds for
a finite number n of tokens. This discrepancy stems from the infinite-dimensional
nature of the space of probability measures.

The following result shows that if we rule out sequences that place mass outside
of a spherical cap around x0 then a strong version of the Łojasiewicz inequality,
called Polyak-Łojasiewicz (PL) holds.

Theorem 2.3 (Polyak-Łojasiewicz inequality on a spherical cap). Fix d ě 2, β ą

0, α P r0, π{2q, u P Sd´1 and let S`
α puq Ă Sd´1 denote the spherical cap of angle α

around u defined by

S`
α puq –

␣

x P Sd´1 | xx, uy ě cosα
(

.(2.3)

Let µ be a probability measure supported on S`
α puq. Then if 10p1 `

?
βq tanα ď 1,

the following PL inequality holds

Eβrδus ´ Eβrµs ď 10e´β

ż

Sd´1

}Xµ,βpxq}22 dµpxq .

As a result, the sequence of measures µt, t ě 0 initialized at µ0 “ µ supported on
S`
α puq and evolving according to (1.2) converges to a single point mass δx8

with
xx8, uy ě cosα at an exponential rate given by

W2pµt, δx8
q ď 20e´βe´ eβ

20 t

ˆ
ż

Sd´1

}Xµ,βpxq}22 dµpxq

˙
1
2

.

Note that Eβrδus “ maxµPPpSd´1q Eβrµs “ eβ . When µ is a discrete measures
supported on a hemisphere of Sd´1, i.e., supppµq Ď S`

π
2

puq for some u P Sd´1,
[GLPR25, Lemma 6.4] obtained a similar exponential synchronization result for
transformer models, but the convergence rate there also depends on the initial
positions of these tokens and becomes worse when the number of tokens increases.
Similar hemisphere initial position assumptions are classical in Kuramoto models
(d “ 2 and β “ 0); see, e.g., [HHK10, CHJK12, FL19, HKMP20, ABK`22].

We are now in a position to state our main result for initializations that need not
be supported on a spherical cap. As observed in [MP22] for the Kuramoto model,
such measures do not satisfy a PL inequality. Instead, the energy Eβ satisfies a
second-order differential inequality along the flow µt defined in (1.2) with a vanish-
ing remainder term: if µ0 has a density f0 P L2pSd´1q with respect to the uniform
measure,

d2

dt2
Eβrµts ď ´

d

dt
Eβrµts ` C0e

´dC1t, for t ą T0

where C0, T0 are constants depending on µ0, C1 is a universal constant. In turn,
this inequality enables us to establish the following result for any initial measure
that admits a density f0 P L2pSd´1q with respect to the uniform measure.
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Theorem 2.4. Fix d ě 2. Let µt evolve according to the mean-field attention
dynamics (1.2) initialized at µ0 with mean such that

R0 –
›

›

ż

Sd´1

xdµ0pxq
›

›

2
ą 0.(2.4)

Assume that µ0 admits a density f0 P L2pSd´1q with respect to the uniform measure,
then µt also admits a density ft P L2pSd´1q for all t ą 0. Moreover, there exist
β0, C0, T0 ą 0, all depending on µ0, such that if |β| ă β0, there exists an x8 P Sd´1

for which

W2pµt, δx8
q ď C0e

´ t
100 , for t ą T0 .(2.5)

Note that the convergence in Wasserstein distance to a point mass means that
(i) the variance of µt converges to zero exponentially fast, and (ii) its mean also
converges to x8.

The proof of Theorem 2.4 relies on the approximation eβxx,yy » 1 for β small. As
such, it can be generalized to more realistic scenarios where eβxx,yy is replaced with
exQtx,Ktyy in the definition of the vector field Xµt,βpxq as long as }Qt}2, }BtQt}2,
}Kt}2, and }BtKt}2 are bounded by a small enough constant, uniformly in time and
space. We omit this extension in the present paper.

Theorem 2.4 follows as a special case of the more general Theorem 3.4 that
handles broader attention mechanisms. When β “ 0, a qualitative mean-field con-
vergence result was proved in [FL19], and under additional symmetric assumptions
on the entire flow tftpxqut, an exponential convergence rate of the system was also
derived when β “ 0. For Kuramoto models, [HKMP20, MP22] proved similar
mean-field exponential convergence results for small frequency terms when d “ 2
and β “ 0. Long-time behaviors of Kuramoto models have also been extensively
studied by [HHK10, HKPZ16, BCM14].

When β ą 0, previous work on long-time convergence focused mostly on the case
of delta masses of finitely many tokens instead of the mean-field setting considered
here. To the best of our knowledge, Theorem 2.4 is the first result to provide quan-
titative rates of convergence for attention dynamics (mean-field or finite-particle)
under a general initial condition like R0 ą 0. Indeed, for a finite number particles,
convergence is either established using soft arguments that do not yield conver-
gence rates [MTG17, PRY25] or exponential convergence is established under the
assumption that particles are initialized a hemisphere of Sd´1, as we mentioned
after Theorem 2.3. However, as illustrated in Example 2.5, transformer models
starting from delta masses and mean-field densities can have different asymptotic
behavior.

Example 2.5 (No synchronization for finite particles). Fix d “ 2. We construct
an example on the unit circle S1 Ď IR2 identified to IR{2πZ where particles do not
converge to a single cluster despite being initialized at µ0 that satisfies R0 ą 0; see
Figure 1. To that end, define µ0 “ 1

50δπ
2

` 49
100δ´ π

2 ´ξ ` 49
100δ´ π

2 `ξ for an ξ P p0, 1
100 q.

With this initialization, the initial velocity field Xµ0,β is given for any θ P r0, 2πq

by2

Xµ0,βpθq “ ´

ż 2π

0

sinpθ ´ ωqeβ cospθ´ωq dµ0pωq .(2.6)

2This expression follows from a simple change of variables; see [GLPR25, Section 7.1]
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π

2

´
π

2
´ ξ ´

π

2
` ξ

`

Figure 1. Illustration of µ0 in Example 2.5 with ξ “ .7. Circle radii
are proportional to mass at each point. The cross indicates the mean of
µ0 with R0 ą .7 and the arrows indicate velocity fields for initial angles.

It is easy to see that Xµ0,βpπ{2q “ 0 by symmetry. Moreover, Xµ0,βp´π
2 ´

ξq “ ´Xµ0,βp´π
2 ` ξq ą 0 so long as β ą 0, hence the two particles in the south

hemisphere get closer and µt initialized at µ0 eventually converges to µ8 – 1
50δπ

2
`

49
50δ´ π

2
as t Ñ 8. The point of this example is that, although µt initialized at µ0

does not converge to a single point mass, Theorem 2.4 implies that when β is small,
any initial measure with an L2pSd´1q-density, which may be arbitrary close to µ0,
contracts to a point mass at an exponential rate. In particular, we see that the
contraction rate in Theorem 2.4 must depend on f0.

We conclude this section by discussing an important limitation of Theorem 2.4,
namely that β is required to be small enough. It turns out that this assumption
is necessary, as there exists initializations µ0 for which R0 ą 0 and that admit a
density f0 P L2pSd´1q for which the mean-field attention dynamics do not converge
to a single point mass. We describe such an initialization on the circle in the
following example.

Example 2.6 (No mean-field synchronization for large β). Fix d “ 2. We construct
an example on the unit circle S1 Ď IR2 identified to IR{2πZ where particles do not
converge to a single cluster when β is sufficiently large. To that end, let β “ 100,
and consider the flow (1.2) started at µ0 that admits a density f0 P L2pIR{2πZq

with respect to the Lebesgue measure.
We construct f0 as follows. Fix η, ξ P p0, 1

100 q and let h1 be a positive, even, and
smooth function supported on r´η, ηs such that h1 is strictly increasing on r´η, 0s.
We normalize h1 such that

ş

h1 “ 1{3. Similarly, let h2 be a positive, even, and
smooth function supported on r´ξ, ξs such that h2 is strictly increasing on r´ξ, 0s

and normalized as
ş

h2 “ 2{3. Finally, let f0 be defined as f0pxq “ h1pxq`h2pπ`xq;
see Figure 2 for an illustration.
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´η

ηπ ´ ξ

π ` ξ

`

Figure 2. Illustration of f0 in Example 2.6. The cross indicates the
mean of f0 with R0 ą 0, and the arrows indicate velocity fields at the
boundaries of the support of f0.

With this initialization, akin to Example 2.5, the initial velocity field Xµ0,100 is
given for any θ P r0, 2πq by

Xµ0,100pθq “ ´

ż 2π

0

sinpθ ´ ωqe100 cospθ´ωqf0pωqdω .(2.7)

Clearly, Xµ0,100p0q “ Xµ0,100pπq “ 0 by symmetry. Moreover, one can easily see
that Xµ0,100 pulls points θ P rπ ´ ξ, π ` ξsztπu towards π because the main contri-
bution in Xµ0,100 at those points comes from the integral on rπ ´ ξ, π ` ξs in (2.7).
Similarly, even though

ş

h1 “ 1{3 ă 2{3 “
ş

h2 and points in rπ´ξ, π`ξs are trying
to pull points in r´η, ηs towards π, their contribution is negligible compared to the
pull from antipodal points. Indeed, when ξ ď η,

Xµ0,100pηq “

“

ż ξ

´ξ

sinpη ´ ωqe´100 cospη´ωqh2pωqdω ´

ż η

´η

sinpη ´ ωqe100 cospη´ωqh1pωqdω

ď
2

3
sinp2ηqe´100 cosp2ηq ´

ż η{2

´η

sinpη ´ ωqe100 cospη´ωqh1pωqdω

ď
2

3
sinp2ηqe´100 cosp2ηq ´

1

3
sin

`η

2

˘

e100 cosp2ηq ≲ ´η ¨ 1038.

By symmetry Xµ0,100p´ηq “ ´Xµ0,100pηq and we see that the edge of the interval
r´η, ηs gets pulled towards 0. Since trajectories of ODEs cannot cross, all the points
in r´η, ηs get pulled towards 0. We can similarly discuss the case when ξ ě η. Using
a bootstrap argument, it can be shown that µt converges to µ8 “ 1

3δ0 ` 2
3δπ.

3. Clustering in general transformer models

Despite its simplicity, the previous section shows that mean-field attention dy-
namics (1.2) captures the clustering phenomenon observed in practice. In practice,
the attention mechanism is parameterized by matrices that are learned from data
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during the training process. In general, the vector field Xµt,β in (1.2) becomes

(3.1) rXµt
pxq –

ż

Sd´1

PxrVtysϕpxAtx, yyqdµtpyq ,

where tVt, Atut are learned matrices and ϕ is a known nonlinear function; see [GLPR25].
Such a time inhomogeneous system is difficult to study in full generality but we
make progress in this direction by considering the case where3 Vt “ V and At “ A
for all t.

3.1. Critical Points. In the case where V “ A, the vector field rXµ is a Wasserstein
gradient flow for the energy functional

(3.2) Eϕrµs –
1

2

ĳ

ϕ pxAx, yyqdµpxqdµpyq.

Here and throughout this paper, unless explicitly stated otherwise, integrals are
assumed to be taken over the set Sd´1. We leverage this property to characterize
the stationary points of the mean-field attention dynamics (1.2) with the more
general vector field rXµ in Section 3.1 under additional assumptions on the matrix
A.

Hereafter, we assume that ϕ is twice differentiable and that A is a dˆd real sym-
metric matrix with eigenvalues λ1 ě λ2 ě ¨ ¨ ¨ ě λd—we allow for some eigenvalues
to be negative. The Wasserstein gradient of the interaction energy Eϕ is given by

(3.3) rX rµspxq – ∇∇Eϕrµspxq “

ż

Sd´1

PxrAysϕ1 pxAx, yyqdµpyq, x P Sd´1 .

Consider the general mean-field attention dynamics

(3.4) Btµt ` d̊ivpµt
rX rµtsq “ 0 ,

and observe that they collapse to (1.2) when A “ Id and ϕpzq “ eβz up to a time
speed up.

The following theorem provides a partial resolution of Conjecture 2 in [KPR24]
when adapted to non-causal attention dynamics.

Theorem 3.1. Fix d ě 3. Assume that the top three eigenvalues of A satisfy
λ1 “ λ2 “ λ3 “ λ ą 0, and |λd| ď λ. Assume further that ϕ is twice differentiable,
increasing and convex: ϕ1 ą 0, ϕ2 ě 0. Then any local maxima of Eϕrµs must be a
global maximum, that is, a point mass δx0 for some x0 P Sd´1 such that Ax0 “ λx0.

In the rest of Section 3.1, we prove Theorem 3.1. It relies on the first and
second variation formulas for Eϕrµs, which are of independent interest in the study
of transformer models. We also note that if λd is significantly smaller than ´λ,
then a global maximizer of Eϕr¨s need not be a Dirac measure, as shown by a
counterexample in Remark 3.5 of [BKK`25].

3Employing the same weights across layers has been used to reduce the complexity of trans-
former models [LCG`20] and it has been shows that they demonstrate better reasoning properties
in certain tasks [ZBB`23]. This is the model initially studied in [SABP22]
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3.1.1. First and Second Variation Formulas for Eϕ. Let PpSd´1q denote the space of
probability measures on Sd´1 and let tXtpxq , t ě 0, x P Sd´1u be a family of vector
fields on Sd´1, continuously differentiable in pt, xq and such that Xtpxq P TxSd´1

for all pt, xq P IRě0 ˆ Sd´1. Note that tBtXtpxq , t ě 0, x P Sd´1u is also a family
of continuous vector fields in the tangent bundle of Sd´1. Let tµtutě0 be a curve in
PpSd´1q starting from µ0 P PpSd´1q and evolving according the continuity equation
driven by tXtut:

Btµt ` d̊iv pµtXtq “ 0, t ě 0.(3.5)

The PDE (3.5) is understood in the distribution sense: for any smooth function
hpxq on Sd´1, we have

d

dt

ż

Sd´1

hpxqdµtpxq “

ż

Sd´1

x∇̊xhpxq,Xtpxqydµtpxq .

Here and throughout this paper, ∇̊x hpxq denotes the Riemannian gradient of h
on Sd´1. Note that viewing Sd´1 as an embedded manifold in IRd considerably
simplifies the Riemannian calculus on the sphere. Indeed, ifH is a smooth extension
of h to a neighborhood of Sd´1 in IRd, we have that ∇̊x hpxq “ Px∇xHpxq. In
particular, since Xtpxq P TxSd´1, we have x∇̊xhpxq,Xtpxqy “ x∇xHpxq,Xtpxqy.

Lemma 3.2 (First Variation Formula for Eϕ).

d

dt
Eϕrµts “

ĳ

ϕ1pxAx, yyqxAy,Xtpxqydµtpxqdµtpyq.

Proof. Because A is a symmetric matrix, using (3.5), we have that

d

dt
Eϕrµts “

ĳ

x∇x rϕpxAx, yyqs ,Xtpxqydµtpxqdµtpyq ,

where we used the fact that Xtpxq P TxSd´1. The proof follows readily by computing
the gradient above. □

Lemma 3.3 (Second Variation Formula for Eϕr ¨ s).

d2

dt2
Eϕrµts “

1

2

ĳ

ϕ2 pxAx, yyq }xAy,Xtpxqy ` xAx,Xtpyqy}
2
2 dµtpxqdµtpyq(3.6)

`

ĳ

ϕ1pxAx, yyqxAXtpxq,Xtpyqydµtpxqdµtpyq(3.7)

´
1

2

ĳ

ϕ1pxAx, yyqxAx, yyp}Xtpxq}22 ` }Xtpyq}22qdµtpxqdµtpyq(3.8)

`

ĳ

ϕ1pxAx, yyq

”A

Ay, BtXtpxq ` ∇̊XtpxqXtpxq

Eı

dµtpxqdµtpyq.(3.9)
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Proof. Taking the time derivative of the first variation formula, we get

d2

dt2
Eϕrµts “

ĳ

@

∇x

“

ϕ1pxAx, yyqxAy,Xtpxqy
‰

,Xtpxq
D

dµtpxqdµtpyq
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

◁

`

ĳ

@

∇y

“

ϕ1pxAx, yyqxAy,Xtpxqy
‰

,Xtpyq
D

dµtpxqdµtpyq
loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

▷

`

ĳ

ϕ1pxAx, yyqxAy, BtXtpxqydµtpxqdµtpyq.

The rest of the proof follows by direct computations, and we only highlight the key
points.

For ◁, as Xtpxq P TxSd´1, we get that

x∇̊xxAy,Xtpxqy,Xtpxqy “ x∇̊XtpxqrPxAys,Xtpxqy ` xPxAy, ∇̊XtpxqXtpxqy

“ x∇XtpxqrPxAys,Xtpxqy ` xAy, ∇̊XtpxqXtpxqy

“ ´xAy, xy}Xtpxq}22 ` xAy, ∇̊XtpxqXtpxqy,

where in the last equality, we used the fact that

∇xrPxAys “ ´∇xrxAy, xyxs “ ´pAyq b x´ xAy, xyId,

and xx,Xtpxqy “ 0.
Similarly, for ▷, as Xtpyq P TySd´1, we get that

x∇̊yxAy,Xtpxqy,Xtpyqy “ x∇yxAy,Xtpxqy,Xtpyqy “ xAXtpxq,Xtpyqy.

The final form of the second variation formula can be obtained from the symmetric
role of x and y. □

Equipped with the first and second variation formulas, we are now in a position
to prove Theorem 3.1.

3.1.2. Proof of Theorem 3.1. Let µ0 be a critical point of Eϕ. We show that unless
µ0 is a point mass, there exists an escape direction, that is, a velocity field X0 such
that if µt evolves according to (3.5), then the value of Eϕ increases. Since µ0 is a
stationary point, it is sufficient to check that

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Eϕrµts ą 0.

Since µ0 is a critical point, it follows from the first variation formula that
ĳ

ϕ1pxAx, yyqxAy,X pxqydµ0pxqdµ0pyq “ 0, @ X P CpTSd´1q.(3.10)

At such critical points, taking X pxq “ ∇̊X0pxq X0pxq in (3.10), the second variation
formula simplifies to

d2

dt2

ˇ

ˇ

ˇ

ˇ

t“0

Eϕrµts “

ĳ

1

2
ϕ2 pxAx, yyq }xAy,X0pxqy ` xAx,X0pyqy}

2
2 dµ0pxqdµ0pyq

`

ĳ

1

2
ϕ1pxAx, yyq

“

2xAX0pxq,X0pyqy ´ xAx, yyp}X0pxq}22 ` }X0pyq}22q
‰

dµ0pxqdµ0pyq.

(3.11)
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Recall that we assumed ϕ2 ě 0 so we focus on establishing the positivity of the
second line in (3.11). To that end, following [MTG17, CRMB24], define X0pxq “

Pxpwq “ w ´ xw, xyx where w P Sd´1. The second line in (3.11) becomes

ĳ

1

2
ϕ1pxAx, yyq

“

2xAX0pxq,X0pyqy ´ xAx, yyp}X0pxq}22 ` }X0pyq}22q
‰

dµ0pxqdµ0pyq

“

ĳ

1

2
ϕ1pxAx, yyq

“

2 pxAw,wy ´ xw, xyxx,Awy ´ xw, yyxy,Awy ` xw, xyxw, yyxAx, yyq

´ xAx, yy
`

2 ´ xw, xy2 ´ xw, yy2
˘ ‰

dµ0pxqdµ0pyq.

(3.12)

Pick teiu
d
i“1 as an orthonormal basis of IRd such that Aei “ λiei for i “ 1, . . . , d.

We also write x, y in the coordinates of teiu
d
i“1, that is, x “

řd
i“1 xiei and y “

řd
i“1 yiei. Choosing w “ ei in (3.12) yields

ĳ

1

2
ϕ1pxAx, yyq

“

2λip1 ´ x2i ´ y2i q ´ xAx, yy
`

2 ´ x2i ´ y2i ´ 2xiyi
˘‰

dµ0pxqdµ0pyq.

(3.13)

We aim to prove the following inequality:

3
ÿ

i“1

ĳ

ϕ1pxAx, yyq
“

2λip1 ´ x2i ´ y2i q ´ xAx, yy
`

2 ´ x2i ´ y2i ´ 2xiyi
˘‰

dµ0pxqdµ0pyq ě 0,

(3.14)

with equality if and only if µ0 “ δu for some point u P Sd´1 satisfying Au “ λu.
This inequality directly yields the desired conclusion, since (3.14) implies that there
is an i P t1, 2, 3u such that (3.12) with w “ ei is strictly positive unless µ0 “ δu for
some point u P Sd´1 with Au “ λu.

To prove (3.14), we build up the pointwise inequality: for any x, y P Sd´1,

3
ÿ

i“1

2λip1 ´ x2i ´ y2i q ´ xAx, yy
`

2 ´ x2i ´ y2i ´ 2xiyi
˘

ě 0,(3.15)

with equality if and only if the following conditions hold: for all j with |λj | ă λ,
we have xj “ yj “ 0; for j with λj “ λ, we have xj “ yj ; for j with λj “ ´λ, we
have xj “ ´yj .

We now use (3.15) to prove (3.14). Suppose there exists u P supppµ0q such that
Au ‰ λu. Writing u “

řd
i“1 uiei, this implies that there exists some i such that

λi ă λ and ui ‰ 0. Choose a small neighborhood N Ă Sd´1 around u, such that
|xx, eiy ´ ui| ă |ui|{2 for any x P N . Then, for any x, y P N , the inequality (3.15)
is strictly positive because x, y don’t satisfy the equality condition. Therefore, the
integrand in (3.14) is strictly positive on N ˆ N (since ϕ1 ą 0), and nonnegative
elsewhere by (3.15). This implies that (3.14) is strictly positive.

In the remaining case, suppose Au “ λu for every u P supppµ0q. Then, the
equality conditions in (3.15) imply that µ0 must be a point mass. Otherwise, there
exists x ‰ y in the support of µ0, and (3.15) becomes strictly positive, yielding a
strictly positive value in (3.14). Hence, (3.14) is strictly positive unless µ0 “ δu for
some u P Sd´1 satisfying Au “ λu.
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The rest of this proof is devoted to the proof of (3.15) and its equality conditions.
Since λ1 “ λ2 “ λ3 “: λ ą 0, the left hand side of (3.15) becomes

2λ

˜

3 ´

3
ÿ

i“1

px2i ` y2i q

¸

´

3
ÿ

i“1

xAx, yy
`

2 ´ x2i ´ y2i ´ 2xiyi
˘

“ 2 pλ´ xAx, yyq

˜

3 ´

3
ÿ

i“1

px2i ` y2i q

¸

` xAx, yy

3
ÿ

i“1

p2xiyi ´ x2i ´ y2i q.

(3.16)

We claim that

2 pλ´ xAx, yyq ě λ
3
ÿ

i“1

px2i ` y2i ´ 2xiyiq.(3.17)

Indeed }x}22 “ }y}22 “ 1 and λ1 “ λ2 “ λ3 “ λ so that

2pλ´ xAx, yyq “ λ}x}2 ` λ}y}2 ´ 2
d
ÿ

i“1

λixiyi

“ λ
3
ÿ

i“1

px2i ` y2i ´ 2xiyiq ` λ
d
ÿ

i“4

px2i ` y2i q ´ 2
d
ÿ

i“4

λixiyi .

Hence, (3.17) is equivalent to
d
ÿ

i“4

λpx2i ` y2i q ě 2
d
ÿ

i“4

λixiyi,(3.18)

which holds since λ ě |λi| for all i. Moreover, note that the equality holds if and
only if: xi “ yi for all i ě 4 with λi “ λ; xi “ ´yi for all i ě 4 with λi “ ´λ;
xi “ yi “ 0 for all i ě 4 with |λi| ă λ. Hence, by (3.16) and (3.17), we have that

3
ÿ

i“1

2λip1 ´ x2i ´ y2i q ´ xAx, yy
`

2 ´ x2i ´ y2i ´ 2xiyi
˘

ě

˜

3
ÿ

i“1

x2i ` y2i ´ 2xiyi

¸˜

3λ´ λ
3
ÿ

i“1

px2i ` y2i q ´ xAx, yy

¸

.

(3.19)

Because |xAx, yy| ď λ}x}2}y}2 “ λ, and
ř3

i“1px2i ` y2i q ď
řd

i“1px2i ` y2i q “ 2, we
see that the right hand side of (3.19) is nonnegative, and it can only be 0 when
x1 “ y1, x2 “ y2, x3 “ y3. Hence, we complete the proof for (3.15). By examining
the equality conditions in (3.19) and (3.18), we conclude that equality in (3.15)
holds if and only if the following is satisfied: xi “ yi “ 0 for all i with |λi| ă λ;
xi “ yi for all i with λi “ λ; and xi “ ´yi for all i with λi “ ´λ.

3.2. Long Time Behavior. In this section, we consider a transformer model with
vector field (3.1) where Vt “ Id and At “ A for all t ě 0. Note that in absence
of the preconditioner Vt “ A, these dynamics may not be a Wasserstein gradient
flow. Moreover, we only consider measures that admit a density with respect to
the uniform measure on the sphere. To reflect this, it is convenient to consider the
evolution of a density rather than evolution of the measure (3.4).

Let tµtpxqutě0 be a curve of probability measures on Sd´1 satisfying the conti-
nuity equation

Btµt ` d̊iv pµtYrµtsq “ 0,(3.20)
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where the vector field Yr¨s is defined for any positive measure ν on Sd´1 by

Yrνspxq –

ż

Sd´1

Pxrysϕ1 pxAx, yyqdνpyq, x P Sd´1,(3.21)

where A is a dˆ d real symmetric matrix.
Here and in the rest of this section, ϕ1 is a smooth positive function on the

interval r´}A}2, }A}2s. In particular, we do not require monotonicity for ϕ1 as in
Section 3.1.

We often abuse notation and write Yt “ Yrfts “ Yrµts, and more generally,
we liberally switch between ft and µt if µt has density ft. Define the C1-norm
of a continuously differentiable function h on an interval S Ď IR as }h}C1pSq –

}h}L8pSq`}h1}L8pSq. The following theorem shows that, if ϕ1 is close to the constant
function 1 in C1-norm on S – r´}A}2, }A}2s, then the flow (3.20) converges to a
delta mass exponentially fast. To that end, define

εϕ – p}A}2 ` 2q ¨ }ϕ1 ´ 1}C1pSq.(3.22)

Note that when εϕ “ 0 and A “ Id, that is when ϕ1 ” 1, one recovers the Kuramoto
dynamics on the sphere. Recall thatR0 measures the asymmetry of f0 and is defined
in (2.4) and also in (3.24).

Theorem 3.4. Let f0 P L2pSd´1q be a probability density on Sd´1 and let tµtpxqutě0

denote the flow of probability measures where µt has density ft evolving according
to (3.20). There exist universal constants c0, cu ą 0, and two computable constants
C0, T0 depending on R0, }f0}L2pSd´1q such that if εϕ ď cuR

6
0, then there exists an

x8 P Sd´1 for which

W2 pµt, δx8
q ď C0e

´c0t, @t ě T0.

3.2.1. Main tools. We adapt a technique developed in [DV05] to obtain quantitative
convergence rates for non-convex (and non-concave) gradient flows. For Kuramoto
models, that is, when d “ 2 and ϕ1 ” 1, this technique was employed to derive
a mean-field convergence result in [HKMP20, MP22]. Note, however, that this
technique heavily depends on the form of the vector field driving the probability
flow as already noted in [DV05]. In particular, the choice (3.21)—which is not
a gradient flow—together with the complexity of dynamics on high-dimensional
spheres brings substantial technical difficulties compared to the Kuramoto model
on the circle. These difficulties manifest themselves most prominently in the proofs
of Theorems 3.5 and 3.6.

For any t ě 0, define

Mt –

ż

Sd´1

y dµtpyq and Vtpxq – PxrMts “

ż

Sd´1

Pxrysdµtpyq.(3.23)

Interestingly, Mt has a practical meaning: in encoder-only transformers such as
BERT [DCLT19] the average token position Mt corresponds to the vector embed-
ding called mean-pooled embedding of an input prompt that is often employed in
further downstream tasks (classification, clustering, retrieval, etc.)

Moreover, define

Rt – }Mt}2, Ut –
Mt

Rt
P Sd´1 ,(3.24)
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and the following spherical caps with centers ˘U P Sd´1 for α P p0, π{2q,

S`
α pUq –

␣

x P Sd´1 | xx, Uy ě cosα
(

, S´
α pUq –

␣

x P Sd´1 | xx,´Uy ě cosα
(

.

(3.25)

The spherical caps become smaller as α Ñ 0. For simplicity, we also write S`
α ptq “

S`
α pUtq and S´

α ptq “ S´
α pUtq.

Define It as

It –

ż

}Ytpyq}22 dµtpyq.(3.26)

Direct calculation similar to Lemma 3.3 gives

(3.27) BtIt “

ĳ

Qµt
px, yqdµtpxqdµtpyq ,

where for any positive measure ν on Sd´1,

Qνpx, yq “ 2 rxYrνspxq, Ayy ` xYrνspyq, Axys xYrνspxq, yy ¨ ϕ2 pxAx, yyq

`
“

2xYrνspxq,Yrνspyqy ´ xx, yy
`

}Yrνspxq}22 ` }Yrνspyq}22

˘‰

¨ ϕ1 pxAx, yyq .

(3.28)

We now state our two main tools.

Theorem 3.5. If ϕ,A are such that εϕ ď 1{100, where εϕ is defined in (3.22),
then for any α P p0, π

20 q, we have that

BtIt ď ´It ` 100µt

`

Sd´1zS`
α pUtq

˘

.(3.29)

Theorem 3.5 holds for any measure along the flow, even for those that do not ad-
mit a density with respect to the uniform measure, but Theorem 3.6 below requires
a initial density in L2pSd´1q.

Theorem 3.6. Fix α “ π{100. Assume that µ0 has density f0 and f0 P L2pSd´1q.
There exist two universal constant cu, c1 ą 0, and two computable constants C0, T0
depending on R0, }f0}L2pSd´1q such that if εϕ ď cuR

6
0, it holds

µt

`

Sd´1zS`
α pUtq

˘

ď C0e
´pd´1qc1t, @t ě T0.

Now, we can combine Theorem 3.5 and Theorem 3.6 to prove Theorem 3.4.

3.2.2. Proof of Theorem 3.4. By Theorem 3.5 and Theorem 3.6, we see that for any
t ě T0,

It ` BtIt ď 102C0e
´pd´1qc1t.(3.30)

Multiply by et on both sides and integrate T0 to t to get that for any t ě T0,

It ď IT0
eT0´t ` 102C0pt´ T0qemaxt´pd´1qc1t,´tu,

where we used the fact that for any t ě T0 and any κ P IR,
ż t

T0

eκs ds ď pt´ T0qet¨maxtκ,0u.

We see that It Ñ 0 exponentially fast as t Ñ `8.
Also, recall that tµtut solves the continuity equation

Btµtpxq ` d̊iv pµtpxqYtpxqq “ 0.
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From [Vil09, Theorem 23.9], we have that for any s ě T0 and almost all t ě s, the
Wasserstein distance between µt and µs satisfies

1

2

d

dt
W 2

2 pµt, µsq “ ´

ż

Sd´1

x∇̊ψtÑspxq,Ytpxqydµtpxq,

where ψtÑspxq is a potential function associated with the Wasserstein geodesic
connecting µt, µs, and ∇̊ψtÑspxq satisfies that

ż

Sd´1

}∇̊ψtÑspxq}22 dµtpxq “ W 2
2 pµt, µsq.

By Cauchy-Schwarz, we see that for almost all t ě s ě T0,
d

dt
W2pµt, µsq ď I

1
2
t ,

where the right hand side goes to 0` exponentially fast as we proved earlier. Hence,
tµtutě0 is a Cauchy sequence in the Wasserstein space. By completeness of the
Wasserstein space, there exists a probability measure µ8 P PpSd´1q such that
µt Ñ µ8 in W2, and µ8 satisfies that

ż

Sd´1

}Y8pyq}22 dµ8pyq “ 0.

By Theorem 3.6, µt

`

Sd´1zS`
α pUtq

˘

Ñ 0 as t Ñ `8, so there is a U8 P Sd´1

such that supppµ8q Ď S`
α pU8q, where we recall that S`

α pU8q is the spherical cap
defined in (4.1). To conclude that µ8 “ δx8

for some x0 P Sd´1, we use the
following Lemma.

Lemma 3.7. Let µ be a probability measure on Sd´1 with support supppµq Ď S`
α pUq

for some U P Sd´1, α P p0, π2 q and such that

(3.31)
ż

Sd´1

}Yrµspxq}22 dµpxq “ 0,

Then µ “ δx0 for some x0 P S`
α pUq.

Proof. From (3.31), we know that

Yrµspxq “

ż

Sd´1

Pxrysϕ1 pxAx, yyqdµpyq “ 0, @x P supppµq.

Multiplying both sides by U we obtain the following

(3.32)
ż

Sd´1

pxy, Uy ´ xx, yyxx, Uyqϕ1 pxAx, yyqdµpyq “ 0, @x P supppµq .

Next, take x “ x0 to be any minimizer of z ÞÑ xz, Uy on the supppµq so that
xy, Uy ´ xx0, yyxx0, Uy ě 0 for any y P supppµq. Thus, from (3.32) and ϕ1 ą 0, we
obtain that

xy, Uy ´ xx0, yyxx0, Uy “ 0, @y P supppµq .

Since supppµq Ď S`
α pUq, we know that xx0, Uy ą 0, and thus,

(3.33) 1 ď
xy, Uy

xx0, Uy
“ xx0, yy ď 1 ,

where in the first inequality, we use the definition of x0. Hence, the inequalities
in (3.33) are equalities, and then xx0, yy “ 1 for all y P supppµq, which implies that
µ is a delta measure supported at x0. □
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Finally, we remark that C0, T0 in Theorem 3.4 and Theorem 3.6 can be sharpened
as follows.

Theorem 3.8. Fix α “ π{100. There exists a universal constant cu ą 0, and a
T0 ą 0 such that if εϕ ď cuR

6
0, it holds

µt

`

Sd´1zS`
α pUtq

˘

ď }f0}L2pSd´1qe
´

d´1
16 pt´T0q , @ t ě T0 .

Moreover, it is sufficient to take

T0 –

„

8

R0
_ pd´ 1q

ȷ

¨

”

1041pd´ 1qR´14
0 ` 1026R´6

0 log }f0}2L2pSd´1q

ı

,

where a_ b – maxta, bu for a, b P IR.

In Theorem 3.8, it is possible to achieve a better dependence on R0, specifically
R´2

0 using more involved arguments. We omit this result for the benefit of space
and readability.

4. Łojasiewicz type inequality: Proof of Theorem 3.5 and
Theorem 2.3

This section is mainly devoted to the proof of Theorem 3.5. The same proof
together with Remark 4.2 gives the proof for Theorem 2.3.

Lemma 4.1. Assume that ϕ,A are such that εϕ ď 1{100, where εϕ is defined
in (3.22), and assume that a positive measure ν on Sd´1 is such that there exists
U P Sd´1 and α P p0, π

20 q, such that

supppνq Ď S`
α pUq –

␣

x P Sd´1 | xx, Uy ě cosα
(

.(4.1)

Then

(4.2)
ĳ

Qνpx, yqdνpxqdνpyq ď ´νpSd´1q

ż

}Yrνspyq}22dνpyq ,

where Qν is defined in (3.28). In particular, taking ν “ µt, this implies that if
supppµtq Ď S`

α pUq, the following entropy production inequality holds:

BtIt ď ´It ,(4.3)

where It is defined in (3.26).

Remark 4.2. To be consistent with the assumptions in Theorem 3.6, we eventually
choose α “ π

100 and εϕ ď 1{100 in our proof for Theorem 3.4. One can also prove
the same result when εϕ ą {100, but one needs to assume that α is less than a
function in εϕ, which goes to 0 as εϕ goes to `8. For example, for the attention
dynamics (1.2) where A “ βId and ϕ1prq “ er as in Theorem 2.3, the proof extends
so long as tanα ď 1

10p1`
?
βq

, and β is any positive number. Also, one can replace

the right-hand side of (4.2) with ´ eβ

10

ş

Sd´1 }Yrµspxq}22 dµpxq, which is notably better
when β is positive and large. Similar proofs and results in Lemma 4.1 also extend
to the case when β ă 0 in the dynamics (1.2).

Proof of Lemma 4.1. Because both sides of (4.2) are homogeneous in constant mul-
tiplies of ν of degree 4, we can assume that ν is a probability measure, denoted µ
for clarity, on Sd´1. Also, in this proof, we simplify our notation to Y :“ Yrµs.

Take the standard orthonormal basis of IRd as te1, e2, . . . , edu. Without loss of
generality, we assume that U “ ed. We adopt the gnomonic projection to rewrite
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ed

Figure 3. Illustration of gnomonic projection.

(4.2). Note that the gnomonic projection maps any geodesic (great circle) in the
upper hemisphere of Sd´1 to a geodesic (straight line) on the hyperplane IRd´1ˆt1u,
so that the tangent vectors on Sd´1 can be expressed as the difference of two points
on IRd´1 ˆ t1u under the inverse of the tangent map of the gnomonic projection. In
particular, for any x, y in the upper hemisphere of Sd´1, Pxrys can be characterized
by the geodesic connecting x, y, which enables us to rewrite Pxrys in the definition
of Ypxq in (3.21) in the following linear form (4.8), and gives an important equation
(4.11) in this proof for Lemma 4.1. Such a property is not satisfied by stereographic
projection and orthographic projection.

For an x “ px1, . . . , xdqJ P S`
α pUq Ď Sd´1, we define

Gpxq –

ˆ

x1
xd
, . . . ,

xd´1

xd

˙J

.(4.4)

This map Gpxq (or the map Gpxq ` ed, so that its image is in the hyperplane
IRd´1 ˆ t1u), is called the gnomonic projection. G gives a diffeomorphism from
S`
α pUq Ď Sd´1 to the Euclidean ball Bα Ď IRd´1 centered at the origin and with

radius tanα. Its inverse F is given by

F puq –
1

a

1 ` }u}22

pu` edq, @u P Bα.(4.5)

Here we identify u with a vector in IRd´1 Ď IRd. A direct computation shows that,
the tangent map of F at u is given by

dFupXq “
p1 ` }u}22qX ´ xX,uyu´ xX,uyed

a

p1 ` }u}22q3
, @X P TuIR

d´1 – IRd´1.(4.6)

For a u P Bα, we first find the preimage of YpF puqq under dFu. By (4.5), one
can first verify that, for any v P Bα,

xF puq, F pvqy “
xu, vy ` 1

a

1 ` }u}22

a

1 ` }v}22

,(4.7)
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and then by (4.6)

PF puqrF pvqs “ F pvq ´ xF pvq, F puqyF puq “

a

1 ` }u}22
a

1 ` }v}22

dFupv ´ uq.(4.8)

Hence,

YpF puqq “ dFupXpuqq,(4.9)

with

Xpuq –

ż

Bα

pv ´ uq

a

1 ` }u}22
a

1 ` }v}22

ϕ1 pxAF puq, F pvqyqdG#µpvq,(4.10)

a vector in TuIR
d´1 – IRd´1. Here, G#µ is the pushforward measure of µ induced

by the gnomonic projection G. By symmetry of u, v P Bα and because A is a
symmetric matrix, we readily obtain the following important observation:

ż

Bα

Xpuq

1 ` }u}22
dG#µpuq

“

ż

Bα

ż

Bα

pv ´ uq
ϕ1 pxAF puq, F pvqyq

a

p1 ` }u}22qp1 ` }v}22q
dG#µpvqdG#µpuq

“ 0.

(4.11)

Next, we rewrite the left hand side of (4.2) (or Qνpx, yq) in terms of Xpuq’s by
replacing x, y P S`

α pUq with F puq, F pvq for u, v P Bα. By (4.6) and (4.9), we obtain
the following identities:

}YpF puqq}22 “
}Xpuq}22

1 ` }u}22
´

xXpuq, uy2

p1 ` }u}22q2
,(4.12)

and

xYpF puqq,YpF pvqqy “
xXpuq, Xpvqy

a

p1 ` }u}22qp1 ` }v}22q
´

xXpuq, uy xXpvq, uy
a

p1 ` }u}22q3p1 ` }v}22q

´
xXpvq, vy xXpuq, vy

a

p1 ` }v}22q3p1 ` }u}22q
`

xXpuq, uy xXpvq, vy pxu, vy ` 1q
a

p1 ` }v}22q3p1 ` }u}22q3
.

(4.13)

Before we proceed, let us first explain our main ideas. Recall that α and εϕ are
small parameters (α ă π{20, εϕ ă 1{100) so terms of the form xXpuq, vy are small
when v P Bα. Hence, after the change of variables px, yq ÞÑ pF puq, F pvqq, the
leading term on the left hand side of (4.2) becomes

J1 –

ż

Bα

ż

Bα

ϕ1 pxAF puq, F pvqyq

„

2
xXpuq, Xpvqy

a

p1 ` }u}22qp1 ` }v}22q

´ xF puq, F pvqy

ˆ

}Xpuq}22

1 ` }u}22
`

}Xpvq}22

1 ` }v}22

˙ȷ

dG#µpuqdG#µpvq.

We also notice that, when α is suitably small, }YpF puqq}22 „
}Xpuq}

2
2

1`}u}22
. To simplify

the notations in the followings, we assume that tanα “
?
δ for some δ P p0, 1q to
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be determined later. In the following estimates, we frequently use the fact that
}u}22 ď tan2 α “ δ. We see that J1 “ J11 ` J12, where

J11 – ´

ĳ

ϕ1 pxAF puq, F pvqyq

b

p1 ` }u}22qp1 ` }v}22q

›

›

›

›

Xpuq

1 ` }u}22
´

Xpvq

1 ` }v}22

›

›

›

›

2

2

J12 – 2

ĳ

ϕ1 pxAF puq, F pvqyq
}u}22 ´ xu, vy

a

p1 ` }u}22qp1 ` }v}22q

}Xpvq}22

1 ` }v}22

and the double integrals above are over Bα ˆBα and with respect to G#µbG#µ.
Clearly,

J11 ď ´p1 ´ εϕq

ż

Bα

ż

Bα

›

›

›

›

Xpuq

1 ` }u}22
´

Xpvq

1 ` }v}22

›

›

›

›

2

2

dG#µpuqdG#µpvq

“ ´2p1 ´ εϕq

ż

Bα

}Xpuq}22

p1 ` }u}22q2
dG#µpuq

ď ´
2p1 ´ εϕq

1 ` δ

ż

Bα

}Xpuq}22

1 ` }u}22
dG#µpuq,

where the equality is by (4.11). Also,

J12 ď 4δp1 ` εϕq

ż

Bα

}Xpuq}22

1 ` }u}22
dG#µpuq.

By setting α P p0, π
20 q, so that δ P p0, tan2 π

20 q, the above two displays imply that

(4.14) J1 ď p´1.5 ` 2.5εϕq

ż

}Yrµs}2dµ

which gives us a buffer to handle the remaining terms when establishing (4.2).
To control these terms, observe that

ĳ

Qµpx, yqdµpxqdµpyq ´ J1 “ J2 ` J3 ` J4,

where

J2 –

ż

Sd´1

ż

Sd´1

2 pxYpxq, Ayy ` xYpyq, Axyq xYpxq, yy ¨ ϕ2 pxAx, yyqdµpxqdµpyq

ď }A}2 ¨ }ϕ1 ´ 1}C1pSq

ż

Sd´1

ż

Sd´1

2p}Ypxq}22 ` }Ypxq}2}Ypyq}2qdµpxqdµpyq

ď 4εϕ

ż

Sd´1

}Ypxq}22 dµpxq,

and

J3 –

ż

Bα

ż

Bα

ϕ1 pxAF puq, F pvqyq ¨ xF puq, F pvqy

¨

ˆ

xXpuq, uy2

p1 ` }u}22q2
`

xXpvq, vy2

p1 ` }v}22q2

˙

dG#µpuqdG#µpvq

ď 2δp1 ` εϕq

ż

Bα

}Xpuq}22

1 ` }u}22
dG#µpuq,
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and

J4 – 2

ż

Bα

ż

Bα

ϕ1 pxAF puq, F pvqyq

ˆ

´
xXpuq, uy xXpvq, uy

a

p1 ` }u}22q3p1 ` }v}22q

´
xXpvq, vy xXpuq, vy

a

p1 ` }v}22q3p1 ` }u}22q
`

xXpuq, uy xXpvq, vy pxu, vy ` 1q
a

p1 ` }v}22q3p1 ` }u}22q3

˙

dG#µpuqdG#µpvq

ď 6δp1 ` εϕq

ż

Bα

}Xpuq}22

1 ` }u}22
dG#µpuq.

Together with εϕ ă 1
100 , δ ď tan2p π

20 q and }Xpuq}
2
2

1`}u}22
ě }YpF puqq}22 in (4.12), we get

ż

Sd´1

ż

Sd´1

Qµpx, yqdµpxqdµpyq

ď ´ p1.5 ´ 2.5εϕ ´ 4εϕ ´ 8δp1 ` εϕqq

ż

Bα

}Xpuq}22

1 ` }u}22
dG#µpuq

ď ´

ż

Bα

}YpF puqq}22 dG#µpuq “ ´

ż

Sd´1

}Ypxq}22 dµpxq.

This completes the proof of (4.2). □

Proof of Theorem 3.5. Fix t ą 0 and define the positive measures ν1, ν2 on Sd´1 by

ν1p¨q “ µtp¨ X S`
α ptqq, ν2p¨q “ µtp¨ zS`

α ptqq

and let

V 1pxq “

ż

Sd´1

Pxrysϕ1 pxAx, yyqdν1pyq, V 2pxq “

ż

Sd´1

Pxrysϕ1 pxAx, yyqdν2pyq.

(4.15)

We see that

Ytpxq “ V 1pxq ` V 2pxq.

By the explicit formula (4.15), we have the estimates that }Ytpxq}2 ď p1 ` εϕq,
}V 1pxq}2 ď p1 ` εϕq, and }Ytpxq ´ V 1pxq}2 “ }V 2pxq}2 ď p1 ` εϕqµt

`

Sd´1zS`
α ptq

˘

for any x P Sd´1. These bounds imply that
ˇ

ˇxYtpxq,Ytpyqy ´ xV 1pxq, V 1pyqy
ˇ

ˇ

“
ˇ

ˇxV 1pxq, V 2pyqy ` xV 2pxq, V 1pyqy ` xV 2pxq, V 2pyqy
ˇ

ˇ

ď 3p1 ` εϕq2µt

`

Sd´1zS`
α ptq

˘

.

(4.16)

Hence, by (3.27), we have

BtIt ď

ĳ
„

2
`

xV 1pxq, Ayy ` xV 1pyq, Axy
˘

xV 1pxq, yy ¨ ϕ2 pxAx, yyq

`
`

2xV 1pxq, V 1pyqy ´ xx, yyp}V 1pxq}22 ` }V 1pyq}22q
˘

¨ ϕ1 pxAx, yyq

ȷ

dµtpxqdµtpyq

` 24p1 ` εϕq3µt

`

Sd´1zS`
α ptq

˘

.
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We can further split the above integral over Sd´1 ˆSd´1 into integrals over S`
α ptq ˆ

S`
α ptq and pSd´1 ˆ Sd´1qzpS`

α ptq ˆ S`
α ptqq, and obtain that

BtIt ď

ż

S`
α ptq

ż

S`
α ptq

„

2
`

xV 1pxq, Ayy ` xV 1pyq, Axy
˘

xV 1pxq, yy ¨ ϕ2 pxAx, yyq

`
`

2xV 1pxq, V 1pyqy ´ xx, yyp}V 1pxq}22 ` }V 1pyq}22q
˘

¨ ϕ1 pxAx, yyq

ȷ

dµtpxqdµtpyq

` 48p1 ` εϕq3µt

`

Sd´1zS`
α ptq

˘

.

Together with Lemma 4.1, the above inequality yields

BtIt ď ´ν1
`

Sd´1
˘

ż

Sd´1

}V 1pxq}22 dν1pxq ` 48p1 ` εϕq3µt

`

Sd´1zS`
α ptq

˘

“ ´
`

1 ´ ν2
`

Sd´1
˘˘

ż

Sd´1

}V 1pxq}22 dν1pxq ` 48p1 ` εϕq3µt

`

Sd´1zS`
α ptq

˘

ď ´

ż

Sd´1

}V 1pxq}22 dν1pxq ` 49p1 ` εϕq3µt

`

Sd´1zS`
α ptq

˘

.

Note that by (4.16), and the estimates that }V 1pxq}2 ď p1 ` εϕq and ν2
`

Sd´1
˘

“

µt

`

Sd´1zS`
α ptq

˘

,
ż

Sd´1

}V 1pxq}22 dν1pxq “

ż

Sd´1

}V 1pxq}22 dµtpxq ´

ż

Sd´1

}V 1pxq}22 dν2pxq

ě

ż

Sd´1

}Ytpxq}22 dµtpxq ´ 3p1 ` εϕq2µt

`

Sd´1zS`
α ptq

˘

´ p1 ` εϕq2µt

`

Sd´1zS`
α ptq

˘

.

Hence, because 49p1 ` εϕq3 ` 4p1 ` εϕq2 ď 100, we obtain that

BtIt ď ´

ż

Sd´1

}Ytpxq}22 dµtpxq ` 100µt

`

Sd´1zS`
α ptq

˘

.

This completes the proof for Theorem 3.5.
□

To conclude this section, we complete the proof of Theorem 2.3 as a corollary of
Lemma 4.1 and Remark 4.2.

Proof of Theorem 2.3. Recall first that Eβrδus “ maxµPPpSd´1q Eβrµs by Proposi-
tion 2.1 (or Theorem 3.1). Let µt be the Wasserstein gradient flow initialized at
µ0 “ µ. For any t1 ě 0, we define the diffeomorphisms tϕt1Ñtpxqutět1 on Sd´1 by
solving the ODE

Btϕt1Ñtpxq “ Xµt,βpϕt1Ñtpxqq, with ϕt1Ñt1pxq “ x, @x P Sd´1.

We first show that supppµtq Ď S`
α puq for any t ě 0. Fix an arbitrary t1 ě 0, and we

assume that supppµt1q Ď S`
α puq. Let xt1 P supppµt1q achieve minxPsupppµt1

qxx, uy,
then

d

dt

ˇ

ˇ

ˇ

ˇ

t“t1

xϕt1Ñtpx1q, uy “ xXµt1
,βpxt1q, uy “

ż

Sd´1

xPxt1
rys, uyeβxxt1

,yy dµt1pyq

“

ż

Sd´1

pxy, uy ´ xxt1 , yyxxt1 , uyqeβxxt1 ,yy dµt1pyq

ě

ż

Sd´1

pxxt1 , uy ´ xxt1 , yyxxt1 , uyq eβxxt1
,yy dµt1pyq ě 0,
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where the last inequality is because xxt1 , uy ą 0 and 1 ě xxt1 , yy ą 0 when y P

supppµt1q Ď S`
α puq. Hence, minxPsupppµtqxx, uy is nondecreasing in t, and then

supppµtq Ď S`
α puq for any t ě 0.

Define It “
ş

Sd´1 }Xµt,βpxq}22 dµtpxq so that It “ BtEβrµts. Then, combine (3.27),
Lemma 4.1, and Remark 4.2, together giving that BtIt ď ´ eβ

10 It. As a consequence,

we see that It ď e´ eβ

10 tI0. Using similar arguments as in the proof of Theorem 3.4
in Section 3.2 we can show that there exists x8 P S`

α puq, such that W2pµt, δx8
q ď

ş`8

t
I

1
2
r dr ď 20e´βe´ eβ

20 tI
1
2
0 , which goes to 0 exponentially fast. Then, we integrate

BtIt ď ´ eβ

10 It from 0 to `8, and find that

´I0 “ I8 ´ I0 ď
eβ

10
p´Eβrδx8

s ` Eβrµsq .

□

5. Some Basic Derivatives and Estimates for the Proof of
Theorem 3.6

If ϕ1 ” 1 in (3.21) so that Yt “ Vt from (3.23), then (3.20) coincides with the
classical Kuramoto model. Our main strategy is to study ft as a perturbation of
the Wasserstein gradient flow driven by Vtpxq. In this section, we gather various
perturbative results in this direction. We first define the perturbation

Wtpxq – Ytpxq ´ Vtpxq.

Recall that the size of this perturbation is controlled by the parameter εϕ defined
as

(5.1) εϕ “ p}A}2 ` 2q ¨ }ϕ1 ´ 1}C1pSq .

Observe that Ytpxq, Vtpxq can be viewed as vector fields defined on IRd although
we mainly care about x P Sd´1. The following three kinds of terms appear in our
arguments.

Lemma 5.1. For any x P Sd´1, we have that

}Wtpxq}2 ď εϕ, }∇Wtpxq}2 ď εϕ

where ∇ is the standard gradient on IRd. Also,
ˇ

ˇ

ˇ

ˇ

ż

Sd´1

xBtWtpxq,Ytpxqydµtpxq

ˇ

ˇ

ˇ

ˇ

ď εϕ ¨ It.

Proof. Because x, y P Sd´1 in (3.3), we see that

}Wtpxq}2 “
›

›Ytpxq ´ Vtpxq}2 “ }

ż

Sd´1

Pxryspϕ1 pxAx, yyq ´ 1qdµtpyq
›

›

2

ď }ϕ1 ´ 1}C1pSq

ż

Sd´1

dµtpyq ď εϕ.
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Similarly, we see that

}∇Wtpxq}2

“
›

›

ż

Sd´1

“

pϕ1 pxAx, yyq ´ 1qp´y b x´ xx, yyIdq

` ϕ2 pxAx, yyq pAy b Pxrysq
‰

dµtpyq
›

›

2

ď }ϕ1 ´ 1}C1pSq p}A}2 ` 2q

ż

Sd´1

dµtpyq “ εϕ.

Finally, direct computations show that

BtWtpxq “

ż

Sd´1

∇YtpyqrPxryspϕ1 pxAx, yyq ´ 1qsdµtpyq

“

ż

Sd´1

Px

“`

ϕ1 pxAx, yyq ´ 1
˘

Ytpyq ` ϕ2 pxAx, yyq xAx,Ytpyqyy
‰

dµtpyq.

Hence,
ˇ

ˇ

ż

Sd´1

xBtWtpxq,Ytpxqydµtpxq
ˇ

ˇ

“
ˇ

ˇ

ĳ

“

pϕ1 pxAx, yyq ´ 1qxYtpyq,Ytpxqy

` ϕ2 pxAx, yyq xAx,Ytpyqyxy,Ytpxqy
‰

dµtpxqdµtpyq
ˇ

ˇ

ď
1

2

ĳ

p1 ` }A}2q}ϕ1 ´ 1}C1pSq

`

}Ytpyq}22 ` }Ytpxq}22

˘

dµtpxqdµtpyq

“ εϕ

ż

Sd´1

}Ytpxq}22 dµtpxq.

□

Lemma 5.2. For the derivatives of Mt and Rt, we have the following formulas:

BtMt “

ż

Sd´1

Ytpyqdµtpyq,

and

BtpR
2
t q “ 2

ż

Sd´1

`

}Ytpyq}22 ´ xYtpyq,Wtpyqy
˘

dµtpyq.

As a corollary, for any εϕ ą 0 we see that

It ´ ε2ϕ ď BtpR
2
t q ď 3It ` ε2ϕ.

Proof. The equations for BtMt and BtpR
2
t q follow from direct computations, and we

can apply Lemma 5.1 to obtain the inequalities for BtpR
2
t q. □

Lemma 5.3. For the derivative of It, we also have the following formula:

BtIt “

ĳ

“

2 xYtpxq,Ytpyqy ´ xx, yy
`

}Ytpxq}22 ` }Ytpyq}22

˘

` 2 xYtpxq, BtWtpxqy ` ∇Wtpxq pYtpxq,Ytpxqq
‰

dµtpxqdµtpyq.

(5.2)

As a corollary, if εϕ P
`

0, 1
10

˘

, we have that

BtIt ě ´3It.
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Figure 4. Examples of non-monotonic evolution of Rt. The top row
shows R2

t , and the bottom row shows BtpR
2
t q, for two different initial pro-

files. Each column corresponds to a different initial profile. These plots
illustrate that R2

t can exhibit non-monotonic behavior, with BtpR
2
t q tak-

ing both positive and negative values over time. ϕpxAx, yyq “ e0.1xx,yy

in the plots.

In particular, for any t2 ě t1 ě 0,

It2 ě It1e
´3pt2´t1q.

Proof. (5.2) follows from direct computations. Similar computations also appear
in the proof of Lemma 3.3, so we omit the details here. We then apply Lemma 5.1
and obtain that BtIt ě ´3It. □

6. Almost Kuramoto Model: Proof of Theorem 3.6

In this section, we analyze the dynamics (3.20) under the assumptions of Theo-
rem 3.4. Before moving on to the proofs, we first explain some basic schemes. For
the Kuramoto model, that is, ϕ1 ” 1, an important fact is that Rt is nondecreasing.
We can also deduce that BtRt ě 0 directly from Lemma 5.2. On the other hand, the
form of Lemma 5.2 cannot give BtRt ě 0 for our more general dynamics. In fact,
one does not expect that BtRt ě 0 in general, as illustrated in Figure 4. For this
reason, we treat the case where BtRt is large and the case where BtRt is small (and
even negative) separately. In Section 6.1, we show that Rt is almost increasing,
in the sense that it cannot decrease by more than a factor of R0; in Section 6.2,
we show that when BtRt is small, Ut is almost static, and the density around the
antipodal point ´Ut decreases exponentially fast.
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6.1. Rt is almost increasing.

Lemma 6.1. Fix a constant λ P p0, 1q and an angle α P p0, π{2q. Assume that at
some time t1 ě 0,

Rt1 ě λR0, BtRt

ˇ

ˇ

ˇ

ˇ

t“t1

ě
1

8
psin4 αqλ3R3

0.

If εϕ ď 10´3 sin2 αλ2R2
0, then BtpR

2
t q ą 0 on rt1, t1 ` 1s, and

R2
t1`1 ´R2

t1 ě
sin4 α

100
λ4R4

0.

Proof. Combine Lemma 5.2 and Lemma 5.3, we see that for any t ě t1,

BtpR
2
t q ě It ´ ε2ϕ ě It1e

´3pt´t1q ´ ε2ϕ ě
1

3
e´3pt´t1qpBtpR

2
t q|t“t1q ´ 2ε2ϕ.

So, combining this inequality and the assumptions on Rt1 , BtRt|t“t1 , εϕ, we see that

BtpR
2
t q ě

ˆ

1

12
e´3pt´t1q ´ 5 ¨ 10´5

˙

psin4 αqλ4R4
0,

which is positive when t P rt1, t1 ` 1s. In particular, integrate the above inequality
on rt1, t1 ` 1s, we see that

R2
t1`1 ´R2

t1 ě
sin4 α

100
λ4R4

0.

□

Lemma 6.2. For the derivative of Ut, we have the following formula:

BtUt “
1

Rt
PUt

rBtMts .

As a corollary,

}BtUt}2 ď
1

Rt
I

1
2
t ď

1

Rt

b

BtpR2
t q ` ε2ϕ.

Proof. Direct computations. □

We then define a smooth auxiliary function ξα1,α2paq on R, such that ξα1,α2paq “

1 when a ě cosα1 and ξα1,α2paq “ 0 when a ď cosα2, where 0 ď α1 ă α2 ď π. It
is possible to construct such a cutoff function by mollifying indicator functions on
IR. We denote the derivative of ξα1,α2

paq with respect to a as ξ1
α1,α2

paq. A trivial
fact is that we can also assume that 0 ď ξ1

α1,α2
paq ď 2{pcosα1 ´ cosα2q.

Lemma 6.3. For the derivative of the measure on the negative spherical cap, we
have the following formula:

d

dt

ż

Sd´1

ξα1,α2
p´ xy, Utyqdµtpyq

“

ż

Sd´1

ξ1
α1,α2

p´ xy, Utyq p´ xy, BtUty ´ xUt,Ytpyqyqdµtpyq

ď
2

cosα1 ´ cosα2

`

}BtUt}2 ´Rt sin
2 α1 ` εϕ

˘

`

ď
2

cosα1 ´ cosα2

ˆ

1

Rt

b

BtpR2
t q ` ε2ϕ ´Rt sin

2 α1 ` εϕ

˙

`

,

(6.1)

where u` – maxtu, 0u for u P R.
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Proof. The derivative equation in (6.1) is by direct computations. For the first
inequality, we notice that for those y P Sd´1 such that ´ cosα1 ď xy, Uty ď ´ cosα2,
we have that

´xUt,Ytpyqy “ ´xUt, Vtpyqy ´ xUt,Wtpyqy “ ´Rt}PyrUts}
2
2 ´ xUt,Wtpyqy

ď ´Rt sin
2 α1 ` εϕ.

The second inequality follows from Lemma 6.2. □

Lemma 6.4. For any β P p0, π{2q, we have that

BtpR
2
t q ě

sin2 β

2
R2

t

¨

˝1 ´

Rt ` p1 ` cosβqµt

´

S´
β ptq

¯

cosβ

˛

‚´ ε2ϕ.

Proof. According to Lemma 5.2, we see that
1

2
BtR

2
t “

ż

Sd´1

`

}Vtpyq `Wtpyq}22 ´ xVtpyq `Wtpyq,Wtpyqy
˘

dµtpyq

“

ż

Sd´1

`

}Vtpyq}22 ` xVtpyq,Wtpyqy
˘

dµtpyq

ě
1

2

ż

Sd´1

`

}Vtpyq}22 ´ }Wtpyq}22

˘

dµtpyq

We notice that for y P Sd´1z

´

S`
β ptq Y S´

β ptq
¯

, we have that }Vtpyq}22 ě R2
t sin

2 β.
Hence,

BtR
2
t ě R2

t sin
2 β µt

´

Sd´1zpS`
β ptq Y S´

β ptqq

¯

´ ε2ϕ.(6.2)

On the other hand, by the definition of Rt, we see that

Rt “

ż

Sd´1

xy, Uty dµtpyq

ě cosβµt

´

S`
β ptq

¯

´ cosβµt

´

Sd´1zpS`
β ptq Y S´

β ptqq

¯

´ µt

´

S´
β ptq

¯

“ cosβ ´ 2 cosβµt

´

Sd´1zpS`
β ptq Y S´

β ptqq

¯

´ p1 ` cosβqµt

´

S´
β ptq

¯

,

and so,

µt

´

Sd´1zpS`
β ptq Y S´

β ptqq

¯

ě
1

2
´

Rt ` p1 ` cosβqµt

´

S´
β ptq

¯

2 cosβ
.(6.3)

Combine the above inequality and (6.2), we can obtain the formula in Lemma 6.4.
□

Lemma 6.5. Fix a constant λ P p1 ´ 10´3, 1q and an angle α1 P rπ{100, π{2q.
Assume that at time t1, we have that Rt1 ě R0, and there is a time window rt1, t2s,
such that when t P rt1, t2s,

BtRt ď
1

8
psin4 α1qλ3R3

0.

Then, if

εϕ ď 10´3p1 ´ λqλ2R2
0,
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we have that for any t P rt1, t2s,

BtpR
2
t q ě ´

sin2 β

2 cosβ
pRt ´ λR0q

ˆ

R2
t ´

3

5
p1 ´ λqR0pRt ` λR0q

˙

,(6.4)

where β is an angle in p0, π{2q such that sin2 β “ 1´λ
5 R0. As a corollary, we have

that for any t P rt1, t2s,

Rt ě λR0.

Proof. We use Lemma 6.4 to give a lower bound for BtR
2
t on rt1, t2s, for which we

actually need an upper bound for µt

´

S´
β ptq

¯

when t P rt1, t2s.
First, take δ ą 0 such that for t P rt1, t1 ` δs, we have that Rt ě λR0. This is

possible for some small δ ą 0 first by the fact that Rt1 ě R0 and the continuity of
the ODE solution Rt. We show that we can extend the interval rt1, t1 ` δs a little
bit longer to an interval rt1, t1 ` δ ` δ1s for some δ1 ą 0 small, such that Rt ě λR0

on rt1, t1 ` δ ` δ1s.
Because εϕ ď 10´3p1 ´ λqλ2R2

0 and BtRt ď 1
8 psin4 α1qλ3R3

0, we find that the
right hand side of (6.1) for any t P rt1, t1 ` δs satisfies that,

1

Rt

b

BtpR2
t q ` ε2ϕ ´Rt sin

2 α1 ` εϕ ď

c

2
BtRt

Rt
´Rt sin

2 α1 ` 2
εϕ
Rt

ď ´
1

2
λR0 sin

2 α1 `
2

103
p1 ´ λqλR0

ď λR0

ˆ

´
1

5000
`

2

103
1

103

˙

ă 0,

where in the last inequality, we used the fact that sinα1 ě sin π
100 ě π

100 ¨ 2
π and

p1 ´ λq ă 10´3. Hence, by the continuity of the ODE flow again, there is a small
δ1 ą 0 such that for t P rt1, t1 ` δ ` δ1s, we have that the right hand side of (6.1) is
0, that is

d

dt

ż

Sd´1

ξα1,α2
p´ xy, Utyqdµtpyq ď 0(6.5)

for any t P rt1, t1 ` δ ` δ1s and any α2 P pα1, π{2q.
Now, for any β ă α1 ă α2 ă π{2 and t P rt1, t1 ` δ ` δ1s, we have that

µt

´

S´
β ptq

¯

ď

ż

Sd´1

ξα1,α2
p´ xy, Utyqdµtpyq ď

ż

Sd´1

ξα1,α2
p´ xy, Ut1yqdµt1pyq

ď µt1

´

Sd´1zpS`
β pt1qq

¯

“ µt1

´

S´
β pt1q

¯

` µt1

´

Sd´1zpS`
β pt1q Y S´

β pt1qq

¯

.

On the other hand, we see that for any s ě 0,

Rs “

ż

Sd´1

xy, Usy dµspyq

ď µs

´

S`
β psq

¯

` cosβµs

´

Sd´1zpS`
β psq Y S´

β psqq

¯

´ cosβµs

´

S´
β psq

¯

“

´

1 ´ µs

´

Sd´1zpS`
β psq Y S´

β psqq

¯

´ µt

´

S´
β psq

¯¯

` cosβµs

´

Sd´1zpS`
β psq Y S´

β psqq

¯

´ cosβµs

´

S´
β psq

¯

ď 1 ´ p1 ` cosβqµs

´

S´
β psq

¯

.

(6.6)
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Combine (6.2) and (6.6) for s “ t1, we see that when t P rt1, t1 ` δ ` δ1s,

µt

´

S´
β ptq

¯

ď µt1

´

S´
β pt1q

¯

` µt1

´

Sd´1zpS`
β pt1q Y S´

β pt1qq

¯

ď
1 ´Rt1

1 ` cosβ
`

Bt1R
2
t1 ` ε2ϕ

R2
t1 sin

2 β
ď

1 ´Rt1

1 ` cosβ
`

ε2ϕ

R2
t1 sin

2 β
.

Hence, Lemma 6.4 gives that when t P rt1, t1 ` δ ` δ1s,

BtpR
2
t q ě

sin2 β

2 cosβ

`

´R3
t ` bpt1qR2

t ` cpt1q
˘

,

where

bpt1q “ Rt1 ` cosβ ´ 1 ´
1 ` cosβ

R2
t1 sin

2 β
ε2ϕ, cpt1q “ ´

2 cosβ

sin2 β
ε2ϕ.

To proceed, we first remark that if εϕ “ 0, we see that bpt1q “ Rt1 `cosβ´1 ă Rt1

and cpt1q “ 0. In this case, we see that BtpR
2
t q ě

sin2 β
2 cos βR

2
t pbpt1q ´ Rtq. The right

hand side is nonnegative once Rt reaches bpt1q. Hence, for t P rt1, t1 ` δ ` δ1s,
we have that Rt ě bpt1q ě R0 ´ 1´λ

5 R0 ą λR0 . This strict inequality gives a
little room when εϕ ‰ 0. As in the assumption, we have that sin2 β “ 1´λ

5 R0,
εϕ ď 10´3p1 ´ λqλ2R2

0, and Rt1 ě R0. So,

bpt1q ě R0 ´
1 ´ λ

5
R0 ´

10

R2
0p1 ´ λqR0

`

10´3p1 ´ λqλ2R2
0

˘2

ě R0 ´
1 ´ λ

5
R0 ´

1 ´ λ

5
R0 “ λR0 `

3

5
p1 ´ λqR0,

and

cpt1q ě ´
10

p1 ´ λqR0

`

10´3p1 ´ λqλ2R2
0

˘2
ě ´

3

5
p1 ´ λqλ2R3

0.

Hence, when t P rt1, t1 ` δ ` δ1s,

BtpR
2
t q ě

sin2 β

2 cosβ

ˆ

´R3
t `

ˆ

λR0 `
3

5
p1 ´ λqR0

˙

R2
t ´

3

5
p1 ´ λqλ2R3

0

˙

“ ´
sin2 β

2 cosβ
pRt ´ λR0q

ˆ

R2
t ´

3

5
p1 ´ λqR0pRt ` λR0q

˙

,

which is exactly (6.4). We also see that λR0 is strictly larger than the roots of
the quadratic polynomial x2 ´ 3

5 p1 ´ λqR0px ` λR0q because λ P p 2
3 , 1q. Because

Rt1 ě R0, as in the argument for εϕ “ 0, we see that when t P rt1, t1 ` δ ` δ1s,
Rt ě λR0.

We finally remark that the only assumption we made in the proof is that for
some δ ą 0 and for t P rt1, t1 ` δs we have that Rt ě λR0. Under this assumption,
we obtained a δ1 ą 0 such that for t P rt1, t1 ` δ ` δ1s, we have that (6.4) holds
true and also Rt ě λR0. By taking rt1, t1 ` δs as the supremum interval on which
Rt ě λR0, we get that for any t P rt1, t2s, (6.4) holds true, and Rt ě λR0.

□

Lemma 6.6. Fix a constant λ P p1 ´ 10´10R2
0, 1q. Then, if

εϕ ď 10´3p1 ´ λqλ2R2
0,
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we have that

Rt ě λR0,

for any t ě 0.

Proof. Fix an angle α P rπ{100, π{2q. We use Lemma 6.1 and Lemma 6.5. We first
remark that the assumption on εϕ satisfies the assumptions we made in Lemma 6.1
and Lemma 6.5.

If for any t ě 0, we have that BtRt ď 1
8 psin4 αqλ3R3

0, we see that Rt ě λR0 for
any t ě 0 by Lemma 6.5. Otherwise, assume that t1 ě 0 is the first time such
that BtRt|t“t1 ą 1

8 psin4 αqλ3R3
0. We have that Rt ě λR0 on r0, t1s, in particular,

Rt1 ě λR0. By Lemma 6.1, Rt is increasing on rt1, t1 `1s. By denoting η “ 1´λ2,
we have that

R2
t1`1 ě R2

t1 `
sin4 α

100
λ4R4

0 ě λ2R2
0 `

16

1010
λ4R4

0

“ R2
0

ˆ

1 ´ η `
16

1010
p1 ´ ηq2R2

0

˙

ě R2
0

ˆ

1 `
16R2

0

1010
´ 2η

˙

ě R2
0

ˆ

1 `
12R2

0

1010

˙

,

where we also used the fact that sinα ě sin π
100 ě π

100 ¨ 2
π , and the last inequality

is because η “ 1 ´ λ2 ď 2p1 ´ λq ď
2R2

0

1010 , by the assumption of λ. Hence, we see
that Rt ě λR0 and Rt1`1 ě R0 for t P r0, t1 ` 1s. We can run this argument again
starting from t “ t1 ` 1 and extend the interval at least by 1. So, Rt ě λR0 for
any t ě 0. □

6.2. Measures on Negative Caps Decrease Exponentially Fast. In the fol-
lowing, we show an instability result for the negative spherical cap. Recall that µt

has a density ft P L2pSd´1q.

Lemma 6.7. For any α1, α2 with 0 ď α1 ă α2 ď π, we have the following formula:

d

dt

ż

Sd´1

ξα1,α2
p´ xy, Utyq f2t pyqdy

“

ż

Sd´1

ξ1
α1,α2

p´ xy, Utyq p´ xy, BtUty ´ xUt,Ytpyqyq f2t pyqdy

`

ż

Sd´1

ξα1,α2
p´ xy, Utyq

´

pd´ 1q xMt, yy ´ d̊ivSd´1 Wtpyq

¯

f2t pyqdy.

(6.7)

Also,

d

dt
}ft}

2
L2pSd´1q ď pd´ 1qpRt ` εϕq}ft}

2
L2pSd´1q.(6.8)

Proof. (6.7) is by direct computations. For the inequality, if we let α1 Ñ π´ (or
just replace ξα1,α2

with the constant function 1), we see that

d

dt
}ft}

2
L2pSd´1q “

ż

Sd´1

´

pd´ 1q xMt, yy ´ d̊ivWtpyq

¯

f2t pyqdy

ď pd´ 1qpRt ` εϕq}ft}
2
L2pSd´1q.

□
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Lemma 6.8. Fix a constant λ P p2{3, 1q and an angle α1 P rπ{100, π{2q. If there
is a time window rt1, t2s, such that when t P rt1, t2s,

Rt ě λR0, BtRt ď
1

8
psin4 α1qλ3R3

0,

and if

εϕ ď
1

104
λ2R2

0 cosα1,

then, we have that for any t P rt1, t2s,

d

dt
f2t

`

S´
α1

ptq
˘

ď ´
pd´ 1qλR0 cosα1

2
f2t

`

S´
α1

ptq
˘

.

Here, we define f2t pAq “
ş

A
f2t pxqdx for any measurable set A Ď Sd´1.

Proof. By Lemma 6.7, we see that for any α2 P pα1, π{2q, we have that

d

dt

ż

Sd´1

ξα1,α2
p´ xy, Utyq f2t pyqdy

ď

ż

Sd´1

ξ1
α1,α2

p´ xy, Utyq
`

}BtUt}2 ´Rt sin
2 α1 ` εϕ

˘

f2t pyqdy

`

ż

Sd´1

ξα1,α2
p´ xy, Utyq p´pd´ 1qRt cosα2 ` pd´ 1qεϕq f2t pyqdy.

Notice that we used the fact that xUt, Vtpyqy “ Rt}PyrUts}
2
2 ě Rt sin

2 α1 when
cosα2 ď ´ xy, Uty ď cosα1, and the fact that xMt, yy ď ´Rt cosα2 when cosα2 ď

´ xy, Uty ď 1.
Combine Lemma 6.2, we see that, similar to the proof of Lemma 6.5, by the

assumptions on Rt, BtRt, εϕ,

}BtUt}2 ´Rt sin
2 α1 ` εϕ ď

c

2
BtRt

Rt
´Rt sin

2 α1 ` 2
εϕ
Rt

ď λR0

„

´
1

2
sin2 α1 `

cosα1

5000

ȷ

ď λR0

«

´
1

2

ˆ

1

50

˙2

`
cosα1

5000

ff

ă 0,

for any t P rt1, t2s, where we used the fact that sin
`

π
100

˘

ě 2
π ¨ π

100 . Also,

´pd´ 1qRt cosα2 ` pd´ 1qεϕ ď pd´ 1qλR0

ˆ

´ cosα2 `
1

10
cosα1

˙

.

Hence, combine the above two parts, we have that for any t P rt1, t2s and any
α2 P pα1, π{2q,

d

dt

ż

Sd´1

ξα1,α2
p´ xy, Utyq f2t pyqdy

ď pd´ 1qλR0

ˆ

´ cosα2 `
1

10
cosα1

˙
ż

Sd´1

ξα1,α2
p´ xy, Utyq f2t pyqdy.

We can then obtain the conclusion by sending α2 Ñ α`
1 . □

Next, for any t1 ě 0, we define the diffeomorphisms tϕt1Ñtpxqutět1 on Sd´1 by
solving the ODE

Btϕt1Ñtpxq “ Ytpϕt1Ñtpxqq, with ϕt1Ñt1pxq “ x, @x P Sd´1.
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Lemma 6.9. Fix a constant λ P p2{3, 1q and an angle α P rπ{100, π{2q. If there is
a time window rt1, t2s, such that when t P rt1, t2s,

Rt ě λR0, BtRt ď
1

8
psin4 αqλ3R3

0,

and if

εϕ ď
1

103
λ2R2

0 sinα,

then, for any t3, t4 P rt1, t2s, t3 ď t4, and x P Sd´1 such that

ϕt3Ñt4pxq P Sd´1z
`

S´
α pt4q Y S`

α pt4q
˘

,

we have that
d

dt

ˇ

ˇ

ˇ

ˇ

t“t4

xϕt3Ñtpxq, Uty ě λR0
sin2 α

4
.(6.9)

As a corollary, if we define,

δ “ δpλ,R0, αq –
4

λR0 sin
2 α

,(6.10)

then if t2 ´ t1 ě δ, we have that

ϕt1Ñt2

`

Sd´1zS´
α pt1q

˘

Ď S`
α pt2q, Sd´1zS`

α pt2q Ď ϕt1Ñt2

`

S´
α pt1q

˘

.

Proof. By Lemma 6.2, and the assumptions on Rt, BtRt, εϕ, we see that

d

dt

ˇ

ˇ

ˇ

ˇ

t“t4

xϕt3Ñtpxq, Uty “ xYt4 pϕt3Ñt4pxqq , Uty ` xϕt3Ñt4pxq, BtUty

“ xVt4 pϕt3Ñt4pxqq , Uty ` xWt4 pϕt3Ñt4pxqq , Uty ` xϕt3Ñt4pxq, BtUty

ě Rt4}Pϕt3Ñt4
pxqrUts}

2
2 ´ εϕ ´ }Pϕt3Ñt4

pxqrUts}2
1

Rt4

ˆ

b

BtpR2
t q|t“t4 ` εϕ

˙

ě λR0}Pϕt3Ñt4 pxqrUts}2

ˆ

}Pϕt3Ñt4 pxqrUts}2 ´
1

2
sin2 α

˙

´
2

λR0
εϕ

ě λR0psinαq

ˆ

sinα ´
1

2
sin2 α

˙

´
2

λR0
εϕ

ě λR0
sin2 α

2
´ λR0

sinα

500
ě λR0

sin2 α

4
,

where in the first inequality, we used the fact that BtUt is in the tangent plane of
Ut and }PUt

rϕt3Ñt4pxqs}2 “ }Pϕt3Ñt4 pxqrUts}2, and in the last inequality, we used
that fact that π

100 ¨ 2
π ď sin π

100 ď sinα. □

Theorem 6.10. Fix a constant λ P p1 ´ 10´10R2
0, 1q and the angle α “ π{100. If

there is a time window rt1, t2s, such that when t P rt1, t2s,

Rt ě λR0, BtRt ď
1

8
psin4 αqλ3R3

0,

and if

εϕ ď
1

104
λ2R2

0 sinα cosα,

then there is a T of the form

T “ Cut1 ` C0(6.11)
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where Cu is a universal constant and C0 is a constant depending on R0 and }f0}L2pSd´1q

, such that either t2 ´ t1 ď T or t2 “ `8.

Proof. Assume that t2 ´t1 ą T ą δpλ,R0, αq, where δpλ,R0, αq is defined in (6.10).
For any r P rt1 ` δ, t2s, by Lemma 6.9, we see that

µr

`

Sd´1zS`
α prq

˘

ď µr

`

ϕr´δ,r

`

S´
α pr ´ δq

˘˘

“ µr´δ

`

S´
α pr ´ δq

˘

.

By Lemma 6.8, we see that

f2r´δ

`

S´
α pr ´ δq

˘

ď e´
pd´1qλR0 cosα

2 pr´δ´t1qf2t1
`

S´
α pt1q

˘

.

Hence, by Hölder’s inequality, we have that

µr

`

Sd´1zS`
α prq

˘

ď Cd ¨ e´
pd´1qλR0 cosα

4 pr´δ´t1q
“

f2t1
`

S´
α pt1q

˘‰
1
2 ,(6.12)

where Cd ą 0 is a constant depending on d (actually the square root of the surface
measure of Sd´1, which is less than 10 for any d). By Lemma 6.7, we see that

“

f2t1
`

S´
α pt1q

˘‰
1
2 ď }ft1}L2pSd´1q ď epd´1qt1}f0}L2pSd´1q

Also, by the choice of δ in (6.10), and α ě π
100 we see that

pd´ 1qλR0 cosα

4
δ ď 104pd´ 1q.

Hence,

µr

`

Sd´1zS`
α prq

˘

ď 10 ¨ e´
pd´1qλR0 cosα

4 r ¨ epd´1qp2t1`104q ¨ }f0}L2pSd´1q.(6.13)

On the other hand, by Theorem 3.5, we have that It ` BtIt ď 102µt

`

Sd´1zS`
α ptq

˘

.
Multiply et on both sides and integrate from t1 to r, we obtain that

Ir ď It1e
´r`t1 `

103 ¨ epd´1qp3t1`104q ¨ }f0}L2pSd´1q

1 ´
pd´1qλR0 cosα

4

e´
pd´1qλR0 cosα

4 r.

We notice that, if λR0 cosα
4 r is much larger than 3t1 ` 104, the right hand side of

the above inequality can be very small, and hence Ir is quantitatively small. Also,
notice that, by Lemma 5.2 and the assumption that Rt ě λR0, we have that for
any r P rt1 ` δ, t2s,

BtRt

ˇ

ˇ

t“r
ď

3Ir
2λR0

`
ε2ϕ

2λR0
ď

3Ir
2λR0

` 10´8λ3R3
0 sin

2 α.

Combine the above two inequalities, and the fact that It ď 2 by its definition, we
can simplify the above expression by writing

BtRt

ˇ

ˇ

t“r
ď

C0

λR0
e´

pd´1q

8 pr´30t1´105q ` 10´8λ3R3
0 sin

2 α,

where C0 is a constant depending on R0 and }f0}L2pSd´1q . Hence, for

T “
8

d´ 1
log

ˆ

C1

R4
0

˙

` 30t1 ` 105,

where C1 is a constant depending on R0 and }f0}L2pSd´1q, we see that if t2 ´

t1 ě T , then BtRt is upper-bounded by a positive function which is smaller than
1
8 psin4 αqλ3R3

0 for any t ě t1 ` T , and we can repeat the above arguments until
t “ `8. □
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Proof of Theorem 3.6. Recall that α “ π
100 now by our assumption. Fix the λ “

1 ´ 10´10R4
0 ě 1 ´ 10´10R2

0. We divide IRě0 into pieces 0 “ s´1 ď t0 ă s0 ď t1 ă

s1 ď t2 ă s2 ¨ ¨ ¨ , where for any k ě 0

tk – inf

"

t ě sk´1

ˇ

ˇ

ˇ

ˇ

BtRt ě
1

8
psin4 αqλ3R3

0

*

, sk – tk ` 1.

We first show that this construction must stop at some k˚-th step. By Lemma 6.6,
we have that Rt ě λR0 for all t ě 0. Actually, by Lemma 6.1 and the proof of
Lemma 6.6, we see that for any k ą 0,

R2
sk

ě R2
tk

`
sin4 α

100
λ4R4

0 ě λ2R2
0 `

sin4 α

100
λ4R4

0 ě R2
0

ˆ

1 `
12R2

0

1010

˙

.

Hence, in Lemma 6.5, if we replace R0 with Rsk´1
, we see that on rsk´1, tks, BtRt ď

1
8 psin4 αqλ3R3

0 ď 1
8 psin4 αqλ3R3

sk´1
, and the assumption of Lemma 6.5 is satisfied,

and hence Rtk ě λRsk´1
. Hence, we can use Lemma 6.1 and the proof of Lemma 6.6

again, and see that for any k ą 0,

R2
sk

ě R2
tk

`
sin4 α

100
λ4R4

0 ě λ2R2
sk´1

`
16

1010
λ4R4

0

ě R2
sk´1

` λ2 ´ 1 `
16

1010
λ4R4

0 ě R2
sk´1

`
12

1010
R6

0.

Because R2
sk

ď 1, we must have that k˚ ď 109R´6
0 . Together with Theorem 6.10,

we see that for any k P J0, k˚K, tk ´ sk´1 ď Cusk´1 `C0, with Cu and C0 obtained
in Theorem 6.10, and tk˚`1 “ `8. Hence, we may set rT0 “ sk˚

, which depends
on R0 and }f0}L2pSd´1q. By (6.13) and its proof, the following inequality holds true

(6.14) µt

`

Sd´1zS`
α pUtq

˘

ď rC0e
´pd´1qrc1R0t, @t ě rT0 ,

where rC0 is a constant depending on R0 and }f0}L2pSd´1q, and rc1 is a universal
constant. If R0 ą 1

2 , the desired form of result in Theorem 3.6 follows directly by

identifying T0 “ rT0, C0 “ rC0 and c1 “ rc1. Otherwise, we define rT1 “ rT0_
logp10 rC0q

pd´1qrc1R0

such that the mass outside the cap S`
α pU

rT1
q is small: µ

rT1
pSd´1zS`

α pU
rT1

qq ď 1
10 . At

time rT1, we estimate the lower bound for R
rT1

as follows:

R
rT1

“

ż

Sd´1

xy, U
rT1

ydµ
rT1

pyq

ě cosα µ
rT1

´

S`
α p rT1q

¯

´ µ
rT1

´

Sd´1zS`
α p rT1q

¯

“ cosα ´ p1 ` cosαq µ
rT1

´

Sd´1zS`
α p rT1q

¯

ě
9

10
cosα ´

1

10
ě

1

2
.

(6.15)

Thus, we can reset the starting time of the estimate (6.14) to rT1. There exists
rT2 ě 0, depending on }f

rT1
}L2pSd´1q, and hence on }f0}L2pSd´1q and R0 via (6.8),

such that

µt

`

Sd´1zS`
α pUtq

˘

ď rC0e
´ 1

2 pd´1qrc1pt´ rT1q, @t ě rT2 ` rT1 .

The desired result in Theorem 3.6 then follows by identifying T0 “ rT2 ` rT1, C0 “

rC0e
1
2 pd´1qrc1 rT1 and c1 “ rc1{2. □
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7. More accurate C0, T0 in Theorem 3.4: Proof of Theorem 3.8

The assumptions in this section are the same as in Theorem 3.4, that is, we
have a family of L2pSd´1q probability densities, tftpxqutě0 satisfying (3.20), and
εϕ ď cuR

6
0. We notice that C0, T0 in Theorem 3.4 (and Theorem 3.6) comes from

the proof for Theorem 6.10. In particular, the term T in (6.11) of Theorem 6.10
depends on t1. Because of this dependence, when t is in the interval where BtRt ě
1
8 psin4 αqλ3R3

0, we lose control of the growth of f2t
`

Sd´1zS`
α ptq

˘

. The following
arguments are mainly for fixing this issue. For this purpose, we carefully investigate
the characteristic flow associated with the dynamics (3.20). Our analysis is inspired
by the problems for the Kuramoto model considered in [HKMP20, MP22] where
d “ 2 and β “ 0, but our more general dynamics (3.20) and the geometry of Sd´1

make the arguments more involved than the circle case.
We adopt the diffeomorphism notation we used in proving Lemma 6.9. That is,

for any t1 ě 0, we define the diffeomorphisms tϕt1Ñtpxqutět1 on Sd´1 by solving
the ODE

Btϕt1Ñtpxq “ Ytpϕt1Ñtpxqq, with ϕt1Ñt1pxq “ x, @x P Sd´1.

After exploiting more properties of ϕt1Ñt, we will be able to modify our Theo-
rem 6.10.

Lemma 7.1. For any t ě t1 ě 0, and any measurable set B Ď Sd´1, we have that
d

dt
f2t pϕt1ÑtpBqq ď 2pd´ 1q ¨ f2t pϕt1ÑtpBqq .

Proof. For simplicity, we prove the case where ϕt1ÑtpBq has a smooth topological
boundary Bϕt1ÑtpBq in Sd´1. The general cases for B can be done using the area
formula (change of variables), and similar computations were used to prove Lemma
A.1 in [HHL25].

When Bϕt1ÑtpBq is smooth, we notice that
d

dt
f2t pϕt1ÑtpBqq “

d

dt

ż

ϕt1ÑtpBq

f2t pxqdx

“

ż

Bϕt1ÑtpBq

f2t pxqxνpxq, Btϕt1Ñtpϕ
´1
t1Ñtpxqqy dHn´2pxq `

ż

ϕt1ÑtpBq

Btpf
2
t pxqq dx

“

ż

ϕt1ÑtpBq

d̊iv
`

f2t pxqYtpxq
˘

dx`

ż

ϕt1ÑtpBq

Btpf
2
t pxqqdx.

where npxq is the outer unit normal vector of Bϕt1ÑtpBq in Sd´1, and Hn´2pxq

is the Hausdorff measure. In the last line, we used the divergence theorem and
Btϕt1Ñtpϕ

´1
t1Ñtpxqq “ Ytpxq. Because ft satisfies (3.20), we have that

d

dt
f2t pϕt1ÑtpBqq “ ´

ż

ϕt1ÑtpBq

f2t pxq d̊iv pYtpxqqdx.

By (3.21), we see that

´ d̊iv pYtpxqq “

ż

Sd´1

”

pd´ 1qxx, yy ´ d̊iv pWtpxqq

ı

ftpyqdy

ď pd´ 1qpxx,Mty ` εϕq.

Combine the above inequalities and the fact that xx,Mty ď 1, we get Lemma 7.1.
□
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In the following, we use ConvrSs to denote the geodesically convex hull of a set
S Ď Sd´1, that is, the intersection of all those closed geodesically convex subsets
of Sd´1 that contain S. The definition implies that ConvpSq is unique and closed.
We first need the following geometric fact:

Lemma 7.2. Let S Ď Sd´1 be a closed subset. If infx,yPSxx, yy ą
?
2
2 , then,

infx,yPSxx, yy “ infx,yPConvrSsxx, yy.

Proof. Because S Ď ConvrSs, we have that infx,yPSxx, yy ě infx,yPConvrSsxx, yy. As-
sume that infx,yPSxx, yy ą infx,yPConvrSsxx, yy, and infx,yPConvrSsxx, yy is achieved
by Z1, Z2 P ConvrSs, and we use θ to denote the angle between Z1, Z2, that
is, cos θ “ xZ1, Z2y and θ P r0, π2 q. Notice that we can get θ ă π

2 , because
the maximal angle of points in S does not exceed π

4 . Assume that Z1 R S,
then we consider the spherical cap S`

θ pZ2q, where we used the definition (4.1).
Because cos θ “ infx,yPConvrSsxx, yy, we have that ConvrSs Ď S`

θ pZ2q. Hence,
S Ď S`

θ pZ2q. We extend the geodesic from Z1 to Z2 further to a point Z3, such
that xZ1, Z3y “ 0. Recall the triangle inequality on sphere: for any X1, X2, X3 such
that X1, X3 P S`

π
2

pX2q, we have that θ21 `θ23 ě θ13, where θ21 is the angle between
X2 and X1, θ23 is the angle between X2 and X3, and θ13 is the angle between X1

and X3. Hence, S`
θ pZ2q Ď S`

π
2

pZ3q, and the boundaries of these two sets are only
tangent at Z1. Apparently, S Ď ConvrSs Ď S`

θ pZ2q Ď S`
π
2

pZ3q. Because Z1 R S,
and the boundaries of S`

θ pZ2q and S`
π
2

pZ3q only intersect at Z1, we see that the
boundary of S`

π
2

pZ3q does not contain any point in S. Hence, we can take a very
ϵ ą 0, such that S Ď S`

π
2 ´ϵpZ3q. Because S`

π
2 ´ϵpZ3q is also a closed geodesically

convex set, by the definition of ConvrSs, we must have that ConvrSs Ď S`
π
2 ´ϵpZ3q.

This is a contradiction, because Z1 P ConvrSs but Z1 R S`
π
2 ´ϵpZ3q. □

Lemma 7.3. Fix a time t1 ě 0 and a closed subset B Ď Sd´1 which is properly
contained in a hemisphere of Sd´1. Define

DtpBq – inf
x,yPConvrϕt1ÑtpBqs

xx, yy,

and ΓpBq – µt1pBqp1`Dt1pBqq ´ 1. If ΓpBq ą 0, Dt1pBq ą 0, and if we have that
ε2ϕ ď 1

4 p1 ´Dt1pBqqΓpBq2, then for any t ě t1, we have that DtpBq ě Dt1pBq, and

inf
xPConvrϕt1ÑtpBqs

xx,Mty ě µt1pBq p1 `DtpBqq ´ 1 ě ΓpBq,(7.1)

and

1 ´DtpBq ď max

"

p1 ´Dt1pBqqe
´ΓpBq

4 pt´t1q,
4

ΓpBq2
ε2ϕ

*

.(7.2)

Proof. The first inequality (7.1) basically follows from the fact that for any set
A Ă Sd´1, µtpϕt1ÑtpAqq is a constant because ft satisfies (3.20) and ϕt1Ñt is its
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characteristic flow. More precisely,

inf
xPConvrϕt1ÑtpBqs

xx,Mty “ inf
xPConvrϕt1ÑtpBqs

ż

Sd´1

xx, yyftpyqdy

ě inf
xPConvrϕt1ÑtpBqs

ż

Convrϕt1ÑtpBqs

xx, yyftpyqdy ´

ż

Sd´1zConvrϕt1,tpBqs

ftpyqdy

ě DtpBqµt pConvrϕt1ÑtpBqsq ´ p1 ´ ft pConvrϕt1ÑtpBqsqq

“ ft pConvrϕt1ÑtpBqsq p1 `DtpBqq ´ 1

ě µt pϕt1ÑtpBqq p1 `DtpBqq ´ 1 “ µt1 pBq p1 `DtpBqq ´ 1.

To prove the second inequality (7.2), we need to compute the derivatives of
DtpBq in t. Let ϕt1Ñtpxq, ϕt1Ñtpyq be two points in Convrϕt1ÑtpBqs, we have that

d

dt
xϕt1Ñtpxq, ϕt1Ñtpyqy “ xYtpϕt1Ñtpxqq, ϕt1Ñtpyqy ` xϕt1Ñtpxq,Ytpϕt1Ñtpyqqy

“ xVtpϕt1Ñtpxqq, ϕt1Ñtpyqy ` xϕt1Ñtpxq, Vtpϕt1Ñtpyqqy

` xWtpϕt1Ñtpxqq, ϕt1Ñtpyqy ` xϕt1Ñtpxq,Wtpϕt1Ñtpyqqy

“

A

Mt,Pϕt1Ñtpxqrϕt1Ñtpyqs

E

`

A

Mt,Pϕt1Ñtpyqrϕt1Ñtpxqs

E

`

A

Wtpϕt1Ñtpxqq,Pϕt1Ñtpxqrϕt1Ñtpyqs

E

`

A

Pϕt1Ñtpyqrϕt1Ñtpxqs,Wtpϕt1Ñtpyqq

E

.

(7.3)

If we let θ P r0, π2 s such that cosp2θq “ xϕt1Ñtpxq, ϕt1Ñtpyqy, then we see that
}Pϕt1Ñtpxqrϕt1Ñtpyqs}2 “ sinp2θq. Also, there is a Z P Convrϕt1ÑtpBqs Ď Sd´1

such that Pϕt1Ñtpxqrϕt1Ñtpyqs `Pϕt1Ñtpyqrϕt1Ñtpxqs “ 2 sinpθq sinp2θq ¨Z. This Z is
actually the middle point on the shortest great circle connecting ϕt1Ñtpxq, ϕt1Ñtpyq.
Hence,

d

dt
xϕt1Ñtpxq, ϕt1Ñtpyqy ě inf

zPConvrϕt1ÑtpBqs
xz,Mty ´ 2εϕ sinp2θq,

where we also used Lemma 5.1. Because ϕt1Ñtpxq, ϕt1Ñtpyq were chosen arbitrarily,

by writing sinp2θq “
a

1 ´ cos2p2θq and sinpθq “

b

1´cosp2θq

2 , we obtain that

d

dt
DtpBq ě 2

a

1 ´DtpBq2

˜

c

1 ´DtpBq

2
inf

zPConvrϕt1ÑtpBqs
xz,Mty ´ εϕ

¸

ě 2
a

1 ´DtpBq2

˜

c

1 ´DtpBq

2
rµt1 pBq p1 `DtpBqq ´ 1s ´ εϕ

¸

,

(7.4)

where in the last step, we used the first inequality (7.1) which we just proved.
Assume that rt1, t2s is the maximal interval such that (7.2) holds true for any
t P rt1, t2s, then we want to show that t2 “ `8. First, because we have (7.2) on
rt1, t2s, we obtain that DtpBq ě Dt1pBq ą 0 for any t P rt1, t2s, where we also used
the assumption that ε2ϕ ď 1

4 p1´Dt1pBqqΓpBq2. If t2 is a finite number, then we let
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t “ t2 in (7.4), and obtain that

d

dt

ˇ

ˇ

ˇ

ˇ

t“t2

p1 ´DtpBqq ď ´2
a

1 ´Dt2pBq2

˜

c

1 ´Dt2pBq

2
rµt1 pBq p1 `Dt2pBqq ´ 1s ´ εϕ

¸

ď ´2
a

1 ´Dt2pBq2

˜

c

1 ´Dt2pBq

2
rµt1 pBq p1 `Dt1pBqq ´ 1s ´ εϕ

¸

“ ´2
a

1 ´Dt2pBq2

˜

c

1 ´Dt2pBq

2
ΓpBq ´ εϕ

¸

.

Now, by the assumption of t2, we also have that

1 ´Dt2pBq “ max

"

p1 ´Dt1pBqqe
´ΓpBq

4 pt2´t1q,
4

ΓpBq2
ε2ϕ

*

ě
4

ΓpBq2
ε2ϕ.

Hence,

d

dt

ˇ

ˇ

ˇ

ˇ

t“t2

p1 ´DtpBqq ď ´
a

1 `Dt2pBq ¨ r1 ´Dt2pBqsΓpBq

´?
2 ´ 1

¯

ď ´
2

5
r1 ´Dt2pBqsΓpBq.

Because Dt2pBq ă 1 as B is an open set in Sd´1, by the continuity of the solution,
there is a small time interval rt2, t2 ` δs for some δ ą 0, such that for t P rt2, t2 ` δs,
we have that

d

dt
p1 ´DtpBqq ă ´

1

4
r1 ´DtpBqsΓpBq.

Hence, for any t P rt2, t2 ` δs, (7.2) also holds true, because

1 ´DtpBq ă p1 ´Dt2pBqqe´
ΓpBq

4 pt´t2q

ď

#

p1 ´Dt1pBqqe
´ΓpBq

4 pt´t1q, if 1 ´Dt2pBq “ p1 ´Dt1pBqqe
´ΓpBq

4 pt2´t1q,
4

ΓpBq2
ε2ϕ, if 1 ´Dt2pBq “ 4

ΓpBq2
ε2ϕ,

ď max

"

p1 ´Dt1pBqqe
´ΓpBq

4 pt´t1q,
4

ΓpBq2
ε2ϕ

*

,

which contradicts to the assumption that rt1, t2s is the maximal interval on which
(7.2) holds true for any t P rt1, t2s. □

Lemma 7.4. There is a T˚ ď 104R´3
0 , such that if we let α˚ P p0, π2 q satisfy

sin2pα˚q “ 10´2R0, then the set B˚ – S`
α˚

pT˚q satisfies the assumptions for the
set B for t1 “ T˚ in Lemma 7.3. Furthermore, if εϕ ď 10´2R2

0, then for any
t ě T˚,

µt

`

ConvrϕT˚ÑtpB˚qs
˘

ě µT˚
pB˚q ě

1

2

ˆ

1 `
9

10
R0

˙

,

and

inf
x,yPConvrϕT˚ÑtpB˚qs

xx, yy “ DtpB˚q ě DT˚
pB˚q “ 1 ´

1

50
R0,(7.5)
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and

inf
xPConvrϕT˚ÑtpB˚qs

xx,Mty ě µT˚
pB˚q p1 `DtpB˚qq ´ 1 ě

4

5
R0.(7.6)

Proof. We define

T˚ – inf
␣

t ě 0 | BtRt ď 10´4R3
0

(

.

Because, 1 ě RT˚
´ R0 ě T˚10

´4R3
0, we have that T˚ ď 104R´3

0 . Also, by the
definition of T˚, we have that Rt is strictly increasing on r0, T˚s, in particular,
Rt ě R0 for t P r0, T˚s.

In order to verify the assumptions in Lemma 7.3 for B˚ “ S`
α˚

pT˚q, we need to
get the corresponding DT˚

pB˚q and fT˚
pB˚q. First, it is easy to see that

DT˚
pB˚q “ cosp2α˚q “ 1 ´ 2 sin2pα˚q “ 1 ´

1

50
R0.

Then, we are going to estimate µT˚
pB˚q. By the same reason as in proving the first

inequality in (6.6), that is, divide the integral RT˚
“

ş

Sd´1xy, UT˚
yfT˚

pyqdy into
integrals over S`

α˚
pT˚q, Sd´1zpS`

α˚
pT˚q Y S´

α˚
pT˚qq, and S´

α˚
pT˚q, we have that

R0 ď RT˚
ď µT˚

´

S`
α˚

pT˚q

¯

` cospα˚qµT˚

´

Sd´1zpS`
α˚

pT˚q Y S´
α˚

pT˚qq

¯

´ cospα˚qµT˚

´

S´
α˚

pT˚q

¯

“ p1 ` cospα˚qqµT˚

´

S`
α˚

pT˚q

¯

` 2 cospα˚qµT˚

´

Sd´1zpS`
α˚

pT˚q Y S´
α˚

pT˚qq

¯

´ cospα˚q

ď 2µT˚

´

S`
α˚

pT˚q

¯

` 2µT˚

´

Sd´1zpS`
α˚

pT˚q Y S´
α˚

pT˚qq

¯

´ cospα˚q.

Next, by the same reason as in proving (6.2), we have that

µT˚

´

Sd´1zpS`
α˚

pT˚q Y S´
α˚

pT˚qq

¯

ď
BtR

2
t |t“T˚

` ε2ϕ

R2
T˚

psin2pα˚qq

“
2BtRt|t“T˚

RT˚
psin2pα˚qq

`
ε2ϕ

R2
T˚

psin2pα˚qq
ď

2 ¨ 10´4R3
0

R0 ¨ 10´2R0
`

10´4R2
0

10´2R0
“ 3 ¨ 10´2R0.

Combine the above two inequalities, and cospα˚q ě cos2pα˚q “ 1 ´ sin2pα˚q “

1 ´ 10´2R0, we see that

µT˚

´

S`
α˚

pT˚q

¯

ě
1

2

`

1 `R0 ´ 7 ¨ 10´2R0

˘

ě
1

2

ˆ

1 `
9

10
R0

˙

.

Hence,

Γ
´

S`
α˚

pT˚q

¯

“ µT˚

´

S`
α˚

pT˚q

¯

p1 `DT˚
pS`

α˚
pT˚qq ´ 1

ě
1

2

ˆ

1 `
9

10
R0

˙ˆ

2 ´
1

50
R0

˙

´ 1

“
9

10
R0 ´

1

100
R0 ´

9

1000
R2

0 ě
4

5
R0.
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Then, our assumption on εϕ in Lemma 7.4 also implies the assumption on εϕ in
Lemma 7.3, because

1

4

´

1 ´DT˚
pS`

α˚
pT˚q

¯

Γ
´

S`
α˚

pT˚q

¯2

ě
16

5000
R3

0 ě 10´4R4
0 ě ε2ϕ.

By our Lemma 7.3, we can finish the proof for Lemma 7.4. □

Before we proceed, we need to give some further definitions. Let T˚, α˚ be the
time and the angle obtained in Lemma 7.4, and recall that B˚ – S`

α˚
pT˚q. Now

we define the set Bt – ϕT˚ÑtpB˚q, and its R2
0

104 -neighborhood set rBt

rBt –

"

x P Sd´1

ˇ

ˇ

ˇ

ˇ

sup
yPBt

xx, yy ě 1 ´
R2

0

104

*

.

The following lemma is a further step after Lemma 6.9.

Lemma 7.5. Fix a constant λ P p2{3, 1q and an angle α P rπ{100, π{2q. Let T˚,
α˚ be the time and the angle obtained in Lemma 7.4. If there is a time window
rt1, t2s, such that when t P rt1, t2s,

Rt ě λR0, BtRt ď
1

8
psin4 αqλ3R3

0,

and if

εϕ ď
1

104
λ2R2

0 sinα cosα,

then, for any t3 Ñ t4 P rt1, t2s, t3 ď t4, and any x, y P Sd´1 such that

ϕt3Ñt4pxq P S`
α pt4q, y P B˚, and

@

ϕt3Ñt4pxq, ϕT˚Ñt4pyq
D

ď 1 ´
R2

0

104
,

we have that

d

dt

ˇ

ˇ

ˇ

ˇ

t“t4

@

ϕt3Ñtpxq, ϕT˚Ñtpyq
D

ě
λR

3
2
0 pcos2 αq

4

`

1 ´
@

ϕt3Ñtpxq, ϕT˚Ñtpyq
D˘

.(7.7)

As a corollary, if we define,

rδ “ rδpλ,R0, αq –
4 log p104R´2

0 q

λR
3
2
0 pcos2 αq

,(7.8)

then if t2 ´ t1 ě rδ, we have that

ϕt1Ñt2

`

S`
α pt1q

˘

Ď rBt2 .

Proof. Take any x P Sd´1 and any y P B˚ such that
@

ϕt3Ñt4pxq, ϕT˚Ñt4pyq
D

ď

1 ´
R2

0

104 and ϕt3Ñt4pxq P S`
α pt4q. Notice that ϕt3Ñt4pxq and ϕT˚Ñt4pyq are in the

same hemisphere, because (7.6) means that ϕT˚Ñt4pyq P S`
π
2

pt4q. By the same
computation as (7.3), we see that

d

dt

ˇ

ˇ

ˇ

ˇ

t“t4

@

ϕt3Ñtpxq, ϕT˚Ñtpyq
D

“ 2 sinpθq sinp2θqxZ,Mty

`

A

Wt4pϕt3Ñt4pxqq,Pϕt3Ñt4
pxqrϕT˚Ñt4pyqs

E

`

A

PϕT˚Ñt4
pyqrϕt3Ñt4pxqs,WtpϕT˚Ñt4pyqq

E

ě 2 sinpθq sinp2θqxZ,Mty ´ 2εϕ sinp2θq,
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where θ P r0, π2 s such that cosp2θq “ xϕt3Ñt4pxq, ϕT˚Ñt4pyqy, and Z P Sd´1 is the
middle point on the shortest great circle connecting ϕt3Ñt4pxq, ϕT˚Ñt4pyq. Notice
that because (7.6) implies xϕT˚Ñt4pyq,Mty ą 0, we have that

xZ,Mty “
xϕt3Ñt4pxq ` ϕT˚Ñt4pyq,Mty

}ϕt3Ñt4pxq ` ϕT˚Ñt4pyq}2
ě

xϕt3Ñt4pxq,Mty

2
ě

cosα

2
Rt ě

cosα

2
λR0.

Also, we can write sinp2θq “
a

1 ´ cos2p2θq and sinpθq “

b

1´cosp2θq

2 . By the

assumption, cosp2θq “
@

ϕt3Ñt4pxq, ϕT˚Ñt4pyq
D

ď 1 ´
R2

0

104 , which implies that

sinpθqxZ,Mty ě

c

R2
0

2 ¨ 104
cosα

2
λR0 ě

λR2
0 cosα

300
ě 10εϕ.

So,

d

dt

ˇ

ˇ

ˇ

ˇ

t“t4

@

ϕt3Ñtpxq, ϕT˚Ñtpyq
D

ě
λR0 cosα

2
sin pθq sin p2θq

“
λR0 cosα

2
?
2

p1 ´ cosp2θqq
a

1 ` cosp2θq.

Because we cannot rule out the case when cosp2θq ă 0, we need to get a lower bound
for 1 ` cosp2θq. (7.6) implies xϕT˚Ñt4pyq,Mt4y ą 4

5R0. Because Mt4 “ Rt4Ut4 and
Rt4 ď 1, we see that xϕT˚Ñt4pyq, Ut4y ą 4

5R0. Because ϕt3Ñt4pxq P S`
α pt4q, we have

that xϕt3Ñt4pxq, Ut4y ě cosα. We use the following fact: for any Z1, Z2, Z3 P Sd´1,

xZ1, Z2y “ xZ1, Z3yxZ2, Z3y ` xPZ3
rZ1s,PZ3

rZ2sy

ě xZ1, Z3yxZ2, Z3y ´ }PZ3
rZ1s}2}PZ3

rZ2s}2.
(7.9)

Hence,

cosp2θq “ xϕt3Ñt4pxq, ϕT˚Ñt4pyqy

ě xϕT˚Ñt4pyq, Ut4yxϕt3Ñt4pxq, Ut4y ´ 1 ě
4

5
R0 cosα ´ 1.

Combine the above arguments, we obtain (7.7):

d

dt

ˇ

ˇ

ˇ

ˇ

t“t4

@

ϕt3Ñtpxq, ϕT˚,tpyq
D

ě
λR

3
2
0 pcos2 αq

4
p1 ´ cosp2θqq.

Next, we show that if t2´t1 ě rδ for the rδ defined in (7.8), we have ϕt1Ñt2 pS`
α pt1qq Ď

rBt2 . Because the assumptions on Rt, BtRt, and εϕ in Lemma 6.9 are also satisfied
here, by (6.9) in Lemma 6.9, we first know that ϕt1Ñt pS`

α pt1qq Ď S`
α ptq for any

time t P rt1, t2s, because (6.9) means that for points already in S`
α pt1q, those points

along the characteristic flow, that is, ϕt1Ñt, cannot escape the cap S`
α ptq for any

time t P rt1, t2s. By (7.7), we have that for any x P S`
α pt1q, y P B˚,

d

dt

`

1 ´
@

ϕt1Ñtpxq, ϕT˚Ñtpyq
D˘

ď ´
λR

3
2
0 pcos2 αq

4

`

1 ´
@

ϕt1Ñtpxq, ϕT˚Ñtpyq
D˘

,

as long as 1 ´
@

ϕt1Ñtpxq, ϕT˚Ñtpyq
D

ě
R2

0

104 . Hence, after at most rδ time, we

have that 1 ´
@

ϕt1Ñtpxq, ϕT˚Ñtpyq
D

ď
R2

0

104 , which implies that for any t ě t1 ` rδ,

ϕt1Ñt2 pS`
α pt1qq is contained in rBt, the R2

0

104 -neighborhood of Bt. □
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Lemma 7.6. Fix a constant λ P p2{3, 1q and an angle α P rπ{100, π{2q. Let T˚,
α˚ be the time and the angle obtained in Lemma 7.4. Assume that there is a time
window rt1, t2s, such that when t P rt1, t2s,

Rt ě λR0, BtRt ď
1

8
psin4 αqλ3R3

0.

If

εϕ ď
1

104
λ2R2

0 sinα cosα,

and if t2 ´ t1 ě δ ` rδ for δ defined in (6.10) in Lemma 6.9, and rδ defined in (7.8)
in Lemma 7.5, we have that

f2t2

´

Sd´1z rBt2

¯

ď f2t1
`

S´
α pt1q

˘

¨ e3pd´1qprδ`δq ¨ e´
pd´1qλR0 cosα

2 pt2´t1q.

Proof. By Lemma 7.5, we have that ϕt2´rδÑt2

´

S`
α pt2 ´ rδq

¯

Ď rBt2 . Hence, because

ϕt2´rδÑt2
is a diffeomorphism on Sd´1, we see that

f2t2

´

Sd´1z rBt2

¯

ď f2t2

´

Sd´1zϕt2´rδÑt2

´

S`
α pt2 ´ rδq

¯¯

“ f2t2

´

ϕt2´rδÑt2

´

Sd´1zS`
α pt2 ´ rδq

¯¯

ď e2pd´1qrδ ¨ f2
t2´rδ

´

Sd´1zS`
α pt2 ´ rδq

¯

,

where in the second inequality, we used Lemma 7.1. Next, by Lemma 6.9, we have
that Sd´1zS`

α pt2 ´ rδq Ď ϕt2´rδ´δÑt2´rδ

´

S´
α pt2 ´ rδ ´ δq

¯

. Using Lemma 7.1 again,
we have that

f2t2

´

Sd´1z rBt2

¯

ď e2pd´1qrδ ¨ f2
t2´rδ

´

ϕt2´rδ´δÑt2´rδ

´

S´
α pt2 ´ rδ ´ δq

¯¯

ď e2pd´1qprδ`δq ¨ f2
t2´rδ´δ

´

S´
α pt2 ´ rδ ´ δq

¯

.

By Lemma 6.8, we finally obtain that

f2t2

´

Sd´1z rBt2

¯

ď f2t1
`

S´
α pt1q

˘

¨ e2pd´1qprδ`δq ¨ e´
pd´1qλR0 cosα

2 pt2´t1´δ´rδq.

□

Before we proceed, we need another auxiliary lemma similar to Lemma 7.4.

Lemma 7.7. Let T˚ be the time obtained in Lemma 7.4 and take two times t1, t
such that T˚ ď t1 ď t. If εϕ ď 10´3R2

0, then

µt

´

ϕt1Ñt

´

rBt1

¯¯

ě
1

2

ˆ

1 `
9

10
R0

˙

,

and

inf
x,yPConvrϕt1Ñtp rBt1qs

xx, yy ě Dt1p rBt1q “ 1 ´
1

10
R0,

and

inf
xPConvrϕt1Ñtp rBt1qs

xx,Mty ě µt1

´

rBt1

¯´

1 `Dt1p rBt1q

¯

´ 1 ě
4

5
R0.(7.10)
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Proof. The proof is similar to the proof for Lemma 7.4. We need to verify the as-
sumptions in Lemma 7.3 for the set rBt1 , for which we need to get the corresponding
Dt1p rBt1q and ft1p rBt1q. First, take any x, y P rBt1 , then by the definition of rBt1 ,
there are corresponding x1, y1 P Bt1 “ ϕT˚,t1pB˚q, such that xx, x1y ě 1 ´

R2
0

104 and

xy, y1y ě 1 ´
R2

0

104 . Using the inequality (7.9), we have that

xx, yy ě xx, y1yxy, y1y ´
a

1 ´ xy, y1y2

ě xx1, y1yxx, x1yxy, y1y ´
a

1 ´ xy, y1y2 ´
a

1 ´ xx, x1y2.

By (7.5) in Lemma 7.4, we have that xx1, y1y ě 1 ´ R0

50 . Hence, we have that

xx, yy ě

ˆ

1 ´
R0

50

˙ˆ

1 ´
R2

0

104

˙ˆ

1 ´
R2

0

104

˙

´ 2

c

2R2
0

104
´
R4

0

108

ě 1 ´
3R0

100
´

3R0

100
ě 1 ´

R0

10
ą

?
2

2
.

Because x, y P rBt1 are arbitrary, we have that infx,yP rBt1
xx, yy ě 1 ´ R0

10 ą
?
2
2 .

By Lemma 7.2, we have that Dt1p rBt1q “ infx,yPConvr rBt1
s
xx, yy ě 1 ´ R0

10 . Also, by
Lemma 7.4, we have that

µt1

´

rBt1

¯

ě µt1pBt1q “ µT˚
pB˚q ě

1

2

ˆ

1 `
9

10
R0

˙

.

Hence, to check the assumptions in Lemma 7.3, we see that

Γ
´

rBt1

¯

“ µt1

´

rBt1

¯´

1 `Dt1p rBt1q

¯

´ 1

ě
1

2

ˆ

1 `
9

10
R0

˙ˆ

2 ´
R0

10

˙

´ 1

“
18

20
R0 ´

1

20
R0 ´

9

200
R2

0 ě
4

5
R0.

Also, by the definition of rBt1 , we see that Dt1p rBt1q “ infx,yPConvr rBt1 s
xx, yy ď

1 ´
R2

0

104 . We get that

1

4

´

1 ´Dt1p rBt1q

¯

Γ
´

rBt1

¯2

ě
1

4
¨
R2

0

104
¨
16R2

0

25
ě ε2ϕ.

We then finish the proof by Lemma 7.3. □

Proof of Theorem 3.8. Similar to the proof for Theorem 3.6, we fix the λ “ 1 ´

10´10R4
0 ě 1 ´ 10´10R2

0, α “ π
100 , and divide IRě0 into pieces 0 “ s´1 ď t0 ă s0 ď

t1 ă s1 ď t2 ă s2 ¨ ¨ ¨ , where for any k ě 0

tk – inf

"

t ě sk´1

ˇ

ˇ

ˇ

ˇ

BtRt ě
1

8
psin4 αqλ3R3

0

*

, sk – tk ` 1.

As in the proof for Theorem 3.6, we showed that this construction must stop at
some k˚-th step and k˚ ď 109R´6

0 . After the time sk˚
, we already saw in the

proof of Theorem 3.6 that ft
`

Sd´1zS`
α ptq

˘

starts to decay exponentially fast. To
go further, we estimate how large sk˚

can be without using Theorem 6.10 directly.
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We first prove that there is an upper bound C˚ depending on }f0}L2pSd´1q and
R0, such that for any k P r´1, k˚s, f2sk pS´

α pskqq ď C˚. We fix a k P r´1, k˚s. First,
if sk ď T˚ for the T˚ obtained in Lemma 7.4, by Lemma 7.1, we have that

f2sk
`

S´
α pskq

˘

ď f2sk
`

Sd´1
˘

ď }f0}2L2pSd´1q ¨ e2pd´1qsk ď }f0}2L2pSd´1q ¨ e2pd´1qT˚ .

Now, if sk ą T˚, take the l such that the following two conditions are satisfied:
(1) For any p P rl ` 1, ks (H if l “ k), tp ´ sp´1 ď δ ` rδ for δ defined in (6.10)

in Lemma 6.9, and rδ defined in (7.8) in Lemma 7.5.
(2) tl ´ pδ ` rδq ą sl´1 ą T˚ or sl´1 ď T˚ ď sl.

If the first case in the condition (2) above holds true, we apply the (7.10) in
Lemma 7.7, which implies that ϕtlÑsk

´

rBtl

¯

Ď S`
π
2

pskq. Hence, because in this

case, sk ´ tl ď pk ´ lqpδ ` rδ ` 1q ` 1, by Lemma 7.1, we get that

f2sk
`

S´
α pskq

˘

ď f2sk

´

Sd´1zϕtlÑsk

´

rBtl

¯¯

ď e2pd´1qrpk´lqpδ`rδ`1q`1sf2tl

´

Sd´1z rBtl

¯

.

Now, combine this inequality with Lemma 7.6 for the interval rsl´1, tls, we get that

f2sk
`

S´
α pskq

˘

ď e3pd´1qrpk´l`1qpδ`rδ`1qsf2sl´1

`

S´
α psl´1q

˘

.

Using this inequality, we can iteratively pull sk back to the time when the second
case in the condition (2) happens, and this iteration does not exceed k˚-times. In
this case, we have that sk´1 ď T˚ ď sk. If T˚ ă sk ´ δ ´ rδ ´ 1, we have that

f2sk
`

S´
α pskq

˘

ď f2sk

´

Sd´1zϕtkÑsk

´

rBtk

¯¯

ď e2pd´1qf2tk

´

Sd´1z rBtk

¯

ď e3pd´1qpδ`rδ`1qf2T˚

`

S´
α pT˚q

˘

ď e3pd´1qpδ`rδ`1`T˚q}f0}2L2pSd´1q,

where the last inequality follows from Lemma 7.1 on r0, T˚s. If T˚ ě sk ´ δ´ rδ´ 1,
then sk ´ T˚ ď δ ` rδ ` 1. Using Lemma 7.1 again, we have that

f2sk
`

S´
α pskq

˘

ď f2sk
`

Sd´1zBsk

˘

ď e2pd´1qpsk´T˚qf2T˚

`

Sd´1zB˚

˘

ď e2pd´1qpδ`rδ`1`T˚q}f0}2L2pSd´1q.

Combine the above arguments in all possibilities, we obtain that for any k P

r´1, k˚s, we have that

f2sk
`

S´
α pskq

˘

ď e4pd´1qrk˚pδ`rδq`T˚s}f0}2L2pSd´1q.

Next, we need to estimate each tk´sk´1 for k P r0, k˚s. Assume that tk´sk´1 ą δ
for δ defined in (6.10) in Lemma 6.9. Because for t P rsk´1, tks, by definition of tk,
we have that BtRt ď 1

8 psin4 αqλ3R3
0, we can then apply Lemma 6.9 to obtain that

for any r P rsk´1 ` δ, tks, Sd´1zS`
α prq Ď ϕr´δÑr pS´

α pr ´ δqq. By the same reason
we obtained (6.12) in Theorem 6.10, we can obtain that

µr

`

Sd´1zS`
α prq

˘

ď 10 ¨ e´
pd´1qλR0 cosα

4 pr´δ´sk´1q
”

f2sk´1

`

S´
α psk´1q

˘

ı
1
2

.

Applying the upper bound for f2sk´1
pS´

α psk´1qq we got earlier, we see that

µr

`

Sd´1zS`
α prq

˘

ď e´
pd´1qλR0 cosα

4 pr´sk´1q ¨ e3pd´1qrk˚pδ`rδq`T˚s}f0}L2pSd´1q,(7.11)

for any r P rsk´1 ` δ, tks. To simplify the notation in the proof, we let η –

pd´1qλR0 cosα
4 and A – e3pd´1qrk˚pδ`rδq`T˚s

“

}f0}L2ppSd´1qq

‰
1
2 . By Theorem 3.5, we
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have that It ` BtIt ď 102µt

`

Sd´1zS`
α ptq

˘

ď 102Ae´ηpt´sk´1q. Multiply et on both
sides and integrate from sk´1 to r, we obtain that

Ir ď Isk´1
e´r`sk´1 ` 103Ae´ξpt´sk´1q,

where ξ “ η if η ă 1 and ξ “ 1
2 if η ě 1. Also, by the fact that It ď 2 using

its definition directly, we can simplify the above inequality and obtain that for any
r P rsk´1 ` δ, tks,

Ir ď 104Ae´ξpr´sk´1q.

By Lemma 6.6, we have that Rt ě λR0. Using Lemma 5.2, we have that for any
r P rsk´1 ` δ, tks,

BtRt

ˇ

ˇ

t“r
ď

3Ir
2λR0

`
ε2ϕ

2λR0
ď

3Ir
2λR0

` 10´8λ3R3
0 sin

2 α.

In particular, we can pick r “ tk, and by the construction of tk, we must have that
1

8
psin4 αqλ3R3

0 ď BtRt

ˇ

ˇ

t“tk
.

Recall that we already fixed α “ π
100 in the assumption, and λ is very close to 1 by

our choice at the beginning. So, combine the two inequalities for BtRt

ˇ

ˇ

t“tk
and Itk ,

we have that
sin4 α

24
λ4R4

0 ď Itk ď 104Ae´ξptk´sk´1q.

Hence,

ξptk ´ sk´1q ď 3pd´ 1qrk˚pδ ` rδq ` T˚s ` log
“

1017R´4
0 }f0}L2ppSd´1qq

‰

.(7.12)

Using (7.12), we sum both sides from k “ 1 to k “ k˚, and obtain that

ξs˚ ď 1 ` 3pd´ 1qk˚rk˚pδ ` rδq ` T˚s ` k˚ log
“

1017R´4
0 }f0}L2ppSd´1qq

‰

.

ď 1023pd´ 1qR´14
0 ` 109R´6

0 log
“

}f0}L2ppSd´1qq

‰

,

where we also used the fact that k˚ ď 109R´6
0 , T˚ ď 104R´3

0 , δ ď 104R´1
0 , and

rδ ď 102R´2
0 . Hence, apply (7.11) for r P rsk˚

` δ,`8s we see that

µr

`

Sd´1zS`
α prq

˘

ď e´
pd´1qλR0 cosα

4 pr´sk˚
q

¨ e3pd´1qrk˚pδ`rδq`T˚s}f0}L2ppSd´1qq.

Hence, if we set

S0 – ξ´1
“

1024pd´ 1qR´14
0 ` 109R´6

0 log
`

}f0}L2pSd´1q

˘‰

,

we have that when r ě S0,

µr

`

Sd´1zS`
α prq

˘

ď e´
pd´1qR0

8 pr´S0q ¨ }f0}L2pSd´1q.

We now eliminate the dependence on the initial radius R0 in the exponent by
further evolving the flow. Specifically, we define

S1 “

$

&

%

S0, if µS0
pSzS`

α pS0qq ď 0.1,

S0 `
8

R0
log

`

10}f0}L2pSq

˘

, otherwise.

Then, as established in (6.15), we have RS1 ě 1
2 . Restart the flow at time S1, and

we define

S2 – ξ´1
1

“

1024214pd´ 1q ` 10926 log
`

}fS1
}L2pSd´1q

˘‰

,
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with ξ´1
1 “ 8

pd´1qλ1 cosα _ 1 and λ1 “ 1 ´ 10´102´4. For all r ě S1 ` S2, we then
have the estimate

µr

`

Sd´1zS`
α prq

˘

ď e´
pd´1q

16 pr´S1´S2q ¨ }fS1`S2
}L2pSd´1q

ď e´
pd´1q

16 pr´33pS1`S2qq ¨ }f0}L2pSd´1q ,

where we used the bound }fS1`S2
}L2pSd´1q ď e2pd´1qpS1`S2q}f0}L2pSd´1q from Lemma 7.1.

To estimate S1 ` S2, note from Lemma 7.1 that log
`

}fS1}L2pSd´1q

˘

ď 2pd´ 1qS1 `

log
`

}f0}L2pSd´1q

˘

, which yields the upper bound

S2 ď 1031pd´ 1q ` 1014pd´ 1qS1 ` 1013 log
`

}f0}L2pSd´1q

˘

Combining with the definition of S1 and noting that R0 ď 1, we arrive at

S1 ` S2 ď

„

16

pd´ 1qR0
_ 1

ȷ

pd´ 1qr1039pd´ 1qR´14
0 ` 1024R´6

0 log
`

}f0}L2pSd´1q

˘

s .

Finally, if we set

T0 –

„

16

pd´ 1qR0
_ 1

ȷ

pd´ 1qr1041pd´ 1qR´14
0 ` 1026R´6

0 log
`

}f0}L2pSd´1q

˘

s ,

we have that when r ě T0

µr

`

Sd´1zS`
α prq

˘

ď e´
pd´1q

16 pr´T0q ¨ }f0}L2pSd´1q ,

and the result stated in Theorem 3.8 then follows. □
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