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Abstract

We study the nonparametric maximum likelihood estimator π̂ for Gaussian location mixtures in one
dimension. It has been known since [Lin83a] that given an n-point dataset, this estimator always returns a
mixture with at most n components, and more recently [PW20] gave a sharp O(log n) bound for subgaus-
sian data. In this work we study computational aspects of π̂. We provide an algorithm which for small
enough ε > 0 computes an ε-approximation of π̂ in Wasserstein distance in time K+Cnk2 log log(1/ε).
Here K is data-dependent but independent of ε, while C is an absolute constant and k = |supp(π̂)| ≤ n
is the number of atoms in π̂. We also certifiably compute the exact value of |supp(π̂)| in finite time.
These guarantees hold almost surely whenever the dataset (x1, . . . , xn) ∈ [−cn1/4, cn1/4] consists of
independent points from a probability distribution with a density (relative to Lebesgue measure). We
also show the distribution of π̂ conditioned to be k-atomic admits a density on the associated 2k − 1
dimensional parameter space for all k ≤

√
n/3, and almost sure locally linear convergence of the EM

algorithm. One key tool is a classical Fourier analytic estimate for non-degenerate curves.

1 Introduction

The nonparametric maximum likelihood estimator (NPMLE) has a long history in statistical problems in-
cluding density estimation, regression, and mixture models (see [GW12]). This article concerns the NPMLE
for the 1-dimensional Gaussian location model, which has been studied since 1950s, cf. [KW56, Rob50]. To
introduce this problem, for any probability distribution π on R we denote Pπ ≜ π ∗ N (0, 1) the probability
density function of its convolution with a standard Gaussian density:

Pπ(x) = Ey∼π[e−|x−y|2/2/
√
2π] (1.1)

Given a finite sequence X = (x1, . . . , xn) ∈ Rn, the NPMLE π̂ ∈ P(R) is a probability measure on R
chosen so that Pπ̂ = π̂ ∗ N (0, 1) maximizes the log-likelihood

ℓX(π) ≜
1

n

n∑
i=1

logPπ(xi) . (1.2)

Despite the fact that π̂ is defined as a solution of an infinite-dimensional optimization problem, both the
problem and its solution are surprisingly well-behaved. First, the maximizer π̂ exists and is unique [LR93].
Second, despite being defined as an optimum over all possible probability measures, π̂ is discrete, so that the
Pπ̂ becomes a finite mixture. Furthermore, even though this estimator lacks any explicit regularization, it
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nevertheless enjoys spectacular statistical convergence properties, for example achieving best known density
estimation rates [JZ09, SG20].

The NPMLE is tractable to study in part because of its nature as an overparametrized convex relaxation.
Indeed, while it is well known that the landscape of the maximization objective (1.2) if restricted to k-atomic
distributions π is non-concave and has spurious local maxima [JZB+16], over the space of all measures
P(R) the problem is concave, and thus can be characterized by local optimality conditions.

Practical solvers for maximizing (1.2) started with [Lai78] proposing a variant of the then-recently
discovered EM algorithm. Due to its very slow convergence, a number of other algorithms were proposed
over the years mostly differing in how new locations (atoms) are added at each iteration, see e.g. [Der86,
Böh86, LK92, BSL92] and [Lin83b, Chapter 6] for a detailed survey. However, a decade ago [KM14]
discovered that due to the progress in convex optimization, the (empirically) fastest and most accurate way
to maximize (1.2) is to fix the support of π to be a fine equi-spaced grid εZ (truncated at the range of
the samples X) and maximize the concave function ℓX(π) of the weights of π via off-the-shelf software.
This is the strategy implemented in the popular package REBayes [KG17]. More recent methods based on
general-purpose convex programming have also been proposed [KCSA20, WIM25].

The ubiquity and empirical success of these approximate algorithms for finding π̂ raises natural ques-
tions. If the grid-based NPMLE convex optimization algorithm hits its stopping criterion and returns a
3-atomic solution π, can we provably convince ourselves that the true NPMLE π̂ has 3 and not 1 or 100
atoms? More generally, given that an algorithm (heuristic or otherwise) appears to have approximately con-
verged to some π, can we efficiently certify (prove) that π̂ is ε-close to π? Do any of the iterative algorithms
converge to π̂ at provably efficient rates? Because the objective (1.2) is poorly conditioned, off-the-shelf
convex optimization theory does not provide such guarantees.

We provide answers to all of these questions as a consequence of a new structural property of π̂, perhaps
of independent interest. We show that under random data the true NPMLE solution π̂ has a certain generic
behavior. Namely, suppose x1, . . . , xn are drawn IID1 from an absolutely continuous distribution on R; we
then say X is generic. As recalled below, it has been known since Lindsay [Lin83a] that π̂ is characterized
by always local optimality conditions. Our results show these local optimality conditions for π̂ are almost
surely strict when X is generic, as long as maxi |xi| ≤ cn1/4 for a small absolute constant c.

This almost sure strictness has computational consequences, enabling us to derive the first provably
efficient algorithms for π̂. Although it is not difficult to approximately maximize the objective ℓX , or to
ε-approximate π̂ with exponential or worse dependence on ε in run-time, neither of these yields efficient
approximation of π̂ (e.g. polynomial dependence on 1/ε). Using our genericity results, we obtain almost
sure locally quadratic convergence in parameter distance distance for generic data. This implies the same
convergence rate in Wasserstein distance and exact computation of the number of atoms in π̂. Importantly,
our algorithms certify an explicit Wasserstein error bound and exact number of atoms in finite time, so
they have a well-defined output rather than just asymptotic convergence. Our algorithms follow a simple
template: first, use a convex optimization algorithm such as Frank–Wolfe to compute a sparse approximate
NPMLE π̂ε which is supported on an ε-grid such as εZ. Next, merge any adjacent atoms (i.e. at distance
ε) within the support of π̂ε. Finally, attempt to certify that the result is close enough to π̂ that Newton’s
method converges quadratically, based on the local concavity of ℓ. We prove that a version of this approach
succeeds almost surely for generic X , once ε is sufficiently small.

As preparation, we recall the classical stationarity conditions characterizing π̂. Define the function
1Our genericity results also hold if x1, . . . , xn are drawn independently from different probability densities. In fact this is an

immediate corollary of the IID case since the conclusions hold almost surely: given probability densities µ1, . . . , µn, any event that
holds almost surely for IID x1, . . . , xn ∼ (µ1 + · · ·+ µn)/n also holds almost surely for independent xi ∼ µi.
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Dπ,X : R → R by

Dπ,X(y) =
1

n

n∑
i=1

e−|xi−y|2/2

Pπ(xi)
√
2π

≜
1

n

n∑
i=1

Tπ,xi(y). (1.3)

Dπ,X is the derivative of ℓ with respect to perturbations in π, and plays a central role in the following
characterization of π̂ (see [Lin83a]).

Proposition 1.1. For any π and π′, denoting πt = (1− t)π + tπ′, we have

Ey∼πDπ,X(y) = 1, (1.4)

dℓ(πt)

dt

∣∣∣∣
t=0+

=

∫
Dπ,X(y) d

(
π′ − π

)
(y). (1.5)

The minimizer π̂ of (1.2) is unique and k-atomic for some k ≤ n, and satisfies for all y ∈ supp(π̂):

Dπ̂,X(y) = 1,

D′
π̂,X(y) = 0

(1.6)

Moreover Dπ̂,X(y) ≤ 1 for all y ∈ R, so that

supp(π̂) ⊆ argmax(Dπ̂,X). (1.7)

We note that uniqueness of π̂ is non-obvious. Indeed, from the strong concavity of the log it is easy to
see that all maximizers of ℓ(π) have the same vector Pπ(X) ≜ (Pπ(x1), . . . , Pπ(xn)). However, the linear
map π 7→ Pπ(X) with domain being signed measures has infinite dimensional pre-image. The surprising
part of Proposition 1.1 is that intersecting this pre-image with the subset of probability distributions yields a
unique π̂.

1.1 Structural Results

Our first result proves essentially that (with high probability) the converse implications of Lindsay conditions
hold: for any y ̸∈ supp(π̂) we have

Dπ̂,X(y) < 0

and for every y ∈ supp(π̂) the point y is a non-degenerate maximum:

D′
π̂,X(y) = 0, D′′

π̂,X(y) < 0 .

To that end we provide structural results showing that whenever X is generic, both π̂ and Dπ̂,X also
behave “generically”. Specifically, we prove that π̂ admits a density on the natural parameter space, condi-
tional on the number of atoms. Furthermore, one would like to think of Dπ̂,X as a generic smooth function,
but in light of Proposition 1.1 it may have multiple global maxima, which is not generic for a smooth func-
tion. Theorem 1.2 parts (II),(III) essentially say that Dπ̂,X behaves generically otherwise, in that it has no
“spurious” global maxima, and all maxima are well-conditioned.

Below we define Πk to consist of all π =
∑k

i=1 piδyi with exactly k distinct atoms, which can be
parametrized as an open subset of R2k−1; see (1.15) for a more precise definition. We also define Πk,ε ⊆ Πk

to consist of those π with mini pi ≥ ε and mini<j |yi − yj | ≥ ε.
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Theorem 1.2. Let X = (x1, . . . , xn) be IID from an absolutely continuous distribution µ on R. Then for
any k such that n > (2k + 2)2:

(I) The restriction of the law of π̂ to Πk is absolutely continuous. Further if µ has density supported in
[−L,L] with values in [0, L′], then the density of π̂ is locally bounded, i.e. at most C(n, k, ε, L, L′)
on Πk,ε for any ε > 0.

(II) Conditional on |supp(π̂)| = k (assuming k is such that P[|supp(π̂)| = k] > 0), the function Dπ̂,X

almost surely has exactly k global maxima:

supp(π̂) = argmax
y∈R

Dπ̂,X(y). (1.8)

(III) Conditional on |supp(π̂)| = k (assuming k is such that P[|supp(π̂)| = k] > 0), each global maximum
of Dπ̂,X is almost surely non-degenerate:

max
y∈supp(π̂)

D′′
π̂,X(y) < 0. (1.9)

Using this result, we obtain further consequences on the local landscape of ℓX near π̂.

Theorem 1.3. For 1 ≤ k ≤ n, if the conclusions of Theorem 1.2 (II), (III) hold, then:

(A) There is an open neighborhood of π̂ in Πk on which ℓX is locally c-strongly concave for some c > 0.

(B) There is an open neighborhood of X in Rn, such that π̂(X̂) ∈ Πk for all X̂ in this neighborhood.
Moreover, π̂ is a smooth function on this neighborhood.

(C) The expectation-maximization (EM) algorithm converges linearly in a small Πk-neighborhood of π̂.
Namely for any initialization π0 in this neighborhood, the EM iterates π0, π1, . . . satisfy dΠk

(πt, π̂) ≤
C · (1− η)tdΠk

(π0, π̂) for C, η > 0. (Here dΠk
, defined in (1.16), denotes parameter distance in Πk.)

We emphasize that Theorem 1.2(II) improves the classical stationarity condition (1.7) to a strict inequal-
ity. Additionally, Theorem 1.3(A) is different from the concavity of ℓX on the space of probability measures,
since the structure of Πk allows averaging the locations of atoms. We also mention that Appendix C shows
IID data with full support on [0, O(k

√
log k)] satisfies P[|supp(π̂)| = k] > 0 whenever n ≥ k, so the

conditional distribution of π̂ on Πk is defined.
For Theorem 1.2 to be useful, we must have k = |supp(π̂)| ≤ O(

√
n), which is not always the case.

However, following a related conjecture of [KG19], the first author showed in [PW20] with Yihong Wu that
the much stronger bound |supp(π̂)| ≤ O(log n) holds with high probability for sub-Gaussian data (and is
sharp in natural examples). In fact the bound depends deterministically on the empirical range of the data.

Proposition 1.4 ([PW20, Theorem 1]). There exists a universal constant C such that if X = (x1, . . . , xn) ∈
[−L,L]n for L ≥ 1, then |supp(π̂)| ≤ CL2.

Corollary 1.5 below is an immediate consequence: π̂ exhibits generic behavior for generic data in
[−cn1/4, cn1/4]. For example, (1.7) is almost surely an equality for such X .

Corollary 1.5. Suppose X = (x1, . . . , xn) is IID from an absolutely continuous distribution. Then with
probability 1, either both the conclusions (1.8),(1.9) of Theorem 1.2 (II),(III) hold, or otherwise maxi |xi| ≥
cn1/4 holds for some absolute constant c > 0.

In particular if supi E[|xi|q] < ∞ for some q > 4, then (1.8),(1.9) hold with probability 1−O(n1− q
4 ).
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Remark 1.6. The genericity conditions above can be relaxed to apply only to part of the dataset. This is
relevant in settings where some datapoints have been rounded or are correlated with each other. Namely, fix
arbitrary xm+1, . . . , xn ∈ [−L,L]. Then if m ≥ CL4 and x1, . . . , xm ∈ [−L,L] are generic conditionally
on (xm+1, . . . , xn), all the conclusions of Theorem 1.2 still apply with essentially the same proof.

In the setting of Remark 1.6, we show in the following Theorem 1.7 that Theorem 1.2(I) is sharp in
some sense. Namely with m ≤ O(k2) generic datapoints, the density of π̂ on Πk may fail to be locally
bounded. The proof is given in Appendix C, where we also prove Theorem 1.3. It is an interesting open
problem whether Theorem 1.7 truly requires m < n.

Theorem 1.7. Suppose m ≤ (k − 1)(2k − 1) and n −m ≥ (2k + 2)2. Let x1, . . . , xn be IID uniform on
[0, O(k

√
log k)]. Then with positive probability, the conditional law of π̂ given xm+1, . . . , xn and the event

π̂ ∈ Πk does not have locally bounded density on Πk.

1.2 Efficient Computability of π̂

A related and somewhat subtle question is whether π̂ is efficiently computable. Because ℓ is concave, one
can find in poly(1/ε) time a probability distribution πε such that |ℓX(πε)−ℓX(π̂)| ≤ ε (as recently observed
in [FGSW23]). Uniqueness of π̂ implies the convergence πε → π̂ in the space of probability measures on
R as ε → 0. However ℓX may be ill-conditioned, so it is not clear that one obtains a quantitative rate of
convergence of πε to π̂. Worse, this proof does not give any stopping rule at which one can guarantee that
πε is within ε distance from π̂. From the point of view of computational complexity theory, this means one
does not yet have an actual algorithm to compute π̂.

We will aim to compute π̂ in the strong parameter distance in which all centers and mixing weights are
well-approximated. This includes the following two questions:

1. Can π̂ be certifiably approximated in Wasserstein distance to error ε in ε−O(1) time?

2. Is the support size |supp(π̂)| a computable function of X = (x1, . . . , xn)?

We have illustrated that the first question is non-obvious, but the second merits its own discussion. Note
that from a Wasserstein approximation to π̂, one can never directly conclude the value of |supp(π̂)|: any
atom may split onto several smaller atoms with negligible effect in Wasserstein distance. Although support
size is a very brittle property, Proposition 1.4 shows a strong upper bound on |supp(π̂)|, so it is natural to
hope that exact computation is feasible. This task requires understanding the distributional behavior of π̂ at
microscopic scales, a challenging task which has seen no previous work. Intuitively, it is natural to expect
those π̂ exhibiting potential instability to correspond to a low-dimensional submanifold in parameter space,
which should not occur for generic X . Formalizing this intuition is challenging due to the multi-scale nature
of the parameter space ∪k≥1Πk for π̂.

To formulate the computational problem in a satisfactory way, we use the notion of a Shub–Smale
approximate solution to a system of equations, originally due to [SS93]. In short, π is a Shub–Smale
approximate NPMLE if it is within ε parameter distance of π̂, and Newton’s method exhibits quadratic
convergence to π̂ starting from π. To be precise, starting from any π ∈ Πk, one may naturally define
a Newton–Raphson iteration to attempt to compute π̂ ∈ Πk (viewing Πk as an open subset of R2k−1).
Recalling Proposition 1.1, the point is to view π̂ as the zero of the function γk : (p1, . . . , pk, y1, . . . , yk) ∈
Πk → R2k−1 defined by

γk(π) =
(
Dπ(y1)− 1, . . . , Dπ(yk)− 1, D′

π(y1), . . . D
′
π(yk)

)
.
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(γk is essentially the gradient of ℓX in the space Πk.) The iteration begins with π(0) = π and (with J the
Jacobian) then recursively sets:

π(t+1) = π(t) − [Jγk(π
(t))]−1γk(π

(t)). (1.10)

Since Πk is a proper subset of R2k−1, it is possible that even if π(t) ∈ Πk and π̂ ∈ Πk, the next iterate
π(t+1) /∈ Πk may satisfy pi < 0 or yi > yi+1 for some i. If this occurs, we stop the iteration and declare
failure.

Definition 1. We say π ∈ Πk is a Shub–Smale ε-approximate NPMLE if:

1. π̂ ∈ Πk and d(π(0), π̂)Πk
≤ ε.

2. The iteration (1.10) satisfies π(t) ∈ Πk for all t (and never declares failure).

3. We have d(π(t), π̂)Πk
≤ 21−2td(π(0), π̂)Πk

for all t.

Here we use the parameter distance d(·, ·)Πk
defined in (1.16), which is simply Euclidean distance on the

parametrization π = (p1, . . . , pk, y1, . . . , yk).

Note that the value of ε in Definition 1 is not particularly important: once the condition holds for
some ε < 1/2, applying Newton’s method converges quadratically. Our computational results use the
genericity of Theorem 1.2 to find a Shub–Smale approximate NPMLE almost surely. We note that the
issue of an unknown number of parameters k is not present in [SS93]. However this arises naturally in our
setting because |supp(π̂)| must be known exactly for a Newton–Raphson iteration to make sense. Indeed, it
underlines the point that exact computation of π̂ inherently requires exact computation of the support size.

1.3 Naı̈ve Brute-Force Approximation of π̂

To further motivate and illustrate our algorithmic results, we discuss two naı̈ve algorithms to approximate π̂
in Wasserstein distance. The first algorithm is essentially given by the next proposition. Here and throughout
the rest of the paper, for L, ε > 0 we let Zε ⊆ R be any set satisfying:

{−L,L} ⊆ Zε ⊆ [−L,L],

|Zε| ≤ 3L/ε,

min
y∈[−L,L]

d(y, Zε) ≤ ε.
(1.11)

The sets Zε will serve as supports for approximations π̂ε to π̂.2

Proposition 1.8. For each ε > 0, let
π̂ε ∈ argmax

supp(π)⊆Zε

ℓX(π)

maximize the log-likelihood for X among all distributions supported in Zε. Then

lim
ε→0

π̂ε = π̂,

where convergence is in the Wasserstein W1 sense.
2Throughout the paper, one can just take Zε = εZ ∩ [−L,L] for any L, ε−1 ∈ N. However in practical algorithms, the atoms

of an approximating π̂ε are often adjusted during the optimization. Augmenting Zε with these additional points allows us to cover
such situations.
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Proof. As we show in Lemma 1.18, the map π 7→ ℓX(π) from W1([−L,L]) → R has Lipschitz constant at
most CL ≤ O(e4L

2
). It follows easily that

ℓX(π̂ε) ≤ ℓX(π̂) + CLε. (1.12)

Since the sets Zε are uniformly bounded, there must exist subsequential limits of π̂ε as ε → 0. Since the
functional π 7→ ℓX(π) is weakly continuous, all subsequential limits globally minimize ℓX . Uniqueness of
π̂ (see Proposition 1.1) completes the proof.

It also follows from (1.12) that ℓX(π) is CLε
−1-Lipschitz when π is metrized by the Euclidean norm

on R|Zε| (via its probability mass function). Since π 7→ ℓX(π) is concave for each X , given a choice of
Zε, computation of π̂ε to W1 to accuracy δ requires CLε

−O(1) log(1/δ) gradient evaluations of ℓX using a
cutting plane method (see e.g. [Bub15, Theorem 2.4]).

Unfortunately the algorithm “compute π̂ε for small ε > 0” gives no quantitative guarantees for the
approximation of π̂ itself. That is, the above argument cannot certify upper bounds W1(π̂ε, π̂) ≤ η for any
nontrivial η > 0. Indeed, π̂ε above is essentially the maximum of the concave function ℓX : W1([−L,L]) →
R on the 2L/ε dimensional subspace of π supported in Zε. Although π̂ is very close to this subspace, a
strong concavity estimate would be needed to upper bound W1(π̂ε, π̂) from this. For example the concave
function

f(x1, . . . , xd) = −
(
x1 −

x2
104

)2
− 1

d

∑
i∈[d]\{2}

x2i

is maximized at the origin, but its minimizer on the nearby hyperplane {x1 = 0.01} has x2 = 100.
A second try is to explicitly search the entirety of W1([−L,L]). Namely if Nε ⊆ W1([−L,L]) is an

C−1
L ε-net, then the choice

π̂ε = argmin
π∈Nε

ℓX(π)

also satisfies (1.12). Moreover if for some η > 0 it happens to be the case that

min
π∈Nε

W1(π,π̂ε)≥η−ε

ℓX(π) ≥ ℓX(π̂ε) + 3ε, (1.13)

then this would immediately certify the bound W1(π̂ε, π̂) ≤ η. Therefore a a natural approach to certifiable
approximation guarantees would be to verify the estimate in (1.13). However a bit of thought reveals this
approach is also impractical. Firstly, it is again non-quantitative: uniqueness of π̂ implies (1.13) holds
eventually (i.e. for 0 < ε ≤ ε0(η) sufficiently small depending on η > 0), but this argument does not
predict any quantitative dependence between ε and η. Additionally, |Nε| grows exponentially3 in 1/ε,
making this computationally inefficient even if η and ε turn out to be polynomially related.

1.4 Results on Computability and Generic Behavior

Having discussed several pitfalls, we now present our main computability results, which show that π̂ can be
efficiently approximated and the support size k can be exactly computed. We equip Zε (recall (1.11)) with
the adjacent-neighbors graph structure, making it isomorphic to a path. Below we write OX(·) to indicate
an implicit constant factor which is random and depends on X , but not on e.g. ε.

3For example let S1, . . . , SK ⊆ Zε = [−L,L]∩ εZ be IID uniformly random subsets of size |Zε|/2, and let πi be the uniform
distribution on Si for each i. For an absolute constant c > 0 and K ≤ c exp(c/ε), we will have |Si ∩ Sj | ≤ |Zε|/3 and hence
W1(πi, πj) ≥ ε/10 with high probability, simultaneously for all 1 ≤ i < j ≤ K.
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Theorem 1.9. Assume n,L satisfy n ≥ CL4 for an absolute constant C. Let X = (x1, . . . , xn) ∈ [−L,L]n

be generic. Let π̂ε = argmax
supp(π)⊆Zε

ℓX(π). Then almost surely, for ε small enough depending on X:

(a) All connected components of supp(π̂ε) ⊆ Zε (w.r.t. the graph structure) have size 1 or 2.

(b) |supp(π̂)| is equal to the number of connected components of supp(π̂ε).

(c) W1(π̂, π̂ε) ≤ OX(ε1/3),

Further, the statement in (b) and the upper bound in (c) are efficiently certifiable given π̂ε. Finally, the
rounding of π̂ε which merges adjacent atoms pjδyj + pj+1δyj+1 in Zε to (pj + pj+1)δ pjyj+pj+1yj+1

pj+pj+1

satisfies

dΠk
(π̂, π̂ε) ≤ OX(ε1/3) and is certifiably a Shub–Smale approximate NPMLE.

In proving Theorem 1.9, we consider a slight modification π̃ε of π̂ε in which adjacent atoms are merged
together. This in fact gives small error in the stronger parameter distance dΠk

(defined in (1.16)). Since
the exact maximization defining π̂ε may not be computationally feasible, we provide another variant of
Theorem 1.9 that does not require exact computation of π̂ε (proved in the Appendix). Instead only an
approximation is required, obtained using the Frank–Wolfe algorithm and a careful rounding scheme; we
denote by (π̆ε, π̊ε) the corresponding analogs of (π̂ε, π̃ε).

Theorem 1.10. Under the conditions of Theorem 1.9, there exists for each ε > 0 a deterministic O(Lnε−11)
time algorithm which computes π̊ε ∈ P(Zε) such that almost surely, for ε small enough depending on X:

(a) |supp(π̂)| = |supp(̊πε)|.

(b) dΠk
(π̂, π̊ε) ≤ OX(ε1/4) and W1(π̂, π̊ε) ≤ OX(ε1/4).

Further, the statement in (a) and the upper bound in (b) are efficiently certifiable given π̊ε, which is a
Shub–Smale approximate NPMLE.

In other words, Theorem 1.10 provides a pair of efficient algorithms. The first computes a W1-approximation
of π̂, while the second attempts to certify the W1 bound and support size equality. The second either returns
a checkable proof or fails. What we show is that by rerunning these algorithms with smaller and smaller
ε, eventually the second algorithm will succeed; furthermore, the bound will decay as ε1/4. Once the al-
gorithm succeeds for some ε = ε0, there is no longer a need to continue rerunning the same algorithm to
decrease ε. Instead, one can simply run Newton’s method within Πk. Hence for δ ≪ ε0, the computa-
tional complexity will be O(Lnε−11

0 ) + CNR log log(ε0/δ)), where CNR ≤ O(nk2) is the complexity of a
Newton–Raphson iteration. (Computing the gradient of γk uses nk2 time, inverting an O(k)×O(k) matrix
takes O(k3) ≤ O(nk2) time, and other steps are faster.)

Let us explain briefly why Theorem 1.2(II) and (III) are useful towards Theorem 1.9. The chief worry in
Theorem 1.9 is that although the NPMLE objective (1.2) is a concave maximization problem, it is infinite-
dimensional and may be quite poorly conditioned. Because the log-likelihood can be shown to be relatively
smooth, if it is not flat near π̂, then one will be able to efficiently certify π̂ ≈ π̃ based on local information at
π̃ (namely approximate-stationarity and Hessian non-singularity). In Section 3, we employ Theorem 1.2(II)
and (III) to show the necessary conditions hold once π̃ is a sufficiently accurate approximation for π̂.

While Newton–Raphson iteration is appealing due to its quadratic local convergence rate, other ap-
proaches also suffice for asymptotic convergence from an approximate solution. In particular Theorem 1.3(C)
shows that the EM algorithm converges linearly from suitable approximate solutions; this can be similarly
made certifiable from a sufficiently good approximate solution π̊ε.

8



1.5 Results for the Static Support NPMLE

To illustrate the flexibility of our methods, we also consider the static support NPMLE. Given a fixed finite
set S ⊆ R (independent of X), we define the static support NPMLE π̂S as in (1.2), but restricted to π
supported within S. Similarly let Πk(S) be the (k− 1)-dimensional set of k-atomic distributions on S. The
following analog of Proposition 1.1 is immediate from (1.5).

Proposition 1.11. Fix a finite S ⊆ R and X = (x1, . . . , xn). Then any minimizer π̂S of (1.2) among π
supported on S satisfies for all y ∈ supp(π̂S):

Dπ̂S ,X(y) = 1.

Moreover Dπ̂S ,X(y) ≤ 1 for all y ∈ S, so that

supp(π̂S) ⊆ argmax
S

(Dπ̂S ,X)

Uniqueness does not appear to follow from classical results; the proof in [Lin83b, Theorem 5.1] requires
supp(π̂) to avoid the boundary of S, which is of course impossible when S is discrete. Thus in principle, π̂S
refers to any maximizer of ℓX . However for bounded data, uniqueness follows by the technique of [PW20].

Proposition 1.12. Let L ≤ cn1/2 for a small absolute constant c. Fix a L-bounded X = (x1, . . . , xn), and
finite S ⊆ R with S ∩ [−3L, 3L] ̸= ∅. Then π̂S is unique and |supp(π̂S)| ≤ O(L2).

Proof. Let π̂S be any minimizer of (1.2) among probability distributions supported in S. It is clear that π̂S
is supported in [−10L, 10L]. It follows from [PW20, Proof of Theorem 3] that Dπ̂S ,X has O(L2) critical
points. Since Dπ̂S ,X takes the value 1 at each point in S, Rolle’s theorem implies that |supp(π̂S)| ≤
O(L2) < n/2 (for c small). Since this support bound holds for all minimizers π̂S , [Lin83b, Lemma 6.1]
implies π̂S is unique.

Our main results on generic behavior and efficient computability both have analogs for finite S; the
proofs are similar to those of the results presented so far.

Theorem 1.13. Fix n ≥ k2 and a finite set S ⊆ R. Let X be generic and condition on the event
|supp(π̂S)| = k (assuming k is such that P[|supp(π̂S)| = k] > 0). Then with {y1, . . . , yk} = supp(π̂):

(I) The conditional law of π̂S on Πk(S) is absolutely continuous.

(II) The restriction of Dπ̂,X to S almost surely has exactly k global maxima y1, . . . , yk.

Theorem 1.14. For any 1 ≤ k ≤ n, if |supp(π̂S)| = k and Theorem 1.13(II) holds:

(A) There is c > 0 and an open neighborhood of π̂S in Πk(S) on which ℓX is locally c-strongly concave.

(B) There is an open neighborhood of X in Rn, such that π̂S(X̂) ∈ Πk(S) for all X̂ in this neighborhood.
Moreover, π̂S is a smooth function on this neighborhood.

Theorem 1.15. Assume n,L satisfy n ≥ CL4 for an absolute constant C, and let S ⊆ R be deterministic
and finite with S ∩ [−3L, 3L] ̸= ∅. Let X = (x1, . . . , xn) ∈ [−L,L]n be generic. Then there exists a
deterministic C(L)ε−O(1) time algorithm which computes π̆S,ε with the following properties. Almost surely,
for sufficiently small ε, π̆S,ε is a certifiable C(n, k, S,X)ε-approximation to π̂S in both W1 and dΠk(S)

distance. Furthermore, supp(π̆S,ε) = supp(π̂S) almost surely holds certifiably for small enough ε.
Finally, almost surely for small enough ε, π̆S,ε is a Shub–Smale approximate static support NPMLE:

Newton’s method within Πk(S) started from π̆S,ε certifiably converges to π̂S at the rate in Definition 1.
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1.6 Other Related Work

Gaussian mixture models have been studied since the pioneering work of Pearson [Pea94], which proposed
that the ratio of forehead width to body length of crabs might follow such a distribution. Much work
has focused on statistical recovery of such mixtures. In the 1-dimensional Gaussian location model we
consider, optimal convergence rates for recovering the mixing distribution were obtained in the case of k
components by [WY20], via an extension of the method of moments. See [DWYZ23] for extensions to
higher dimensions. The theoretical computer science literature has also studied Gaussian mixture models
since [Das99]. In the special case k = 2, [HP15] gave sharp bounds for parameter recovery, and showed
an exponential-in-k sample complexity lower bound. This line of work led to accurate polynomial time
estimators for the underlying parameters of the Gaussian mixture even in high-dimensions, under minimal
assumptions that ensure statistical identifiability. These algorithms succeed even if the components may
have different covariances [KMV10, MV10, HP15] and more recently if a small fraction of the data is
adversarially corrupted [Kan21, LM23, BDJ+22, LM22] thanks to the sum-of-squares framework.

The NPMLE was introduced for general mixture models in [KW56], where its consistency was shown in
quite general settings including the one we study. [GW00, GVDV01, Zha09, JZ09] upper-bounded its rate
of convergence for density-estimation, for IID data generated from a mixture of unit variance Gaussians. See
also [DZ16, SG20] for higher-dimensional extensions. We emphasize that we always metrize convergence
based on π̂ itself, rather than the convolution π̂ ∗ N (0, 1) which is done in some of these works. (This
yields e.g. the smoothed Wasserstein distance, which gives the same topology on probability measures but
can be exponentially smaller.) However we emphasize that by contrast to the algorithms mentioned above,
the NPMLE’s behavior can be fruitfully analyzed without assuming that the underlying data actually comes
from a Gaussian mixture.

To estimate a k-component Gaussian mixture for small k, a standard approach is the expectation-
maximization (EM) algorithm [DLR77]. However a key advantage of the NPMLE is that it solves a concave
maximization problem. To take full advantage of this, one may discretize space as in [KM14, FD18, SGS24].
Namely one fixes an ε-net Zε and optimizes (1.2) subject to the additional constraint supp(π̂) ⊆ Zε, which
is now a finite-dimensional concave problem. It is not hard to show (see Section 3) that the resulting es-
timate π̂ε converges to the true NPMLE π̂ as ε → 0. Our interest will be in certifying that a candidate
π̂ε, computed in essentially arbitrary manner, approximates π̂ to some explicit accuracy and additionally
satisfies |supp(π̂ε)| = |supp(π̂)|.

The local convergence rate of the EM algorithm has long been of interest, and was studied in e.g. [RW84,
MR94, XJ96, MXJ00, MF05, MX05]. More recently, [BWY17, ZLS20] established high-probability linear
local convergence rates for well-separated Gaussian mixtures in general dimension, via perturbative analysis
around the population dynamics. Theorem 1.3(C) shows almost sure local linear convergence for generic
datasets, without even requiring the existence of an underlying mixture model generating the data. On the
other hand, it is currently limited to dimension 1 and does not give quantitative bounds on η. Among the
vast literature in this direction, we also mention a few recent works [DTZ17, WZ22, WB22] showing rapid
global convergence of the EM algorithm for 2-component Gaussian mixtures.

We also mention the recent work [WN22] which considers rather general mixture models and uses har-
monic analysis tools related to those we employ (see Section 7 therein). However their work focuses on
asymptotic posterior contraction rates and uses these tools differently. Also recently, [MSS23, FGSW23]
investigated properties of and algorithms for the NPMLE in high-dimensional regression, which is differ-
ent from the present setting. Theorem 3.3 of the latter also provides a quantitative convergence rate for
computing the NPMLE (in the same setting as the present work) via gradient flow, as measured by the log-
likelihood objective (1.2). As outlined in Subsection 1.3, this does not yield any convergence rate for the
NPMLE itself, while our Theorems 1.9, 1.10 give asymptotic convergence rates in Wasserstein distance.
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1.7 Notations and Spaces of Measures

Denote by P(X) the space of probability measures on a space X , and by ρν(x) the density function of an
absolutely continuous distribution ν at x. Let dH denote the Hausdorff distance between compact sets in R:

dH(K1,K2) = max
(
max
x1∈K1

d(x1,K2), max
x2∈K2

d(K1, x2)
)
. (1.14)

For π, π′ ∈ P(R), denote by W1(π, π
′) the usual Wasserstein-1 distance

W1(π, π
′) = inf

Γ∈C(π,π′)
EΓ|y − y′|.

Here the infimum is over all couplings (y, y′) ∼ Γ with marginals y ∼ π and y′ ∼ π′. Define Πk to be
2k − 1 dimensional space of k-atomic π. We use the parametrization

Πk ≜

(p1, . . . , pk, y1, . . . , yk) ∈ R2k : pj ≥ 0,
k∑

j=1

pj = 1, y1 < y2 · · · < yk

 , (1.15)

thus identifying (p1, . . . , pk, y1, . . . , yk) with the probability distribution
∑k

j=1 pjδyj . As previously men-
tioned, we let Πk,ε consist of all π ∈ Πk with mini pi ≥ ε and mini<j |yi − yj | ≥ ε. Similarly ΠL

k consists
of all π ∈ Πk supported in [−L,L], and ΠL

k,ε = Πk,ε ∩ ΠL
k . Note that (1.15) gives Πk the structure of a

smooth 2k − 1 dimensional manifold. We metrize Πk and its subsets via parameter distance:

dΠk
(π, π′)2 =

k∑
j=1

(
|pj − p′j |2 + |yj − y′j |2

)
(1.16)

where π, π′ correspond respectively to (p1, . . . , pk, y1, . . . , yk), (p
′
1, . . . , p

′
k, y

′
1, . . . , y

′
k). Note that as a sub-

set of R2k, (the closure of) Πk is a codimension 1 convex polytope, hence has a natural (2k−1)-dimensional
Lebesgue probability measure. The next proposition states that ΠL

k parameter distance controls W1 distance.
There is no bound in the opposite direction because far away atoms with small probability are significant
only for the former.

Proposition 1.16. For any k-atomic π, π′ ∈ ΠL
k ,

W1(π, π
′) ≤ (L3/2 + 1) dΠk

(π, π′).

1.8 Preliminary Smoothness Estimates

For j ≥ 0 let Hj(t) = et
2/2
(
d
dt

)j
e−t2/2 be the j-th Hermite polynomial. The following proposition is

immediate from the formula (1.3).

Proposition 1.17. For j ≥ 0, the j-th derivative of Dπ,X is given by

D
(j)
π,X(y) =

1

n

n∑
i=1

Hj(xi − y)e−|xi−y|2/2

Pπ(xi)
√
2π

. (1.17)

We next show basic estimates on these functions.

Lemma 1.18. There exist universal constants C > 0 and (C1, C2, . . . ) such that the following estimates
hold. Suppose W1(π, π

′) ≤ δ where π, π′ are supported in [−L,L]. Then for x, z ∈ [−L,L]:

11



1. C−1e−2L2 ≤ Pπ(x) ≤ 1.

2. |Pπ(x)− Pπ′(x)| ≤ Cδ.

3. |Pπ(x)
−1 − Pπ′(x)−1| ≤ Ce4L

2
δ.

4. |ℓX(π)− ℓX(π′)| ≤ Ce2L
2
δ.

5. For j ≥ 0 the j-th derivative of T (recall (1.3)) with respect to y satisfies

|T (j)
π,x(z)| ≤ CjL

je2L
2
, (1.18)

|T (j)
π,x(z)− T

(j)
π′,x(z)| ≤ CjL

je4L
2
δ.

6. Similarly for D:

|D(j)
π,X(z)| ≤ CjL

je2L
2
, (1.19)

|D(j)
π,X(z)−D

(j)
π′,X(z)| ≤ CjL

je4L
2
δ. (1.20)

Lemma 1.19. Fix π =
∑k

i=1 pjδyi and π′ =
∑k

i=1 qiδyi , both in ΠL
k . Consider

ℓ(t) ≜ ℓX(πt) = ℓX((1− t)π + tπ′)

If maxi |pi − qi| ≤ τ , then

sup
0≤t≤1

∣∣∣∣ ddtℓ(t)
∣∣∣∣ ≤ O(e2jL

2
τ j), 0 ≤ j ≤ 3.

Further if πt([−10, 10]) ≥ 1/10, the improved upper bound O(e0.51jL
2
τ j) holds.

The next lemma will be used to ensure that π̂, or any reasonable approximation thereof, is supported in
[−L,L]. Lemmas 1.19 and 1.20 are proved in Appendix A.

Lemma 1.20. If X = (x1, . . . , xn) ∈ [−L,L]n, then for any π ∈ P(R), the function Dπ,X(·) is strictly
increasing on (−∞, L] and strictly decreasing on [L,∞).

Proof. Each term in (1.3) obeys these monotonicity conditions.

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2 on generic behavior of π̂ and Dπ̂,X . The different parts are established
by variations of the same core argument. For concreteness, we center our discussion on absolute continuity
of π̂. This is natural to expect from naive dimension-counting: if π̂ is k-atomic, then it varies over a 2k − 1
dimensional parameter space Πk and must satisfy the 2k equations (1.6). However one of these equations is
redundant since one always has Ey∼πDπ,X(y) = 1. Thus intuitively, all 2k− 1 dimensions of Πk should be
needed to solve this many equations, suggesting the law of π̂ is generic. Similar remarks apply in the static
support case; here the conditions on D′

π̂,X disappear, corresponding to the reduced dimension of Πk(S).
Proving absolute continuity of the law of π̂ amounts to upper-bounding small-ball probabilities near

arbitrary π0 ∈ Πk,ε. We first reduce this to bounding the probability that the stationarity conditions (1.6) for
π0 hold approximately. Below, Bδ(π0) denotes a ball in dΠk

-distance around π0. Similarly, let Bδ,S(π0) be
the δ-neighborhood of π0 ∈ Πk(S) in the space Πk(S). Note that Bδ,S(π0) ⊆ Bδ(π0) ∩Πk(S).
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Proposition 2.1. Fix π0 =
∑k

i=1 piδyi ∈ Πk([−L,L]). Then for π̂ =
∑k

i=1 p̂iδŷi ∈ Bδ(π0) to hold (where
δ-ball is defined with respect to dΠk

), π0 must approximately solve the system (1.6) in the sense that

max
1≤j≤k

|Dπ0,X(yj)− 1| ≤ eO(L2)δ,

max
1≤j≤k

|D′
π0,X(yj)| ≤ eO(L2)δ

(2.1)

Moreover to have Dπ̂,X(y) = 1 for some y with |y − y∗| ≤ δ, or D′′
π̂,X(ŷj) = 0 for some 1 ≤ j ≤ k, we

must respectively have

max
(
|Dπ0,X(y∗)− 1|, |D′

π0,X(y∗)|
)
≤ eO(L2)δ, (2.2)

|D′′
π0,X(yj)| ≤ eO(L2)δ. (2.3)

Similarly if π̂S =
∑k

i=1 p̂iδŷi ∈ Bδ,S(π
′
S) for some π′

S supported in S ⊆ L, then:

max
1≤j≤k

|Dπ′
S ,X

(yj)− 1| ≤ eO(L2)δ.

And to have Dπ̂S ,X(y) = 1 for some y with |y − y∗| ≤ δ, we must have

|Dπ′
S ,X

(y∗)− 1| ≤ eO(L2)δ.

Proof. Using (1.20) and Proposition 1.16, we obtain

∥Dπ̂,X −Dπ0,X∥C2([−L,L]) ≤ eO(L2)W1(π̂, π0) ≤ eO(L2)dΠk
(π̂, π0)).

We now apply Proposition 1.1. For the first estimate, we write

|Dπ0,X(yj)− 1| ≤ |Dπ0,X(yj)−Dπ0,X(ŷj)|+ |Dπ0,X(ŷj)−Dπ̂,X(ŷj)|+ |Dπ̂,X(ŷj)− 1|

≤ eO(L2)|yj − ŷj |+ eO(L2)dΠk
(π̂, π0) + 0.

Similar arguments imply the other claims.

Proposition 2.1 effectively linearizes the stationarity conditions for π̂. For π0 fixed, the function Dπ0,X

and its derivatives are simply IID sums over xi ∈ X . In particular their law becomes smoother as n
increases; we make this precise using classical estimates from harmonic analysis.

2.1 Harmonic Analysis and Non-Degeneracy of Exponential Curves

Definition 2. We call a function γ ∈ C∞([0, 1];Rd) a smooth curve, and γ ∈ C∞(S1;Rd) a smooth loop.
We say γ is non-degenerate if for each x, the vectors(

γ′(x), γ′′(x), . . . , γ(d)(x)
)

form a basis for Rd. By compactness, this is equivalent to the matrix M(x) with these vectors as columns
having determinant bounded away from zero, uniformly over x ∈ [0, 1] or x ∈ S1. Let µγ denote the
pushforward of the uniform measure on [0, 1] by γ. Given a continuous function f defined on the range of
γ, let µγ,f be the signed measure with Radon–Nikodym derivative dµγ,f (x)/dµγ(x) = f(x).

The next key estimate follows from [SM93, Page 334], see also [Mar88, BGG+07].
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Proposition 2.2. Let γ be a non-degenerate smooth loop, and f a C1 function on its range. Then the Fourier
transform µ̂ of µ satisfies:

|µ̂(ω)| ≤ C(γ)(1 + ∥ω∥)−1/d · ∥f∥C1 , ∀ω ∈ Rd.

We next deduce that for non-degenerate γ, at most d2+1 self-convolutions suffice for a bounded density.

Corollary 2.3. Let γ be a non-degenerate smooth curve or loop, and f a non-negative bounded function on
its range. Then with (·)∗j denoting j-fold self-convolution, the probability measure µ∗(d2+1) has bounded
density on Rd.

Proof. First, if γ is a smooth non-degenerate curve then it easily extends to a smooth non-degenerate loop
γ̃. In either case, since ∥f∥L∞ < ∞ there is a constant (in particular C1) function on γ or γ̃ which is
point-wise larger than f . Therefore by domination, it suffices to consider the case that γ is a loop.

For γ a smooth non-degenerate loop, Proposition 2.2 implies µ∗(d2+1) has integrable Fourier transform,
hence bounded density by Fourier inversion, completing the proof.

Remark 2.4. When γ is a loop and f is C1 in Corollary 2.3, µ∗(d2+1) in fact has a uniformly continuous
density (being the inverse Fourier transform of an integrable function). However we can only use Proposi-
tion 2.1 to upper bound the law of π̂, so this additional information does not improve our final results.

Remark 2.5. The appearance of Θ(d2) convolutions in Corollary 2.3 is easily seen to be sharp for any
smooth γ, degenerate or not. Indeed for small ε > 0, the curve γ([0, ε]) is contained inside a rectangular
box with O(εd(d+1)/2) volume, spanned by vectors O(εj)γ(j)(x) for 1 ≤ j ≤ d. (Here implicit constant
may depend on both γ and k but not ε.) Thus µ∗k assigns measure Ω(εk) to the k-dilate of this box, which
still has O(εd(d+1)/2) volume: each independent summand lands in the box with probability Ω(ε). Thus for
any smooth γ, we must have k ≥ d(d+ 1)/2 for µ∗k to have a bounded density on Rd.

The following lemma will be used to verify non-degeneracy for the curves relevant to π̂.

Lemma 2.6. Let P : R → (0,∞) be a smooth, strictly positive function. Let d1, . . . , dk ≥ 0 be non-negative
integers and let ai,j be real constants for 0 ≤ i < dj which are not all zero. Define the function

F (x) =

∑k
j=1

∑dj−1
i=0 ai,jx

iexyj

P (x)
.

Then with D =
∑k

j=1 dj , F can have at most D − 1 on R, counting multiplicity. (Here x is a root of
multiplicity r if F (x) = F ′(x) · · · = F (r−1)(x) = 0.)

Proof. We can set P (x) = 1 since it does not affect the multiplicity of a root. It remains to show F (x) =∑k
j=1

∑dj−1
i=0 ai,jx

iexyj cannot have D roots. Indeed, this function satisfies a linear ODE with degree d

characteristic polynomial z 7→
∏k

j=1(z − yj)
dj . We consider the corresponding multi-set of differential

operators ϕj(f) = f ′ − yjf . Further, if F has a non-zero term, then a subset of at most D − 1 of these
operators can be applied to reach a function f(x) = Aexyi for some A ̸= 0 and i. Indeed, ϕj turns xexyj
into exyj , kills the exyj term, and scales each other term by a non-zero constant. Crucially, this resulting f
has no roots. However by Rolle’s theorem, each of these differential operators reduces the total number of
roots of a function by at most 1. It follows that F has fewer than D roots.

A compactness argument immediately gives the following.

Corollary 2.7. In the setting of Lemma 2.6, if minj,j′ |yj − yj′ | ≥ ε, there exists c(L, k, ε) such that

max
0≤d≤D−1

|F (d)(x)| ≥ c ·max
i,j

|ai,j |, ∀x ∈ [−L,L].
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2.2 Distributional Regularity of NPMLE

Proposition 2.1 implies that for any π0 ∈ Πk, having π̂ ∈ Bδ(π0) requires the vector

Vπ0(X) ≜
(
Dπ0,X(y1), . . . , Dπ0,X(yk), D

′
π0,X(y1), . . . , D

′
π0,X(yk)

)
to be within distance C(n,L)δ of the half-ones vector (1, . . . , 1, 0, . . . , 0). Note that the pj-weighted aver-
age of the first k coordinates of this vector always equals 0 by (1.4), so the image of γπ0 lies in a 2k − 1
dimensional affine subspace Uπ0 ⊆ R2k. In the S-restricted case, we denote the relevant curve by γ◦π0

:

V ◦
π0
(X) ≜ (Dπ0,X(y1), . . . , Dπ0,X(yk)) ∈ Rk

obeys the same constraint, hence lies in a k − 1 dimensional affine subspace U◦
π0

.

Lemma 2.8. Suppose x1, . . . , xn are IID from a density supported in [−L,L] and bounded above pointwise
by L′. For n ≥ k2 and π0 ∈ Πk,ε, the random vector V ◦

π0
(X) ∈ Rk has compactly supported distribution

on U◦
π0

with density uniformly at most C(n, ε, k, L, L′). When n ≥ 4k2, the same holds for Vπ0(X) ∈ R2k

and Uπ0 .

Proof. We can write V ◦
π0
(X) as the convolution V ◦

π0
(X) = 1

n

∑n
i=1 γ

◦
π0
(xi) where we define

γ◦π0
(x) ≜

(
e−|x−y1|2/2

Pπ0(x)
√
2π

, . . . ,
e−|x−yk|2/2

Pπ0(x)
√
2π

)
.

Further, γ◦π0
(x) is an (x-independent) invertible linear transformation of

γ̃◦π0
(x) ≜

(
exy1

Pπ0(x)e
x2/2

, . . . ,
exyk

Pπ0(x)e
x2/2

)
We will apply Corollary 2.3 with γ = γ̃◦π0

. Note that the relevant dimension is d = k − 1, so n ≥ k2 ≥
d2 + 1 as required. It suffices to check that γ̃◦π0

is non-degenerate within the subspace U◦
π0

. We show the
stronger statement that within Rk,

inf
x∈[−L,L]

det
(
γ̃◦π0

(x), (γ̃◦π0
)′(x), . . . , (γ̃◦π0

)(k−1)(x)
)
> 0.

This follows from Lemma 2.6 with P (x) = Pπ0(x)e
x2/2 and d1 = · · · = dk = 1. Indeed, letting a⃗ =

(a0,1, . . . , a0,k) ∈ Rk, and with F as in Lemma 2.6, we have

F (j)(x) = ⟨(γ◦π0
)(j)(x), a⃗⟩, ∀ 0 ≤ j ≤ k − 1.

This completes the proof. The case of Vπ0 is similar with

γπ0(x) ≜

(
e−|x−y1|2/2

Pπ0(x)
√
2π

, . . . ,
e−|x−yk|2/2

Pπ0(x)
√
2π

,
(x− y1)e

−|x−y1|2/2

Pπ0(x)
√
2π

, . . . ,
(x− yk)e

−|x−yk|2/2

Pπ0(x)
√
2π

)
,

γ̃π0(x) ≜

(
exy1

Pπ0(x)e
x2/2

, . . . ,
exyk

Pπ0(x)e
x2/2

,
xexy1

Pπ0(x)e
x2/2

, . . . ,
xexk

Pπ0(x)e
x2/2

)
and d1 = · · · = dk = 2 (taking a⃗ = (a0,1, . . . , a0,k, a1,1, . . . , a1,k) ∈ R2k).
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Proof of Theorem 1.2, Part (I). Lemma 2.8 states that uniformly in π0 ∈ Πk,ε for any ε fixed, Vπ0(X) has
bounded density on the 2k − 1 dimensional subspace Uπ0 . Proposition 2.1 thus implies that for any δ > 0,

P[π̂ ∈ Bδ(π0)] ≤ C(n, ε, k, L, L′)δ2k−1.

This implies π̂ has locally bounded density on each Πk. Since Πk = ∪ε>0Πk,ε and using similar countable
exhaustion for a general absolutely continuous data distribution, we also deduce absolute continuity in the
general case.

Proof of Theorem 1.13, Part (I). As in the previous proof, by countable additivity it suffices to consider data
distributions with compactly supported bounded density. Lemma 2.8 states that V ◦

π0
(X) has bounded density

on the k − 1 dimensional subspace U◦
π0

. Proposition 2.1 thus implies that for π0 ∈ Πk,ε(S) and any δ > 0,

P[π̂S ∈ Bδ,S(π0)] ≤ C(n,L, ε, k)δk−1.

Finally this implies absolute continuity of π̂S within Πk(S), since any π0 ∈ Πk is in Πk,ε for some ε > 0.
This completes the proof.

2.3 Generic Behavior of Dπ̂,X

Distributional regularity of π̂ does not have direct consequences for Dπ̂,X since the latter depends on both
π̂ and X . We prove genericity of Dπ̂,X using the same approach as above, thus establishing the remaining
statements of Theorems 1.2 and 1.13. The idea is that any non-generic behavior can be encoded into an
extra constraint dimension for the curve γ or γ◦. Hence the chance for such behavior to hold approximately
becomes O(δ2k) or O(δk) instead of O(δ2k−1) or O(δk−1) respectively. These probabilities are now smaller
than the inverse δ-radius covering numbers for Πk and Πk(S). Hence summing over such covers shows
a probability upper bound O(δ); taking δ small, we deduce that such non-generic behavior occurs with
probability 0.

Proof of Theorem 1.2 part (II) and (III). We first show part (II), namely that Dπ̂,X has exactly k global max-
ima almost surely, namely supp(π̂). We fix an arbitrary L > 0 (for use in e.g. Proposition 2.1) and show that
the probability for L-bounded generic data to violate the claims is 0, which suffices by countable additivity.

We claim that for π̂ ∈ Πk,ε, and any y∗ ∈ [−L,L] with min1≤j≤k |y∗ − yj | ≥ 2ε, there is C(n,L, ε, k)
such that for δ ≤ δ∗(n,L, ε, k) small enough, the probability that both (2.1) and (2.2) hold is at most
Cδ2k+1. Explicitly for any fixed π0 and y∗:

P[π̂ ∈ Bδ(π0), ∃y ∈ [y∗ − δ, y∗ + δ], Dπ̂(y) = 1]

≤ P[π̂ ∈ Bδ(π0) and |Dπ0(y
∗)− 1| ≤ C ′δ and |D′

π0
(y∗)| ≤ C ′δ] ≤ Cδ2k+1.

(2.4)

(Here C ′ ≤ eO(L2).) Note that Πk has dimension 2k − 1 and it suffices to take 3L/δ choices of y∗ to cover
all possible extraneous minimizers. There are hence (C/δ)2k elements of a δ-net over pairs (π0, y∗). So
using the claim and a union bound, the probability for π̂ to be (ε, k)-non-degenerate and for Dπ̂,X to have an
extraneous minimizer within distance 3ε of supp(π̂) is O(δ) for small enough δ, hence zero. This suffices
since ε was also arbitrary.

To show the claim (2.4) above, we proceed as in Lemma 2.8 using a slightly augmented version of Vπ0

given by (
Vπ0(X), Dπ0,X(y∗), D

′
π0,X(y∗)

)
∈ R2k+2.
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The claim follows by using Lemma 2.6, with d1 = · · · = dk+1 = 2 and y∗ = yk+1, as in the proof of
Lemma 2.8. Here we use the assumption n > (2k + 2)2. This finishes the proof of the first assertion on
global maxima.

Part (III) is handled similarly. We now need to bound the probability that (2.1) and (2.3) both hold, and
we will show it is at most C(n,L, ε, k)δ2k. This suffices by a similar union bound since the relevant δ-nets
still have cardinality (C/δ)2k−1. This time we consider for some fixed 1 ≤ j ≤ k:(

Vπ0(X), D′′
π0,X(yj)

)
∈ R2k+1.

Applying Lemma 2.6 with dj = 3 and di = 2 for i ̸= j completes the proof in this case.

Proof of Theorem 1.13(II). The proof is similar to the above. Again we fix arbitrary L and restrict attention
to the event S ∪ X ⊆ [−L,L]. Consider ε > 0 such that π̂S ∈∈ Πk,ε(S), and any y∗ ∈ S\supp(π̂S).
Without loss of generality, we may choose 2ε smaller than the minimum distance between distinct points of
S, so d(y∗, supp(π̂S)) ≥ 2ε. Then analogously to (2.5), we have

P[π̂S ∈ Bδ,S(π
′
S), ∃y ∈ [y∗ − δ, y∗ + δ], Dπ̂S

(y) = 1]

≤ P[π̂ ∈ Bδ,S(π
′
S) and |Dπ′

S
(y∗)− 1| ≤ C ′δ] ≤ Cδk.

(2.5)

In this case, the claim follows by considering(
V ◦
π′
S
, Dπ′

S ,X
(y∗)

)
∈ Rk+1

and applying Lemma 2.6, with d1 = · · · = dk+1 = 1 and y∗ = yk+1. This time Πk(S) has dimension k−1,
and now y∗ ranges over a finite set, so there are (C/δ)k−1 elements of a δ-net over pairs (π′

S , y∗). Hence the
probability for Dπ̂S

to have an extraneous minimizer y∗ ∈ S\supp(π̂S) is O(δ) for small enough δ, hence
zero. This completes the proof.

3 Certification

In this section we give algorithms to certifiably compute π̂, for both ε-approximation in W1 and exact
support size. Theorem 1.2 will be used to show that for generic data, they eventually succeed almost surely.

3.1 Certification of Wasserstein Approximations

In Proposition 3.1 we show how to certify a putative candidate W1-approximation to π̂, denoted by π̃ε.
The conditions on π̃ε will be satisfied by (approximately) maximizing ℓX over P(Zε) and merging adjacent
atoms.

Proposition 3.1. Suppose there exists π̃ε =
∑k

j=1 pjδyj ∈ P(Zε), which satisfies for some c1, c2, δ > 0 the
following properties.

1. For y such that d(y, supp(π̃ε)) ≥ c1, we have Dπ̃ε,X(y) ≤ 1− c2.

2. max
y∈R

Dπ̃ε,X(y) ≤ 1 + δ.

3. As a function on P(supp(π̃ε)), for some λ ∈ (0, 1) the empirical loss ℓX has Hessian

∇2ℓX(π̃ε) ⪯ −λIk. (3.1)

(We treat (3.1) as vacuously true in the case k = 1.)
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4. Let η = c1 + Lδ/c2. Either η ≤ λ3

k3e14L2 or π̃ε([−10, 10]) ≥ 1/10 and

η ≤ λ3

k3e5.1L2 . (3.2)

If the above properties hold, then we must have:

W1(π̃ε, π̂) ≤ O
(
LeL

2√
ηk/λ

)
.

The intuition is that conditions 1 and 2 imply π̂ can be approximated by a distribution (denoted π̃∗
below) supported on supp(π̃ε) and achieving a similar value of likelihood, while condition (3.1) implies
any distribution on supp(π̃ε) achieving high likelihood must be close to π̃ε itself. A detailed proof is given
in Appendix A.

Several conditions in Proposition 3.1 will be verified using Theorem 1.2. However one condition follows
easily from uniqueness of π̂.

Proposition 3.2. For any sample X = (x1, . . . , xn) ∈ Rn there exists λ = λX > 0 such that condition (3.1)
holds at π̂. (Recall we take (3.1) to be vacuous when k = 1).

Proof. Since ℓX is strongly convex in the vector Pξ(X) =
(
Pπ(x1), . . . , Pπ(xn)

)
, if the claim did not hold

then the directional derivative of V would be zero along some line segment. However V depends linearly
on the weights p⃗ so we conclude that π̂ is not unique, contradicting Proposition 1.1.

Next we turn to the support size of π̂. We note that one direction is implied by a Wasserstein approxi-
mation, as verified in the next result.

Proposition 3.3. Suppose ν =
∑k

j=1 pjδyj . For each j let dj be the minimum distance from yj to a nearest
(other) atom and let ∆ = ∆(ν) ≜ minj(pjdj) > 0. Then we have

∆

3
≤ inf{W1(ν, µ) : µ has < k atoms} ≤ ∆ .

In particular,
W1(ν, µ) ≤ ∆(ν)/3 =⇒ |supp(µ)| ≥ |supp(ν)| .

Additionally if W1(ν, µ) ≤ ∆(ν)/3 and |supp(µ)| = |supp(ν)|, then µ =
∑k

j=1 qjδzj where√√√√ k∑
j=1

(
|pj − qj |2 + d(yj , zj)2

)
≤ 12W1(µ, ν)

∆
. (3.3)

Proof. For the lower bound, note that the open balls B(yj , dj/3) of radius dj/3 centered at yj are mutually
disjoint, separated by pairwise distance min(dj)/3. Hence if µ has < k atoms, at least one of these balls
must have µ-measure zero, and hence any coupling of µ to ν has to incur at least ∆/2 cost. For the upper
bound, simply remove the atom j minimizing the definition of ∆ and move its mass to the nearest neighbor.

For the second assertion, it follows from the preceding paragraph that µ has exactly 1 atom in each ball
B(yj , dj/3); without loss of generality call this atom zj . Using a similar transportation argument and then
min(p, q) + |p− q| = max(p, q), we find

W1(µ, ν) ≥
∑
j

d(yj , zj) ·min(pj , qj) +

∑
j dj |pj − qj |

6
≥
∑

j

(
d(yj , zj)pj + dj |pj − qj |

)
12

≥ ∆

12

∑
j

(
d(yj , zj) + |pj − qj |

)
≥ ∆

12

√∑
j

(
d(yj , zj)2 + |pj − qj |2

)
.
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The first part of the above lemma will be used to show that the Wasserstein bound from the previous
Proposition eventually certifies that

W1(π̂ε, π̂) < ∆(π̂ε)/2 .

The second part will be used to obtain convergence in parameter distance dΠk
.

Proposition 3.4. There exists an absolute constant C such that the following holds. Suppose that π̃ is given
and there exists c > 0 such that:

1. W1(π̂, π̃) ≤ α.

2. For C an absolute constant and all y ∈ supp(π̃),

D′′
π̃,X(y) ≤ −CL2e4L

2
(α+ cL).

3. Condition 1 of Proposition 3.1 holds with (c1, c2) = (c, Ce4L
2
α). I.e. for all z with d(z, supp(π̃)) ≥

c, we have Dπ̃,X(z) ≤ 1− Ce4L
2
α.

Then |supp(π̂)| ≤ |supp(π̃)| .

Proof. We take C (polynomially) large compared to the constants Cj from Lemma 1.18. By the bound (1.19)
applied with j = 3 and first-order Taylor expansion for D′′ we conclude that D′′

π̃,X(y) ≤ −CL2e4L
2
α for

all y in the c-neighborhood of any support element of π̃. In turn, by (1.20) with j = 2 we have that also
D′′

π̂,X(y) ≤ −C
2 L

2e4L
2
α in the same neighborhood. Thus, in each such neighborhood Dπ̂,X can have at

most one local maximum, and in turn at most one y such that Dπ̂,X(y) = 1. Outside of c-neighborhoods of
each support element of π̂ε there can be no atoms of π̂ because by (1.20) with j = 0 we should have that
Dπ̂,X(y) < 1 for all d(y, supp(π̃)) ≥ c.

3.2 Approximability of π̂

Here we synthesize the preceding results to obtain an approximation scheme for π̂. Again, we assume
here access to an exact maximization oracle for the concave function ℓX over P(Zε), deferring issues of
approximate maximization to the Appendix. We first define the constants that determine the dependence on
X . Let

AX = − max
y∈supp(π̂)

D′′
π̂,X(y) (3.4)

and

BX = 1− max
y∈SX

Dπ̂,X(y),

SX ≜ {y ∈ R : d(y, supp(π̂)) ≥ aX/4} ,

aX ≜
AX

2C3L2e4L2 ,

where Cj’s are from (1.20). Both AX , BX are almost surely strictly positive by Theorem 1.2, and we will
implicitly assume so below. To approximate π̂, we begin as usual with

π̂ε = argmax
supp(π)⊆Zε

ℓX(π)

for Zε as in (1.11). First, we show a version of Proposition 1.1 for π̂ε.
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Lemma 3.5. Given π̂ε we have:

(a) Dπ̂ε,X(y) = 1 for all y ∈ supp(π̂ε).

(b) Dπ̂ε,X(y) ≤ 1 for all y ∈ Zε.

(c) max
y∈R

Dπ̂ε,X(y) ≤ 1 + δ for δ = Cε2L2e2L
2
.

Further, for any y ∈ supp(π̂ε) there exists a local maximum ŷ ∈ [−L,L] of Dπ̂ε,X such that |y − ŷ| < ε.

Proof. By (1.5) and optimality of π̂ε we see that Dπ̂ε,X(y) is maximized at each y ∈ supp(π̂ε) (possibly
other y as well). Since the derivative there vanishes when π′ = π, we see that this maximum value must be
1, yielding points (a) and (b).

Point (c) follows by smoothness estimates. Let y ∈ [y1, y1 + ε] with y1 ∈ Zε. We recall the following
simple analytical fact: if g is a smooth function on [0, ε] and g(0), g(ε) ≤ 1 then we must have

sup
y∈[0,ε]

|g(y)| ≤ 1 +
ε2

2
sup

y∈[0,ε]
|g′′(y)| ,

which can be shown by a Taylor expansion. Applying this fact to Dπ̂ε,X we find that

Dπ̂ε,X(y) ≤ 1 +
ε2

2
sup
z∈R

|D′′
π̂ε,X

(z)|.

Recalling (1.19) completes the proof of (c) for y ∈ [−L,L]. Finally recall from (1.11) that we assume
{−L,L} ⊆ Zε, and from Lemma 1.20 that Dπ̂ε,X(·) is strictly decreasing on [−L,∞) and strictly increasing
on (−∞,−L]. Hence if y > L, then Dπ̂ε,X(y) > Dπ̂ε,X(L) ≤ 1 + δ. Proceeding similarly for y ≤ −L
completes the proof of (c).

For the last claim, given y ∈ supp(π̂ε) let y1 < y < y2 be the closest points to y on each side in
supp(π̂ε). First assuming y /∈ {−L,L} is not an extreme point of Zε, by definition [y1, y2] ⊆ [y− ε, y+ ε].
From (a) and (b), we see that Dπ̂ε

(y) ≥ Dπ̂ε
(yi) for i ∈ {1, 2}. Hence maxz∈[y1,y2]Dπ̂ε

(z) is attained
within the interior of the interval, so such a ŷ exists. Finally the boundary cases y = ±L are easily handled
using Lemma 1.20 to rule out local maxima outside [−L,L].

We now list several properties of π̂ε that hold for sufficiently small ε. They do not immediately suffice
for certification because one needs an explicit bound on how small ε must be. Instead these properties
will be used to ensure the certification criteria in Propositions 3.1, 3.3 and 3.4 are applicable to π̂ε or its
modification π̃ε, for small enough ε.

Proposition 3.6. We have
lim
ε→0

dH(supp(π̂ε), supp(π̂)) = 0 , (3.5)

where dH denotes Hausdorff distance (recall (1.14)). Consequently, for all ε < ε0(X), the following hold:

d(y, supp(π̂ε)) ≤ aX/2 =⇒ D′′
π̂ε,X

(y) ≤ −AX/2;

d(y, supp(π̂ε)) ≥ aX/2 =⇒ Dπ̂ε,X(y) ≤ 1− BX

2
.
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Proof. First, note that
lim
ε→0

max
y∈supp(π̂)

d(y, supp(π̂ε)) = 0,

since otherwise there would have existed an atom of π̂ that is bounded away from any atom of π̂ε contra-
dicting W1(π̂, π̂ε) → 0. Second, we also have

lim
ε→0

max
y∈supp(π̂ε)

d(y, supp(π̂)) = 0.

If we take any convergent subsequence supp(π̂ε) ∋ yε → y∗ then we have 1 = Dπ̂ε,X(yε) → Dπ̂,X(y∗).
But by Theorem 1.2, Dπ̂,X(y∗) = 1 (a global maximum) implies y∗ ∈ supp(π̂), thus showing the claim.
Together these convergence statements yield (3.5).

Proposition 1.8 ensures that uniformly in the choice of Zε, we have limε→0W1(π̂, π̂ε) = 0. By
Lemma 1.19, this implies convergence of Dπ̂ε,X to Dπ̂,X in the space C2([−L,L]). The other two state-
ments of the proposition now follow from the convergence of supports.

Proposition 3.7. For ε < ε0(X) sufficiently small depending on X , any pair of points supp(π̂ε) within
distance aX/2 are adjacent elements in Zε.

Proof. Take a point y ∈ supp(π̂ε). By Proposition 3.6 (which uses the assumption ε < ε0(X)), D′′
π̂ε,X

≤
−AX/2 on the interval [y − aX/2, y + aX/2]. Thus, the equation Dπ̂ε,X(z) = 1 can have at most two
solutions, one of which is y. Further the concavity of Dπ̂ε,X on [y−aX/2, y+aX/2] implies it is unimodal.
Thus if y′ ∈ [y − aX/2, y + aX/2] also satisfies Dπ̂ε,X(y′) = 1, then Dπ̂ε,X(y′′) = 1 for all y′′ ∈ (y, y′).
Recalling Lemma 3.5 part (b), we see that no such y′′ can lie in Zε. We conclude that y and y′ must be
consecutive within Zε.

In light of Proposition 3.7, for ε small enough atoms in π̂ε are all separated by aX/2 except those
occuring in pairs of adjacent elements of Zε. We form π̃ε by taking the weighted average of each such pair,
i.e. replacing piδxi and pi+1δxi+1 by p̃iδx̃i

for

p̃i = pi + pi+1, x̃i =
pixi + pi+1xi+1

xi + xi+1
.

We now show crucial properties of π̃ε that will be used in certification. Again, the results of the following
proposition by itself are insufficient since ε0(X) is not determined explicitly.

Proposition 3.8. For all ε < ε0(X) we have that |supp(π̃ε)| = |supp(π̂)| =: k. Furthermore, representing
π̃ε =

∑k
j=1 p̃jδỹj and π̂ =

∑k
j=1 pjδyj (with both atoms sorted):

p̃j → pj , ỹj → yj

as ε → 0. Thus, in particular, we have

lim
ε→0

∆(π̃ε) = ∆(π̂) > 0 ,

Proof. Given dH(supp(π̃ε), supp(π̂ε)) ≤ ε and (3.5), lim
ε→0

dH(supp(π̃ε), supp(π̂)) = 0. Since the atoms of

both measures are separated by at least aX/4 we also conclude the two sets have the same cardinality (for
small ε), and that ỹj → yj .

Next, we show that π̃ε admits explicit OX(ε1/3) certificates for Wasserstein convergence and a certified
lower bound on |supp(π̂)| by virtue of Propositions 3.1 and 3.3. (The former W1 convergence also holds
for π̂ε.)
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Proposition 3.9. For ε ≤ ε0(X), the conditions of Proposition 3.1 apply to π̃ε with:

δ = O(ε2L2e4L
2
),

c1 =
3
√

10Lδ/AX ,

c2 =
3
√
L2δ2AX ,

η = O( 3
√
Lδ/AX),

λ = ΩX(1)

(3.6)

In particular, the estimator π̃ε obeys certifiable bounds of the form W1(π̂, π̃ε) ≤ OX(ε1/3). Furthermore,
we also have a bound |supp(π̂)| ≥ |supp(π̃ε)| certified by Proposition 3.3.

Proof. The bound on δ for π̂ε is in Lemma 3.5. To extend it to π̃ε, it suffices to show

sup
y∈[−L,L]

|Dπ̃ε,X(y)−Dπ̂ε,X(y)|
?
≤ O(ε2L2e4L

2
).

By definition of D, for this it suffices to show that

sup
y∈[−L,L]

|Pπ̃ε
(y)− Pπ̂ε

(y)|
?
≤ O(ε2),

which reduces to proving that∣∣∣∣( pi
pi + pi+1

)
e−|xi−y|2/2 +

(
pi+1

pi + pi+1

)
e−|xi+1−y|2/2 − e−|x̃i−y|2/2

∣∣∣∣ ?
≤ O(ε2).

This holds by the following fact (applied with f(x) = e−|x|2/2): If |f ′′(x)| ≤ C for all x ∈ [x0, x1] then for
any λ ∈ [0, 1] we have

|f(λx1 + (1− λ)x0)− λf(x1)− (1− λ)f(x0)| ≤ C(x1 − x0)
2 .

(This is shown by noticing that this estimate is true at λ = 0 and then expanding the right-hand side in λ to
second order.)

Next, let us show that Dπ̃ε
satisfies the (c1, c2) assumption in Proposition 3.1. We already know this

holds for c1 = aX/2 and c2 = BX/2 − O(ε2) by Proposition 3.6, but we need to improve this estimate to
the case of vanishing c1, c2 to get a vanishing estimate on W1.

To that end, we claim that whenever 2ε ≤ c1 ≤ aX
2 , we may take

c2 =
AX(c1 − 2ε)2

4
− δ (3.7)

in Proposition 3.1 (where δ is still as in (3.6) above). Indeed, if

d(y, supp(π̃ε)) ≥ c1,

then d(y, ỹ) ≥ c1 − ε for some ỹ ∈ supp(π̂ε). Note that ỹ is within distance ε of a local maximum ŷ of
Dπ̂ε,X by Lemma 3.5. This implies by Proposition 3.6 that, as claimed,

Dπ̂ε,X(y) ≤ Dπ̂ε,X(ŷ)− AX(c1 − 2ε)2

4
≤ 1−

(
AX(c1 − 2ε)2

4
− δ

)
= 1− c2.
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In particular for ε small enough, we can set

c1 =
3
√

10Lδ/AX , c2 =
3
√
L2δ2AX =⇒ η = O( 3

√
Lδ/AX).

Further, Proposition 3.2 ensures that (3.2) holds for ε small enough, since the value λε for π̂ε converges to
that of π̂. (This follows from the fact that π̂ε → π̂ in W1 and in Hausdorff distance of supports, by a similar
computation as in Lemma 1.19.) We conclude that Proposition 3.1 suffices to certify bounds of the form
W1(π̂, π̃ε) ≤ OX(

√
η) = OX(ε1/3).

Finally, from Proposition 3.8 we know that conditions of Proposition 3.3 are eventually certifiable and
hence we get a certifiable lower bound |supp(π̂)| ≥ |supp(π̃ε)| on the support size of the NPMLE.

Proof of Theorem 1.9, except for the Shub–Smale property. Proposition 3.9 shows π̃ε has a certified W1 ≤
OX(ε1/3) upper bound and that |supp(π̂)| ≥ |supp(π̃ε)|.

The upper bound on the support will be certified via Proposition 3.4, where we may certify the bound
α = OX(ε1/3) using Proposition 3.9. Lemma 1.19 then yields a (certified) estimate

∥Dπ̂ε,X −Dπ̂,X∥C2([−L,L]) ≤ eO(L2)α ≤ OX(ε1/3).

To satisfy Condition 3 of Proposition 3.4, it suffices by (3.7) to take c = ΘX(ε1/6). Then Condition 2
of Proposition 3.4 holds for ε small enough by Proposition 3.8 (regardless of the X-dependent constant
factors). Recalling how π̃ε was constructed shows |supp(π̂)| = |supp(π̃ε)|. Then (3.3) gives the same
bound for parameter distance of the rounding π̃ε. We refer to Appendix D for the proof that roundings are
Shub–Smale approximate NPMLEs.

In the preceding proof, one can actually take c = ΘX(1) to be an ε-independent constant. However due
to the unspecified dependence on X , this does not yield an actual algorithm. By making c decay with ε, we
ensure the conditions hold once ε < ε0(X) is small enough.

4 Unbounded Support Size of Higher Dimensional NPMLE

In higher-dimensions d ≥ 2, the NPMLE π̂ for a spherical Gaussian mixture need not be unique as was
observed in [SGS24, Lemma 2] by taking X = (x1, x2, x3) to be the vertices of an equilateral triangle. We
show below that |supp(π̂)| may be unbounded for any d ≥ 2 even when the points xi ∈ X are uniformly
bounded (and π̂ is chosen to minimize the support size if non-unique). In other words, Proposition 1.4 does
not generalize beyond dimension 1. Both of these points indicate that different ideas are required to obtain
a fine-grained understanding of the NPMLE in higher dimensions.

It will be helpful to extend (1.2) beyond discrete datasets: for any µ ∈ P(Rd), let the associated NPMLE
π̂(µ) be any maximizer of

ℓµ(π) ≜
∫

logPπ(x) dµ(x) (4.1)

for Pπ = π∗N (0, Id). Moreover, let µsp
d,r denote the uniform distribution on a centered sphere Sd,r of radius

r inside Rd.

Lemma 4.1. For any dimension d ≥ 2 and large enough R ≥ R0(d), let µ = µsp
d,R. Then π̂ = µsp

d,r is
unique, and r satisfies 0 < R− r < oR(1).

Lemma 4.1 is proved in Appendix A. It immediately implies that Proposition 1.4 does not extend to
multiple dimensions.
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Proposition 4.2. For any d ≥ 2, for large enough R ≥ R0(d) there exists a sequence of data-sets Xn =
(x1, . . . , xn) ∈ (Rd)n satisfying ∥xi∥ ≤ R for all 1 ≤ i ≤ n such that the following holds. If π̂(n) is an
NPMLE of Xn for each n ≥ 1, then limn→∞ |supp(π̂(n))| = ∞.

Proof. Let (Xn)n≥1 be any sequence of uniformly bounded datasets such that 1
n

∑n
i=1 δxi converges in

distribution to µsp
d,R where R is as in Lemma 4.1 with r > 0. It is well-known that any NPMLE π̂ for

Xn supported inside the radius R ball is also supported inside the radius R ball. Note that the function
(X,π) 7→ ℓX(π) defined in (1.2) is jointly continuous for X,π supported inside the radius R ball. Therefore
any subsequential limit of NPMLEs π̂(n) for Xn must be an NPMLE for µsp

d,R. By Lemma 4.1 this means

π̂(n) d→ µsp
d,r. In particular their support sizes must grow to infinity, which concludes the proof.
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A Proofs of Lemmas

Here we provide self-contained proofs of several lemmas from the main body.

Proof of Proposition 1.16. Recalling (1.16), define a coupling (y, y′) between π, π′ as follows. For each j,
with probability min(pj , p

′
j) we have (y, y′) = (yj , y

′
j). The remainder of the coupling is arbitrary. Note

that by definition this remaining probability is

1−
k∑

j=1

min(pj , p
′
j) =

1

2

∑
j

|pj − p′j | ≤
1

2

√
L
∑
j

|pj − p′j |2.

Since diam([−L,L]) = 2L, we obtain

W1(π, π
′) ≤ L3/2

√∑
j

|pj − p′j |2 + max
1≤j≤k

|yj − y′j | ≤ (L3/2 + 1) dΠk
(π, π′).

Proof of Lemma 1.18. Point 1 is trivial. Letting (y, y′) ∼ Γ be an optimal coupling of π, π′, point 2 follows
easily from (1.1):

|Pπ(x)− Pπ′(x)| ≤ E(y,y′)∼Γ|e−|x−y|2/2 − e−|x−y′|2/2| ≤ CE(y,y′)∼Γ|y − y′| ≤ Cδ.

Point 3 follows easily by combining the previous two. For point 4, note that since 1 holds for both π and
π′. Hence recalling the definition (1.2) of ℓX , the Lipschitz constant of the logarithm on [C−1e−2L2

,∞) is
O(e2L

2
) which gives the claim. The bound (1.18) follows from point 1. Using (1.17) for each term T (j) we

have

|T (j)
π,x(z)− T

(j)
π′,x(z)| ≤

∣∣∣∣∣Hj(x− z)e−|x−z|2/2

Pπ(xi)
√
2π

− Hj(x− z)e−|x−z|2/2

Pπ′(xi)
√
2π

∣∣∣∣∣ ≤ CjL
j

∣∣∣∣ 1

Pπ(xi)
− 1

Pπ′(xi)

∣∣∣∣ .
This proves 5 in light of point 3. The analogous bounds for D follow from (1.3).
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Proof of Lemma 1.19. We repeatedly differentiate. Let vj = qj − pj and pt,j = (1− t)pj + tqj . Using (1.5)
in the first line:

ℓ′(t) =

k∑
j=1

vjDπt,X(yj)
(1.3)
=

1

n

n∑
m=1

 k∑
j=1

vje
−|xm−yj |2/2∑

ℓ pt,ℓe
−|xm−yℓ|2/2

 .

Clearly it suffices to consider the case n = 1, with x1 = x, which removes the outer average over m. Then
we find:

ℓ′′(t) =

k∑
j=1

vj
d

dt

(
e−|x−yj |2/2∑

ℓ pt,ℓe
−|x−yℓ|2/2

)
= −

k∑
j,j′=1

vjvj′

exp
(
− |x−yj |2+|x−yj′ |2

2

)(∑
ℓ pt,ℓe

−|x−yℓ|2/2
)2

 ;

ℓ′′′(t) = 2

k∑
j,j′,j′′=1

vjvj′vj′′

exp
(
− |x−yj |2+|x−yj′ |2+|x−yj′′ |2

2

)(∑
ℓ pt,ℓe

−|x−yℓ|2/2
)3

 .

To lower bound the denominator, note that∑
ℓ

pt,ℓe
−|x−yℓ|2/2 ≥ min

x,y∈[−L,L]
e−|x−y|2/2 = e−2L2

.

This easily gives the main conclusion. When π([−10, 10]) ≥ 0.1, we have
∑

ℓ pt,ℓe
−|x−yℓ|2/2 ≥ e−(L+10)2/2/10 ≥

Ω(e−0.51L2
).

Proof of Proposition 3.1. We first consider the case π̃ε([−10, 10]) ≥ 1/10. Note that for πt = (1−t)π̃ε+tπ̂,
by definition of π̂:

0 ≤ d

dt
ℓ(πt)|t=0 =

∫
Dπ̃ε,X(y)

(
dπ̂(y)− dπ̃ε(y)

) (1.4)
=

∫ (
Dπ̃ε,X(y)− 1

)
dπ̂(y).

This implies the bulk of π̂ lies near the support of π̃ε: by Assumptions 1 and 2,

Py∼π̂[d(y, supp(π̃ε)) ≥ c1] ≤
δ

δ + c2
≤ δ/c2.

We exploit this as follows. By the previous display, there exists π̃∗ supported in supp(π̃ε) such that
W1(π̃∗, π̂) ≤ c1 + 2Lδ/c2 ≤ 2η. This implies

|ℓX(π̂)− ℓX(π̃∗)| ≤ O(e2L
2
η)

by Lemma 1.18. We write π̃∗ =
∑

y qjδyj .
Now that π̃∗ and π̃ε have the same support, it remains to show their weights are similar. We do this using

strong convexity via (3.1). Set c =
∑

j |pj − qj |, which we will show is small. We write

ℓ(t) = ℓX((1− t)π̃ε + tπ̃∗).

Then we have ℓ′(0) = 0 since π̃ε is an exact optimum among distributions supported in Zε, and ℓ′′(0) ≤
−c2λ/k by (3.1). By Lemma 1.19 with j = 3, we find ∥ℓ′′′∥∞ ≤ O(c3e1.55L

2
) and so ℓ′′(t) ≤ −c2λ/2k for

all

|t| ≤ T ≜ Ω

(
λ

cke1.55L2

)
.
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Thus, since ℓ(t) is non-increasing, we have

ℓX(π̃∗)− ℓX(π̃ε) = ℓ(1)− ℓ(0) ≤ ℓ(1 ∧ T )− ℓ(0) ≤ −(1 ∧ T )2c2λ/4k.

Combining the above, we have

ℓX(π̂)−O
(
ηe2L

2
)
≤ ℓX(π̃∗) ≤ ℓX(π̃ε)− (1 ∧ T )2c2λ/4k

≤ ℓX(π̂)− (1 ∧ T )2c2λ/4k.

Therefore

(1 ∧ T )c ≤ CeL
2

√
ηk

λ
.

Due to the assumption (3.2), the latter estimate cannot hold with Tc on the left-hand side. Therefore we
have an upper bound for c which yields:

W1(π̂, π̃ε) ≤ W1(π̂, πt) +W1(πt, π̃ε) ≤ Lc+O(η) ≤ O
(
LeL

2

√
ηk

λ
+ η
)
.

The former term dominates the latter when (3.2) holds, finishing the proof of the main bound.
Without assumption π̃ε([−10, 10]) ≥ 1/10, the proof is the same: 5.1 comes from 5.1 = 2(1 + 1.55),

and replacing 1.55 by 6 (based on Lemma 1.19) gives 14.

We next turn to proving Lemma 4.1, which uses the following fact. It can be shown by expansion into
spherical harmonics, or see [Tan17, Theorem 4.4] for an elementary approach.

Proposition A.1. Let F : R → R be given by a globally absolutely convergent power series F (t) =∑
k≥0 akt

k with strictly positive coefficients ak > 0. Then for any ν ∈ P(Sd,r),∫∫
F (⟨x, y⟩) dν(x)dν(y) ≥

∫∫
F (⟨x, y⟩) dµsp

d,r(x)dµ
sp
d,r(y)

with equality if and only if ν = µsp
d,r.

Proof of Lemma 4.1. First, let π̂sym be the spherical symmetrization of π̂. It is easy to see by concavity of
the logarithm that ℓµ(π̂) ≤ ℓµ(π̂sym). Thus π̂sym is a mixture of µsp

d,r′ for r′ ∈ R≥0. We will show separately
that there is a unique optimal choice r of r′, and that ℓµ(π̂) < ℓµ(π̂sym) unless π̂ = π̂sym.

Uniqueness of Optimal Radius First, note that for any r′, the density of µsp
d,r′ ∗N (0, Id) is constant on the

sphere of radius R. Hence maximizing (4.1) is equivalent to maximizing this value in r′. Thus, let f(r1, r2)
be the density of µsp

d,r1
∗ N (0, Id) on the sphere of radius r2. Letting µsp

d,r,ε be the uniform distribution on
the dimension d annulus Ad,r,ε of inner and outer radii r and r+ ε, and using ρν to denote the density of an
absolutely continuous distribution:

f(r1, r2) =
1

2πr2
lim
ε→0

∫
Ad,r2,ε

dµsp
d,r1,ε

∗ N (0, Id)(x) = lim
ε→0

∫
ρµsp

d,r2,ε
(x) dµsp

d,r1,ε
∗ N (0, Id)(x)

= lim
ε→0

∫
ρµsp

d,r2,ε
(−x) dµsp

d,r1,ε
∗ N (0, Id)(x) = lim

ε→0
ρµsp

d,r1,ε
∗N (0,Id)∗µsp

d,r2,ε
(0).

In particular f(r1, r2) = f(r2, r1), and so r is the radius on which the density ρ̂ = ρµsp
d,R∗N (0,Id)

is maxi-

mized. By symmetry, it suffices to consider the restriction of ρ̂ to {r′v : r′ ≥ 0} for a unit vector v ∈ Rd.

29



The uniqueness of an optimal radius R − oR(1) < r < R is now geometrically rather clear and we outline
a formal proof.

First if |R − r′| ≥ R1/10, then ρ̂(r′v) ≤ O(R−2d) which will turn out to be of lower order than the
maximum value. Hence we restrict attention to r′ = R±O(R1/10); here the contribution to ρ̂ from the part
of µsp

d,R supported at distance at least R1/4 from v is at most O(R−2d) in C2, thanks to the super-polynomial
decay of the Gaussian density and its derivatives.

For x ∈ supp(µsp
d,R) with ∥x−v∥ ≤ R1/4, we replace x by its projection x′ onto the tangent hyperplane

to Sd,R at Rv. It is easy to see that ∥x − x′∥ ≤ O(R−3/2), so this change affects ρ̂(r′v) by at most

Od

(
e−∥x′−Rv∥2/3R−1

)
in C2 per unit mass dµ(x). Finally approximating ρ̃(r′v) by integrating over x′

instead of x, we get an approximation ρ̃(r′v) which is simply a Gaussian density centered at R and rescaled
by a factor of Θd(R

−(d−1)) (for the fraction of Sd,R within an O(1) distance of Rv). The error from
changing x → x′ and including x at distance greater than R1/4 is at most Od(R

−d) in C2 norm. Combining
the above shows that a maximizing r is unique and satisfies |R− r| ≤ oR(1). Finally r < R simply because
any NPMLE must be supported on the strict interior of supp(µsp

d,R).
We note that at this point, µsp

d,r has been shown to be an NPMLE for µsp
d,R. The latter part of the proof

below shows it is the only NPMLE.

Spherical Symmetry of π̂ Given the preceding discussion, we know that any NPMLE π̂ is supported on
Sd,r for some unique r. Recalling (4.1), note that without the logarithm, the quantity

∫
Pπ(x) dµ(x) is

constant over all such π̂. Therefore by concavity of the logarithm, it suffices to prove that µsp
d,r is the unique

probability measure ν on Sd,r whose convolution with N (0, Id) produces a constant density when restricted
to Sd,R. We will do so by proving that it uniquely minimizes the L2 energy of the density, given by∫

ρν∗N (0,Id)(w)
2 dµsp

d,R(w). (A.1)

To establish the latter fact, we will expand and rearrange the integral in order to apply Proposition A.1.
Crucially, note that for ∥x∥ = r and ∥w∥ = R, we have e−∥x−w∥2/2 ∝ e⟨x,w⟩ with constant of proportional-
ity e−(r2+R2)/2 depending only on r,R. Using this observation, we expand (A.1) and interchange the order
of integration: ∫

ρν∗N (0,Id)(w)
2 dµsp

d,R(w) ∝
∫∫∫

e⟨x+y,w⟩ dµsp
d,R(w)dν(x)dν(y)

=

∫∫ (∫
e⟨x+y,w⟩ dµsp

d,R(w)

)
dν(x)dν(y).

(A.2)

For the inner integral, let

Cd,k = R−k

∫
wk
1 dµsp

d,R(w)

where w1 is the first coordinate of w = (w1, . . . , wd) ∈ Sd,R. Of course, Cd,2j+1 = 0 while Cd,2j ∈ (0, 1).
Then for any z ∈ Rd:∫

e⟨z,w⟩ dµsp
d,R(w) =

∑
k≥0

∫
⟨z, w⟩k

k!
dµsp

d,R(w) =
∑
k≥0

Cd,kR
k∥z∥k

k!
=
∑
j≥0

Cd,2jR
2j∥z∥2j

(2j)!
.

Recalling (A.2), we take z = x+ y and observe that ∥z∥2 = 2(r2 + ⟨x, y⟩). Combining,∫
ρν∗N (0,Id)(w)

2 dµsp
d,R(w) =

∫∫ (∑
j≥0

Cd,2j2
jR2j

(
r2 + ⟨x, y⟩

)j
(2j)!

)
dν(x)dν(y).
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Recalling that Cd,2j ∈ (0, 1) for all j, we find that the right-hand side has all coefficients strictly positive
as a power series in ⟨x, y⟩. Moreover it converges absolutely on all of R by inspection as a power series
in w = r2 + ⟨x, y⟩, and global absolute convergence is invariant under an affine change of variable. Thus
Proposition A.1 applies and concludes the proof.

B Approximate Stationarity Conditions

Here we explain how to compute an approximate stationary point (in the relevant sense) for the concave
function ℓX : P(Zε) → R in a provably efficient manner. Note that Proposition 1.4 implies |supp(π̂)| ≤
O(L2) ≪ |Zε| ≍ L/ε, i.e. π̂ is a sparse vector in P(Zε). Indeed, for us the relevant notion of approximate-
stationary point π will be that

d

ds

(
ℓX((1− s)π + sπ′)∣∣∣

s=0

is small for all π′ ∈ P(Zε). This definition is sensitive to the support of π, and in particular it is easier to
satisfy when small atoms of π are rounded down to 0. This is precisely what we do below, based on the
Frank–Wolfe conditional gradient method. To start, we set π0 = δ0 and iteratively define:

π(t+1) =
tπ(t) + 2δyt

t+ 2
,

yt = argmax
y∈Zε

Dπ(t),X(y).
(B.1)

In using this manifestation of the Frank–Wolfe algorithm, we implicitly equip P(Zε) with the Euclidean
norm on its finite sequence of probability mass values (and also negated ℓX to make it convex). In particular
the Wasserstein distance does not enter here. We also point out that [Jag13, Theorem 2], which we rely
on below to understand (B.1), applies even if yt is only an approximate maximizer of Dπ(t),X . (This could
easily be incorporated into Lemma B.1 to ensure that approximately maximal y suffice in (B.1).)

Next we modify π(t) to π̆(t); this will ensure Dπ̆(t),X(y)− 1 is close to 1 for all y ∈ supp(π̆(t)). Define
for ι > 0 the subset Rε,ι = {y ∈ Zε : pπ(t)(y) ≤ ι}. For ι ≤ ε

4L ,∑
y∈Rε,ι

pπ(t)(y) ≤ 3ιL/ε < 1/2. (B.2)

Thus we may define another probability measure

π̆(t)(y) =

0, y ∈ Rε,ι

π(t)(y)
1−

∑
y∈Rε,ι

p
π(t) (y)

, y /∈ Rε,ι.

Lemma B.1. Fix any X ∈ [−L,L]n. For ε small enough depending only on L and for t ≥ ε−8, the
probability measure π̆(t) satisfies:

Dπ̆(t),X(y)− 1 ≥ −O

(
e4L

2

ε1/2 4
√
t

)
, ∀y ∈ supp(π̆(t)),

Dπ̆(t),X(y)− 1 ≤ O

(
e4L

2

ε1/2 4
√
t

)
, ∀y ∈ Zε.
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Proof. We apply [Jag13, Theorem 2] to the algorithm (B.1). The conclusion is a bound

g(π(t)) ≤ 10 diam(P(Zε))
2Lip(∇ℓX)

t+ 2
.

where (using (1.5)) we have by definition

g(π(t)) = max
y∈Zε

(
Dπ(t),X(y)− 1

)
· (1− pπ(t)(y)). (B.3)

It is easy to see that diam(P(Zε))
2 ≤ 2. Meanwhile, ∇ℓX(π) = Dπ,X(·). Combining (1.20) and the fact

that W1(π, π
′) ≤ 2L∥π − π′∥TV , it follows that the Lipschitz constant Lip(∇ℓX) is at most O(Le4L

2
).

Altogether we find that

Dπ(t),X(y)− 1 ≤ O(Le4L
2
)

(t+ 2)(1− pπ(t)(y))
.

Additionally, (1.4) implies that

Dπ(t),X(y)− 1 ≤ 1− pπ(t)(y)

pπ(t)(y)
.

Next we combine these two estimates. It is easy to see that for small β, one has min(p−1
p , β

1−p) ≤ O(
√
β)

for all p ∈ [0, 1] by casework on the event p ≤ 1−
√
β. Hence for (say) t ≥ e6L

2
and all y ∈ Zε,

Dπ(t),X(y)− 1 ≤ max

(
O(Le4L

2
)

(t+ 2)(1− pπ(t)(y))
,
1− pπ(t)(y)

pπ(t)(y)

)
≤ O

√Le4L2

t+ 2

 . (B.4)

Next we turn to π̆(t), showing it approximately preserves the preceding upper bound for all y ∈ Zε.
Note that ∥π(t) − π̆(t)∥TV ≤ 3ιL/ε, hence W1(π

(t), π̆(t)) ≤ 6ιL2/ε. Using again (1.4) and the preceding
upper bound, we find that for y /∈ Rε,ι:

Dπ(t),X(y)− 1 ≥ −pπ(t)(y)−1 ·O

√Le4L2

t


Dπ̆(t),X(y)− 1 ≥

(
Dπ(t),X(y)− 1

)
+
(
Dπ̆(t),X(y)−Dπ(t),X(y)

) (1.20)
≥ −O

(
Le2L

2

ι
√
t

+
e4L

2
ιL2

ε

)
.

Taking ι = e−L2
t−1/4ε1/2, we obtain

Dπ̆(t),X(y)− 1 ≥ −O

(
e4L

2

ε1/2 4
√
t

)
, ∀y ∈ supp(π̆(t)),

under the condition t ≥ ε−8 for ε sufficiently small (to ensure (B.2)). Finally bounding |Dπ̆(t),X(y) −
Dπ(t),X(y)| in the same way, (B.4) becomes

Dπ̆(t),X(y)− 1 ≤ O

(
e4L

2

ε1/2 4
√
t

)
, ∀y ∈ Zε.
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We can now show an approximate version of Lemma 3.5.

Lemma B.2. For ε small enough depending on L there exists an algorithm with complexity O(Lnε−11)
which returns π̆ε ∈ P(Zε) obeying for δ = CL2e4L

2
ε2:

(a) Dπ̆ε,X(y) ≥ 1− δ for all y ∈ supp(π̆ε).

(b) max
y∈R

Dπ̆ε,X(y) ≤ 1 + δ.

(c) ℓX(π̂)− ℓX(π̆ε) ≤ δ.

Proof. Note that each Frank–Wolfe iteration (B.1) requires O(Ln/ε) operations to find the maximal y ∈ Zε.
Taking π̆ε = π̆(t) as defined in Lemma B.1, the first two parts follow by setting t = ε−10, except that the
upper bound must hold for all y ∈ R instead of just y ∈ Zε. The extension to [−L,L] follows immediately
via (1.19) (and after e.g. doubling δ), and this suffices by Lemma 1.20. The last assertion follows by (B.3)
since 1− pπ(t)(y) ≤ 1, since g(π(t)) is a certified (dual) upper bound on the suboptimality of π(t).

Below we let π̆ε be the approximation to π̂ guaranteed by Lemma B.2. We first show that Proposition 3.6
extends to this setting, with π̆ε in place of π̂ε . Recall the definitions of AX , BX in and just below (3.4).

Proposition B.3. For ε small enough, we have:

d(y, supp(π̆ε)) ≤ aX/2 =⇒ D′′
π̆ε,X(y) ≤ −AX/2;

d(y, supp(π̆ε)) ≥ aX/2 =⇒ Dπ̆ε,X(y) ≤ 1− BX

2
.

Proof. Using Lemma B.2(c), the proof of Proposition 1.8 implies limε→0W1(π̂, π̆ε) = 0 uniformly in the
choice of Zε. The rest is identical to Proposition 3.6.

Proposition B.4. For ε sufficiently small depending on X , any pair of points in supp(π̆ε) within distance
aX/5 are within distance O(

√
δ/AX).

Proof. By Proposition B.3, D′′
π̆ε,X

is negative on the interval between any two such points (for small enough
ε). Lemma B.2 and simple calculus completes the proof.

For ε small enough that
√
δ/AX ≪ aX , Proposition B.4 implies that the graph of atoms in π̆ε under

the distance-at-most-aX/5 graph is a union of cliques. We form π̊ε by taking the weighted average of each
such clique, i.e. replacing piδxi , . . . , pjδxj by p̃iδx̃i

for

p̃i = pi + · · ·+ pj , x̃i =
pixi + · · ·+ pjxj
xi + · · ·+ xj

.

It again follows from Proposition B.4 and the Wasserstein convergence π̆ε → π̂ that |supp(̊πε)| = |supp(π̂)|
for ε small enough, and that

lim
ε→0

dH
(
supp(̊πε), supp(π̂)

)
= 0.

Proposition B.5. For ε ≤ ε0(X), the conditions of Proposition 3.1 apply to π̊ε with:

δ̃ = O(L2e4L
2
δ/AX) = O(ε2L4e8L

2
/AX),

c1 =
4
√
CLδ,

c2 = AX

√
δ,

η = 2c1,

λε ≜ λ(̊πε) = λ(π̂)± oε(1).
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In particular, the estimator π̊ε obeys certifiable bounds of the form W1(π̂, π̊ε) ≤ OX(ε1/4) as well as
|supp(π̂)| ≥ |supp(̊πε)|.

Proof. The bound on δ for π̆ε is given in Lemma B.2. To extend it to π̊ε, the analogous argument in
Proposition 3.9 reduces to showing that for |xi − xi+1| ≤ O(

√
δ/AX),∣∣∣∣( pj

pi + · · ·+ pj

)
e−|xi−y|2/2 + · · ·+

(
pj

pi + · · ·+ pj

)
e−|xj−y|2/2 − e−|x̃i−y|2/2

∣∣∣∣ ?
≤ O(δ/AX).

Taylor’s theorem applied to f(x) = e−|x|2/2 easily again gives the bound.
Continuing, we claim that whenever 2ε ≤ c1 ≤ aX

2 , we may take

c2 = AX · (c1 − ε)2 −O(
√
δ)

4
.

in Proposition 3.1. Indeed, if
d(y, supp(̊πε)) ≥ c1,

then d(y, y̆) ≥ c1 − ε for some y̆ ∈ supp(π̆ε), so in particular Dπ̆ε,X(y̆) ≥ 1 − δ by Lemma B.2. As
an intermediate step, we upper bound |D′

π̆ε,X
(y̆)| using Lemma B.2(b) and bound (1.19) with j = 2. In

particular, optimizing over y ∈ R in the first line to obtain the inequality (†), we find

Dπ̆ε,X(y) ≥ Dπ̆ε,X(y̆) +D′
π̆ε,X(y̆)(y − y̆)− C2L

2e4L
2
(y − y̆)2, ∀y ∈ R

=⇒ max
z∈R

Dπ̆ε,X(y̆) + 2δ
Lem. B.2

≥ Dπ̆ε,X(z)
(†)
≥ Dπ̆ε,X(y̆) + Ω

(
|D′

π̆ε,X
(y̆)|2

L2e4L2

)
=⇒ |D′

π̆ε,X(y̆)| ≤ O(Le2L
2√

δ).

Using Proposition B.3 we now obtain (3.7):

Dπ̊ε,X(y) ≤ Dπ̆ε,X(y̆) +O
(
LeL

2√
δ|y − y̆|

)
− AX(c1 − ε)2

4

≤ 1−
(
AX(c1 − ε)2

4
−O

(
LeL

2
aX

√
δ
))

= 1− c2.

In particular for ε small enough compared to AX and C an absolute constant, we can set

c1 =
4
√
CLδ, c2 = AX

√
δ =⇒ η = c1 +

Lδ̃

c2
≤ 2

4
√
CLδ.

Further, Proposition 3.2 ensures that (3.2) holds for ε small enough, since the value λ(̊πε) is easily seen to
converge to that of π̂. We conclude that Proposition 3.1 suffices to certify bounds of the form W1(π̂, π̊ε) ≤
OX(ε1/4). Finally, this implies |supp(π̂)| ≥ |supp(̊πε)|, again for ε small enough depending on X (and in
particular π̂).

Proposition B.6. For ε small enough, Proposition 3.4 certifies |supp(π̂)| ≤ |supp(̊πε)|.

Proof. Follows exactly as in the Proof of Theorem 1.9.

Proof of Theorem 1.10, except for the Shub–Smale property. The result follows by Propositions B.5, B.6,
and 3.3. See Appendix D for the Shub–Smale property.
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B.1 Finite S Case

Here we prove Theorem 1.15, except for the Shub–Smale property which is addressed in Appendix D. We
use exactly the same version of Frank–Wolfe as above, but restricted to S rather than Zε. Thus we take

π
(t+1)
S =

tπ
(t)
S + 2δyt
t+ 2

,

yt = argmax
y∈S

D
π
(t)
S ,X

(y).

Define for ι > 0 the subset RS,ε,ι = {y ∈ S : pπ(t)(y) ≤ ι}. For ι ≤ ε
4L ,∑

y∈RS,ε,ι

p
π
(t)
S

(y) ≤ 3ιL/ε < 1/2.

Thus we may define another probability measure

π̆
(t)
S (y) =

0, y ∈ RS,ε,ι

π
(t)
S (y)

1−
∑

y∈RS,ε,ι
p
π
(t)
S

(y) , y /∈ RS,ε,ι.

The proof of Lemma B.1 extends unchanged to give the following. Fix any X ∈ [−L,L]n and S ⊆ R
finite. For ε small enough depending only on L and for t ≥ ε−8, the probability measure π̆S,ε = π̆(t)

satisfies:

Dπ̆S,ε,X(y)− 1 ≥ −O

(
e4L

2

ε1/2 4
√
t

)
≥ −C(L)ε3/2, ∀y ∈ supp(π̆

(t)
S ),

Dπ̆S,ε,X(y)− 1 ≤ O

(
e4L

2

ε1/2 4
√
t

)
≤ C(L)ε3/2, ∀y ∈ S,

ℓX(π̂S)− ℓX(π̆S,ε) ≤ C(L)ε2.

Proof of Theorem 1.15, except for the Shub–Smale property. Similarly to the main case, let

BS,X = 1− max
y∈S\supp(π̂S)

Dπ̂S ,X(y) > 0.

Since π̂S is unique, we have π̆S,ε → π̂S in Wasserstein as ε → 0, which implies that for ε small enough we
have Dπ̆S,ε,X(y) ≤ 1− BS,X

2 for all y ∈ S\supp(π̂S).
The remaining proof is similar to before, and we just give an outline. The initial steps follow the proof

of Proposition 3.1. First one can certify that π̂ has at most ε mass outside supp(π̆S,ε), using the bound on
∥ℓ′′∥∞ for ℓ(t) = ℓX((1− t)π̆S,ε + tπ̂S). This is because

ℓ′(0) = Ey∼π̂S [Dπ̆S,ε,X(y)].

Again (3.1) holds for some positive λ = λ(S,X) (with S and π̂S in place of Zε and π̃ε) by uniqueness of
π̂S . Then (3.1) will hold with constant λ/2 for π̆S,ε with small enough ε. This allows to certify that all
approximate local maxima of ℓX supported on supp(π̆S,ε) are within O(λ) of π̆S,ε (using now the fact that ℓ
has 3 bounded derivatives). Since we could also certify above that π̂ has at most ε mass outside supp(π̆S,ε),
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these certificates thus combine to certify that W1(π̂S , π̆S,ε) ≤ C(S,X)ε almost surely for small enough ε
(again similarly to Proposition 3.1).

Since for small ε we will have Dπ̆S,ε,X(y) ≤ 1 − BS,X

2 for all y ∈ S\supp(π̂S), applying (1.20) to the
Wasserstein bound certifies that

Dπ̂S ,X(y) ≤ 1−
BS,X

4
, ∀y ∈ S\supp(π̂S).

In particular, this certifies that supp(π̂S) ⊆ supp(π̆S,ε). The opposite inclusion is easily certified from
W1(π̂S , π̆S,ε) ≤ C(S,X)ε once ε is small compared to p∗d∗, where p∗ is the smallest atom size in π̂S and
d∗ is the minimum distance between points in S. Finally, a W1 bound immediately gives a dΠk(S) bound as
well.

C Positive Probability to be k-Atomic

We show that for any n ≥ k ≥ 1, there is a positive probability to have π̂ ∈ Πk with L ≤ O(k
√
log k),

as mentioned in Remark 1.6. Thus shows that conditioning simultaneously on the events π̂ ∈ Πk and
maxi,j(xi − xj) ≤ cn1/4 is possible, for n polynomially large in k.

We partition [n] into k parts S1, . . . , Sk of sizes ⌊n/k⌋ or ⌈n/k⌉. We fix a large absolute constant C,
and set x̃i = Ci

√
log(k + 1) for each 1 ≤ i ≤ k. Let us suppose that |xa − x̃i| ≤ 0.1 holds for all

a ∈ Si. This is a positive probability event, where roughly speaking the datapoints are clustered into groups
of approximately equal size. We will show that this implies |supp(π̂)| = k. Precisely, π̂ has exactly 1 atom
close to each x̃i, and no other atoms.

Lemma C.1. For each i ∈ [k], supp(π̂) ⊆
⋃

i[x̃i − 0.2, x̃i + 0.2].

Proof. Recall that the function e−y2/2 is convex outside of [−1, 1]. First, suppose π̂ has an atom pδy with
mini |y − x̃i| ≥ 2. Then we may replace pδy by pδy+0.5+pδy−0.5

2 , and this will increase the value of Pπ(xa)
for each a ∈ [n]. This contradicts optimality of π̂ in (1.2).

Next, suppose π̂ has an atom pδy with mini |y − x̃i| ∈ [0.2, 2]. Without loss of generality, suppose
y − x̃i ∈ [0.2, 2]. Then we can replace pδy in π̂ by

p(1− c)δy+1 + pcδy−0.1.

For c a small enough absolute constant, this will increase Pπ(xa) for all a ∈ Si. Then choosing C sufficiently
large ensures Pπ(xa) increases for all other a /∈ Si as well.

Lemma C.2. For each i ∈ [k], π̂([x̃i − 0.2, x̃i + 0.2]) ≥ 1
20k .

Proof. We claim that if π̂ violates this condition for some i, then Dπ̂,X(x̃i) > 1, which contradicts Proposi-
tion 1.1. Indeed in this case, Lemma C.1 implies the set π̂([x̃i−6

√
log(k + 1), x̃i+6

√
log(k + 1)]) ≤ 1

20k .
Then it easily follows that Pπ̂(xa) ≤ 1

10k for each a ∈ Si. We conclude that:

Dπ̂,X(x̃i) ≥
10k|Si|

n
min

x∈[x̃i−0.1,x̃i+0.1]
e−|x−x̃i|2/2/

√
2π ≥ 5e−0.005/

√
2π > 1.

This is the desired contradiction.

Lemma C.3. For each i ∈ [k], |supp(π̂) ∩ [x̃i − 0.2, x̃i + 0.2]| = 1. Thus |supp(π̂)| = k.
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Proof. We use the previous lemmas to show Dπ̂,X is concave on each interval [x̃i − 0.2, x̃i + 0.2]. Fixing
i, we decompose

Dπ̂,X(y)n
√
2π =

k∑
j=1

∑
a∈Sj

e−|xa−y|2/2/Pπ̂(xa) ≜
k∑

j=1

Dj(y).

We first study Di(y). Trivially, Pπ̂(xa)
√
2π ≤ 1 for all a ∈ [n]. Furthermore, the function f(y) = e−y2/2

satisfies f ′′(y) ≤ 1/100 on |y| ≤ 0.2. Therefore one easily finds

D′′
i (y) ≤ −|Si|

100
≤ − n

200k
, ∀y ∈ [x̃i − 0.2, x̃i + 0.2].

Next we study D′′
j (y) for j ̸= i. Here, Proposition C.2 implies that Pπ̂(xa) ≥ 1

100k for all a ∈ [n].
Therefore for all y ∈ [x̃i − 0.2, x̃i + 0.2]:

D′′
j (y) ≥ −100k|Sj |e−C2 log(k+1)/2 ≥ − Sj

100(k + 1)10
≥ − n

10(k + 1)8
.

Summing over j ̸= i, it is clear that D′′
i (y) dominates, so D′′

π̂(y) < 0 for all y ∈ [x̃i − 0.2, x̃i + 0.2]. By
Proposition 1.1, π̂ is supported within the set of global maxima of Dπ̂, which completes the proof.

Combining the lemmas above immediately yields the claimed result.

C.1 Example of Non-Generic Behavior

Here we prove Theorem 1.7. With n = mk, we restrict to the positive probability event that X satisfies the
conditions of Lemmas C.1, C.2, C.3, i.e. |xa − x̃i| ≤ 0.1 for all a ∈ Si. For convenience, we say such X is
k-good; this condition implies π̂ ∈ Πk. We claim that conditioned on (xm+1, . . . , xn), the conditional law
of π̂ does not admit a density on Πk. The proof is motivated by Remark 2.5. The main remaining step is
the smooth dependence of π̂ on (x1, . . . , xk). To show it, we rely on the following standard version of the
implicit function theorem.

Lemma C.4. Let U, V ⊆ Rd be open sets and F : U × V → Rd a smooth function. Let u∗ ∈ U and
v∗ ∈ V be such that ∂vF (u∗, v∗) ∈ Rd×d is invertible. Then on a neighborhood U0 ⊆ U of u∗, there exists
a smooth function v : U0 → V such that

F (u, v(u)) = F (u∗, v∗)

holds for all u ∈ U0.

The following lemma shows that Theorem 1.2 parts (II) and (III) imply Theorem 1.3(B). Theorem 1.3(A)
also follows from the proof, as the Hessian of ℓX is the Jacobian of γk within, which is shown to be strictly
negative definite.

Lemma C.5. Suppose π̂ is the NPMLE for X and satisfies the conclusions of Theorem 1.2 parts (II) and
(III). Then for X̃ in a sufficiently small neighborhood of X , the function X̃ 7→ π̂(X̃)) has image in Πk, and
is smooth. Here we consider Πk to be an open subset of a 2k − 1 dimensional real vector space.

Proof. It is clear that π̂(X̃) ∈ Πk for X̃ close to X . We will apply Lemma C.4 with d = 2k. We consider
the Jacobian of the map

π =
k∑

i=1

piδyi 7→ γk(π) =
(
Dπ(y1)− 1, . . . , Dπ(yk)− 1, D′

π(y1), . . . , D
′
π(yk)

)
∈ R2k.
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Here we temporarily relax the constraint
∑k

i=1 pi = 1 so the Jacobian is a 2k × 2k matrix J2k. We show
below that this Jacobian is invertible. Then Lemma C.4 applied to γk(π, X̃) implies existence of a smooth
function π(X̃) such that γk(π(X̃), X̃) = 0⃗ in a neighborhood of (π̂, X). Further, any such solution satisfies∑k

i=1 piDπ(yi) =
∑k

i=1 pi = 1, so π(X̃) is always a probability measure (despite the relaxation to 2k
dimensions in applying the inverse function theorem).

We turn to invertibility of the Jacobian. The entries of −J2k are, for 1 ≤ i, j ≤ k:

−dDπ(yj)

dpi
=

1

n

n∑
ℓ=1

exp
(
− (xℓ−yj)

2+(xℓ−yi)
2

2

)
Pπ(xℓ)2

;

−dD′
π(yj)

dpi
=

1

n

n∑
ℓ=1

(xℓ − yj) exp
(
− (xℓ−yj)

2+(xℓ−yi)
2

2

)
Pπ(xℓ)2

;

−dDπ(yj)

dyi
=

1

n

n∑
ℓ=1

(xℓ − yi) exp
(
− (xℓ−yj)

2+(xℓ−yi)
2

2

)
Pπ(xℓ)2

− 1

n

n∑
ℓ=1

1i=j(xℓ − yi) exp
(
− (xℓ−yi)

2

2

)
Pπ(xℓ)︸ ︷︷ ︸

=D′
π(yi)=0

;

−dD′
π(yj)

dyi
=

1

n

n∑
ℓ=1

(xℓ − yi)(xℓ − yj) exp
(
− (xℓ−yj)

2+(xℓ−yi)
2

2

)
Pπ(xℓ)2

− 1

n

n∑
ℓ=1

1i=j

(
(xℓ − yi)

2 − 1
)
exp

(
− (xℓ−yi)

2

2

)
Pπ(xℓ)︸ ︷︷ ︸

=D′′
π(yi)<0

.

Note the 1i=j terms come because if i = j, we vary the input to Dπ.
We will show −J2k is strictly positive definite, hence invertible. We first show the k× k submatrix −Jk

formed by the dDπ(yj)
dpi

terms above is strictly positive definite. Indeed, we see from the above that

dDπ(yj)

dpi
= AiAj

n∑
ℓ=1

Cℓe
xℓ(yi+yj)

for strictly positive constants Ai and Cℓ. Thus −Jk is positive semi-definite, represented as a positive
combination of rank 1 matrices (v⃗(ℓ))⊗2 for v⃗(ℓ)i = exℓyi . We claim −Jk is strictly positive-definite. In-
deed, Lemma 2.6 shows the vectors v⃗(1), . . . , v⃗(n) are linearly independent, i.e. that if the real coefficients
B1, . . . , Bk satisfy

G(x) ≜
k∑

j=1

Bje
xyj = 0 ∀x ∈ {x1, . . . , xn}

then B1 = · · · = Bk = 0.
Next, using the simplifications indicated by identifying values of D′

π and D′′
π above, we see that −J2k

is positive semi-definite via another explicit representation as a sum of n rank 1 matrices, together with the
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diagonal terms from D′′
π appearing in the formula for dD′

π(yj)
dyi

. Since all of these diagonal terms are non-
zero, it easily follows that all of −J2k is strictly positive definite. Indeed, we can write −J2k = M + M ′

where M ′ includes only the diagonal D′′
π terms. Then if ⟨v, (M +M ′)v⟩ = 0 for some v ∈ R2k, we see that

v cannot have any non-zero entry interacting with M ′ since M is already positive semi-definite. But then
we are reduced to the strict positive definiteness of −Jk shown above!

Lemma C.6. Suppose π̂ is the NPMLE for X and satisfies min
y∈supp(π̂)

D′′
π̂,X(y) < 0. Suppose further

that x1 = · · · = xm. For ε > 0 and Z = (z1, . . . , zm) ∈ [0, 1]m, let π̂Z = π̂(x1 + εz1, . . . , xm +
εzm, xm+1, . . . , xn). For ε sufficiently small, π̂Z lies in Πk and has a Taylor expansion of the form:

π̂Z = π̂ + εf1(P1(Z)) + ε2f2(P1(Z), P2(Z)) + · · ·+ εmfk(P1(Z), . . . , Pm(Z)) +O(εm+1)

where Pj(Z) =
∑m

i=1 z
j
i is a power sum symmetric polynomial and each function fi is Lipschitz. Here we

consider Πk to be an open subset of a 2k − 1 dimensional real vector space.

Proof. Lemma C.5 implies that π̂Z ∈ Πk depends smoothly on Z. Its k-th Taylor coefficient is a degree
k polynomial in Z. Since x1 = · · · = xm, it must be symmetric in (z1, . . . , zm), hence is a polynomial
in (P1(Z), . . . , Pk(Z)) (see e.g. [SF99, Chapter 7]). This easily gives the form of the Taylor expansion
above.

Proof of Theorem 1.7. We begin with (X, π̂) as in Lemma C.6 such that π̂ has k atoms. This can be arranged
by taking x1 = · · · = xm to be fixed and the remaining data generic. Then Section C shows |supp(π̂)| = k
with positive probability, while since n − m > (2k + 2)2, Theorem 1.2 implies the remaining hypothesis
holds almost surely.

Next, take ε > 0 small and consider the set of achievable π̂Z as above. Lemma C.6 implies this set of
π̂Z is contained in the O(ε2k) neighborhood of the image of [0, ε]× [0, ε2]×· · ·× [0, ε2k−1] under an O(1)-
Lipschitz function (i.e. with Lipschitz constant independent of ε). This is because the Taylor expansion
above is O(εj)-Lipschitz in pj(Z), which is bounded by a constant that does not depend on ε (thus rescaling
gives the claim).

This set of possible π̂Z can be covered by at most O(ε−k(2k−1)) balls of radius ε2k−1, hence has volume
O(ε(2k−1)2−k(2k−1)) = O(ε(k−1)(2k−1)). On the other hand, the volume of the corresponding set of inputs
(x1 + εz1, . . . , xm + εzm) is εm. Hence in order for π̂ to have locally bounded density, we must have
m ≤ (k − 1)(2k − 1). This completes the proof.

D Asymptotic Convergence From Approximate Solutions

Here we explain the rapid asymptotic convergence of Newton–Raphson and Expectation-Maximization
starting from a good approximate solution.

D.1 Approximate Shub–Smale Solutions

Given our existing work in proving Theorem 1.9, the Shub–Smale approximate solution property follows
from standard results in numerical analysis. The notation in the following result is adapted to our setting.

Proposition D.1 ([SB13, Theorem 5.3.2]). Let Br(π) ⊆ Πk be the r-neighborhood of π ∈ Πk ≃ R2k−1.
Let B̄r(π) be the closure of Br(π) in R2k−1 and assume B̄r(π) ⊆ Πk (i.e. the distance from π to the
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boundary ∂Πk is larger than r). Let F : B̄r(π) → R2k−1 be a smooth function. Suppose the positive
constants r, α, β, C satisfy:

h ≜ αβC < 1;

r =
α

1− h
.

Suppose ℓX and its gradient and Hessian (in the space Πk) satisfies:

1. ∇2ℓX is C-Lipschitz on Br(π).

2. ∇2ℓX ⪯ −I2k−1/β uniformly on Br(π).

3. ∥[∇2ℓX(π)]−1∇ℓX(π)∥ ≤ α.

Then Newton–Raphson iteration starting from π0 = π converges to a limit π∞ ∈ Πk such that for each
t ≥ 0:

dΠk
(πt, π∞) ≤ α

h2
t−1

1− h2t
. (D.1)

Proof of Shub–Smale property in Theorems 1.9 and 1.10. We show π̊ε is a Shub–Smale approximate NPMLE
for small enough ε (the proof for the adjacent-atom rounding of π̂ε is identical). From the proof of the pre-
vious parts of Theorem 1.9, we know that dΠk

(̊πε, π̂) ≤ ε1/4 for small enough ε. We have shown via
Lemma C.5 that Theorem 1.3(A) holds, so ℓX is c-strongly concave in an open Πk-neighborhood of π̂,
for some c > 0. Additionally, this Hessian is clearly C-Lipschitz for some C = C(L) thanks to e.g.
Lemma 1.18. This means local c/2-strong concavity of ℓX is certifiable in a Πk-neighborhood of π̊ε which
certifiably contains π̂, for ε small enough.

We will apply Proposition D.1 to such π = π̊ε and conclude the desired result. Indeed we can take
C = C(L) as mentioned just above, and β = 2/c. Neither depends on ε, and so we can take α ≤ ε1/5

for small enough ε. Then h ≤ 1/10 < 1 and r ≤ 2α ≤ 2ε1/5 is smaller than the Πk-distance from π̊ε to
∂Πk, for small ε. Then (D.1) implies quadratic convergence to a limit π∞ ∈ Πk with ∇ℓX(π∞) = 0⃗ and
dΠk

(π0, π∞) ≤ 2α. From the local strong concavity, it follows that π∞ = π̂. The precise quantitative rate
in Definition 1 holds because h ≤ 1/10. This concludes the proof.

D.2 Static Support Case

Here we explain Theorems 1.14 and 1.15, which are the static support analogs of Theorems 1.3 and 1.9,
1.10.

Proof of Theorem 1.14. Here the Hessian of ℓX is just the submatrix Jk from the proof of Lemma C.5,
which is strictly negative definite for all 1 ≤ k ≤ n (with no genericity conditions on D). This implies both
results.

Proof of Shub–Smale property in Theorem 1.15. Given the local strong concavity around π̂S from Theo-
rem 1.14, the proof is identical to the corresponding parts of Theorems 1.9 and 1.10.
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D.3 Locally Linear Convergence of Expectation–Maximization

The Expectation–Maximization (EM) algorithm of [DLR77] is another approach to optimize ℓX . Here one
defines a sequence of iterates π0, π1, · · · ∈ Πk as follows. Given an iterate πt =

∑k
i=1 piδyi , the next iterate

πt+1 has parameters:

p̃i =
pi
n

n∑
j=1

e−(xj−yi)
2/2∑k

ℓ=1 pℓe
−(xj−yℓ)2/2.

, (D.2)

ỹi =

∑n
j=1

xje
−(xj−yi)

2/2∑k
ℓ=1 pℓe

−(xj−yℓ)
2/2∑n

j=1
e−(xj−yi)

2/2∑k
ℓ=1 pℓe

−(xj−yℓ)
2/2

= yi +

∑n
j=1

(xj−yi)e
−(xj−yi)

2/2∑k
ℓ=1 pℓe

−(xj−yℓ)
2/2∑n

j=1
e−(xj−yi)

2/2∑k
ℓ=1 pℓe

−(xj−yℓ)
2/2

= yi +
D′(yi)

D(yi)
. (D.3)

This iteration improves the value of ℓX in each step; however it is not guaranteed to converge to a global
optimum of ℓX even within the space Πk. On the other hand, one can verify using (1.6) that the NPMLE π̂
is a fixed point of the iteration.

Proof of Theorem 1.3(C). Let F (π) = π̃ correspond to the iteration from (D.2), (D.3). Identifying Πk

with an open subset of R2k (i.e. not enforcing the constraint
∑k

i=1 pi = 1), we will show that JF (π̂) is
strictly stable, with all eigenvalues in (−1, 1). This immediately implies the same property on the 2k − 1
dimensional space Πk (since the output of (D.2) immediately satisfies

∑
i pi = 1). It is well-known that this

stability implies locally linear convergence rate for the EM algorithm; see e.g. [DLR77, MR94].
We first explicitly compute the Jacobian JF (π̂) at π̂:

∂p̃i
∂pr

= 1i=r −
pi
n

n∑
j=1

e−(xj−yi)
2/2−(xj−yr)2/2(∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

)2 ;
∂p̃i
∂yr

=
pi
n

n∑
j=1

(xj − yr)e
−(xj−yr)2/2∑k

ℓ=1 pℓe
−(xj−yℓ)2/2︸ ︷︷ ︸

=D′(yr)=0

−pi
n

n∑
j=1

pr(xj − yr)e
−(xj−yr)2/2−(xj−yi)

2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 ;

∂ỹi
∂pr

= − 1

n

n∑
j=1

(xj − yi)e
−(xj−yr)2/2−(xj−yi)

2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 ,

∂ỹi
∂yr

= 1i=r · (1 +D′′(yi))−
1

n

n∑
j=1

pr(xj − yr)(xj − yi)(e
−(xj−yr)2/2−(xj−yi)

2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 .

Here the factors of 1/n in the latter two lines come from D(yi) = 1 for all i. We note that another term
which equals 0 for π̂ was omitted from the formula for ∂ỹi

∂pr
, again because D′(yr) = 0 holds at π̂.

The terms 1i=r cancel I2k. Removing the first term in ∂p̃i
∂yr

as indicated above, we may write:

I2k − JF + diag(0, . . . , 0, D′′(y1), . . . , D
′′(yk))

=

[
pi/n pipr/n
1/n pr/n

]
⊙

n∑
j=1

( k∑
ℓ=1

pℓe
−(xj−yℓ)

2/2
)−2

[
e−(xj−yi)

2/2

(xj − yi)e
−(xj−yi)

2/2

]⊗2

.

Here the former matrix is 2k × 2k, with (i, r) entry equal to pi/n, (i, k + r) entry equal to pipr
n , etc. The

latter column vector has length 2k (and depends on j). The first k entries are given by pi
n e

−(xj−yi)
2/2 for
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1 ≤ i ≤ k, and the next k entries are given by pi(xj − yi)e
−(xj−yi)

2/2 for 1 ≤ i ≤ k. Note that the matrix[
pi/n pipr/n
1/n pr/n

]
is similar to

[
pi/n

√
pipr
n√

pipr
n pr/n

]
via conjugation by M = diag(

√
p1, . . . ,

√
pk, 1, . . . , 1); in

particular their eigenvalues are equivalent. This conjugation extends to the preceding display, and shows

I2k − JF + diag(0, . . . , 0, D′′(y1), . . . , D
′′(yk)) ≜ I2k − JF + D

is similar to the positive semi-definite matrix M−1(I2k − JF + D)M given explicitly by:

n∑
j=1

( k∑
ℓ=1

pℓe
−(xj−yℓ)

2/2
)−2

 √
pi
n e

−(xj−yi)
2/2√

pi
n (xj − yi)e

−(xj−yi)
2/2

⊗2

. (D.4)

We claim that M−1(I2k −JF )M is strictly positive semi-definite. Since D′′(yi) < 0 for each i, it suffices to
verify that the upper-left k × k block of (D.4) is strictly positive-definite. This amounts to proving that the
n vectors (e−(xj−yj)

2/2)ki=1 (for 1 ≤ j ≤ n) are linearly independent. As usual, this is equivalent to linear
independence of the vectors (exjyi)ki=1 which holds for any k ≤ n by Lemma 2.6.

Next we need to show all eigenvalues of JF are larger than −1, or equivalently that all eigenvalues
of M−1(I2k − JF )M are strictly smaller than 2. For each j, we upper-bound the rank 1 term in (D.4)
by replacing (pi, pr) entries of the form Ai,r,jAr,i,j by diagonal entries A2

i,r,j and A2
r,i,j in the (pi, pi) and

(pr, pr) positions respectively, which always gives an upper bound in the positive semi-definite order. In
particular, the (pi, pr) and (pr, pi) diagonal entries

√
pipr
n · e−(xj−yi)

2/2−(xj−yr)2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2

can be upper-bounded via replacement by the respective (pi, pi) and (pr, pr) entries:

pr
n · e−(xj−yi)

2/2−(xj−yr)2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 ,

pi
n · e−(xj−yi)

2/2−(xj−yr)2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 . (D.5)

(Note that the pi factor appears in the (pr, pr) position, and vice-versa.) Similarly the (pi, yr) and (yr, pi)
entries √

pipr
n · (xj − yr)e

−(xj−yi)
2/2−(xj−yr)2/2(∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

)2
can be upper-bounded by the respective (pi, pi) and (yr, yr) entries

pr
n · e−(xj−yi)

2/2−(xj−yr)2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 ,

pi
n · (xj − yr)

2e−(xj−yi)
2/2−(xj−yr)2/2(∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

)2 ,

and the (yi, yr) and (yr, yi) entries
√
pipr
n · (xj − yi)(xj − yr)e

−(xj−yi)
2/2−(xj−yr)2/2(∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

)2
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can be upper-bounded by the respective (yi, yi) and (yr, yr) entries

pr
n · e−(xj−yi)

2/2−(xj−yr)2/2(∑k
ℓ=1 pℓe

−(xj−yℓ)2/2
)2 ,

pi
n · (xj − yr)

2e−(xj−yi)
2/2−(xj−yr)2/2(∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

)2 .

After making all of these substitutions, the resulting diagonal matrix has (pi, pi) and (yi, yi) entries:

2e−(xj−yi)
2/2

n
∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

,
2(xj − yi)

2e−(xj−yi)
2/2

n
∑k

ℓ=1 pℓe
−(xj−yℓ)2/2

.

Summing over j, the resulting matrix has (pi, pi) entry 2D(xj) = 2 and (yi, yi) entry 2 + 2D′′(yi). Since
this matrix is an upper bound for M−1(I2k −JF +D)M in the positive semidefinite order, we conclude that

M−1(I2k − JF )M ⪯ diag(2, . . . , 2, 2 +D′′(y1), . . . , 2 +D′′(yk)). (D.6)

This shows the desired inequality, again except for strictness in the (p1, . . . , pk) subspace. Note that for
v = (v1, . . . , v2k) ̸= 0⃗ to satisfy

⟨M−1(I2k − JF )M, v⊗2⟩ =
〈
diag

(
2, . . . , 2, 2 +D′′(y1), . . . , 2 +D′′(yk)

)
, v⊗2

〉
,

we must have vk+1 = · · · = v2k = 0, since D′′(yi) < 0 for each i. However then the contributions from
(pi, yr) entries to the left-hand expression are zero. Hence for such v the only contribution comes from
(D.5) so we actually have

⟨M−1(I2k − JF )M, v⊗2⟩ ≤ ∥v∥2.

Combining, we see that (D.6) is strict, i.e. the difference is strictly positive definite. This completes the
proof.
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