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Benchmarking quantum devices is a foundational task for the sustained development of quantum
technologies. However, accurate in situ characterization of large-scale quantum devices remains
a formidable challenge: such systems experience many different sources of errors, and cannot be
simulated on classical computers. Here, we introduce new benchmarking methods based on random
circuit sampling (RCS), that substantially extend the scope of conventional approaches. Unlike ex-
isting benchmarks that report only a single quantity—the circuit fidelity—our framework extracts
rich diagnostic information, including spatiotemporal error profiles, correlated and contextual errors,
and biased readout errors, without requiring any modifications of the experiment. Furthermore, we
develop techniques that achieve this task without classically intractable simulations of the quantum
circuit, by leveraging side information, in the form of bitstring samples obtained from reference
quantum devices. Our approach is based on advanced high-dimensional statistical modeling of RCS
data. We sharply characterize the information-theoretic limits of error estimation, deriving match-
ing upper and lower bounds on the sample complexity across all regimes of side information. We
identify surprising phase transitions in learnability as the amount of side information varies. We
demonstrate our methods using publicly available RCS data from a state-of-the-art superconduct-
ing processor, obtaining in situ characterizations that are qualitatively consistent yet quantitatively
distinct from component-level calibrations. Our results establish both practical benchmarking pro-
tocols for current and future quantum computers and fundamental information-theoretic limits on
how much can be learned from RCS data.

I. INTRODUCTION

Quantum information processing has made remark-
able progress in recent years, reaching major milestones
such as the demonstration of beyond-classical computa-
tional tasks [1–4], as well as the realization of quantum
error correction and early fault-tolerant operations [3, 5–
10]. As quantum devices become increasingly advanced,
we also need improved methods to characterize and
benchmark them.

Quantum processors experience a variety of errors, in-
cluding coherent errors [11–13], errors that vary over
space and time [1], correlated multi-qubit errors [14, 15],
leakage errors [16–18], and contextual errors whose pres-
ence depend on the choice of earlier operations. This
diversity of error types reflects the diversity of physical
mechanisms for error in quantum devices. Examples in-
clude excitation into higher transmon levels [16], spon-
taneous emission of photons from atoms [17, 18], and
slow ringdown [19] or fluctuations in control pulses [11].
These various types of errors must be identified and
quantified in the effort to improve quantum hardware
components, their interconnects, and systems architec-
ture [19]. In this regard, traditional methods often
fall short in accurately characterizing complex devices.
In most common practices, a quantum system is char-
acterized component-by-component and operation-by-
operation, separately, rather than when they work to-
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gether as in a full quantum circuit [1]. In such ap-
proaches, certain types of errors may be missed or in-
correctly estimated [20].

Cross-entropy benchmarking (XEB) is the state-of-the
art approach to characterize large scale quantum de-
vices [21]. The XEB fidelity is a proxy for the quan-
tum fidelity and provides a single-number summary of
circuit performance. It is remarkably versatile, be-
ing applicable across different hardware platforms, both
for physical and logical circuits, and beyond the ideal
setting of deep random unitary circuits [2, 3, 22, 23];
hence it is one of a few industry-standard approaches for
benchmarking quantum systems [24–27], and has seen
wide adoption [1–3, 23, 28–31]. However, cross-entropy
benchmarking has two major limitations. First, it ag-
gregates all types of errors into a single metric—the
state infidelity—thereby obscuring detailed information
needed to guide improvements in quantum hardware.
Second, it relies on classical simulation of the ideal cir-
cuit output, which limits its applicability to relatively
small system sizes.

In this work, we present new benchmarking methods
based on random circuit sampling (RCS). Our approach
requires no modification in experiments, as it relies on
exactly the same data needed for XEB. However, our
methods significantly extend the scope of the XEB fi-
delity, largely addressing the aforementioned limitations
and providing detailed information about noise. Ex-
plicitly, starting from the bitstring data obtained from
noisy RCS, our method produces an elaborate report
that contains a rich set of information such as the esti-
mated circuit fidelity, spatiotemporal profiles of single-
or two-qubit errors, correlated or contextual errors, bi-
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Figure 1. Overview of this work. We develop methods to learn many noise parameters from random circuit sampling (RCS)
bitstring data. Our protocol makes use of side information, which can be the classically computed bitstring distribution, or
samples of these distributions obtained from a reference quantum computer. Our analysis includes the special case where
no side information is available — even in this case, error rates can be learned given enough RCS data. Our method allows
extracting more information than previously known benchmarking methods: in addition to the state fidelity, we can estimate
the error rates for many types of errors, including state preparation errors, correlated multi-qubit errors, contextual errors
which depend on previous gates applied, and readout errors. We find a phase diagram that dictate the hardness, and types
of information that can be learned from RCS data, as a function of the amount of side information available. The sample
complexity in each regime is analyzed.

ased readout errors, and, in certain cases identifies the
dominant physical processes behind the errors. This re-
port can be made in a computationally efficient man-
ner, provided sufficient amount of side information that
describe the expected sampling distributions in the ab-
sence of unwanted errors. We consider three different
regimes of side information: A) maximal side informa-
tion where the expected output distribution is available
from explicit classical computation, B) partial side infor-
mation, where the expected distributions can be inferred
from m < ∞ bitstring samples generated from a clean
reference quantum computer, and C) no side informa-
tion where there is no reference data (Fig. 1). Formally,
A) and C) correspond to m = ∞ and m = 0, respec-
tively. The regimes B) and C) are increasingly relevant
for demonstrations of beyond-classical circuit sampling.

Our approach to benchmarking is based on improved
modeling of noisy random circuit output, building upon
a model introduced by [32]. We show that this model-
ing approach adequately resolves the different types and
spacetime positions of errors, using advanced statisti-
cal data-processing algorithms of the high-dimensional
measurement data. In statistical terms, we describe
RCS data as arising from a mixture of random high-
dimensional probability distributions, representing the
various error channels present in the random quantum
circuit. We provide a detailed description of our statis-
tical setup, which is accessible to statisticians, in Ap-
pendix B.

Our algorithms require more RCS samples when there
is less side-information available. Interestingly, we dis-
cover phase transitions in the sample complexity of er-
ror learning, which allow us to precisely characterize
the regimes in which side information is beneficial. In
all settings, we prove that our methods achieve opti-
mal sample complexity, saturating information-theoretic

lower bounds. These sample complexity bounds provide
valuable insight into the scope of possible applications
of our benchmarking methods. As an example, our re-
sults imply that one can benchmark the full execution of
an RCS experiment on a quantum processor of approxi-
mately 50 qubits in an efficient manner, both in memory
and computation, given sufficient side information from
a reference quantum computer.

Finally, we apply our methods to existing, publicly
available RCS data [1] to characterize the diverse sources
of error that arise in a state-of-the-art quantum proces-
sor. Unlike earlier error characterizations of the quan-
tum processor, our report (Fig. 4) provides in-situ in-
formation about the errors experienced in full operation
of the circuit. The extracted error rates and breakdown
into different sources are consistent with the expected
behavior.

II. OVERVIEW

Our method builds upon the operating principle of
cross-entropy benchmarking (XEB) [21]: that the out-
put of a random circuit is a highly entangled wavefunc-
tion |ψ⟩ which is a superposition over all N -bit strings.
Measuring this state in the computational basis amounts
to sampling from the probability distribution π1(z) ≡
|⟨z|ψ⟩|2 over d = 2N possible bitstrings. In a typical
circuit, this probability distribution is highly complex:
its individual entries π1(z) fluctuate strongly among bit-
strings z, and form a many-body speckle pattern that is
essentially unique to the state |ψ⟩ (Fig. 1) in practical
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settings1. Moreover, for a sufficiently deep circuit, |ψ⟩
is well-approximated as a Haar-random state [33] and
hence π1(z) satisfies universal statistical properties on
the distribution of {π1(z)} values, known as the Porter-
Thomas distribution [1, 34]. This universality provides
the foundation for the XEB fidelity.

The XEB fidelity is an approximation of the quan-
tum fidelity ⟨ψ|ρ|ψ⟩ between the ideal target state |ψ⟩
produced by a programmed quantum circuit and the ex-
perimentally prepared mixed state ρ. It compares ex-
perimental bitstrings against the ideal distribution π1 to
estimate the fraction of samples drawn from π1. The
white noise model, often evoked to explain the XEB fi-
delity, makes this notion of the “fraction” concrete. It
posits that the experimental distribution p(z) ≡ ⟨z|ρ|z⟩
is of the form

White noise model: p(z) = Fπ1(z) + (1− F )/d. (1)

Experimental samples are therefore drawn from π1(z)
with probability F and from the uniform distribution
πwh(z) ≡ 1/d with probability 1 − F . This relation
arises, for example, when ρ = F |ψ⟩⟨ψ| + (1 − F )Id/d
is the globally depolarized state (where Id/d is the max-
imally mixed state), but can also arise from the com-
bined effect of many errors throughout the circuit [35].
The operational meaning of F is the probability that
an experiment successfully executes the circuit with no
error, hence estimating the quantum fidelity.

In this work, we adopt a more refined k-component
model [32]

k-component model: p(z) =

k∑
i=1

ciπi(z) . (2)

Each term πi(z) is the distribution associated with each
physical error pattern i. For example, during one exe-
cution of a deep circuit, a particular qubit at site a may
experience a Pauli X error at a specific time t. Alterna-
tively, a pair of qubits at site a and b experience Pauli
X and Y errors at times t1 and t2, respectively. We
imagine all such patterns of errors (“events”) that may
reasonably occur in the circuit and enumerate them by
the index i. We identify the special case i = 1 with the
perfect execution of the circuit.

Formally, we can understand that the index i enumer-
ates over the ensemble of quantum trajectories obtained
from an unraveling of error channels [36]. Each tra-
jectory is associated with a pure wavefunction evolving
under the programmed unitary circuit interspersed by
error (Kraus) operators at specific spacetime locations.
Rapid scrambling of random unitary circuits [37, 38] en-
sure that such trajectory states are, with high proba-
bility, also Haar-random and hence their measurement

1 We note that states of the form exp(iθP )|ψ⟩ (for some Pauli
operator P consisting of Z operators) displays the same speckle
pattern π1(z). We are indifferent to those cases since they do
not change computational outcomes.

distribution πi(z) can be approximated as vectors in-
dependently sampled from the Porter-Thomas distribu-
tion [11, 32].

In the simplest version of our protocols, we essentially
perform cross-entropy benchmarking on each distribu-
tion πi(z) to estimate its coefficient ci, representing the
probability of the particular error event i. We consider a
total of k error events. Advanced statistical algorithms
allow us to utilize the information provided by bitstring
measurements and simultaneously and efficiently esti-
mate all ci. This enables in-situ characterization of
errors in a quantum circuit, complementing prevailing
approaches of error characterization by single- and two-
qubit experiments. Error rates may differ between these
isolated experiments and full operation of a quantum
circuit when all components are simultaneously in oper-
ation. This also enables the characterization of complex
error types such as correlated and contextual errors.

For large quantum systems, obtaining exact knowledge
of πi(z) for many different error patterns is computation-
ally intractable. To this end, we study the error estima-
tion task when πi(z) is known only partially. Specifically,
we envision that information about πi(z) is obtained by
sampling from a reference quantum computer that pre-
pares the ideal state |ψ⟩ and any of the noise trajectory
states. Such states can be obtained, for example, by
stringent quantum error detection [3, 17, 18]. Drawing
inspiration from a related line of work in the statistical
literature [39–41], we dub this side information, which
enables our use of the experimental data for parameter
estimation. We quantify the amount of side information
as the number of measurements m of each trajectory
state, yielding bitstrings Wim sampled from each πi. By
comparing Wim and bitstring data from noisy RCS, we
produce the same kind of benchmark report.

We find phase transitions in sample complexity as a
function of the amount of side information (Fig. 1): in
the full information, m = ∞ phase (which includes the
case where πi are classically simulated), the ci’s can be
estimated with a number of samples independent of sys-
tem size. As m decreases and crosses the phase bound-
ary at m = O(d) (i.e., sublinear in d), we enter the
partial side-information phase which features a sample
complexity tradeoff: the sample complexity is set by the
product n×m of the numbers of experimental and side-
information samples. Estimation is feasible as long as
nm ≥ d log k. Surprisingly, even in the m = 0 limit
with no side information, estimation is still possible by
making use of the universal Porter-Thomas properties of
each πi. This transition occurs at m = O(d1/k) which
depends on the number of errors k considered in our
model. In this phase, only the unlabeled {ci} can be es-
timated, i.e. we can determine the values of the ci’s, such
as the largest ci, but cannot assign the indices i to each
value. Detailed expressions for the sample complexities
are summarized in Table I.

Across all regimes, the key properties we utilize are the
universal properties of high-dimensional Porter-Thomas
(or Dirichlet random) distributions πi. These proper-
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ties concentrate: random instances are close to the av-
erage value with (exponentially) small fluctuations. For
example, two random distributions have fixed overlap∑
z πi(z)πj(z) = (1 + δij)/d + O(d−3/2) and hence are

in some sense approximately orthonormal. This bi-
linear structure is tremendously helpful: the product∑
z πi(z)p(z) can be estimated with only a few samples

from a distribution p(z), far fewer than the (exponen-
tially large) number needed to accurately estimate each
entry p(z). As long as the number of signals k is less than
the dimension d, k different products

∑
z πi(z)p(z) can

be straightforwardly distinguished with minimal over-
head.

In the partial side information phase, we utilize a col-
lision estimator which counts the number of bitstrings z
seen in both the RCS and reference data. The Porter-
Thomas nature of the distributions πi ensures that they
fluctuate around the uniform distribution, and in this
regime, the classical birthday paradox ensures that col-
lisions begin to occur once the product of sample sizes
n×m exceeds the dimension d [42]. This is precisely the
threshold at which our methods can reliably estimate ci,
up to a logarithmic correction in k.

Even in the absence of any side information (m = 0),
the typicality of high-dimensional Dirichlet random dis-
tributions means that information about c is present
in the measurement data, independent of the distribu-
tions πi, and hence not requiring knowledge of them.
As a simple example, under Eq. (4), the sum-of-squares∑
i c

2
i is well estimated by the collision probability

d
∑
z p(z)

2 − 1 [11, 23]. This, and higher moments of
p(z), can be estimated with enough RCS data.

The high-dimensional nature of RCS data—in which
the Hilbert space dimension d significantly exceeds the
sample size n—is both a blessing and a curse throughout
our analysis. This high-dimensionality enables the uni-
versal behavior of random Porter-Thomas distributions,
leading to particularly simple and practical algorithms
that generalize XEB, while on the other hand placing
lower bounds on the sample complexity of error charac-
terization which sometimes grow exponentially in system
size. From a technical lens, our analysis leverages tools
from high-dimensional statistical theory [43], though in
the setting of count-based data which is heteroscedastic
in nature, unlike the more classical setting of Gaussian
additive noise.

We show that our rates of estimation are optimal.
We establish information-theoretic lower bounds on the
sample complexity of the inference task. We establish
matching upper bounds by explicitly presenting optimal
statistical estimators, sharply resolving the question of
parameter estimation with RCS data.

We proceed to apply our methods to synthetic data
obtained from numerical simulations as well as publicly
available data produced in a quantum experiment [1].
We confirm that we can identify time-varying error rates
and non-local correlated errors. From the real-world
data, we successfully estimate state preparation, rates
of errors affecting single- and two-qubits, as well as bi-

ased readout errors, resolved on each qubit. Our results
are qualitatively consistent with anticipated values, but,
crucially, our approach estimates those error rates in-
situ whereas the previously reported values rely on data
obtained from separate experiments.

Our results imply the possibility of benchmarking
quantum devices in the beyond-classical regime, con-
sisting of up to 50 qubits, using only modest classical
resources. This follows from our results by choosing the
sample sizes to scale as n = m =

√
d = 225, an amount

which can be handled by our classical algorithms with-
out overwhelming memory or computational overhead.
On the other hand, our lower bound implies that we
cannot do better than this: there is a fundamental
information-theoretic limit on how much we can learn
from RCS data. In order to circumvent our lower
bound, one must use quantum circuits with addi-
tional structure, such as those in mirror benchmarking
protocols [26, 44, 45] or random Clifford circuits [46, 47].

Related Work. As mentioned previously, the work
of [32] was the first to propose model (4), and statistical
estimators for c when m = ∞. When m = 0, Ref. [1]
introduced a method called speckle XEB, for estimating
the XEB fidelity under the white noise model (1) with-
out knowledge of π1, using the empirical second moment
of the bitstring data (subsequently termed “self-XEB”
in Ref. [23]). Their procedure was generalized by the
work of [11] to model (4), who showed that higher-order
empirical moments of the bitstring data can be used to
estimate the moments of the unordered vector c. They
also derived an upper bound on the sample complexity
of estimating the second moment of the vector c, which
can be viewed as a precursor to our sample complexity
bounds to come, for the special case k = 2.

Estimating the overlap fidelity between two quan-
tum states prepared on separate quantum computers
has been studied as “cross-platform verification” in
Refs. [48, 49], and specifically in the context of random-
ized measurements in Ref. [50]. However, not much is
understood about its sample complexity, and the task
of learning multiple parameters in a cross-platform ap-
proach has not been explored before our work.

III. LEARNING FROM BITSTRINGS

A. Random circuit sampling as a statistical
mixture model

Having provided a high-level overview of our results,
in this section we begin our technical discussion. Our
benchmarking methods are developed for RCS data [21],
in which a quantum processor executes a circuit obtained
by composing randomly-sampled single- and two-qubit
gates, a popular benchmark in the field with several
demonstrations [1, 3, 28–31, 51, 52].

Random circuit sampling has the advantage of being
an unbiased measure of quality of a quantum device:
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its underlying gates are randomized and hence the mea-
surement outcomes are not biased towards one partic-
ular type of error, nor are they tailored to a particu-
lar circuit, which may have highly structured outcomes.
In this respect, it is similar to randomized benchmark-
ing [44, 46, 53–56] as well as the suite of tools known as
the randomized measurement toolbox [57].

Originally motivated as a quantum advantage demon-
stration, RCS has since become a general-purpose
and widely-used tool for benchmarking quantum hard-
ware [58]. Furthermore, random quantum circuits are
good approximations for Haar-random unitaries [33],
which makes them useful for quantum information
tasks [59] including state learning [57, 60] and random-
number generation, as well as for the study of questions
in basic science, such as quantum chaos and thermaliza-
tion [37, 61, 62].

In an RCS experiment, an N -qubit random circuit
produces an output state |ψ⟩ ≡ U |ψ0⟩, which is then
measured in the computational basis. Each experiment
yields a random N -bitstring z ∈ {0, 1}N , whose prob-
ability distribution is given by π1(z) ≡ |⟨z|ψ⟩|2 in the
noiseless case. In practice, there are uncontrolled errors,
and a noisy physical quantum device instead transforms
|ψ0⟩ into a mixed state ρ, with a corresponding measure-
ment distribution p(z) = ⟨z|ρ|z⟩.
The most widely-used technique for analyzing RCS

data is the (linear) cross-entropy benchmark (XEB) [1,
21]. The XEB estimates the many-body fidelity F ≡
⟨ψ|ρ|ψ⟩ by comparing the experimental distribution p(z)
with the ideal one π1(z):

FXEB = d
∑

z∈{0,1}N

p(z)π1(z)− 1. (3)

Experimental samples provide an empirical estimate of

p(z) which furnishes an unbiased estimator F̂XEB (Ap-
pendix B). In turn, the XEB furnishes an accurate ap-
proximation of the quantum fidelity, FXEB ≈ F in suffi-
ciently deep random circuits with local noise [63, 64].

The above relation is justified by two properties. First,
random unitary circuit dynamics results in distributions
π1 with highly typical properties. This is referred to by
the Porter-Thomas distribution [21, 34] which governs
the distribution of values π1(z). Mathematically, this is
equivalent to assuming that π1 is a random probability
vector sampled from the Dirichlet distribution, i.e. uni-
formly random on the probability simplex (see condi-
tion (PT) below for a formal definition). Second, one
needs to make an assumption about the bitstring output
of the “noisy part” of the state. The simplest such model
is the white noise model [Eq. (1)]. However, the XEB
remains an accurate estimate of the fidelity even in the
more general situation, repeated here: we assume that
the quantum device may experience k − 1 different in-
coherent error patterns, and thus that the random state
ρ outputs bitstrings according to the bitstring distribu-

tion:

pc(z|Π) =

k∑
i=1

ciπi(z), z ∈ {0, 1}N , (4)

where π1 is the ideal random probability distribution,
π2, . . . , πk are the random probability distributions of
k different incoherent error sources in the circuit, and
c = (c1, . . . , ck) is the corresponding vector of proba-
bilities (“error weights”). See Refs. [11, 32] for simi-
lar models. We collect the distributions πi into a single
matrix Π ∈ Rk×d with entries Πij = πi(zj), where the
index i denotes the error type, and j denotes the bit-
string index, and explicitly highlighted the dependence
of pc on Π. The matrix Π is random and depends on
the choice of random circuit and on the errors in the
model (see Eq. (6) below). In statistical language, we
recognize model (4) as a mixture model consisting of k
components, the first of which corresponds to the ideal
bitstring distribution π1, which occurs with a probabil-
ity c1 that can be viewed as an analogue of the XEB
fidelity F . The remaining terms of the mixture model
correspond to k−1 noise sources πi, each occurring with
probability ci.

Eq. (4) is not only more physically realistic, it also
allows for learning beyond the single-number summary
of the circuit infidelity provided by XEB. Learning the
coefficients ci in our model provides detailed informa-
tion about the error processes that contribute to this
infidelity.

Physically, Eq. (4) arises from the following model of
the noisy state

ρ = RJ ◦ UJ ◦ · · · ◦ U1 ◦ R0[|ψ0⟩⟨ψ0|] (5)

where Ri denotes the error channel at circuit layer i

and Ui[ · ] ≡ Ui[ · ]U†
i denotes the ideal quantum unitary

acting on layer i. Each error channel consists of a number
of physical errors, denoted by Kraus operators Kℓ [36]:

Ri[ρ] =
∑
ℓ

Γ
(i)
ℓ KℓρK

†
ℓ , (6)

with physical error rates Γ
(i)
ℓ that can depend both on

error type, location, and time (layer).
Eq. (4) is related to (6) by the following: Each dis-

tribution πi is associated with a particular trajectory
(Kℓ0 ,Kℓ1 , · · · ,KℓJ ) that denotes a sequence of Kraus
operators. For instance, the ideal distribution π1 corre-
sponds to the trajectory where all Kℓi = I, and c1 is the
probability that no error occurred. Other trajectories in-
clude those where one Kℓi is non-trivial, indicating the
occurrence of an error at layer i, of type ℓi. Its corre-
sponding distribution is given by

π(ℓi,i)(z) = |⟨z|UJ · · ·KℓiUi · · ·U1|ψ0⟩|2. (7)

When the operatorsKℓi are unitary, e.g. for a Pauli error
channel, equation (7) is a probability distribution (non-
negative and summing to 1), and due to the operator



6

spreading [38] in the random circuit, each π(ℓi,i)(z) is
an independent Dirichlet-random distribution (see con-
dition (PT) below).

This condition is necessary for the statistical model (4)
and our theoretical analysis, but will not be necessary for
the analysis of real data in Section V: our estimators are
robust to deviations from Assumption (PT).
Current XEB approaches typically require complete

knowledge of the ideal distribution π1, which is ex-
tremely challenging to classically simulate when the sys-
tem size N is approximately greater than 30. In prac-
tice, a typical workaround is to estimate the XEB fidelity
based on patches of disconnected circuits, or with spe-
cially structured circuits that can be simulated [1]. How-
ever, such methods require dedicated experiments and
are not guaranteed to provide an accurate estimate of
the global circuit fidelity. Relaxing the assumption that
π1 is classically computable not only addresses practical
needs, it also defines a theoretically rich statistical prob-
lem. Fixing notation we will use in the rest of this work,
we denote the bitstring measurements (“RCS data”) as
i.i.d. samples

Z1, . . . , Zn
∣∣Π ∼ pc(·|Π), (8)

where we have explicitly highlighted the dependence of
pc on the random circuit realization. This determines
the matrix Π, a deterministic function of the random
choice of circuit, which we equivalently treat as a ran-
dom variable in itself (PT). We will frequently summa-
rize these measurements in terms of the empirical counts
Yj =

∑n
i=1 δZi,zj , indexed by j = 1, . . . , d. For example,

the statistical estimator for the XEB fidelity is simply

F̂n = (d/n)
∑d
j=1 Yjπ1(zj)− 1, arising from the approx-

imation p(zj) ≈ Yj/n.
We additionally assume that the practitioner has ac-

cess to side information in the form of m bitstring sam-
ples drawn from a reference quantum computer which
perfectly implements the ideal circuit π1, and any of the
noisy circuits πi:

Wi1, . . . ,Wim

∣∣Π ∼ πi, i = 1, . . . , k. (9)

The parameter m allows us to systematically analyze
different classes of protocols. On one extreme, when
m = ∞, we interpret the matrix Π as being perfectly
known. This corresponds to the conventional situation in
which the bitstring distributions can be classically sim-
ulated, as in the XEB setup. Meanwhile, the m = 0
limit indicates that no side information is given (see
Refs. [11, 23] for earlier work in this limit). This regime is
particularly relevant for large system sizes and deep cir-
cuits, where no classical simulation or reference quantum
computation is viable. Even in this situation, our bench-
marking algorithms provide nontrivial information about
the characteristics of noise. Our information-theoretic
phase transitions indicate that the boundaries of these
two regimes occur at m ≥ d and m ≤ d1/k, respec-
tively. When m lies between these two extremes, a ref-
erence quantum computer provides partial side informa-

tion about Π in the form of samples from the ideal distri-
bution π1, and all noisy distributions πi, and we develop
algorithms which efficiently leverage this side informa-
tion.

B. Estimators

Given n samples from a distribution of the form
Eq. (4), our task is to estimate the error weights c =
(c1, . . . , ck), with the aid of m samples of side informa-
tion that give us knowledge about Π.

How might it be possible to estimate a large number k
of parameters from a single realization of a random cir-
cuit? The key is that our data is high-dimensional: they
are samples drawn from a d = 2N dimensional proba-
bility distribution p(z). For a collection of k different
circuits (here representing the original circuit with in-
jected errors), it is highly likely that their output distri-
butions are linearly independent. In other words, in a
high-dimensional space, different errors distort the out-
put distribution in different ways and hence can be dis-
tinguished in the measurement data.

We develop several estimators to estimate the param-
eter vector c = (c1, . . . , ck), suitable suitable for various
regimes of side information m. We discuss several of
these estimators in what follows, deferring a more com-
plete discussion to Appendix B, including further discus-
sion of related statistical literature.

1. Regime A: Classical Simulation (m = ∞)

In the simplest case with classically-computed side in-
formation, the matrix Π is known to the practitioner. In
this regime, we estimate the parameter ci in two steps.
We first observe that the products ζi =

∑
z πi(z)pc(z|Π)

satisfy

ζi =
∑
ℓ

cℓ
∑
z

πi(z)πℓ(z) =
1 + ci
d

+O(d−3/2), (10)

as a result of the concentration of the Porter-Thomas
rows of Π. One can form unbiased estimators
(1/n)

∑d
j=1 Yjπi(zj) of these products, which leads to

a first simple estimator of c:

ĉXEB
i =

d

n

d∑
j=1

Yjπi(zj)− 1, i = 1, . . . , k. (11)

This estimator was first proposed by [32, Eq. (5.1)]. We
refer to the vector ĉXEB as the (generalized) XEB esti-

mator. Much like the XEB fidelity estimator F̂n, this
generalized XEB estimator achieves a sample complex-
ity which does not depend on the Hilbert space dimen-
sion d. It does, however, depend linearly on the number
of errors k, and this dependence can be mitigated by
appropriate regularization. For example, given an ap-
propriate tuning parameter λ > 0, we will show that the
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hard-thresholded [65] XEB estimator

ĉHT
i =

{
ĉXEB
i , ĉXEB

i > λ,

0, otherwise,
i = 1, . . . , k, (12)

has sample complexity which merely degrades logarith-
mically with the number of errors k. Roughly speaking,
this favorable dependence on k arises from the fact that
the vector c has bounded ℓ1 norm, and is therefore ap-
proximately sparse, a fact which is leveraged by estima-
tor (12) [66–68].

As we discuss in Appendix B, the XEB estimator can
be viewed as an approximation of the ordinary least
squares estimator for performing a linear regression of
the histogram Y onto Π⊤, whereas our model is a multi-
nomial regression model for which the canonical estima-
tor is the maximum likelihood estimator (MLE), defined
by

ĉMLE = argmax
γ∈∆k

d∑
j=1

Yj log
(
Π⊤

·jγ
)
. (13)

This estimator was also noted by [32, Eq. (5.2)]. Much
like in the RCS literature, where linearization of the XEB
fidelity is typically adopted, we do not find that the MLE
and XEB estimators differ appreciably due to the small
magnitude of Π, and hence the mild heteroscedasticity
of the histogram Y (cf. Appendix B). Indeed, we have
found that the XEB and MLE estimators perform simi-
larly when the independent Porter-Thomas assumption
on the rows of Π holds. The XEB estimator has the
disadvantage of not being robust to deviations from this
modeling assumption, but it has the advantage of being
easily computable even for large system sizes d = 2N ,
whereas the program (13) can be somewhat more costly
to optimize despite its convexity. Another advantage of
the MLE is the fact that it is free of tuning parameters,
yet still provides accurate estimates when k is large [69].
Roughly speaking, this behavior is due to the restriction
of the optimization problem (13) to the simplex, which
significantly reduces the volume of the search space de-
spite the potentially large magnitude of k.

2. Regime B: Partial Side Information (1 < m < ∞)

When the amount of side information m is finite but
nonzero, we recommend the following adaptation of the
XEB estimator:

ĉcolli =
d

nm

n∑
ℓ=1

m∑
r=1

δZℓ,Wir
− 1, i = 1, . . . , k, (14)

Up to centering and scaling, this estimator consists
of counting the number of collisions between the pri-
mary bitstring samples {Zℓ} and each of the side sam-
ples {Wir}. Once again, ĉcoll can be regularized using
hard-thresholding, and we will show that the resulting

estimator achieves the optimal sample complexity of es-
timating c.

An important practical benefit of the collision estima-
tor is the fact that its computational complexity scales
as O(k(n +m)), while its memory complexity scales as
O(k ·min{n,m}), neither of which depend on the Hilbert
space dimension d. This estimator can therefore be used
in the beyond-classical regime where objects of dimen-
sion d cannot easily be stored in the memory of a classi-
cal processor. Another practical benefit of this estimator
is its linear structure, which allows it to be updated as
more bitstring data becomes available, without needing
to be recomputed.

As before, it is also natural to consider the maximum
likelihood estimator, which is now given by

argmax
γ∈∆k

log

∫
∆k

d

d∏
j=1

(
(Π⊤

·jγ)
Yj

k∏
i=1

π
Vij

ij

)
dΠ, (15)

where the integral is taken over the set of k × d ma-
trices whose rows are constrained to the d-dimensional
simplex. Unlike equation (13), this optimization prob-
lem is nonconvex. In Appendix B, we develop a heuristic
optimization algorithm for this problem by interpreting
equation (15) as a partition function which integrates
over states Π. Using a mean-field approximation, we
derive an algorithm that maximizes the corresponding
variational Gibbs free entropy, and consists of iteratively
solving the following fixed-point equation with respect to
γ ∈ ∆k:

n =

d∑
j=1

YjSij∑k
r=1 Srjγr

, where Sij = exp{ψ(1 + Vij)},

(16)
for i = 1, . . . , k, where ψ denotes the di-gamma function.
This iteration is, once again, computable with time and
memory complexity that are independent of the Hilbert
space dimension d, since the histogram Y is supported
on at most n entries. A close analogue of the fixed point
equation (16) arises in a statistical method for text anal-
ysis known as latent Dirichlet allocation [70]. In that
context, it has been argued [71–73] that the mean-field
approximation can be significantly improved by work-
ing with an analogue of the Thouless-Anderson-Palmer
(TAP) free entropy, and we believe it is an interesting
avenue of future work to adapt such ideas to our model.
We defer further discussion to Appendix B.

3. Regime C: Blind Source Separation (m = 0)

In the most difficult regime where m = 0, model (4)
is invariant to relabeling the mixture components. Re-
markably, even in this regime we are able to estimate c
up to reordering its elements, thus allowing us to iden-
tify error patterns without any prior knowledge of how
different errors affects the measurement outcome proba-
bilities.
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Our strategy in this setting is to leverage the fact that

the first k moments mj(c) =
∑k
i=1 c

j
i uniquely charac-

terize c up to ordering [74]. Indeed, this characterization
is a consequence of Newton’s identities, which assert that

the coefficients of the polynomial f(z) =
∏k
i=1(z−ci) can

be written solely in terms of m1(c), . . . ,mk(c) (cf. Ap-
pendix K2 a). The concetration of high-dimensional
Porter-Thomas distributions allows us to identify and
estimate the moments mj(c) directly from the bitstring
data. These moment estimators can, in turn, be used to

construct an estimator f̂ of the k-degree polynomial f .
Our estimator of c, denoted ĉmom, is then given by the

collection of k roots of f̂ . We defer a rigorous description
of this estimator to Appendix B 3 a.

C. Sample Complexity of Error Learning

We now state our main results regarding the sample
complexity of error estimation under model (4). It will
be convenient to state our sample complexity bounds in
terms of the minimax estimation risk, a standard sta-
tistical benchmark for quantifying the best possible er-
ror that can be achieved by a statistical estimator uni-
formly over the space ∆k. Concretely, the minimax risk
M(n, d, k,m) is defined as the smallest achievable up-
per bound epsilon for the average ℓ2 distance between
the estimated values ĉ and the worst case true value c:
maxc E∥ĉ − c∥2 < ϵ. Here, the averaging is taken over
randomness of the measured samples from an experi-
ment, reference computers, as well as the Porter Thomas
distributions Π (arising from random circuit choices).

Our results are stated under two conditions. First, we
impose the following assumptions on the problem pa-
rameters n, d, k,m.

(S) Let ρ = min{m/d, 1}. Then, there exists an arbi-
trarily small constant γ > 0 such that the following
assertions hold.

(i) n1+γ ≤ d.

(ii) Either nm ≤ d or nm > d1+γ .

(iii) Either k ≤ √
nρ, or k > (

√
nρ)1+γ .

(iv) Either k ≤ d ≤ m, or d > m1+γ and k1+γ < d
m .

Condition (i) requires the sample size to be smaller than
the Hilbert space dimension d, which is the most prac-
tical regime for RCS experiments. Once the sample size
exceeds d, a number of different approaches based on
(approximate) quantum state tomography become avail-
able [75]. Conditions (ii) and (iii) are mild assumptions
made for ease of exposition; they preclude the problem
parameters from falling in narrow regimes where log-
arithmic corrections appear in our sample complexity
bounds, which we do not bother to characterize sharply.
Condition (iv) is not needed for our upper bounds, but
is used in our lower bounds; this condition allows the
number of errors k to be on the same order as d when

m ≥ d, but somewhat limits the magnitude of k when
m is smaller than d.
Second, as discussed in Section III, we assume the ran-

dom unitary circuit is sufficiently deep for the following
Porter-Thomas assumption to be met.

(PT) The random matrix Π ∈ Rk×d has mutually in-
dependent rows Πi· which follow the flat Dirich-
let distribution on the (d − 1)-dimensional sim-
plex. That is, for each i = 1, . . . , k, one can write
Πi· = (Xi1, . . . , Xid)/

∑
j Xij , where the random

variables Xij are independent, and follow a Porter-
Thomas distribution:

P(Xij > x) = e−dx, for all x ≥ 0.

Although Assumption (PT) is needed for much of our
theory, it is not needed for several of our estimators, as
we explore in Appendix B.

In what follows, for any two nonnegative-valued func-
tions f, g, we write f(x) ≍a g(x) if there exist constants
C1, C2 > 0, possibly depending on a quantity a, such
that C1f(x) ≤ g(x) ≤ C2f(x) for all x. Our first main
result is stated as follows.

Theorem 1. Under conditions (PT) and (S), we have

M(n, d, k,m) ≍γ min

{(
k

nρ

) 1
2

,

(
log k

nρ

) 1
4

, 1

}
,

where ρ = min{m/d, 1}.

Theorem 1 reveals several distinct regimes in the sam-
ple complexity of error learning. When k is held fixed,
and the amount of side information m exceeds d, the

Side info. m

Number of Errors k

0 d1/k d

ϵ−2

d

d log k

mϵ4
log k
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Table I. Heuristic summary of the sample complexities for
noise learning as a function of number of errors k and amount
of side information m (Theorems 1–2). The sample complex-
ity for labeled errors (top) represents the smallest sample size
n for which the vector c can be estimated to accuracy ϵ un-
der the ℓ2 norm, whereas the sample complexity for unlabeled
errors (bottom) is measured for the unordered collection of
error rates. Ck denotes a generic constant depending on k.
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sample complexity scales as ϵ−2, which is dimension-
independent and coincides with the rate of decay of the
traditional central limit theorem. The same sample com-
plexity is achievable for estimating the XEB under the
white noise model (1) [1], and is enabled by the fact
that the matrix Π can be accurately estimated when m
is so large. On the other hand, when m < d, although
the matrix Π is not consistently estimable, the parame-
ter vector c can be consistently estimated so long as the
product nm exceeds the Hilbert space dimension d. As
described above, this product scaling can be interpreted
via the birthday paradox.

Theorem 1 also sharply characterizes the dependence
of the sample complexity on the number of errors k.
When k is large, we find that the sample complexity
merely degrades logarithmically in k, at the price of
a quadratically slower dependence on the accuracy pa-
rameter ϵ. In particular, Theorem 1 implies that when
nm > d log k, one can estimate a number of errors which
is comparable to the Hilbert space dimension.

Theorem 1 also indicates that the minimax risk ap-
proaches a nondecreasing rate of convergence when the
amount of side information approaches zero. This is
perhaps unsurprising since the parameters ci are only
uniquely defined up to ordering in the absence of side in-
formation. Remarkably, however, our next result shows
that it is still possible to estimate the unlabeled entries
of c with a number of samples that scales sublinearly in
d. In what follows, we denote by M<(n, d, k,m) the un-
labeled minimax risk, namely the smallest real number
ϵ ∈ (0, 1) for which there exists an estimator ĉ such that
for any c ∈ ∆, one has

min
σ∈Sk

(
k∑
i=1

|ĉσ(i) − ci|2
) 1

2

≤ ϵ,

where Sk is the set of permutations on [k]. The following
result sharply characterizes the unlabeled minimax risk
when k is held fixed.

Theorem 2. Under conditions (PT) and (S), we have

M<(n, d, k,m) ≍k,γ
1√
n
·


√
d1−

1
k , 0 ≤ m < d1/k,√

d/m, d1/k ≤ m < d,

1, d ≤ m <∞.

Theorem 2 shows that, even in the absence of side
information, the ordered vector c can be consistently re-

covered when n ≥ d
k−1
k . Although this rate degrades

exponentially in the system size, its exponent is sublin-
ear, contrary to tomographic methods which typically
suffer from superlinear exponents for recovery of the full
underlying quantum state ρ [75]. This gap can make
a significant difference in practice; for instance, if one
adopts a two-component model with k = 2, akin to the
white noise model (1), then Theorem 2 shows that the

fidelity can be recovered with only
√
d samples, without

any information about the bitstring distributions π1 and
π2. This observation is consistent with the past work

of [11], which indicated that the second moment of c can

be recovered with
√
d samples.

It would be natural to expect that any amount of side
information m would improve the sample complexity be-
yond the m = 0 case, however Theorem 2 surprisingly
shows that this is not the case: the sample complexity
remains constant for all m ≤ d1/k. Beyond this point,
however, a phase transition occurs, and the sample com-
plexity improves linearly with the amount of side infor-
mation, scaling analogously as in the case of Theorem 1.

In the regime m < d1/k, the lower bound of Theo-
rem 2 is achieved by error vectors c which are close to
being uniform. Remarkably, it turns out that faster rates
of convergence are achievable when some of the entries
of c are separated from each other. We make this fact
precise in Appendix B 3 a, where we show that the error
of estimating c improves as a function of the separation
between its entries. We highlight here an implication of
this result for fidelity estimation. In what follows, we
denote by c(1) ≥ · · · ≥ c(k) the sorted entries of c, and
we interpret F := c(1) as the fidelity.

Proposition 1. Let conditions (PT) and (S) hold with

m = 0, and fix δ > 0. Then, there exists an estimator F̂
such that for any c ∈ ∆k with c(1) > c(2) + δ, we have

Ec
∣∣F̂ − F

∣∣ ≤ C

√
dk−1

nk
,

for a constant C > 0 depending only on δ, k, γ.

This result is achieved by taking F̂ to be the largest en-
try of the moment estimator described in Section III B 3,
and does not rely on knowledge of δ. This highlights an
important property of the moment estimator: it can es-
timate the fidelity more accurately than the other entries
of c. This estimator does so adaptively, without requiring
assumptions of c or modification of the algorithm itself.
To see this, if we heuristically set γ = 0 and take n to be
on the same order as d (i.e. where estimation in regime C
is feasible), then, absent any side information, the whole
vector c is estimable at the rate n−1/2k—which degrades
exponentially in k—whereas its largest entry is estimable
at the faster rate n−1/2, whenever it is δ-separated from
the remaining entries. While the required exponential
samples with system size currently limits this to a theo-
retical result, it hints at the possibility of practical esti-
mators with similar properties.

IV. SIMULATION STUDY

To demonstrate the utility of our methods, we ana-
lyze synthetic data in two distinct scenarios. On the
one hand, we consider Regime A where Π is classically
computed, and estimate c with the maximum likelihood
estimator (13). On the other hand, we consider Regime
B where Π is only available through side-information, in
which case we use the variational estimator (16). We
additionally report simulations for Regime C in Ap-
pendix B.
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Figure 2. Learning time-dependent error rates. With synthetic data, we demonstrate the use of our protocol to learn about
errors that grow over time. (a)(b)(c) We simulate a N = 18 one-dimensional brickwork random circuit subject to single-site
X,Y, Z Pauli errors, whose error rates (per qubit, per layer) grow from 2.5× 10−4 in the first layer to 10−3 in the last layer.
In order to simulate utility-scale circuits of different system sizes, we also set circuit depth equal to the system size while
reducing the per-layer error rates such that the total fidelity is fixed at F ≈ 0.5. (a) Upper panel: the ground truth values
of the error rates at each spacetime location. Lower panel: estimated error rates with n = 107 RCS samples and perfect side
information (i.e., m = ∞). (b) By averaging over qubits, only 106 samples are required to learn the increasing rate with
high precision. The blue bars indicate the ground truth; red diamonds mark the estimated error rate, and the shaded red
line indicates an extracted rate of error growth (a linear fit to the red diamonds). A non-zero linear fit gradient indicates
increasing error rates. (c) Model validation between time-dependent and time-independent error models. To ensure that
the learned time-dependence is statistically significant, we compare the extracted gradient (vertical dashed line) against the
distribution of gradients learned under the null hypothesis of time-independent error rates, obtained via parametric bootstrap
(Appendix H). The histogram of such gradients provides a confidence interval and p-values for time-dependent errors: 105 and
106 samples (indicated in green and blue respectively) are sufficient to learn the error rate growth with statistical significance.
(d) System-size dependence of the sample complexity for model validation. As the system size increases, although the Hilbert
space dimension increases exponentially (dashed line), the required sample size for model validation grows only polynomially
with system size (orange circles). This sample complexity is defined as the number of RCS samples required to discriminate
between a fixed rate of error growth and no error growth with 5σ significance. With increasing system size, classical simulation
will not be feasible. In addition, we simulate the case of incomplete side-information (purple triangles) where m = n, i.e. the
number of side-information samples (per error component) is the same as the number of RCS samples. The sample complexity
does not differ significantly between the two cases.

A. Learning time-dependent errors

We first showcase the use of our technique to detect
the presence of time-dependent error rates. Such time-
dependence can exist in various quantum platforms due
to distinct physical reasons, including non-Markovian
noise [76], burst errors [77], and atomic heating in an
optical tweezer [78]. To this end, we numerically sim-
ulate a depth-16 circuit of a one-dimensional N = 18
qubit chain. We perform a circuit-level noise simula-
tion with a random quantum circuit. At every layer and
every qubit, we inject Pauli X,Y and Z single qubit
errors with space- and time-dependent probabilities c,
corresponding to single-qubit Pauli channels with vary-
ing rates.

In this simulation, we set the average single-qubit er-
ror rates to grow by a factor of 4 over the course of the
entire circuit (see Appendix H). Our estimators success-
fully extract the individual time-dependent error rates
(Fig. 2a) with 107 samples, within the ability of the ex-
isting state-of-the-art quantum platforms. Since our aim
is to study whether the error rate increases over time, we
also perform a statistical test for the null hypothesis that
the error rate is constant across layers, which in princi-

ple should require fewer samples. This indeed turns out
to be the case: the null hypothesis can be rejected with
approximately 105 samples at level 0.95 (Fig. 2c), and
with overwhelming significance when the sample size is
of order 106.
For this system size, 105 samples is comparable to the

Hilbert space dimension 218 = 262 144. However, we find
that the number of samples required for this hypothesis
test grows slowly with system size, and we expect it to
be far below the Hilbert space dimension for systems of
sizes N > 20 (Fig. 2d).

B. Learning correlated errors

We also demonstrate the detection of weak correlated
errors, such as two-qubit correlated X errors (Fig. 3a)
and multi-qubit XX · · ·X errors along a row or column
of qubits in a 2D geometry (Fig. 3b). Such errors may
occur, for example, due to qubit crosstalk [79, 80] or
control-line or readout multiplexing [81] and are funda-
mentally inaccessible to calibration experiments on iso-
lated subsets of qubits. Despite these errors being weak
(respectively 0.2% and 0.1%), 107 samples suffice to de-
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Figure 3. Reconstructing correlated errors from synthetic
data simulated for a 4× 5, depth-5 circuit. We consider two
types of correlated error: (a) two-qubit XX errors, or (b)
multi-qubit XX · · ·X errors along one row or one column
to simulate errors induced along a shared control line. In
both settings, we also include time-independent single-site
Pauli errors at every qubit with a rate 2× 10−3, chosen such
that the total many-body fidelity is F ≈ 0.5. (a) We learn
the rates (averaged over layers) of two-qubit errors XuXv for
all pairs of qubits simultaneously and represent them on a
2D plot: specifically the correlated error rates cu.v − cucv,
which subtracts the expected two-qubit error rates from in-
dependent single-qubit errors on qubits u and v. We refer to
this difference as the correlated error rates. Upper left half:
ground truth: two qubits, highlighted in the inset, experience
correlated XX errors at a rate of 10−3 per layer. Lower right
half: extracted error rates from 107 samples correctly identify
the correlated pair. (b) We also learn the rates of correlated
errors on all the qubits in the same row or column. Blue bars:
ground truth where one row and one column (inset) experi-
ence correlated errors. Red diamonds: extracted error rates.
Again, 107 samples are sufficient to reliably learn about cor-
related errors.

tect them. Note also that our method does not depend
on geometric locality, and is able to detect correlations
between spatially separated qubits.

V. ANALYSIS OF EXPERIMENTAL RCS DATA

Finally, we apply our method to the Google Quantum
AI random circuit sampling (RCS) data from Ref. [1].
In this experiment, random quantum circuits with sizes
ranging from N = 12 to N = 53 were executed on a 2D
grid. The dataset, which is publicly available, contains
ten random circuit realizations per system size N and
500,000 measurement outcomes per circuit.

We perform exact simulations of random circuits up
to system size N = 18, incorporating a variety of error
mechanisms at each spacetime location. We specifically
consider several sources of error: state-preparation er-
rors, single-qubit dephasing errors, two-qubit controlled-
Z dephasing and flip-flop (|01⟩⟨10| + |10⟩⟨01|) errors
which may arise due to dressing by higher transmon lev-
els, and readout errors which may be biased, i.e. have un-
equal error rates between 1 → 0 and 0 → 1 processes [1],
for a total of k = 461 distinct errors. Errors near the
beginning and the end of the circuit are correlated not

only with other errors, but with the ideal state. There-
fore to simplify our first analysis, we only simulate errors
beyond the first and last three layers, i.e. the middle 8
circuit layers, see Appendix I for details.

Using our estimator (13) on publicly-available RCS
data from Ref. [1], we extract physical error rates asso-
ciated with each of the above sources across spacetime
locations in the circuit. The results are summarized in
Fig. 4: the data is highly rich and can be examined
along multiple axes, including its behavior over space,
time, and its magnitudes resolved by error type and loca-
tion. Since 1 → 0 readout errors are a dominant process
and their calibration values were reported in Fig. S24 of
Ref. [1], we compare our learned values against reported
values. We find similar average values of readout error,
but slightly different qubit-to-qubit values. This could
be due to the fact that readout error rates differ when
the qubits were individually read out as opposed to si-
multaneously read out [1]. Meanwhile, the data sets we
consider lie between both extremes: approximately half
the qubits are simultaneously read out.

Physically-realistic error sources introduce system-
atic deviations from the i.i.d. Porter-Thomas assump-
tion (PT) in several ways. As a result, one cannot di-
rectly equate the many-body fidelity to the coefficient c1.
We develop a theory for converting the learned rates c
into physically meaningful quantities such as the many-
body fidelity and the physical per-qubit, per-layer error
rate, detailed in Appendix I 2. We summarize the depen-
dence of the error rates over time and over qubits: er-
ror rates exhibit inhomogeneity over qubits but remain
approximately constant across time, with larger state-
preparation and readout errors at the initial and final
circuit layers, respectively. Our estimates are consistent
across the ten random circuit realizations analyzed, with
reproducible trends being observed.

The orders of magnitude of the learned error rates
in the bulk of the circuit agree with reported values of
two-qubit gate errors, with a physical error rate (com-
bined over 1q dephasing, 2q dephasing and 2q flip-flop)
of 0.010(2) per qubit per layer, c.f. the reported mean
two-qubit cycle benchmarking error rate of 0.0093(4)
(Fig. 2 of Ref. [1]). Note that our ‘1q’ and ‘2q’ error
sources refer to errors that can be expressed in terms
of single- and two-qubit operators, and are not able to
distinguish whether these come from single or two-qubit
gates: this may be addressed with more careful position-
ing of errors in the circuit sequence [Fig. 4(d)].

We also investigate correlated readout errors by learn-
ing the rates of readout errors occurring on two (po-
tentially distant) qubits simultaneously. While we see
a large number of correlations which may be due to
statistical noise, we also observe a certain directional-
dependence even of non-local correlated readout errors.
These may arise, for example from multiplexed qubit
readout lines [1].

Finally, we find that our learning procedure is remark-
ably robust. Even if our k-component model does not
specify all sources of error, the error rates for the com-
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Figure 4. Analysis of experimental RCS data. We apply our methods to study the publicly-available RCS data from Ref. [1],
results here shown for N = 18. Using the MLE, we resolve different types of errors in many spacetime locations. We simulate
state-preparation, single-qubit (1q) dephasing errors, two-qubit (2q) gate dephasing and flip-flop errors, and single and double
readout errors (full details in App. I), for a total of k = 461 total errors. (a) We summarize the combined contributions
of each error type. Quoted values and error bars indicate the sample mean and its standard error over 10 random circuits.
Modeled errors account for 68% of the total weight: a remaining 32% weight is fitted to the white noise term representing
errors outside our model such as multiple errors, consistent with expectations for this fidelity value (App. I). Note that the
rate of 1q dephasing errors we learn here are the rates of errors that can be described as single-qubit Zj operators: these errors
may also arise from two-qubit gates, and hence the proportion of 1q and 2q errors here are comparable, even though we expect
them to primarily arise from two-qubit gates. (b) Converting the results of our benchmarking report into a many-body fidelity
(App. I 2) yields results in close quantitative agreement with the XEB fidelity. (c) Learned error rates show considerable
variation among qubits, in a consistent fashion over random circuit realizations. We plot the total rates of the 2q dephasing
and flip-flop errors on nearest neighbors, indicated by the color of the red links. We also plot the single-qubit dephasing
error rates, indicated by the size and color of each qubit. Qubits are arranged according to their physical layout on the device
(borders and unused qubits for the N = 18 dataset in gray). The magnitude of learned error rates is consistent between system
size, random circuit agreement, and their sum over error channels is consistent with Ref. [1] (main text). (d) Our procedure
also yields time-resolved error rates, revealing approximately time-independent errors in the middle of the circuit. 1 → 0
readout errors were found to be the largest type of error. Above, we depict the positioning of our modeled errors in the circuit:
in the ideal circuit, a single “layer” consists of four gates applied to each qubit, and we insert errors at layers in the circuit.
Errors inserted near the start and end of the circuit have unusual properties, and we omit errors in the first and last three
layers (gray regions) to avoid additional complications (see App. I 2). (e) We explicitly compare our estimated rates (points)
of readout errors with those reported in Ref. [1] (dashed lines). The average rates of readout errors are quantitatively similar,
with deviations on certain qubits: these may arise from the fact that only a subset of qubits are simultaneously measured,
which may hence experience error rates different from when all qubits are simultaneously read out (Fig. S24 of Ref. [1]). Error
bars indicate standard error over 10 random circuits. (f) Learning correlated readout errors: We estimate the physical error
rate γ̂ij of double readout errors on qubits i and j, and compare it to the rates of independent errors γ̂i, γ̂j : their difference
γ̂ij − γ̂iγ̂j quantify correlated readout errors. We indicate these correlations with the thickness and colors of lines between all
pairs of qubits i and j. These correlations can be as large as a 1% rate, although typical values are closer to 0.2%. We see
correlations between many pairs of qubits, with stronger correlations (surprisingly negative) between nearest neighbors as well
as along the diagonals. We summarize these with a polar plot of the root-mean-squared (RMS) correlations averaged along
each direction. Note that this is an average over qubit pairs with a given orientation, ignoring their separation, and not simply
a sum, which would weight certain directions over others because of the different number of qubit pairs for each orientation.

ponents that are modeled have estimated values that are
stable to the presence or absence of other components in
the model. This is illustrated in the close agreement be-
tween the XEB fidelity and the fidelity estimated by our

protocol in Fig. 4(b), which holds true for other quan-
tities as well, such as the fractions of each error com-
ponent in Fig. 4(a). To a large extent, this is because
of the approximate orthogonality of the components πi,
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which implies that estimators such as ĉXEB
i are accurate.

Such estimators estimate each component without refer-
ence to the other components of the model and hence are
inherently robust to this type of misspecification. How-
ever, in our error model in this section, components are
non-orthogonal (App. I 2 a) yet our protocol retains this
stability. Indeed, such stability is the operating principle
behind the XEB: knowledge of the error processes are
not required to estimate the many-body fidelity. This
enables refining our error models hierarchically by sys-
tematically adding error sources according to expected
significance, up to a desired level of precision.

VI. OUTLOOK

Our work demonstrates the utility of novel data pro-
cessing methods to extract detailed information from
random unitary circuits. These have become an in-
dustry standard for benchmarking quantum devices, for
which many existing datasets are publicly available. Our
methods pave the way to a more accurate understand-
ing of the errors that quantum computers experience,
which come in many forms, often unexpected. We antic-
ipate further extensions of our methods not only to learn
about errors, but also to sense unknown, complicated sig-
nals [45]. We also anticipate possible applications of our
methods to basic science experiments, to learn about the
properties of possibly exotic states prepared on a quan-
tum computer [82].

From a statistical lens, the quantum information set-
ting poses a unique set of new challenges for statisti-
cians: its discrete data in the form of bitstring counts
differs from traditional physics experiments involving
continuous-variable data, and its high dimensionality
means that each individual measurement reveals little
about the underlying distribution. In our setting, we
also encountered a synergistic dual role of randomness in
the quantum circuit: random quantum circuits are hard
to classically simulate and serves as a task that sepa-
rates classical from quantum computers. However, they

also have many typical properties which we exploit, and
which led us to study a new family of high-dimensional
latent variable models.

We anticipate that our methods developed in the set-
ting of partial side information generalize to cases when
the reference quantum computer is noisy. In the mean-
time, however, our methods are still applicable when
clean side information samples can be obtained using
quantum error detection [3] or error correction meth-
ods [6, 9].

Our results point to the broader relevance of high-
dimensional statistical methods in quantum computing.
The data produced by quantum devices are inherently
high-dimensional, and the number of accessible samples
is often far smaller than the dimension of the underly-
ing Hilbert space. This imbalance makes quantum data
analysis a natural arena for ideas from high-dimensional
inference. We anticipate not only the fruitful applica-
tion of existing tools—such as those introduced in early
pioneering work on compressed-sensing-based quantum
state tomography [83]—but also the development of new
statistical frameworks tailored to the distinct structure
and constraints of quantum computing.
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[141] B. Collins and P. Śniady, Integration with respect to
the haar measure on unitary, orthogonal and symplectic
group, Communications in Mathematical Physics 264,
773 (2006).

[142] Y. Bao, S. Choi, and E. Altman, Theory of the phase
transition in random unitary circuits with measure-
ments, Phys. Rev. B 101, 104301 (2020).

[143] J. Acharya, A. Orlitsky, A. T. Suresh, and H. Tyagi, Es-
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Appendix A: Notation

Throughout the manuscript, we adopt the following notation.

• Given a vector x ∈ Rd, ∥x∥p denotes the ℓp norm of x, and ∥x∥ denotes its ℓ2 norm
when no subscript is specified.

• Given a, b ∈ R, we write a ∧ b = min{a, b}, a ∨ b = max{a, b}, and (a)+ = max{0, a}.

• For any matrix Π, ∥Π∥ denotes its Frobenius norm, and Π·j and Πi· denote its j-th
column and i-th row, respectively.

• For any two vectors c, c′ ∈ Ck, we write

W (c, c′) = inf
σ∈Sk

(
k∑
i=1

|cσ(i) − c′i|2
)|frac.12

,

where the infimum is over the permutation group Sk on [k].

• ∆k denotes the (k − 1)-dimensional simplex, namely the set of vectors x ∈ Rk with
nonnegative entries such that ∥x∥1 = 1. Furthermore, given 1 ≤ k0 ≤ k, ∆k,k0 denotes
the set of all elements c ∈ ∆k which have exactly k0 distinct entries.

• Let N = {1, 2, . . . } and N0 = {0, 1, . . . }. For integers m, r ∈ N, we denote the r-th
falling factorial of m by (m)r = m(m− 1) . . . (m− r + 1).

• Given a random variable X, its r-th moment and cumulant (when they exist) are
denoted by mr(X) and κr(X) respectively. By abuse of notation, also abbreviate
these quantities by mr(f) and κr(f) when f is the distribution or density of X. We

abuse notation by writing mα(x) =
∑k
i=1 x

α
i for any x ∈ Rk.

• We denote by I(A) the indicator function of a set A, and by δi,j = I(i = j) the
Kronecker delta function.



20

• We denote by Ed the Porter-Thomas or exponential distribution with parameter d,
and we use the abbreviation Ekd ≡ E⊗k

d for its k-fold product distribution. That is,

dEkd (ϖ) := dk exp (d∥ϖ∥1) dϖ, ϖ ∈ Rk+.

We also abbreviate by Dd the flat Dirichlet (i.e. uniform) distribution over ∆d. We
abbreviate by Mult(n; p1, . . . , pd) the multinomial distribution with n trials, d cate-
gories, and success probabilities (p1, . . . , pd) ∈ ∆d. Furthermore, Poi(λ) denotes the
Poisson distribution with intensity parameter λ > 0, and Gamma(α, λ) denoted the
Gamma distribution with shape parameter α > 0 and rate parameter λ > 0 (its mean
is α/λ).

• For a random variable V and α ∈ (0, 2), we define the Orlicz norm of V by

∥V ∥ψα = inf
{
η > 0 : E

[
e(|V |/η)α] ≤ 2

}
. (A1)

• Given two sequences of nonnegative real numbers (an)
∞
n=1 and (bn)

∞
n=1, we write an ≲

bn if there exists a constant C > 0 such that an ≤ Cbn for all n ≥ 1, and we write
an ≍ bn if an ≲ bn ≲ an. Throughout the manuscript, the constant C may always
depend on the parameter γ arising in condition (S). In some cases, when it is clear
from context, the constant C may also depend on k, or other problem parameters.

• We define the hard- and soft-thresholding functions, with a parameter λ > 0, for all
x ∈ Rd, by

Hλ(x) =

{
x, |x| ≥ λ,

0, |x| ≤ λ,
Sλ(x) = sign(x) ·max{|x| − λ, 0}. (A2)

• Given two probability measures P and Q, admitting densities f and g with respect to a
σ-finite dominating measure ν, we make use of the standard statistical divergences: the
total variation distance TV(P,Q) = 1

2

∫
|f − g|dν, the Hellinger distance H2(P,Q) =∫

(
√
f −√

g)2dν, the Kullback-Leibler divergence KL(P∥Q) =
∫
log(f/g)fdν, and the

χ2-divergence χ2(P∥Q) =
∫ (f−g)2

g dν. If J is a joint distribution of P and Q, then its

mutual information is denoted by I(X;Y ) = KL(P ⊗ Q∥J) for (X,Y ) ∼ J . If X is
discrete, then H(X) = −E[log f(X)] denotes the Shannon entropy of P .

Appendix B: Comparison of Estimators

In this Appendix, we expand on our discussion from Section III B, and discuss various
estimators for the parameter vector c = (c1, . . . , ck) in Regimes A–C.

Let us begin by recalling our statistical model. Let Π = (πij) ∈ Rk×d be a random matrix
whose rows belong to the simplex ∆d. Under condition (PT), the rows of Π are i.i.d., and
distributed according to the uniform distribution over ∆d, also known as the flat Dirichlet
law Dd. Although Π is assumed to satisfy condition (PT) for our theoretical results, this
condition is not required for all estimators below. Under this known marginal distribution
of Π, we adopt the sampling model put forth in Section III: Given an unknown error vector
c ∈ ∆k, one draws conditionally independent observations of the form

Z1, . . . , Zn
∣∣Π ∼

d∑
j=1

(Π⊤
·jc)δzj
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Wi1, . . . ,Wim

∣∣Π ∼
d∑
j=1

πijδzj , i = 1, . . . , k,

where zj ∈ {0, 1}N denotes the binary enumeration of the integer j, and d = 2N . Fur-
thermore, let Yj :=

∑n
ℓ=1 I(Zℓ = zj) and Vij :=

∑m
ℓ=1 I(Wiℓ = zj) denote the induced

histograms, for all i = 1, . . . , k and j = 1 . . . , d. Recall that we consider three regimes:

1. Regime A (m = ∞): The user observes Z1, . . . , Zn and the matrix Π.

2. Regime B (0 < m <∞): The user observes Z1, . . . , Zn and W11, . . . ,Wkm.

3. Regime C (m = 0): The user merely observes Z1, . . . , Zn.

In the following subsections, we discuss several practical estimators for c in these three set-
tings, and connect them to existing statistical literature. We also report simulation studies
comparing the numerical performance of these estimators. Whenever possible, we state
upper bounds on their sample complexity. We begin with the simplest case of Regime A.

1. Regime A

In the simplest case m = ∞ where the matrix Π is known to the practitioner, our model
reduces to a multinomial generalized linear model with identity link function, in the sense
that the histogram Y satisfies the relation

Y ∼ Mult(n; Π⊤c). (B1)

Since the rows of Π ∈ Rk×d define probability mass functions with support size d, model (B1)
can also be interpreted as a mixture of known multinomial distributions with unknown
mixing weights. This is a well-studied model [69, 84–87] for which the most natural estimator
is, perhaps, the maximum likelihood estimator, which we describe below. Nevertheless, we
begin by detailing how the simple XEB estimator (11) arises in this model.

a. The XEB Estimator

Under a Poisson approximation of the multinomial distribution—which we will justify
in the next section—one can think of the histogram entries Yj as being approximately
independent, and distributed as

Yj ∼ Poi(nΠ⊤
·jc), j = 1, . . . , d. (B2)

Under this approximation, one has

Y = nΠ⊤c+ ϵ, (B3)

where, conditionally on Π, ϵ is a vector with independent and mean-zero entries satisfying
Cov[ϵ|Π] = diag(nΠ⊤c). This defines a linear regression model with heteroscedastic errors.
Under condition (PT), the marginal covariance of ϵ is simply Cov[ϵ] = nId/d, which is
homoscedastic, and is of the same order of magnitude as the entries of Π. Therefore, if one’s
goal is to obtain an estimator which performs well unconditionally—on average over Π—one
possible approach to estimating c is to fit the ordinary least-squares estimator of c, which
ignores the heteroscedastic nature of the problem,

ĉOLS = argmin
x∈Rd

∥Y − nΠ⊤x∥22 = (ΠΠ⊤)−1ΠY/n. (B4)
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One can also restrict the minimization to the natural parameter space ∆k of c, and such a
restriction has regularization advantages which we describe below, but no longer admits a
closed form. Under condition (PT) and for large values of d, the matrix ΠΠ⊤ concentrates
rapidly around its mean value, which is well-approximated by the matrix

A = (Ik + 1k1
⊤
k )/d.

Thus, an even simpler estimator of c is given by

A−1ΠY/n =
d

n

(
ΠY − 1⊤

k ΠY

k + 1
1k

)
. (B5)

Up to centering, this approximation of the least-squares estimator is similar to that arising
in linear regression with orthogonal design matrices [88]. The XEB estimator (11),

ĉXEB = (d/n)ΠY − 1k (B6)

can now be understood as a variant of equation (B5) in which the second term is simply
approximated by 1k—an approximation which can be justified when d is large using the
fact that the mean of Y is nΠ⊤c with 1⊤

k c = 1.
As we have already indicated, the XEB estimator can be improved when k is large via its

hard- or soft-thresholded counterparts:

ĉXHT = Hλ(ĉ
XEB), ĉXST = Sλ(ĉXEB). (B7)

Here, λ > 0 is a tuning parameter, and Hλ,Sλ denote the thresholding functions defined
in equation (A2). Once again, these estimators are similar in spirit to hard- and soft-
thresholding estimators in linear regression models with orthogonal design matrix [65, 88].
In our context, they satisfy the following upper bound.

Proposition 2. Under condition (PT), there exists a universal constant C > 0 such that
for all 1 ≤ k, n ≤ d, there exists λ ≥ 0 such that

sup
c∈∆k

Ec∥ĉXHT − c∥2 ≤ C ·min
{
(k/n)1/2, (log k/n)1/4

}
.

Proposition 2 is a special case of upper bounds for Regime B which we will develop in the
next section, thus we leave it without explicit proof. It is worth emphasizing that Propo-
sition 2 exhibits the same convergence rate as typically seen in ℓ1-sparse linear regression
problems [66, 67]. This is perhaps surprising, since the heteroscedastic nature of multi-
nomial regression problems can alter the minimax estimation rate, as we shall see in our
discussion of likelihood estimators below. However, one of the implicit observations in our
upper and lower bounds is the fact that, under condition (PT), the heterosedasticity of
our model is sufficiently mild for it to behave like a homoscedastic model. This observation
is what allows us to establish the minimax optimality of simple estimators, like the (regu-
larized) XEB estimator, which have the advantage of being computable in closed-form—an
important benefit for large-scale quantum computing problems where d grows exponentially
with system size. Let us emphasize that the work of [68] also found regularized least squares
estimators to be minimax-optimal in ℓ1-constrained Poisson regression problems.

b. The Maximum Likelihood Estimator

Although the XEB estimator is minimax optimal and simple to compute, it relies heavily
on the Porter-Thomas assumption (PT). We have observed some deviations from this as-
sumption in our real data analysis. An alternative estimator for Regime A which does not
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rely on this assumption is the maximum likelihood estimator (MLE), defined by

ĉMLE = argmax
x∈∆k

d∑
j=1

Yj log
(
Π⊤

·jx
)
. (B8)

Unlike the XEB estimator, this optimization problem does not enjoy a closed form, but is
nevertheless concave and can be computed using standard solvers. It also has the practical
advantage of being free of tuning parameters, unlike our thresholded XEB estimators.
Several theoretical properties of the MLE have been investigated by Bing et al. [69] in the

context of topic modeling (a framework which we discuss further in Appendix B 3 a). One
of their remarkable findings is the fact that the MLE can identify the sparsity pattern of the
error vector c without any explicit regularization. Concretely, under some conditions, they
show that with probability tending to one,

supp(ĉMLE) ⊆ supp(c),

cf. [69, Theorem 5]. In our context, this property implies that if one specifies a conservative
number of candidate errors k, many of which may not be present in a quantum device at
hand, then the MLE is unlikely to assign a positive error rate to any of these non-existent
errors. Although this result relies on conditions which are only met in our setting in the
unrealistic case n≫ d, it nevertheless hints at an important practical property of the MLE.
Bing et al. [69] also derive ℓ1 sample complexity upper bounds for the MLE. Staying again

with the condition n≫ d, a special case of their results can be informally stated as

E∥ĉMLE − c∥1 ≲ min

{
κ−2

√
ρ log k

n
, κ−1

√
k

n

}
, (B9)

where2

κ = min
v∈Rk

∥Π⊤v∥1
∥v∥1

, ρ = max
1≤j≤d

∥Πj·∥∞
Π⊤

·jc
. (B10)

The quantity κ is an ℓ1 analogue of the minimal singular value of the matrix Π. Under
condition (PT) and k = o(d), a simple derivation shows that κ scales as k−1/2 up to
logarithmic factors, with high probability. Furthermore, ρ is typically of constant order in
our setting. Therefore, equation (B9) shows that the MLE achieves the ℓ1 convergence rate
k/

√
n. This rate is consistent with that of Proposition 2 when translated from the ℓ2 to

ℓ1 norm. We expect that the MLE can also be shown to achieve the optimal convergence
rate in the realistic regime where d is arbitrarily large—and related results can already be
deduced for instance from the work of [89]—but we leave a careful analysis of this problem
to future work.

c. Numerical Comparison in Regime A

We provide a brief numerical comparison of the five estimators discussed in the preceding
subsections: the maximum likelihood estimator (B8), the least squares estimator (B4),
the simplex-constrained least squares estimator, the XEB estimator (B6), and the hard-
thresholded XEB estimator (B7). For the latter estimator, we choose the tuning parameter
λ via two-fold cross-validation [90]. We apply these estimators to two different models:

2 We state the results of [69] in the special case where, in their notation, J = [d] and J = [d]. These
assumptions hold in our setting with high probability when n≫ d.
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Fig. S1. Sample complexity of various estimators in regime A. For each panel, from the lightest
to the darkest, k is chosen from {46, 181, 721}. For the top (bottom) row, the matrix Π is taken
from the Dirichlet distribution (simulating random unitary circuits). Inset for XEB-TH: zoom-in

of the regime with small sample sizes to highlight the n−1/4 scaling. Each data point is obtained
by averaging over at least 10 repetitions of simulation.

1. The rows of Π are drawn independently and uniformly from ∆d (i.e. assumption (PT)
holds).

2. The rows of Π are obtained from numerical simulation of a one-dimensional brick-
layer quantum random circuit. In particular, the first row of Π corresponds to perfect
simulation of one specific instance of the random circuit. Each of the other rows
corresponds to one single Pauli error occurring in the circuit. Different rows correspond
to different Pauli errors (either occurring on different qubits or at different layers of
the circuit).

For both models, we choose the Hilbert space dimension as d = 216 = 65, 536, and the
number of errors k from {46, 181, 721}. Recall that the first entry of c should be thought of
as the fidelity of the device—representing the probability of noiseless execution. We always
set this entry to 0.5; the remaining k− 1 entries correspond to the probabilities of different
errors occurring in the circuit, and we sample them from a uniform distribution on ∆k−1.

The ℓ2 errors of these estimators are summarized in Fig. S1 as a function of the sample
size. A few important remarks are in order. First, the MLE, regularized XEB, and simplex-
constrained least squares estimators all exhibit two regimes of estimation error. When
the sample size n is relatively small, the ℓ2 error appears to be almost independent of k,
and improves roughly as n−1/4, whereas for large n, the ℓ2 error becomes linear in k and
scales as n−1/2; these scalings are consistent with Proposition 3. Second, the performance
of the XEB estimators plateaus in the unrealistic regime n > d, which is to be expected
from its derivation. This effect is more severe in the brick-layer model, which suffers from
slight dependence among the row vectors in the Π matrix. Third, for the unregularized
estimators (XEB and least squares), the ℓ2 error always increases linearly in k. Finally, we
find that even in realistic circuits, the MLE does not outperform the other estimators by an
appreciable margin, even though it accounts for the mild heteroscedasticity of the model.
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2. Regime B

When the amount of side information m is finite but nonzero, our problem can be
interpreted as an errors-in-variables [91] multinomial regression problem, in which the
matrix Π is unknown, but noisy samples W from its rows are given. We consider three
estimators for this problem, which we discuss in turn.

a. The Collision Estimator

One of the benefits of the XEB estimator from the previous section is the fact that it is a
linear functional of Π. Therefore, this estimator can be adapted to Regime B by replacing
Π with its empirical counterpart, without incurring any bias. Concretely, by defining

Π̂ = V/m, i.e. Π̂ij =
1

m

m∑
r=1

I(Wir = j), i = 1, . . . , k, j = 1, . . . , d,

we arrive at the following counterpart of the XEB estimator, which was already presented
in equation (14):

ĉcoll = (d/n)Π̂Y − 1k, i.e. ĉcolli =
d

nm

n∑
ℓ=1

m∑
r=1

I(Zℓ =Wir)− 1, i = 1, . . . , k. (B11)

As before, we refer to this estimator as the collision estimator. We can also form regularized
variants of this estimator via thresholding:

ĉHT := Hλ(ĉ
coll), ĉST = Sλ(ĉcoll), (B12)

for some λ > 0. The following result shows that the hard-thresholding collision estimator
achieves the optimal sample complexity stated in Theorem 1.

Proposition 3 (Informal). There exists a universal constant C > 0 such that for all 1 ≤
n, k ≤ d, m ≥ 1, there exists λ ≥ 0 such that

sup
c∈∆k

E∥ĉHT − c∥2 ≤ C ·min

{(
dk

nmd

) 1
2

,

(
d log k

nmd

) 1
4

}
,

with md = min{m, d}.
A rigorous statement and proof of this result appears in Appendix E. As before, the

collision estimator has the advantage of being computationally efficient, and achieves
the minimax optimal rate of convergence, but has the downside of relying strongly on
condition (PT). We next develop an estimator which somewhat relaxes this assumption.

b. The Errors-in-Variables Estimator

Recall from the previous section that the XEB estimator can be understood as an ap-
proximation of the ordinary least squares estimator with an orthonormal design matrix Π
(up to centering). One way of generalizing the least squares estimator to Regime B is given
by the following estimator:

argmin
x∈Rk

{
x⊤AV x− 2

Y ⊤V ⊤x

m

}
= A−1

V

V Y

nm
, (B13)
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where AV is an unbiased estimator of ΠΠ⊤ based on the side information V . Again, one can
also regularize this estimator by restricting its feasible set to the simplex, at the expense of
losing the closed-form solution:

ĉEiV = argmin
x∈∆k

{
x⊤AV x− 2

Y ⊤V ⊤x

m

}
. (B14)

Variants of these estimators have previously appeared in the work of [92], where they were
motivated by the fact that their objective function is an unbiased estimator of the usual least
squares objective ∥Y − nΠ⊤γ∥22, up to addition of a constant that does not depend on γ.
Analogues of such estimators for Poissonian models have appeared in the works of [93, 94],
though are based on a log-link parametrization and do not easily extend to our setting.
A variety of matrices AV can be used in the definition of ĉEiV. When condition (PT)

happens to hold, one such estimator is given by

AV := E[ΠΠ⊤ |V ], i.e. (AV )iℓ = µ⊤
i µℓ +

(d+m)∥Vi· + 1∥1 − ∥Vi· + 1∥22
(d+m)2(d+m+ 1)

I(i = ℓ), (B15)

where µi = (Vi· + 1)/(d + m). Below, we will see that with this choice of AV , the
estimator (B14) achieves reasonable performance even on simulated random circuit data
where mild deviations from the Porter-Thomas assumption can occur.

c. The Variational Maximum Likelihood Estimator

Our third estimator in Regime B is the maximum likelihood estimator (MLE), which was
defined in equation (15). As discussed therein, the MLE is nonconvex in this problem, and
we proposed to approximate it by the fixed-point equation (16). The goal of this subsection
is to derive that approximation. In statistical terms, this fixed-point equation arises as the
limit of a mean-field variational expectation-maximization (EM) algorithm [95–97], and is
inspired by [70]. We develop it from first principles for completeness.
It will be convenient to rewrite the data generating distribution according to the fol-

lowing hierarchy: Given a matrix Π satisfying the Porter-Thomas assumption (PT), for
i = 1, . . . , k, ℓ = 1, . . . , n and r = 1, . . . ,m, we draw,

U cℓ ∼
∑k
i=1 ciδi, Zℓ | (U cℓ ,Π) ∼

∑d
j=1(πUc

ℓ j
)δzj , Wir |Π ∼

∑d
j=1 πijδzj .

That is, U cℓ ∈ {1, . . . , k} denotes a latent variable which indicates the category from which
bitstring Zℓ was drawn. In this notation, the likelihood function of c under Regime B can
be expressed as:

L(x) = EUx,Π

[
n∏
ℓ=1

πUx
ℓ Zℓ

·
m∏
r=1

k∏
i=1

πiWir

]
, x ∈ ∆k,

which depends on x only through the distribution of the vector Ux = (Uxℓ )
n
ℓ=1. The above

expression can be interpreted as the partition function of a classical physical system with
states Π, Ux, and Hamiltonian

H(Ux,Π|Z,W ) =

n∑
ℓ=1

log
(
πUx

ℓ Zℓ

)
+

m∑
r=1

k∑
i=1

log(πiWir
).

By the Gibbs variational principle, one can express the partition function via

logL(x) = sup
J

{
E(U,Π)∼J

[
H(U,Π|Z,W )

]
−KL

(
J ∥PUx,Π|Z,W

)}
, (B16)
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where PUx,Π|Z,W denotes the joint probability distribution of the latent variables Ux and
Π given the observables Z and W , and the supremum is taken over all probability distribu-
tions J on [k]n×∆k

d. This representation suggests approximating the intractable distribution
PUx,Π|Z,W by a tractable family of joint distributions. We will adopt a mean-field approxi-

mation, taking this family to consist of all independent joint distributions Jϕ on [k]n ×∆k
d,

whose first marginal is any discrete distribution ϕ ∈ ∆n
k , and whose second marginal is given

by the posterior law DW of Π given W ,

Π |W ∼ DW :=

k⊗
i=1

Dirichlet
(
1 + Vi1, . . . , 1 + Vid

)
, with Vij =

m∑
r=1

I(Wir = j).

That is, we will restrict the supremum in equation (B16) to the set of joint distributions of
the form

(U,Π) ∼ Jϕ =

( n⊗
ℓ=1

k∑
i=1

ϕiℓδi

)
⊗DW , ϕ ∈ ∆n

k .

This leads to the following lower bound on the partition function:

logL(x) ≥ sup
ϕ∈∆n

k

F(x, ϕ), x ∈ ∆k,

where F(x, ϕ) denotes the mean-field free entropy,

F(x, ϕ) = E(U,Π)∼Jϕ

[
H(U,Π|Z,W )

]
−KL

(
Jϕ ∥PUx,Π|Z,W

)
,

The variational EM algorithm consists of performing coordinate ascent on the mean-field free
entropy: Given initial values x(0) ∈ ∆k and ϕ(0) ∈ ∆n

k , we perform the following iterations
for all t = 0, 1, . . .

(a) ϕ(t+1) = argmaxϕ∈∆n
k
F(x(t), ϕ).

(b) x(t+1) = argmaxx∈∆k
F(x, ϕ(t+1)).

In order to derive the maxima in the above steps, notice first that the free entropy can be
rewritten as

F(x, ϕ) = E(U,Π)∼Jϕ

[
log pUx,Π,Z,W (U,Π, Z,W )

]
+H(Jϕ)− log pZ,W (Z,W ),

where H denotes the differential entropy of Jϕ, and the joint law of the random variables is
given, over their support, by

pUx,Π,Z,W (U,Π, Z,W ) =

n∏
ℓ=1

xUℓ
πUℓZℓ

·
k∏
i=1

m∏
r=1

πiWir
.

Letting “∝” denote equality up to additive constants not depending on x, ϕ, we deduce

F(x, ϕ) ∝
k∑
i=1

n∑
ℓ=1

ϕiℓEDV
[log(xiπiZℓ

)]−
k∑
i=1

n∑
ℓ=1

ϕiℓ log ϕiℓ

=

k∑
i=1

n∑
ℓ=1

ϕiℓ log
xi
ϕiℓ

+

k∑
i=1

n∑
ℓ=1

ϕiℓ
(
ψ(1 +WiZℓ

)− ψ(d+m)
)

∝
k∑
i=1

n∑
ℓ=1

ϕiℓ log

(
xi exp{ψ(1 +WiZℓ

)}
ϕiℓ

)
,
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where ψ denotes the di-gamma function, and the second line is obtained in closed form
using the fact that the marginal distribution of πij is Beta(1 +WiZℓ

, d − 1 +
∑
s̸=Zℓ

Wis).
By maximizing the above display with respect to each variable x and ϕ, we deduce that the
iterations (a) and (b) reduce to:

(a) ϕ
(t+1)
iℓ = x

(t)
i exp{ψ(1 +WiZℓ

)}/
∑k
r=1 x

(t)
r exp{ψ(1 +WrZℓ

)},

(b) x
(t+1)
i = 1

n

∑n
ℓ=1 ϕ

(t+1)
iℓ ,

for t = 0, 1, . . . These iterations simplify to

x
(t+1)
i =

x
(t)
i

n

n∑
ℓ=1

exp{ψ(1 +WiZℓ
)}∑k

r=1 x
(t)
r exp{ψ(1 +WrZℓ

)}
=
x
(t)
i

n

d∑
j=1

YjSij∑k
r=1 x

(t)
r Sij

, i = 1, . . . , k,

(B17)

where Sij = exp{ψ(1 + Vij)}. We refer to these iterates as the variational EM estimator.
These iterates converge precisely to a solution of the mean-field fixed-point equation

n =

d∑
j=1

YjSij∑k
r=1 Srjxr

, i = 1, . . . , k,

which completes our derivation of equation (16).
Algorithm (B17) has the well-known property of increasing the likelihood at each iteration,

in the sense that L(x(t+1)) ≥ L(x(t)) for all t ≥ 0. Nevertheless, this algorithm is not
guaranteed to converge to the maximum likelihood estimator, i.e. the global optimum
of L. In a closely-related statistical model known as latent Dirichlet allocation, which we
will discuss further below, it has recently been shown that the mean-field approximation
is negligible for computing Bayesian estimators when n = o(k) [98], however this analysis
corresponds most closely to our model with m = ∞. In contrast, we believe that the mean-
field approximation becomes very poor whenm is of lower order than n and d, as will become
clear in our numerical comparisons below. As we have already indicated, one avenue for
possible improvement of this algorithm is to optimize the Thouless-Anderson-Palmer free
entropy [71–73] instead of the mean-field free entropy. We intend to pursue this avenue in
future work.

d. Numerical Comparison in Regime B

We again analyze five different estimators in Regime B, which are counterparts to those
in Appendix B 1 c above: The variational EM estimator (B17), the error-in-variable least-
square estimators with and without the simplex constraint (B14), and the collision-based
estimators with and without hard-thresholding (B11)–(B12). We apply these estimators to
the same data as in Appendix B 1 c. This time, we fix the number of errors k = 46, and
vary the side information sample size m.
The ℓ2 errors of these estimators as a function of the sample size are summarized in Fig. S3.

Let us again make a few remarks. When m is sufficiently large (in particular, larger than
d), all estimators exhibit qualitatively similar performance as their counterparts in Regime
A. On the other hand, smaller values of m have two main impacts on the the ℓ2 error: 1)
They set a lower bound on the attainable ℓ2 error, 2) although the ℓ2 error still decreases as
n−1/2, the prefactor becomes larger (with a factor of d/m). These various observations are
consistent with our theoretical predictions in Proposition 3 and Theorem 1. Furthermore,
we observe several phenomena which parallel those of Regime A: 1) The various estimators
have comparable risks in most regimes, highlighting the fact that simple least squares-based
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Fig. S2. Sample complexity of various estimators in Regime B. For each panel, from the lightest to
the darkest, the side information sample size m is chosen from {104, 106, 108}. For the top (bottom)
row, the matrix Π is taken from the Dirichlet distribution (simulating random unitary circuits).
Each data point is obtained by averaging over at least 10 repetitions of simulation.

estimators do not lose much despite the heteroscedastic nature of the problem, and 2) The
collision estimators experience a plateau in performance when n exceeds d. The variational
EM estimator also experiences a pronounced plateau when m is small, which is likely due
to the poor approximation properties of the mean-field free entropy when m is small.

3. Regime C

Unlike Regimes A and B, which are connected to multinomial regression with measure-
ment error, Regime C is closer in spirit to latent variable or blind source separation models,
such as nonnegative matrix factorization [99], independent component analysis [100], latent
class analysis [101], and particularly topic models, which we discuss in further detail below.
Moment-based estimators are known to be information-theoretically optimal for many of
these problems (e.g. [102] and references therein). Inspired by this line of work, our focus
will be to derive a moment estimator for Regime C. We rely on assumption (PT) throughout
this subsection.

a. The Moment Estimator

Recall from equation (B2) that the histogram entries Yj are approximately indepen-

dent, conditionally on the latent variable Π, and approximately follow a Poi(n
∑k
i=1 ciπij)

distribution. Furthermore, as we recall in Lemma 26 below, the flat Dirichlet vector
Πi· = (πi1, . . . , πid) is equal in distribution to

Πi· =
(Xi1, . . . , Xid)∑d

j=1Xij

, i = 1, . . . , k,
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where Xij ∼ Ed are i.i.d. exponential random variables. When the dimension d is large, the
denominator in the above display concentrates rapidly around 1, and in this case one can
further approximate the histogram Y by a random vector Y which follows the distribution:

Y j |X ∼ Poi
(
n

k∑
i=1

ciXij

)
, j = 1, . . . , d.

Due to the independence of the rows of X = (Xij), the random variables Y j are
marginally i.i.d.:

Y j
i.i.d.∼ Qc =

∫
Rk

+

Poi(n⟨ϖ, c⟩)dE⊗k
d (ϖ), j = 1, . . . , d. (B18)

We will show in the following section that model (B18) is statistically indistinguishable from
the original model for Y , when the dimension d is sufficiently large. We will also show that
model (B18) is identifiable up to sorting the entries of c, in the sense that for any c, c̄ ∈ ∆k,
Q = Qc̄ implies thatW (c, c̄) = 0. Taking these facts for granted momentarily, we will derive
a moment-based estimator of c motivated by model (B18).
Since we only seek to estimate c up to permutation of its entries, it will suffice to derive

estimators for the first k moments of c, namely

m(c) =
(
m1(c), . . . ,mk(c)

)⊤
, with mp(c) =

k∑
i=1

cpi , p = 1, . . . , k.

These moments uniquely identify c up to permutation of its entries (cf. [74]), since the
polynomial

fc(z) =

k∏
i=1

(z − ci), z ∈ C,

is uniquely determined, on the one hand, by its set of roots {c1, . . . , ck}, and on the other
hand, by its moment vector m(c). This fact follows from Newton’s identities (recalled
in Appendix K2 a), which imply

fc(z) = zk +

k∑
j=1

(−1)jej(c)z
k−j , z ∈ C,

with e0(c) = 1, eℓ(c) =
k

ℓ

ℓ∑
j=1

(−1)j−1eℓ−j(c)mj(c), ℓ = 1, . . . , k.

Given estimators of the moments of c, say m̂1, . . . , m̂k, which we will define below, one can
now construct an estimator of c by forming an estimator of fc, and returning its k roots.
Concretely, define

ê0 = 1, êℓ =
k

ℓ

ℓ∑
j=1

(−1)j−1êℓ−jm̂j , ℓ = 1, . . . , k. (B19)

and define the fitted k-degree polynomial

f̂(z) = zk +

k∑
j=1

(−1)j êjz
k−j , z ∈ C.
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We then define a pilot estimator c̃ = (c̃1, . . . , c̃k) as the vector of k (possibly complex) roots

of f̂ , ordered arbitrarily. To obtain an estimator with real coordinates, we define our final
estimator by

ĉ =
(
Re(c̃1), . . . ,Re(c̃k)

)
. (B20)

We refer the above as the moment estimator for Regime C. In order to complete its
definition, we need to define the estimators m̂1, . . . , m̂k, which we turn to next.

Our starting point is inspired by the past works of [1, 11, 23, 32], which noted that
when k = 2, 3, the cumulants of the histogram are related to the moments of c. Let κp(X)
denote the p-th cumulant of any random variableX. Given independent exponential random

variables ϖ1, . . . , ϖk ∼ Ed, define the random variable θ =
∑k
i=1 ciϖi, and write ξp = κp(θ)

for any p ≥ 2. Recalling that cumulants are additive across sums of independent random
variables, we have

ξp =

k∑
i=1

cpi κp(ϖi) =
(p− 1)!

dp
mp(c). (B21)

Thus, to estimate the moment vector m(c) := (m1(c), . . . ,mk(c))
⊤, it suffices to estimate

the cumulant vector ξ = (ξ1, . . . , ξk)
⊤. To do so, we recall that the cumulants ξp = κp(θ)

are related to the moments ηp = E[θp] via

ξp =

p∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Bp,ℓ
(
η1, . . . , ηp−ℓ+1

)
, (B22)

where Bp,ℓ are the Bell polynomials (cf. Appendix K2 c), defined by

Bp,ℓ(x1, . . . , xp−ℓ+1) = p!
∑

(h1,...,hp−ℓ+1)∈Hp,ℓ

p−ℓ+1∏
i=1

xhi
i

(i!)hihi!
, (B23)

where Hp,ℓ consists of all tuples (h1, . . . , hp−ℓ+1) of nonnegative integers such that:

p−ℓ+1∑
i=1

hi = ℓ,

p−ℓ+1∑
i=1

ihi = p.

These expressions suggest that the cumulants ξp can be estimated by first estimating the
moments ηℓ, which in turn can be done using the classical unbiased estimators for a Poisson
model, given by

Tj,ℓ =

{
1/d, ℓ = 1,

Yj !
nℓ(Yj−ℓ)! , ℓ = 2, 3, . . .

Specifically, one has ηℓ = E[Tj,ℓ] for all ℓ = 1, 2, . . . . We can use these quantities to
build estimators for each term in the summations (B22)–(B23). To this end, given h ∈
Hp,ℓ, let Iℓ,h be the set of all tuples (S1, . . . , Sp−ℓ+1) consisting of pairwise disjoint sets
S1, . . . , Sp−ℓ+1 ⊆ {1, . . . , d} such that |Si| = hi for all i. Notice that some of the Si could
be empty, and that

∣∣⋃
i Si
∣∣ = p by definition of Hp,ℓ. Furthermore,

|Iℓ,h| =
d!

(d− p)!
∏k
i=1 hi!

,
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where the second factor denotes a multinomial coefficient. Now, define the generalized
U-Statistic:

Wh =
(d− p)!

∏k
i=1 hi!

d!

∑
(S1,...,Sp−ℓ+1)∈Iℓ,h

p−ℓ+1∏
i=1

∏
j∈Si

Tj,i.

If the Poisson model (B18) held true, then the above would be an unbiased estimator of∏p−ℓ+1
i=1 ηhi

i . A natural estimator of Bp,ℓ(η1, . . . , ηp−ℓ+1) is thus the following:

p!
∑

h∈Hp,ℓ

Wh∏p−ℓ+1
i=1 (i!)hihi!

.

Combining these ideas, a natural estimator of ξp is given by:

ξ̂p = p!

p∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!
∑

h∈Hp,ℓ

Wh∏p−ℓ+1
i=1 (i!)hihi!

=
1(
d
p

) p∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!
∑

h∈Hp,ℓ

∑
(S1,...,Sp−ℓ+1)∈Iℓ,h

p−ℓ+1∏
i=1

∏
j∈Si

Tj,i
i!
.

(B24)

By combining this expression with equation (B21), we arrive at the following estimator of
mp(c) (which is unbiased under the Poisson model (B18)):

m̂p =
dp

(p− 1)!
(
d
p

) p∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!
∑

h∈Hp,ℓ

∑
(S1,...,Sp−ℓ+1)∈Iℓ,h

p−ℓ+1∏
i=1

∏
j∈Si

Tj,i
i!
, p = 1, . . . , k.

(B25)
Together with equation (B20), this completes our definition of the moment estimator ĉmom.
Despite its unwieldy definition, this estimator can be readily implemented in closed form,
with the exception of a root-finding step.
In what follows, we present an upper bound on the risk of the moment estimator under

the simplified model (B18). In Appendix E 3, we will then show that this upper bound
readily extends to our original multinomial sampling model.

Proposition 4. Given γ > 0 arbitrarily small, let n, d, k ≥ 1 satisfy d1−
1
k ≤ n ≤ d

1
1+γ .

Assume that condition (PT) holds. Then, under model (B18), there exists a constant
C = C(k, γ) > 0 such that

sup
c∈∆k

Ec
[
W (ĉmom, c)

]
≤ C

√
d1−

1
k

n
.

The proof appears in Appendix E 2. This result shows that the moment estimator
achieves the minimax optimal rate of convergence stated in Theorem 2, under the sorted
loss function W . Proposition 4 merely studies the estimation rate in the narrow regime
d1−1/k ≤ n ≤ d1−ϵ, for ϵ arbitrarily small. When n falls below d1−1/k, Theorem 2 implies
that consistent estimation is not possible uniformly over ∆k. The regime n > d is less
relevant for RCS experiments, and in either case, finer estimators would need to be adopted
in this regime since our approximate model (B18) becomes unrealistic when n > d (as we
discuss further in Appendix C).
Our next results will show that the rate of convergence in Proposition 4 can be significantly

improved if mild constraints are placed on the error vector c ∈ ∆k. Indeed, we will see
that the convergence behavior of the moment estimator is highly heterogeneous across the
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parameter space ∆k, and improves whenever the errors ci have different magnitudes. On a
technical level, these improvements can be anticipated from the fact that the root-finding
step in the moment estimator is better conditioned when the underlying roots are well-
separated (cf. Lemma 29 below for a quantitative statement of this fact).
To elaborate, given 1 ≤ k0 < k, let ∆k,k0 denote the set of all elements c⋆ ∈ ∆k which

admit exactly k0 distinct entries, that is, for which the set {c⋆i : 1 ≤ i ≤ k} has cardinality
equal to k0. Furthermore, let ∆k,k0(δ) denote the set of elements c⋆ ∈ ∆k,k0 such that for
all 1 ≤ i < i′ ≤ k, either c⋆i = c⋆i′ , or |c⋆i − c⋆i′ | ≥ δ. The following result characterizes the
minimax rate of estimating vectors c which are in the vicinity of an element in ∆k,k0(δ);
roughly-speaking, this means that the vector c has entries which tightly cluster around k0
different values.

Proposition 5. Assume the same conditions as Proposition 4. Then, under model (B18),
there exists a constant ϵ > 0 depending on k such that for any δ > 0, there exists C =
C(k, γ, δ) > 0 such that for all 1 ≤ k0 ≤ k,

sup
c⋆∈∆k,k0

(δ)

sup
c∈∆k

W (c,c⋆)≤ϵ

Ec
[
W (ĉmom, c)

]
≤ C

(
dk−1

nk

) 1
2(k−k0+1)

.

Notice that Proposition 5 recovers the convergence rate of Proposition 4 when k0 = 1,
which corresponds to no separation assumptions. On the other hand, it is strictly faster
when k0 < k, and improves as k0 increases. In the most extreme case where all errors ci are
well-separated, corresponding to k0 = k, we find that the error vector c can be estimated

at the rate
√

dk−1

nk , assuming again that d exceeds n. This dependence on the separation of

the elements of c, as measured by the parameter k0, is qualitatively related to the minimax
rate of estimating finite mixture models under partial separation assumptions [74, 103–108].
We next state a final refinement of the minimax estimation rate of c. Building upon

Refs. [74, 109], we will now show that, not only can the entire vector c be estimated at
faster rates when the coordinates of c are partially separated, but some of the individual
coordinates of c enjoy even faster rates than those shown in Proposition 5. We will prove
this by showing that Proposition 5 continues to hold when W is replaced by a stronger
loss function, which sharply captures the heterogeneity in parameter estimation across the
vector c. To elaborate, let c⋆ ∈ ∆k,k0 be given, and assume that its entries are listed in
decreasing order. Recall that the k entries of c⋆ are assumed to take on k0 distinct values,
which we denote by v1 > · · · > vk0 . Let 1 ≤ aj ≤ k denote the smallest index i ∈ {1, . . . , k}
such that c⋆i = vj , and let rj denote the number of entries in c which are equal to vj :
rj = aj+1 − aj . Furthermore, for all i = 1, . . . , k, let ji ∈ {1, . . . , k0} denote the unique
index such that aji ≤ i < aji+1

.
Given elements c, c′ ∈ ∆k, whose entries we again assume are in decreasing order, we

write

Dc⋆(c, c′) =
k0∑
j=1

∥∥caj :(aj+1−1) − c′aj :(aj+1−1)

∥∥rj
2
, (B26)

where caj :(aj+1−1) ∈ Raj+1−aj is the vector with coordinates caj , . . . , caj+1−1. By abuse
of notation, when c, c′ are not ordered, we still write Dc⋆(c, c′) as a shorthand for
Dc⋆(ord(c), ord(c′)), where ord(c) is the vector consisting of the same coordinates as c,
in decreasing order. Before interpreting this divergence further, let us state our final result.

Proposition 6. Assume the same conditions as Proposition 5. Then, under model (B18),
for any 1 ≤ k0 ≤ k and δ > 0, there exist constants C, ϵ > 0 depending on k, γ, δ such that

sup
c⋆∈∆k,k0

(δ)

sup
c∈∆k

W (c,c⋆)≤ϵ

Ec
[
Dc⋆(ĉmom, c)

]
≤ C

√
dk−1

nk
.
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Fig. S3. Illustration of the local minimax upper bound stated in Proposition 6, with t = nk/dk−1.
Different entries of the vector c can be estimated at different rates, depending on their local sepa-
ration structure, thus significantly improving the rate t−1/2k of Proposition 4, which is only sharp
when all entries of ci are near 1/k.

An implication of Propositions 5–6 is the following. Given c⋆ ∈ ∆k,k0 and a parameter c
in a small neighborhood of c⋆, every coordinate of the moment estimator satisfies:

E|ĉmom
i − ci| ≲

(
dk−1

nk

) 1
2rji

, i = 1, . . . , k. (B27)

For example, when k0 = 1, so that no separation assumptions are imposed, rji must always
be equal to k, and we recover the rate of convergence stated in Proposition 4. When k0 = k,
so that all coordinates of c are well-separated, we must always have rji = 1 and we recover
the rate of convergence stated in Proposition 4. When 1 < k0 < 1, the values of rji are always
bounded from above by k−k0+1, thus Proposition 6 is never worse than Proposition 5, but
generally provides different upper bounds for estimating different elements ci, depending on
their local separation structure.
This refined convergence rate is particularly well-suited to our problem, since we typically

expect the fidelity parameter to be appreciably larger than the remaining parameters. If
we assume that c1 = ∥c∥∞ denotes the fidelity, and if we make the reasonable assumption
that c2, . . . , ck < c1 − δ for a fixed k and fixed δ > 0, then the above result implies r1 = 1,
j1 = 1, and the fidelity can then be estimated at the following fast rate:

E|ĉmom
1 − c1| ≲

√
dk−1

nk
.

This is the basis for Proposition 1 of the main text. It is worth emphasizing that these
various local convergence rates are achieved adaptively: The moment estimator does not
rely on any prior information about the possible separation among the atoms of c, and
achieves these multiscale convergence rates automatically.

Related Work. Our model in Regime C is closely-related to to a class of hierarchical
models for text analysis known as topic models [110, 111]. The typical setup of a topic
model is to observe a collection of M random variables of the form:

Y (1) ∼ Mult(n; Π⊤c(1))

Y (2) ∼ Mult(n; Π⊤c(2))

...
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1 2

Sample size n, Hilbert space dimension d
1e5

10 1

4 × 10 2

6 × 10 2|c
i

c i
|

n 0.18

c Dirichlet(1, 1, 1, 1)

1 2

Sample size n, Hilbert space dimension d
1e5

10 1

3 × 10 2

4 × 10 2

6 × 10 2

n 0.4

n 0.1

c = (0.6, 0.2, 0.1, 0.1)

Fig. S4. Sample complexity of the moment estimator in Regime C, with k = 4. We arrange the
elements of ĉ and c in decreasing order, and plot the average errors E|ĉi − ci| for i = 1, . . . , 4, with
i = 1 denoted by the darkest color, and i = 4 by the lightest. Across 30 sample sizes n = d, we
generate 500 replications from each model, under multinomial sampling.

Y (M) ∼ Mult(n; Π⊤c(M)),

where Π ∈ Rk×d is an unknown stochastic matrix, which is common across observations, and
c(i) ∈ ∆k are unknown mixing weights. The goal is to estimate Π, or the matrix C ∈ Rk×M
comprised of columns c(i), for i = 1, . . . ,M . As stated, this problem is not statistically
identifiable without further modeling assumptions. A sufficient condition for identifiability
is the so-called anchor word assumption [99, 112] on the matrix Π, which forms the basis for
a wide array of frequentist methods for topic modeling [69, 112–118]. A second approach
consists of treating the matrices Π and C as latent variables, endowed with some prior
distribution, which makes the model identifiable under very general conditions [119]. The
most widely-used method in this second category is latent Dirichlet allocation (LDA; [70]),
which consists of placing Dirichlet prior distributions on the columns of Π⊤ and C, and per-
forming inference for these objects via their posterior distribution, typically approximated
using variational inference.
WhenM = 1, our model is closely-related to this second line of literature, since we assume

that the rows of the matrix Π are drawn from the flat Dirichlet distribution. Despite the
wide practical adoption of the LDA model, we are only aware of a few references that
analyze the sample complexity of parameter estimation in this model, most of which focus
on estimating Π rather than C [113, 120, 121]. The very recent work of [119] studies
posterior contraction rates for Bayesian estimators of C, but does so under pointwise and
fixed-dimensional asymptotics which are incomparable to our setting.

b. Numerical Comparison in Regime C

Although the moment estimator is currently our only practical proposal for addressing
Regime C, we close this Appendix by briefly reporting a simulation study to illustrate
its empirical sample complexity, in Figure S4. We consider two models: In the first, we
draw c from a flat Dirichlet law on ∆4 at each replication, thus placing c close to the
uniform distribution, which is the least-favourable parameter from the standpoint of sample
complexity. In the second model, we instead fix c = (0.6, 0.2, 0.1, 0.1), in which case the
fidelity 0.6 is appreciably larger than the remaining entries. In the first case, we nearly
observe the worst-case rate n−1/8 = 0.125 predicted by Proposition 4, across all entries of ĉ.
In the latter case, we instead see significant variation between the convergence rate of the
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various parameters. In particular, the estimated fidelity ĉ1 nearly achieves the n−1/2 rate
predicted by Proposition 6.

Appendix C: Equivalent Statistical Models

In this Appendix, we justify the model approximations which we made in the exposition
of the previous section: We show that, when the dimension d is sufficiently large, our
model is statistically equivalent to a simpler model in which the sample sizes n and m are
Poissonized, and the entries of Π are taken to be independent exponential random variables
without normalization. We will prove that these various simplifications do not appreciably
alter the sample complexity of estimating c. We will then adopt the reduced model for much
of the remainder of this manuscript, without loss of generality.

1. Statistical Models

Recall that the unsorted and sorted minimax estimation risks are defined by

M(n, d, k,m) = inf
ĉ

sup
c∈∆k

Ec∥ĉ(Z,W )− c∥,

M<(n, d, k,m) = inf
ĉ

sup
c∈∆k

EcW
(
ĉ(Z,W ), c

)
,

(C1)

where the the infimum is taken over all Borel-measurable functions ĉ : Rn×Rk×m → Rk, and
the expectation Ec is taken over the marginal distribution of the random variables Z = (Zℓ)
and W = (Wℓi), that is, over the probability law

(Z,W ) ∼ EΠ

[( k∑
i=1

ciΠi·

)⊗n

⊗
( k⊗
i=1

Πi·

)⊗m
]
,

where the expectation is to be interpreted as marginalization over the law of Π ∈ Rk×d,
assuming that its rows are independently distributed according to the flat Dirichlet law Dd.
By abuse of notation, we identify the discrete density Πi· with the probability distribution
that it induces.
A set of sufficient statistics for the observations Z,W is given by the following histograms

indexed by j = 1, . . . , d, which we decorate with superscripts in this section only:

Ỹj =

n∑
ℓ=1

I(Zℓ = j), (Ỹ1, . . . , Ỹd)
∣∣Π ∼ Mult(n; Π⊤c),

Ṽij =

m∑
ℓ=1

I(Wℓi = j), (Ṽi1, . . . , Ṽid)
∣∣Π ∼ Mult(m; Πi·), i = 1, . . . , k.

The joint distribution of the random variables Ỹ = (Ỹj : 1 ≤ j ≤ d) and Ṽ = (Ṽij : 1 ≤ i ≤
k, 1 ≤ j ≤ d) is given by

Q̃c = EΠ

[
Mult(n; Π⊤c)⊗

k⊗
i=1

Mult(m; Πi·)

]
. (C2)

We will refer to the observation model (C2) as the multinomial model. It follows by

sufficiency of the histograms (Ỹ , Ṽ ) that the minimax risks in equation (C1) can equivalently
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be written as

M(n, d, k,m) = inf
ĉ

sup
c∈∆k

Ec∥ĉ(Ỹ , Ṽ )− c∥,

M<(n, d, k,m) = inf
ĉ

sup
c∈∆k

EcW
(
ĉ(Ỹ , Ṽ ), c

)
,

(C3)

where the infimum is over all Borel-measurable maps ĉ from Rd × Rk×d into Rk.
Let us now introduce two alternative sampling models which have comparable minimax

risks to the multinomial model, which we already alluded to in Section B. The first of these
models will be referred to as the normalized Poisson model, under which the practitioner
observes random vectors (Y , V ) drawn from the following joint distribution:

Qc = EΠ

 d⊗
j=1

(
Poi(nΠ⊤

·jc)⊗
k⊗
i=1

Poi(mπij)

) . (C4)

Model (C4) can be viewed as a variant of model (C2) in which the sample size n is replaced by
a Poisson random variable N ∼ Poi(n), drawn independently of all other random variables.
The unordered and ordered minimax risks under the normalized Poisson model are given
by:

R′(n, d, k,m) = inf
ĉ

sup
c∈∆k

Ec∥ĉ(Y , V )− c∥,

R′
<(n, d, k,m) = inf

ĉ
sup
c∈∆k

EcW
(
ĉ(Y , V ), c

)
,

(C5)

where the expectation is taken over (Y , V ) ∼ Qc.
Our final model is the unnormalized Poisson model, in which the practitioner observes

random variables (Y, V ) drawn from the product measure Q⊗d
c , where

Qc = Eϖ

[
Poi(n⟨ϖ, c⟩)⊗

k⊗
i=1

Poi(mϖi)

]
. (C6)

Here, the expectation is taken over a random variable ϖ ∼ Ekd consisting of independent
Exp(d) entries. The unnormalized Poisson model can be viewed as a proxy of the normalized
Poisson model, in which the flat Dirichlet law of the rows of Π are approximated by the law
of ϖ. The minimax risks under this model are defined by

R(n, d, k,m) = inf
ĉ

sup
c∈∆k

Ec∥ĉ(Y, V )− c∥,

R<(n, d, k,m) = inf
ĉ

sup
c∈∆k

EcW
(
ĉ(Y, V ), c

)
,

(C7)

where the expectations are now taken over the law of a pair (Y, V ) drawn from Q⊗d
c .

2. Equivalence of Minimax Risks

Let us begin by showing that the minimax risks for the multinomial and unnormalized
Poisson models are comparable.

Lemma 1. There exists a universal constant C > 0 such that for all n,m, d, k ≥ 1,

M(2n, d, k, 2m) ·
(
1− Ce−n/C − CIke−m/C

)
≤ R′(n, d, k,m) ≤ M(n/2, d, k,m/2) + Ce−n/C + CIke−m/C ,

where I = I(m = 0). An analogous assertions holds for the sorted minimax risks.
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The proof appears in Appendix G1 a, and is based on a well-known Poissonization tech-
nique [122, 123]. As a result of Lemma 1, we find that the minimax risks M and R′ are
comparable, up to additive error terms which decay exponentially with n and m. The fol-
lowing result further relates the normalized and unnormalized Poisson models, but this time
at the level of their distributions rather than their induced risks.

Lemma 2. There exists a universal constant C > 0 such that for all n, d,m, k ≥ 1, and
c ∈ ∆k,

TV(Qc,Q
⊗d
c ) ≤ C

(√
n

d
+

√
mk

d

)
.

The proof appears in Appendix G1b. By definition of the total variation distance, one
can find a coupling between any random pairs (Y , V ) ∼ Qc and (Y, V ) ∼ Q⊗d

c such that
the equality (Y, V ) = (Y , V ) holds with probability at least 1 − TV(Qc,Q

⊗d
c ). Due to the

boundedness of the parameter space ∆k, it then follows from Lemma 2 that

R(n, d, k,m) = R′(n, d, k,m) +O

(√
n

d
+

√
mk

d

)
. (C8)

Together with Lemma 1, the above bound will allow us to reduce the problem of bounding
the minimax risk M to that of bounding the risk R, at least whenever the scaling of these
risks is of lower order than

√
n/d+

√
mk/d. Furthermore, we will use Lemma 2 directly in

our development of lower bounds on the various minimax risks.

Remark 1 (Sharpness of Lemma 2). It is worth noting that the upper bound of Lemma 2
can perhaps be improved quadratically, but not further. To elaborate, let us first note that,
by Lemma 26, we may write

Q⊗d
c = EΠ,G

 d⊗
j=1

Poi
(
n
∑k
i=1 ciGiπij

)
⊗

k⊗
i=1

Poi(mπij)

 ,
where G = (G1, . . . , Gk)

⊤ is a vector of independent Gamma(d, d)-distributed random vari-
ables. Now, let us consider a proxy of this model and of the model Qc in which k = 1, and
m = 0. Let Y and Y be drawn from these corresponding models:

Y ∼ EΠ,G

 d⊗
j=1

Poi(nGπ1j)

 , Y ∼ EΠ

 d⊗
j=1

Poi(nπ1j)

 .
Define the random variables

S =

d∑
j=1

Yj ∼ NB(d, (1 + n/d)−1), and, S =

d∑
j=1

Y j ∼ Poi(n)

where we obtained the law of S by noting that
∑
j Yj |G ∼ Poi(nG), and any Poisson

mixture with Gamma mixing measure has negative binomial distribution (cf. Lemma 26).
One has

KL
(
Law(Y )

∥∥Law(Y )
)
= KL

(
Law(S)

∥∥Law(S)) = KL
(
NB(d, (1 + n/d)−1)

) ∥∥Poi(n)).
Now, using the weak-lower semicontinuity of the KL divergence, and taking d → ∞ such
that τ = n/d, one has the Gaussian approximation

KL
(
NB(d, (1 + n/d)−1)

) ∥∥Poi(n)) ≥ KL
(
N(dτ, dτ(1 + τ)), N(dτ, dτ)

)
+ o(1)
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=
1

2
log

1

1 + τ
+

1 + τ

2
− 1

2
+ o(1)

=
1

2

(
τ − log(1 + τ)

)
= O(τ2).

This suggests that KL(Law(Y )
∥∥Law(Y )), and hence TV2(Qc∥Q⊗d

c ), cannot scale faster

than τ2 ≍ (n/d)2, thus suggesting that, at least for k = 1 and m = 0, Lemma 2 can only
be improved quadratically, with no change in the trade-off between n and d.

Remark 2 (Mixtures of Products). From a technical lens, our reduction from model Q̃c to
modelQ⊗d

c will be fruitful since the former is a mixture of product distributions, whereas the
latter is a product of mixture distributions, which is significantly simpler to handle. We refer
to the recent manuscript [119] for a more systematic comparison of mixtures-of-products
and products-of-mixtures in discrete latent variable models.

3. Identifiability

Having reduced our problem to that of controlling the minimax risk under the unnor-
malized Poisson model, we will now establish the identifiability of that model, even in the
absense of side information.

Lemma 3. For all c, c̄ ∈ ∆k, the following assertions hold.

(i) Assume m = 0. Then, Qc = Qc̄ implies W (c, c̄) = 0.

(ii) Assume m ≥ 1. Then, Qc = Qc̄ implies c = c̄.

Proof. Mixtures of products of Poisson measures are identifiable in terms of their mixing
measures [124, 125]. To prove the claim, it will therefore suffice to establish the identifiability
of the collection {µc : c ∈ ∆k} of mixing measures with respect to the parameter c, where

µc := Law(n⟨ϖ, c⟩)⊗
k⊗
i=1

Law(mϖi), c ∈ ∆k,

and ϖ ∼ E⊗k
d . The law of µc is uniquely characterized by its multivariate characteristic

function, which is given by

φc(t, s) = Eϖ [exp (itn⟨ϖ, c⟩+ im⟨ϖ, s⟩)] , t ∈ R, s ∈ Rk,

with i =
√
−1. One has

φc(t, s) =

k∏
i=1

E
[
exp

(
i(ntci +msi)ϖi

)]
=

k∏
i=1

d

d− i(ntci +msi)
.

The right-hand side of the above display defines the reciprocal of a polynomial in t and s. By
setting s = 0, this polynomial depends only on the univariate parameter t, and is uniquely
characterized by its unordered collection of roots, namely {d/(inci) : 1 ≤ i ≤ k}. It follows
that φc, and hence µc, is uniquely characterized by the unordered collection of entries of c,
and claim (i) readily follows from this observation. Furthermore, when m ≥ 1, the equality
φc(t, s) = φc̄(t, s) can only hold uniformly over all (t, s) ∈ R × Rk if c = c̄, which proves
part (ii).

With these various reductions in place, we are now in a position to prove the main results
of this manuscript, beginning with sample complexity lower bounds.
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Appendix D: Proofs of Lower Bounds

The goal of this Appendix is to prove the lower bounds on the sample complexity stated
in Theorems 1–2.

1. Preliminaries

The bulk of our lower bound arguments will be contained in the following two Lemmas,
which characterize the divergence between elements of our model in terms of their parameter
separation. In what follows, for any given k ≥ 3, 1 ≤ s ≤ k− 2, and 0 ≤ β ≤ 1/s, we denote
by Σk,s(β) the set of elements c ∈ ∆k for which exactly s of the first k − 2 entries of c are
equal to β, and the last two entries of c are given by ck−1 = ck = (1−βs)/2. Our first result
deals with the regime where m is polynomially smaller than d, under the unnormalized
Poisson model.

Lemma 4. Let n,m, d, k ≥ 1 satisfy the conditions 2 ≤ k ≤ d, (n + m)1+γ ≤ d, and
k1+γ ≤ d/m, for an arbitrarily small constant γ > 0. Let c, c̄ ∈ ∆k be two vectors such that

mj(c) = mj(c̄), for all j = 0, . . . , k − 1.

Furthermore, let q1 := |mk(c̄) − mk(c)| and q2 = ∥c̄ − c∥2. Assume q2 ≥ 1/d. Then,
there exist constants C1 = C1(γ, k) > 0 and C2 = C2(γ) > 0 such that the following
assertions hold.

1. We have,

TV(Q⊗d
c̄ ,Q⊗d

c ) ≤ C1n
k
2 d−

k−1
2 q1 + C2q2

√
nm

d
.

2. Assume W (c, c̄) = 0. Then,

χ2(Q⊗d
c̄ ,Q⊗d

c ) ≤ C2q
2
2

nm

d
.

The proof of Lemma 4 appears in Appendix D4. Our next result provides an upper bound
which is effective in the regime m ≥ d. In this case, we directly analyze the multinomial
model.

Lemma 5. There exists a universal constant C > 0 such that if 3 ≤ k ≤ d, then for all
1 ≤ s ≤ k − 2, 0 ≤ β ≤ s, n,m ≥ 1, and c, c̄ ∈ Σk,s(β),

KL(Q̃c∥Q̃c̄) ≤ Cn∥c̄− c∥22.

Furthermore, for all k ≥ 2, there exists a constant Ck > 0 such that for all m,n, d ≥ 1 and
c, c̄ ∈ ∆k satisfying ∥c∥∞ ∨ ∥c̄∥∞ ≤ 3/4,

KL(Q̃c∥Q̃c̄) ≤ Ckn∥c̄− c∥22.

The proof of Lemma 5 appears in Appendix D5. A remarkable feature of Lemmas 4–5
is the fact that they exhibit a quadratic scaling with respect to q2 = ∥c̄ − c∥22, similarly
to divergences between Gaussian location models. This reflects the fact that, despite the
Poissonian nature of our problem, the heteroscedasticity of our observations is mild, due to
assumption (PT).

Before proving these two results, let us show how they lead to our various minimax lower
bounds.
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2. Minimax Lower Bound for the Sorted Loss Function

Our aim in this section is to prove the following minimax lower bound.

Proposition 7. Let d, k,m, n ≥ 1 satisfy condition (S). Then, there exists a constant
Ck,γ > 0 such that

M<(n, d, k,m) ≥ Ck,γ

(√
d

n(m+ d1/k)
+

1√
n

)
.

Proof of Proposition 7. By Le Cam’s Lemma (cf. [126]), it will suffice to show that there
exist parameters c, c̄ ∈ ∆k such that

TV(Q̃⊗d
c , Q̃⊗d

c̄ ) ≤ 1/2, and W (c, c̄) ≳

√
d

n(m+ d1/k)
+

1√
n
. (D1)

Recall that, under condition (S), we either have m1+γ ≤ d or m > d. Let us begin by
proving the claim under the former condition. We will make use of the following Lemma to

obtain least-favorable parameters c, c̄. In what follows, recall that mp(u) =
1
k

∑k
i=1 u

p
i for

any u ∈ ∆k.

Lemma 6. For any k ≥ 1, there exists a constant Ck > 0 and vectors u, v ∈ Rk such that
∥u∥∞ ∨ ∥v∥∞ ≤ 1, and

(i) m1(u) = 0.

(ii) mp(u) = mp(v) for all p = 1, . . . , k − 1.

(iii) W (u, v) ∧ |mk(u)−mk(v)| ≥ Ck.

The proof of Lemma 6 appears in Appendix G2 a. Now, given ϵ > 0 and u, v ∈ Rk as in
Lemma 6, define

c =

(
1

k
+ ϵu1, . . . ,

1

k
+ ϵuk

)
, c̄ =

(
1

k
+ ϵv1, . . . ,

1

k
+ ϵvk

)
.

For all sufficiently small ϵ, the conditions of Lemma 6 ensure that c, c̄ lie in the simplex ∆k.
Furthermore, we have ∥c− c̄∥2 ≲ ϵ and for all p = 1, . . . , k,

mp(c̄)−mp(c) =

k∑
i=1

[(
1

k
+ ϵui

)p
−
(
1

k
+ ϵvi

)p]

=

k∑
i=1

p∑
j=1

(
p

j

)
k−(p−j)(uji − vji

)
ϵj

=

p∑
j=1

(
p

j

)
k−(p−j)(mj(u)−mj(v)

)
ϵj

= ϵp
(
mp(u)−mp(v)

)
,

where we used property (ii) of Lemma 6. Together with property (iii), we deduce that

|mp(u)−mp(v)| ≍ ϵp · I(p = k), for all p = 1, . . . , k.
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We may therefore apply Lemma 4 with q1 ≍ ϵk and q2 ≍ ϵ to obtain

TV(Q⊗d
c̄ ,Q⊗d

c ) ≤ C1n
k
2 d−

k−1
2 ϵk + C2ϵ

√
nm

d
,

and thus, by Lemma 2, we deduce the following bound for the normalized Poisson model:

TV(Q⊗d
c̄ ,Q⊗d

c ) ≲ n
k
2 d−

k−1
2 ϵk + ϵ

√
nm

d
+

√
n

d
+

√
mk

d
.

Under condition (S), the above quantity is bounded by 1/2 if we choose ϵ to be a

sufficiently small multiple of
√

d
n(d1/k+m)

. On the other hand, Lemma 6 implies that

W (c̄, c) = ϵW (u, v) ≳ ϵ. We thus deduce the following lower bound for the minimax risk in
the normalized Poisson model, from Le Cam’s Lemma:

R′
<(n, d, k,m) ≳

√
d

n(d1/k +m)
.

Finally, let us deduce a lower bound for the multinomial model. Notice that for any given
(n, d, k), the map m 7→ M<(n, d, k,m) is monotonically decreasing, thus it suffices to prove
the lower bound in the regime m ≥ d1/k. By combining the above display with Lemma 1,
we have

M<(n, d, k,m) ≳ R′
<(2n, d, k, 2m)− e−n/C − e−m/C ≳

√
d

n(d1/k +m)
,

where the final inequality uses the fact that the terms e−n/C and e−m/C are both of low
order when m ≥ d1/k. This proves the claim in the regime m1+γ ≤ d. Finally, the claim for
m ≥ d follows immediately from Le Cam’s Lemma together with Lemma 5.

3. Minimax Lower Bound for the Unsorted Loss Function

Our aim is now to derive lower bound for the unsorted minimax risk.

Proposition 8. Assume that condition (S) holds with k ≥ 2, and assume that nmd ≥
d log(k) with md = min{m, d}. Then, there exists a constant Cγ > 0 such that

M(n, d, k,m) ≥ Cγ ·min

{(
d log(k)

nmd

) 1
4

,

(
dk

nmd

) 1
2

}
.

Proof. Let us begin by proving the claim in the special case k = 2. Since the unsorted
minimax risk is bounded from below by the sorted minimax risk, which in turn is always
bounded from below by 1/

√
n (by Proposition 7), it suffices to consider the regimem1+γ < d,

and to prove the lower bound

M(n, d, 2,m) ≳

√
d

nm
.

By Lemma 1, it further suffices to lower bound R′(n, d, 2,m), since the conditions m1+γ < d
and nm > d log(k) imply that n ∧m ≳ dϵ for some ϵ > 0. To prove this lower bound, we
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can reason similarly as in the proof of Proposition 7. Given 0 ≤ ϵ, δ ≤ 1/4, define the
parameters

c =

(
1

2
+ δ,

1

2
− δ

)
, c̄ =

(
1

2
+ δ + ϵ,

1

2
− δ − ϵ

)
.

Notice that ∥c− c̄∥2 ≍ ϵ and |m2(c)−m2(c̄)| ≍ ϵ|ϵ− δ|. Thus, by applying Lemmas 2 and 4
under condition (S), as well as Le Cam’s Lemma, it suffices to show that there exists a
choice of ϵ, δ such that

n√
d
ϵ|ϵ− δ|+ ϵ

√
nm

d
= ϵ

√
n

d

(√
n|ϵ− δ|+

√
m
)
≤ 1/C,

for a sufficiently large constant C > 0. The above display is satisfied by choosing ϵ =
c0
√
d/nm and δ = ϵ+ (1/4) ∧

√
m/n, for a sufficiently small constant c0 > 0. This proves

the claim for k = 2.
Notice that the map k 7→ M(n, d, k,m) is monotonically increasing. Thus, in view of the

preceding lower bound for k = 2, it suffices to assume that k ≥ 30 in what follows. For this
regime, we will invoke Fano’s Lemma (cf. [126]), a special case of which we recall next.

Lemma 7 (Fano’s Lemma). Let M ≥ 2 and let c(1), . . . , c(M) ∈ ∆k be a collection of
parameters satisfying

ϵ := min
j ̸=j′

∥c(j) − c(j
′)∥2 > 0.

Let J be a random variable uniformly-distributed over {1, . . . ,M}, and let Ũ be a random

variable such that Ũ | J ∼ Q̃c(J) . Then, there exists a universal constant C1 > 0 such that

if I(Ũ ; J) ≤ C1 · logM , then

M(n, d, k,m) ≥ ϵ/C1.

In view of applying Fano’s Lemma, let us begin by exhibiting an ϵ-packing of ∆k. Let
1 ≤ s ≤ k/10 ≤ k − 2 be an integer to be defined below. By the sparse Varshamov-Gilbert
Lemma (cf. Theorem 27.6 of [126]), there exist an integer M ≥ 1, a constant C > 0, and
bitstrings ω(1), . . . , ω(M) ∈ {0, 1}k−2 satisfying the following three properties (where dH
denotes the Hamming distance):

(i) dH(ω(j), ω(j′)) ≥ s/2, for all j ̸= j′.

(ii) logM ≍ s log(k/s).

(iii) ∥ω(j)∥0 = s for all j = 1, . . . ,M.

Given a constant β ∈ [0, 1/s] to be defined below, define for j = 1, . . . ,M the vectors

c
(j)
i = βω

(j)
i , i = 1, . . . , k − 2, and c

(j)
k−1 = c

(j)
k = (1− βs)/2,

which lie in the set Σk,s(β) in view of condition (iii). With this choice, notice that

ϵ := min
j ̸=j′

∥c(j) − c(j
′)∥2 = β ·min

j ̸=j′
∥ω(j) − ω(j′)∥2 ≍ β

√
s,

by condition (i). Now, let Ũ and J be defined as in Lemma 7. We will bound their mutual
information separately in the case m1+γ ≤ d and m ≥ d, beginning with the former. Define
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a random variable U via U | J ∼ Q⊗d
c(J) . We will bound the mutual information I(J ; Ũ) by

passing through I(J ;U):∣∣I(Ũ ; J)− I(U ; J)
∣∣ ≤ ∣∣H(J |U)−H(J |Ũ)

∣∣ = ∣∣E[H(PJ|U )−H(PJ|Ũ )]
∣∣ ≤ (logM) · TV(U, Ũ),

where PJ|U is the conditional law of J given U , whose entropy is bounded above by logM .
Now, we simply have

TV(U, Ũ) ≤ 1

M

M∑
j=1

TV(Q⊗d
c(j)

, Q̃⊗d
c(j)

) ≲
√
n/d+

√
mk/d =: δ,

by Lemma 2. Notice that δ vanishes under condition (S). We now have

I(Ũ ; J) ≲ (logM)δ + I(U ; J) ≲ (logM)δ +
1

M2

M∑
j,j′=1

KL(Q⊗d
c(j)

∥Q⊗d
c(j′)

)

≲ (logM)δ +
nm

dM2

M∑
j,j′=1

∥c(j) − c(j
′)∥22,

where the final inequality follows from Lemma 4(ii). On the other hand, when m > d, we
may apply Lemma 5 to directly bound the mutual information by:

I(Ũ ; J) ≤ 1

M2

M∑
j,j′=1

KL
(
Q̃c(j)∥Q̃c(j′)

)
≲

n

M2

M∑
j,j′

∥c(j) − c(j
′)∥22.

It follows that for all m satisfying condition (S), we have

I(Ũ ; J) ≲ (logM)δ +
nmd

dM2

M∑
j,j′

∥c(j) − c(j
′)∥22 ≲ (logM)δ +

nmdβ
2s

d
.

With this bound in place, let us apply Fano’s Lemma, for which we will use different choices
of β, s depending on the magnitude of k. If k <

√
nmd/d, we may choose a small enough

constant C > 0 such that if s = ⌊k/10⌋ and β = C
√
d/nmd, then I(Ũ ; J) ≤ C1 logM ,

where C1 is the constant appearing in the statement of Lemma 7, and we used property (ii)

above. Thus, when k <
√
nmd/d, we obtain the minimax lower bound

M(n, d, k,m) ≳ β
√
s =

√
kd

nmd
. (D2)

Due to condition (S), it remains to handle the case k ≥ (
√
nmd/d)

1+γ . Pick β = 1/s, with
s the smallest integer satisfying

s ≥ c0

√
nmd

d log(dk/(nmd))
,

for a sufficiently small constant c0 > 0 to be defined below. Then,

I(Ũ ; J) ≲
nmd

ds
≍ s log(dk/(nmd)) ≍ s log(k/s).

Therefore, by property (ii) above, we have I(Ũ ; J) ≤ C1 logM/2 provided c0 is chosen
sufficiently small. Thus, by Fano’s Lemma, one has

M(n, d, k,m) ≳ β
√
s ≍

√
d log(k)

nmd
,
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where we used the fact that log(kd/(nmd)) ≍ log(k) under the stated assumption on k.
Altogether, we have thus shown that, under condition (S) and nm > d · log k, we have

M(n, d, k,m) ≳ min

{(
d log(k)

nmd

) 1
4

,

(
dk

nmd

) 1
2

}
.

This proves the claim.

4. Proof of Lemma 4

Throughout the proof, let ϖ = (ϖ1, . . . , ϖk) denote a random vector with entries

ϖi
i.i.d.∼ Ed, i = 1, . . . , k.

Recall that we write

Qc = Eϖ

[
Poi (n⟨c,ϖ⟩)⊗

k⊗
i=1

Poi(mϖi)

]
,

and we denote the density of Qc, defined over I := N0 × Nk0 , as

qc(x, y) = Eϖ

[
f(x;n⟨ϖ, c⟩)

k∏
i=1

f(yi;mϖi)

]
, (x, y) ∈ I,

where f(·;λ) is the Poi(λ) density. Fix once and for all the truncation parameter t =
(n+m)−γ0dγ0−1 with γ0 = γ/(1 + γ), and write

Qt
c = Eϖ

[
Poi

(
n⟨c,ϖt⟩

)
⊗

k⊗
i=1

Poi(mϖt
i)

]
, where ϖt =

(
ϖ1 ∧ t, . . . ,ϖk ∧ t

)
,

with corresponding density denoted qtc(x, y). The following Lemma reduces our problem to
that of bounding the χ2-divergence between the truncated measures.

Lemma 8. Let 1 ≤ k ≤ d. Under assumption (S), there exist constants C1, C2, a > 0
depending only on γ such that the following assertions hold for all c, c̄ ∈ ∆k.

1. We have,

TV
(
Q⊗d
c ,Q⊗d

c̄

)
≤ C1

(√
d · χ2(Qt

c,Q
t
c̄) + e−C2d

a
)
.

2. If W (c, c̄) = 0, then

KL
(
Q⊗d
c ,Q⊗d

c̄

)
≤ C1

(
d · χ2(Qt

c,Q
t
c̄) + e−C2d

a
)
.

The proof appears in Section G2 c. Now, for the remainder of the proof, let c, c̄ ∈ ∆k be
any elements such that

mj(c) = mj(c̄), j = 1, . . . , k − 1.
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Notice that q1 = 0 when W (c, c̄) = 0, thus, in view of Lemma 8, both assertions of the
claimed Lemma 4 will follow if we are able to prove the following upper bound on the
χ2-divergence between truncated distributions:

χ2(Qt
c,Q

t
c̄) ≲ q21

(n
d

)k
+
nmq22
d2

. (D3)

The remainder of the proof is devoted to deriving equation (D3). Our approach consists
of expanding the χ2-divergence in terms of moment differences of the mixing measures of
Qc and Qc̄. Expansions of this type have been used for Gaussian mixture models since
the early work of [127, 128]; for Poisson mixture models, related ideas have been used for
instance by [129, 130]. Although these methods often scale poorly for high-dimensional
mixtures [131, 132], our earlier truncation step ensures that the relevant mixing measures
have support near zero, and thus have moments which decay exponentially in k.

Define the following quantities:

Ũc = n⟨c,ϖt⟩, Ṽi = mϖt
i , λ = E[ϖt

1],

Uc = Ũc − nλ, Vi = Ṽi −mλ, i = 1, . . . , k.

Notice that the random variables Uc and Vi all have mean zero. We will make use of the
following elementary bounds on λ.

Lemma 9. It holds that

1

d

(
1− tde−td

)
≤ λ ≤ 1

d
.

The proof appears in Section G2d. In particular, by definition of t and the fact that
(n+m)1+γ ≤ d, we have λ ≍ 1/d. Now, notice that

χ2(Qt
c̄,Q

t
c) =

∞∑
x,y1,...,yk=0

{
Eϖ
[(
f(x; Ũc̄)− f(x; Ũc)

)∏k
i=1 f(yi; Ṽi)

]}2

Eϖ
[
f(x; Ũc)

∏k
i=1 f(yi; Ṽi)

] .

We lower bound the denominator using the following.

Lemma 10. Assume condition (S). Then, there exists a constant C = C(γ) > 0 such that
for all (x, y) ∈ N0,

Eϖ

[
f(x; Ũc)

k∏
i=1

f(yi; Ṽi)

]
≥ 1

C
f(x;nλ)

k∏
i=1

f(yi;mλ).

The proof appears in Appendix G2 e. We may thus write,

χ2(Qt
c̄,Q

t
c)

≤ C

∞∑
x,y1,...,yk=0

{
Eϖ
[(
f(x;nλ+ Uc̄)− f(x;nλ+ Uc)

)∏k
i=1 f(yi;mλ+ Vi)

]}2

f(x;nλ)
∏k
i=1 f(yi;mλ)

.
(D4)

We will proceed by expanding the numerator of the above display in the basis of Charlier
polynomials, whose definition and basic properties are recalled in Appendix K2b. Let
{φℓ(·;λ)}∞ℓ=0 denote the univariate family of Charlier polynomials with parameter λ > 0.

Given λ = (λ0, . . . , λk) ∈ Rk+1
+ , we define the following tensor-product family of Charlier

polynomials

φα,β(x, y;λ) = φα(x;λ0) ·
k∏
i=1

φβi
(yi;λi), x ∈ R, y ∈ Rk,
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for any multi-indices (α, β) ∈ I, where I := N0 × Nk0 . In what follows, we show that they
form an orthogonal basis with respect to the L2(gλ) inner product, where

gλ(x, y) = f(x;λ0) ·
k∏
i=1

f(yi;λi), x ∈ N0, y ∈ Nk0 .

Lemma 11. The polynomial family {φα,β(·, ·;λ)}∞(α,β)∈I with parameter λ > 0 is an or-

thogonal basis of L2(gλ), such that

E(X,Y )∼gλ

[
φα,β(X,Y ;λ)φα′,β′(X,Y ;λ)

]
= α!λα0 ·

k∏
i=1

βi!λ
βi

i · I
(
(α, β) = (α′, β′)

)
,

for any (α, β), (α′, β′) ∈ I. Furthermore, one has the relation

gλ+u(x, y) = gλ(x, y)
∑

(α,β)∈I

φα,β(x, y;λ)
uα0
α!λα0

k∏
i=1

uβi

i

βi!λ
βi

i

, (x, y) ∈ I,

for any u = (u0, . . . , uk) ∈ Rk+1
+ such that λ+ u has positive entries.

The proof appears in Appendix G2 f. Now, fixing λ = (nλ,mλ, . . . ,mλ), we deduce from
Lemma 11 that

Eϖ

[(
f(x;nλ+ Uc̄)− f(x;nλ+ Uc)

) k∏
i=1

f(yi;mλ+ Vi)

]

= gλ(x, y)
∑

(α,β)∈I

φα,β(x, y;λ)
∆α,β

α!β!(nλ)α(mλ)|β|
,

where for any multi-indices (α, β) ∈ I, we write |β| =
∑
i βi, β! = β1! · · ·βk!, and

∆α,β = Eϖ
[
(Uαc̄ − Uαc )V

β1

1 · · ·V βk

k

]
.

Thus, returning to equation (D4) , and using the orthogonality relation from Lemma 11, we
arrive at

χ2(Qc̄,Qc) ≤ C
∑

(x,y)∈I

 ∑
(α,β)∈I

φα,β(x, y;λ)
∆α,β

α!β!(nλ)α(mλ)|β|

2

gλ(x, y)

= C
∑

(α,β)∈I

∆2
α,β

α!β!(nλ)α(mλ)|β|

=: C(S1 + S2),

where

S1 =

∞∑
α=1

∆2
α

α!(nλ)α
, S2 =

∞∑
α=1

∑
β∈Nk

0

|β|≥1

∆2
α,β

α!β!(nλ)α(mλ)|β|
, (D5)

and where we abbreviate

∆α := ∆α,0 = Eϖ
[
Uαc̄ − Uαc

]
.
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We bound the terms S1 and S2 separately, beginning with the former. Recall that κα(X)
denotes the α-th cumulant of a random variable X. By translational invariance of cumulants
(except when α = 1), it holds that:

κα(Uc)/n
α = κα(⟨c,ϖt⟩)− λ · I(α = 1),

for any α = 1, 2, . . . . Furthermore, since the elements of the vector ϖ are independent, we
have

κα(⟨c,ϖt⟩) =
k∑
i=1

cαi κα(ϖ
t
i) = κα(ϖ

t
1) ·mα(c),

where we recall that mα(c) is the α-th moment of the uniform distribution over {c1, . . . , ck}.
Since we assumed thatmα(c) = mα(c̄) for all 1 ≤ α ≤ k−1, it must follow from the preceding
two displays that κα(Uc) = κα(Uc̄) for all such α, and we deduce that

S1 ≲
∞∑
α=k

∆2
α

α!(nλ)α
.

Our aim is now to bound the remaining terms ∆α, for α ≥ k. Notice that

∆α/n
α = E[(⟨c̄, ϖt⟩ − λ)α]− E[(⟨c,ϖt⟩ − λ)α]

=

α∑
j=k

(
α

j

)
λα−jE

[
⟨c̄, ϖt⟩j − ⟨c,ϖt⟩j

]
=

α∑
j=k

(
α

j

)
λα−j(η̄j − ηj), (D6)

where we define the quantities

ξj = κj(⟨ϖt, c⟩), ηj = E[⟨ϖt, c⟩j ],
ξ̄j = κj(⟨ϖt, c̄⟩), η̄j = E[⟨ϖt, c̄⟩j ], j = 1, 2, . . . .

By equation (K11) of Appendix K2 c, the moments ηj can be expressed in terms of the
cumulants ξj via the following expansion in the Bell polynomial system:

ηj =

j∑
ℓ=1

Bj,ℓ
(
ξ1, . . . , ξj−ℓ+1

)
=

j∑
ℓ=1

j!
∑

(h1,...,hj−ℓ+1)∈Hj,ℓ

j−ℓ+1∏
i=1

ξhi
i

(i!)hihi!
,

thus, for any j = k, . . . , α, we have

η̄j − ηj =

j∑
ℓ=1

j!
∑

(h1,...,hj−ℓ+1)∈Hj,ℓ

( j−ℓ+1∏
i=1

ξhi
i

(i!)hihi!
−
j−ℓ+1∏
i=1

ξ̄hi
i

(i!)hihi!

)
.

Let K = K(j, α) > 0 denote a constant depending on j, α, whose value may change from
line to line. We have

|η̄j − ηj | ≤ K

∣∣∣∣∣∣
j∑
ℓ=1

∑
(h1,...,hj−ℓ+1)∈Hj,ℓ

( j−ℓ+1∏
i=1

ξhi
i −

j−ℓ+1∏
i=1

ξ̄hi
i

)∣∣∣∣∣∣ .
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Now, recall that mi(c) = mi(c̄), and hence ξi = ξ̄i, for all i = 1, . . . , k − 1. Thus

|η̄j − ηj | ≤ K

∣∣∣∣∣∣
j∑
ℓ=1

∑
(h1,...,hj−ℓ+1)∈Hj,ℓ

 ∏
i≤k−1

ξhi
i

∏
i≥k

ξhi
i −

∏
i≥k

ξ̄hi
i

∣∣∣∣∣∣ ,
where all products are to be understood as ranging over all integers 1 ≤ i ≤ j − ℓ + 1
satisfying the stated conditions, with the convention that empty products equal 1. Now

recalling that ξi =
∑k
r=1 c

i
rκi(ϖ1 ∧ t) for all i, due to the independence of the entries of ϖt,

we have (cf. Appendix K2 c):

κi(ϖ1 ∧ t) ≤
i∑

ℓ=1

(ℓ− 1)!Bi,ℓ(E[ϖ1 ∧ t], . . . ,E[(ϖ1 ∧ t)i−ℓ+1])

≤
i∑

ℓ=1

(ℓ− 1)!Bi,ℓ

(
1

d
, . . . ,

(i− ℓ+ 1)!

di−ℓ+1

)

≤ K

i∑
ℓ=1

Bi,ℓ

(
1

d
, . . . ,

1

di−ℓ+1

)
≤ Kd−i.

Thus, ξi ≤ Kd−i, and similarly, ξ̄i ≤ Kd−i. Using the definition of Hj,ℓ, we have∑j−ℓ+1
i=1 ihi = j, thus

|η̄j − ηj | ≤ Kd−j
j∑
ℓ=1

∑
(h1,...,hj−ℓ+1)∈Hj,ℓ

∣∣∣∣∣∣
∏
i≥k

(diξi)
hi −

∏
i≥k

(diξ̄i)
hi

∣∣∣∣∣∣
≤ Kd−j

j∑
ℓ=1

∑
(h1,...,hj−ℓ+1)∈Hj,ℓ

∑
i≥k

∣∣(diξi)hi − (diξ̄i)
hi
∣∣

≤ Kd−j
j∑
ℓ=1

∑
(h1,...,hj−ℓ+1)∈Hj,ℓ

∑
i≥k

di
∣∣ξi − ξ̄i

∣∣
≤ Kd−j

j∑
i=k

di
∣∣ξi − ξ̄i

∣∣
= Kd−j

j∑
i=k

di

∣∣∣∣∣κi(ϖ1 ∧ t)
k∑
r=1

(cir − c̄ir)

∣∣∣∣∣ ≤ Kd−jq1.

Returning to equation (D6), we deduce that for any α ≥ k, there exists a constant Kα > 0
such that

|∆α| ≤ Kαn
α

α∑
j=k

(
α

j

)
λα−jd−jq1 ≤ Kαq1

(n
d

)α
.

On the other hand, we also have the naive bound

|∆α| ≤ nα
α∑
j=k

(
α

j

)
λα−jtj ≤ nα(t+ λ)α ≤ (2nt)α.
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Thus, returning to equation (D5), we have shown that for all p ≥ k, there exists Kp > 0
such that

S1 ≤ Kpq
2
1

p∑
α=k

(n/d)2α

α!λα
+

∞∑
α=p+1

(2nt)2α

α!λα

≤ Kpq
2
1

p∑
α=k

(n/d)α

α!
+

∞∑
α=p+1

(2n/d)α/2

α!

≲ Kpq
2
1(2n/d)

k + (2n/d)p/2.

Under our conditions on d and n, we can choose p sufficiently large, as a function only of γ,
such that (2n/d)p/2 ≤ 1/d5, to obtain

S1 ≤ Cq21(n/d)
k + d−5, (D7)

for a constant C = C(k, γ) > 0. We now turn to bounding the quantity

S2 =

∞∑
α=1

∑
β∈Nk

0

|β|≥1

∆2
α,β

α!β!(nλ)α(mλ)β
.

For any α, |β| ≥ 1, we have

|∆α,β | ≤ nαm|β|E

∣∣∣∣∣((⟨ϖt, c̄⟩ − λ)α − (⟨ϖt, c⟩ − λ)α
) k∏
i=1

(ϖi ∧ t− λ)βi

∣∣∣∣∣ .
By the mean value theorem, one has∣∣(⟨ϖt, c̄⟩ − λ)α − (⟨ϖt, c⟩ − λ)α

∣∣ ≤ α
(
|⟨ϖt, c⟩ − λ|+ |⟨ϖt, c̄⟩ − λ|

)α−1|⟨c̄− c,ϖt⟩|,

thus, |∆α,β | ≤ nαm|β|αT
1/2
1 (T2T3)

1/4, where

T1 = E|⟨c̄− c,ϖt⟩|2

T2 = E
(
|⟨ϖt, c⟩ − λ|+ |⟨ϖt, c̄⟩ − λ|

)4(α−1)

T3 = E
k∏
i=1

|ϖi ∧ t− λ|4βi .

We have,

T1 = Var[⟨c̄− c,ϖt⟩] =
k∑
i=1

(c̄i − ci)
2 Var[ϖt] ≲ q22/d

2.

To bound T2, apply Jensen’s inequality to obtain

E|⟨ϖt, c̄⟩ − λ|4(α−1) = E
∣∣∣∣ k∑
i=1

c̄i(ϖ
t
i − λ)

∣∣∣∣4(α−1)

≤
k∑
i=1

c̄iE|ϖt
i − λ|4(α−1) ≤ (4α)!

d4(α−1)
∧ t4(α−1).

It follows that

T2 ≲ 24(α−1)

(
(4α)!

d4(α−1)
∧ t4(α−1)

)
.
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Next, we have,

T3 =

k∏
i=1

E|ϖi ∧ t− λ|4βi ≲
k∏
i=1

24βi

(
(4βi)!

d4βi
∧ t4βi

)
≤ 24|β|

(
(4β)!

d4|β|
∧ t4|β|

)
We thus obtain

|∆α,β |
nαm|β| ≤ αT

1/2
1 (T2T3)

1/4

≤ α · q2
d

· 2α−1

(
(4α)!

d(α−1)
∧ t(α−1)

)
· 2|β|

(
(4β)!

d|β|
∧ t|β|

)
≤ 2α+|β|q2

(
(4α)!

dα
∧ t(α−1)

d

)(
(4β)!

d|β|
∧ t|β|

)
≤ 2α+|β|q2

(
(4α)!

dα
∧ tα

)(
(4β)!

d|β|
∧ t|β|

)
≤ 2α+|β|q2

(
(4α)!(4β)!

dα+|β| ∧ tα+|β|
)
.

It follows that for any fixed ℓ ≥ 1, there exists a constant Cℓ > 0 (which potentially grows
factorially in ℓ) such that:

S2 =
∑

α∈N0,β∈Nk
0

|β|≥1,α+|β|<ℓ

∆2
α,β

α!β!(nλ)α(mλ)|β|
+

∑
α∈N0,β∈Nk

0

|β|≥1,α+|β|≥ℓ

∆2
α,β

α!β!(nλ)α(mλ)|β|

≲ Cℓ
∑

α∈N0,β∈Nk
0

|β|≥1,α+|β|<ℓ

(q2n
αm|β|/dα+|β|)2

(nλ)α(mλ)|β|
+

∑
α∈N0,β∈Nk

0

|β|≥1,α+|β|≥ℓ

(q2n
αm|β|(2t)α+|β|)2

α!β!(nλ)α(mλ)|β|

≲ q22

Cℓ
nm

d2
+

∑
α∈N0,β∈Nk

0

|β|≥1,α+|β|≥ℓ

(4t2d)(α+|β|)nαm|β|

α!β!


≲ q22

Cℓnmd2 +
∑
α≥ℓ

(4t2dn)α

α!
·
(∑
b≥ℓ

(4t2dm)b

b!

)k
≤ q22 · Cℓ

{nm
d2

+ (4t2dn)ℓe4t
2dn ·

(
(4t2dm)ℓe4t

2dm
)k}

.

Notice that t2d(n+m) =
√
(n+m)/d = o(1), and we have e4t

2dm ∨ e4t2dn ≤ C <∞, thus
we obtain

S2 ≲ q22 · Cℓ

{
nm

d2
+

(
4(n+m)

d

)ℓ/2
·
(
C
(4(n+m)

d

)ℓ/2)k}
.

By choosing ℓ = 5, the second term in the above display is of lower order than the first for
large enough d (irrespective of the magnitude of k), and we obtain S2 ≲ q22nm/d. Combining
this bound with equation (D7) and the fact that q2 ≥ 1/d, we have thus shown that

χ2(Qt
c̄,Q

t
c) ≤ C1q

2
1

(n
d

)k
+ C2

q22nm

d2
,

where C1 = C1(γ, k) and C2 = C2(γ). This proves equation (D3), and the claim follows.
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5. Proof of Lemma 5

Let c, c̄ ∈ ∆k. Let Π ∈ Rk×d be a random matrix whose rows are independently drawn
from the flat Dirichlet law Dd. Let Y c ∈ Rd and V ∈ Rk×d be drawn conditionally indepen-
dently according to

Y c|Π ∼ Mult(n; Π⊤c), Vi·|Π ∼
k⊗
i=1

Mult(m; Πi·), i = 1, . . . , k,

so that (Y c, V ) ∼ Q̃c. Given random variables X,X ′ which are absolutely continuous with
respect to a common dominating measure, we denote by pX,X′ their joint density, and by
pX the marginal density of X. We also denote the Markov kernel of X conditionally on X ′

by pX|X′ , whenever it exists.
By the chain rule for the KL divergence, one has

KL(Q̃c∥Q̃c̄) = KL(fY c,V ∥fY c̄,V ) = EV
[
KL
(
fY c|V ∥fY c̄|V

)]
.

Notice that the conditional law of Y c given V is

fY c|V (y|v) =
1

fV (v)

∫
Rk

+

fY c,V |Π(y, v|π)dD⊗k
d (π)

=
1

fV (v)

∫
Rk

+

fY c|Π(y|π) · fV |Π(v|π)dD⊗k
d (π)

=

∫
Rk

+

fY c|Π(y|π) · fΠ|V (π|v)dD⊗k
d (π), (D8)

where we used Bayes’ rule and the fact that the law of the rows of Π are uniformly-distributed
over the d-simplex. By conjugacy of the multinomial and Dirichlet distributions, notice that
the conditional law of Π given V is given by

Πi,·|V ∼ Dirichlet(1 + Vi1, . . . , 1 + Vid), i = 1, . . . , k.

Now, equation (D8) shows that the conditional law of Y c given V is simply given by the
law EΠ[Poi(nΠ

⊤c) |V ], which we use as a shorthand to denote the posterior distribution of
Poi(nΛ⊤c) when Λ is drawn conditionally on V from the Dirichlet law in the above display.
We thus have

KL(Q̃c∥Q̃c̄) = EV
{
KL
(
EΠ[Poi(nΠ

⊤c) |V ] ∥EΠ[Poi(nΠ
⊤c̄)

∥∥V ]
)}

≤ EV
{
EΠ

[
KL
(
Poi(nΠ⊤c) ∥Poi(nΠ⊤c̄)

) ∣∣V ]}
= EΠ

{
KL
(
Poi(nΠ⊤c) ∥Poi(nΠ⊤c̄)

)}
,

where we used the convexity of the KL divergence in the second line. Notice that

EΠ

{
KL
(
fUc

V |Π∥fU c̄
V |Π
)}

≲ n

d∑
j=1

EΠ

[
(Π⊤(c− c̄))2j

(Π⊤c̄)j

]

≤ n

d∑
j=1

(
EΠ

[
(Π⊤(c− c̄))6j

] ) 1
3

(
E
[
(Π⊤c̄)

−3/2
j

]) 2
3

.



53

From here, we prove claims (i) and (ii) separately. To prove claim (i), assume c, c̄ ∈ Σk,s(β).
Then, there exists two index sets S1, S2 ⊆ {1, . . . , k − 2} of cardinality s such that ci =
β · I(i ∈ S1) and c̄i = β · I(i ∈ S2) for all i = 1, . . . , k − 2, and ck−1 = c̄k−1 = ck = c̄k =
(1− βs)/2. It follows that

∥c− c̄∥22 = β2 ·
(
|S1 \ S2|+ |S2 \ S1|

)
= 2β2|S1 \ S2|.

Now, notice that (Π⊤c̄)j = β
∑
i∈S2

πij +
1−sβ

2 (πkj + π(k−1)j), where we recall that πij
iid∼

Beta(1, d− 1) for all i, j, independently across i. We will make use of the following.

Lemma 12. Let L ≥ 2 and let X1, . . . , XL ∼ Beta(1, d−1) be independent random variables.
Then, there exists a universal constant C > 0 such that

E
[(∑L

i=1Xi

)−3/2
]
≤ C(d/L)3/2.

The proof appears in Appendix G2 g. It follows that

E
[
(Π⊤c̄)

−3/2
j

]
≤ min

{
E
[
(β
∑
i∈S2

πij)
−3/2
j

]
,E
[
(1− sβ)(πkj + π(k−1)j)/2

]}
≤ Cd3/2 ·min

{
(βs)−3/2, (1− sβ)/25/2

}
≲ d3/2.

On the other hand, we have

EΠ

[
(Π⊤(c− c̄))6j

]
= β6 · E

( ∑
i∈S1\S2

πij −
∑

i∈S2\S1

πij

)6


= β6 · E

( ∑
i∈S1\S2

(πij −
1

d
)−

∑
i∈S2\S1

(πij −
1

d
)

)6


≲ β6 · E

( ∑
i∈S1\S2

(πij −
1

d
)

)6
+ β6 · E

( ∑
i∈S2\S1

(πij −
1

d
)

)6
 .

Recall that E[πij ] = 1/d, and that the πij are i.i.d. across i, for any fixed j. Now, apply
Rosenthal’s inequalities [133, 134] to obtain that for any j = 1, . . . , d,

E

( ∑
i∈S1\S2

(πij −
1

d
)

)6
 ≲ |S1 \ S2|3 ·Var3[π11] + |S1 \ S2| · E|π11|6 ≲

|S1 \ S2|3

d6
.

After repeating a symmetric argument, we thus obtain

EΠ

[
(Π⊤(c− c̄))6j

]
≲ β6 |S1 \ S2|3 + |S2 \ S1|3

d6
≍ ∥c− c̄∥62/d6.

Altogether, we have thus shown

EΠ

{
KL
(
fUc

V |Π∥fU c̄
V |Π
)}

≤ n

d∑
j=1

(
EΠ

[
(Π⊤(c− c̄))6j

] ) 1
3

(
E
[
(Π⊤c̄)

−3/2
j

]) 2
3

≲ nd · (∥c− c̄∥62/d6)−
1
3 · d ≲ n∥c− c̄∥22.
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and the first claim follows. To prove the second claim, notice that when c, c̄ ∈ ∆k satisfy
∥c∥∞ ∨ ∥c̄∥∞ ≤ 3/4, at least two entries of c̄ are bounded from below by 3/(4k). Assuming
without loss of generality that these correspond to the first two entries of c̄, one has

E
[
(Π⊤c̄)

−3/2
j

]
≳ E[(π11 + π21)

−3/2] ≳ d3/2,

where the symbol ‘≲’ now hides constants depending on k, and where we applied Lemma 12.
Furthermore, one has

E
[
(Π⊤(c− c̄)6j

]
≲ E

[
∥Π·j∥62

]
· ∥c− c̄∥62 ≲ d−6∥c− c̄∥22.

From here, the claim can be deduced as before.

Appendix E: Proofs of Upper Bounds

The goal of this section is to prove Propositions 3 and 4.

1. Proof of Proposition 3

We prove Proposition 3 in two steps. We begin by showing that the unregularized collision
estimator

ĉcolli =
d+ 1

nm

n∑
ℓ=1

m∑
r=1

I(Zℓ =Wir)− 1, i = 1, . . . , k,

already achieves the optimal convergence rate when k <
√
nmd/d.

Lemma 13. Under the multinomial model, there exists a universal constant C > 0 such
that for all 1 ≤ n ≤ d and all m, k ≥ 1,

sup
c∈∆k

E∥ĉ− c∥2 ≤ C

√
dk

nmd
,

with md = min{m, d}.

Second, we will prove that for appropriate λ > 0, the hard-thresholded collision estimator
achieves the optimal convergence rate when k >

√
nmd/d. We will analyze this estimator

under the normalized Poisson model, which will allow us to deduce the following upper
bound.

Lemma 14. Let n, k, d,m ≥ 1 and md = min{m, d}. Assume that k ≤ d and nmd > d1+γ

for some γ > 0. Then, there exists a constant C = C(γ) > 0 such that

M(n, d, k,m) ≤ C

(
d log k

nmd

) 1
4

,

with md = min{m, d}.

Let us now prove these Lemmas in turn.
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a. Proof of Lemma 13

Throughout the proof, we repeatedly make use of elementary moment bounds for Dirichlet
random variables, as summarized in Lemma 26. Abbreviate ĉcoll by ĉ. It suffices to show
that for each i, E|ĉi − ci| ≲

√
d/nmd. Without loss of generality, fix i = 1. Recall that

the collections of random variables {Zℓ}ℓ and {W1r}r are each exchangeable, and mutually
independent conditionally on Π, thus,

E[ĉ1] = (d+ 1) · P(Z1 =W11)− 1.

Furthermore,

P(Z1 =W11) =

d∑
j=1

E
[
P(Z1 = zj ,W11 = zj |Π)

]
=

d∑
j=1

E
[
P(Z1 = zj |Π) · P(W11 = zj |Π)

]
=

d∑
j=1

E

[
k∑
i=1

ciπijπ1j

]

=

d∑
j=1

[
c1

2

d(d+ 1)
+

k∑
i=2

ci
1

d(d+ 1)

]

=
1

d(d+ 1)

d∑
j=1

[1 + c1] =
1 + c1
d+ 1

.

Thus, ĉ1 is unbiased. To bound its variance, notice that

E

( n∑
ℓ=1

m∑
r=1

I(Zℓ =W1r)

)2


=

n∑
ℓ,ℓ′=1

m∑
r,r′=1

E
[
I(Zℓ =W1r)I(Zℓ′ =W1r′)

]
=

n∑
ℓ=1

m∑
r=1

E
[
I(Zℓ = Z1r)

]
+

n∑
ℓ=1

∑
r ̸=r′

E
[
I(Zℓ =W1r =W1r′)

]
+
∑
ℓ ̸=ℓ′

m∑
r=1

E
[
I(Zℓ = Zℓ′ = Z1r)

]
+
∑
ℓ ̸=ℓ′

∑
r ̸=r′

E
[
I(Zℓ =W1r)I(Zℓ′ =W1r′)

]
=: (I) + (II) + (III) + (IV ).

We compute these terms in turn. First, our earlier bias calculations imply that

(I) = nm
1 + c1
d+ 1

≲
nm

d
.

To compute term (II), notice that

P(W1 = Z11 = Z12) =

d∑
j=1

E
[
P(W1 = zj |Π)P(Z11 = zj |Π)P(Z12 = zj |Π)

]
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=

d∑
j=1

k∑
i=1

ciE
[
πijπ

2
1j

]
=

d∑
j=1

{
c1E
[
π3
1j

]
+

k∑
i=2

ciE
[
πijπ

2
1j

]}
≲ 1/d2,

thus,

(II) ≲
nm(m− 1)

d2
≲
nm2

d2
.

A similar argument shows that (III) ≲ mn2/d2. To bound (IV ), notice that

E
[
I(W1 = Z11)I(W2 = Z12)

]
= E

[
P(W1 = Z11|Π) · P(W2 = Z12|Π)

]
=

d∑
j,j′=1

∑
i,i′

cici′E[πijπ1jπi′j′π1j′ ] = (a) + (b),

where

(a) =

d∑
j=1

∑
i,i′

cici′E[πijπ1jπi′jπ1j ] ≤ C ′
kd

−3,

for a sufficiently large constant C ′ > 0, and

(b) =
∑
j ̸=j′

∑
i,i′

cici′E[πijπ1jπi′j′π1j′ ]

=
∑
j ̸=j′

(
k∑
i=1

ciE[πijπ1j ]

)2

+
∑
j ̸=j′

∑
i,i′

cici′Cov(πijπ1j , πi′j′π1j′)

≤
∑
j ̸=j′

(
k∑
i=1

ciE[πijπ1j ]

)2

+ C ′′d−3

= d(d− 1)

(
1 + c1
d(d+ 1)

)2

+ C ′′d−3 ≤
(
1 + c1
d+ 1

)2

+ C ′′d−3,

for another universal constant C ′′ > 0. We thus have

(IV ) = n(n− 1)m(m− 1)
[
(a) + (b)

]
≤ (nm)2

[
C ′′′

d3
+

(
1 + c1
d+ 1

)2
]
,

for C ′′′
k = C ′

k + C ′′
k . Altogether, we deduce that

Var

 n∑
ℓ=1

m∑
j=1

I(Wℓ = Z1j)


= (I) + (II) + (III) + (IV )−

[
E
(∑n

ℓ=1

∑m
j=1 I(Wℓ = Z1j)

)]2
= (I) + (II) + (III) + (IV )− (nm)2

(
1 + c1
d+ 1

)2

≲
nm

d
+
nm2

d2
+
mn2

d2
+

(nm)2

d3
.
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It follows that

Var[ĉ1] ≲
d2

(nm)2
Var


 n∑
ℓ=1

m∑
j=1

I(Wℓ = Zij)

2
 ≲

d

nm
+

1

n
+

1

m
+

1

d
.

Since n ≤ d, the claim follows.

b. Proof of Lemma 14

By condition (S) and Lemma 1, it will suffice to derive an upper bound on the normalized
Poisson minimax risk R′(n, d, k,m). Recall that, under this model, one observes histograms
(Y, V ) with entries that are conditionally independent given Π, with Π admitting indepen-
dent rows distributed according to the flat Dirichlet law. We will analyze the associated
hard-thresholded collision estimator, defined by

c̃i = ĉi · I(ĉi ≥ λ), where ĉi =
d

nm
(V Y )i − 1 =

d

nm

d∑
j=1

VijYj − 1, i = 1, . . . , k,

where λ =
√
ad log(k)/(nmd), for a constant a > 0 depending only on γ, to be specified

below. Throughout the proof, C > 0 denotes a universal constant whose value may change
from one expression to the next. Our starting point is the following basic inequality for
hard-thresholding estimators [65]:

(c̃i − ci)
2 ≤ 4(ci ∧ λ)2 + |ĉi − ci|2I(|ĉi − ci| > λ/2), i = 1, . . . , k.

Notice that

k∑
i=1

c2i ∧ λ2 =
∑
i:ci≤λ

c2i +
∑
i:ci>λ

λ2 ≤ λ∥c∥1 + |{i : ci > λ}|λ2 ≲ λ ≍

√
da log(k)

nmd
,

thus, to prove the claim, it will suffice to show that E[R] ≲
√
d log(k)/nmd, where

R = max
1≤i≤k

Ri, Ri = k · E
[
|ĉi − ci|2 · I(|ĉi − ci| > λ/2)

∣∣Π].
Let us now derive a concentration bound for ĉi conditionally on Π. We will repeatedly make
use of the following concentration bounds for sub-Weibull random variables, which are due
to Kuchibhotla and Chakrabortty [135].

Lemma 15 (Concentration of sub-Weibull Random Variables). Let X1, . . . , Xd be indepen-
dent mean-zero random variables in R, such that for some α ∈ (0, 1] and ζ > 0,

max
1≤j≤d

∥Xj∥ψα ≤ ζ, and define σ2 =

d∑
j=1

E[X2
i ].

Then, there exists a constant Cα > 0 such that the following assertions hold.

1. (Theorem 3.1, [135]) For all t > 0, it holds with probability at least 1− 2e−t that∣∣∣∣ d∑
j=1

Xj

∣∣∣∣ ≤ Cαζ
(√
dt+ t1/α

)
.
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2. (Theorem 3.4, [135]) For all t > 0, it holds with probability at least 1− 3e−t that∣∣∣∣ d∑
j=1

Xj

∣∣∣∣ ≤ Cα

(√
σ2t+ ζ(t log d)1/α

)
.

We will also make use of the following bound from [135], which characterizes the tail
behavior of products of sub-Weibull random variables.

Lemma 16 ([135], Proposition D.2). If X1, . . . , Xd are (possibly dependent) random vari-
ables satisfying ∥Xj∥ψαj

<∞ for some αj > 0, then∥∥∥∥∥∥
d∏
j=1

Xj

∥∥∥∥∥∥
ψβ

≤
d∏
j=1

∥Xj∥ψαj
, where

1

β
=

d∑
j=1

1

αj
.

Now, using Proposition 6.5 of [136], it can be shown that the ψ1-Orlicz norm of a Poisson

random variable X ∼ Poi(λ) satisfies ∥X − λ∥ψ1 ≲ 1 ∨
√
λ. Thus, denoting by ∥ · ∥ψα,Π the

Orlicz norm taken with respect to the conditional law P(·|Π), one has∥∥Yj − E[Yj |Π]
∥∥
ψ1,Π

≲ 1 ∨ µYj
,
∥∥Vij − E[Vij |Π]

∥∥
ψ1,Π

≲ 1 ∨ µVij
,

with µYj = nΠ⊤
·jc and µVij = mπij , hence,∥∥VijYj − E[VijYj |Π]

∥∥
ψ1/2,Π

≲
∥∥(Vij − E[Vij |Π])(Yj − E[Yj |Π])

∥∥
ψ1/2,Π

+ µYj∥Vij∥ψ1/2,Π
+ µVij∥Yj∥ψ1/2,Π

+ µYjµVij

≲ (1 ∨ µYj
)(1 ∨ µVij

),

where we used Lemma 16 on the final line. We write

ζΠ,i = max
1≤j≤d

(1 ∨ µYj
)(1 ∨ µVij

), i = 1, . . . , k.

We may then apply the concentration inequality of Lemma 15(ii) for ψ1/2-random variables
to obtain

P

∣∣∣∣ d∑
j=1

(
VijYj − E(VijYj |Π)

)∣∣∣∣ > x

∣∣∣∣Π
 ≤ 2 exp

{
− 1

C

(
x2

σ2
Π,i

∧
√
x/ζΠ,i
log d

)}
, (E1)

for all x > 0, where

σ2
Π,i =

d∑
j=1

Var[VijYj |Π].

It follows that

P
(
|ĉi − E[ĉi |Π]| > x |Π

)
≤ 2 exp

{
− 1

C

(
(nm)2x2

d2σ2
Π,i

∧ 1

log d

√
nmx

dζΠ,i

)}
. (E2)

In particular, denoting by βΠ,i = |E[ĉi|Π]− ci| the conditional bias of ĉi, we deduce that

P
(
|ĉi − ci| > x |Π

)
≤ 2 exp

{
− 1

C

(
(nm)2(x− βΠ,i)

2
+

d2σ2
Π,i

∧ 1

log d

√
nm(x− βΠ,i)+

dζΠ,i

)}
. (E3)
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where the transition between the sub-Gaussian and sub-Weibull tail occurs when the point x
exceeds τΠ,i := (d/nm)(σ2

Π,i/
√
ζΠ,i)

2/3 + βΠ,i. With these preliminaries in place, we obtain

Ri =

∫ ∞

λ2/4

P
(
|ĉi − ci|2 > u |Π

)
du

≲ k ·
∫ ∞

λ2/4

exp

{
− 1

C0

(
(nm)2(

√
x− βΠ,i)

2
+

d2σ2
Π,i

∧ 1

log d

√
nm(

√
x− βΠ,i)+
dζΠ,i

)}
dx,

for a sufficiently large constant C0 > 0. Now, define for all i = 1, . . . , k the quantities

λΠ,i = (λ/2− βΠ,i)+

KΠ,i = k exp

{
−
(nm)2λ2Π,i
C0d2σ2

Π,i

}
+ k exp

{
− 1

C0 log d

√
nmλΠ,i
dζΠ,i

}
.

In particular, notice that KΠ,i solves

k ≤ KΠ,i · exp

{
− 1

C0

(
(nm)2(

√
x− βΠ,i)

2
+

d2σ2
Π,i

∧ 1

log d

√
nm(

√
x− βΠ,i)+
dζΠ,i

)}
for all x > λ2/4,

thus we obtain

Ri ≤ KΠ,i

∫ τ2
Π,i

λ2/4

exp

{
−
(nm)2(

√
x− βΠ,i)

2
+

C0d2σ2
Π,i

}
dx+KΠ,i

∫ ∞

τ2
Π,i

exp

{
− 1

C0

√
nm(

√
x− βΠ,i)+

d(log d)2ζΠ

}
dx

≤ KΠ,i

{
(β2

Π,i −
λ2

4
)+ +

d2σ2
Π,i

(nm)2
+ βΠ,i

dσΠ,i
nm

}
+KΠ,i

{
d2 (log d)4 ζ2Π,i

(nm)2
+ βΠ,i

d (log d)2 ζΠ,i
nm

}

where we used the following elementary integral identities, which hold for all a, b, f > 0,∫ ∞

a

e−b(
√
x−f)2+dx ≲ (f2 − a)+ +

1

b
+

f√
b
,∫ ∞

a

e−b(
√
x−f)1/2+ dx ≲ (f2 − a)+ +

1

b4
+
f

b2
.

Thus, if we define the event

A =

k⋂
i=1

{
σ2
Π,i ≤ C1

nm

d
+C2

nm2

d2
+C3

n2m

d2

}
∩
{
βΠ,i ≤

λ

4

}
∩{ζΠ,i ≤ 1+

m

d
}∩
{
KΠ,i ≤ 1

}
,

(E4)
for large enough constants C1, C2, C3 > 0 to be defined below, then, under condition (S),
we obtain

E[R] ≲ E[R · I(Ac)]

+ E

{
max
1≤i≤k

KΠ,i

[
(β2

Π,i −
λ2

4
)+ +

d2σ2
Π,i

(nm)2
+ βΠ,i

dσΠ,i
nm

+

(
d(log d)2ζΠ,i

nm

)2
]}

≲ d · P(Ac) + λ, (E5)

where we used the fact that ĉi ≤ d, thus R ≲ d. To complete the claim, it will thus suffice
to show that the event A occurs with sufficiently high probability. To this end, we will
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provide high-probability bounds on the quantities σ2
Π,i, βΠ,i, ζΠ,i and KΠ,i, in turn.

Bounding term σ2
Π,i. Recall that the entries of the matrix Π take the form πij = ϖij/Si,

where Si =
∑d
ℓ=1ϖiℓ, and ϖij ∼ Ed are i.i.d. exponential random variables. Furthermore,

write X = (ϖij : 1 ≤ i ≤ k, 1 ≤ j ≤ d) ∈ Rk×d. We have

σ2
Π,i =

d∑
j=1

Var[VijYj |Π]

=

d∑
j=1

(
Var[Vij |Π]Var[Yj |Π] + Var[Yj |Π]

(
E[Vij |Π]

)2
+Var[Vij |Π]

(
E[Yj |Π]

)2)

=

d∑
j=1

(
mπijn(Π

⊤c)j + n(Π⊤c)j(mπij)
2 +mπij(n(Π

⊤c)j)
2
)

=

d∑
j=1

k∑
s=1

cs

(
mnπijπsj + nm2πsjπ

2
ij +mn2

k∑
s′=1

cs′πs′jπijπsj

)

= mn

d∑
j=1

k∑
s=1

cs
ϖijϖsj

SiSs
+ nm2

d∑
j=1

k∑
s=1

cs
π2
ijπsj

S2
i Ss

+mn2
d∑
j=1

k∑
s,s′=1

cscs′
πijπsjπs′j
SiSsSs′

=: T1i + T2i + T3i.

We bound the terms T1i, T2i, and T3i in turn. By a sub-exponential tail bound, notice that
one has

P
(
max
1≤i≤k

|Si − 1| > x
)
≲ k · exp

(
−Cd(x ∧ x2)

)
, for all x > 0. (E6)

Under condition (S), we deduce that the event A1 =
⋂k
i=1{|Si−1| ≤ 1/2} satisfies P(A1) ≥

1− Ce−d/C . Over the event A1, we deduce that for all i = 1, . . . , k,

T1i
nm

≍
d∑
j=1

k∑
s=1

csϖijϖsj =

d∑
j=1

Fij , where Fij =

k∑
s=1

csϖijϖsj . (E7)

Recalling the Orlicz norms ∥ · ∥ψα
defined in equation (A1), notice that for all j = 1, . . . , d,

∥Fij∥ψ1/2
≤

k∑
s=1

cs∥ϖijϖsj∥ψ1/2
≤

k∑
s=1

cs∥ϖij∥ψ1
∥ϖrj∥ψ1

≲
1

d2
,

where the penultimate inequality follows from Lemma 16, and the final inequality is a
simple consequence of the fact that the random variables dϖij are (sub-)exponential with
fixed modulus. We deduce that, up to rescaling, Fij −E[Fij ] are (1/2)-sub-Weibull random
variables, which are independent across j = 1, . . . , d. Applying Lemma 15(i), we deduce
that for all x > 0,

P

 max
1≤i≤k

∣∣∣∣ d∑
j=1

(
Fij − E[Fij ]

)∣∣∣∣ ≥ (C/d2)
(√
dx+ x2)

 ≲ ke−x. (E8)

Furthermore, we readily have E[Fij ] ≲ d−2, thus the above display implies that, for a large

enough constant C > 0, the event A2 := {max1≤i≤k |
∑d
j=1 Fij | ≤ C/d} has probability



61

content P(Ac
2) ≤ ke−

√
d ≲ e−

√
d/C . We deduce that over A1 ∩ A2, it holds that

max
1≤i≤k

T1i ≤ C1
nm

d
.

To bound T2i, we adopt a similar proof. We again have, over the event A1,

T2i
nm2

≍
d∑
j=1

k∑
s=1

csϖ
2
ijϖsj =

d∑
j=1

Lij , where Lij =

k∑
s=1

csϖ
2
ijϖsj . (E9)

The random variables d3Lij are (1/3)-sub-Weibull, since, reasoning as before, one has

∥Lij∥ψ1/3
≤

k∑
s=1

cs∥ϖij∥2ψ1
∥ϖrj∥ψ1 ≲

1

d3
.

Furthermore, one has E[Lij ] ≲ d−3, thus by again applying the sub-Weibull tail bound from
Lemma 15(i), we arrive at

P
(

max
1≤i≤k

d∑
j=1

Lij ≥ C/d2 + (C/d3)
(√
dx+ x3)

)
≲ ke−x, x > 0,

which implies that the event A3 := {max1≤i≤k |
∑d
j=1 Lij | ≤ C/d2} satisfies P(A3) ≥ 1 −

e−d
1/3/C . Over the event A1 ∩ A3, we thus obtain

max
1≤i≤k

T2i ≤ C2
nm2

d2
.

for a large enough choice of the constant C2 > 0. An analogous proof can be used to show

that, for an event A4 satisfying P(A4) ≥ 1− e−d
1/3/C ,

max
1≤i≤k

T3i ≤ C3
n2m

d2
.

Altogether, we have thus shown that

max
1≤i≤k

σ2
Π,i ≤ C1

nm

d
+ C2

nm2

d2
+ C3

n2m

d2
. (E10)

over the event A1 ∩ A2 ∩ A3 ∩ A4. This completes our upper bound of σ2
Π,i.

Bounding term βΠ,i. Next, we provide a high-probability bound on the conditional bias
term βΠ,i. We will make use of the following simple Lemma.

Lemma 17. Define the random variables Bi = (d + 1)
∑d
j=1

∑k
r=1 crϖijϖrj − 1. Then,

there exists a constant C3 > 0 such that the event

A5 =

k⋂
i=1

{∣∣∣(E[ĉi|Π]− ci
)
−
(
Bi − E[Bi]

)∣∣∣ ≤ C3/d
}

satisfies P(A5) ≥ 1− C3e
−
√
d/C3 .
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The proof appears in Appendix G3 a. In view of Lemma 17, we can bound βΠ,i in the

same way as σ2
Π,i. Indeed, notice that Bi + 1 ≍ d

∑d
j=1 Fij , thus, using equation (E8), we

have for all x > 0,

P
(
max
1≤i≤k

∣∣Bi − E[Bi]
∣∣ > (C/d)(

√
dx+ x2)

)
≲ ke−x.

Notice that λ ≥ n−1/2 ≥ d−
1

2(1+γ) under condition (S), thus, by choosing x = dγ/(2(1+γ))−ϵ

for any fixed ϵ > 0, we deduce that the event A6 = {max1≤i≤k |Bi − E[Bi]| > λ/8} satisfies

P(Ac
6) ≲ e−d

b/C for a fixed constant b = b(γ) > 0. It thus follows that, over the event
A5 ∩ A6,

max
1≤i≤k

βΠ,i ≤ λ/4. (E11)

Bounding term ζΠ,i. By repeating the same arguments as in the previous steps, there

exists an event A7 of probability content at least 1− e−
√
d/C over which it holds that

µYj = n

k∑
i=1

ciπij ≤ 2n/d, and, µVij = mπij ≤ 2m/d,

uniformly in i, j. Under condition (S), it follows that ζΠ,i ≤ C(1 +
√
m/d).

Bounding term KΠ,i. The preceding steps readily lead to an upper bound on KΠ,i.

Indeed, under condition (S), over the event
⋂7
s=1 As, we have for all i = 1, . . . , k that

λΠ,i ≥ λ/2 and

KΠ,i = k exp

{
−
(nm)2λ2Π,i
C0d2σ2

Π,i

}
+ o(1)

≲ k exp

{
− 1

C

nm2a log(k)

dmd(nm/d+ nm2/d2 +mn2/d2)

}
+ o(1)

≲ k exp

{
−a log(k)

C

}
+ o(1)

≲ k · k−a/C + o(1) < 1, (E12)

for a sufficiently large choice of a, depending only on γ.

Concluding the proof. By combining equations (E10), (E11), and (E12), we deduce that
the set A defined in equation (E4) satisfies

P(Ac) ≲
5∑
i=1

P(Ac
i) ≲ e−d

b

,

for a sufficiently small exponent b > 0 depending only on γ. Therefore, returning to equa-
tion (E5), we arrive at

E[R] ≲ de−d
b

+ λ ≲ λ.

The claim follows from here.
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2. Proof of Propositions 4–6

We will prove the three claims by first analyzing the risk of the cumulant estimators ξ̂p,
under the unnormalized Poisson model.

Lemma 18. Assume condition (S) and let 1 ≤ p ≤ k. Then, under the unnormalized
Poisson model, there exists a constant Cp,γ > 0 such that

E|ξ̂p − ξp| ≤
Cp,γ√
npdp+1

.

Proof. We will make use of the following fact.

Lemma 19. Under the unnormalized Poisson model, for all i = 1, . . . , k, there exists a
constant Ci > 0 such that

E[T1,i] = ηi, Var[T1,i] ≤
Ci

min{n, d}idi
.

The proof appears in Appendix G2b. It follows from Lemma 19 that

E[Wh] = E

p−ℓ+1∏
i=1

∏
j∈Si

Tj,i

 =

p−ℓ+1∏
i=1

∏
j∈Si

E [Tj,i] =

p−ℓ+1∏
i=1

hi∏
s=1

ηi =

p−ℓ+1∏
i=1

ηhi
i , (E13)

thus it is clear that E[ξ̂p] = ξp. Let us now compute the variance. Notice that:

Var[ξ̂p] ≲
∑

h∈Hp,ℓ

Var[Wh],

where the implicit constants depend on k, p. Now, let us rewrite Wh as the p-th order
U-Statistic:

Wh =
1(
d
p

) ∑
1≤j1<···<jp≤d

ζh(j1, . . . , jp),

where

ζh(j1, . . . , jp) =

∏k
i=1 hi!

p!

∑
(A1,...,Ap−ℓ+1)

p−ℓ+1∏
i=1

∏
j∈Ai

Tj,i,

and where the summation is taken over all partitions A1, . . . , Ap−ℓ+1 of {j1, . . . , jp} such
that |Ai| = hi for all i. By [137], we have for any h ∈ Hp,ℓ and any large enough d that

Var[Wh] ≲
1

d
Var [ζh(1, . . . , p)] ≲

1

d
Var

p−ℓ+1∏
i=1

∏
j∈Ai

Tj,i

 ,
for any fixed partition (A1, . . . , Ap−ℓ+1) of {1, . . . , j} with |Ai| = hi. The random variables
appearing in the above product are independent, thus, together with Lemma 19, we have

Var

p−ℓ+1∏
i=1

∏
j∈Ai

Tj,i

 ≤
p−ℓ+1∏
i=1

∏
j∈Ai

(
Var [Tj,i] + E [Tj,i]

2 )
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≲
p−ℓ+1∏
i=1

∏
j∈Ai

(
1

nidi
+

1

d2i

)

≲
p−ℓ+1∏
i=1

(
1

nidi

)hi

= (nd)−
∑

i ihi = n−pd−p.

The claim follows.

The following is now an immediate consequence of Lemma 18 and the definition of the
estimator m̂ = (m̂1, . . . , m̂p)

⊤ defined in equation (B25).

Lemma 20. Assume condition (S). Then, under the unnormalized Poisson model, there
exists a constant C = C(k, γ) > 0 such that

E∥m̂−m(c)∥2 ≤ C

√
dk−1

nk
. (E14)

With Lemma 20 in hand, we are now ready to prove Propositions 4–6. For the proofs of
Propositions 4–5, notice that W (ĉ, c) ≤ W (c̃, c) (cf. Lemma 48 of [74]), thus it suffices to
prove upper bounds for the possibly complex-valued estimator c̃. By Newton’s identity (K3),
the moments of c̃ are given by

mp(c̃) = m̂p, p = 1, . . . , k.

Therefore, we may apply Lemma 28 to obtain

EW (c̃, c) ≲ E
∥∥m(c̃)−m(c)

∥∥ 1
k ≲

√
d1−

1
k

n
,

where the implicit constants depend only on k, γ. This proves Proposition 4. Proposition 5
follows similarly, by now replacing the 1/k-modulus of continuity in the above display by
1/(k − k0 + 1), as a result of Lemma 29.

Finally, to prove Proposition 6, invoke Proposition 4 to deduce that the loss functions
Dc⋆(ĉ, c) and Dc⋆(ĉ, c) (defined in Appendix K2 a) coincide for all large enough d. By again
applying Lemma 48 of [74], we thus obtain

Dc⋆(ĉ, c) = Dc⋆(ĉ, c) ≤ Dc⋆(c̃, c).

The claim now follows as before, invoking Lemma 29 to bound Dc⋆ in terms of the moment
differences. The claim follows.

3. Moment Estimator in the Multinomial Model

We now show that Propositions 4–6 lead to upper bounds on the sorted minimax risk
M<(n, d, k, 0) for the original multinomial sampling model, as well as for the local minimax
risk:

M<(n, d, k; c
⋆, ϵ) = inf

ĉ
sup
c∈∆k

W (c,c⋆)≤ϵ

Ec
[
Dc⋆(ĉ(Y, V ), c)

]
,

which is defined for any c⋆ ∈ ∆k and ϵ ≥ 0, where the expectation is taken over a realization
(Y, V ) from the multinomial model with parameter c.
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Corollary 1. Assume condition (S), and n > d1−
1
k . Then, the following assertions hold.

(i) There exists a constant C = C(k, γ) > 0 such that

M<(n, d, k, 0) ≤ C

√
d1−

1
k

n
.

(ii) For any 1 ≤ k0 ≤ k, δ > 0, there exist constants C, ϵ > 0 depending on k, γ, δ such
that for any c⋆ ∈ ∆k,k0(δ),

M<(n, d, k; c
⋆, ϵ) ≤ C

√
dk−1

nk
.

To prove Corollary 1(i), notice that

M<(n, d, k, 0) ≲ R<(n, d, k, 0) + e−n/C1 ≲ R′
<(n, d, k, 0) + e−n/C1 +

√
n

d
,

for a large enough constant C1 > 0, due to Lemmas 1–2. By Proposition 4, we deduce

M<(n, d, k, 0) ≲

√
d1−

1
k

n
+ e−n/C1 +

√
n

d
.

Under the condition n ≥ d1−
1
k , the first term on the right-hand side of the above display

is dominant, which proves Corollary 1(i). The second claim can be proven analogously, by

again using the fact that
√
dk−1/nk dominates

√
n/d in the regime n ≥ d1/k.

Appendix F: Proofs of Main Results

Our main results—namely Theorems 1–2 and Proposition 1—now follow from the lower
and upper bounds developed in the preceding two appendices. Concretely, Theorem 1 fol-
lows from the lower bound in Proposition 8 and the upper bound in Proposition 3, while
Theorem 2 follows from the lower bound in Proposition 7 and the upper bounds in Propo-
sition 4 (where we recall that W ≤ ∥ · ∥), and Corollary 1(i). Finally, Proposition 1 is a
direct consequence of Corollary 1(ii) with k0 = 2 and r1 = 1.

Appendix G: Proofs Deferred from Appendices C–E

1. Proofs Deferred from Appendix C

a. Proof of Lemma 1

Our proof follows a standard Poissonization argument [122]. We prove the claim for
the unordered minimax risk, and a similar proof can then be used for the ordered risk.
Furthermore, we focus on the case m > 0; adaptations to the special case m = 0 are
straightforward.

Let (Y (n), V (m)) be random variables drawn from the multinomial model Q̃c with sample
sizes n and m. Let N ∼ Poi(n) and M ∼ Poi(m) be independent of all other random
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variables, and notice that (Y (N), V (M)) is distributed according to Qc. In this notation, the
unordered minimax risks are given by

M(n, d, k,m) := inf
ĉ

sup
c∈∆k

Ec∥ĉ(Y (n), V (m))− c∥

R′(n, d, k,m) := inf
ĉ

sup
c∈∆k

Ec∥ĉ(Y (N), V (M))− c∥.

Now, given ϵ > 0, let ĉϵ be a near-optimal estimator satisfying

sup
c∈∆k

Ec∥ĉϵ(Y (n), V (m))− c∥ ≤ M(n, d, k,m) + ϵ.

Writing En′m′ = {N = n′,M = m′}, we thus have,

sup
c∈∆k

Ec∥ĉϵ(Y (N), V (M))− c∥

= sup
c∈∆k

EΠ

{
Ec
[
∥ĉϵ(Y (N), V (M))− c∥

∣∣Π]}
= sup
c∈∆k

∞∑
n′,m′=0

EΠ

{
Ec
[
∥ĉϵ(Y (N), V (M))− c∥

∣∣Π]P(En′m′ |Π)
}

= sup
c∈∆k

∞∑
n′,m′=0

EΠ

{
Ec
[
∥ĉϵ(Y (n′), V (m′))− c∥

∣∣Π]}P(En′m′)

≤ sup
c∈∆k

∞∑
n′,m′=0

M(n′, d, k,m′)P(En′m′) + ϵ.

Since the risk function M(n, d, k,m) is monotonically decreasing in n and m, we deduce
that

sup
c∈∆k

Ec∥ĉϵ(Y (N), V (M))− c∥

≤ M(n/2, d, k,m/2) + P(N < n/2) + P(M < m/2) + ϵ

≤ M(n/2, d, k,m/2) + Ce−n/C + Ce−m/C + ϵ,

where the final inequality holds for a sufficiently large universal constant C > 0 by standard
Chernoff bounds for the Poisson distribution (e.g. equation (C.1) of [122]). Since ϵ was
arbitrary, it follows that

R′(n, d, k,m) ≤ M(n/2, d, k,m/2) + Ce−n/C + Cke−m/C . (G1)

To prove a converse bound, we reason similarly as in Lemma 1 of [130], and use the fact
that the worst-case Bayes risk provides a lower bound on the minimax risk:

R′(n, d, k,m) ≥ sup
ρ

inf
ĉ
Ec∼ρ

{
Ec∥ĉ(Y (N), V (M))− c∥

}
,

where the supremum is taken over all probability distributions on ∆k. Reasoning similarly
as before, we have for any prior ρ,

inf
ĉ
Ec∼ρ

{
Ec∥ĉ(Y (N), V (M))− c∥

}
= inf

ĉ

∞∑
n′,m′=0

Ec∼ρ
{
Ec∥ĉ(Y (n′), V (m′))− c∥

}
· P(N = n′,M = m′)
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≥
2n∑
n′=0

2m∑
m′=0

inf
ĉ
Ec∼ρ

{
Ec∥ĉ(Y (n′), V (m′))− c∥

}
· P(N = n′,M = m′)

≥ Ec∼ρ
{
Ec∥ĉ(Y (2n), V (2m))− c∥

}
· P(N ≥ 2n,M ≥ 2m),

where we again used the fact that the map (n′,m′) 7→ inf ĉ Ec∼ρ
{
Ec∥ĉ(Y (n′), V (m′)) − c∥

}
is decreasing in both of its coordinates. Now, by again applying a Poisson Chernoff bound,
we obtain P(N ≤ 2n,M ≤ 2m) ≤ 1− Ce−n/C − Ce−m/C . Taking the supremum over ρ on
both sides of the above display, we thus obtain

R′(n, d, k,m) ≥ M(2n, d, k, 2m) ·
(
1− Ce−n/C − Cke−m/C

)
. (G2)

This proves the claim.

b. Proof of Lemma 2

Let C > 0 be a universal constant, whose value may change from one display to the next.
Let Π ∈ Rk×d be a random matrix with rows independently drawn from the flat Dirichlet

law Dd. Let G1, . . . , Gk ∼ Gamma(d, d) be independent Gamma-distributed random vari-
ables, which are independent of Π, and notice that the matrix X := diag(G)Π consists of
i.i.d. Exp(d)-distributed entries (cf. Lemma 26). Thus, we can write:

Q⊗d
c = EΠ,G[Qc|Π,G], with Qc|Π,G =

d⊗
j=1

(
Poi(n

k∑
i=1

Giciπij)⊗
k⊗
i=1

Poi(mGiπij)

)

Qc = EΠ[Qc|Π], with Qc|Π =

d⊗
j=1

(
Poi(n

k∑
i=1

ciπij)⊗
k⊗
i=1

Poi(mπij)

)
.

By convexity of the TV distance, one has

TV(Qc,Q
⊗d
c ) ≤ EΠ,G

[
TV(Qc|Π,Qc|Π,G)

]
≤ EΠ,G

[
TV(Qc|Π,Qc|Π,G) · I(A)

]
+ P(Ac),

where A denotes the event that πij ≤ 1 and |Gi − 1| ≤ d−1/4 for all i = 1, . . . , k and j =
1, . . . , d. Notice that π1i ∼ Beta(1, d−1), and is therefore sub-Gaussian with variance proxy

1/4(d+ 1) by [138]. Furthermore, G1 ∼ Gamma(d, d) can be expressed as G1 = 1
d

∑d
j=1Xj

where Xj ∼ Exp(1) are i.i.d sub-exponential random variables. By a sub-Gaussian and
sub-exponential tail bound, one readily obtains

P(Ac) ≤ kd · P(π11 > 1) + k · P(|G1 − 1| > d−1/4) ≲ kd · e−d/C + k · e−
√
d/C ≲ e−

√
d/C .

It thus remains to bound the mean value of TV(Qc|Π,Qc|Π,G) over the event A. By Pinsker’s

inequality, it will suffice to bound the KL divergence KL2(Qc|Π,Qc|Π,G), which, over the
event A, is bounded from above as follows (cf. Lemma 23):

KL(Qc|Π,Qc|Π,G)

≲
d∑
j=1

{
KL
(
Poi
(
n
∑
i ciGiπij

)
,Poi

(∑
i ciπij

))
+

k∑
i=1

KL
(
Poi(mGiπij),Poi(mπij)

)}

≲ n

d∑
j=1

(
∑k
i=1 ciπij(Gi − 1))2∑k

i=1 ciπij
+m

d∑
j=1

k∑
i=1

((Gi − 1)πij)
2

πij
.
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We thus have,

EΠ,G

[
TV2(Qc|Π,Qc|Π,G)

]
≲ e−

√
d/C + nd · EΠ,G

[
(
∑k
i=1 ciπij(Gi − 1))2∑k

i=1 ciπij

]
+mdkEΠ,G[(G1 − 1)2π11]

≤ e−
√
d/C + n · EΠ

[
VarG

[∑k
i=1 ciπijGi

∣∣Π]∑k
i=1 ciπij

]
+mdkVar[G1] · E[π11]

= e−
√
d/C +

n

d
EΠ

[∑k
i=1 c

2
iπ

2
ij∑k

r=1 crπrj

]
+
mk

d

≤ e−
√
d/C +

n

d
EΠ

[
k∑
i=1

ciπij

]
+
mk

d2
= e−

√
d/C +

n

d2
+
mk

d2
.

The claim follows.

2. Proofs Deferred from Appendix D

a. Proof of Lemma 6

We will construct the vectors u, v using a procedure inspired by [74]. Let u be any fixed
vector with mean zero, and with entries satisfying

−1/2 < u1 < uk < 1/2, ui+1 > ui +
1

4k
, i = 1, . . . , k − 1. (G3)

Define the polynomial

fu(z) =

k∏
i=1

(z − ui), z ∈ C.

Now, consider the perturbed polynomial fv(z) = fu(z) + (1/4k)k. In view of the separa-
tion condition (G3), Lemma 25 ensures that the polynomial fv has k real roots v1, . . . , vk
contained in the interval [−1, 1]. Since fv is monic, it takes the form

fv(z) =

k∏
i=1

(z − vi).

Now, let us apply Vieta’s formula (cf. Appendix K2 a) to obtain

fu(z) = zk +

k∑
j=1

(−1)jej(u1, . . . , uk)z
k−j , fv(z) = zk +

k∑
j=1

(−1)jej(v1, . . . , vk)z
k−j ,

where ej denote the elementary symmetric polynomials. Since fu and fv only differ in their
zeroth-order coefficient, we deduce that

ej(u1, . . . , uk) = ej(v1, . . . , vk), j = 1, . . . , k − 1.

By Newton’s identities (equation (K3)), it follows from here that m̃j(u) = m̃j(v) for all
j = 1, . . . , k − 1. Furthermore, by again using Newton’s identities, we have for all z ∈ C:

(1/4k)k = fv(z)− fu(z)
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= (−1)k
[
ek(v1, . . . , vk)− ek(u1, . . . , uk)

]
= (−1)k

k∑
j=1

(−1)j−1
[
ek−j(v1, . . . , vk)mj(v)− ek−j(u1, . . . , uk)mj(u)

]
= mk(v)−mk(u) ≲W (u, v),

where the implicit constant depends on k. The claim readily follows from here.

b. Proof of Lemma 19

Let θ = ⟨c,ϖ⟩, and Y ∼ Poi(nθ). To prove the claim, it suffices to show that

Ûℓ =
Y !

nℓ(Y − ℓ)!

satisfies E[Ûℓ] = ηℓ, and Var[Ûℓ] ≲ 1
nℓdℓ

+ 1
d2ℓ
. For any ℓ ≥ 1, one has

E[Ûℓ |ϖ] = θℓ, Var[Ûℓ |ϖ] ≲
1

n2ℓ
(nθ)ℓ

(
(nθ + ℓ)ℓ − (nθ)ℓ

)
,

by Lemma 24. To deduce the unconditional bound, notice that

Var[Ûℓ] = E
{
Var[T1,ℓ|ϖ]

}
+Var

{
E[T1,ℓ|ϖ]

}
.

The first term satisfies

E
{
Var[Ûℓ|ϖ]

}
≲

1

d2n2ℓ

d∑
j=1

E
[
(nθ)ℓ + (nθ)2ℓ−1

]
≲

1

n2ℓ

(
(n/d)ℓ + (n/d)2ℓ−1

)
≲

1

nℓdℓ
+

1

nd2ℓ−1
,

where we used elementary bounds on the moments of exponential random variables
(cf. Lemma 26) whereas the second satisfies

Var
{
E[Ûℓ|ϖ]

}
≤ Var[θℓ] ≲

1

d2ℓ
.

The claim follows.

c. Proof of Lemma 8

We begin by noting the following simple bound.

Lemma 21. There exist constants C, a > 0 depending on γ such that

sup
c∈∆k

KL(Qt
c∥Qc) ≤ C · e−d

a/2.

The proof appears below. By Lemma 21, together with Pinsker’s inequality and the
tensorization property of the KL divergence, one has for all c, c̄ ∈ ∆k,

TV(Q⊗d
c̄ ,Q⊗d

c ) ≤ TV
(
Q⊗d
c̄ , (Qt

c̄)
⊗d) + TV

(
(Qt

c̄)
⊗d, (Qt

c)
⊗d) + TV

(
(Qt

c)
⊗d,Q⊗d

c )
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≲
√
d ·KL(Qt

c̄ ∥Qt
c) + sup

c̃∈∆k

√
d ·KL(Qt

c̃ ∥Qc̃)

≲
√
d · χ2

(
Qt
c̄,Q

t
c) +

√
d · e−d

a/2

≲
√
d · χ2

(
Qt
c̄,Q

t
c) + e−d

a/4.

This proves the first claim. To prove the second claim, we make use of the following obser-
vation:

Lemma 22. There exist constants C1, C2 > 0 depending on γ such that for all c, c̄ ∈ ∆k

satisfying W (c, c̄) = 0,

χ2(Qc∥Qc̄) ≤ C1

(
H2(Qc∥Qc̄) + e−C2d

a
)
.

The proof appears below. We deduce from Lemma 22 that

KL(Q⊗d
c ∥Q⊗d

c̄ )

≲ d · χ2(Q⊗d
c ∥Q⊗d

c̄ )

≲ d
(
H2(Qc∥Qc̄) + e−C2d

)
≲ d
(
H2(Qc∥Qt

c) +H2(Qt
c∥Qt

c̄) +H2(Qt
c̄∥Qc̄) + e−C2d

)
≲ d
(
KL(Qc∥Qt

c) + χ2(Qt
c∥Qt

c̄) + KL(Qt
c̄∥Qc̄) + e−C2d

)
≲ d · χ2(Qt

c∥Qt
c̄) + e−C2d

a

,

for a possibly smaller constant C2 > 0, where we used Lemma 21 in the final inequality.
The claim follows.

It thus remains to prove Lemmas 21–22.

Proof of Lemma 21. By convexity and tensorization of the KL divergence, one has

KL
(
Qt
c ∥Qc

)
≤ Eϖ

[
KL
(
Poi(n⟨ϖt, c⟩)

∥∥Poi(n⟨ϖ, c⟩))]
+ k · Eϖ

[
KL(Po(mϖt

1)
∥∥Poi(mϖ1))

]
, (G4)

where the means are taken overϖ ∼ E⊗k
d . To bound the first term, notice that the inequality

|⟨c,ϖ −ϖt⟩| ≤ ⟨c,ϖ⟩ always holds, thus we may apply Lemma 23 to obtain

Eϖ
[
KL
(
Poi(n⟨ϖ, ct⟩) ∥Poi(n⟨ϖ, c⟩)

)]
≤ Eϖ

[
⟨c,ϖ −ϖt⟩2

⟨c,ϖ⟩

]

≤ Eϖ


(∑k

i=1 ciϖi · I(ϖi > t)
)2

∑k
i=1 ciϖi


≤ Eϖ

[
k∑
i=1

ciϖi

∣∣∣ max
i
ϖi > t

]
· P
(
max
i
ϖi > t

)
≤

k∑
i=1

ciEϖ [ϖi |ϖi > t] · P
(
max
i
ϖi > t

)
.
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By the memoryless property of the exponential distribution, one has

E[ϖi |ϖi > t] = t+ E[ϖi] = t+
1

d
≤ 2t.

We thus have,

Eϖ
[
KL
(
Poi(n⟨ϖ, ct⟩) ∥Poi(n⟨ϖ, c⟩)

)]
≤ 2t · P

(
max
i
ϖi > t

)
≲ tk · e−dt ≲ e−d

a/2,

where the final inequality holds for a sufficiently small constant a = a(γ) > 0 by definition
of t, and using the fact that k ≤ d. An analogous upper bound can be obtained on the
second term in equation (G4), and the claim then follows.

Proof of Lemma 22. Let c, c̄ satisfy W (c, c̄) = 0. Under this condition, we will begin by
showing that the ratio of the densities qc(x, y) and qc̄(x, y) is bounded from above and below
by positive constants over a large range of values (x, y). Indeed, we have for all (x, y) ∈ I

qc(x, y) =
1

x!y!
E

[
f(x;n⟨ϖ, c⟩)

k∏
i=1

f(yi;mϖi)

]

=
1

x!y!

∑
j:|j|=x

(
x

j

) k∏
i=1

E
[
(nϖici)

jie−nϖici(mϖi)
yie−mϖi

]
,

where the summation is taken over all j = (j1, . . . , jk) ∈ Nk0 such that
∑
i ji = x, and we

write
(
x
j

)
= x!/j1! . . . jk!. Thus,

qc(x, y) =
1

x!y!

∑
j:|j|=x

(
x

j

) k∏
i=1

∫ ∞

0

(nuci)
ji(mu)yide−(nci+d+m)udu

=
1

x!y!

∑
j:|j|=x

(
x

j

) k∏
i=1

(nci)
jimyi

d

nci + d+m

∫ ∞

0

uji+yi(nci + d+m)e−(nci+d+m)udu

=
1

x!y!

∑
j:|j|=x

(
x

j

) k∏
i=1

(nci)
jimyi

d(ji + yi)!

(nci + d+m)ji+yi+1
.

Writing ζ(j, y) =
∏k
i=1(yi + ji)!/ji!, we thus have

qc(x, y) =
m|y|

y!

∑
j:|j|=x

ζ(j, y)

k∏
i=1

d(nci)
ji

(nci + d+m)ji+yi+1
.

On the one hand, this implies

qc(x, y) ≤
m|y|

y!

∑
j:|j|=x

ζ(j, y)

k∏
i=1

d(nci)
ji

(d+m)ji+yi+1

≤ m|y|

y!

dk

(d+m)x+|y|+k

∑
j:|j|=x

ζ(j, y)

k∏
i=1

(nci)
ji =: φc(x, y),

Notice that φc(x, y) only depends on the sorted vector c. On the other hand,

qc(x, y) =
m|y|

y!

∑
j:|j|=x

χ(j, y)

k∏
i=1

d(nci)
ji

(d+m)ji+yi+1

(
1 +

nci
d+m

)−(ji+yi+1)
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≥
(
1 +

n

d

)−(x+|y|+k)
φc(x, y),

We thus have for all c,(
1 +

n

d

)−(x+|y|+k)
φ(x, y) ≤ qc(x, y) ≤ φc(x, y).

Since φc = φc̄ whenever W (c, c̄) = 0 for c, c̄ ∈ ∆k, we have for all such c, c̄ that(
1 +

n

d

)−(x+|y|+k)
≤ qc(x, y)

qc̄(x, y)
≤
(
1 +

n

d

)x+|y|+k
.

This implies that

1/2 ≤ qc(x, y)/qc̄(x, y) ≤ 2, for all x+ |y| ≤M :=
log 2

log(1 + n/d)
− k. (G5)

Under condition (S), we note that M ≤ C0d/n. Now, we form the decomposition

χ2(Qc∥Qc̄) =
∑

(x,y)∈I
x+|y|≤M

q2
c(x, y)

qc̄(x, y)
− 1

︸ ︷︷ ︸
A

+
∑

(x,y)∈I
x+|y|>M

q2
c(x, y)

qc̄(x, y)

︸ ︷︷ ︸
B

.

To bound A, notice first that for all z > 0,∑
x+|y|>z

qc(x, y) = P(n⟨ϖ, c⟩+m∥ϖ∥1 ≥ z)

≤ P((n+m)∥ϖ∥1 ≥ C0z) ≤ k exp

(
− dz

k(n+m)

)
, (G6)

and in particular, since M ≍ d/n, we obtain∑
x+|y|>M

qc(x, y) ≲ exp (−C2d) . (G7)

We thus have,

A =
∑

(x,y)∈I
x+|y|≤M

q2
c(x, y)

qc̄(x, y)
− 1

=
∑

(x,y)∈I
x+|y|≤M

(q2
c(x, y)− qc̄(x, y))

2

qc̄(x, y)
+ 2

∑
(x,y)∈I
x+|y|>M

qc(x, y)−
∑

(x,y)∈I
x+|y|>M

qc̄(x, y)

≲
∑

(x,y)∈I
x+|y|≤M

(
q2
c(x, y)− qc̄(x, y)√

qc̄(x, y) +
√
qc̄(x, y)

)2

+ e−C2d,

where the final display follows from equations (G5)–(G7). We have thus shown that

A ≲ H2(Qc,Qc̄) + e−C2d,
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Furthermore,

B =
∑

(x,y)∈I
x+|y|>M

q2
c(x, y)

qc̄(x, y)

≲
∑

(x,y)∈I
x+|y|>M

qc(x, y)
(
1 +

n

d

)x+|y|+k

≲
∑

(x,y)∈I
x+|y|>M

ke−
d

k(n+m)
(x+|y|+k)

(
1 +

n

d

)x+|y|+k
≲ e−C2d,

for a possibly larger constant C2 > 0. The claim follows from here.

d. Proof of Lemma 9

The upper bound is clear. For the lower bound, notice that

E[⟨c,ϖt⟩] =
k∑
i=1

ciE[ϖi ∧ t] ≥
∫ t

0

xde−dxdx =
1

d

(
1− dte−dt

)
,

as desired.

e. Proof of Lemma 10

We have,

Eϖ

[
f(x; Ũc)

k∏
i=1

f(yi; Ṽi)

]

= Eϖ

[
e−(Ũc+Ṽ1+···+Ṽk)(ŨcṼ

y1
1 . . . Ṽ ykk )

x!y1! . . . yk!

]

≥ e−(n+km)t

x!y1! . . . yk!
Eϖ
[
Ũxc Ṽ

y1
1 . . . Ṽ ykk

]
=

e−(n+km)t

x!y1! . . . yk!

(
nxm

∑
i yi
)
Eϖ

[(
k∑
i=1

ci(ϖi ∧ t)

)x k∏
i=1

(ϖi ∧ t)yi
]

=
e−(n+km)t

x!y1! . . . yk!

(
nxm

∑
i yi
)
Eϖ

 ∑
0≤j1,...,jk≤x
j1+···+jk=x

(
x

j1, . . . , jk

) k∏
i=1

cjii (ϖi ∧ t)ji+yi


=

e−(n+km)t

x!y1! . . . yk!

(
nxm

∑
i yi
) ∑

0≤j1,...,jk≤x
j1+···+jk=x

(
x

j1, . . . , jk

) k∏
i=1

cjii Eϖ
[
(ϖi ∧ t)ji+yi

]

≥ e−(n+km)t

x!y1! . . . yk!

(
nxm

∑
i yi
) ∑

0≤j1,...,jk≤x
j1+···+jk=x

(
x

j1, . . . , jk

) k∏
i=1

cjii λ
ji+yi



74

=
e−(n+km)t

x!y1! . . . yk!

(
nxm

∑
i yi
)
λx+

∑
i yi

= e−(n+km)t · f(x;nλ)
k∏
i=1

f(yi;mλ).

The claim now follows from the fact that nt ≤ (n/d)1−γ0 ≤ 1 and mtk ≤ k(m/d)1−γ0 =

k(m/d)
1

1+γ ≤ 1, by assumption on k.

f. Proof of Lemma 11

The collection {φα,β(·;λ)}α,β is dense in L2(gλ), and satisfies the orthogonality property

E(X,Y )∼gλ

[
φα,β(X,Y ;λ)φα′,β′(X,Y ;λ)

]
=

∑
(x,y)∈I

(
φα(x;λ0)φα′(x;λ0)f(x;λ0)

)
·
k∏
i=1

(
φβ(yi;λi)φβ′(yi;λi)f(yi;λi)

)

=

( ∞∑
x=0

φα(x;λ0)φα′(x;λ0)f(x;λ0)

)
·
k∏
i=1

∞∑
yi=0

(
φβ(yi;λi)φβ′(yi;λi)f(yi;λi)

)

= α!λα0 I(α = α′) ·
k∏
i=1

βi!λ
βi

i I(βi = β′
i),

where we used the orthogonality of the univariate Charlier basis (cf. equation (K5)). We
deduce that {φα,β(·;λ)}α,β forms an orthogonal basis of L2(gλ). To prove the second
identity, recall from equation (K6) that the generating function of the Charlier polynomials
with parameter λ0 is given by e−u0(1 + u0/λ)

x for all u0 > −λ0, thus we have

fλ0+u0
(x)

fλ0(x)
= e−u0

(
1 +

u0
λ0

)x
=

∞∑
ℓ=0

φℓ(x;λ0)
(u0/λ0)

ℓ

ℓ!
, x = 0, 1, . . . .

Re-applying a similar identity, we obtain for all (x, y) ∈ I and all u ∈ Rk+1 such that
uj ≥ −λj , j = 0, . . . , k,

gλ+u(x, y)

gλ(x, y)
=

( ∞∑
α=0

φα(x;λ0)
(u0/λ0)

α

α!

)
k∏
i=1

 ∞∑
βi=0

φβi
(xi;λi)

(ui/λi)
βi

βi!


=

∞∑
(α,β)∈I

φα,β(x, y;λ)
(u0/λ0)

α

α!

k∏
i=1

(ui/λi)
βi

βi!
.

and the claim then follows.

g. Proof of Lemma 12

Let G1, . . . , GL
iid∼ Exp(1) and let G =

∑L
i=1Gi ∼ Gamma(s, 1). Let X = d

∑L
i=1Xi.

Notice that the lower tail of the rescaled Beta density fdX1
is dominated by the exponential

density fG1
; indeed, one has for all x ∈ [0, 1/2],

fdX1
(x) =

d− 1

d
(1− x/d)d−2 ≤ e−x(1− x/d)−2 ≲ e−x = fG1

(x).
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We thus have

E

(d L∑
i=1

Xi

)−3/2
 ≲ E[1/G3/2] + E

[
X−3/2

∣∣∣min
i∈S2

dπi1 > 1/2

]
≲ E[1/G3/2] + L−3/2.

The remaining expectation can be computed in closed form as

E[1/G3/2] = Γ(L− 3/2)/Γ(L) ≲ L−3/2,

where Γ denotes the Gamma function. The claim follows.

3. Proofs Deferred from Appendix E

a. Proof of Lemma 17

Notice first that

E[Bi] = (d+ 1)

d∑
j=1

2ci
d2

+
∑
r ̸=i

cr
d2

 = (d+ 1)d

(
ci
d2

+
1

d2

)
= ci +O(d−1).

Second, notice that by equation (E6), one has with probability at least 1− Ce−
√
d/C ,

∣∣E[ĉi|Π]−Bi
∣∣ ≤ (d+ 1)

d∑
j=1

k∑
r=1

crϖijϖrj

∣∣(1− S−1
r )(1− S−1

i )
∣∣ ≲ d

d∑
j=1

k∑
r=1

crϖijϖrj .

The claim now follows by re-applying the same argument as under equation (E7).

Appendix H: Description of Synthetic Data Analysis in Section IV

In this appendix, we provide the details of our analysis on the synthetic data presented
in the main text.

1. Time-dependent models

To generate the synthetic dataset that mimics possible increasing error rates in the real
experiments, we consider a one-dimensional array of L qubits and construct a circuit of L
layers. Each layer consists of a set of two-qubit random unitaries applied to neighboring
qubits on all even bonds, and a set of following random unitaries on odd bonds. After each
layer, we introduce single-qubit Pauli errors (X, Y , or Z) on every qubit. We study two
types of error models:

1. Experiment-mimicking model: the error rate at each layer is drawn uniformly
from [0.25ϵ, 0.75ϵ], where ϵ increases linearly from 2.5×10−4 (first layer) to 10−3 (last
layer).

2. Null model: ϵ is fixed at ∼ 6× 10−4.
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For both error models, the many-body fidelity is F ≈ 0.5.
In Regime A (with side information from classical simulation), we analyze the synthetic

data using MLE, where each column of Π corresponds to one of the Pauli errors. From
this estimator, we extract the error rate for each spacetime position (Fig. 2a) and the
average error rate ϵest for each layer (Fig. 2b). Fitting ϵest as a linear function of depth,
β·depth+ϵ0, yields an error growth rate β. To validate the time-dependence in the error rate,
we should test whether the extracted β significantly differs from zero. For this purpose, we
simulate 500 instances of the null (time-independent) model and perform the above analysis,
constructing a histogram of the extracted β values to determine confidence intervals and
p-values (Fig. 2c). In regime B, we repeat the same analysis using variational EM.

2. Correlated error models

To generate the synthetic dataset that mimics spatially correlated errors possibly existing
in the real experiments, we consider a 5×4 two-dimensional array of qubits and construct a
five layer circuit. Each layer consists of four sets of two-qubit random unitaries, consecutively
applied to neighboring qubits cycling among pairs in the four different orientations. After
each layer, we introduce incoherent errors, which include all single-qubit Pauli errors as
well as select correlated errors. All error rates are assumed to be the same across different
layers. The single-site Pauli error rates are drawn from a uniform random distribution
[10−3, 3× 10−3]. We consider two different models of correlated errors:

1. Two-body correlated error: correlated-XX errors that may exist for any pair of
qubits. Here, we consider the situation where error rates are negligibly small except
for one “bad” pair with error rate ∼ 10−3. Our goal is to identify this pair by applying
our algorithm to synthetic data.

2. Multi-body correlated error: correlated multi-X errors can exist along any column
or row of qubits. Here, we consider the situation where all these error rates are
negligibly small except one “bad” row and one “bad” column with error rate ∼ 10−3.
Our goal is to identify such a row and column from analyzing the synthetic data.

Error rates are chosen such that the many-body fidelity is F ≈ 0.5 in both models. In Fig. 3,
we focus on regime A (i.e. with classically computed πi’s) and use the MLE estimator.

Appendix I: Description of Real Data Analysis in Section V

In this Appendix, we describe the error model and the numerical methods used to analyze
data from the experiment in Ref. [1].

1. Error Model

Our data analysis involves a model for the output probability distribution of the form

pc(z|Π) = c1π1(z) +
∑
i>1

ciπi(z) + c−11/d, (I1)

where the index i contains information both about the error type and spacetime location.
As stated in Eq. (7), we generate the Π matrix from a physical model of a noisy quan-

tum state, parameterized by noise coefficients we wish to learn. In general, these terms,
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Error Kraus op. K
(a)
i Coef. w

(a)
i Fid. contribution fi.

State prep. X +1 0
1q dephasing Z +1 0

2q dephasing


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 +1 +1/4

2q flip-flop


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 +1 +1/4

1 → 0 readout error
|0⟩⟨1| +1

-1/2|1⟩⟨1| -1

0 → 1 readout error
|1⟩⟨0| +1

-1/2|0⟩⟨0| -1

1 → 0, 1 → 0 double readout error

|00⟩⟨11| +1

+1/4
|01⟩⟨11| -1
|10⟩⟨11| -1
|11⟩⟨11| +1

Table S1. Error processes modeled in the analysis of RCS data from Ref. [1] (Fig. 4). The readout

error sources have multiple terms K
(a)
j with coefficients w

(a)
j [Eq. (I2)], derived below. The last

column indicates the fidelity contribution of the error source, necessary to obtain the many-body
fidelity (App. I 2).

proportional to the unknown coefficient ci, will be of the form

Ri(ρ) =
∑
a

w
(a)
i K

(a)
i ρK

(a)†
i , (I2)

where the sum over a indicates multiple terms which may be associated with the same er-
ror source. As examples, when the error corresponds to a unitary operator (e.g. a Pauli
error), there is only one term, and Ki is said unitary. However, more complicated er-
ror channels such as asymmetric readout errors require multiple terms, e.g. Rreadout

1→0,j (ρ) =
(|0⟩⟨1|)jρ(|1⟩⟨0|)j − (|1⟩⟨1|)jρ(|1⟩⟨1|)j describes the contribution of 1 → 0 readout errors on
qubit j, see Table S1 and discussion below.

To benchmark a realistic error model, we include several classes of errors which have been
reported in the literature. They are: 1. State preparation errors (simply as a bit-flip Xj

on the initial state |0⟩⊗N ), 2. single-qubit errors, where for our analysis we focus simply
on Pauli Zj dephasing errors, and 3. two-qubit errors representing (a) dephasing on the
11 state and (b) flip-flop exchange between neighboring pairs of qubits. Finally, we include
4. asymmetric readout errors with different rates of 0 → 1 and 1 → 0 errors, as well as
double 1 → 0, 1 → 0 readout errors, which occur at non-negligible rates because of the larger
1 → 0 error rates. Each of these have error channels of the form Eq. I2, with parameters
summarized in Table S1.
The two-qubit errors may arise from processes such as coupling to higher transmon lev-

els [1, 23], which may appear as stochastic errors in the control angles ϕ and θ of the FSIM
class of gates:

FSIM(θ, ϕ) =

1 0 0 0
0 cos θ/2 −i sin θ/2 0
0 −i sin θ/2 cos θ/2 0
0 0 0 exp(iϕ)

 (I3)



78

Integrating over Gaussian fluctuations of θ and ϕ gives a more complicated channel (of
Lindblad form) proportional to the fluctuations ∆θ2,∆ϕ2. However, in this work we do not
assume a precise model for these two-qubit errors and we instead use a simpler unitary error
channel (Table S1), taking these as representative of dephasing processes on the 11 state,
or flip-flop between 01 and 10 states.
While symmetric readout errors can simply be modeled as Pauli Xj errors on qubits

j, asymmetric readout errors, which capture the strongly biased readout errors reported in
Ref. [1], are more involved. The simplest way to obtain the relevant operators for asymmetric
readout is to linearize the amplitude damping channel (of strength γ, acting on qubit j)

R[ρ] =

(
1 0
0

√
1− γ

)
j

ρ

(
1 0
0

√
1− γ

)
j

+

(
0

√
γ

0 0

)
j

ρ

(
0 0√
γ 0

)
j

(I4)

= ρ+ γ

[
−|1⟩⟨1|jρ|1⟩⟨1|j −

1

2
|0⟩⟨0|jρ|1⟩⟨1|j −

1

2
|1⟩⟨1|jρ|0⟩⟨0|j + |0⟩⟨1|jρ|1⟩⟨0|j

]
+O(γ2).

The middle two terms (proportional to γ) correspond to dephasing induced by amplitude
damping and can be neglected for readout errors, since the system is immediately measured
in the Z basis. However, if one wanted to model an amplitude damping channel in the
middle of the circuit, all terms above should be kept). This gives the operators for 1 → 0
readout in Table S1.
The effect on the classical probability distribution can be understood as follows. Assume

for simplicity that a 1 → 0 readout error occurs on the first bit. We write the distribution

π1(z) = (π
(0)
1 (z′), π

(1)
1 (z′)) in terms of the distributions on the substrings z′ = z2z3 · · · zN ,

conditioned on z1 = {0, 1}. The readout error acts on the distribution as:

π1(z) 7→ π1(z) + γ
(
π
(1)
1 (z′),−π(1)(z′)

)
≡ π1(z) + γπreadout

1→0,1 (z), (I5)

that is, it shifts probability mass from z1 = 1 onto z1 = 0. These terms precisely correspond
to application of the operators in Table S1.
Double readout errors are modeled in a similar fashion: applying the amplitude damping

channel with rates γi, γj on qubits i and j, and keeping terms proportional to γiγj , we
obtain

π1(z) 7→π1(z) + γiπ
readout
1→0,i (z) + γjπ

readout
1→0,j (z)

+ γiγj

(
π
(11)
1 (z′),−π(11)

1 (z′),−π(11)
1 (z′), π

(11)
1 (z′)

)
, (I6)

where the length-four vector now runs over (zi, zj) ∈ {00, 01, 10, 11}, and z′ = z\(zi, zj).
Surprisingly, the second order contribution adds probability mass to the 11 state.

Finally, in Eq.(I1) we additionally include a “white noise” term proportional to 1/d, not
assumed in our theoretical analysis, but which models the aggregate weight of errors outside
of our model, which we expect to sum to such a featureless distribution [35]. Assuming a
Markovian error model with a total rate of γ local error events per unit time, a simple
estimate gives a many-body fidelity of e−γt, γte−γt “single” error events, and [(γt)2/2]e−γt

“double” error events where two independent local errors occur. In this work, we neglect
the vast majority of such double and higher-order errors, only including double readout

events. Therefore, a simple estimate for the weight c−1 is 1 − F̂ − F̂ log
(
1/F̂

)
, where F̂

is the estimated many-body fidelity (see Appendix I 2). For the N = 18 dataset, this gives

0.41 for F̂ = 0.24: we additionally estimate double readout errors to constitute 0.05 of the
signal, leading to reasonable agreement with the estimated ĉ−1 = 0.32(1).

After obtaining π1(z) and πi(z) via classical simulation of the RCS circuits using the
Cirq package, we construct a matrix Π with entries πij := πi(zj). This matrix generally



79

has negative entries, even though Π⊤c is guaranteed to have nonnegative entries for any
physically sensible error vector c. We perform our fitting procedure under the modeling
assumption that the bitstring histogram Y has entries drawn independently according to
the distribution:

Yj ∼ Poi(nΠ⊤
·jc), j = 1, . . . , d, (I7)

for some c ∈ {x ∈ Rk+ : Π⊤
·jx ≥ 0, j = 1, . . . , d}. As we saw in Section C, this Poissonian

model is statistically indistinguishable from the multinomial sampling model when the shot
noise is large, the entries of Π are nonnegative, and c ∈ ∆k. In our more general setting
here, where c may not lie in the simplex, the multinomial model is not well-defined, which
is the reason we adopt the above more general Poissonian model. We use a Poisson MLE
estimator to fit the c coefficients,

ĉMLE = argmax
x∈Rk

+

d∑
j=1

(
Yj log

(
Π⊤

·jx
)
−Π⊤

·jx

)
, (I8)

which should be contrasted to the multinomial MLE presented in equation (13) of the main
text. In practice, we find the matrices Π to be poorly conditioned, and we add a ridge
regularization penalty 10−8∥x∥22 to the objective function (I8).

2. Converting learned error rates into physical quantities

a. Many-body fidelity

As alluded to in Table S1, we obtain the many-body fidelity estimate by a weighted sum
of the learned ci:

F̂ = ĉ1 +
∑
i>1

fiĉi, (I9)

where coefficients fi for various sources of error are given in Table S1.
The reason why this is required is because the sources of error we consider need not result

in output states orthogonal to the target output state, and hence output distributions πi
orthogonal to π1.
For a Pauli error channel, with high probability in a RUC, the quantum state associated

with each error trajectory has exponentially small overlap with the target quantum state
and hence fi = 0 in these cases. For a more general error channel, however, this is not
the case. fi can be computed by a simple analytical theory: one simply assumes the state
is Haar random at the point the error is applied. For a single error, a Haar-average [139]
reveals that the many-body fidelity is

fi ≈ Eψ∼ Haar[⟨ψ|
∑
i

w
(a)
i K

(a)
i |ψ⟩⟨ψ|K(a)†

i |ψ⟩] =
∑
i

w
(a)
i

|tr(K(a)
i )|2 + tr(K

(a)
i K

(a)†
i )

d(d+ 1)
,

(I10)
where the trace should be taken as over the entire N−qubit Hilbert space. For 2-qubit

dephasing or flip-flop error (Table S1), |tr(Ki)|2 = d2/4, while tr(KiK
†
i ) = d (the second

term is always sub-leading), leading to the coefficients fi = +1/4. That is to say, acting with
a controlled-Z or flip-flop unitary “error” produces a state which has, on-average, an fidelity

of 1/4 with the target state. This fidelity should be added back to the fidelity estimate F̂ ,
in addition to ĉ1.
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As another example, for asymmetric readout errors, one in fact has to use all the terms of
the linearized amplitude damping channel Eq. (I4) (including the off-diagonal terms), this
gives fi = −1/2. As intuition, if there were only 1 → 0 readout errors, i.e. with the model

p(z) = c1π1(z) +
∑
j

cjπ
readout
1→0,j (z), (I11)

our algorithm would learn a coefficient ĉ1 = 1, since for all the other terms
∑
z π

readout
j (z) =

0, but the sampled distribution is by definition normalized. However, the actual many-body
fidelity is smaller, precisely c1−

∑
j cj/2, with the factor of 1/2 arising from the probability

of the bit being in the 1 state. As an independent check, one can verify that the XEB
fidelity between π1 and πreadout

1→0,j is 1/2. A similar calculation yields fi = +1/4 for double
asymmetric readout errors: we summarize these results in Table S1.
The simple behavior of Pauli errors discussed above does not hold true near the start and

end of the RUC. Near the start, the circuit depth is too low for the Haar-random assumption
made above to hold, and a local error does not orthogonalize the state. Meanwhile, near the
end of the RUC, a local operator does orthogonalize the state. However, a dephasing error
does not sufficiently scramble before measurement in order to change the XEB: this is the
“lag time” in the XEB that had been previously noted [22]. Both effects are evident in the
correlation matrix ΠTΠ for 1q dephasing, 2q dephasing and 2q flip-flop errors: furthermore,
these effects are largely confined to the first and last three layers. While the latter effect
does not contribute to the many-body fidelity, we omit both these boundary circuit layers in
order to cleanly test our fidelity coefficients fj for errors deep in the circuit: doing so reveals

close quantitative agreement between the XEB and our estimate F̂ [Eq. (I9)] in Fig. 4.
A more refined theory of these fidelity contributions fj that incorporates the space-time

positions of the errors would enable our method to include such boundary errors without
comprimising the fidelity estimate.

b. Correction of double readout errors on single readout error rates

A similar effect happens between single and double readout errors: these have non-trivial
overlaps, and after our fitting procedure, one must correct the estimate of the readout error
rate on qubit j as

ĉreadout1→0,j 7→ ĉreadout1→0,j − 3

14

∑
k ̸=j

ĉdoub. readout(1→0)2,jk (I12)

where the sum is taken over qubits k ̸= j. The coefficient of 3/14 comes from the following
considerations: the quantum fidelity for mixed states (such as the contributions of single-
and double- readout error) is less straightforward to analyze. Therefore, we use as a proxy a
heuristic analysis based on the XEB: we seek to “orthogonalize” the Π matrix rows πreadout

1→0,i

and πdoub. readout
(1→0)2,jk . We define orthogonalization with respect to the dot product:

⟨π1, π2⟩ ≡ d
∑
z

π1(z)π2(z) (I13)

It is also convenient to subtract the identity component such that all vectors we consider
sum to zero, that is work with π1 − 1/d instead of π1. This has the feature that the XEB
fidelity of a distribution p(z) can be understood as the inner product ⟨p, π1 − 1/d⟩.

This orthogonalization procedure correctly reproduces the fidelity contributions fj :
πreadout
1→0,i +(π1−1/d)/2 and πdoub. readout

(1→0)2,jk −(π1−1/d)/4. Our estimation problem is equivalent
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to fitting to a modified model:

p = 1/d+ F (π1 − 1/d) + · · ·+
∑
i

c1→0,i[π
readout
1→0,i + (π1 − 1/d)/2] + · · · , (I14)

where the coefficient F is precisely the many-body fidelity (more precisely, this prescription
ensures that the learned coefficient agrees with the XEB fidelity). To estimate the overlap
between the double and single readout errors, we simply consider their inner product, which
can be calculated to be (in our setting)

⟨πreadout
1→0,i + (π1 − 1/d)/2, πdoub. readout

(1→0)2,jk − (π1 − 1/d)/4⟩ = 3

14
if i = j or i = k, (I15)

As a reminder, we assume that the double readout errors cannot happen on the same qubit
and therefore j ̸= k. Orthogonalization the double readout term against the single readout
term, and re-parametrizing the model gives the desired correction Eq. (I12), which we used
in Fig. 4(e).

c. Proportion of error sources

Combining these results allows us to determine the proportions of each error source to
the overall measurement, as plotted in Fig. 4(a).
Therefore, we assign their proportions as:

• Fidelity: estimated as in Eq. (I9).

• State preparation and 1q dephasing errors: no change to ĉi.

• 2q dephasing and flip-flop errors: (3/4)ĉi

• Single qubit readout errors: (1/2)ĉreadout1→0,j − (3/14)
∑
k ĉ

doub. readout
(1→0)2,jk [Eq. (I12)].

• Double qubit readout errors: contribution given by (3/7− 1/4)ĉdoub. readout(1→0)2,jk .

In our problem, we have considered error sources where
∑
z πi(z) = 1 or

∑
z πi(z) = 0.

The sum of the ci’s of the former type will be 1, in order for p(z) to be normalized, while
the ci’s of the latter type do not have such a constraint. One can verify that with the above
prescription, the contributions over all error sources will sum to 1, as desired.

d. Physical error rates

Finally, we can construct estimators for the physical error rates Γi from the fitted coef-

ficients ci as well as the fidelity F̂ . In our case, where errors correspond to the application
of only one non-trivial Kraus operator, and under the assumption that the errors are inde-
pendent, these are related by:

Γ̂i =
ĉi

F̂ + ĉi
. (I16)

This relation arises as the coefficient ci describes the probability of a specific, single event,
which is the product of the physical error rates:

ci ≈ Γi
∏
j ̸=i

(1− Γj) ≈
Γi

1− Γi
F , (I17)
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where the second equality is because the many-body fidelity is given by F ≈
∏
j(1 − Γj).

Eq. (I16) is necessary to extract the physical error rates, as plotted in Fig. 4(c,d,e,f). In

particular, this rescaling by F̂ is necessary for proper comparison between single- and double-
readout error rates to detect correlated readout errors in Fig. 4(f).

3. Goodness-of-Fit

In this section, we conduct a goodness-of-fit analysis for model (I7) which we adopted in
our real data analysis. Concretely, our goal is to test the null hypothesis

H0 : Y ∼ Qc = ⊗dj=1Poi(nΠ
⊤
·jc), for some c ∈ Rk+ such that Π⊤

·jc ≥ 0 for all j.

We construct a heuristic test for this composite null hypothesis, using the following χ2

statistic [140]:

χ2 =
∑
j

(
Yj − nΠ⊤ĉMLE)2

nΠ⊤ĉMLE
, (I18)

where ĉMLE is defined in equation (I8). We note that, under the null hypothesis, the typical
magnitude of χ2 is on the order of d.
We calibrate the χ2 statistic heuristically, using the parametric bootstrap. Concretely, we

compare the observed value of the χ2 statistic, denoted χ2
obs, to the distribution of χ2 that

would be expected if QĉMLE were the true data-generating distribution. We approximate
this distribution by simulating 1, 000 synthetic datasets of n = 500, 000 bitstring samples
from this distribution. For each dataset, we refit the model coefficients c and compute the
corresponding χ2 values. This forms an empirical estimate of the sampling distribution of
χ2 when Y ∼ QĉMLE , which we use to compute the probability of observing a χ2 value more
extreme than χ2

obs, under the hypothesis that the measurements are drawn from QĉMLE .
For N = 18 and one random circuit instance, we obtain χ2

obs = 281, 858. Meanwhile,
our simulated χ2 distribution has mean µ = 261, 818 and standard deviation σ = 770. Our
observed χ2

obs is thus 26σ away from the mean, with p-value < 10−3.
We compare this to a goodness-of-fit test using Google’s two-component error model (1)

as the null hypothesis—an analysis which was also conducted by [32]. We find an observed
value χ2

obs = 290, 342, while the simulated χ2 distribution has mean µ = 262, 134 and
standard deviation σ = 740. The observed χ2

obs value is 38σ away from the mean in this
case, also with negligible p-value < 10−3.

Although our analysis suggests considerable room for improvement in modeling the data
of Ref. [1], our k-component model has a marked improvement of 12σ over the simplest
two-component white-noise model. The overall goodness-of-fit is still poor, indicating that
the dataset contains information about a host of error processes not currently in our model.
Nevertheless, our fitting procedure turns out to be remarkably robust, yielding fitted error
rates for quantities of interest that are comparable with all available estimates from alterna-
tive benchmarking methods (see Fig. 4). As in the spirit of cross-entropy benchmarking, we
expect this robustness to be due to the fact that the remaining error sources not captured by
our model lie in spaces that are roughly orthogonal to the row space of Π (up to centering).

Appendix J: Justifying the Independent Porter-Thomas Assumption

In this section, we provide some quantitative evidence for the validity of assumption (PT),
which we leveraged throughout our theoretical study. This assumption requires the various
bitstring error distributions Πi· to be mutually independent, and distributed according to
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the Porter-Thomas law. In what follows, we will show that this assumption holds to second
order: under mild assumptions on the errors of the circuit, we find that the rows of Πi·
are approximately uncorrelated, and have marginal moments which are consistent with the
Porter-Thomas law.
Specifically, we shall explicitly calculate E[ΠΠT ], where the rows Πi· are probability dis-

tributions arising from the presence of a single error in a local brickwork random unitary
circuit. For simplicity of analysis, we will assume here that our errors are single-qubit Pauli
terms. Furthermore, we also consider errors that are within the bulk of circuit, so that we
can replace the circuit before and after the signal with global Haar random unitaries R1, R2.
More specifically, for diagonal terms, we take

π0(z) = |⟨z|R2R1|0⟩|2 (J1)

πi(z) = |⟨z|R2PiR1|0⟩|2, (J2)

where Pi is a Pauli error and R1, R2 ∼ Haar(2N ) with N the system size. We treat the
vectors π0(z) and πi(z) as forming the rows of Π.
Now, using Weingarten calculus [139, 141], we can compute

ER1,R2

[∑
z

π0(z)
2

]
=

2

d
+O

(
1

d2

)
, (J3)

ER1,R2

[∑
z

πi(z)
2

]
=

2

d
+O

(
1

d2

)
. (J4)

The leading order terms exactly match results for Porter-Thomas distributions, where d =
2N . Thus, differences from Porter-Thomas are exponentially small.

For off-diagonal terms involving π0(z) and an error distribution πi(z), we can similarly
use Eq. J1. This yields

ER1,R2

[∑
z

πi(z)π0(z)

]
=

1

d
+O

(
1

d3

)
. (J5)

The leading order term is again exact if assuming i.i.d. Porter-Thomas distributions.
Finally, for off-diagonal terms involving two different signals, we also consider the portion

of the underlying brickwork circuit R that lies between the spacetime locations of these two
signals. To be specific, suppose the signal Pi and Pj are t layers apart in the original circuit.
Then, R would comprise of exactly these t layers of local random unitaries that separate
the two signals. This leads to modified expressions of the form

πi(z) = |⟨z|R2RPiR1|0⟩|2, (J6)

πj(z) = |⟨z|R2PjRR1|0⟩|2 (J7)

for computing

ER1,R2,R

[∑
z

πi(z)πj(z)

]
. (J8)

Now,

ER1,R2

[∑
z

πi(z)πj(z)

]
=

1 + d−2Tr(Pi(t)P
∗
j )Tr(P

∗
i (t)Pj)

d
+O

(
1

d2

)
, (J9)
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where we have defined

Pi(t) ≡ R†PiR. (J10)

The leading order term above differs only from the i.i.d. Porter-Thomas case by
d−2Tr(Pi(t)P

∗
j )Tr(P

∗
i (t)Pj), where we have included d−2 to normalize the trace, which is

O(d2).
To proceed, we can compute

ER

(
d−2Tr(Pi(t)P

∗
j )Tr(P

∗
i (t)Pj)

)
, (J11)

where the average is over individual two-qubit Haar random unitaries in the brickwork R.
This can be done through the standard technique of mapping the unitaries to an Ising spin
model, as explained in Refs. [37, 142]. This yields

ER

(
d−2Tr(Pi(t)P

∗
j )Tr(P

∗
i (t)Pj)

)
= D(x, t), (J12)

where x and t indicate how far Pj is from Pi in the space and time directions. Specifically,
t is is equal to the depth of R, and x represents how many qubits away the error Pj is from
Pi. For the full expression of D(x, t), see Ref. [45]—here, we only discuss relevant properties
of the function. Specifically, D(x, t) decays exponentially in both x and t. Thus, for signals
Pi, Pj that are relatively spaced out in the random circuit, D(x, t) ≪ 1, and the expectation
ER1,R2,R

∑
z πi(z)πj(z) also approximately satisfies the i.i.d. Porter-Thomas result of 1

d .
In all cases, we see that the second moments of the rows of Πi,· match those of i.i.d.

Porter-Thomas distributions up to exponentially small corrections in the system size N and
spacing of signals.

Appendix K: Further Technical Background

In this Appendix, we summarize several known technical results and definitions which are
used throughout our proofs.

1. Technical Results

We begin by stating a few standard facts about Poisson distributions. The following
is a standard upper bound on the Kullback-Leibler divergence between Poisson random
variables.

Lemma 23. For any µ, ν > 0, it holds that

KL
(
Poi(µ) ∥Poi(ν)

)
= µ log

µ

ν
+ ν − µ.

Furthermore, for all C > 0, there exists K > 0 such that if |ν − µ| < Cν, then

KL
(
Poi(µ) ∥Poi(ν)

)
≤ K · (µ− ν)2

ν
.

The following is Lemma 2 of [143].
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Lemma 24. Let X ∼ Poi(λ). For any integer r ≥ 1, let

T̂ = X!/(X − r)!.

Then,

E[T̂ ] = λr, Var[T̂ ] ≤ λr
(
(λ+ r)r − λr

)
.

Next, we state a technical result about perturbations of polynomials, which is adapted
from [74].

Lemma 25. Let f be a polynomial of degree k with k real roots x1, . . . , xk ∈ R. Assume
these roots are pairwise distinct, and let δ = mini ̸=j |xi− xj |. Then, for any ϵ < (δ/2)k, the
polynomial f + ϵ also has k real roots xϵ1, . . . , x

ϵ
k ∈ R satisfying

W1

(
1

k

k∑
i=1

δxi ,
1

k

k∑
i=1

δxϵ
i

)
≤ δ/2.

The following Lemma collects several elementary facts about Dirichlet and exponential
distributions which are used throughout our proofs.

Lemma 26. Let d ≥ 2, and let π = (π1, . . . , πd)
⊤ ∼ Dd be a flat Dirichlet-distributed

random vector, and let ϖ = (ϖ1, . . . , ϖd)
⊤ be a random vector consisting of i.i.d. Exp(d)-

distributed random variables. Then, the following assertions hold.

1. πi ∼ Beta(1, d− 1) for i = 1, . . . , d.

2.
∑d
i=1ϖi ∼ Gamma(d, d).

3. π
d
= (ϖ1, . . . , ϖd)/

∑d
i=1ϖi.

4. If G ∼ Gamma(d, d) is independent of π, then the vector (Gπ1, . . . , Gπd)
⊤ consists of

i.i.d. Exp(d) random variables.

5. If G ∼ Gamma(α, λ) with α ∈ N and λ > 0, and Y |G ∼ Poi(G), then the marginal law
of Y is Negative Binomial with number of trials α and probability parameter λ/(λ+1).

6. We have for all ℓ = 1, 2, . . .

E[π1] = E[ϖ1] =
1

d
, Var[π1] =

1

d2
, E[πℓ1] =

ℓ!

dℓ
.

2. Classical Polynomial Families

We now recall the definitions and basic properties of three polynomial families which play
an important role in our development.

a. Elementary Symmetric Polynomials

The elementary symmetric polynomials are a family of k-dimensional polynomials, defined
for all c1, . . . , ck ∈ C by

e0(c1, . . . , ck) := 1 and ej(c1, . . . , ck) :=
∑

1≤i1<i2<···<ij≤k

j∏
ℓ=1

ciℓ . (K1)
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By Vieta’s formula, the elementary symmetric polynomials can be used to describe the

coefficients of a univariate monic polynomial f(z) =
∏k
i=1(z− ci), with roots c1, . . . , ck ∈ C.

Concretely, one has:

f(z) = zk +

k∑
j=1

(−1)jej(c1, . . . , ck)z
k−j , z ∈ C. (K2)

Since the polynomials ej are symmetric, they admit an algebraic representation in terms of
the moments m1(c), . . . ,mk(c) of the vector c, namely

mj(c) =
1

k

k∑
i=1

cji , j = 1, . . . , k.

This representation can be made explicit using Newton’s identities which state that for any
ℓ = 1, . . . , k,

eℓ(c1, . . . , ck) =
k

ℓ

ℓ∑
j=1

(−1)j−1eℓ−j(c1, . . . , ck)mj(c), (K3)

In particular, equations (K2)–(K3) together imply that the vector c is uniquely determined,
up to permutation of its entries, by the vector of moments m(c) = (mj(c) : 1 ≤ j ≤ k).
That is, one has the following simple fact.

Lemma 27. For any c, c′ ∈ Ck, it holds that

m(c) = m(c′) =⇒ {c1, . . . , ck} = {c′1, . . . , c′k}.

Some of our results will rely on a quantitative analogue of Lemma 27. Concretely, when
constructing statistical estimators ĉ of c via moment estimation, we will be led to the ques-
tion of quantifying the distance between ĉ and c in terms of their moment distance. It
turns out that such quantitative bounds can be obtained by combining Newton’s identi-
ties with existing perturbation bounds for polynomial roots, which were first developed by
Refs. [144, 145]. This strategy was recently used by Hundrieser et al. [74], who proved the
following result.

Lemma 28 ([74]). There exists a constant C = C(k) > 0 such that for any c, c′ ∈ Ck,

W (c, c′) ≤ C∥m(c)−m(c′)∥ 1
k .

This Lemma shows that the sorted loss functionW is (1/k)-Hölder continuous with respect
to the ℓ1 distance between moment vectors.
Hundrieser et al. [74] additionally showed that the Hölder exponent 1/k can be improved

if the coordinates of the elements c, c′ admit some separation. In order to state this refined
result, recall the set ∆k,k0 defined in Appendix B 3 a. Let c⋆ ∈ ∆k,k0 be given, and let
v1 > · · · > vk0 denote its k0 distinct entries. Define the Voronoi cells

V0 = ∅, Vℓ =
{
z ∈ Ck : ∥z − vi∥ ≤ ∥z − vj∥, ∀i ̸= j

}
\ Vℓ−1, ℓ = 1, . . . , k0.

Furthermore, let rℓ denote the multiplicity of vℓ among the entries of c⋆, for all ℓ = 1, . . . , k0.
Given c ∈ ∆k, write cVℓ

= {ci ∈ Vℓ : 1 ≤ i ≤ k}. We then define, for all c, c′ ∈ Ck:

Dc⋆(c, c
′) = 1 ∧

k0∑
ℓ=1

W rℓ(cVℓ
, c′Vℓ

), (K4)
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with the convention that W (cVℓ
, cVℓ′ ) = ∞ when |cVℓ

| ≠ |cVℓ′ |. Finally, let

δ(c⋆) = min
1≤ℓ<ℓ′≤k

|vℓ − vℓ′ |.

We then have the following refined stability bound.

Lemma 29 ([74]). Let 1 ≤ k0 ≤ k and c⋆ ∈ ∆k,k0 . Then, there exists a constant C =
C(k, k0, δ(c

∗)) > 0 such that for any c, c′ ∈ Ck, we have

Dc⋆(c, c
′) ≤W k−k0−1(c, c′) ≤ C

∥∥m(c)−m(c′)
∥∥.

b. Charlier Polynomials

Let f(x;λ) = e−λλx/x! denote the Poi(λ) density, evaluated at x = 0, 1, . . . . The family
of Charlier polynomials

φℓ(x;λ) :=

ℓ∑
r=0

(−1)ℓ−r
(
ℓ

r

)
(x)r
λr

, x, ℓ = 0, 1, . . . ,

indexed by a parameter λ > 0, are a classical family of polynomials on R which are orthog-
onal with respect to the L2(Poi(λ)) norm [146]. One has the relation

∞∑
x=0

φℓ(x;λ)φℓ′(x;λ) = ℓ!λℓI(ℓ = ℓ′), ℓ, ℓ′ = 0, 1, . . . (K5)

The exponential generating function associated to the Charlier polynomials is

G(x, t) =

∞∑
ℓ=0

φℓ(x;λ)
tℓ

ℓ!
= e−t

(
1 +

t

λ

)x
, for all t ∈ R. (K6)

c. Bell Polynomials

Given an integer p ≥ 1, the family of incomplete Bell polynomials {Bℓ,p}pℓ=1 consists of

the set of polynomials on Rp−ℓ+1 defined by

Bp,ℓ
(
ξ1, . . . , ξp−ℓ+1

)
= p!

∑
(h1,...,hp−ℓ+1)∈Hp,ℓ

p−ℓ+1∏
i=1

ξhi
i

(i!)hihi!
, (K7)

for all ξ1, . . . , ξp−ℓ+1 ∈ R. Here, Hp,ℓ consists of all tuples (h1, . . . , hp−ℓ+1) of nonnegative
integers such that

p−ℓ+1∑
i=1

hi = ℓ,

p−ℓ+1∑
i=1

ihi = p.

Furthermore, the p-th complete Bell polynomial is defined by

Bp(ξ1, . . . , ξp) =

p∑
ℓ=1

Bp,ℓ(ξ1, . . . , ξp−ℓ+1) = p!
∑

r1+2r2+···+prp=p

p∏
i=1

ξjrii

(i!)riri!
.
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One has the identity |Hp,ℓ| = S(p, ℓ), where

S(p, ℓ) =

ℓ∑
i=1

(−1)ℓ−iip

(ℓ− i)!ℓ!
≤ ℓp

ℓ!
. (K8)

Furthermore, one has the basic identities

Bp,ℓ(a, . . . , a) = aℓS(p, ℓ) (K9)

Bp,ℓ(a, a
2, . . . , ap−ℓ+1) = apS(p, ℓ) (K10)

Given a random variable X with cumulants ξp = κp(X) and moments ηp = E[Xp], for
p = 1, 2, . . . , one has the relations

ξp =

p∑
ℓ=1

(−1)ℓ−1(ℓ− 1)!Bp,ℓ(η1, . . . , ηp−ℓ+1)

ηp =

p∑
ℓ=1

Bp,ℓ(κ1, . . . , κp−ℓ+1).

(K11)
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