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Abstract

We study the nonparametric maximum likelihood estimator 7 for Gaussian location mixtures in one
dimension. It has been known since [Lin83a] that given an n-point dataset, this estimator always returns a
mixture with at most n components, and more recently [PW20] gave a sharp O(log n) bound for subgaus-
sian data. In this work we study computational aspects of 7. We provide an algorithm which for small
enough £ > 0 computes an e-approximation of 7 in Wasserstein distance in time K +Cnk? log log(1/¢).
Here K is data-dependent but independent of ¢, while C' is an absolute constant and k& = |supp(7)| < n
is the number of atoms in 7. We also certifiably compute the exact value of |supp(7)| in finite time.
These guarantees hold almost surely whenever the dataset (1, ..., z,) € [—cn!/4, en!/] consists of
independent points from a probability distribution with a density (relative to Lebesgue measure). We
also show the distribution of 7 conditioned to be k-atomic admits a density on the associated 2k — 1
dimensional parameter space for all k& < y/n/3, and almost sure locally linear convergence of the EM
algorithm. One key tool is a classical Fourier analytic estimate for non-degenerate curves.

1 Introduction

The nonparametric maximum likelihood estimator (NPMLE) has a long history in statistical problems in-
cluding density estimation, regression, and mixture models (see [GW 12]). This article concerns the NPMLE
for the 1-dimensional Gaussian location model, which has been studied since 1950s, cf. [KW56, Rob50]. To
introduce this problem, for any probability distribution 7 on R we denote P, = 7 x N/(0, 1) the probability
density function of its convolution with a standard Gaussian density:

Pr(z) = BV lel7=v/2 /27 (1.1)

Given a finite sequence X = (z1,...,2z,) € R”, the NPMLE 7 € P(R) is a probability measure on R
chosen so that P; = 7 * N'(0, 1) maximizes the log-likelihood

s 15
lx(m) = - Zlog Pr(;) . (1.2)
i=1

Despite the fact that 7 is defined as a solution of an infinite-dimensional optimization problem, both the
problem and its solution are surprisingly well-behaved. First, the maximizer 7 exists and is unique [LLR93].
Second, despite being defined as an optimum over all possible probability measures, 7 is discrete, so that the
P becomes a finite mixture. Furthermore, even though this estimator lacks any explicit regularization, it
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nevertheless enjoys spectacular statistical convergence properties, for example achieving best known density
estimation rates [JZ09, SG20].

The NPMLE is tractable to study in part because of its nature as an overparametrized convex relaxation.
Indeed, while it is well known that the landscape of the maximization objective (1.2) if restricted to k-atomic
distributions 7 is non-concave and has spurious local maxima [JZB"16], over the space of all measures
P(R) the problem is concave, and thus can be characterized by local optimality conditions.

Practical solvers for maximizing (1.2) started with [Lai78] proposing a variant of the then-recently
discovered EM algorithm. Due to its very slow convergence, a number of other algorithms were proposed
over the years mostly differing in how new locations (atoms) are added at each iteration, see e.g. [Der86,
Boh86, LK92, BSL92] and [Lin83b, Chapter 6] for a detailed survey. However, a decade ago [KM14]
discovered that due to the progress in convex optimization, the (empirically) fastest and most accurate way
to maximize (1.2) is to fix the support of 7 to be a fine equi-spaced grid €Z (truncated at the range of
the samples X)) and maximize the concave function £x () of the weights of 7 via off-the-shelf software.
This is the strategy implemented in the popular package REBayes [KG17]. More recent methods based on
general-purpose convex programming have also been proposed [KCSA20, WIM25].

The ubiquity and empirical success of these approximate algorithms for finding 7 raises natural ques-
tions. If the grid-based NPMLE convex optimization algorithm hits its stopping criterion and returns a
3-atomic solution 7, can we provably convince ourselves that the true NPMLE 7 has 3 and not 1 or 100
atoms? More generally, given that an algorithm (heuristic or otherwise) appears to have approximately con-
verged to some 7, can we efficiently certify (prove) that 7 is e-close to 7w? Do any of the iterative algorithms
converge to 7 at provably efficient rates? Because the objective (1.2) is poorly conditioned, off-the-shelf
convex optimization theory does not provide such guarantees.

We provide answers to all of these questions as a consequence of a new structural property of 7, perhaps
of independent interest. We show that under random data the true NPMLE solution 7 has a certain generic
behavior. Namely, suppose 1, . . ., &, are drawn IID' from an absolutely continuous distribution on R; we
then say X is generic. As recalled below, it has been known since Lindsay [Lin83a] that 7 is characterized
by always local optimality conditions. Our results show these local optimality conditions for 7 are almost
surely strict when X is generic, as long as max; |z;| < en/* for a small absolute constant c.

This almost sure strictness has computational consequences, enabling us to derive the first provably
efficient algorithms for 7. Although it is not difficult to approximately maximize the objective £x, or to
e-approximate 7 with exponential or worse dependence on ¢ in run-time, neither of these yields efficient
approximation of 7 (e.g. polynomial dependence on 1/¢). Using our genericity results, we obtain almost
sure locally quadratic convergence in parameter distance distance for generic data. This implies the same
convergence rate in Wasserstein distance and exact computation of the number of atoms in 7. Importantly,
our algorithms certify an explicit Wasserstein error bound and exact number of atoms in finite time, so
they have a well-defined output rather than just asymptotic convergence. Our algorithms follow a simple
template: first, use a convex optimization algorithm such as Frank—Wolfe to compute a sparse approximate
NPMLE 7. which is supported on an e-grid such as £Z. Next, merge any adjacent atoms (i.e. at distance
¢) within the support of 7.. Finally, attempt to certify that the result is close enough to 7 that Newton’s
method converges quadratically, based on the local concavity of £. We prove that a version of this approach
succeeds almost surely for generic X, once ¢ is sufficiently small.

As preparation, we recall the classical stationarity conditions characterizing 7. Define the function

'Our genericity results also hold if z1, . .., x, are drawn independently from different probability densities. In fact this is an
immediate corollary of the IID case since the conclusions hold almost surely: given probability densities p1, . . . , ttn, any event that
holds almost surely for [ID 1, ..., Zn ~ (u1 + - - - + pn)/n also holds almost surely for independent x; ~ ;.
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D x is the derivative of ¢ with respect to perturbations in 7, and plays a central role in the following
characterization of 7 (see [Lin83a]).

Proposition 1.1. For any 7 and 7', denoting my = (1 — t)7 + t’, we have
EY"Dr x(y) = (1.4)

d( Wt /DWX (7" — ) (y). (1.5)

The minimizer 7 of (1.2) is unique and k-atomic for some k < n, and satisfies for all y € supp(7):

Dax(y) =1,
D?T,X (y)=0
Moreover Dz x(y) < 1 forall y € R, so that
supp(m) C argmax(Dz x). (1.7)

We note that uniqueness of 7 is non-obvious. Indeed, from the strong concavity of the log it is easy to
see that all maximizers of /() have the same vector P (X) £ (P (x1),..., Pr(2,)). However, the linear
map 7 — Pr(X) with domain being signed measures has infinite dimensional pre-image. The surprising
part of Proposition 1.1 is that intersecting this pre-image with the subset of probability distributions yields a
unique 7.

1.1 Structural Results

Our first result proves essentially that (with high probability) the converse implications of Lindsay conditions
hold: for any y & supp(7) we have
Dz x(y) <0

and for every y € supp(7) the point y is a non-degenerate maximum:

D: x(y) =0, Di x(y) <0.

To that end we provide structural results showing that whenever X is generic, both 7 and Dz x also
behave “generically”. Specifically, we prove that 7 admits a density on the natural parameter space, condi-
tional on the number of atoms. Furthermore, one would like to think of Dz x as a generic smooth function,
but in light of Proposition 1.1 it may have multiple global maxima, which is not generic for a smooth func-
tion. Theorem 1.2 parts (II),(Il) essentially say that Dz x behaves generically otherwise, in that it has no
“spurious” global maxima, and all maxima are well-conditioned.

Below we define IIj; to consist of all 7 = Zle pidy, with exactly k distinct atoms, which can be
parametrized as an open subset of R2k—1: see (1.15) for a more precise definition. We also define 11, . C II;,
to consist of those 7 with min; p; > € and min;<; |y; — y;| > €.



Theorem 1.2. Let X = (x1,...,x,) be IID from an absolutely continuous distribution y on R. Then for
any k such that n > (2k + 2)2:

(I) The restriction of the law of T to Ty, is absolutely continuous. Further if |1 has density supported in
[—L, L] with values in [0, L], then the density of T is locally bounded, i.e. at most C(n,k,e, L, L")
onlly, . for any e > 0.

(II) Conditional on |supp(T)| = k (assuming k is such that P[|supp(7)| = k| > 0), the function Dz x
almost surely has exactly k global maxima:

supp(7) = argmax Dz x (y). (1.8)
yeR

(II) Conditional on |supp(7)| = k (assuming k is such that P[|supp(7)| = k| > 0), each global maximum
of Dz x is almost surely non-degenerate:

max_ D7 y(y) < 0. (1.9

Using this result, we obtain further consequences on the local landscape of £x near 7.
Theorem 1.3. For1 < k < n, if the conclusions of Theorem 1.2 (1l), (I1l) hold, then:
(A) There is an open neighborhood of 7 in 11y, on which Lx is locally c-strongly concave for some ¢ > 0.

(B) There is an open neighborhood of X in R™, such that %(X' ) € Iy for all X in this neighborhood.
Moreover, T is a smooth function on this neighborhood.

(C) The expectation-maximization (EM) algorithm converges linearly in a small 1-neighborhood of 7.
Namely for any initialization o in this neighborhood, the EM iterates mo, 71, . . . satisfy dry, (74, 7) <
C- (1 —n)tdn, (mo, 7) for C,n > 0. (Here dr1,, defined in (1.16), denotes parameter distance in 11y.)

We emphasize that Theorem 1.2(II) improves the classical stationarity condition (1.7) to a strict inequal-
ity. Additionally, Theorem 1.3(A) is different from the concavity of {x on the space of probability measures,
since the structure of II; allows averaging the locations of atoms. We also mention that Appendix C shows
IID data with full support on [0, O(k+/log k)] satisfies P[|supp(7)| = k] > 0 whenever n > k, so the
conditional distribution of 7 on IIj, is defined.

For Theorem 1.2 to be useful, we must have k£ = [supp(7)| < O(y/n), which is not always the case.
However, following a related conjecture of [KG19], the first author showed in [PW20] with Yihong Wu that
the much stronger bound |supp(7)| < O(logn) holds with high probability for sub-Gaussian data (and is
sharp in natural examples). In fact the bound depends deterministically on the empirical range of the data.

Proposition 1.4 ([PW20, Theorem 1]). There exists a universal constant C such that if X = (x1,...,xy,) €
[~L, L)" for L > 1, then |supp(7)| < CL2

Corollary 1.5 below is an immediate consequence: 7 exhibits generic behavior for generic data in
[—en'/%, en'/4]. For example, (1.7) is almost surely an equality for such X.

Corollary 1.5. Suppose X = (x1,...,xy,) is IID from an absolutely continuous distribution. Then with
probability 1, either both the conclusions (1.8),(1.9) of Theorem 1.2 (II),(Ill) hold, or otherwise max; |z;| >
ent/* holds for some absolute constant ¢ > 0.

In particular if sup; E[|z;|9] < oo for some q > 4, then (1.8),(1.9) hold with probability 1 — O(n'~1).
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Remark 1.6. The genericity conditions above can be relaxed to apply only to part of the dataset. This is
relevant in settings where some datapoints have been rounded or are correlated with each other. Namely, fix
arbitrary 11, ...,2, € [—L,L]. Thenif m > CL* and z1, ..., z,, € [~L, L] are generic conditionally
on (Tm+41,- - -, Tn), all the conclusions of Theorem 1.2 still apply with essentially the same proof.

In the setting of Remark 1.6, we show in the following Theorem 1.7 that Theorem 1.2(I) is sharp in
some sense. Namely with m < O(k?) generic datapoints, the density of 7 on II;, may fail to be locally
bounded. The proof is given in Appendix C, where we also prove Theorem 1.3. It is an interesting open
problem whether Theorem 1.7 truly requires m < n.

Theorem 1.7. Suppose m < (k — 1)(2k — 1) and n — m > (2k + 2)2. Let x1, . .., x, be IID uniform on
[0, O(k+/log k)]. Then with positive probability, the conditional law of T given Ty, 41, . . ., Ty, and the event
7 € Iy does not have locally bounded density on T,

1.2 Efficient Computability of 7

A related and somewhat subtle question is whether 7 is efficiently computable. Because / is concave, one
can find in poly(1/¢) time a probability distribution 7. such that |{x (7.) — £ x ()| < € (as recently observed
in [FGSW23]). Uniqueness of 7 implies the convergence 7. — 7 in the space of probability measures on
R as ¢ — 0. However £x may be ill-conditioned, so it is not clear that one obtains a quantitative rate of
convergence of . to 7. Worse, this proof does not give any stopping rule at which one can guarantee that
7 is within ¢ distance from 7. From the point of view of computational complexity theory, this means one
does not yet have an actual algorithm to compute 7.

We will aim to compute 7 in the strong parameter distance in which all centers and mixing weights are
well-approximated. This includes the following two questions:

~0(1)

1. Can 7 be certifiably approximated in Wasserstein distance to error ¢ in € time?

2. Is the support size |supp(7)| a computable function of X = (x1,...,2,)?

We have illustrated that the first question is non-obvious, but the second merits its own discussion. Note
that from a Wasserstein approximation to 7, one can never directly conclude the value of |[supp(7)|: any
atom may split onto several smaller atoms with negligible effect in Wasserstein distance. Although support
size is a very brittle property, Proposition 1.4 shows a strong upper bound on [supp(7)|, so it is natural to
hope that exact computation is feasible. This task requires understanding the distributional behavior of 7 at
microscopic scales, a challenging task which has seen no previous work. Intuitively, it is natural to expect
those 7 exhibiting potential instability to correspond to a low-dimensional submanifold in parameter space,
which should not occur for generic X. Formalizing this intuition is challenging due to the multi-scale nature
of the parameter space U111, for 7.

To formulate the computational problem in a satisfactory way, we use the notion of a Shub—Smale
approximate solution to a system of equations, originally due to [SS93]. In short, 7w is a Shub—Smale
approximate NPMLE if it is within ¢ parameter distance of 7, and Newton’s method exhibits quadratic
convergence to 7 starting from 7. To be precise, starting from any © € II;, one may naturally define
a Newton—Raphson iteration to attempt to compute 7 € II; (viewing Il as an open subset of R2*~1),
Recalling Proposition 1.1, the point is to view 7 as the zero of the function v : (p1,..., Pk, Y1,---,Yk) €
I, — R%*~1 defined by

Vk(ﬂ') = (Dﬂ(yl) -1,.. ‘7D7r(yk) - 17D;r(y1)7 e D;r(yk))



(7x 1s essentially the gradient of £x in the space II;.) The iteration begins with 70 = 7 and (with J the
Jacobian) then recursively sets:

2D () _ [J,yk(ﬁ(t))]—l,yk(w(t))_ (1.10)

Since II;, is a proper subset of R%*~1 it is possible that even if 7(*) € II; and 7 € IIj, the next iterate
a(t+1) ¢ 11, may satisfy p; < 0 or y; > y;4+1 for some 4. If this occurs, we stop the iteration and declare
failure.

Definition 1. We say 7 € Il is a Shub—Smale e-approximate NPMLE if:
1. # € O and (7D, @)y, < e.
2. The iteration (1.10) satisfies x® e 11, for all ¢ (and never declares failure).
3. We have d(7®, 7))y, < 21_2td(7r(0),’7?)nk for all ¢t.

Here we use the parameter distance d(-, )11, defined in (1.16), which is simply Euclidean distance on the
parametrization m = (p1, ..., Dk, Y1, - - - Yk)-

Note that the value of € in Definition 1 is not particularly important: once the condition holds for
some ¢ < 1/2, applying Newton’s method converges quadratically. Our computational results use the
genericity of Theorem 1.2 to find a Shub—Smale approximate NPMLE almost surely. We note that the
issue of an unknown number of parameters k is not present in [SS93]. However this arises naturally in our
setting because |supp(7)| must be known exactly for a Newton—Raphson iteration to make sense. Indeed, it
underlines the point that exact computation of 7 inherently requires exact computation of the support size.

1.3 Naive Brute-Force Approximation of 7

To further motivate and illustrate our algorithmic results, we discuss two naive algorithms to approximate 7
in Wasserstein distance. The first algorithm is essentially given by the next proposition. Here and throughout
the rest of the paper, for L,c > 0 we let Z. C R be any set satisfying:

{—L,L} C Z. C [—L,L],
|Ze| < 3LJe, (L.1D)
i dly, Z:) < e.
yEI[EIEL} W, Ze) <e

The sets Z. will serve as supports for approximations 7. to 7.2

Proposition 1.8. For each e > 0, let

Te € argmax (x(m)
supp(m)CZ.

maximize the log-likelihood for X among all distributions supported in Z.. Then

lim 7. =7,
e—0

where convergence is in the Wasserstein W1 sense.

>Throughout the paper, one can just take Z. = €Z N [~L, L] for any L, ™ € N. However in practical algorithms, the atoms
of an approximating 7. are often adjusted during the optimization. Augmenting Z. with these additional points allows us to cover
such situations.



Proof. As we show in Lemma 1.18, the map 7 — {x (7) from W;([—L, L]) — R has Lipschitz constant at
most C, < O(e*L?). Tt follows easily that

gX(%e) Sfx(%)—i-CLE. (1.12)

Since the sets Z. are uniformly bounded, there must exist subsequential limits of 77, as € — 0. Since the
functional ™ — £x () is weakly continuous, all subsequential limits globally minimize ¢x. Uniqueness of
T (see Proposition 1.1) completes the proof. O

It also follows from (1.12) that £x (7) is C e~ !-Lipschitz when 7 is metrized by the Euclidean norm
on Rl (via its probability mass function). Since 7 > ¢ x () is concave for each X, given a choice of
Z., computation of 7, to W to accuracy d requires C e~ log(1/8) gradient evaluations of £x using a
cutting plane method (see e.g. [Bub15, Theorem 2.4]).

Unfortunately the algorithm “compute 7. for small € > 07 gives no quantitative guarantees for the
approximation of 7 itself. That is, the above argument cannot certify upper bounds W, (7., ) < 7 for any
nontrivial 7 > 0. Indeed, 7. above is essentially the maximum of the concave function {x : Wy ([—L, L]) —
R on the 2L /e dimensional subspace of 7 supported in Z.. Although 7 is very close to this subspace, a
strong concavity estimate would be needed to upper bound W (7., 77) from this. For example the concave

function > 1

— L2 2

f(@1,... z4) __(xl_fm> 4 Z Ly
ie[d]\{2}
is maximized at the origin, but its minimizer on the nearby hyperplane {27 = 0.01} has xo = 100.
A second try is to explicitly search the entirety of Wy ([—L, L]). Namely if N; C W;([—L, L]) is an

C’Ele—net, then the choice

Te = argmin £y ()

TI'ENS

also satisfies (1.12). Moreover if for some 7 > 0 it happens to be the case that

min  Ox(m) > Cx(7:) + 32, (1.13)
Wi (mme)>n—e

then this would immediately certify the bound W (7., ) < 7). Therefore a a natural approach to certifiable
approximation guarantees would be to verify the estimate in (1.13). However a bit of thought reveals this
approach is also impractical. Firstly, it is again non-quantitative: uniqueness of 7 implies (1.13) holds
eventually (i.e. for 0 < € < go(n) sufficiently small depending on 7 > 0), but this argument does not
predict any quantitative dependence between ¢ and 7. Additionally, |N| grows exponentially® in 1/,
making this computationally inefficient even if 77 and € turn out to be polynomially related.

1.4 Results on Computability and Generic Behavior

Having discussed several pitfalls, we now present our main computability results, which show that 7 can be
efficiently approximated and the support size k can be exactly computed. We equip Z. (recall (1.11)) with
the adjacent-neighbors graph structure, making it isomorphic to a path. Below we write Ox () to indicate
an implicit constant factor which is random and depends on X, but not on e.g. .

3For example let Si, . .., Sk C Z. = [~L, L] NeZ be 1ID uniformly random subsets of size | Z.|/2, and let 7; be the uniform
distribution on S; for each 4. For an absolute constant ¢ > 0 and K < cexp(c/e), we will have |S; N S;| < |Z.|/3 and hence
Wi (7, 7;) > &/10 with high probability, simultaneously forall 1 < ¢ < j < K.



Theorem 1.9. Assume n, L satisfy n > CL* for an absolute constant C. Let X = (1, ...,z,) € [-L, L]"

be generic. Let 1. = argmax {x (7). Then almost surely, for ¢ small enough depending on X :
supp(m)CZe

(a) All connected components of supp(7e) C Z. (w.r.t. the graph structure) have size 1 or 2.
(b) |supp(7)| is equal to the number of connected components of supp(7).
(¢) Wi(7,7:) < Ox('/3),

Further, the statement in (b) and the upper bound in (c) are efficiently certifiable given 7.. Finally, the

rounding of 7. which merges adjacent atoms p;6,. + pjy10y;,, in Ze to (pj + Pj+1)0pjv;+vj41v;41 Satisfies
PjtPj+1

dn, (7, 7)) < Ox (e1/3) and is certifiably a Shub—Smale approximate NPMLE.

In proving Theorem 1.9, we consider a slight modification 7. of 7. in which adjacent atoms are merged
together. This in fact gives small error in the stronger parameter distance dyy, (defined in (1.16)). Since
the exact maximization defining 7. may not be computationally feasible, we provide another variant of
Theorem 1.9 that does not require exact computation of 7. (proved in the Appendix). Instead only an
approximation is required, obtained using the Frank—Wolfe algorithm and a careful rounding scheme; we
denote by (7., 7<) the corresponding analogs of (7., 7¢).

Theorem 1.10. Under the conditions of Theorem 1.9, there exists for each & > 0 a deterministic O(Lne~11)
time algorithm which computes 7. € P(Z.) such that almost surely, for € small enough depending on X :

(a) |supp(7)| = |supp(7e)|.
(b) d, (T, 7)) < OX(51/4) and Wy (7, 7tz) < OX(51/4).

Further, the statement in (a) and the upper bound in (b) are efficiently certifiable given w., which is a
Shub—Smale approximate NPMLE.

In other words, Theorem 1.10 provides a pair of efficient algorithms. The first computes a W1 -approximation
of 7, while the second attempts to certify the W1 bound and support size equality. The second either returns
a checkable proof or fails. What we show is that by rerunning these algorithms with smaller and smaller
e, eventually the second algorithm will succeed; furthermore, the bound will decay as /4. Once the al-
gorithm succeeds for some € = ¢y, there is no longer a need to continue rerunning the same algorithm to
decrease €. Instead, one can simply run Newton’s method within II;. Hence for § < &g, the computa-
tional complexity will be O(Lney ') + Cnrloglog(eo/d)), where Cyr < O(nk?) is the complexity of a
Newton—Raphson iteration. (Computing the gradient of y;, uses nk? time, inverting an O(k) x O(k) matrix
takes O(k3) < O(nk?) time, and other steps are faster.)

Let us explain briefly why Theorem 1.2(II) and (III) are useful towards Theorem 1.9. The chief worry in
Theorem 1.9 is that although the NPMLE objective (1.2) is a concave maximization problem, it is infinite-
dimensional and may be quite poorly conditioned. Because the log-likelihood can be shown to be relatively
smooth, if it is not flat near 7, then one will be able to efficiently certify 7 ~ 7 based on local information at
7 (namely approximate-stationarity and Hessian non-singularity). In Section 3, we employ Theorem 1.2(1I)
and (IIT) to show the necessary conditions hold once 7 is a sufficiently accurate approximation for 7.

While Newton—Raphson iteration is appealing due to its quadratic local convergence rate, other ap-
proaches also suffice for asymptotic convergence from an approximate solution. In particular Theorem 1.3(C)
shows that the EM algorithm converges linearly from suitable approximate solutions; this can be similarly
made certifiable from a sufficiently good approximate solution 7.



1.5 Results for the Static Support NPMLE

To illustrate the flexibility of our methods, we also consider the static support NPMLE. Given a fixed finite
set S C R (independent of X), we define the static support NPMLE 7g as in (1.2), but restricted to
supported within S. Similarly let IT;(.S) be the (k — 1)-dimensional set of k-atomic distributions on S. The
following analog of Proposition 1.1 is immediate from (1.5).

Proposition 1.11. Fix a finite S C R and X = (x1,...,x,). Then any minimizer T of (1.2) among m
supported on S satisfies for all y € supp(7g):

D%s,X (y) = 1
Moreover Dz, x(y) < 1 forally € S, so that

supp(7g) C argmax(Dz, x)
S

Uniqueness does not appear to follow from classical results; the proof in [Lin83b, Theorem 5.1] requires
supp(7) to avoid the boundary of .S, which is of course impossible when S is discrete. Thus in principle, g
refers to any maximizer of £x. However for bounded data, uniqueness follows by the technique of [PW20].

Proposition 1.12. Let L < cn'/? for a small absolute constant c. Fix a L-bounded X = (z1,...,x,), and
finite S C R with S N [-3L,3L] # 0. Then 75 is unique and |supp(7s)| < O(L?).

Proof. Let Tg be any minimizer of (1.2) among probability distributions supported in S. It is clear that g
is supported in [—10L, 10L]. It follows from [PW20, Proof of Theorem 3] that D5, x has O(L?) critical
points. Since Dz, x takes the value 1 at each point in S, Rolle’s theorem implies that |supp(7g)| <
O(L?*) < n/2 (for ¢ small). Since this support bound holds for all minimizers 7g, [Lin83b, Lemma 6.1]
implies Tg is unique. O

Our main results on generic behavior and efficient computability both have analogs for finite S; the
proofs are similar to those of the results presented so far.

Theorem 1.13. Fix n > k? and a finite set S C R. Let X be generic and condition on the event
|supp(7s)| = k (assuming k is such that P[|supp(7s)| = k] > 0). Then with {y1, ...,y } = supp(T):

(I) The conditional law of Tg on 11 (S) is absolutely continuous.
(I1) The restriction of Dz x to S almost surely has exactly k global maxima y, . . . , Y.
Theorem 1.14. For any 1 < k < n, if |supp(7s)| = k and Theorem 1.13(1I) holds:
(A) There is ¢ > 0 and an open neighborhood of g in 11 (S) on which {x is locally c-strongly concave.

(B) There is an open neighborhood of X in R", such that 7s(X) € I1;(S) for all X in this neighborhood.
Moreover, Tg is a smooth function on this neighborhood.

Theorem 1.15. Assume n, L satisfy n > CL* for an absolute constant C, and let S C R be deterministic
and finite with S N [-3L,3L] # (. Let X = (x1,...,x,) € [—L, L™ be generic. Then there exists a
deterministic C (L)E*O(l) time algorithm which computes 7 g . with the following properties. Almost surely,
for sufficiently small ¢, 7s . is a certifiable C(n, k, S, X )e-approximation to s in both Wy and dy, (s)
distance. Furthermore, supp(7s ) = supp(7s) almost surely holds certifiably for small enough .

Finally, almost surely for small enough ¢, 75, is a Shub—Smale approximate static support NPMLE:
Newton’s method within 11;,(S) started from 7t s . certifiably converges to Tg at the rate in Definition 1.



1.6 Other Related Work

Gaussian mixture models have been studied since the pioneering work of Pearson [Pea94], which proposed
that the ratio of forehead width to body length of crabs might follow such a distribution. Much work
has focused on statistical recovery of such mixtures. In the 1-dimensional Gaussian location model we
consider, optimal convergence rates for recovering the mixing distribution were obtained in the case of &k
components by [WY20], via an extension of the method of moments. See [DWYZ23] for extensions to
higher dimensions. The theoretical computer science literature has also studied Gaussian mixture models
since [Das99]. In the special case k = 2, [HP15] gave sharp bounds for parameter recovery, and showed
an exponential-in-k sample complexity lower bound. This line of work led to accurate polynomial time
estimators for the underlying parameters of the Gaussian mixture even in high-dimensions, under minimal
assumptions that ensure statistical identifiability. These algorithms succeed even if the components may
have different covariances [KMV10, MV10, HP15] and more recently if a small fraction of the data is
adversarially corrupted [Kan21, LM23, BDJ"22, LM22] thanks to the sum-of-squares framework.

The NPMLE was introduced for general mixture models in [KW56], where its consistency was shown in
quite general settings including the one we study. [GW00, GVDVO01, Zha09, JZ09] upper-bounded its rate
of convergence for density-estimation, for IID data generated from a mixture of unit variance Gaussians. See
also [DZ16, SG20] for higher-dimensional extensions. We emphasize that we always metrize convergence
based on 7 itself, rather than the convolution 7 x A/(0,1) which is done in some of these works. (This
yields e.g. the smoothed Wasserstein distance, which gives the same topology on probability measures but
can be exponentially smaller.) However we emphasize that by contrast to the algorithms mentioned above,
the NPMLE’s behavior can be fruitfully analyzed without assuming that the underlying data actually comes
from a Gaussian mixture.

To estimate a k-component Gaussian mixture for small %, a standard approach is the expectation-
maximization (EM) algorithm [DLR77]. However a key advantage of the NPMLE is that it solves a concave
maximization problem. To take full advantage of this, one may discretize space as in [KM 14, FD18, SGS24].
Namely one fixes an e-net Z. and optimizes (1.2) subject to the additional constraint supp(7) C Z., which
is now a finite-dimensional concave problem. It is not hard to show (see Section 3) that the resulting es-
timate 7. converges to the true NPMLE 7 as ¢ — 0. Our interest will be in certifying that a candidate
7., computed in essentially arbitrary manner, approximates 7 to some explicit accuracy and additionally
satisfies [supp(7)| = |supp(7)].

The local convergence rate of the EM algorithm has long been of interest, and was studied in e.g. [RW84,
MR94, XJ96, MXJ00, MF05, MX05]. More recently, [BWY 17, ZLS20] established high-probability linear
local convergence rates for well-separated Gaussian mixtures in general dimension, via perturbative analysis
around the population dynamics. Theorem 1.3(C) shows almost sure local linear convergence for generic
datasets, without even requiring the existence of an underlying mixture model generating the data. On the
other hand, it is currently limited to dimension 1 and does not give quantitative bounds on 7. Among the
vast literature in this direction, we also mention a few recent works [DTZ17, WZ22, WB22] showing rapid
global convergence of the EM algorithm for 2-component Gaussian mixtures.

We also mention the recent work [WN22] which considers rather general mixture models and uses har-
monic analysis tools related to those we employ (see Section 7 therein). However their work focuses on
asymptotic posterior contraction rates and uses these tools differently. Also recently, [MSS23, FGSW23]
investigated properties of and algorithms for the NPMLE in high-dimensional regression, which is differ-
ent from the present setting. Theorem 3.3 of the latter also provides a quantitative convergence rate for
computing the NPMLE (in the same setting as the present work) via gradient flow, as measured by the log-
likelihood objective (1.2). As outlined in Subsection 1.3, this does not yield any convergence rate for the
NPMLE itself, while our Theorems 1.9, 1.10 give asymptotic convergence rates in Wasserstein distance.
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1.7 Notations and Spaces of Measures

Denote by P(X) the space of probability measures on a space X, and by p, (z) the density function of an
absolutely continuous distribution v at . Let d3; denote the Hausdorff distance between compact sets in R:

dy (K1, K3) = max ( max d(z1, K>), max d(K1,12)). (1.14)
T2E K2

T1€K,

For 7, 7’ € P(R), denote by W (, 7’) the usual Wasserstein-1 distance

)=t Bl

Here the infimum is over all couplings (y,y’) ~ T' with marginals y ~ 7 and 3/ ~ 7’. Define IIj to be
2k — 1 dimensional space of k-atomic 7. We use the parametrization

k

Hké (plv"'apkayb'"ayk)GRQk pjzov ij:L N <y <Yk o, (115)
j=1

thus identifying (p1,...,pk, Y1, - . ., yx) With the probability distribution Z§:1 p;jdy,. As previously men-
tioned, we let I, . consist of all 7 € II;, with min; p; > € and min;; |y; — y;| > €. Similarly Hﬁ consists
of all 7 € Il supported in [—L, L], and His =1 N Hﬁ. Note that (1.15) gives IIj, the structure of a
smooth 2k — 1 dimensional manifold. We metrize Il and its subsets via parameter distance:

k
dry, (m, ") Z lpj — 24 ly; —yj\ ) (1.16)
7=1
where 7, 7’ correspond respectively to (p1, ..., Dks Y15 - - -5 Yk), (P15 - D> Y1, - - -5 ¥ )- Note that as a sub-

set of R?*, (the closure of) IIj, is a codimension 1 convex polytope, hence has a natural (2k — 1)-dimensional
Lebesgue probability measure. The next proposition states that H£ parameter distance controls W distance.
There is no bound in the opposite direction because far away atoms with small probability are significant
only for the former.

Proposition 1.16. For any k-atomic w,7' € 1%,

W, (m, ') < (L% 4+ 1) dp, (0, 7).

1.8 Preliminary Smoothness Estimates

For j > 0let H;(t) = et’/2 (dt)] ~t/2 be the j-th Hermite polynomial. The following proposition is
immediate from the formula (1.3).

Proposition 1.17. For j > 0, the j-th derivative of Dy x is given by
n

i —yl2/2
) . 1 Hj(xi—y)e lzi—yl*/
D ==>
wxW) =5 ~  Pr(w)V2r

We next show basic estimates on these functions.

(1.17)

Lemma 1.18. There exist universal constants C > 0 and (C1,Cy, . ..) such that the following estimates
hold. Suppose W1 (m, ") < 6 where w, 7" are supported in [—L, L]. Then for z,z € [—L, L]:
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1. C e 2 < P () < 1.
2. [Pa() — Py(a)] < C6.
3. |Pr(z) ™t = Po(z)7Y] < Cer’s.
4. [tx () — tx (7)) < Ce2L?s.
5. For j > 0 the j-th derivative of T (recall (1.3)) with respect to y satisfies
ITY)(2)] < G L7, (1.18)
TY)(2) = TV ()| < ;LS.
6. Similarly for D:
IDY%(2)] < CyLI e, (1.19)
DY) (z) = DY) (2)| < ;L7 e, (1.20)
T, X ' X

Lemma 1.19. Fix 7 = Zf:l p;oy, and T’ = Zle qiOy,, both in Hi. Consider
0t) 2 tx(m) = Lx((1 —t)m + t')

If max; |p; — q;| < 7, then

sup
0<t<1

d Ly
dtﬁ(t)‘ <077y, 0<j<3.

Further if m([—10, 10]) > 1/10, the improved upper bound O(e®3L° 73) holds.

The next lemma will be used to ensure that 7, or any reasonable approximation thereof, is supported in
[—L, L]. Lemmas 1.19 and 1.20 are proved in Appendix A.

Lemma 1.20. If X = (x1,...,2,) € [—L, L]", then for any m € P(R), the function Dy x(-) is strictly
increasing on (—oo, L] and strictly decreasing on [L, c0).

Proof. Each term in (1.3) obeys these monotonicity conditions. O

2 Proof of Theorem 1.2

In this section we prove Theorem 1.2 on generic behavior of 7 and D7 x. The different parts are established
by variations of the same core argument. For concreteness, we center our discussion on absolute continuity
of 7. This is natural to expect from naive dimension-counting: if 7 is k-atomic, then it varies over a 2k — 1
dimensional parameter space II; and must satisfy the 2k equations (1.6). However one of these equations is
redundant since one always has EY~" D, x(y) = 1. Thus intuitively, all 2k — 1 dimensions of II; should be
needed to solve this many equations, suggesting the law of 7 is generic. Similar remarks apply in the static
support case; here the conditions on D~  disappear, corresponding to the reduced dimension of IIj(.S).

Proving absolute continuity of the law of 7 amounts to upper-bounding small-ball probabilities near
arbitrary 7o € 1l .. We first reduce this to bounding the probability that the stationarity conditions (1.6) for
7o hold approximately. Below, Bs(m) denotes a ball in dyy, -distance around 7. Similarly, let B; s () be
the d-neighborhood of 7y € II;(.S) in the space 11 (.S). Note that Bs s(m9) € Bs(mg) N (S).

12



Proposition 2.1. Fix 7y = Zlepi(syi € i (=L, L]). Then for 7 = Zleﬁiégi € B;(mo) to hold (where
0-ball is defined with respect to d, ), mo must approximately solve the system (1.6) in the sense that
N 1| < OF)
jpax [ Dro,x (y5) — 1] < €778,

D/ . < O(Lz)
g%xkl mo.x (W) < ePH8

2.1

Moreover to have Dz x(y) = 1 for some y with |y — y.| < 9, or D%X(g)j) = 0for some 1 < j < k, we
must respectively have

max (| Do x () — 1], [ Dy x (y)]) < PFg, 2.2)
D2 (yj)] < CED, 2.3)

Similarly if Tg = Zle Pidy, € Bs s(my) for some g supported in S C L, then:

N o(L?)
1rgjasxk\D7rfs,x(y]) 1} <e” 6.

And to have Dz, x (y) = 1 for some y with |y — y.| < 6, we must have
Doy x () — 1] < 95,
Proof. Using (1.20) and Proposition 1.16, we obtain
1D x — Do x o211 < €CEIW1 (7, mo) < O dpy (7, mo).
We now apply Proposition 1.1. For the first estimate, we write
| Do, x (y5) = 1| < Do x(Y) = Do, x(95) + | Do x () — Dzx (95)| + | Dz x (95) — 1]
2 . 2 ~

< Oy, — g;| + 2 d, (7, m0) + 0.

Similar arguments imply the other claims. 0

Proposition 2.1 effectively linearizes the stationarity conditions for 7. For 7 fixed, the function D x
and its derivatives are simply IID sums over z; € X. In particular their law becomes smoother as n
increases; we make this precise using classical estimates from harmonic analysis.

2.1 Harmonic Analysis and Non-Degeneracy of Exponential Curves

Definition 2. We call a function v € C*([0, 1];R%) a smooth curve, and v € C°°(S'; RY) a smooth loop.
We say v is non-degenerate if for each z, the vectors

(7/(2),7" (@), D (@)

form a basis for R%. By compactness, this is equivalent to the matrix M () with these vectors as columns
having determinant bounded away from zero, uniformly over z € [0,1] or z € S'. Let fi~ denote the
pushforward of the uniform measure on [0, 1] by «. Given a continuous function f defined on the range of
7, let 1, ¢ be the signed measure with Radon-Nikodym derivative dju, r(x)/dpy(x) = f(x).

The next key estimate follows from [SM93, Page 334], see also [Mar88, BGG07].
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Proposition 2.2. Let v be a non-degenerate smooth loop, and f a C* function on its range. Then the Fourier
transform [i of  satisfies:

B < O+ I fller, Yw € R
We next deduce that for non-degenerate ~y, at most d> + 1 self-convolutions suffice for a bounded density.

Corollary 2.3. Let v be a non-degenerate smooth curve or loop, and f a non-negative bounded function on
its range. Then with (-)*) denoting j-fold self-convolution, the probability measure ,u*(dQ‘H) has bounded
density on R%.

Proof. First, if v is a smooth non-degenerate curve then it easily extends to a smooth non-degenerate loop
5. In either case, since | f||z~ < oo there is a constant (in particular C') function on + or 5 which is
point-wise larger than f. Therefore by domination, it suffices to consider the case that -y is a loop.

For « a smooth non-degenerate loop, Proposition 2.2 implies u*(d2“) has integrable Fourier transform,
hence bounded density by Fourier inversion, completing the proof. O

Remark 2.4. When 7 is a loop and f is C in Corollary 2.3, 1*(4*+1) in fact has a uniformly continuous

density (being the inverse Fourier transform of an integrable function). However we can only use Proposi-
tion 2.1 to upper bound the law of 7, so this additional information does not improve our final results.

Remark 2.5. The appearance of ©(d?) convolutions in Corollary 2.3 is easily seen to be sharp for any
smooth -, degenerate or not. Indeed for small € > 0, the curve ([0, ¢]) is contained inside a rectangular
box with O(e4¥*+1/2) yolume, spanned by vectors O(e7)yU)(z) for 1 < j < d. (Here implicit constant
may depend on both + and & but not ¢.) Thus z** assigns measure Q(c¥) to the k-dilate of this box, which
still has O (e%(4t1)/2) volume: each independent summand lands in the box with probability (¢). Thus for
any smooth , we must have k& > d(d + 1)/2 for ;** to have a bounded density on R?.

The following lemma will be used to verify non-degeneracy for the curves relevant to 7.

Lemma 2.6. Let P : R — (0, 00) be a smooth, strictly positive function. Let dy, . .., dy > 0 be non-negative
integers and let a; ;j be real constants for 0 < i < d; which are not all zero. Define the function

SR Y ag ety
P(x)

F(x) =

Then with D = Z?:l d;, F' can have at most D — 1 on R, counting multiplicity. (Here x is a root of
multiplicity v if F(x) = F'(z)--- = F=)(z) = 0.)

Proof. We can set P(x) = 1 since it does not affect the multiplicity of a root. It remains to show F'(z) =
Z;?ZI Zfi 61 aivj:ciexyj cannot have D roots. Indeed, this function satisfies a linear ODE with degree d

characteristic polynomial z +— H§:1(Z — yj)df . We consider the corresponding multi-set of differential
operators ¢;(f) = f’ — y;f. Further, if F has a non-zero term, then a subset of at most D — 1 of these
operators can be applied to reach a function f(z) = Ae®™¥ for some A # 0 and i. Indeed, ¢; turns xe™s
into e*¥7, kills the ™ term, and scales each other term by a non-zero constant. Crucially, this resulting f
has no roots. However by Rolle’s theorem, each of these differential operators reduces the total number of
roots of a function by at most 1. It follows that F' has fewer than D roots. O

A compactness argument immediately gives the following.

Corollary 2.7. In the setting of Lemma 2.6, if min; j |y; — y;| > €, there exists c¢(L, k, ) such that

max |F9(z)] > c-max|a; |, Vael[-L,Ll.
0<d<D-1 ,J

14



2.2 Distributional Regularity of NPMLE

Proposition 2.1 implies that for any mo € Ilj, having 7 € Bj(m) requires the vector

V7T0 (X) = (DWO,X(yl)a B DWO,X(ykJ)7 D;O,X(yl), s 7D;T0,X(yk))

to be within distance C'(n, L)0 of the half-ones vector (1,...,1,0,...,0). Note that the p;-weighted aver-
age of the first k£ coordinates of this vector always equals 0 by (1.4), so the image of v, lies in a 2k — 1
dimensional affine subspace U, C R?%. In the S-restricted case, we denote the relevant curve by Vro

Vi (X) £ (Do, x (1) -+, Dy x (1)) € R”
obeys the same constraint, hence lies in a k — 1 dimensional affine subspace U, .

Lemma 2.8. Suppose 1, . ..,x, are IID from a density supported in [— L, L] and bounded above pointwise
by L'. Forn > k? and mg € e, the random vector V; (X) € R* has compactly supported distribution
on Uz with density uniformly at most C(n,e,k, L, L'). When n > 4k?, the same holds for Vy,(X) € R?
and Usg,.

Proof. We can write V2 (X) as the convolution V2 (X) = 1 3" | 42 (2;) where we define

T n

e_lx_y1|2/2 e_lx_yk|2/2
e li—— ).
T Pro(2)V27 " Pr(@)v/21

Further, 77 () is an (z-independent) invertible linear transformation of

Tle) 2

exyl emyk‘
Pro(x)e*/27" "7 Pr (@6962/2)

We will apply Corollary 2.3 with v = 77 . Note that the relevant dimensionis d = k — 1, son > k2 >
d? + 1 as required. It suffices to check that Vmo i non-degenerate within the subspace U7 . We show the
stronger statement that within R¥,

inf det (32, (2), (55,)'(2), ., (52,) V(@) ) > 0.

z€[—L,L]
This follows from Lemma 2.6 with P(x) = Py, (z)e**/2and dy = -+ = dj = 1. Indeed, letting @ =
(@o1,---,a0k) € R*, and with F as in Lemma 2.6, we have

FO(@) = ((;,)P(2),d@), VO<j<k-1.

This completes the proof. The case of V, is similar with

( ) A e_lx_yl‘2/2 e_lx_yk|2/2 (.’L‘ — yl)e_lx_y1‘2/2 (m — yk)e_lx_yk|2/2
’y x — PR | ] PR ] b)
0 P (x)V2m P, (x)V2m P (x)V/2m P (x)V2m
() = ey , ey
o Pr, (z)ex?/2 Pr, (z)ex?/2 Pr, (z)ex?/2 Pr, (z)ex?/2

andd; =---=dp =2 (taking a= (aoyl, e A0k, Q1,15 - - - ,aLk) S RQk). ]
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Proof of Theorem 1.2, Part (I). Lemma 2.8 states that uniformly in m € IIj . for any ¢ fixed, Vy,(X) has
bounded density on the 2k — 1 dimensional subspace Uy,. Proposition 2.1 thus implies that for any 6 > 0,

P[% € Bs(m)] < C(n,e, k, L, L')§?+ 1.

This implies 7 has locally bounded density on each II;,. Since IT;, = U.~0llj - and using similar countable
exhaustion for a general absolutely continuous data distribution, we also deduce absolute continuity in the
general case. O

Proof of Theorem 1.13, Part (I). As in the previous proof, by countable additivity it suffices to consider data
distributions with compactly supported bounded density. Lemma 2.8 states that V.7 (X) has bounded density
on the k£ — 1 dimensional subspace Uy, . Proposition 2.1 thus implies that for 7o € Il . (S) and any § > 0,

]P)[%S S Bé,S(ﬂ—O)} < C(”a L7€7k)5k71'

Finally this implies absolute continuity of 7g within II(.S), since any my € Il is in II}, . for some € > 0.
This completes the proof. O

2.3 Generic Behavior of D> x

Distributional regularity of 7 does not have direct consequences for Dz x since the latter depends on both
7 and X. We prove genericity of Dz x using the same approach as above, thus establishing the remaining
statements of Theorems 1.2 and 1.13. The idea is that any non-generic behavior can be encoded into an
extra constraint dimension for the curve «y or v°. Hence the chance for such behavior to hold approximately
becomes O(6%F) or O(6*) instead of O(524~1) or O(6%~1) respectively. These probabilities are now smaller
than the inverse d-radius covering numbers for II; and II;(S). Hence summing over such covers shows
a probability upper bound O(d); taking § small, we deduce that such non-generic behavior occurs with
probability 0.

Proof of Theorem 1.2 part (1I) and (I1I). We first show part (II), namely that Dz yx has exactly k global max-
ima almost surely, namely supp(7). We fix an arbitrary L > 0 (for use in e.g. Proposition 2.1) and show that
the probability for L-bounded generic data to violate the claims is 0, which suffices by countable additivity.

We claim that for 77 € IIj, ., and any y, € [—L, L] with min; <<, |y« — y;| > 2¢, there is C(n, L, ¢, k)
such that for 6 < d.(n,L,e, k) small enough, the probability that both (2.1) and (2.2) hold is at most
C§%F+1, Explicitly for any fixed 7 and v,

P[7 € Bs(70),3y € [ys — 0, y« + 6], Dz(y) = 1]

(2.4)
< P[7 € Bs(mo) and | D, (y*) — 1| < C'6 and | DL, (y*)| < C'8] < C5*F 1.
(Here C' < eO(LQ).) Note that ITj, has dimension 2k — 1 and it suffices to take 3L /J choices of y, to cover
all possible extraneous minimizers. There are hence (C/§)?* elements of a J-net over pairs (g, y«). So
using the claim and a union bound, the probability for 7 to be (&, k)-non-degenerate and for D5 x to have an
extraneous minimizer within distance 3¢ of supp(7) is O(0) for small enough ¢, hence zero. This suffices
since € was also arbitrary.

To show the claim (2.4) above, we proceed as in Lemma 2.8 using a slightly augmented version of V,
given by

(Vﬂ'o (X)v Dﬂ’o,X (y*)v D;rO,X (y*)) € R*#+2,
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The claim follows by using Lemma 2.6, with d; = --- = dpy1 = 2 and y. = yx11, as in the proof of
Lemma 2.8. Here we use the assumption n. > (2k + 2)2. This finishes the proof of the first assertion on
global maxima.

Part (III) is handled similarly. We now need to bound the probability that (2.1) and (2.3) both hold, and
we will show it is at most C'(n, L, ¢, k)é%. This suffices by a similar union bound since the relevant J-nets
still have cardinality (C'/§)2*~!. This time we consider for some fixed 1 < j < k:

(Vi (X), Dy, x () € R*HL,
Applying Lemma 2.6 with d; = 3 and d; = 2 for ¢ # j completes the proof in this case. O

Proof of Theorem 1.13(11). The proof is similar to the above. Again we fix arbitrary L and restrict attention
to the event S U X C [—L, L]. Consider ¢ > 0 such that 7g €€ II; .(S), and any y, € S\supp(7s).
Without loss of generality, we may choose 2¢ smaller than the minimum distance between distinct points of
S, s0 d(y«,supp(7s)) > 2e. Then analogously to (2.5), we have

P[7s € Bs,s(mg), 3y € [ys — 6, yx + 0], Dag(y) = 1]

-~ / * ! k (25)
< P[r € Bss(ms) and [Dy (y*) — 1| < C"6] < C6".
In this case, the claim follows by considering
(V;/S7 Dw’S,X(y*)) e RM!
and applying Lemma 2.6, with d; = - - - = dj+1 = 1 and yx = yg1. This time I1;(S5) has dimension k — 1,

and now y, ranges over a finite set, so there are (C//§)"~1 elements of a 6-net over pairs (7%, y.). Hence the
probability for Dz, to have an extraneous minimizer y, € S\supp(7s) is O(6) for small enough ¢, hence
zero. This completes the proof. O

3 Certification

In this section we give algorithms to certifiably compute 7, for both e-approximation in W and exact
support size. Theorem 1.2 will be used to show that for generic data, they eventually succeed almost surely.
3.1 Certification of Wasserstein Approximations

In Proposition 3.1 we show how to certify a putative candidate W;-approximation to 7, denoted by 7.
The conditions on 7. will be satisfied by (approximately) maximizing ¢x over P(Z.) and merging adjacent
atoms.

Proposition 3.1. Suppose there exists T. = Z?Zl p;oy; € P(Z:), which satisfies for some c1, ca,6 > 0 the
following properties.

1. Fory such that d(y,supp(7.)) > c1, we have Dx_ x(y) < 1 — ca.

2. D= <146.
max =x(y) <1+

3. As a function on P(supp(7.)), for some A € (0, 1) the empirical loss {x has Hessian
Vx (7)) = =M. (3.1

(We treat (3.1) as vacuously true in the case k = 1.)
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4. Letn = c1 + Ld/co. Eithern < k%’i% or m-([—10,10]) > 1/10 and
)\3
NS B 3-2)
If the above properties hold, then we must have:

W, (7., 7) < O (LeL2 W) .

The intuition is that conditions 1 and 2 imply 7 can be approximated by a distribution (denoted T,
below) supported on supp(7.) and achieving a similar value of likelihood, while condition (3.1) implies
any distribution on supp(7.) achieving high likelihood must be close to 7. itself. A detailed proof is given
in Appendix A.

Several conditions in Proposition 3.1 will be verified using Theorem 1.2. However one condition follows
easily from uniqueness of 7.

Proposition 3.2. For any sample X = (x1,...,x,) € R" there exists \ = Ax > 0 such that condition (3.1)
holds at 7. (Recall we take (3.1) to be vacuous when k = 1).

Proof. Since (x is strongly convex in the vector P¢(X) = (Pr(21), ..., Pr(2y)), if the claim did not hold
then the directional derivative of V' would be zero along some line segment. However V' depends linearly
on the weights ' so we conclude that 7 is not unique, contradicting Proposition 1.1. O

Next we turn to the support size of 7. We note that one direction is implied by a Wasserstein approxi-
mation, as verified in the next result.

Proposition 3.3. Suppose v = Z?Zl pjoy;. For each j let d; be the minimum distance from y; to a nearest
(other) atom and let A = A(v) £ min;(p;d;) > 0. Then we have

< inf{Wi(v, ) : p has < k atoms} < A.

wl| >

In particular,
Wil <A = |supp(e)] > supp(v)].
Additionally if W1 (v, n) < A(v)/3 and |supp(p)| = |supp(v)

, then | = Z?Zl qj0-; where

k
12W
> (Ips — ¢ +d(y;, 2)?) < IA(“’V). (3.3)

J=1

N

Proof. For the lower bound, note that the open balls B(y;, d;/3) of radius d;/3 centered at y; are mutually
disjoint, separated by pairwise distance min(d;)/3. Hence if 4 has < k atoms, at least one of these balls
must have p-measure zero, and hence any coupling of y to v has to incur at least A/2 cost. For the upper
bound, simply remove the atom j minimizing the definition of A and move its mass to the nearest neighbor.

For the second assertion, it follows from the preceding paragraph that u has exactly 1 atom in each ball
B(y;, d;/3); without loss of generality call this atom z;. Using a similar transportation argument and then
min(p, q) + |p — ¢| = max(p, ), we find

> dilp; — gjl - > (d(yj, z)pj + djlpj — g5)
6 - 12

Wi(p,v) > > d(yj,2) - min(pj, q;) +

J
A A
> 13 2 (U052 + Iy —ail) = 12\/2 (d(yj )% + Ipj — 4512). 0
J

J
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The first part of the above lemma will be used to show that the Wasserstein bound from the previous

Proposition eventually certifies that
Wi (7., ) < A(7:)/2.

The second part will be used to obtain convergence in parameter distance dry, .

Proposition 3.4. There exists an absolute constant C such that the following holds. Suppose that T is given
and there exists ¢ > 0 such that:

1 Wl(%, %) <o
2. For C an absolute constant and all y € supp(7),

7 x(y) < —CL2eM (a+cL).

T

3. Condition I of Proposition 3.1 holds with (cy, ¢3) = (¢, Ce** ). Le. for all z with d(z, supp(7)) >
¢, we have Dz x(z) <1 — Cetl’

Then |supp(7)| < |supp(7)|.

Proof. We take C' (polynomially) large compared to the constants C'; from Lemma 1.18. By the bound (1.19)
applied with j = 3 and first-order Taylor expansion for D" we conclude that DY , (y) < —CL?¢** « for
all y in the c- nelghborhood of any support element of 7. In turn, by (1.20) w1th j = 2 we have that also
DZ «(y) < ~S1% 4L? o in the same neighborhood. Thus, in each such neighborhood D5 x can have at
most one local maximum, and in turn at most one y such that Dz x (y) = 1. Outside of c-neighborhoods of
each support element of 7. there can be no atoms of 7 because by (1.20) with j = 0 we should have that
Dz x(y) < 1forall d(y,supp(7)) > c. O

3.2 Approximability of 7

Here we synthesize the preceding results to obtain an approximation scheme for 7. Again, we assume
here access to an exact maximization oracle for the concave function £x over P(Z.), deferring issues of
approximate maximization to the Appendix. We first define the constants that determine the dependence on
X. Let
Ax = — max DAX(y) (3.4)
yesupp(7)

and
Bx =1-— Dz
X max x (),
Sy 2 {y €R : d(y,supp(®)) > ax/4},
Ax
205 L2417’

(1>

ax

where C}’s are from (1.20). Both Ax, Bx are almost surely strictly positive by Theorem 1.2, and we will
implicitly assume so below. To approximate 7, we begin as usual with

T = argmax {x(m)
supp(m)CZe

for Z. as in (1.11). First, we show a version of Proposition 1.1 for 7..
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Lemma 3.5. Given 7. we have:

(a) Dz_x(y) = 1forally € supp(7.).
(b) Dz_x(y) < 1forally € Z..

(c) maﬂé(Dgg’X(y) <1+dford= Ce2L2e2L?,
ye

Further, for any y € supp(7.) there exists a local maximum jj € [—L, L] of Dz_ x such that |y — | < e.

Proof. By (1.5) and optimality of 7. we see that Dz_ x(y) is maximized at each y € supp(7.) (possibly
other y as well). Since the derivative there vanishes when 7’ = 7, we see that this maximum value must be
1, yielding points (a) and (b).

Point (c) follows by smoothness estimates. Let y € [y1,y1 + €] with y; € Z.. We recall the following
simple analytical fact: if g is a smooth function on [0, ¢] and g(0), g(¢) < 1 then we must have

2

g
sup |g(y)l <1+ 5 sup l9" ()],
y€[0,e] y€[0,e]

which can be shown by a Taylor expansion. Applying this fact to Dz_ x we find that

2

€
Dz x(y) <1+ 5 sup ‘D%E,X(Z)"
zeR

Recalling (1.19) completes the proof of (c) for y € [—L, L]. Finally recall from (1.11) that we assume
{—L,L} C Z., and from Lemma 1.20 that Dz_ x (-) is strictly decreasing on [— L, co) and strictly increasing
on (—oo,—L]. Hence if y > L, then Dz_x(y) > Dz_x(L) < 1+ 6. Proceeding similarly for y < —L
completes the proof of (c).

For the last claim, given y € supp(7.) let y1 < y < w2 be the closest points to y on each side in
supp(7.). First assuming y ¢ {—L, L} is not an extreme point of Z., by definition [y1,y2] C [y — €,y +¢].
From (a) and (b), we see that Dz_(y) > Dz (y:) fori € {1,2}. Hence max,c[y, ,,] Dz.(2) is attained
within the interior of the interval, so such a ¢ exists. Finally the boundary cases y = £ L are easily handled
using Lemma 1.20 to rule out local maxima outside [—L, L]. O

We now list several properties of 7. that hold for sufficiently small . They do not immediately suffice
for certification because one needs an explicit bound on how small € must be. Instead these properties
will be used to ensure the certification criteria in Propositions 3.1, 3.3 and 3.4 are applicable to 7. or its
modification 7, for small enough &.

Proposition 3.6. We have
ii_r% dy (supp(7e), supp(7)) =0, (3.5

where dy; denotes Hausdorff distance (recall (1.14)). Consequently, for all ¢ < e(X), the following hold:
d(y,supp(7e)) < ax/2 = D% x(y) < —Ax/2;

~ B
d(y,supp(7=)) > ax/2 = Dz, x(y) <1- .
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Proof. First, note that

lim max d(y,supp(7:)) =0,

e—0yesupp(7)
since otherwise there would have existed an atom of 7 that is bounded away from any atom of 7. contra-
dicting Wy (7, 7c) — 0. Second, we also have

lim max d(y,supp(7)) =0.

e—=0yesupp(7c)
If we take any convergent subsequence supp(7.) 3 y- — ¥« then we have 1 = Dz_ x(y:) = Dz x(y«).
But by Theorem 1.2, Dz x(y«) = 1 (a global maximum) implies y. € supp(7), thus showing the claim.
Together these convergence statements yield (3.5).

Proposition 1.8 ensures that uniformly in the choice of Z., we have lim._,o W;(7,7.) = 0. By
Lemma 1.19, this implies convergence of Dx_ x to Dz y in the space C?([—L, L]). The other two state-
ments of the proposition now follow from the convergence of supports. 0

Proposition 3.7. For ¢ < £o(X) sufficiently small depending on X, any pair of points supp(7.) within
distance ax /2 are adjacent elements in Z..

Proof. Take a point y € supp(7.). By Proposition 3.6 (which uses the assumption £ < g9(X)), Df_y <
—Ax /2 on the interval [y — ax /2,y + ax/2]. Thus, the equation Dz_x(z) = 1 can have at most two
solutions, one of which is y. Further the concavity of Dz_ x on [y —ax /2, y+ ax /2] implies it is unimodal.
Thus if y' € [y — ax /2,y + ax /2] also satisfies Dz_ x(y') = 1, then Dz_ x(y") = 1 forall ¥’ € (y,v').
Recalling Lemma 3.5 part (b), we see that no such 3" can lie in Z.. We conclude that y and 3’ must be
consecutive within Z.. ]

In light of Proposition 3.7, for £ small enough atoms in 7. are all separated by ax /2 except those
occuring in pairs of adjacent elements of Z.. We form 7. by taking the weighted average of each such pair,
i.e. replacing p;0,, and p; 110, , by p;dz, for

~ ~ D%+ Dit1Tit1
Pi = Pi + Di+1, T = .
Ti + T

We now show crucial properties of 7. that will be used in certification. Again, the results of the following
proposition by itself are insufficient since £o(X) is not determined explicitly.

Proposition 3.8. For all ¢ < £o(X) we have that |supp(7.)| = |supp(7)| =: k. Furthermore, representing
Te = Z;?:l pjdy, and T = Zle p;jdy, (with both atoms sorted):

pj = Pjs Ui Y
as € — 0. Thus, in particular, we have

lim A(7.) = A(R) > 0,

e—0

Proof. Given dy (supp(7.),supp(7:)) < € and (3.5), lir% dy (supp(7e), supp(7)) = 0. Since the atoms of
e—

both measures are separated by at least ax /4 we also conclude the two sets have the same cardinality (for

small ), and that y; — y;. ]

Next, we show that 7. admits explicit Ox (¢'/3) certificates for Wasserstein convergence and a certified
lower bound on [supp(7)| by virtue of Propositions 3.1 and 3.3. (The former W; convergence also holds
for 7..)
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Proposition 3.9. For e < £y(X), the conditions of Proposition 3.1 apply to 7. with:
0= O(€2L264L2),
o1 = Y1000/ Ax,
co = v/ L262Ax, (3.6)
n= O(\3/ Lé/AX),

A= Qx(1)

In particular, the estimator 7. obeys certifiable bounds of the form W, (%, %.) < Ox(e'/3). Furthermore,
we also have a bound |supp(7)| > |supp(7e)| certified by Proposition 3.3.

Proof. The bound on ¢ for 7. is in Lemma 3.5. To extend it to 7., it suffices to show
? 2
sup |Dz. x(y) — Dz x(y)| < O(*L%e*).
ye[vaL]
By definition of D, for this it suffices to show that
! 2
sup [Pz (y) — Pr.(y)] < O(e7),
ye[vaL]
which reduces to proving that
‘<Pi> olrivl/2 | <P+1> eloa—uP/2 _ -E-ali2] £ o),
Di + Di+1 Di + Pi+1

This holds by the following fact (applied with f(z) = e~1#1*/2): If | f” ()| < C for all z € [z, 1] then for
any A € [0, 1] we have

[f Az + (1= N)ao) = Af(x1) = (1= X) f(w0)| < Clar — 20)*

(This is shown by noticing that this estimate is true at A = 0 and then expanding the right-hand side in X to
second order.)

Next, let us show that D5 _ satisfies the (c1, c2) assumption in Proposition 3.1. We already know this
holds for ¢; = ax /2 and ca = By /2 — O(e?) by Proposition 3.6, but we need to improve this estimate to
the case of vanishing ¢y, co to get a vanishing estimate on W .

To that end, we claim that whenever 2¢ < ¢; < %, we may take

A X(Cl — 2¢ )2

cy = — 4] 3.7)

in Proposition 3.1 (where § is still as in (3.6) above). Indeed, if

d(y,supp(7e)) > ci,

then d(y,y) > c¢; — e for some y € supp(7.). Note that y is within distance ¢ of a local maximum ¥ of
Dz_ x by Lemma 3.5. This implies by Proposition 3.6 that, as claimed,

_ 2 _ 2
A)((Cl2e)§1—<w—5>:1—02.

D~ <Dz x(u) —
e, X (y) > Uz X (y) 4 4
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In particular for ¢ small enough, we can set

c1 = V10L3/Ax, c2= m — n=0(y/Lj/Ax).

Further, Proposition 3.2 ensures that (3.2) holds for ¢ small enough, since the value A, for 7. converges to
that of 7. (This follows from the fact that 7. — 7 in W1 and in Hausdorff distance of supports, by a similar
computation as in Lemma 1.19.) We conclude that Proposition 3.1 suffices to certify bounds of the form
W (7, 7:) < Ox(y7) = Ox(e'/?).

Finally, from Proposition 3.8 we know that conditions of Proposition 3.3 are eventually certifiable and
hence we get a certifiable lower bound |supp(7)| > |supp(7.)| on the support size of the NPMLE. O

Proof of Theorem 1.9, except for the Shub—Smale property. Proposition 3.9 shows 7. has a certified W; <
Ox (') upper bound and that [supp(7)| > |supp(7.)|.

The upper bound on the support will be certified via Proposition 3.4, where we may certify the bound
a=0 X(el/ 3) using Proposition 3.9. Lemma 1.19 then yields a (certified) estimate

1Dz, x — Dz xllez(_r.p) < e©Fa < Ox(1/?).

To satisfy Condition 3 of Proposition 3.4, it suffices by (3.7) to take ¢ = © X(sl/ 6). Then Condition 2
of Proposition 3.4 holds for ¢ small enough by Proposition 3.8 (regardless of the X-dependent constant

factors). Recalling how 7. was constructed shows [supp(7)| = |supp(7:)|. Then (3.3) gives the same
bound for parameter distance of the rounding 7.. We refer to Appendix D for the proof that roundings are
Shub—Smale approximate NPMLEs. O

In the preceding proof, one can actually take ¢ = O x (1) to be an e-independent constant. However due
to the unspecified dependence on X, this does not yield an actual algorithm. By making c decay with ¢, we
ensure the conditions hold once € < £¢(X) is small enough.

4 Unbounded Support Size of Higher Dimensional NPMLE

In higher-dimensions d > 2, the NPMLE 7 for a spherical Gaussian mixture need not be unique as was
observed in [SGS24, Lemma 2] by taking X = (x1, x2, x3) to be the vertices of an equilateral triangle. We
show below that [supp(7)| may be unbounded for any d > 2 even when the points z; € X are uniformly
bounded (and 7 is chosen to minimize the support size if non-unique). In other words, Proposition 1.4 does
not generalize beyond dimension 1. Both of these points indicate that different ideas are required to obtain
a fine-grained understanding of the NPMLE in higher dimensions.

It will be helpful to extend (1.2) beyond discrete datasets: for any ;. € P(IRY), let the associated NPMLE
7 (1) be any maximizer of

0,(m) = /log Pr(x) du(x) 4.1)

for P, = m*N (0, I4). Moreover, let szr denote the uniform distribution on a centered sphere S, of radius
r inside R,

Lemma 4.1. For any dimension d > 2 and large enough R > Ry(d), let n = /‘ZI,)R' Then ™ = /J,ZI?T is
unique, and r satisfies 0 < R —r < og(1).

Lemma 4.1 is proved in Appendix A. It immediately implies that Proposition 1.4 does not extend to
multiple dimensions.
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Proposition 4.2. For any d > 2, for large enough R > Ry(d) there exists a sequence of data-sets X, =
(z1,...,2p) € (RO satisfying ||z;]| < R forall 1 < i < n such that the following holds. If 7™ is an
NPMLE of X,, for eachn. > 1, then lim,,_,+, [supp(7(™)| = oc.

Proof. Let (X,)n>1 be any sequence of uniformly bounded datasets such that %Z?:l 0z, converges in

distribution to MZPR where R is as in Lemma 4.1 with » > 0. It is well-known that any NPMLE 7 for
X, supported inside the radius R ball is also supported inside the radius R ball. Note that the function
(X, m) — £x () defined in (1.2) is jointly continuous for X, 7 supported inside the radius R ball. Therefore
any subsequential limit of NPMLEs 7™ for X,, must be an NPMLE for fig r- By Lemma 4.1 this means

~(n) d . . . e .
7 5 M;f’r. In particular their support sizes must grow to infinity, which concludes the proof. O
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A Proofs of Lemmas

Here we provide self-contained proofs of several lemmas from the main body.

Proof of Proposition 1.16. Recalling (1.16), define a coupling (y,y’) between 7, 7’ as follows. For each j,
with probability min(p;, p}) we have (y,y’) = (y;, ;). The remainder of the coupling is arbitrary. Note
that by definition this remaining probability is

k
. 1 1
1= min(p;,p}) = 3 > " |p; — 1)l < L > " Ipj — 1.
i=1 J V'

Since diam([—L, L]) = 2L, we obtain

/ 3/2 / 3/2 /
Wy (m,7') < LY /z|pj_p;|2+11£;§(k‘yj_yj|S(L/ +1) dn, (m, 7). O
J

Proof of Lemma 1.18. Point 1 is trivial. Letting (y,3’) ~ I' be an optimal coupling of 7, 7/, point 2 follows
easily from (1.1):

|Pr(z) — Pp(z)| < E(y,y’)NF‘e—laf—ylz/2 _ e—\x—y’\Q/Q‘ < CE(y,y’)~F|y — /| < C6.

Point 3 follows easily by combining the previous two. For point 4, note that since 1 holds for both 7 and
7’. Hence recalling the definition (1.2) of £, the Lipschitz constant of the logarithm on [C _16_2L2, o0) is
O(eQLQ) which gives the claim. The bound (1.18) follows from point 1. Using (1.17) for each term TU) we
have

, 4 Hilz — e 12272 H.(x — 2)ele—2?/2 1
1)) 7, (o)) < | =2 2 T Ao =2 SN 7] M.
’ ' Pr(z;)V2m Prr(xi)V/2m w (i) Pro(Ti)
This proves 5 in light of point 3. The analogous bounds for D follow from (1.3). O
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Proof of Lemma 1.19. We repeatedly differentiate. Let v; = ¢; — p; and p; j = (1 —t)p; + tg;. Using (1.5)
in the first line:
Uje_lxm_yj‘2/2

k
(1 3 1 j
ZU] mox (45) = nz Zzeptze_‘xm_y"-‘Q/z

m=1 \ j=1

Clearly it suffices to consider the case n = 1, with z; = z, which removes the outer average over m. Then
we find:

]2

k g |2 k lz—y; |2 +|z—y,
d le—y;]°/2 exp( j j )
gy — a — v 2 :
I =2 ug (zeme [o—yel? /2) == 2 vy |

| 2
=1 j.j'=1 (3¢ preelovel?/2)
k lz—y; 2 +|z—y 2 +|lz—y;m |2
exp
E’”(t):Q Z ViVt Voire ( 2 )
S —la—ye|?/2)*
4,3",3"=1 (ngt,ze )
To lower bound the denominator, note that
2 o712
Zp”e lz—ye|? /2 min e lTyl?/2 — o207

z,y€[-L L]

This easily gives the main conclusion. When 7([—10, 10]) > 0.1, we have ) _, pt,ge_|m_y2‘2/2 > e~ (L4102 /10 >
Q(e—o.mL?)_ ]

Proof of Proposition 3.1. We first consider the case 7-([—10, 10]) > 1/10. Note that for 7; = (1—t)7+tT,
by definition of 7:

0< L om)lmn = / D x () (d7(y) — dFe(y)) 2 / (D5 x(y) - 1)d7 ().

This implies the bulk of 7 lies near the support of 7.: by Assumptions 1 and 2,

R - 1)
PY~"d(y, supp(7e)) > ¢1] <

<d/ca.
T d4c T /e

We exploit this as follows. By the previous display, there exists 7, supported in supp(m.) such that
W1 (T, 7) < 1 + 2L /ey < 2n. This implies

l0x (7)) — x (7.)| < O(e*7n)

by Lemma 1.18. We write T =, q;0y,.
Now that 7, and 7. have the same support, it remains to show their weights are similar. We do this using
strong convexity via (3.1). Set ¢ =} |p; — ¢;|, which we will show is small. We write

0) = Ox (1 — t)F. + t72).

Then we have ¢/(0) = 0 since 7. is an exact optimum among distributions supported in Z., and ¢"(0) <
—2)\/k by (3.1). By Lemma 1.19 with j = 3, we find ||| < O(cPe'55L%) and so £”(t) < —c2\/2k for

all \
A
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Thus, since £(t) is non-increasing, we have
Ox (7)) — bx (7)) = £(1) — £(0) < L(LAT) — £(0) < —(1 AT)?c?\/4k.
Combining the above, we have
Ix(®) - O <7762L2> < Ix (7)) < Ox(F) — (1 AT)22N/4k
< Ux(7) — (LAT)*PN/4k.

(IAT)e < C’eLQ\/%.

Due to the assumption (3.2), the latter estimate cannot hold with 7T'c on the left-hand side. Therefore we
have an upper bound for ¢ which yields:

Therefore

W (7, 7.) < Wi (7, m) + Wi (m, %) < Le + O(n) < O(LeLQ\/% n n).

The former term dominates the latter when (3.2) holds, finishing the proof of the main bound.
Without assumption 7. ([—10, 10]) > 1/10, the proof is the same: 5.1 comes from 5.1 = 2(1 4 1.55),
and replacing 1.55 by 6 (based on Lemma 1.19) gives 14. O

We next turn to proving Lemma 4.1, which uses the following fact. It can be shown by expansion into
spherical harmonics, or see [Tan17, Theorem 4.4] for an elementary approach.

Proposition A.1. Let F' : R — R be given by a globally absolutely convergent power series F(t) =
> k>0 axt® with strictly positive coefficients ay, > 0. Then for any v € P(Sa,),

// (2, 1) dv(z)du(y /F 2,5)) AP (@) A, (y)

with equality if and only if v = ,uzpr.

Proof of Lemma 4.1. First, let gy be the spherical symmetrization of 7. It is easy to see by concavity of
the logarithm that £,,(7) < ¢,,(Tsym). Thus 7, wsym is a mixture of 1, d , for v’ € R>(. We will show separately
that there is a unique optimal choice r of r/, and that £,,(7) < ¢ (Fsym) unless 7 = Tgym.

Uniqueness of Optimal Radius  First, note that for any 7/, the density of uffr, *N (0, ;) is constant on the
sphere of radius R. Hence maximizing (4.1) is equivalent to maximizing this value in /. Thus, let f(r1,72)
be the density of ufif’m * N(0,1;) on the sphere of radius ro. Letting '“ill,)r, . be the uniform distribution on
the dimension d annulus A, . of inner and outer radii r and r + €, and using p,, to denote the density of an
absolutely continuous distribution:

f(ri,me) =

1
lim dp,  * N(0,Ig)(z) = lim [ p,s  (x)duy, . *N(0,14)(x)
2mrs 90 L, . O 5 o

= hm p e ( ) dﬂd ,T1,€ * N(()’ Id)(l') - hn(l] p“d ST e*N(Ovld)*MSdI,)m«,s (0)

e—0 Hd,rg e

In particular f(ry,79) = f(r2,71), and so r is the radius on which the density p = PP N (0,1,) 1S MaXi-

mized. By symmetry, it suffices to consider the restriction of pto {r’v : 7/ > 0} for a unit vector v € R?.
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The uniqueness of an optimal radius R — or(1) < r < R is now geometrically rather clear and we outline
a formal proof.

First if |[R — /| > RY19, then p(r'v) < O(R~2%) which will turn out to be of lower order than the
maximum value. Hence we restrict attention to ' = R + O(Rl/ 10 here the contribution to p from the part
of MZE)R supported at distance at least R'/* from v is at most O(R~2%) in C?, thanks to the super-polynomial
decay of the Gaussian density and its derivatives.

Forx € supp(uflf’R) with ||z — v|| < RY*, we replace z by its projection =’ onto the tangent hyperplane
to Sq.r at Rv. It is easy to see that |z — || < O(R™%/2), so this change affects p(r'v) by at most
Oq (e*Hx'*RUHQ/?’R*l) in C2 per unit mass dy(x). Finally approximating p(r'v) by integrating over 2’
instead of x, we get an approximation p(7’v) which is simply a Gaussian density centered at R and rescaled
by a factor of @4(R~(?~1) (for the fraction of Sy g within an O(1) distance of Rv). The error from
changing 2 — 2’ and including x at distance greater than R'/4 is at most O4(R~%) in C? norm. Combining
the above shows that a maximizing r is unique and satisfies |R — r| < og(1). Finally » < R simply because
any NPMLE must be supported on the strict interior of supp( MZI,)R)‘

We note that at this point, 11}, has been shown to be an NPMLE for IL‘ZI,)R' The latter part of the proof
below shows it is the only NPMLE.

Spherical Symmetry of 7 Given the preceding discussion, we know that any NPMLE 7 is supported on
Sa, for some unique r. Recalling (4.1), note that without the logarithm, the quantity [ P (z) du(z) is
constant over all such 7. Therefore by concavity of the logarithm, it suffices to prove that Mff,’r is the unique
probability measure v on Sq, whose convolution with A/(0, I;) produces a constant density when restricted
to S¢, r. We will do so by proving that it uniquely minimizes the L? energy of the density, given by

/ P 0.1 ()% AP p(w). (A1)

To establish the latter fact, we will expand and rearrange the integral in order to apply Proposition A.1.
Crucially, note that for [|z]| = r and ||w]|| = R, we have e~ 12=1%/2 & (@) with constant of proportional-
ity e~ (r*+R*)/2 depending only on r, R. Using this observation, we expand (A.1) and interchange the order
of integration:

[ oo dufntw) o [ [ [ e dupywine)avy)
=[] ([ =+ auigatw)) aviopasto)

Cakr = R_k/wlf dpy p(w)

where w is the first coordinate of w = (w1, ..., wq) € Sq r. Of course, Cg 2541 = 0 while Cg 25 € (0, 1).
Then for any z € R%:

o z,w)k CyrRF||z||F Cyo:R% || z||%
[ ) = 3 [0 dNZ?R(w):Z’m””:ZW-

k>0 k>0 ’ j7>0

(A2)

For the inner integral, let

Recalling (A.2), we take z = = + y and observe that ||z||?> = 2(r? + (x, y)). Combining,
Cd72j2jR2j (7'2 + <Q?, y>)]

[ oo dufnw) = [[ (2 o ) dufa)du(y).
Jj=20
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Recalling that Cy2; € (0,1) for all j, we find that the right-hand side has all coefficients strictly positive
as a power series in (z,y). Moreover it converges absolutely on all of R by inspection as a power series
inw = 72 + {x, %), and global absolute convergence is invariant under an affine change of variable. Thus
Proposition A.1 applies and concludes the proof. O

B Approximate Stationarity Conditions

Here we explain how to compute an approximate stationary point (in the relevant sense) for the concave
function £x : P(Z.) — R in a provably efficient manner. Note that Proposition 1.4 implies |[supp(7)| <
O(L?) < |Z| < L/e,i.e. 7 is a sparse vector in P(Z.). Indeed, for us the relevant notion of approximate-

stationary point 7 will be that

% (Ux((1 = s)m+ s7’)

is small for all 7’ € P(Z.). This definition is sensitive to the support of 7, and in particular it is easier to
satisfy when small atoms of 7 are rounded down to 0. This is precisely what we do below, based on the
Frank—Wolfe conditional gradient method. To start, we set w9 = dg and iteratively define:

s=0

,ﬂ_(t-f—l) _ t’ﬂ'(t) + 26yt

t+2 (B.1)

yr = argmax D, ) x(y).
y€Ze

In using this manifestation of the Frank—Wolfe algorithm, we implicitly equip P(Z.) with the Euclidean
norm on its finite sequence of probability mass values (and also negated £x to make it convex). In particular
the Wasserstein distance does not enter here. We also point out that [Jagl3, Theorem 2], which we rely
on below to understand (B.1), applies even if y; is only an approximate maximizer of D« x. (This could
easily be incorporated into Lemma B.1 to ensure that approximately maximal y suffice in (B.1).)

Next we modify 7(*) to #(*); this will ensure Dy x(y) —lisclose to 1 forall y € supp(#(*). Define
for . > O the subset R, = {y € Z : p o (y) < t}. Fore < 47,

Y pen(y) <3Lfe <1/2. (B.2)
YyER:,

Thus we may define another probability measure

0, yeR,
%(t) (y) = 71'(’5)(y)5
1= yer.  Pr)(¥)’

y¢ R,

Lemma B.1. Fix any X € [~L,L]". For ¢ small enough depending only on L and for t > 78, the
probability measure 7 satisfies:

2
e4L

c1/23/¢

2
e4L

c1/23/¢

Dﬁ(t),x(y)—1§0< ) . VyeZ..
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Proof. We apply [Jagl3, Theorem 2] to the algorithm (B.1). The conclusion is a bound

®) < 10 diam(P(Zc))*Lip(Vex)

gl t+2
where (using (1.5)) we have by definition
g(m ™) = max (D x (1) — 1) - (1 = pro (1))- (B.3)

YyEZe

It is easy to see that diam(P(Z.))? < 2. Meanwhile, V/x (7) = D, x(-). Combining (1.20) and the fact
that W (7, ') < 2L||m — ||y, it follows that the Lipschitz constant Lip(V/x) is at most O(LeL?).
Altogether we find that

O(Le*E?)
t+2)1—prw(y)

D7r(t>,X(y) -1 < (
Additionally, (1.4) implies that

1- pﬂ'(t) (y)

D s x(y)—1<
=0, x () Py (Y)

Next we combine these two estimates. It is easy to see that for small 3, one has min(%, %) < O0K/PB)

for all p € [0, 1] by casework on the event p < 1 — /3. Hence for (say) ¢t > ¢%L” and all Yy € Ze,

(B.4)

412 _ 412
D, x(y) —1 < max ( O(Le™™) it 0 (y)) <0 Le

(t+2)1=p0(y)  Prr(y) t+2

Next we turn to #(*), showing it approximately preserves the preceding upper bound for all y € Z..
Note that ||7(") — #®)||p, < 31L/e, hence Wy (7)), %)) < 6,L2/e. Using again (1.4) and the preceding
upper bound, we find that for y ¢ R, ,:

L64L2
t

Dw(t),X(y) -1 > —Pr) (y>_1 -0

(120) Le?l? AL 12
Dy x(y) =12> (Do x(y) = 1) + (D x(¥) — Dro x(y)) = —O + :

—L?p-1/4.1/2

Taking t = e , we obtain

2
e4L

3 —1>-0 ——

) . Vy € supp(#¥),

under the condition ¢ > &8 for sufficiently small (to ensure (B.2)). Finally bounding ]D;r@)’ < (y) —
D, x(y)| in the same way, (B.4) becomes

eAL?
D7“r<t),X(y) -1<0 (61/2\‘1/7?) , Vye Z. O
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We can now show an approximate version of Lemma 3.5.
Lemma B.2. For ¢ small enough depending on L there exists an algorithm with complexity O(Lne~11)
which returns 7. € P(Z.) obeying for 6 = CL2eM &2
(a) Dx_x(y) >1—46 forally € supp(7,).

(b) glggD%g,x(y) <1+06.

(C) Ex(%) —EX(%E) § (5

Proof. Note that each Frank—Wolfe iteration (B.1) requires O(Ln/e) operations to find the maximal y € Z..
Taking 7. = #(*) as defined in Lemma B.1, the first two parts follow by setting t = £~10, except that the
upper bound must hold for all y € R instead of just y € Z.. The extension to [—L, L] follows immediately
via (1.19) (and after e.g. doubling 9), and this suffices by Lemma 1.20. The last assertion follows by (B.3)
since 1 — p_v (y) < 1, since g(7®) is a certified (dual) upper bound on the suboptimality of 7(*). O

Below we let 7. be the approximation to 7 guaranteed by Lemma B.2. We first show that Proposition 3.6
extends to this setting, with 7. in place of 7. . Recall the definitions of Ax, Bx in and just below (3.4).

Proposition B.3. For € small enough, we have:

d(y,supp(t.)) < ax/2 = DY x(y) < —Ax/2;

y B
d(y,supp(7e)) 2 ax/2 = Dy x(y) S1-—-.
Proof. Using Lemma B.2(c), the proof of Proposition 1.8 implies lim._,o W1 (7, 7.) = 0 uniformly in the
choice of Z.. The rest is identical to Proposition 3.6. O

Proposition B.4. For ¢ sufficiently small depending on X, any pair of points in supp(7) within distance
ax /5 are within distance O(\/d/Ax).

Proof. By Proposition B.3, D%’E  1s negative on the interval between any two such points (for small enough
¢). Lemma B.2 and simple calculus completes the proof. O

For € small enough that \/6/Ax < ax, Proposition B.4 implies that the graph of atoms in 7. under
the distance-at-most-ax /5 graph is a union of cliques. We form 7. by taking the weighted average of each
such clique, i.e. replacing p;dz;, - . ., pjdz,; by p;dz, for

- - DiTi + -+ DT
Di = Di Dj i Tt ot

It again follows from Proposition B.4 and the Wasserstein convergence 7. — 7 that [supp (7 )| = |supp(7)]
for € small enough, and that

lim dy (supp(fra), supp(%)) =0.
e—0
Proposition B.5. For e < ¢¢(X), the conditions of Proposition 3.1 apply to 7t. with:

5 =O(L%**§/Ax) = O(2L e JAx),

C1 = v CL(S,
Cy = AX\/Sa
n = 2cy,

Ae = A(7e) = A7) £ 0:(1).
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In particular, the estimator 7. obeys certifiable bounds of the form W1 (%, 7.) < Ox(e'/*) as well as
|supp(7)| = [supp(7re)|.

Proof. The bound on ¢ for 7. is given in Lemma B.2. To extend it to 7., the analogous argument in
Proposition 3.9 reduces to showing that for |z; — z;11]| < O(1/0/Ax),

‘(pﬂ‘> elml2 Ly <Pj> eleimvP/2 _ o=mi2| L o5/ a ).
pit - +Dpj pi+ - +Dpj

Taylor’s theorem applied to f(x) = e~ l=l?/2 easily again gives the bound.
Continuing, we claim that whenever 2¢ < ¢; < CLTX, we may take

(c1 —€)* — O(V9)
i :

CQZAX‘

in Proposition 3.1. Indeed, if
d(y,supp(7c)) > c1,

then d(y,y) > c¢1 — € for some § € supp(7.), so in particular Dx_ x(y) > 1 — 6 by Lemma B.2. As
an intermediate step, we upper bound [D_ (9)| using Lemma B.2(b) and bound (1.19) with j = 2. In
particular, optimizing over y € R in the first line to obtain the inequality (), we find

Di. x(y) > Da. x (@) + D x () (y —§) — CoL? ™ (y — )2, Wy eR
Lem. B.2 ) |D/v (y)P
B InaXD;TE)((]j) + 20 > D;FE X(z) > D%E X(?j) +Q (71'5,X2
R ’ ' ' [2e4AL

— D% x ()] < O(Le** V).

Using Proposition B.3 we now obtain (3.7):

; o Ax(e—e)?
Di, x(y) < D, x(§) + O(Le" Voly — ) — X(sz)
_ )2
=i (AX(CZE) B O(LeLQGX\/S)) =1-c.

In particular for € small enough compared to Ax and C' an absolute constant, we can set

1 =VCOLS, c3=AxVd = n=c + Lo < 2VCLS.
C2

Further, Proposition 3.2 ensures that (3.2) holds for ¢ small enough, since the value A(7.) is easily seen to
converge to that of 7. We conclude that Proposition 3.1 suffices to certify bounds of the form W (7, 7r.) <
Ox (e'/4). Finally, this implies |supp(7)| > |supp(#.)|, again for € small enough depending on X (and in
particular 7). O

Proposition B.6. For € small enough, Proposition 3.4 certifies |supp(7)| < |supp(7.)|.
Proof. Follows exactly as in the Proof of Theorem 1.9. O

Proof of Theorem 1.10, except for the Shub—Smale property. The result follows by Propositions B.5, B.6,
and 3.3. See Appendix D for the Shub—Smale property. O
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B.1 Finite S Case

Here we prove Theorem 1.15, except for the Shub—Smale property which is addressed in Appendix D. We
use exactly the same version of Frank—Wolfe as above, but restricted to S rather than Z.. Thus we take

(t+1) twg) + 25%
Tg ==

)

t+2
— argmax D .
ye = argm 0 x ()

Define for ¢ > 0 the subset Rs., = {y € S : p o (y) <t} Fore < 47,

> Py (y) <Bul/e <1/2.

yERS,E,L
Thus we may define another probability measure

07 (S RS,&,L

Ts'(y) = ()
ons. o Y E Rsew
= S

The proof of Lemma B.1 extends unchanged to give the following. Fix any X € [-L,L|" and S C R
finite. For e small enough depending only on L and for ¢ > 8, the probability measure TSe = T t)
satisfies:

2
64L

D%S,E,X(y) -1>-0 (51/2\%?

) > —C(L)E?, Wy € supp(#),

412

1237
ﬁx(%g) — ﬁx(%&g) < C(L)&Q.

Dz x(y)—1<0 ( c ) < C(L)*?, Wy e s,

Proof of Theorem 1.15, except for the Shub—Smale property. Similarly to the main case, let

Bsx=1- max D5 > 0.
X yeS\supp(7s) s:x (W)

Since 7 is unique, we have g, — 7g in Wasserstein as ¢ — 0, which implies that for ¢ small enough we
have Dy, x(y) <1— B%X forall y € S\supp(7s).
The remaining proof is similar to before, and we just give an outline. The initial steps follow the proof

of Proposition 3.1. First one can certify that 7 has at most € mass outside supp(7gs,), using the bound on
10”00 for £(t) = £x ((1 — t)Tse + t7g). This is because

¢ (0) = EV"7S[Dx, . x(y)]-

Again (3.1) holds for some positive A = A(S, X) (with S and 7g in place of Z. and 7.) by uniqueness of
7s. Then (3.1) will hold with constant \/2 for 5. with small enough €. This allows to certify that all
approximate local maxima of ¢ x supported on supp(7s,) are within O(\) of 7g . (using now the fact that ¢
has 3 bounded derivatives). Since we could also certify above that 7 has at most € mass outside supp(7g.),
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these certificates thus combine to certify that Wy (7s, 75.) < C(S, X)e almost surely for small enough ¢
(again similarly to Proposition 3.1).

Since for small € we will have Dx _ x(y) <1 — BSZ’X for all y € S\supp(7s), applying (1.20) to the
Wasserstein bound certifies that

Bs x ~
Dz x(y) <1— 4’ ,  Vy € S\supp(7s).

In particular, this certifies that supp(7s) € supp(7s,.). The opposite inclusion is easily certified from
Wi (7s, 7se) < C(S, X)e once ¢ is small compared to p.d,, where p, is the smallest atom size in 7g and
d. is the minimum distance between points in S. Finally, a W1 bound immediately gives a dpy, () bound as
well. U

C Positive Probability to be k-Atomic

We show that for any n > k > 1, there is a positive probability to have & € Il with L < O(k\/@),
as mentioned in Remark 1.6. Thus shows that conditioning simultaneously on the events 7 € 1I; and
max; j(x; — xj) < ent/t s possible, for n polynomially large in k.

We partition [n] into k parts Si, ..., S of sizes [n/k| or [n/k]. We fix a large absolute constant C,
and set ; = Ciy/log(k+ 1) for each 1 < i < k. Let us suppose that |z, — Z;| < 0.1 holds for all
a € S;. This is a positive probability event, where roughly speaking the datapoints are clustered into groups
of approximately equal size. We will show that this implies |[supp(7)| = k. Precisely, 7 has exactly 1 atom
close to each z;, and no other atoms.

Lemma C.1. For each i € [k], supp(7) C |J,[Z; — 0.2, %; + 0.2].

Proof. Recall that the function e~¥/2 is convex outside of [—1, 1]. First, suppose 7 has an atom pd, with

w, and this will increase the value of Py (x,)

min; |y — &;| > 2. Then we may replace pé, by
for each a € [n]. This contradicts optimality of 7 in (1.2).
Next, suppose 7 has an atom pd, with min; |y — &;| € [0.2,2]. Without loss of generality, suppose

y — Z; € [0.2,2]. Then we can replace pd, in 7 by
p(1 = ¢)dy41 + pcdy—o.1-

For ¢ a small enough absolute constant, this will increase Py (z,) forall a € S;. Then choosing C' sufficiently
large ensures Py (x,) increases for all other a ¢ S; as well. O

Lemma C.2. For eachi € [k], #([%; — 0.2,&; + 0.2]) > 5.

Proof. We claim that if 7 violates this condition for some i, then Dz x(Z;) > 1, which contradicts Proposi-
tion 1.1. Indeed in this case, Lemma C.1 implies the set #([Z; —61/log(k + 1), Z; +6+/log(k + 1)]) < 5.
Then it easily follows that P (z,) < ﬁ for each a € S;. We conclude that:

10k|S; .
D x(Z;) > 5] min e_‘x_xi‘2/2/\/27r > 5e7 0995 /2 > 1.
’ n xe[:ii—().l,&':,-—f—o.l}

This is the desired contradiction. OJ

Lemma C.3. For eachi € [k],

supp(7) N [&; — 0.2,Z; + 0.2]| = 1. Thus |supp(7)| = k.
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Proof. We use the previous lemmas to show D x is concave on each interval [Z; — 0.2, Z; + 0.2]. Fixing

i, we decompose
k

k
Dax(y)nv2r =3 3" e VP2 p(a,) £ 37 Dy(y).

j=1a€s; j=1

We first study D;(y). Trivially, P;(z4)v/27 < 1 forall a € [n]. Furthermore, the function f(y) = ¢ ¥/
satisfies f”(y) < 1/100 on |y| < 0.2. Therefore one easily finds

S| n
DY <—| U
1) < =150 = " 2008

Next we study D7(y) for j # i. Here, Proposition C.2 implies that P (z,) > oop for all a € [n].
Therefore for all y € [z; — 0.2, %; + 0.2]:

Yy € [# — 0.2, % + 0.2).

S n
D" (y) > —100k|S;|e=C* los(k+1)/2 > _ J > _ .
i) = |Sile = 100(k+1)10 = 10(k +1)8

Summing over j # 4, it is clear that D/ (y) dominates, so DY (y) < 0 forall y € [#; — 0.2, %; + 0.2]. By
Proposition 1.1, 7 is supported within the set of global maxima of D3, which completes the proof. O

Combining the lemmas above immediately yields the claimed result.

C.1 Example of Non-Generic Behavior

Here we prove Theorem 1.7. With n = mk, we restrict to the positive probability event that X satisfies the
conditions of Lemmas C.1, C.2, C.3,i.e. |z, — &;| < 0.1 for all a € S;. For convenience, we say such X is

k-good; this condition implies 77 € II. We claim that conditioned on (2,41, - - -, Z5,), the conditional law
of 7 does not admit a density on II;. The proof is motivated by Remark 2.5. The main remaining step is
the smooth dependence of 7 on (x1, ..., xx). To show it, we rely on the following standard version of the

implicit function theorem.

Lemma C4. Let U,V C R% be open sets and F : U x V. — R? a smooth function. Let u, € U and
vx € V be such that O, F (us,vy) € R4 i invertible. Then on a neighborhood Uy C U of uy, there exists
a smooth function v : Uy — V such that

F(u,v(u)) = F(u, vs)
holds for all u € U.

The following lemma shows that Theorem 1.2 parts (II) and (III) imply Theorem 1.3(B). Theorem 1.3(A)
also follows from the proof, as the Hessian of £x is the Jacobian of ~; within, which is shown to be strictly
negative definite.

Lemma C.5. Suppose 7 is the NPMLE for X and satisfies the conclusions of Theorem 1.2 parts (II) and
(III). Then for X in a sufficiently small neighborhood of X, the function X — 7(X)) has image in Iy, and
is smooth. Here we consider 11}, to be an open subset of a 2k — 1 dimensional real vector space.

Proof. 1t is clear that %()N( ) € Iy for X close to X. We will apply Lemma C.4 with d = 2k. We consider
the Jacobian of the map

k
= piby > W(m) = (Drr(yl) — 1,y Da(yr) = 1, Di(u), - - ,Dir(yk)) € R%,
i=1
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Here we temporarily relax the constraint Zle p; = 1 so the Jacobian is a 2k x 2k matrix Jor. We show
below that this Jacobian is invertible. Then Lemma C.4 applied to (7, X ) implies existence of a smooth
function 7r(X) such that v, (7(X), X) = 0 in a neighborhood of (7, X). Further, any such solution satisfies
Zle piDx(y;) = Zle pi = 1, so 7(X) is always a probability measure (despite the relaxation to 2k
dimensions in applying the inverse function theorem).

We turn to invertibility of the Jacobian. The entries of —Jo, are, for 1 < 4,5 < k:

(7 (xe*yj)zér(wz*yi)z)

n_exp

ADr(y) _ 1§~

dp; n Pr(xy)? ;

($z—yj)2+($/z—yi)2)
2

(=1

(z¢ — yj) exp (—

- (20)? ;

P,
n_ (xy — y;) exp (-
P,

CdDi(y;) 1 Zn:
dp; n

dDﬂ'(yj) l
dy; n = ﬂ(xﬁ)z
Typ—Yqi 2
1 & Li=j (e — yi) exp (*7( == )
n P (xy) ’
=D (yi)=0
To—y:)2+(zo—y;)?
DL (y;) 1 n_(x0 — yi) (20 — y;) exp (_( ) ;r( =) >
dy; n Pﬂ'(xﬁ)Q

n Py ()

-~

=D7(yi)<0

Note the 1,—; terms come because if ¢ = j, we vary the input to D .
We will show —Jy is strictly positive definite, hence invertible. We first show the k x k submatrix —Ji

formed by the %p(_yj) terms above is strictly positive definite. Indeed, we see from the above that

dDx(y)) - -y
= A;A; O, ee(itys)
dp; ! ; ¢

for strictly positive constants A; and Cy. Thus —Jj is positive semi-definite, represented as a positive
combination of rank 1 matrices (7(9)®? for Uy) = e™¥_ We claim —Jy is strictly positive-definite. In-
deed, Lemma 2.6 shows the vectors 7, ..., 7™ are linearly independent, i.e. that if the real coefficients
By, ..., By satisfy
k
G(z) = ZBjexyf =0 Vre{zr,...,z,}
J=1

then By =--- = B, = 0.
Next, using the simplifications indicated by identifying values of D! and D! above, we see that —Ja,
is positive semi-definite via another explicit representation as a sum of n rank 1 matrices, together with the
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diagonal terms from D!’ appearing in the formula for %y(iyj). Since all of these diagonal terms are non-
zero, it easily follows that all of —.Jyy, is strictly positive definite. Indeed, we can write —Jo, = M + M’
where M’ includes only the diagonal D” terms. Then if (v, (M + M’)v) = 0 for some v € R?*, we see that

v cannot have any non-zero entry interacting with M’ since M is already positive semi-definite. But then

we are reduced to the strict positive definiteness of —.J; shown above! O

Lemma C.6. Suppose 7 is the NPMLE for X and satisfies min(A) DZ «(y) < 0. Suppose further
yesupp(m ’

that t1 = -+ = Ty Fore > 0and Z = (z1,...,2m) € [0,1]™, let Tz = T(x1 + €21,...,Tm +

EZms Tm41s - - - Tn). For e sufficiently small, 7z lies in 11y, and has a Taylor expansion of the form:

Ty =74+efi(PU2Z)) +2fo(PL(Z),Po(Z)) + - + " fi(PL(Z), ..., Pn(Z)) + O™

where P;(Z) = Y"1" zf is a power sum symmetric polynomial and each function f; is Lipschitz. Here we

consider 11, to be an open subset of a 2k — 1 dimensional real vector space.

Proof. Lemma C.5 implies that 7, € II; depends smoothly on Z. Its k-th Taylor coefficient is a degree

k polynomial in Z. Since 1 = -+ = x,,, it must be symmetric in (z1,..., 2y, ), hence is a polynomial
in (P1(Z),...,Px(Z)) (see e.g. [SF99, Chapter 7]). This easily gives the form of the Taylor expansion
above. O

Proof of Theorem 1.7. We begin with (X, 7) as in Lemma C.6 such that 7 has k atoms. This can be arranged
by taking 1 = - - - = x,, to be fixed and the remaining data generic. Then Section C shows |supp(7)| = k
with positive probability, while since n — m > (2k + 2)2, Theorem 1.2 implies the remaining hypothesis
holds almost surely.

Next, take € > 0 small and consider the set of achievable 75 as above. Lemma C.6 implies this set of
7tz is contained in the O(£%*) neighborhood of the image of [0, £] x [0, 2] x - - - x [0, £2¥~1] under an O(1)-
Lipschitz function (i.e. with Lipschitz constant independent of ). This is because the Taylor expansion
above is O(g?)-Lipschitz in p;(Z), which is bounded by a constant that does not depend on ¢ (thus rescaling
gives the claim).

This set of possible 7 can be covered by at most O (e ~#(2=1)) balls of radius £2* !, hence has volume
O(e@k=1?=k(2k=1)y — O (c(k=1)(2k—1)) On the other hand, the volume of the corresponding set of inputs
(x1 +€z1,...,@m + €2p) is €. Hence in order for 7 to have locally bounded density, we must have
m < (k —1)(2k — 1). This completes the proof. O

D Asymptotic Convergence From Approximate Solutions

Here we explain the rapid asymptotic convergence of Newton—Raphson and Expectation-Maximization
starting from a good approximate solution.
D.1 Approximate Shub—Smale Solutions

Given our existing work in proving Theorem 1.9, the Shub—Smale approximate solution property follows
from standard results in numerical analysis. The notation in the following result is adapted to our setting.

Proposition D.1 ([SB13, Theorem 5.3.2]). Let B, (m) C Il be the r-neighborhood of m € Iy, =~ R2F—1,
Let B,(r) be the closure of B.() in R*~1 and assume B,.(n) C I, (i.e. the distance from 7 to the

39



boundary Ol is larger than r). Let F' : B.(m) — R~ be a smooth function. Suppose the positive
constants r, a, 3, C satisfy:

h & apC < 1;
«
r=——.

1—h
Suppose {x and its gradient and Hessian (in the space 11}) satisfies:
1. V3(x is C-Lipschitz on B,.(r).
2. V%Ux = —Iy._1/f3 uniformly on B, ().
3. [V2ex(m)) " 'Vex(n)] < .

Then Newton—Raphson iteration starting from mg = m converges to a limit 1, € Il such that for each
t>0:

th—l
ail o

Proof of Shub—Smale property in Theorems 1.9 and 1.10. We show 7. is a Shub—Smale approximate NPMLE
for small enough ¢ (the proof for the adjacent-atom rounding of 7. is identical). From the proof of the pre-
vious parts of Theorem 1.9, we know that d, (7., 7) < /4 for small enough . We have shown via
Lemma C.5 that Theorem 1.3(A) holds, so £x is c-strongly concave in an open ITg-neighborhood of 7,
for some ¢ > 0. Additionally, this Hessian is clearly C-Lipschitz for some C' = C(L) thanks to e.g.
Lemma 1.18. This means local ¢/2-strong concavity of £x is certifiable in a IT;-neighborhood of 7. which
certifiably contains 7, for € small enough.

We will apply Proposition D.1 to such 7 = 7. and conclude the desired result. Indeed we can take
C = C(L) as mentioned just above, and 3 = 2/c. Neither depends on ¢, and so we can take a < ¢'/°
for small enough €. Then h < 1/10 < land r < 2 < 2¢1/5 is smaller than the II,-distance from 7. to
Iy, for small . Then (D.1) implies quadratic convergence to a limit o, € IIj, with Vx (7o) = 0 and
dm,, (70, Too) < 2cv. From the local strong concavity, it follows that 7o, = 7. The precise quantitative rate
in Definition 1 holds because h < 1/10. This concludes the proof. O

dr,, (7, Too) < (D.1)

D.2 Static Support Case

Here we explain Theorems 1.14 and 1.15, which are the static support analogs of Theorems 1.3 and 1.9,
1.10.

Proof of Theorem 1.14. Here the Hessian of {x is just the submatrix J; from the proof of Lemma C.5,
which is strictly negative definite for all 1 < k < n (with no genericity conditions on D). This implies both
results. O

Proof of Shub—Smale property in Theorem 1.15. Given the local strong concavity around 7g from Theo-
rem 1.14, the proof is identical to the corresponding parts of Theorems 1.9 and 1.10. O
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D.3 Locally Linear Convergence of Expectation-Maximization

The Expectation—Maximization (EM) algorithm of [DLLR77] is another approach to optimize £y . Here one
defines a sequence of iterates g, 7y, - - - € Il as follows. Given an iterate m; = Zle Didy,, the next iterate
w41 has parameters:

R
~ Di e
; = — (D.2)
pi n ]Z; Z?:l peef(xjfyl)Q/z’
Zn_l Ije—(m]-—yi)2/22 27.1_1 (2 y)e—(xj—yi)Z/Q ,
G Mimpe VR T e D) (D.3)
Yi n JECTREE Yi o v2 /2 T Dl ‘

S

7=l Sl poe” (%5 —ue)?/2

Ej:l i poe” (%5 —ue)?/2
This iteration improves the value of £x in each step; however it is not guaranteed to converge to a global
optimum of £x even within the space IIx. On the other hand, one can verify using (1.6) that the NPMLE 7
is a fixed point of the iteration.

Proof of Theorem 1.3(C). Let F(w) = & correspond to the iteration from (D.2), (D.3). Identifying IIj
with an open subset of R?* (i.e. not enforcing the constraint Zle p; = 1), we will show that JF'(7) is
strictly stable, with all eigenvalues in (—1, 1). This immediately implies the same property on the 2k — 1
dimensional space 11}, (since the output of (D.2) immediately satisfies ) _, p; = 1). It is well-known that this
stability implies locally linear convergence rate for the EM algorithm; see e.g. [DLR77, MR94].

We first explicitly compute the Jacobian JF'(7) at 7:

P _ . _piz”: o=@ /2@y =yr)* 2
Opr o j=1 (Ze 1 bee™ (5= y4)2/2)

opi _bi zn: (zj — yp)e (@i —ur)*/2 _pi Z
n

O m j=1 S pee=(@i—un)?/2

=D’(yr)=0

9y; _ 1 > () — yi)e @ —vr /2= (e,mu)?/2
- n

e~ (@i—yr)?/2—(zj~y:)?/2

(Zf 1 bee —(z—ye)? /2)

)

" n g <z’z_1peef<wrw>2/2>2 |

7 —(zj—yr)?/2—(2z;—yi)*/2
0Y; — 1, (1 i D// yz Z pr yz)( J 7
8yr (ZZ 1 pee —(@j—ye)? /2)

Here the factors of 1/n in the latter two lines come from D(y;) = 1 for all i. We note that another term
which equals 0 for 7 was omitted from the formula for g , again because D’ (y,) = 0 holds at 7.

The terms 1;—, cancel Is;. Removing the first term in gp L as indicated above, we may write:

ng —JF + dlag(o, ey 07 D”(yl)> e 7D”(yk))

n k 9 ®2
_ pl/n pzpr/n *(m'fyg)Q/Z -2 ef(zj*yi) /2
B {l/n pr/n ] © Z (;pze ’ ) (zj — yi)e*(rj*yi)Q/Q :

Jj=

Here the former matrix is 2k x 2k, with (i, r) entry equal to p;/n, (i, k + ) entry equal to 2=, etc. The
latter column vector has length 2% (and depends on j). The first k entries are given by %6_(%’ —)*/2 for
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1 < i < k, and the next k entries are given by p;(z; — yi)e_(xj —4)%/2 for 1 < ¢ < k. Note that the matrix
VPiPr
pi/n pipe/n| . . . pi/n Y| . i ) ) )
is similar to , n via conjugation by M = diag(,/p1, .- -, ,1,...,1);1in
[1/71 pr/n } [\/%FT pr/n] jug y g(y/p1 Pk )
particular their eigenvalues are equivalent. This conjugation extends to the preceding display, and shows

IZk_JF+diag(07"'707D”(y1)7"'aD//(yk)) éIQk - JF+D

is similar to the positive semi-definite matrix M~!(I5; — JF 4 D)M given explicitly by:

U, 5 o\ —2 \/Eef(xj*yiﬁ/? #2
Z( pee~ (Fi—ve) /2) Von o ‘ (D.4)
j=1 =1 Bz —yi)e (w5 —we)"/2
We claim that M~ (I, — JF)M is strictly positive semi-definite. Since D" (y;) < 0 for each i, it suffices to
verify that the upper-left £ x k block of (D.4) is strictly positive-definite. This amounts to proving that the
n vectors (e~ (%= 2/ k| (for 1 < j < n) are linearly independent. As usual, this is equivalent to linear
independence of the vectors (e*i¥i )?:1 which holds for any k¥ < n by Lemma 2.6.

Next we need to show all eigenvalues of JF' are larger than —1, or equivalently that all eigenvalues
of M~1(Iy, — JF)M are strictly smaller than 2. For each j, we upper-bound the rank 1 term in (D.4)
by replacing (p;, pr) entries of the form A;, ; A, ; ; by diagonal entries A%m ; and A?ﬂ’i’j in the (p;, p;) and
(pr, pr) positions respectively, which always gives an upper bound in the positive semi-definite order. In
particular, the (p;, p,) and (p,, p;) diagonal entries

PP (=0 2= (a2
( Zlefﬂ pee~ (@i _y[)Z/Q) 2

can be upper-bounded via replacement by the respective (p;, p;) and (p.., p,) entries:

Pr . o (a—u)?/2—(xj—ur)?/2  Pi . o —ui)?/2 ()2
n n . (D.5)

( 2521 pee~ (@i —92)2/2> 2 ( Zlgzl pge_($j—ye)2/2> ?

(Note that the p; factor appears in the (p,., p,) position, and vice-versa.) Similarly the (p;, y,) and (y;, p;)
entries

PP (g — e @y 2 (i) /2

n ( >t pze‘(%—yeﬂm) 2

can be upper-bounded by the respective (p;, p;) and (y,, y,) entries

B, e—(@i—vi)?/2—(zj—yr)?/2 Bi(zj— yr)2e (@i v/ 2= (@ —yr)?/2

( 25:1 pee= (@i —y£)2/2> 2 ( lezl pge_(zj_yl)2/2) ?

)

and the (y;, y,) and (y,, y;) entries
VPiPr (.rL-] _ yz)(m-j _ yr)ef(zjfyi)Q/Zf(mj7yT)2/2

n (ZL pee‘(%‘—ye)zm)Z
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can be upper-bounded by the respective (y;, y;) and (y,, y,) entries
P o= (0 =ui)?/2= (e =ur)?/2 PiL (g5 — )2 (2w 2 (25 —ur)?/2

n n

( i pee_(“j_yf)Q/Q) . ( > pee‘(%"y‘f)”?) i

After making all of these substitutions, the resulting diagonal matrix has (p;, p;) and (y;, y;) entries:

2@7(33]'71/1')2/2 2(33] — yi)Qe_(xj_yi)z/Q

nzlgzlpfe_(mj_y[)2/2, nzlgzlpfe_(mj_yl)2/2 :

Summing over j, the resulting matrix has (p;, p;) entry 2D(x;) = 2 and (y;, y;) entry 2 + 2D"(y;). Since
this matrix is an upper bound for M~!(I5; — JF + D)M in the positive semidefinite order, we conclude that

MLy, — JF)M < diag(2,...,2,24+ D" (y1),...,2+ D" (yp)). (D.6)

This shows the desired inequality, again except for strictness in the (pi, ..., px) subspace. Note that for
v = (v1,...,v9) # 0 to satisfy

(M~ (Lo — JF)M,v®?) = (diag(2,...,2,2+ D" (y1),...,2+ D" (y)),v®?),

we must have v 1 = -+ = vy, = 0, since D”(y;) < 0 for each i. However then the contributions from
(pi, yr) entries to the left-hand expression are zero. Hence for such v the only contribution comes from
(D.5) so we actually have

<M_1(I2;C — JF)M,U®2> < Hv||2

Combining, we see that (D.6) is strict, i.e. the difference is strictly positive definite. This completes the
proof. 0
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