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Abstract

This paper considers a mean-field model of n interacting particles whose state
space is the unit circle, a generalization of the classical Kuramoto model. Global
synchronization is said to occur if after starting from almost any initial state, all
particles coalesce to a common point on the circle. We propose a general syn-
chronization criterion in terms of L1-norm of the third derivative of the particle
interaction function. As an application we resolve a conjecture for the so-called
self-attention dynamics (stylized model of transformers), by showing synchroniza-
tion for all β ≥ −0.16, which significantly extends the previous bound of 0 ≤ β ≤ 1
from Criscitiello, Rebjock, McRae, and Boumal [11]. We also show that global
synchronization does not occur when β < −2/3.

1 Introduction

In this paper, we consider a simple dynamical system consisting of n interacting particles
x1, . . . , xn situated on the unit sphere S1, which we identify with the standard 1-torus
S1 ≃ T ≜ R/2πZ. The dynamics are given by

ẋi(t) = −
n∑

j=1

f(xi(t) − xj(t)),∀i ∈ [n]. (S1)

Interest in such systems originated with the work of Kuramoto [24], who analyzed the
special case where f(x) = sin(x).1 Kuramoto discovered a fascinating synchronization
phenomenon in this system, which we define below.

Definition 1.1. In (S1), synchronization occurs for a starting point (xi(0))1≤i≤n if there
exists x∗ ∈ [0, 2π) such that limt→∞ xi(t) ≡ x∗ for all i ∈ [n]. We say that a pair (A, f)
exhibits global synchronization if synchronization occurs for almost every starting point
(with respect to the volume measure).
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1We consider only the so-called homogeneous Kuramoto model, without particle-dependent drift terms.
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Mathematical models of synchronization, such as Kuramoto’s, are simplified abstrac-
tions of the ubiquitous self-organization phenomena observed in nature [36]. While many
other models have been proposed in physics [35], biology [27], and engineering [4, 19],
Kuramoto’s model remains the simplest to exhibit this effect.

The seminal paper of Kuramoto [24] has ushered a rich line of work sharpening, gen-
eralizing, and applying his original framework; see [32, 3]. After successive advances,
global synchronization for the mean-field Kuramoto model was eventually established in
[33], which also expanded the original Kuramoto model beyond the mean-field case by
allowing each particle to interact with only a subset of the others; see [1, 20] for the most
recent advances on this front.

The dynamical system (S1) is an example of a mean-field model, since its motion can
be rewritten as:

ẋi(t) = X [µn(t)](xi) , µn(t) ≜
1

n

n∑
j=1

δxj(t) , X [µ](x) ≜ −
∫
T
f(x− y)µ(dy) ,

where µn(t) denotes the empirical measure (distribution) of the particles and X [µ] is the
measure-dependent vector field driving each particle. Since particles are indistinguishable
in mean-field models, it suffices to study the evolution of the empirical measure µn(t),
which satisfies the continuity equation:

µ̇(t) + div(µX [µ]) = 0 . (1)

When µ(0) = µn(0) = 1
n

∑n
j=1 δxj(0), studying (1) is equivalent to studying (S1), but one

can also study solutions of (1) starting from non-discrete measures µ(0).
For the Kuramoto mean-field model, i.e. f(x) = sin(x), [14] showed explicit (exponen-

tial) estimates of speed of convergence to synchronization for the dynamical system (S1)
and, subsequently, [28] extend the exponential convergence to the more general case of
evolution of measures solving continuity equation (1). Both works in fact consider a more
general case of the Kuramoto mean-field model with state space Sd with d ≥ 1.

A recent resurgence of interest in mean-field models on the sphere and torus arose
from a discovery of [17] that with f(x) = fβ(x) ≜ sin(x)eβ cos(x), β ∈ R the resulting
interacting particle system is intimately related to evolution of internal representations
in transformers [34], which are modern neural networks forming the backbone of large
language models (LLMs). When f = fβ, we call (S1) self-attention dynamics, on which
there is a fast growing body of work [29, 15, 21, 16, 11, 16, 6, 2, 7, 8, 9]. Despite
the complexity of practical transformers, the simple model of self-attention dynamics is
remarkably effective at predicting how signals propagate through internal layers. From the
practical point of view, global synchronization is an abstraction of a complex phenomenon
in LLMs known as clustering or oversmoothing, e.g. [13, 30, 12, 23].

The work [17] establishes global synchronization whenever β = O(1/n) or β = Ω(n2)
(in both cases β ≥ 0 is also required) and for all state spaces Sd, d ≥ 1. Shortly af-
terwards, [11] made an important observation that an earlier work of [26] in fact shows
global synchronization for all β ≥ 0 and d ≥ 2. For d = 1, the authors of [11] improved
the argument of [17] and showed synchronization for β ≤ 1. In [21], the results on global
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synchronization are further generalized but under the additional assumption that the
summation defining ẋi in (S1) only extends to j < i, which corresponds to a simple model
of the ubiquitous “decoder-only” LLMs implementing next-token prediction.

Meta-stability. The novel aspect of self-attention dynamics compared to Kuramoto’s
model is the emergence of meta-stability above a certain critical value of β > 0. Specifi-
cally, [17] observed empirically that once β is sufficiently large, then particles initialized
i.i.d. uniformly evolve in two phases: first, they quickly group into ≍

√
β tight clusters

and then over a much slower time-horizon the clusters progressively merge until only
one remains, thus attaining global synchronization. In [16] it is confirmed that local-
ized groups of particles contract exponentially quickly to their common center. Bruno,
Pasqualotto, and Agazzi in [6] showed that after initializing the particles xi(0) i.i.d. from
the uniform measure on the circle, at time t ≍ log n the empirical measure µn(t) de-
velops periodic lumps with high probability. More explicitly, they show that for any
0 < δ ≪ 1, there exists a 2π

k
-periodic probability distribution νper(t), with k ≍

√
β, which

is δ-away from uniform (as measured, for example, by the Wasserstein distance W1) and
W1(µn(t), νper(t)) → 0 in probability as n → ∞ for t = t(n, δ, β) ≍ log n.

In the present work, we show that with probability 1, for any fixed n and β ≥ 0, we
must have that µn(t) → δx∞ as t → ∞. In turn, this implies that although the 2π

k
-periodic

phase is rather long-lived, it will eventually collapse, which implies that it is meta-stable.
Contributions. In addition to (S1), in the context of Transformers a so-called “nor-

malized” version of this dynamics is also important. This generalization of (S1) can be
stated in the following form:

ẋi(t) = − 1

gi(x1(t), . . . , xn(t))

n∑
j=1

f(xi(t) − xj(t)), 1 ≤ i ≤ n, (S2)

where g : Tn → Rn
>0 is some smooth function. In this work, we propose a general criterion

for systems (S1) and (S2) with state-space S1 = T to be globally synchronizing. As an
application, we prove (a) global synchronization for transformers (i.e. f = fβ) for all
β ≥ 0, thus completing the study of this class of interaction functions; (b) initiate the
study of β < 0 and show global synchronization for β ≥ −0.16 and non-synchronization
for β < −2/3. Finally, in Section 6 we extend the criterion to a certain class of non-mean-
field systems.

Organization. Section 2 states all of our results formally. Section 3 contains proof
of the main criterion for stability of system (S1), i.e. Theorem 2.1. Section 4 extends
the results to the normalized system (S2). Section 5 verifies that the general criterion in
Theorem 2.1 applies to Transformer dynamics on the circle (f = fβ for all β > −0.16).
Finally, in Section 6 we further generalize the results to the dynamics where particles are
aggregated with unequal weights.

Acknowledgments. PR is supported by NSF grants DMS-2022448 and
CCF-2106377.
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2 Main results

Given a smooth vector field F : M → TM on a manifold M, a dynamical system solves
the ordinary differential equation (ODE):

ẋ = F(x) .

Point x is called stationary if F(x) = 0, since started from this point the system does not
move: ẋ = 0. If the trajectory of a dynamical system converges, then the limiting point
should necessarily be a stationary point. We call a stationary point x locally unstable if
the Jacobian of F at x has an eigenvalue with positive real part. Note that this implies
that for a small neighborhood U around x, almost all initializations x0 ∈ U result in
trajectories that escape from U .

The dynamical system (S1) that we consider here corresponds to taking M = Tn and
the vector field with i-th component being

F(x)i = X [µn](xi) = −
∫

f(xi − y)dµn(y) .

As we discussed, mean-field models can also be thought of as n exchangeable particles
(each with state space of T) each driven by a time-dependent vector field X [µn(t)] : T →
TT, which is a function of the empirical measure µn, cf. (1).

Theorem 2.1. Consider the mean-field model (S1) on T. Let τ ∈ (0, π] satisfy f ′(x) < 0
for all x ̸∈ [−τ, τ ]. If

τ

∫ π

−π

|f ′′′(x)|+dx ≤ 4
(

1 +
τ

2π

)
f ′(0),

then every stationary point (x1, . . . , xn) of the system (S1) on Tn is either locally unstable
or synchronized (i.e. x1 = · · · = xn).

This characterization constitutes the main result of our work. However, to establish
global synchronization in systems (S1) and (S2), we require two additional (though now
standard) ingredients:  Lojasiewicz’s theorem and the center-stable manifold theorem.

2.1 Gradient ascent dynamics

The first obstacle to synchronization could be the emergence of limit cycles. It turns
out, however, that Transformer dynamics is special since it can be written as a gradient
ascent for a certain energy function E(x), see [17, (3.5)] and (3) below. Consequently, as
explained in [17, Appendix A] (also [18, Corollary 5.1]), classical  Lojasiewicz’s theorem [25]
guarantees that as long as E is real analytic, the gradient ascent dynamics ẋ = ∇ME(x)
over a compact Riemannian manifold must converge to some stationary point x∞. (We
denote ∇M the Riemannian gradient on a manifold, see [5] for details.)

The next issue is that even for f = fβ, the system (S1) has many stationary points
other than the synchronized ones (for example, when the particles are placed at the
vertices of a regular n-gon). While Theorem 2.1 ascertains those must be locally unstable,
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we still need to rule out existence of those serendipitous initial conditions that would lead
to those limiting configurations. This is the content of another classical ingredient: the
center-stable manifold theorem, which indeed shows that the limiting stationary point is
almost always a stable one [31, Theorem III.7 and Exercise III.3].

Putting these two ideas together, we get the following result that together with Theo-
rem 2.1 ascertain convergence to the synchronized states in fβ dynamics with or without
normalization.

Lemma 2.2 ([17, Lemma A.1]). Let M be a compact Riemannian manifold and let
E : M → R be a smooth function. The set of initial conditions X0 ∈ M for which the
gradient ascent system {

ẋ(t) = ∇ME(x(t)),

x(0) = X0

converges to a critical point of E at which the Hessian of E has a positive eigenvalue is of
volume zero.

With these preparations, we are ready to derive our main global synchronization results
by applying Lemma 2.2 and Theorem 2.1 to systems (S1) with f(x) = h(cos(x)) sin(x).
Indeed, for such systems we can see that dynamics becomes a gradient ascent on the
potential

E(x) =
∑
i,j

ϕ(cos(xi − xj)) , ϕ(t) =

∫ t

0

h(s)ds . (2)

Note that a critical point x is locally unstable if and only if the Hessian at x has positive
eigenvalue since the Hessian is symmetric, thus enabling application of Theorem 2.1. See
Theorem 2.3 shortly, for the full statement.

2.2 Adjusted gradient ascent

It turns out that the method discussed above is applicable not only to systems of the
type (S1), but also to more general systems with particle-dependent normalization factors,
i.e. systems of the type (S2). We need to consider this extension because the the simplified
model of self-attention (see (T2) below) has precisely such form.

Theorem 2.3. Assume that f(x) = sin(x)h(cos(x)), where h is a real-analytic function
on an open set containing [−1, 1] and τ

∫ π

−π
|f ′′′(x)|+dx ≤ 4

(
1 + τ

2π

)
f ′(0), where τ is as

in Theorem 2.1. Then, global synchronization occurs in (S2).

The full proof of this result is given in Section 4 below, but the idea is simple. First,
when f(x) = sin(x)h(cos(x)) and normalization factors gi = 1, then as we have seen in
the previous section we are dealing with a gradient ascent on the potential (2), which thus
must converge (generically) to a locally stable critical point. In the case of gi ̸= 1, we can
follow the idea suggested in [17, Section 3.4 and Remark B.1]: by introducing a non-flat
Riemannian metric on (S1)⊗n we can make sure that the gradient of the same energy (2)
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results in the normalized dynamics (S2). Then, this case also reduces to an application
of Theorem 2.1.

We mention that we further generalize the last result to systems where each parti-
cle contributes to the RHS in (S2) with its own, particle-dependent weight factor. See
Section 6 for more.

2.3 Self-attention dynamics

Next, we discuss an application of the main results to self-attention dynamics. Recall
that the latter [17, (USA)] is defined as

ẋi(t) = −
n∑

j=1

eβ cos(xi(t)−xj(t)) sin(xi(t) − xj(t)), 1 ≤ i ≤ n, (T1)

which corresponds to taking f(x) = fβ(x) = sin(x)eβ cos(x). The global synchronization
conjectured in [17] for all β ≥ 0 was only shown for β ≤ 1 and β ≥ Ω(1/n), cf. [11]. In
this section we resolve the conjecture in full and in fact even extend it to a portion of
β < 0.

Define the number

a(β) = inf{τ : f ′
β(x) < 0 , ∀x ∈ (τ, π], τ ∈ [0, π]} .

Theorem 2.3 implies that whenever

4
1 + a(β)

2π

a(β)
∫ π

−π
|f ′′′(x)|+dx

> 1,

global synchronization occurs. In fact, using specific properties of fβ we can strengthen
the criterion in Theorem slightly, see Corollary 3.3 below, and guarantee global synchro-
nization under the weaker assumption of

4
1 + a(β)

π

a(β)
∫ π

−π
|f ′′′(x)|+dx

> 1 .

The quantity on the left-hand side is termed the synchronization ratio and we numerically
plot it on Fig. 1. As one can see the criterion indeed is verified in the region of β ≥ −0.25.
We formally verify the inequality in a slightly narrower region of β ≥ −0.16 below.

Corollary 2.4. Suppose β ≥ −0.16. Then, global synchronization occurs in (T1).

The dynamics (T1) is a simplification of the actual self-attention dynamics, which is
given by [17, (SA)]:

ẋi(t) = − 1∑n
j=1 e

β cos(xi(t)−xj(t))

n∑
j=1

eβ cos(xi(t)−xj(t)) sin(xi(t) − xj(t)), 1 ≤ i ≤ n. (T2)

As already explained in the previous section (Theorem 2.3), the results about unnor-
malized system can be easily transported to results about the normalized system, which
allows us to conclude with the following:
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Figure 1: The figure plots the synchronization ratio ⟨|f ′′′|+, τ⟩−1
L2

4
(
1 + τ

π

)
f ′(0) from

Corollary 3.3 with f(x) set as sin(x)eβ(cos(x)−1) and M set as π. A ratio greater than
one indicates that we have determined that global synchronization occurs.

Corollary 2.5. Suppose β ≥ −0.16. Then, global synchronization occurs in (T2).

Finally, one might wonder whether global synchronization occurs for even more neg-
ative values of β. We show that this is not the case, thus leaving only the region
β ∈

(
−2

3
,−0.25

)
in uncertain synchronization status.

Corollary 2.6. Suppose β < −2
3
. There exists a constant Cβ such that if n is divisible

by 3 or n ≥ Cβ, then global synchronization does not occur in either (T1) or (T2).

The proofs of all results can be found in Section 5.
We remark that for β > 0 self-attention dynamics (normalized or not) corresponds to

gradient ascent on the potential

E(x) =
1

β

∑
i,j

eβ cos(xi−xj) . (3)

For β < 0, self-attention dynamics is a gradient descent on the potential

E(x) =
1

|β|
∑
i,j

e−|β| cos(xi−xj) .

In either case, the global optimizer is clearly the synchronized configuration. However,
in the latter case local extrema with non-zero volume basin of attraction may emerge for
large |β|.

Finally, we remark that gradient descent on the potential (3) with β > 0 yields a
completely different dynamics, corresponding to taking f(x) = − sin(x)eβ cos(x) in (S1).
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Figure 2: The function fβ (red) and its derivative f ′
β (blue) for β = 2. The parameter

τ = τ(β) is defined as the unique solution to the equation f ′
β(τ) = 0 over [0, π]. For β = 2,

τ ≃ 0.6749.

In this case the particles tend to equi-disperse on the circle. Indeed, the unique global
minimizer of (3) is the n-gon as shown in [10]. At the level of the evolution of measures,
the unique global minimizer of the functions µ 7→

∫ ∫
eβ cos(x−y)µ(dx)µ(dy) can be easily

seen to be the uniform measure (e.g. by noticing that Fourier coefficients of eβ cos(x) are
all positive, cf. [17, Section 7.2]), thus explaining the equidistribution tendency.

3 Proof of Theorem 2.1

Suppose x = (xi)1≤i≤n ∈ Tn. For the system (S1), a point is stationary iff

n∑
j=1

f(xi − xj) = 0, ∀i ∈ [n]. (C1)

In view of Lemma 2.2, we also need a condition for the point x to be stable. In fact,
we only need a weaker condition that is implied by stability, which has been the basis of
proving synchronization in Kuramoto-type dynamics since its introduction in [33, (2.4)].
We say that point x is cut-stable if∑

i∈S, j∈SC

f ′(xi − xj) ≥ 0 (C2)

for all S ⊂ [n] such that the value of xi is the same for all i ∈ S.
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Our proof will show that any stationary point satisfying (C2) must be synchronized. In
other words, we will show that for any non-synchronized stationary point x there exists a
set S defining an “escape direction” for the linearization of the system (S1), corresponding
to moving points in S clockwise and points in Sc counter-clockwise at the same speed.2

We start with a review of the proof from [17] which applies to f(x) = fβ(x) =
eβ cos(x) sin(x), whose derivative f ′

β when β = 2 is shown in Fig. 2, where the crucial
parameter τ from Theorem 2.1 is also shown. If we apply (C2) with S = {1} then we
see that there must be at least one particle, say 2, at distance ≤ τ from 1 (otherwise all
f ′(x1−xj) < 0). We can now apply the argument to S = {1, 2} to find that 3 must be at
distance ≤ τ , etc. Overall, if nτ < π then all particles must be inside one half-circle. But
then if i0 is the boundary particle, then (C1) with i = i0 implies that all xj = xi0 , because
f(xi0−xj) ≥ 0. Unfortunately, this proof only shows synchronization when π > nτ ≍ n√

β
.

Our contribution here is a method that extends to arbitrary large n.
To describe our idea, let us define the vector field acting on particles as

χ(x) =
∑
j

f(x− xj) .

Then from (C1) and (C2) (applied with S = {i}) we know that

χ(xi) = 0, χ′(xi) ≥ f ′(0) .

Consider a pair of adjacent particles xi < xi+1. Because χ(xi) = χ(xi+1), we have from
integration by parts that

χ′(xi) + χ′(xi+1) =

∫ xi+1

xi

χ′′′(x)
(x− xi)(xi+1 − x)

xi+1 − xi

dx .

As we have shown above, all intervals xi+1−xi except possibly 1 are bounded by τ . In the
special case when all of them are bounded by τ we can notice that the factor multiplying
χ′′′(x) is positive and upper-bounded by τ/2. Thus summing over i = 1, . . . , n − 1 we
obtain

2nf ′(0) ≤ 2
∑
i

χ′(xi) =
n−1∑
i=1

∫ xi+1

xi

χ′′′(x)
(x− xi)(xi+1 − x)

(xi+1 − xi)
dx

≤ τ

2

∫
|χ′′′(x)|+dx ≤ nτ

2

∫
|f ′′′|+dx .

This inequality, however, is not possible if (as is the case for f = fβ for large β) we have
τ
∫
|f ′′′|+ < 4f ′(0). Consequently, one of the assumptions must be violated. The full

proof below will show that in fact this contradiction implies that x1 = . . . = xn.
We proceed to the formal proof of Theorem 2.1 and consider x = (x1, . . . , xn) satisfying

conditions (C1) and (C2). Denote the distinct values of the xi as 0 ≤ θ1 < θ2 < · · · <
2Note that when state space is Sd with d > 1, then finding escape directions in mean-field systems

can be done by pulling all particles toward the same direction (subject to spherical constraints), cf. [26]
and [11]. Our method is more involved.
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θK < 2π and let θK+1 = 2π + θ1. For 1 ≤ j ≤ K, we define ∆j = θj+1 − θj, where we set
∆K = 2π + θ1 − θK to account for the periodic boundary. We refer to the ∆j as the gaps.
Furthermore, we let τmax(x) denote the maximum of ∆j for 1 ≤ j ≤ K.

Lemma 3.1. Assume that (C2) is satisfied at (x1, . . . , xn). There do not exist distinct
gaps ω1 and ω2 such that ω1, ω2 > τ .

Proof. The idea is the same as [17, Appendix B]. Suppose that the line ℓ intersects the
interiors of both ω1 and ω2. Let S be the set of i such that xi is on one side of ℓ. Then,
for all i ∈ S and j ∈ SC , we have that xi − xj /∈ (−min(ω1, ω2),min(ω1, ω2)) (mod 2π).
Because min(ω1, ω2) > τ , xi − xj /∈ [−τ, τ ] (mod 2π), which implies that f ′(xi − xj) < 0.
This is a contradiction to (C2). ■

For i ∈ [K], let Ni be the multiplicity of θi, i.e. the number of j ∈ [n] such that
xj = θi. Also, let

⟨f, g⟩L2
≜
∫ π

−π

f(x)g(x)dx .

Lemma 3.2. Suppose (x1, . . . , xn) ∈ Tn is stationary (C1) and cut-stable (C2) for the
system (S1). Furthermore, assume that (x1, . . . , xn) is not synchronized. Then,

⟨1, |f ′′′|+⟩L2
≥ min

(
8

τ
,

4

τ
+

4

τmax(x1, . . . , xn)

)
f ′(0).

Proof. For the sake of contradiction, assume that K > 1. Let

φ(x) =
n∑

j=1

f ′(x− xj).

Then, after using (C2) with S equal to the set of j ∈ [n] such that xj = θi,

φ(θi) = Nif
′(0) +

∑
j∈[n], xj ̸=θi

f ′(θi − xj) ≥ Nif
′(0). (4)

Let

Ψ =
K∑
i=1

1{x ∈ (θi, θi+1)}Ψi,

where Ψi : [θi, θi+1] → R is twice differentiable. Then, for i ∈ [K],

⟨Ψi, φ
′′⟩L2

= Ψiφ
′∣∣θi+1

θi
− ⟨Ψ′

i, φ
′⟩L2

= (Ψiφ
′ − Ψ′

iφ)
∣∣θi+1

θi
+ ⟨Ψ′′

i , φ⟩L2
.

Assume that Ψ′′
i = −ai for a constant ai and Ψi(θi) = Ψi(θi+1) = 0 over [θi, θi+1], or

equivalently that Ψi(x) = ai
2

(x− θi)(θi+1 − x). Then, we have that

⟨Ψi, φ
′′⟩L2

= −Ψ′
i(θi+1)φ(θi+1) + Ψ′

i(θi)φ(θi) − ai ⟨1{(θi, θi+1)}, φ⟩L2
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=
ai
2

∆i(φ(θi) + φ(θi+1)),

since ∫ θi+1

θi

φ(x)dx =
n∑

j=1

f(θi+1 − xj) −
n∑

j=1

f(θi − xj) = 0.

Hence,

⟨Ψ, φ′′⟩L2
=

K∑
i=1

ai
2

∆i(φ(θi) + φ(θi+1)).

In particular, assuming that ai ≥ 0 for all i ∈ [K], using (4) gives that

⟨Ψ, φ′′⟩L2
≥

K∑
i=1

ai
2

∆i(Ni + Ni+1)f
′(0).

Furthermore, since Ψi ∈ [0,
ai∆

2
i

8
], we have that〈

K∑
i=1

ai∆
2
i1{(θi, θi+1)}, |φ′′|+

〉
L2

≥ 4
K∑
i=1

ai∆i(Ni + Ni+1)f
′(0).

Since
∑n

j=1 |f ′′′(x− xj)|+ ≥ |φ′′|+, we have that

n∑
j=1

〈
K∑
i=1

ai∆
2
i1{(θi, θi+1)}, |f ′′′(x− xj)|+

〉
L2

≥ 4
K∑
i=1

ai∆i(Ni + Ni+1)f
′(0),

or equivalently,

n∑
j=1

〈
K∑
i=1

ai∆i1{(θi, θi+1)}, |f ′′′(x− xj)|+

〉
L2

≥ 4
K∑
i=1

ai(Ni + Ni+1)f
′(0). (5)

By Lemma 3.1, we can have that τmax(x1, . . . , xn) is greater than τ , but all other gaps
must be at most τ . For brevity, we use τmax to denote τmax(x1, . . . , xn) in the remainder
of the proof.

In (5), set ai = 1
∆i

to obtain

n∑
j=1

〈
K∑
i=1

1{(θi, θi+1)}, |f ′′′(x− xj)|+

〉
L2

≥ 4
K∑
i=1

Ni + Ni+1

∆i

f ′(0)

⇔ n ⟨1, |f ′′′|+⟩L2
≥ 4

K∑
i=1

Ni + Ni+1

∆i

f ′(0).

Assume that the gap τmax is between θℓ and θℓ+1. Since ∆i ≤ τ for i ∈ [K]\{ℓ},

n ⟨1, |f ′′′|+⟩L2
≥ 4

 ∑
i∈[K]\{ℓ}

Ni + Ni+1

τ
+

Nℓ + Nℓ+1

τmax

 f ′(0)

11



= 4

(
2n

τ
− (Nℓ + Nℓ+1) ·

(
1

τ
− 1

τmax

))
f ′(0).

The result follows after noting that Nℓ + Nℓ+1 ≤ n because K ≥ 2. ■

Corollary 3.3. Let τ ∈ (0, π] be such that f ′(x) < 0 for all x ̸∈ [−τ, τ ]. Assume that M
is a positive real number such that for all stable, stationary, and non-synchronized points
x of (S1), τmax(x) < M . If

τ

∫ π

−π

|f ′′′(x)|+dx ≤ 4
(

1 +
τ

M

)
f ′(0),

then every stable stationary point (x1, . . . , xn) of system (S1) on Tn is synchronized, i.e.
x1 = · · · = xn.

Note that Corollary 3.3 is more general than Theorem 2.1 since M = 2π is always a
valid choice.

Proof. From Lemma 3.2, if x = (x1, . . . , xn) is not synchronized, then

⟨1, |f ′′′|+⟩L2
≥ min

(
8

τ
,

4

τ
+

4

τmax(x)

)
f ′(0) > 4

(
1

τ
+

1

M

)
f ′(0)

because τmax(x) < M , which is a contradiction. ■

Remark 3.4. In many cases, such as the Kuramoto model and self-attention dynamics,
it is straightforward to show that τmax(x) < π for x to be stable, stationary, and non-
synchronized, which leads to an improvement upon Theorem 2.1 by setting M = π in
Corollary 3.3. For examples of such results, see [17, Lemma 6.4] and [11, Lemma 10].

Corollary 3.5. Assume that f ′(0) ≥ 0 and τ ⟨1, |f ′′′|+⟩L2
≤ 4

(
1 + τ

2π

)
f ′(0). Suppose

a, b ∈ R satisfy ab ≥ 0 and a and b are not both zero. Assume that

n∑
j=1

af(xi − xj) − bf(xj − xi) = 0, ∀i ∈ [n] (6)

and (C2) are satisfied at (x1, . . . , xn). Then, xi = xj for all i, j ∈ [n].

Proof. Let g(x) = |a|f(x) − |b|f(−x). Then, g′(x) = |a|f ′(x) + |b|f ′(−x) and g′′′(x) =
|a|f ′′′(x)+|b|f ′′′(−x). We have that g satisfies (C1) and (C2) at (x1, . . . , xn). Furthermore,
g′(0) = (|a| + |b|)f ′(0) ≥ 0 and |g′′′(x)|+ ≤ |a||f ′′′(x)|+ + |b||f ′′′(−x)|+ so τ ⟨1, |g′′′|+⟩L2

≤
τ(|a| + |b|) ⟨1, |f ′′′|+⟩L2

≤ 4
(
1 + τ

2π

)
g′(0). The result follows from Theorem 2.1. ■
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4 Gradient ascent systems

The goal of this section is to prove Theorem 2.3, which characterizes the asymptotic
behavior of (adjusted) mean-field gradient ascent systems. Following the statement of
the theorem, assume that f(x) = sin(x)h(cos(x)) for some real-analytic function h on an
open set containing [−1, 1]; recall that g : (S1)n → R>0 is smooth.

As explained in Lemma 2.2, gradient ascent almost always converges to a stationary
point. The key idea of the proof is to use Lemma 2.2 to argue that the stationary
point almost always has negative semi-definite Hessian and then apply Theorem 2.1 to
characterize the stationary point as being synchronized. As part of the proof, we show
that a stationary point with negative semi-definite Hessian satisfies conditions (C1) and
(C2) so that we can apply Theorem 2.1.

We rewrite (S2) in terms of points on the manifold (S1)n. Note that this is the setting
that [17, 16] originally consider. For i ∈ [n] and t ≥ 0, let

pi(t) = (cos(xi(t)), sin(xi(t))) ∈ S1.

For a point pi ∈ S1 let us introduce p⊥i to be (the unique) positively oriented unit vector
in the tangent space at pi. Let us denote by Pp⊥i

(·) the linear operator orthogonally

projecting R2 onto the span of p⊥i . With this notation we can rewrite (S2) as

ṗi(t) =
1

gi(p(t))

n∑
j=1

h(⟨pi(t), pj(t)⟩)Ppi(t)⊥(pj(t))∀i ∈ [n], (S2’)

where p(t) = (p1(t), . . . , pn(t)) ∈ (S1)n for t ≥ 0. To see the equivalence, note that
Ppi(t)⊥pj(t) = − sin(xi(t) − xj(t))pi(t)

⊥ and ⟨pi(t), pj(t)⟩ = cos(xi(t) − xj(t)).
Next, we rewrite (S2’) as the gradient of a function over a Riemannian manifold.

Suppose φ(x) =
∫ x

0
h(x)dx, which is also an analytic function. Let

E(x1, . . . , xn) =
1

2

n∑
i,j=1

φ(⟨xi, xj⟩).

In order to describe the system as gradient ascent, we construct a Riemannian manifold
such that the gradient computed with respect to its metric is the dynamics of (S2’). We
follow the ideas of [17, Section 3.4] to state and prove the following lemma.

Lemma 4.1. Suppose the Riemannian manifold M over (S1)n has positive-definite inner
product ⟨(a1, . . . , an), (b1, . . . , bn)⟩P =

∑n
i=1 αi(P )aibi at P = (p1, . . . , pn) ∈ (S1)n. Then,

(∇M)iE(P ) =
1

αi(P )

n∑
j=1

h(⟨pi, pj⟩)Pp⊥i
(pj)∀i ∈ [n].

Proof. Let Y be a vector field over (S1)n with gradient flow Φt
Y . Furthermore, suppose

the vector field B satisfies

Bi(P ) =
1

αi(P )

n∑
j=1

h(⟨pi, pj⟩)PP⊥
i

(Pj)
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for i ∈ [n]. Then, it suffices to prove that

d

dt

∣∣∣∣
t=0

E(Φt
Y (P )) = ⟨Y (P ), B(P )⟩P .

By considering a linear basis over TP (S1)n, we only need to show this holds when
Y (P ) = (Ap1, 0, . . . , 0) for a non-zero skew symmetric A. In this case, Φt

Y (P ) = (eAtp1, p2,
. . . , pn), so

E(Φt
Y (P )) =

∑
j ̸=1

φ(
〈
eAtp1, pj

〉
) +

1

2
φ(
〈
eAtp1, e

Atp1
〉
) + C,

where C does not depend on t. Thus,

d

dt
E(Φt

Y (P )) =
∑
j ̸=1

h(
〈
eAtp1, pj

〉
)
〈
AeAtp1, pj

〉
+ h(

〈
eAtp1, e

Atp1
〉
)
〈
AeAtp1, p1

〉
⇒ d

dt

∣∣∣∣
t=0

E(Φt
Y (P )) =

n∑
j=1

h(⟨p1, pj⟩) ⟨Ap1, pj⟩ .

It suffices to prove that

n∑
j=1

h(⟨p1, pj⟩) ⟨Ap1, pj⟩ = ⟨Y (P ), B(P )⟩P =

〈
Ap1,

n∑
j=1

h(⟨p1, pj⟩)Pp⊥1
(pj)

〉
.

Hence, it suffices to prove that for all v ∈ S1,

⟨Ap1, v⟩ =
〈
Ap1, Pp⊥1

(v)
〉

= ⟨Ap1, v − ⟨v, p1⟩ p1⟩ ,

which would be implied by ⟨Ap1, p1⟩ = 0. Observe that ⟨Ap1, p1⟩ = p⊤1 Ap1, which equals
0 because A is skew-symmetric. ■

Lemma 2.2 implies the almost always convergence to a critical point of E with a
negative semidefinite Hessian. However, as explained in [17, Remark B.1], when analyzing
whether the Hessian is negative semidefinite at a critical point, any two metrics are
equivalent. We state this classical idea in the following lemma, and afterwards, we use it
to prove the main result.

Lemma 4.2. Suppose R1 = ((Sd−1)n, g1) and R2 = ((Sd−1)n, g2) are Riemannian mani-
folds. Let P be a critical point of the analytic function γ : (Sd−1)n → R. For 1 ≤ i ≤ 2,
let Hi be the Hessian of γ at P with respect to Ri. Suppose v ∈ TP ((Sd−1)n). Then,
⟨H1v, v⟩R1 > 0 ⇔ ⟨H2v, v⟩R2 > 0.

Remark 4.3. The set of critical points for both metrics are the same. We abuse notation
and assume that Hi is a matrix expressing the Hessian in terms of an orthonormal basis
for the metric Ri at P , and thus write v⊤Hiv instead of ⟨Hiv, v⟩Ri

, implying that v ∈ TP

is itself expressed as a column vector in the orthonormal basis with respect to Ri at P .
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Proof of Theorem 2.3. For this proof, we are working in the setting of points on (S1)n

that we have introduced in this section. Let R be the Riemannian manifold over (S1)n

with positive-definite inner product ⟨(a1, . . . , an), (b1, . . . , bn)⟩P =
∑n

i=1 gi(P )aibi at P .
Then, from Lemma 4.1 with αi = gi for all i ∈ [n],

ṗ(t) = ∇RE(p(t))

in (S2’). Applying Lemma 2.2 gives that we have almost-sure convergence to a critical
point P = (p1, . . . , pn) with negative semi-definite Hessian. Then, if H is the Hessian of
E at P with respect to R and expressed in terms of an orthonormal basis for the metric
⟨·, ·⟩P , we assume that there does not exist v ∈ TP ((S1)n) such that v⊤Hv > 0.

First, observe that for all i ∈ [n],

n∑
j=1

h(⟨pi, pj⟩)Pp⊥i
(pj) = 0

by the definition of a critical point of (S2’), which can in turn be rewritten as
∑

j h(cos(xi−
xj)) sin(xj − xi) =

∑
j f(xj − xi) = 0, thus verifying condition (C1).

Let S be the Riemannian manifold over (S1)n with the standard inner product. Let
HS be the Hessian of E at P with respect to S and expressed in terms of the standard
orthonormal basis. By applying Lemma 4.2 with the Riemannian manifolds R and S and
the function E as γ, because there does not exist v ∈ TP (S1)n) such that v⊤Hv > 0, there
does not exist v ∈ TP ((S1)n) such that v⊤HSv > 0.

The next step is to show that P , when written as an element of Tn, is cut-stable,
cf. (C2), so that we can apply Theorem 2.1. For this purpose, we follow the method of
[17, Appendix A].

For t ≥ 0, define
p(t) = [eciBtpi]i∈[n],

where B =

(
0 −1
1 0

)
is skew-symmetric. First, observe that

E(p(t)) =
∑

i,j∈[n],i ̸=j

φ(
〈
eciBtpi, e

cjBtpj
〉
) + C,

where C does not depend on t.
Suppose we let v = d

dt

∣∣
t=0

p(t). Observe that vi = ciBpi for all i ∈ [n], so v ∈ TP ((S1)n).
Then,

d2

dt2

∣∣∣
t=0

E(p(t)) = v⊤HSv ≤ 0. (7)

Next, where h(x) = d
dx
φ(x),

d

dt
E(p(t)) =

∑
i,j∈[n],i ̸=j

h(
〈
eciBtpi, e

cjBtpj
〉
)
(〈
ciBeciBtpi, e

cjBtpj
〉

+
〈
eciBtpi, cjBecjBtpj

〉)
.
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Furthermore,

d2

dt2
E(p(t)) =

∑
i,j∈[n],i ̸=j[

h′(
〈
eciBtpi, e

cjBtpj)
〉
)
(〈
ciBeciBtpi, e

cjBtpj
〉

+
〈
eciBtpi, cjBecjBtpj

〉)2
+ h(

〈
eciBtpi, e

cjBtpj)
〉
) ×

(〈
c2iB

2eciBtpi, e
cjBtpj

〉
+
〈
ciBeciBtpi, cjBecjBtpj

〉
+
〈
eciBtpi, c

2
jB

2ecjBtpj
〉)]

For 1 ≤ i ≤ n, let xi be the unique element of T such that pi = (cos(xi), sin(xi)).
Because B2 = −I2, ⟨B2pi, pj⟩ = − cos(xi − xj). Since B is the rotation by 90◦ matrix,
⟨Bpi, pj⟩ = cos(xi + 90 − xj) = sin(xj − xi). Thus,

d2

dt2

∣∣∣∣
t=0

E(p(t))

=
∑

i,j∈[n],i ̸=j

(ci − cj)
2(− cos(xi − xj)h(cos(xi − xj)) + sin(xi − xj)

2h′(cos(xi − xj))).

Since d2

dt2

∣∣
t=0

E(p(t)) ≤ 0 by (7),∑
i,j∈[n],i ̸=j

(ci − cj)
2(cos(xi − xj)h(cos(xi − xj)) − sin(xi − xj)

2h′(cos(xi − xj))) ≥ 0.

Observe that because f(x) = sin(x)h(cos(x)), f ′(x) = cos(x)h(cos(x))−sin(x)2h′(cos(x)).
Therefore, ∑

i,j∈[n]

(ci − cj)
2f ′(xi − xj) ≥ 0,

so (C2) is satisfied by setting ci = 1{i ∈ S} for S ⊂ [n]. Then, by Theorem 2.1, the xi

are synchronized, which finishes the proof. ■

Remark 4.4. Observe that we have shown that if the critical point P has negative semi-
definite Hessian, then ∑

i,j∈[n]

(ci − cj)
2f ′(xi − xj) ≥ 0

for all ci, cj ∈ R. This result is well-known, but we include the computations for com-
pleteness. The other direction is true as well, since for any v ∈ TP ((S1)n), we have that
vi = ciBpi for some ci ∈ R for all i ∈ [n].
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5 Application to self-attention dynamics

In this section, we prove Corollary 2.4, Corollary 2.5 and Corollary 2.6.

Proof of Corollary 2.4. For β ≥ 0, system (T1) is equivalent to (S1) with f(x) = sin(x)
eβ(cos(x)−1) and g = 1. By Theorem 2.3, it suffices to show that τ ⟨1, |f ′′′|+⟩ < 4f ′(0). We
prove this by considering cases for β.

First, observe that

f ′(x) = (cos(x) − β sin(x)2)eβ(cos(x)−1),

f ′′(x) = (− sin(x) − 3β sin(x) cos(x) + β2 sin(x)3)eβ(cos(x)−1),

f ′′′(x) = −(cos(x) + 3β cos(x)2 − 4β sin(x)2 − 6β2 cos(x) sin(x)2 + β3 sin(x)4)eβ(cos(x)−1).

We reference these expressions later. Furthermore, it is clear that we can set

τ = arccos

(√
1 + 4β2 − 1

2β

)
.

Case of β > 1
3
. The positive regions of f ′′′ over (−π, π] are (−a,−b)∪ (b, a) for some

a, b such that 0 < a < b < π, see Lemma A.1. Since f ′′′ is even, it suffices to prove that

⟨τ,1{(−a,−b) ∪ (b, a)}f ′′′⟩ < 4 ⇔ τ(f ′′(a) − f ′′(b)) < 2,

which follows from Lemma A.4, Lemma A.5, Lemma A.6, and Lemma A.7.

Case of 0 < β ≤ 1
3
. The positive region of f ′′′ over [0, 2π) is (a, 2π − a) for some

a ∈ (0, π
2
), see Lemma B.1. Then, it suffices to prove that

⟨τ,1{(a, 2π − a)}f ′′′⟩ < 4 ⇔ τf ′′(a) > −2,

which is proved in Lemma B.4.

Case of β = 0. This corresponds to the Kuramoto model. In this case, f ′(x) = cos(x)
and τ = π

2
, because if x ∈ (π

2
, 3π

2
) then f ′(x) is negative. Then, f ′′(x) = − sin(x)

and f ′′′(x) = − cos(x) has positive region (π
2
, 3π

2
) in [0, 2π). Using the notation for the

β ∈ (0, 1
3
] case, a = π

2
and it suffices to prove that τf ′′(a) > −2, which is true because

τf ′′(a) = −π
2
> −2.

Case of −0.16 ≤ β < 0. From Lemma C.4, we may set M = π in Corollary 3.3.
Afterwards, we prove that global synchronization occurs in (T1) by applying Corollary 3.3
with M = π and gi = 1 for all i. By setting gi(x1, . . . , xn) =

∑n
j=1 e

β cos(xi−xj), we also
show that global synchronization occurs in (T2).

By Corollary 3.3, it suffices to prove that τ ⟨1, |f ′′′|+⟩ ≤ 4
(
1 + τ

π

)
. The positive region

of f ′′′ over (−π, π] is (a, 2π − a) for some a ∈ (π
2
, π), see Lemma C.1. Since f ′′′ is even, it

suffices to prove that

⟨τ,1{(a, 2π − a)}f ′′′⟩ ≤ 4
(

1 +
τ

π

)
⇔ τf ′′(a) ≥ 2

(
1 +

τ

π

)
,

which follows from Lemma C.5. ■
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Proof of Corollary 2.5. This follows from the same argument as the proof of Corollary 2.4
but with gi(x1, . . . , xn) =

∑n
j=1 e

β cos(xi−xj) for i ∈ [n] in (S2), which is a smooth function.
■

Proof of Corollary 2.6. From Lemma C.6, if β < −2
3

and n is divisible by three or n is
sufficiently large, then there exists a stable nonsynchronized stationary point. At this
point, the Hessian has one zero eigenvalue which corresponds to translating each point
by the same displacement and its other eigenvalues are negative. This implies that global
synchronization does not occur. ■

6 Generalized system

One of the extensions following Kuramoto’s work was introduced by [33] in the following
form:

ẋi(t) = −
n∑

j=1

ai,jf(xi(t) − xj(t)),∀i ∈ [n], (8)

where A = (ai,j)1≤i,j≤n ∈ Rn×n is a weight matrix and f : T → R is an interaction
function. Taylor [33] showed synchronization result for f(x) = sin(x) and A being an
adjacency matrix of an (undirected) graph with each vertex having degree ≥ 0.94n. Sub-
sequent works eventually improved the lower bound on degree to 0.75n [22], while also
showing graphs with each vertex of degree ≥ 0.6838n, which do not synchronize [37].
It is conjectured that there exists graphs with min-degree approaching 0.75n which do
not synchronize. Furthermore, expander graphs have been utilized to show that generat-
ing A using a random process of adding edges leads to global synchronization once A is
connected [1, 20].

In this section, we will extend our criterion to the special case of rank-1 matrices A.
Initially, we will only consider the following version:

ẋi(t) = −
n∑

j=1

cjf(xi(t) − xj(t)),∀i ∈ [n], (S3)

where cj > 0 for 1 ≤ j ≤ n. This system generalizes (S1) by allowing different weights
for each particle. We now state the analogous stationarity and cut-stability conditions.

Suppose x = (xi)1≤i≤n ∈ Tn. For the system (S3) a point is stationary iff

n∑
j=1

cjf(xi − xj) = 0, ∀i ∈ [n]. (C3)

We say that point x is cut-stable if∑
i∈S, j∈SC

cjf
′(xi − xj) ≥ 0 (C4)
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for all S ⊂ [n] such that the value of xi is the same for all i ∈ S.
We state the following result, which generalizes Corollary 3.3. Note that Theorem 2.1

is an implication of this corollary.

Theorem 6.1. Assume that M is a positive real number such that for all stable, station-
ary, and non-synchronized points x of (S3), τmax(x) < M . If

τ

∫ π

−π

|f ′′′(x)|+dx ≤ 4
(

1 +
τ

M

)
f ′(0),

then every stationary and stable point (x1, . . . , xn) of system (S3) on Tn is synchronized,
i.e. x1 = · · · = xn, where τ is as in Theorem 2.1.

Proof. The same proof of Theorem 2.1 in Section 3 can be used, except with Ψ(x) ≜∑n
j=1 cjf

′(x − xj) and Wi ≜
∑

j∈[n]:xj=θi
cj replacing Ni. Similarly, we only require (C4)

for the proof. ■

It is not immediately clear that global synchronization occurs in this setting, since we
no longer have an obvious gradient ascent structure. First, we normalize (S3).

Assume that g : Tn → Rn
>0 is smooth. Then, we can normalize the system as

ẋi(t) = − 1

gi(x1(t), . . . , xn(t))

n∑
j=1

cjf(xi(t) − xj(t)), 1 ≤ i ≤ n, (S4)

which allows us to state the following result, which generalizes Theorem 2.3 and is stated
in the format of Corollary 3.3.

Theorem 6.2. Assume that f(x) = sin(x)h(cos(x)), where h is a real-analytic function
on an open set containing [−1, 1]. Assume that M is a positive real number such that for
all stable, stationary, and non-synchronized points x of (S4), τmax(x) < M . Furthermore,
assume that τ ⟨1, |f ′′′|+⟩ ≤ 4

(
1 + τ

M

)
f ′(0), where τ is as in Theorem 2.1. Then, global

synchronization occurs in (S2).

Similarly to the approach of Section 4, we express the dynamical system in terms of
points on (S1)n. For i ∈ [n] and t ≥ 0, we let pi(t) = (cos(xi(t)), sin(xi(t))) to obtain the
equivalent dynamical system

ṗi(t) =
1

gi(p(t))

n∑
j=1

cjh(⟨pi(t), pj(t)⟩)Ppi(t)⊥(pj(t))∀i ∈ [n], (S4’)

where p(t) = (p1(t), . . . , pn(t)) ∈ (S1)n for t ≥ 0.
Suppose φ(x) =

∫ x

0
h(x)dx and let

Ew(x1, . . . , xn) =
1

2

n∑
i,j=1

cicjφ(⟨xi, xj⟩).

Note that this energy function is also considered in [11]. The idea is that the ci correspond
to the weights of the particles. We have the following generalization of Lemma 4.1. The
result can be proved using the same approach.
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Lemma 6.3. Suppose the Riemannian manifold M over (S1)n has positive-definite inner
product ⟨(a1, . . . , an), (b1, . . . , bn)⟩P =

∑n
i=1 αi(P )aibi at P = (p1, . . . , pn) ∈ (S1)n. Then,

(∇M)iEw(P ) =
1

αi(P )

n∑
j=1

cicjh(⟨pi, pj⟩)Pp⊥i
(pj)∀i ∈ [n].

Proof of Theorem 6.2. The same proof as the proof of Theorem 2.3 can be used. The only
differences are as follows. The Riemannian manifold R over (S1)n has positive-definite in-
ner product ⟨(a1, . . . , an), (b1, . . . , bn)⟩P =

∑n
i=1 cigi(P )aibi at P . Of course, (S4’) replaces

(S2’), and we implement the remaining analogous replacements; for example, we replace
(C1) and (C2) with (C3) and (C4), respectively, as well as Theorem 2.1 with Theorem 6.1.

When verifying that (C4) is true, the final expression we obtain is that for S ⊂ [n]
such that the xi are all equal to θ for i ∈ S,

∑
i∈S,j /∈S

cicjf
′(xi − xj) ≥ 0 ⇔

(∑
i∈S

ci

)∑
j /∈S

cjf
′(θ − xj) ≥ 0.

Note that (C4) is clearly true when S is empty. If S is nonempty, since the ci are positive
we have that

∑
j /∈S cjf

′(θ − xj) ≥ 0, so (C4) holds. ■

An important implication of Theorem 6.2 is the following result, which allows the
setting of A as w1w

⊤
2 in (8) while still having global synchronization.

Corollary 6.4. Assume that f satisfies the conditions of Theorem 6.2, where (S4) is
replaced by the system

ẋi(t) = −
n∑

j=1

w1iw2jf(xi(t) − xj(t)), 1 ≤ i ≤ n,

where w1i, w2i > 0 for 1 ≤ i ≤ n are fixed. Then, global synchronization occurs in this
system.

Proof. This follows from Theorem 6.2 with gi = w−1
1i and ci = w2i for 1 ≤ i ≤ n. ■
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A Results for β > 1
3

In this subsection, f(x) = sin(x)eβ(cos(x)−1).

Lemma A.1. Suppose β > 1
3
. There exists 0 < b < a < π such that the positive region

of f ′′′(x) is (−a,−b) ⊔ (b, a).

Proof. Let

p(z) = −(z + 3βz2 − 4β(1 − z2) − 6β2z(1 − z2) + β3(1 − z2)2).

Observe that
f ′′′(x) = p(cos(x))eβ(cos(x)−1),

so it suffices to analyze the positive regions of p over [−1, 1]. First, observe that

p(1) = −1 − 3β < 0, p(1 − 0.3

β
) = 1.688 − 0.1761β−1 + 0.24β > 0,

p(−1) = 1 − 3β < 0, p(−1 − 2

β
) = 5β + 6β−1 + 13 > 0.

23



Since p(−1) < 0 and p(−1 − 2
β
) > 0, p has two roots less than −1. Furthermore, since

p(1) < 0, p(1 − 0.3
β

) > 0, and p(−1) < 0, p has two roots in [−1, 1], and p is positive
between these two roots. This finishes the proof. ■

Lemma A.2.
√
x arccos(

√
1+4x2−1

2x
) is strictly increasing over (0,∞).

Proof. We compute that

d

dx

√
x arccos(

√
1 + 4x2 − 1

2x
) =

arccos(
√
1+4x2−1

2x
) −

√√
1+4x2−1√
2x2+ 1

2

2
√
x

.

Therefore, it suffices to prove that

arccos(

√
1 + 4x2 − 1

2x
) >

√√
1 + 4x2 − 1√
2x2 + 1

2

⇔
√

1 + 4x2 − 1

2x
< cos(

√√
1 + 4x2 − 1√
2x2 + 1

2

).

Observe that using cos(z) ≥ 1 − z2

2
over (0, π) yields

cos(

√√
1 + 4x2 − 1√
2x2 + 1

2

) ≥ 1 −
√

1 + 4x2 − 1

1 + 4x2
.

Then, it suffices to prove that

√
1 + 4x2 − 1

2x
< 1 −

√
1 + 4x2 − 1

1 + 4x2

⇔
√

1 + 4x2(
1

2x
+

1

1 + 4x2
) < 1 +

1

1 + 4x2
+

1

2x

⇔
√

1 + 4x2(1 + 2x + 4x2) < (1 + 4x2)2x + 1 + 2x + 4x2

⇔(
√

1 + 4x2 − 1)(1 + 2x + 4x2) < (1 + 4x2)2x

⇔2x(1 + 2x + 4x2) < (1 +
√

1 + 4x2)(1 + 4x2),

which is straightforward to verify. ■

The following corollary also appears in [21, Lemma 4].

Corollary A.3. arccos(
√
1+4x2−1

2x
) < 1√

x
over (0,∞).

Proof. This follows from Lemma A.2 and limx→∞
√
x arccos(

√
1+4x2−1

2x
) = 1. ■

Lemma A.4. If β ≥ 1 then τ(f ′′(a) − f ′′(b)) < 2.
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Proof. Let w = 1 − cos(x) and assume that x ∈ [0, π] so that sin(x) ≥ 0. Then,

f ′′(x) =
√

2w − w2(−1 − 3β(1 − w) + β2(2w − w2))e−βw

=
√

2w − w2(β(−3 + 2βw) + (−1 + 3βw − β2w2))e−βw.

Let z = βw. Hence,

f ′′(x) =
√
β
√
z

√
2 − z

β
(−3 + 2z +

1

β
(−1 + 3z − z2))e−z.

Let

gβ(z) =
√
z

√
2 − z

β
(−3 + 2z +

1

β
(−1 + 3z − z2))e−z

where z ∈ [0, 2β]. Note that f ′′(x) =
√
βgβ(β − β cos(x)) so

f ′′′(x) = β
√
β sin(x)g′β(β − β cos(x))

Since x ∈ [0, π] and the positive region of f ′′′ in [0, π] is (b, a), the positive region of g′β
is (β(1 − cos(b)), β(1 − cos(a))). Particularly, f ′′(a)−f ′′(b)√

β
= gβ(β(1 − cos(a))) − gβ(β(1 −

cos(b))).
First, observe that g′β(0.18) < 0 and g′β(1.4) > 0 for all β ≥ 1. Therefore, because the

positive region is continuous, we always have that

0.18 < β(1 − cos(b)) < 1.4 < β(1 − cos(a)).

Moreover, gβ(β(1−cos(a))) > 0 > gβ(β(1−cos(b))); this is because gβ(0) = 0, gβ(0.1) < 0,
and gβ(1.9) > 0, so gβ first decreases to a negative value and then increases to a positive
value.

Let
g1(z) =

√
2z(−3 + 2z)e−z, g2(z) =

√
2z(−1 + 3z − z2)e−z.

Then, gβ is similar to a linear combination of g1 and g2, with

gβ(z) =

√
2 − z

β
√

2
(g1(z) +

1

β
g2(z)).

For the following computations, we utilize properties of g1 and g2 which are straightfor-
ward to verify.

Because 0.18 < β(1 − cos(b)) < 1.4, the value of
√

2 − z
β
g2(z) at z = β(1 − cos(b)) is

at least √
2 − 0.18

β
g2(0.18) > −0.247

√
2 − 0.18

β
.

Furthermore, the value of
√

2 − z
β
g1(z) at z = β(1 − cos(b)) is at least

−1.381

√
2 − 0.18

β
,
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since g1 > −1.381. Therefore, the value of gβ at z = β(1 − cos(b)) is greater than

−0.247

√
2 − 0.18

β
√

2β
− 1.381

√
2 − 0.18

β
√

2
. (9)

Since β(1 − cos(a)) > 1.4, the value of
√

2 − z
β
g2(z) at z = β(1 − cos(a)) is at most

√
2 − 1.4

β
g2(1.4) < 0.512

√
2 − 1.4

β
.

Furthermore, the value of
√

2 − z
β
g1(z) at z = β(1 − cos(a)) is at most

0.375

√
2 − 1.5

β
,

since g1 ≤ 0 for z ≤ 1.5 and g1 < 0.375. Therefore, the value of gβ at z = β(1 − cos(a))
is less than

0.512

√
2 − 1.4

β
√

2β
+ 0.375

√
2 − 1.5

β
√

2
.

Using this inequality and (9) gives that

gβ(β(1 − cos(a))) − gβ(β(1 − cos(b))) <

0.512

√
2 − 1.4

β
√

2β
+ 0.375

√
2 − 1.5

β
√

2
+ 0.247

√
2 − 0.18

β
√

2β
+ 1.381

√
2 − 0.18

β
√

2
.

Let

φ(β) = 0.512

√
2 − 1.4

β
√

2β
+ 0.375

√
2 − 1.5

β
√

2
+ 0.247

√
2 − 0.18

β
√

2β
+ 1.381

√
2 − 0.18

β
√

2

for β ≥ 1, so that gβ(β(1 − cos(a))) − gβ(β(1 − cos(b))) < φ(β).
If β ≥ 2 then φ(β) < 2, so

τ(f ′′(a) − f ′′(b)) =
√

βτ(gβ(β(1 − cos(a))) − gβ(β(1 − cos(b)))) <
√

βτφ(β) < 2
√

βτ.

Since
√
βτ < 1 by Corollary A.3, τ(f ′′(a) − f ′′(b)) < 2.

Assume that β ∈ [1, 2). Then, from Lemma A.2,
√
βτ <

√
2τ(2) < 0.96, so τ(f ′′(a) −

f ′′(b)) < 0.96φ(β) < 2. ■

Lemma A.5. Suppose β ∈ [0.75, 1). Then, τ(f ′′(a) − f ′′(b)) < 2.
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Proof. Observe that g′β(0.165) < 0 and g′β(1.24) > 0 for β ∈ [0.75, 1). Thus,

0.165 < β(1 − cos(b)) < 1.24 < β(1 − cos(a)).

Similarly, gβ(β(1 − cos(a))) > 0 > gβ(β(1 − cos(b))), because gβ(0) = 0, gβ(0.1) < 0,
gβ(1.4) > 0. Therefore,

gβ(β(1 − cos(a))) − gβ(β(1 − cos(b))) <

0.54

√
2 − 1.24

β
√

2β
+ 0.375

√
2 − 1.5

β
√

2
+ 0.26

√
2 − 0.165

β
√

2β
+ 1.381

√
2 − 0.165

β
√

2
=: φ(β)

over [0.75, 1). Using Lemma A.2,
√
βτ < τ(1) < 0.91, so τ(f ′′(a) − f ′′(b)) < 0.91φ(β) <

2. ■

Lemma A.6. Suppose β ∈ [0.5, 0.75). Then, τ(f ′′(a) − f ′′(b)) < 2.

Proof. Observe that g′β(0.14) < 0 and g′β(0.9) > 0 for β ∈ [0.5, 0.75). Thus,

0.14 < β(1 − cos(b)) < 0.9 < β(1 − cos(a)).

Similarly, gβ(β(1 − cos(a))) > 0 > gβ(β(1 − cos(b))), because gβ(0) = 0, gβ(0.1) < 0,
gβ(0.99) > 0. Therefore,

gβ(β(1 − cos(a))) − gβ(β(1 − cos(b))) <

0.542

√
2 − 0.9

β
√

2β
+ 0.28

√
2 − 0.14

β
√

2β
+ 1.381

√
2 − 0.14

β
√

2
=: φ(β)

over [0.5, 0.75); observe that we have removed the term 0.375

√
2− 1.5

β√
2

for g1, since g1 is al-

ways non-positive when β ≤ 0.75 and z ≤ 2β. Using Lemma A.2,
√
βτ <

√
0.75τ(

√
0.75) <

0.88, so τ(f ′′(a) − f ′′(b)) < 0.88φ(β) < 2. ■

Lemma A.7. Suppose β ∈ (1
3
, 0.5). Then, τ(f ′′(a) − f ′′(b)) < 2.

Proof. Observe that g′β(0.121) < 0 and g′β(2
3
) > 0 for β ∈ (1

3
, 0.5). Thus,

0.12 < β(1 − cos(b)) <
2

3
< β(1 − cos(a)).

Similarly, gβ(β(1 − cos(a))) > 0 > gβ(β(1 − cos(b))), because gβ(0) = 0, gβ(0.1) < 0,
gβ(2

3
) > 0.

Since z ≤ 2β < 1, the maximal positive value of g2 is less than g2(1) < 0.521.
Therefore,

gβ(β(1 − cos(a))) − gβ(β(1 − cos(b))) <

0.521

√
2 − 2/3

β√
2β

+ 0.285

√
2 − 0.121

β
√

2β
+ 1.381

√
2 − 0.121

β
√

2
=: φ(β)

over (1
3
, 0.5); similarly, we have removed the positive term for g1. Using Lemma A.2,√

βτ <
√

0.5τ(0.5) < 0.809, so τ(f ′′(a) − f ′′(b)) < 0.809φ(β) < 2. ■
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B Results for 0 < β ≤ 1
3

In this subsection, f(x) = sin(x)eβ(cos(x)−1).

Lemma B.1. Suppose β ∈ (0, 1
3
]. Then, there exists a ∈ (0, π

2
) such that the nonnegative

region of f ′′′(x) over [0, 2π) is [a, 2π − a].

Proof. We use the same method as the proof of Lemma A.1. Observe that

p(1) = −1 − 3β < 0, p(0) = −β(β2 − 4) > 0, p(−1) = 1 − 3β ≥ 0,

p(−1 − 1

β
) = 5β − β−1 + 1 < 0, p(−1 − 2

β
) = 5β + 6β−1 + 13 > 0,

and limz→−∞ p(z) = −∞. Thus, p has a root in each of the following intervals: (0, 1),
(−1 − 1

β
,−1], (−1 − 2

β
,−1 − 1

β
), and (−∞,−1 − 2

β
).

Let r be the root of p in (0, 1). Let a = arccos(r). Because r ∈ (0, 1), a ∈ (0, π
2
).

Furthermore, because p(1) < 0, p(0) > 0, and p has no other roots in (−1, 1), p(z) is
nonnegative for z ∈ [−1, 1] if and only if z ∈ [−1, r]. Therefore, the nonnegative region
of f ′′′ is [a, 2π − a]. ■

Remark B.2. In contrast with Lemma A.1, we consider the nonnegative region of f ′′′

rather than the positive region. The reason for this is that when β = 1
3
, p(−1) = 0, so

the positive region would be (a, π) ∪ (π, 2π − a) for this case. For simplicity, we consider
the nonnegative region.

Corollary B.3. Suppose β ∈ (0, 1
3
]. Then, f ′′ ≤ 0 over [0, π] and f ′′ ≥ 0 over [π, 2π].

Proof. Using Lemma B.1, assume that the nonnegative region of f ′′′ is [a, 2π − a] for
a ∈ (0, π

2
). Then, since f ′′(0) = f ′′(π) = 0, we have that over [0, π], f ′′ first decreases

from 0 to its minimal value at a and then increases to 0, so f ′′ is non-positive. Because
f ′′ is odd, f ′′ is nonnegative over [π, 2π]. ■

Lemma B.4. Suppose β ∈ (0, 1
3
]. Then, τf ′′(a) > −2.

Proof. We have that

f ′′(a) ≥ −(1 + 3β) sin(a)eβ cos(a)e−β ≥ −(1 + 3β) sin(τ)eβ cos(τ)e−β.

Thus, it suffices to prove that

(1 + 3β) sin(τ)eβ cos(τ)e−βτ < 2.

Observe that
0 ≤ cos(τ) = β sin(τ)2 ≤ β,

so it suffices to prove that
(1 + 3β)eβ

2−β sin(τ)τ < 2.

28



Assume that 0 < β ≤ 0.148. Then, τ ≤ π
2

and sin(τ) ≤ 1. Because

(1 + 3β)eβ
2−β · π

2
< 2,

we have that τf ′′(a) > −2. (0.148 is approximately the maximal value of β for which this
method is correct.)

Assume that 0.148 < β ≤ 0.228. Then, τ < τ(0.148) < 1.43 and sin(τ) < sin(1.43).
Because

(1 + 3β)eβ
2−β · 1.43 sin(1.43) < 2,

we have that τf ′′(a) > −2.
Assume that 0.228 < β ≤ 0.278. Then, τ < τ(0.228) < 1.36 and sin(τ) < sin(1.36).

Because
(1 + 3β)eβ

2−β · 1.36 sin(1.36) < 2,

we have that τf ′′(a) > −2.
Assume that 0.278 < β ≤ 0.321. Then, τ < τ(0.278) < 1.31 and sin(τ) < sin(1.31).

Because
(1 + 3β)eβ

2−β · 1.31 sin(1.31) < 2,

we have that τf ′′(a) > −2.
Assume that 0.321 < β ≤ 1

3
. Then, τ < τ(0.321) < 1.28 and sin(τ) < sin(1.28).

Because
(1 + 3β)eβ

2−β · 1.28 sin(1.28) < 2,

we have that τf ′′(a) > −2. ■

C Results for −1
3 < β < 0

In this subsection, f(x) = sin(x)eβ(cos(x)−1).

Lemma C.1. Suppose β ∈ (−1
3
, 0). Then, there exists a ∈ (π

2
, π) such that the nonnega-

tive region of f ′′′(x) over [0, 2π) is [a, 2π − a].

Proof. We use the same method as the proof of Lemma A.1. Observe that

p(1) = −1 − 3β < 0, p(0) = −β(β2 − 4) < 0, p(−1) = 1 − 3β > 0,

p(1 − 1

β
) = 5β − β−1 − 1 > 0, p(1 − 2

β
) = 5β + 6β−1 − 13 < 0,

and limz→∞ p(z) = ∞. Thus, p has a root in each of the following intervals: (−1, 0),
(1, 1 − 1

β
), (1 − 1

β
, 1 − 2

β
), and (1 − 2

β
,∞).

Let r be the root of p in (−1, 0). Let a = arccos(r). Because r ∈ (−1, 0), a ∈ (π
2
, π).

Furthermore, because p(−1) > 0, p(0) < 0, and p has no other roots in (−1, 1), p(z) is
nonnegative for z ∈ [−1, 1] if and only if z ∈ [−1, r]. Therefore, the nonnegative region
of f ′′′ is [a, 2π − a]. ■
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Remark C.2. If β = −1
3
, the nonnegative region of f ′′′(x) over [0, 2π) is [a, 2π − a] ∪ {0},

since p(1) = 0.

Corollary C.3. Suppose β ∈ (−1
3
, 0). Then, f ′′ ≤ 0 over [0, π] and f ′′ ≥ 0 over [π, 2π].

Proof. Using Lemma B.1, assume that the nonnegative region of f ′′′ is [a, 2π − a] for
a ∈ (π

2
, π). Then, since f ′′(0) = f ′′(π) = 0, we have that over [0, π], f ′′ first decreases

from to 0 to its minimal value at a and then increases to 0, so f ′′ is non-positive. Because
f ′′ is odd, f ′′ is nonnegative over [π, 2π]. ■

Lemma C.4. Suppose β < 0. If x is a stable, stationary, and non-synchronized point of
(S1), then τmax(x) < π.

Proof. This is implied by [11, Lemma 10] with φ(t) = −eβt. ■

Lemma C.5. Suppose β ∈ [−0.16, 0). Then, τf ′′(a) ≥ −2
(
1 + τ

π

)
.

Proof. We have that

f ′′(a) ≥ −(1 − 3β) sin(a)eβ cos(a)e−β ≥ −(1 − 3β) sin(τ)eβ cos(τ)e−β.

Thus, it suffices to prove that

(1 − 3β) sin(τ)eβ cos(τ)e−βτ ≤ 2
(

1 +
τ

π

)
.

Observe that
0 ≥ cos(τ) = β sin(τ)2 ≥ β,

so it suffices to prove that

(1 − 3β)eβ
2−β sin(τ)τ ≤ 2

(
1 +

τ

π

)
.

Equivalently, it suffices to prove that

τ

(
(1 − 3β)eβ

2−β sin(τ) − 2

π

)
≤ 2.

Assume that β ∈ [−0.16, 0). Observe that both τ and (1− 3β)eβ
2−β − 2

π
increase as β

decreases from 0. At β = −0.16, we have that

τ

(
(1 − 3β)eβ

2−β − 2

π

)
≤ 2,

so this must be the case for all β ∈ [−0.16, 0). Thus,

τ

(
(1 − 3β)eβ

2−β sin(τ) − 2

π

)
≤ τ

(
(1 − 3β)eβ

2−β − 2

π

)
≤ 2

for all β ∈ [−0.16, 0). ■
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The lower bound −0.16 for β in Lemma C.5 can be improved, but we omit this
refinement for simplicity. We establish that global synchronization does not occur for all
negative values of β.

Lemma C.6. Suppose β < −2
3
. Then, if n is a multiple of 3 or sufficiently large, there

exists a value of x ∈ Tn such that:

1. There exists three elements p1,p2, and p3 of T such that ⌊n
3
⌋, ⌊n

3
⌋, and n − 2⌊n

3
⌋

points of x are placed at p1, p2, and p3, respectively.

2. The vector x is a critical point of E and the Hessian of E over Tn at x is negative
semidefinite, with only one eigenvalue whose eigenvectors are the scalar multiples of
the vector [1, . . . , 1]⊤.

Proof. Suppose n ≥ 3. Let p1 = 0, p2 = α, and p3 = 2π − α, where α is an element of
(0, π) such that ⌊n

3

⌋
sin(2α)eβ cos(2α) +

(
n− 2

⌊n
3

⌋)
sin(α)eβ cos(α) = 0;

as n → ∞, we can set α = 2π
3

+ on(1) and in particular we can set α = 2π
3

when n is a
multiple of 3.

The Hessian of the energy function E is the Laplacian L of [−f ′(xi − xj)]
n
i,j=1. Recall

that f ′(x) = (cos(x)−β sin(x)2)eβ(cos(x)−1) and the Laplacian of a symmetric n×n matrix
A is D−A, where D is the diagonal matrix with diagonal [

∑n
i=1Aij]1≤j≤n. Furthermore,

for a vector v,

v⊤Lv = −
n∑

i,j=1

1

2
f ′(xi − xj)(vi − vj)

2.

However, we always have that |xi−xj| ∈ {0, α, 2π−α}. Since β < −2
3

and α = 2π
3

+on(1),
f ′(x) > 0 for all x ∈ {0, α, 2π − α} when n is sufficiently large; if n is a multiple of 3, we
can set α = 2π

3
to obtain that f ′(x) > 0 for all x ∈ {0, α, 2π − α}. Thus, condition 2 is

satisfied when n is a multiple of 3 or sufficiently large. ■
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