Proceedings of Machine Learning Research vol ???:1-59, 2025 38th Annual Conference on Learning Theory

On the Minimax Regret of Sequential Probability Assignment via

Square-Root Entropy
Zeyu Jia ZYJIA @MIT.EDU
Yury Polyanskiy YP@MIT.EDU
Alexander Rakhlin RAKHLIN @MIT.EDU

Massachusetts Institute of Technology
Editors: Nika Haghtalab and Ankur Moitra

Abstract

We study the problem of sequential probability assignment under logarithmic loss, both with and
without side information. Our objective is to analyze the minimax regret—a notion extensively
studied in the literature—in terms of geometric quantities, such as covering numbers and scale-
sensitive dimensions. We show that the minimax regret for the case of no side information (equiv-
alently, the Shtarkov sum) can be upper bounded in terms of sequential square-root entropy, a
notion closely related to Hellinger distance. For the problem of sequential probability assignment
with side information, we develop both upper and lower bounds based on the aforementioned en-
tropy. The lower bound matches the upper bound, up to log factors, for classes in the Donsker
regime (according to our definition of entropy).

1. Introduction

We consider the problem of sequential probability assignment under logarithmic loss. This frame-
work has been studied extensively over the decades in fields such as information theory—where
it relates to sequence compression—in gambling and sequential investment—where it is linked to
wealth growth—and in online learning Cesa-Bianchi and Lugosi (2006). In its more recent incar-
nation, next-token prediction has emerged as a central challenge in training large language models,
where the goal is to minimize the logarithmic loss (commonly referred to as cross-entropy loss) on
nearly all available data.

Let us now describe the formal setup. On each round ¢t = 1, ..., n, the forecaster chooses a dis-
tribution p; over the finite alphabet ), observes y; € ), and incurs a loss of — log p;(y;). Over the
n rounds, the cumulative cost is Y ;- ; — log p(y;). Since the distribution p; is chosen based on the

previous outcomes y1, ..., Y1, wWe associate p; with a conditional distribution p(-|y1,...,yt—1)
and write the cumulative loss succinctly as — log p(y), where p is the corresponding joint distribu-
tion over sequences y = (Y1, - - -, Yn)-

The cumulative loss of the forecaster can be compared to that of the best “expert” in a class
Q C A(Y™), each identified with a joint probability distribution q € Q. The forecaster aims to
minimize regret

n n
> —logpi(y:) — inf Y —loga(elys,- ., yn—1) = suplog (W) (1)
t=1 €] qeQ p(y)
for any sequence y1, . . . , Y. As such, the problem falls under the umbrella of worst-case prediction

(also known as individual sequence prediction).
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In the more general problem of prediction with side information (or, contextual prediction),
the forecaster observes additional covariates z; € X prior to making the probabilistic forecast
Pt € A(Y) on round ¢. In this case, the regret expression becomes

n n
> —loghily) — inf > —log gu(yrle) 2)
t=1 €L
and g = (q1,...,¢n) is a sequence of conditional distributions ¢; : X — A(}Y). Of course, if
xy = (y1,...,y—1) and X = Y*, the problem reduces to the non-contextual version in (1).

The intrinsic difficulty of the prediction problem in the non-contextual case is

- aly)
Ra(Q) =t sy s (35). @
a quantity referred to as the worst-case redundancy, or minimax regret. A similar notion can be
defined for the contextual version of the problem, when (z1,. .., ;) also form an individual (i.e.
arbitrary) sequence; however, for brevity, we defer this definition to Section 3.

The goal of this paper is to analyze the behavior of R, (Q), for both contextual and non-
contextual cases, in terms of geometric concepts—such as covering numbers (or entropy) and
scale-sensitive dimensions—analogous to how sample complexity is quantified in statistical learn-
ing through the complexity measures of the function class. This objective is not new; over the
past several decades, numerous seminal ideas have been developed to address this question Cover
(1974); Rissanen (1983); Shtar’kov (1987); Cover (1991); Merhav and Feder (1993, 1998); Cesa-
Bianchi and Lugosi (1999), and more recently in Bilodeau et al. (2020); Rakhlin and Sridharan
(2015b), among many others.

In particular, the classical result of Shtar’kov (1987) states that in the non-contextual case,
R, (Q) has the following closed form:

Rn(Q) =log Y supq(y), )
yeyn 94€Q

and the optimal strategy in Eq. (3) is attained by the Shtarkov distribution p*(y) o< supgeo a(y)s
also known as the normalized maximum likelihood. While (4) is more succinct than (3), it is still not
amenable to analysis with standard tools, except for special cases Cesa-Bianchi and Lugosi (2006).

1.1. Towards a General Result

To the best of our knowledge, the first analysis of minimax regret for non-parametric (but iid)
class Q was proposed in Opper and Haussler (1999), who presented an upper bound involving a
Dudley integral. This work was extended to a general Q in Cesa-Bianchi and Lugosi (1999), who
observed that, owing to the equalizing property of the optimal strategy p*, the Shtarkov sum (4) can
supremum of a subgaussian process indexed by the collection ©, much in the spirit of the empirical
process theory approach in statistics and learning theory van de Geer (2000). Notably, the process

was shown to be subgaussian with respect to a pseudometric

be expressed as R,,(Q) = Eyp- [supqeg log } and further upper bounded by the expected

n 1/2
1
d(f,g9) = <n Z%ﬁf{(bg Fylyre—1) — 10g9(yt|y1:t1))2> : )

t=1
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where y1.4 = (y1,...,y:). Cesa-Bianchi and Lugosi (1999) subsequently developed a Dudley-
integral-style bound for the Shtarkov sum; however, the induced covering numbers are difficult
to control due to the unbounded nature of the logarithm for small values, ultimately leading to
generally suboptimal upper bounds on R,,(Q) as a consequence of clipping probabilities away from
0. Remarkably, retaining the logarithm in the definition of the pseudometric yielded an interesting
consequence: the main upper bound in (Cesa-Bianchi and Lugosi, 1999, Theorem 3) assumes a
form typical of bounds obtained via localized or offset Rademacher complexities, as encountered in
square loss regression van de Geer (2000); Liang et al. (2015); Mourtada (2023).

Several subsequent attempts have been made to derive tighter upper bounds on minimax regret,
with the focus shifting toward the contextual case. In an effort to obtain, as an upper bound on
minimax regret, a stochastic process that is subgaussian with respect to a pseudometric on the values
of the distributions g; rather than on their logarithms, Rakhlin and Sridharan (2015b) employed a
first-order expansion of the logarithmic loss. This approach upper bounded the minimax regret by
a version of sequential offset Rademacher complexity. Unfortunately, despite their efforts to tame
the explosive nature of the derivatives, the authors were unable to derive upper bounds on the offset
process that were independent of the clipping range, even in the finite case (Rakhlin and Sridharan,
2015b, Lemma 2).

The important work of Bilodeau et al. (2020) leveraged the self-concordance properties of the
logarithm to upper bound the minimax value in the contextual case by an offset-like process that
offered clear advantages over earlier approaches. In particular, for a finite collection, the resulting
process could be controlled without resorting to clipping. However, the process did not exhibit a
subgaussian nature, which prevented the authors from employing chaining arguments. This issue
arises from the presence of linear terms of the form ¢;(v:)/p:(y:), which are small in expectation
over y; ~ p¢ (thus permitting single-scale discretization) but become uncontrolled when the ratio
is squared. Further, to analyze the contextual version of the problem, Liu et al. (2024) introduced
the notion of a contextual Shtarkov sum, which is equivalent to the minimax regret; however, this
equivalent reformulation does not offer guidance on how geometric concepts—such as covering
numbers—can be employed.

The Hellinger distance has long been recognized as a convenient metric on the space of dis-
tributions LeCam (1973); Haussler et al. (1997); Yang and Barron (1999); van de Geer (2000);
Bilodeau et al. (2023). In particular, as an ¢»-distance between the square roots of distributions, it
offers the possibility of combining the benefits of offset-based analysis with those of multi-scale
chaining. This is the approach we adopt in this paper. Specifically, we employ an approximation
logz < ((x) — m - ¢(x)?, which holds over an appropriate range of z, and where ((z)
behaves as 2(y/x — 1) for z < 1. Applied, roughly speaking, to x = ¢(y:)/pt(y), this inequality
allows us to leverage symmetrization and chaining techniques while also capitalizing on the fast
rates provided by the offset sequential Rademacher process. Our approach, therefore, appears to
resolve the technical issues encountered by the various techniques, starting with Cesa-Bianchi and
Lugosi (1999), at least in the so-called Donsker regime (with respect to our entropy definition),
where chaining provides an advantage.

To demonstrate the sharpness of our results—again, in the Donsker regime—for the contextual
version of the problem, we develop new lower bound techniques that build upon (Rakhlin and Srid-
haran, 2014, Lemma 10). In particular, we introduce a novel sequential scale-sensitive dimension,
prove a combinatorial result that controls the size of the sequential cover in terms of this dimension,
and employ this new notion to derive nearly matching lower bounds for any Q (in the contextual
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case). This approach significantly strengthens the earlier work, which only guaranteed lower bounds
for a modified function class. Our techniques will be presented in full detail in the companion paper
Jia et al. (2025).

We now summarize our contributions.

1.2. Summary of Main Results

We study minimax regret in both non-contextual (Section 2) and contextual (Section 3) settings.
Our results below are stated with respect to sequential square-root entropy, Hsq(Q, a, 1), defined
formally in Section 1.3.

An upper bound on minimax regret for the non-contextual case: For any class of distributions
Q C A(Y"), with sequential square-root entropy Hsq(Q, a, 1) at scale c, the minimax regret (3)
(and, hence, the Shtarkov sum (4)) has the following upper bound:

.
Rn(Q) <1 +,Yi%f>0 {né\/ VI + v n’y‘/é \/ qu(Q,a,n)da + qu<Qv% n)} )

where we use < to hide constants and log(n|)|) factors.

Tight characterization of contextual sequential probability assignment: Focusing on the bi-
nary alphabets for simplicity, we provide both an upper bound and a lower bound for the minimax
regret, defined below in (12) and again denoted here as R,,(Q) . The following upper bound holds
in terms of sequential square-root entropy:

.
R.(Q) <1 +wi%f>0 {n5—|— \/ﬁ/(S \/’qu(Q,a,n)da+qu(Q,'y,n)}.

According to this upper bound, for any nonparametric function class Q which satisfies Hsq(Q, o, n) =
O (a~P), the minimax regret is upper bounded as

o(np%) if0<p<2,
Rn(Q) = @(n’%l> ifp> 2. ©

In addition, we establish a lower bound demonstrating the tightness of (6) for 0 < p < 2.
Hence, for nonparametric classes with parameter p < 2, our results offer a tight characterization of
the minimax regret in terms of the sequential square-root entropy. Our upper bound further yields
an O (v/n) bound for the Hilbert ball problem, thereby answering a question posed in Rakhlin and
Sridharan (2015b).

Our contributions are also technical. The proof of the upper bound introduces a novel approach
to analyzing the expectation of the offset Rademacher process, enabling us to handle cases with
unbounded coefficients. We adopt a chaining argument alongside the analysis of offset Rademacher
processes in our proof. On the lower bound side, as mentioned, our techniques involve a new
definition of a scale-sensitive dimension and a novel argument for lower-bounding the sequential
offset Rademacher complexity that is applicable beyond this paper.

Overall, our results largely resolve the open problem stated in Rakhlin and Sridharan (2015b)
by tightly characterizing the minimax regret of contextual probability assignment for any class of
conditional probability distributions in terms of entropic quantities, at least in the Donsker regime
(according to the our definition of entropy).
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1.3. Notation

Given q € A(Y"), we write ¢:(y: | ¥) = @(yt | y1:4—1) to denote the conditional probabil-
ity for any length-n sequence y = (y1, - ,yn) € V" A {0,1}-path w of depth n is a tu-
ple (wi,...,w,) € {0,1}". For any set X, a depth-n X-valued binary tree (or, simply, ‘a
tree’) x has 2" — 1 nodes, where each node takes value in X'. Formally, x = (z1,...,x,) with
z; : {0,1}1 — X. We write x;(w) = x;(w.;—1) for brevity. For a depth-n X-valued tree x and
function f : X — [0, 1], we use f o x to denote the depth-n [0, 1]-valued tree whose value at depth
t on path w equals to f(z¢(w)). We write Fox = {fox: f € F}.

Additionally, we use the following asymptotic notation: for positive sequence {a,} and {b,}
(or functions f(a),g(a) : (0,1) — R4, we use a,, = O(by,) (or f(a) = O(g(w))) if there exists
a positive constant ¢ such that a,, < ¢ - b, for any n (or f(a) < ¢ g(«a) for any «), and we use
ap = (’j(bn) if there exists a positive constant ¢ and positive integer r such that a,, < ¢- (logn)" - by,
(or f(a) < ¢- (log(1l/a))" - g(a) ). We use notation a,, = €(by,) (or f(a) = Q(g(«)) if and
only if b, = O(ay) (or g(o) = O(f()), and € is defined similarly. The notation a,, = ©(b,,)
(or f(a) = O(g(e))) is used if and only if both a,, = O(b,) and a, = Q(by) hold (or both
f(a) = O(g(e)) and f(a) = Q(g(e)) hold). The notation © is defined similarly.

1.4. Organization

In Section 2, we present our results in upper bounding the Shtarkov sum using sequential square-root
entropy. In Section 3, we revisit the problem of contextual sequential probability assignment, and
provide upper and lower bounds for the minimax regret in terms of sequential square-root entropy.
Finally, in Section 4 we provide a proof sketch of our main result, Theorem 2. All the technical
proofs are deferred to the appendix.

2. Upper Bound for Shtarkov Sum through Sequential Square-Root Covering

In this section, we upper bound the minimax regret Eq. (3) or Shtarkov sum Eq. (4) in terms of the
{ sequential square-root covering defined as follows.

Definition 1 (sequential square-root cover and entropy) Ler ) be a finite alphabet. For a class
of joint distributions Q over Y", we say that a finite class V of joint distributions over Y" is a
sequential square-root cover (in the £y, sense) of Q at scale « if

Sup max min max max W) — /v w)| < a. 7
qegwey" veV te[n] yeY ‘\/Qt(y | ) \/ t(y | )‘ - 7)

We use Nsq(Q, av, n) to denote the size of the smallest cover of class Q, and we use Hsq(Q, a,n) =
log Nsq(Q, @, n) to denote the sequential square-root entropy of Q.

In words, the requirement placed on ) is that for any joint distribution q € Q and any sequence
w € V", there exists a “representative” joint distribution v in V that is close to q in terms of
the difference of square roots of the conditional probabilities q and v assign to any outcome ,
uniformly for all time steps.

In this definition, ¢, refers to the maximum over ¢ € [n], which is consistent with prior uses of

such sequential and empirical notions of a cover. We also remark that max,cy ‘ Var(y | w) — oy | w) ‘
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is within /|| of the Hellinger distance between these two conditional distributions (which is the
5 version with respect to the y € ). If scaling with |)| is not of interest, we can instead think of
the sequential square-root cover as a sequential Hellinger cover.

Theorem 2 For any n > 7 and class Q C A(Y"), we have

- Y
Ro(Q) =0 (14 int {noV/ BT+ VAl [ \fHa(Q i + (@71} )

where O hides constants and logarithmic factors of n and |Y|.

The proof of Theorem 2 is deferred to Section B, and we provide a sketch of the proof in Section 4.
The theorem immediately implies an upper bound on R,,(Q) whenever the sequential square-root
entropy scales with o ?, as shown in the following corollary.

Corollary 3 When Hsq(Q, ,n) = O (aP) for some p > 0, it holds that

_Jo (W%> ifp <2,

Rn(Q) = @(n%l> ifp> 2.

2.1. Comparison with Previous Results

We compare our results with Cesa-Bianchi and Lugosi (1999, 2006), which also provide an upper
bound on the minimax regret using entropy. Taking (5) as the (pseudo)metric, the authors define
a notion of entropy Hiog(Q, v, n) as the logarithm of the size of the smallest covering at scale o
under d. Cesa-Bianchi and Lugosi (1999) establish that

,
Rn(Q) S ;g% {\/ﬁ/o v/ Hiog(F, &, n)de + Hiog (F, 7, n)} . 8)

The form of the bound appears frequently in the literature on prediction with square loss, in both
fixed design regression and online regression. Writing the definition of the above covering notion
in the form of (7), we have

sup min max maxmax |log ¢:(y | w) —logv(y | w)| < a )
qeQ VEV WY te[n] yeY

with the only difference that we opted for max;c, instead of the £y version employed above.
Modulo this difference, the requirement (9) is clearly more stringent than (7) as the representative
v has to be chosen irrespective of the data w, making the notion of the cover similar to the (often
prohibitively large) sup-norm cover. The line of work on sequential complexities addresses this
shortcoming via symmetrization, an approach we also take in this paper. Finally, we note that
supyey [v/P(Y) — Va(y)| < supyey [logp(y) — logq(y)| and, thus, we expect Hiog to be larger
(and often much larger) than Hsq.

Note that while the sequential square-root entropy is an improvement over the entropy in Cesa-
Bianchi and Lugosi (1999), there are still interesting distribution classes where it does not yield the
correct bound. For example, consider the renewal process class (definition is included in Section F).
It is known from Csiszar and Shields (1996) that minimax regret is ©(y/n). In Section F, however,
we show that the sequential square-root entropy is always lower bounded by (7).
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3. Binary Contextual Sequential Probability Assignment

In this section, we connect the problem of contextual sequential probability assignment to the non-
contextual case discussed in the previous section. Application of the general bound of Theorem 2
will then lead to the main results of our paper.

For simplicity of presentation, and to make our results more directly comparable to prior work,
we focus on the binary alphabet ) = {0, 1}. With some abuse of notation we let p; € [0, 1] denote
the probability of the outcome 1. The loss incurred on round ¢ after making the prediction p; can
thus be written as

E(prsyt) == —yrlogpr — (1 — yr) log(1 — pr). (10)
Similarly, we re-parametrize conditional distributions Q by instead working with a class F of ex-
perts, mapping X to [0, 1]. This re-parametrization is consistent with other prior works. With this

notation, the cumulative loss of an expert f is >, | £(f(z¢),y:), and regret is defined (in a form
that is more explicit than (2)) as

Rn(}—aﬁl:na$l:nay1:n) = Zg(ﬁtayt) - ]}Ielg__zg(f($t)ayt) (11)
t=1 t=1

Recall that x; may depend arbitrarily on the history

Ht = {xlvﬁ:hylv s 7$t—17ﬁt—17yt—1}7

and y; may depend arbitrarily on H;, z; and p;. Based on the order of making predictions and
observing outcomes, we define the minimax regret as

Ra(F)=sup inf  sup ---sup _inf  sup R(F,Pr @ yin)s  (12)
x1€X P1€[0,1] 1 €{0,1}  2n€X Pn€[01] y, {01}

or, more succinctly, as

RTL(]:) = sup Ainf sup R<~F7ﬁ1:nax1:nay1:n)-
weX B0 ye{01} ),

Here, the curly braces indicated a repeated application of the operators.

The above expression indeed matches the aforementioned dependencies. To make the connec-
tion to the previous section, we start with the following observation. Consider an adversary that is
not allowed to adapt the sequence of x’s to the past predictions made by the forecaster and instead
has to fix ahead of time a strategy for choosing x’s based only on the outcomes 3’s; this is equivalent
to fixing an X'-valued tree x = (x1, ..., x,) and presenting x;(y1..—1) to the forecaster at the begin-
ning of round ¢. Notably, the sequence of 1;’s can still be adapted to the predictions of the forecaster.
The following lemma states that such an adversary is just as powerful as the fully-adaptive one, even
if the forecaster knows the strategy x:

Lemmad4 Foranyl:Y xY — Rwhichis convex in its first argument, and for any ¢ : Y" X X" —
R,

{sup 1£1f Sup} [Z g(ﬁtv yt) - ¢(y1:n7 xl:n)
1 Lt=1

xt Pt oyt t—
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= sup {iQf SUP} [Z P, yt) — S(Yims 21, 22(Y1)s - -+, Tn(Y1:n—1))
L Lt=1

X bty )y

where the supremum in the last expression is over all depth-n X -valued trees x. In particular, for
A1, 1) = infrer >4y U(f(2¢), ye) and logarithmic loss discussed in this paper,

Rn(]:) = S‘ip Rn(QX)

forthe set Qx = Fox ={fox: fe F}with(fox)(y) = [T\ {Ilye = 1] f(z:(y)) + L[ys =
0](1 — f(=t(y))} for any'y € {0, 1}™.

For the logarithmic loss, this result was proved in (Liu et al., 2024, Theorem 3.2). The proof of
Lemma 4 is deferred to Section C.1.

The importance of this proposition is two-fold. First, it shows a possibly counter-intuitive prop-
erty that regret is unchanged if the adversary’s z’s are not allowed to depend on the actions of the
forecaster, but only on the y’s. In other words, there exists a best possible adversarial tree x that
saturates regret for all possible strategies of the forecaster.! Second, note that when the tree x is
fixed ahead of time, the resulting problem corresponds to the problem discussed in Theorem 2 with
Ox = FoXx.

3.1. Upper Bound with Sequential Square-Root Entropy

We now repeat the definition Definition 1, adapting it to the case of binary alphabet and the real-
valued re-parametrization of probabilities:

Definition 5 (sequential square-root cover and entropy) Suppose V and A are two sets of [0, 1]-
valued binary trees of depth n. We say V is a sequential square-root cover (in the {, sense) of A at
scale a if

)

V1—aly) - \/1*vt(>’)‘} <a.

max sup inf maxmax{‘ a —
ye{0,1}n aGEVGV te[n] \/ () \/ ')

We use Noq(A, o, n) to denote the size of the smallest sequential square-root cover at scale o. For
any set X and function class F C {f : X — [0, 1]}, the sequential square-root entropy of function
class F on an X-valued tree x (of depth n) at scale o is defined as

qu (‘7:’ a,n, X) = logj\/;q ("F °X,dq, Tl)
With the above definition of sequential square-root entropy, we have the following theorem:

Theorem 6 For any X and function class F € [0, 1], we have

_ 2
Rn(}“):(9<sup{1+ i%fo{n5+\/ﬁ/ \/qu(}",a,n,x)da+’qu(.7-",’y,n,x)}}>,
y>0> s

X

where the supremum is over all depth-n X-valued trees x.

1. Note that the optimal learning algorithm for this x tree is not guaranteed to be optimal for the actual problem (12).
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This theorem has the following direct corollary, which provides explicit upper bounds on the mini-
max regret whenever the growth of sequential square-root entropy at scale « is bounded by O(a™P)
for some p > 0.

Corollary 7 For any function class F C {f : X — [0, 1]}, suppose the sequential square-root
entropy MHsq(F, o, n,X) at scale o satisfies supy Heq(F, o, n,%x) = O (a™P) for some p > 0. The
minimax regret R, (F) is upper bounded by
O(ni2)  ifo<p<2,
Ru(F) =19 -, »=1
o) (n z ) ifp > 2.

The proofs of Theorem 6 and Corollary 7 are deferred to Section C.1.

3.2. Comparison with Previous Upper Bounds

We compare our results to those of Rakhlin and Sridharan (2015b) and Bilodeau et al. (2020). These
two works use the sequential entropy Hoo (F, @, n, X), defined as

Hoo(F, a,n,x) = log Noo (F 0 x, t, 1), (13)
with NV (F o x, ar, n) being the size of smallest cover V' such that

max sup minmax |f(x —w < a.
ye{o,1}n feg)-‘vev ten) |/ (@:(y)) (¥l <

With proper choice of parameters, our results can recover the upper bounds in (Rakhlin and
Sridharan, 2015b, Theorem 1 and Theorem 4). This follows from the next result relating sequential
square-root entropy and the sequential entropy defined above.

Proposition 8 Suppose 6 > 0. Forany F C{f : X — [§,1 — 6]}, a > 0, and depth-n X-valued
tree X,

Heq(F, 04/\/5, n,X) < Hoo(F, a,m, X).

For nonparametric class F which satisfies sup, Hoo (F,a,n,x) =< «~? for some g > 0,
(Bilodeau et al., 2020, Theorem 2) proves the following upper bound for the minimax regret:

Ru(F) = 0O (n#) . (14)

Corollary 7 recovers this result for 0 < ¢ < 1, up to logarithmic factors, via the following proposi-
tion.

Proposition 9 For any function class F C {f : X — [0,1]}, a > 0, and depth-n X -valued tree
X, we have

Hsq(F, 20,m,%x) < HooF, ag,n,x).

The proofs of Proposition 8 and Proposition 9 are deferred to Section C.2.
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3.3. Lower Bound with Sequential Square-Root Entropy
In this section, we provide lower bounds on the minimax regret R, (F) defined in Eq. (12) via
sequential square-root entropy.

Theorem 10 Suppose function class F C [0,1]* satisfies

sup Heq(F, a,n,x) = Q (a7P), (15)

where the supremum is over all depth-n X-valued trees. Then we have the following lower bound
on the minimax regret:

Ro(F) = (ni'7) .

The proof of Theorem 10 rests on a definition of a new type of sequential scale-sensitive dimension
of the function class F. We further relate the sequential square-root entropy and the minimax regret
to this dimension. The details are deferred to Section D. Notice that according to Corollary 7 and
Theorem 10, if the sequential square-root entropy of a function class F satisfies

sup Hsq(F, a,n,x) = (:)(ofp),

for some 0 < p < 2, then we have the following tight characterization of the minimax regret up to
log factors:

Ru(F) =0 (M”ﬂ) .
However, when p > 2, there exists a gap between the lower bound in Theorem 10 and the upper

~ —1
bound in Corollary 7. Indeed, the following result shows that the upper bound O (in> is not
improvable in general.

Theorem 11 Suppose the function class F C {f : X — [7/16,9/16]|} satisfies

sup Heq(F, a,n,x) = Q (a7 P). (16)

X
Then we have the following lower bound on the minimax regret
p=1
Rn(]-'):Q(n z )

Additionally, for any integer p > 2, there exists a class F C {f : X — [7/16,9/16]} such that
Eq. (16) holds.

The proof of Theorem 11 is deferred to Section D. Comparing Theorem 11 and Corollary 7, we
see a dichotomy between the regime of 0 < p < 2 and the regime of p > 2, where the rates
of minimax regret R, (F) have different behaviors. Such a dichotomy is analogous to the one
for online regression Rakhlin and Sridharan (2014) and to misspecified regression with i.i.d. data
Rakhlin et al. (2017).

3.4. Examples

In this section, we provide several examples to illustrate Theorem 6 and Corollary 7. We consider
the example of linear class (Hilbert ball class) and the class of one-dimensional Lipschitz Functions.

10
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Hilbert Ball Consider X = By(1) to be the infinite dimensional unit ball, and function class
F C [0,1]* defined as

14 (w,x)

F = {fif(:v)— 2forsomew€Bg(1)}. (I7)

This class is generally viewed as ‘hard case’ in existing literature. Rakhlin and Sridharan (2015b)
proposed an ad hoc follow-the-regularized-leader (FTRL) algorithm with log-barrier regularizer,
which achieves the optimal regret (’j(\/ﬁ) In terms of entropy characterizations, the same paper
provided a loose upper bound of O(n3/ 4) and Bilodeau et al. (2020); Wu et al. (2022) provided an
upper bound of (’)(n2/ 3) using their versions of sequential entropies. The present work is the first
to define an appropriate version of sequential entropy (and a corresponding regret bound) to derive
a matching O(/n) regret bound.
We first truncate the function class F as follows:

1+ (w,z)

fl/n:{f:f(x)_2f0rsomew€Bg(1—1/n)}. (18)

The following lemma indicates that minimax regret of 1, is similar to that of F.
Lemma 12 For F and F, defined in Eq. (17) and Eq. (18), the minimax regret satisfies
Rn(f) < Rn(Fl/n) +2.

The proof of Lemma 12 is deferred to Section E. Equipped with this lemma, we only need to bound
the sequential square-root entropy of function class F1 ,,.

Proposition 13 It holds that

1
sup Hsq(Fi/m, @, n,x) = O ( Zin -log (n)) .

«

The proof of Proposition 13 is deferred to Section E. As a consequence, in view of Corollary 7, we
conclude:

Corollary 14 The minimax regret R.,,(F) of Hilbert ball class F satisfies
Rn(F) =0 (Vn).

One-Dimensional Lipschitz Function Class We consider the example of one-dimensional Lips-
chitz function class, which has been studied in Bilodeau et al. (2020); Wu et al. (2022); Foster and
Krishnamurthy (2021), among others. In this case, the context set is X = [0, 1], and the function
class F is defined to be

F ={f:]0,1] — [0,1], f is 1-Lipschitz}. (19)

In Bilodeau et al. (2020), the minimax regret is shown to be upper bounded by (5(\/5), which
matches the lower bound. We now recover this rate using sequential square-root entropy. Accord-
ing to Proposition 9, the characterization supy Hoo(F,,n,x) = O(a™!) for one-dimensional
Lipschitz function class in (Bilodeau et al., 2020, Theorem 3) directly indicates that for square-root
entropy,
sup Hsq(F,a,n,x) = O (a_2) )
X

Similarly to the Hilbert ball example, we conclude:

11
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Corollary 15 For X = [0, 1] and Lipschitz function class F defined in Eq. (19),

4. Proof Sketch of Theorem 2

In this section, we sketch the proof of Theorem 2. The detailed proof is deferred to Section B. We
break up the proof into the following key steps:

Transform minimax regret into the dual form. Our first step of analyzing the minimax regret
R, (Q) is to transform it into the dual form Bilodeau et al. (2020); Rakhlin and Sridharan (2015b):

1))

Ro(Q) = sup EypR(Q. pyy), where Ro(Q,p,y) i= sup log (
P P(Y)

qeQ

where the first supremum is over all joint distributions p € A(Y"). In the following, we upper
bound Ey ., R, (Q, p,y) for any p.

Truncating the distributions. =~ We first show that by truncating the distribution p and every
q € Q so that all conditional probabilities p;(y; | w) and ¢:(y: | w) take values in the interval
[0, 1 — 0], for an appropriate §, we pay an additional constant factor in regret.

Construct offset Rademacher processes.  After truncation, we proceed to introduce the offset
Rademacher processes through a symmetrization argument. To do this, we define ¢ : (0,00) — R
satisfying the following three properties: for some appropriately chosen positive number c,

(i) Transformation of logarithm: logz < ((x) — ¢ - ((z)? forany § < x < 1/4, where § is
the truncation scale. This property is inspired by the transformation in Bilodeau et al. (2020).

(i) Nonnegativity of divergence: E,., {—((f(y)/p(y)) —c-¢(f(y)/p(y))*} > 0 for any
fyp € A(Y). This property is inspired by the proof of Cesa-Bianchi and Lugosi (1999)
where nonnegativity of KL was used. Here we ensure that —((x) — ¢ - {()? is convex with
respect to x and takes on the value 0 at x = 1, inducing an f-divergence.

(iii) Lipschitz property: forany p,q € [0,00), [((p) — ((q)| < 2|/ — /4

The explicit form of ¢ with these three conditions is given in Section B.1.3. As a consequence, we
obtain the following inequality after a sequential symmetrization argument:

y~p (Q P, ) = EWNp

sup Z log g:(wy | w) — log pe(wy | W))]
A€ i1

SupZQC(% Dﬂ'g(%

€Ly

ap 3 (e <W'W)> —c-c(my] )

< Ewep

+E
acQ = pe(ze | w) (2t

12
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where ¢; are Rademacher random variables, i.e. 1., b Unif{—1,1}, and y = (y1.n),2 =
(z1:n), W = (z1.) have a specific coupling: y;, 2 iLd. pi(c | wig—1), and wy = yif ey = 1 or
wy = z; if g = —1. The scheme that w; chooses y; or z; based on the value of ¢; is a variant of the
“selectors” approach of Rakhlin et al. (2011).

Analysis through chaining technique Finally, to upper bound the right hand side of Eq. (20), we
adopt the chaining technique Dudley (1978); Rakhlin and Sridharan (2014); Rakhlin et al. (2015b);
Rakhlin and Sridharan (2015b). We sketch the beginning of the argument. The first term (and,
analogously, the second term) in (20) can be decomposed through a chain of /N approximating
representatives as

2o (i) o< (o) @

<=l e (i) - (e |
-z fo () o (Hanpael )
2 24 Gl -5« G )

where v[q, p, w,y, a;] is an element of an «;-cover V(a;) of Q. The three terms in the above
decomposition give rise to the corresponding three terms in the bound of Theorem 2: the approxi-
mation at the finest scale (term 1), the Dudley-style term (term 2), and the finite cover at the coarsest
scale (term 3).

We will use Cauchy-Schwarz inequality to bound the first term. The second term is a form of
sequential Rademacher process. The third term is an offset sequential Rademacher process. How-
ever, the key difficulty in dealing with the second and third terms is that the coefficients of the
Rademacher random variables are not uniformly bounded by a constant, and directly applying prior
techniques does not provide the desired upper bounds. To overcome this issue, we establish up-
per bounds on offset and non-offset sequential Rademacher processes with unbounded coefficients
(Lemma 16, Lemma 17), heavily relying on the properties of the function ¢. Since the latter has
\/Pt-type terms in the denominator in the relevant range of behavior, the squared increments of
the process, under the expectation over p, are controlled. The formal proofs are deferred to the
appendix.
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Appendix A. Finite Class Lemmas
We first provide a version of (Rakhlin and Sridharan, 2014, Lemma 10).

Lemma 16 Suppose 1.y, are n i.i.d. Rademacher random variables, i.e. €., i~ Unif({—1,1}),
and G1., is a filtration which satisfies that E[e, | G;] = 0foranyt € [n]. Givenn sets Sy, . .., Sy, we
suppose Si,82,...,8y are 81,8, . .., Sp-valued random variables such that s; is G-measurable,
i.e. o-algebra o(s;) C Gy. For class A of tuples a = (ay,aq,...,a,) with a; : S — R for all
t € [n], we have for any X\ > 0,

" . log | Al
{Es,Ee, 112y [21613;%(30& - /\at(St)2] < =

where we denote a = (a1, az, ..., an).

Proof We observe that

{Es,Ec, iy [SupZat st)er — Aay(st) ]

n

@) 1

< —log{Es,E., };, sup |exp | 2A Z ar(se)er — 2X2az(s¢)?
2\ acA —1

(i) 1 " n )

< —log Z {Es,Ec, }i exp [ 2X ai(si)er — 202 at(st)
2\ acA t=1
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n—1
1 .
=5 log Z {EstEst}t:f [exp (2)\ Z ai(st)er — 2)\2at(3t)2>

acA t=1
- [exp (2N an(sn)?) (expmzan(sn)) . exp<—2;an<sn>>> | gn] ]

(42)

n—1
< — log Z {E,, B} exp (2/\2 ar(st)er — 2)\2at(st)2> ,

acA t=1

where in (i) we use the Jensen’s inequality, in (i) we use replace the sup by the sum since the
terms inside sup are always positive, and in (iii) we use the inequality exp(x?/2) > exp(z)/2 +
exp(—x)/2 for any = € R. By repeating the argument n times we obtain that

Z 1= log\A\

{E,Ee, }iy [supZat St)et — )\at(st

Lemma 16 implies the following upper bound for non-offset Rademacher processes, which en-
ables us to bound the Rademacher process with random coefficients that are only small on average.

Lemma 17 Suppose €1.,, are n i.i.d. Rademacher random variables, i.e. 1., i Unif({—1,1}),
and Gy ., is a filtration which satisfies that Ele, | Gi| = 0 forany t € [n]. Givenn sets S, ..., Sy, we
suppose S1,89,...,8, are 81,8, ..., Sy-valued random variables such that sy is G.-measurable,
i.e. o-algebra o(s;) C Gy. For class A of tuples a = (a1,a2,...,a,) with a; : S — R for all
t € [n], we have

n
{E,Ee, }iy [suBZat(st)et] Vv2logl|A|- |E
ac t=1

SllI) :E:: (lt St ]

In particular, for S; = {+1} "L and s; = (e1.4-1) € Sy,

EEl;n

sugz at(slztl)z—:t] V2log|Al -, |E [sup Z a(e1:4—1 ] (22)
ac t=1

Proof According to Lemma 16, we have for any A > 0,

- log |A|
Eg,Ec, 3y [sup > ar(si)er — Aag(si)?| < :
{Es Ee 1y LGA ;_1 t(st)ee — Aar(st) ] o

We let
n
/8 = {]Est]EEt}?ZI sup Zat(st)Q
acA T

sup :g:: (lt St ] .

aGAt 1
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By choosing A = 1037};4' > 0, we obtain that

{ESzEzft}?:l lsup Z at(st)at]

acA —1

n n
<AE,,Ec, } [sgiz ar(s1)er — Mag(s)?| + A - {Eg,Ee, 11, [Sgﬁz at(st)2]
act =1 st =1

< k’i';” + A8 = /28log [A] = \/2log | A] -, |E

n
Sup ar(st)?|.

Lemma 17 is an improvement on the finite class lemma in (Rakhlin et al., 2015b, Lemma 1); the
latter result was proved with the supremum (rather than the expected value) over 1., under the
square root in (22).

Appendix B. Proof of Theorem 2
B.1. Proof Outline

The proof has the following structure. Our first step is to write the minimax regret in the dual form
using the minimax theorem. This technique is widely used in the analysis of minimax regret of on-
line learning Abernethy et al. (2009); Rakhlin and Sridharan (2014); Rakhlin et al. (2015a); Rakhlin
and Sridharan (2015b); Foster et al. (2018); Bilodeau et al. (2020). The next step is to truncate
the functions and forecaster’s strategies away from 0. This analysis technique is also used in Cesa-
Bianchi and Lugosi (1999); Rakhlin et al. (2015a). Our main steps in the proof include constructing
an offset Rademacher process using a symmetrization argument Giné and Zinn (1984) and using
chaining techniques Dudley (1967); van de Geer (2000) to analyze the offset Rademacher process.
The analysis of the chaining steps involves complex dependence of the Rademacher variables and
the coefficients, and this is one of the technical hurdles.

B.1.1. CONVERSION TO DUAL FORM GAME

We have the following standard result (see e.g. (Bilodeau et al., 2020, Lemma 6) or (Rakhlin and
Sridharan, 2015b, Eq. 27))):

Lemma 18 For any Q € A(Y"), the minimax regret R,,(Q) has the following dual form repre-
sentation

Rn(Q) =supEy pRn(Q,P,y),
p

where the supremum is over all joint distributions p € A(Y™) and

Rn(Q,p,y) = sup log <q(Y)> : (23)
qeQ p(Y)
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Proof [Proof of Lemma 18] We notice that

Rn(Q) = iI}f sup Rn(Q,ﬁ7Y) = iQf sup Epr[Rn(Qaﬁa}’)]-
P vy P p

Since A(Y") is compact, and Ey.p[R,(Q, P, y)] is convex with respect to p and concave with
respect to p, von Neumann minimax theorem v. Neumann (1928) gives

R, (Q) = sup i%nyfvp[Rn(Q7 P, y)] =supEy p[Rn(Q,P,¥)],
P p

where the last inequality uses the fact that the infimum of infs Eyp[R(Q, P, y)] is attained when

p=p. [ |
In the remainder, we upper bound the minimax regret for Ey.n R, (Q, p,y) for any fixed p €

AY™).

B.1.2. TRUNCATION OF FUNCTIONS AND PROBABILITIES

For p € A(Y™) with p(y) = [[;_, pe(y | y) forevery y € V", and 6 < 1/(4]Y|), we define
distribution p° € A(Y") with p(y) = [T/, P! (y: | ) for every y € V", where

d ifpe(ye |y) <0
Py |y) =< ey |y) - T ifo <pi(y | y) <29, .
1- pt(yly)I[6<pt(yly)<20]— I[pt(yly)< .
Py 1Y) ==y G G ifpily [y) = 20
(24)

It holds that p)(- | y) € A(Y) forany y € Y™ and t € [n]. Additionally, we notice that

L= " pu(y [ Y0 < pilye | y) <201 =6 Tpu(y | y) <] >1—|Y]-26
yey yeY

l\')\)—t

which implies that p) (y; | y) > %pt(yt | y)if pe(ye | y) > 20. Hence, for any y € V", we always
have

Py | y) > 6.
For class Q C A(Y"), we define Q° = {q° | q € Q}. Then we have the following lemmas:

Lemma 19 Suppose 6 < Foranyp € A(Y"),y € Y"and Q C A(Y™), we have

e
Ru(Q,p,¥) < Ru(Q°,p,y) +4nd - |V].

Lemma 20 Suppose 6 < Forany Q@ C A(Y™) and p € A(Y™), we have

4|y|
1
Eyep [Ra(Q',0,3)] < Eyops [Ra(Q 0% )] + 20%YI510g .

The proofs of Lemma 19 and Lemma 20 are deferred to Section B.2. In the following, we use
A, (V") to denote the following joint distribution set:

AV ={q e AQ™) tqu(ye | y) > 1/(n*|Y]),Vy € V"} . (25)
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B.1.3. SYMMETRIZATION AND CONSTRUCTION OF OFFSET RADEMACHER PROCESS

To facilitate the symmetrization argument, we define the following function ¢ : Rt — R: for any

t>0,
CJ2(vt-1), t<,
= {2log(t+1), t>1. (20

For the justification of this choice of ( see Section 4. We next introduce the following three proper-
ties of the function (, whose proofs are deferred to Section B.3.

Proposition 21 Forevery) < x <n

1
4log(n|V)

Proposition 22 For any distribution f,p € A()), we have

1 2
_C(f(y)>_ _g<f(y)> >0.
ply) ) 4log(n|Y]) ~ \p(y)
The above proposition can also be obtained by noticing that function —((z) — m ()2 is

convex in z, and the result follows from the property of f-divergences (Polyanskiy and Wu, 2014,
Theorem 7.5).

logz < ((x) — ()2 (27)

]E?JNP

Proposition 23 For any p,q € [0, 00), we have

IC(p) —<C(@) <21vp— V-

Next, we state the symmetrization argument. The symmetrization argument will use the follow-
ing circle-dot product distributions.

Definition 24 (Circle-dot Product Distributions) Forlabel set) and any distributionp € A(Y"),
we define the Circle-dot product distribution ©p € A({—1,1}") x A(Y™) x A(Y™) x A(Y"™) such
that (e, w,y,z) ~ Op are sampled according to the following process: first sample € = (£1.,) Hid
Unif{—1, 1}, then repeat the following process for sampling w = (w1.1),y = (y1.¢) and z = (21.¢)

fromt =1 ton: sample y;, 2, L (- | wig—1), and set wy =y, ifep = Lorwy = 2z if ey = —1.
Lemma 25 (Symmetrization) For any joint distribution p € Ay, (V") where A, (V™) is defined

in Eq. (25), suppose (€,w,y,z) ~ ©p. Then for any joint distribution class Q@ C A, (Y"), we
have the following upper bound:

Ey.pR (2, P,Y)
W 2
= 2‘25;5t< < wi) ~ o (iii ’| wi)
2 | W (2 | W 2
e 225; (i & ‘r WD—410g<1n|y|><<§tgzt||w§> ] 29

where the expectation is with respect to (€, W,y,z) ~ ©Op.

The proof of Lemma 25 is deferred to Section B.3. It is based on the aforementioned properties of
function (, and the symmetrization technique in Rakhlin et al. (2011).
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We next analyze the right hand side of Eq. (28) using a chaining argument. For simplicity we only
upper bound the first term, and the bound on the second term is similar.

To adopt the chaining argument to the Rademacher process defined in the right hand side of
Eq. (28) while keeping the offset term, we need to establish certain properties of the sequential
cover of the function class. Specifically, for any joint distribution q € Q, we are required to have
some instance v in the cover, such that the ¢>-norm of the coefficients with q is lower bounded
by the /o-norm of the coefficients with v, as is the following lemma, whose proof is deferred to
Section B.4:

Lemma 26 Fix joint distribution p € A(Y") and class Q C A(Y™). Let V(«) be a sequential
square-root cover of Q at scale o > 0. Then foranyq € Q, v/ € V(a) and w,y € V", there exists
v € V(a) U{p} such that
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Remark 27 The above lemma is similar to (Rakhlin and Sridharan, 2015b, Eq. (40)), (Rakhlin and
Sridharan, 2014, Eq. (46)). The additional atom p serves as the ‘zero’ element in (Rakhlin and
Sridharan, 2015b, Eq. (40)).

This lemma enables us to keep the offset terms during the chaining process. We now detail these

steps. We fix N scales 0 < a1 < ag < - -+

< ap, and let V(«;) to be the smallest cover of Q at

scale «; under Definition 1. Then we have the following lemma.

Lemma 28 Foranyi € [N —

1], we fix v[q,p, w,y, ai] € V(a;). Suppose v[q,p, w,y,an] €
V(an) U {p} satisfies Eq. (30) with v = v[q, p, W, y, ayn]. We then hwave

¥ e (2h) - s (2f)
<ol fe () < (o))
E e (Honzzaess) - (aezzagior)
n vy | W vilys | w)\?
= vGV(ili};u{p}; {Etc (Ptht : Wi) - 1610;(”3)‘) ¢ <ptgt } Wi) H |

where the expectation is with respect to (€, W,y,z) ~ ©Op.
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The proof of Lemma 28 is deferred to Section B.4. Next, we further upper bound the three terms in
Eq. (31). Specifically, we will use Cauchy-Schwarz inequality to bound the first term. The second
term is a form of sequential Rademacher process. The third term is an offset Rademacher process.
However, the key difficulty in dealing with the second and third terms is that the coefficients of
the Rademacher random variables are not uniformly bounded by a constant, and directly applying
prior techniques does not provide the desired upper bounds. To overcome this issue, we employ a
technique that uses offset complexities instead, as in the proof of Lemma 17 (see Remark 29 in the
proof of Theorem 2 for a discussion). The formal proof of these arguments, together with the full
proof of Theorem 2, is deferred to Section B.5.

B.2. Missing Proofs in Section B.1.2

Proof [Proof of Lemma 19] Given the formula of R,,(Q, p,y) in Eq. (23), we only need to verify
- 1

sup > sup ——— —4nl|Y|d. 32)
qEQ; Qt Ut | y qu5 tz:; Qt(yt | Y) ’ |

Notice that according to our construction of truncation in Eq. (24), we have for any y € ) and
peAD),

logp(y) ~ logs” () = log 5 < ~log (1~ 20+ |3 < 46 Y. (33
where the last inequality uses the fact that § < ﬁ and — log(1 —t) < 2t for any ¢ < 1/2. Hence
after noticing that Q% = {q‘s :q € Q}, we obtain Eq. (32). [ |
Proof [Proof of Lemma 20] For any s € [n + 1], we use notation p*° = (pi"s, e pffg) to denote

a joint distribution such that

5 pe(ye |y ift <s,
Py (ytIY)Z{ y) Yy € V"

Py |y)  ift>s.

Then we have pl"; = p5 and p”“"s

Ey~pR (Q5 P,y) — (Q(S PéaY)

_Z[ yopt s R (@, P y) — By besRa(Q0, 970, y)] - (34)

= p, and we can decompose

We expand the right hand side of Eq. (34) for each s € [n]:

Epr5+1 5R (Q s+, 6, y) — EyNPS,JRn(Q(S, ps’(s, y)
. s—1 1 1,6
= AE i (y) 1o (B (i) Byt (1) Hms 41 R (Q°, P71 y)

n § 8,0
= Eyepd () By (13 H=e1 R (Q7, P, ¥)]. (35)

Next, we fix y1.s—1 and upper bound the expression inside the expectation:
+1,0
Eys~ps('b’){Eywpf(-\y)}?szran(Q p’ Y) — Eys~P5( ly) {Eyt’\‘pt |y)}t s+1Rn (Q p 'Y)
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EZ/SNPS( ly) {Eytfvpf(-|y) }?:s—i-l /R'n(Qéa ps+1,5’ Y) - Rn(Qéa ps’éa y)]

n 0 .80 n 5 .80
[ ys~ps(-ly) {Eywpf(-ly)}t:s-;-an(Q P Y) - Eyswpg(-|y) {Eytrwpf(-|y) }t:s—',-an(Q P 7Y)]
(36)

For the first term in the right hand side of Eq. (36), when fixing y € V", we have

o
Ra(Q,p" 1, y) = Ru(Q° ; og <s+1 5'7? | y>)> = log (ps(ys | y)> :

ye |y ps(ys | Y)

which implies that
]Eyszs('|Y){EytNPt("Y)}?:S—i-l [Rn(Q6>PS+1’5aY) - Rn(Q(S’PS’(S’}’)}

&
=Eyps(ly) [log (W)] = —Dxr(ps(ys | Y)IP(ys | y)) < 0.

For the second term in Eq. (36), when fixing y1.,—1, we have

n 6 8,0
Eys~ps(~l>'){Eyt~p?(-ly)}t=5+1R"(Q P7Y) _Eywps( ly) {Eywp ly) jr s+1Rn (Q P™’,y)

s—1
i) @y |y) Qtyt|y
8 By e | o {5 o SN S }]

o | Tplmly) = ptytIY)

s—1 n
n a(ye |'y) a(ye | y)
= Byt () By () Himst1 [ sup. {Z log =03+ D log et
t=1

qc0 pe(yely) = Ty |y)

(i) a(ye | y)
D By oy Byt () Host | s D log LV1Y)
Ys~ps ([y) Vyp~pl (-y) St=s+1 LGQ ; Dy (?/t ly)

—~

Qt(yt | Y)
—Ey i) 1By~ } <1 | sup log ————"1, (37
Ys~pd (1y) Vye~pl (|y) St=s+ qc 0’ ; P (yt ly)

where (i) uses the formula of R,,(Q, p,y) in Eq. (23) and the form of p°, and (i) uses the fact
that for t < s — 1, p;(y; | y) cancels out in both terms, hence we can replace them by p (y; | y) at
no additional cost. Notice that & < p(y; | y) < 1and 6 < ¢(y; | y) < 1 hold for any q € Q7,
y € Y"andt € [n]. Hence,

1
<nlogs, Vyey"

n
sup log ————~=
qeQs ; p(y: | y)

which implies that when fixed y1.5—1,
1
RHS of Eq. (37) < 2TV (py(- | ), pi( | ¥)) - nlog 5.

Based on Eq. (24), we can calculate that

TV (pa(- [3).P2C 13)) = 32 0= puly | ¥) VO < V3,

yey

24
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which implies that

1
n 6 .80 n 6 .80
Ey b (1) By (1) =11 R ( Q7 P70 9) By () 1By, iy () Hims 11 R (Q7, P77, ) < 20 V[0 log

Bringing this upper bound back to Eq. (36) and then further back to Eq. (35), we obtain that

1
Epr8+l,5Rn(957 ps+1,§’ Y) - }EprS"SRn(Q(S? p8767 y) S 2n|y‘5 IOg 5

Hence, according to Eq. (34), we have

1
EypRn(Q,p,y) < By psRn(Q% p’,y) +20°|Y]dlog .

B.3. Missing Proofs in Section B.1.3

Proof [Proof of Proposition 21] We first verify the upper bounds part in Eq. (27). When 0 < z < 1,
using the inequality log(1 +t) < ¢ — ¢2/2 which holds for any —1 < ¢ < 0, we have for n > 7,

1

_ — T 2.
2log(ny) )

logz = 2log (V) <2 (Ve 1) - (V& - 1)° = ((z) - 1¢(2)’ < ((a)

For x > 1, we first notice that function

_ 2log((z+1)/2) — log(x)
log?((x +1)/2) '

§(x)

is a monotonically decreasing function on [0, c0), and for every n > 7 we have

sy 21og((2 Y +1)/2) —log(n?Y) _ 1 1
S = T+ )y = Zleg(m?]) = dlog(nY])’
which implies

E(x) > E(n*|Y)) Vo < n’|Y).

1
> 77
~ 4log(n|Y)
Hence we obtain for any 0 < x < n?|))|,

1

—_ - T 2.
Thog(m) ¢

logz < ()

Proof [Proof of Proposition 22] First notice that for any z > 1 we have ((z) > 0, and
1
log<x;— > < Vx-—1.
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Hence, we only need to verify

2
PO N FAC) N R SN PO G PAC) N
Fur |72 ( pv) 1) Tlog(nlY) (2 ( Pv) 1)) ="

This can be verified by

2
fy) 1 fy)
Eyp |- p<y>“2log<n|y|>'<\/p<y>1>
2
W L ()
=B |\ T2 < p(y) 1)
f

= |-VIWRE) + ) ~ 5 ) + VTP — 5p()
2

yey
=0.
|

Proof [Proof of Proposition 23] We only need to verify that the function

2(t—1) ifo<t<1

h(t) = 1+¢2 .

Zbg( ) ift>1

is a Lipschitz function with Lipschitz constant 2. This can be seen from
dh(t) ]2 ifo<t <1,
dt s ift > 1,

which satisfies —‘ < 2foranyt > 0. |

Proof [Proof of Lemma 25] Fix distribution p € A,, ("), and suppose random variables (¢, w,y,z) ~

®p. Noticing that the marginal distribution of w is p, we have

EprRn(Qy p, Y) = EWNp

sup Z (log gt (wy | w) — log pe(wy | W))]
€=

ZZ{ (o) ~ e (o 3)}] |

(38)

w~p

where the last steps follows from Proposition 21, and the fact that p € A, (Y™) and Q@ C A(Y™).
Next, we define random variables v = (v;.,) coupled with random variables (e, w,y,z) ~ ©p, in
the way that

Ut:ZtifEt:]. and ’l}t:ytifEt:—l.
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Then the marginal distribution of v; conditioned on wy.;—1 is p;(- | w). Hence Proposition 22 gives
that for any q € Q and t € [n],

| (B -t (LR |20 @
Hence we can further upper bound
225;2 {C (&) ~ g (e 3)2}]
2 > {c () - e (L)
() - ey (2

Supzn:{C Qt(wt|w)> _C<Qt(”t‘w)

qEQ t=1 pt(wt | W)

_ 1 C(qt(thW)>2_ 1 C(ﬂt(vt\w)>2 40)
4log(n|V]) ™ \pi(w; | w) Alog(n|V]) " \pi(vr | w) ’
where in (i) we use Eq. (39), in (i) we use the Jensen’s inequality. According to the construction
of random variables €,y, z, w, v, we have

¢ <Qt(wt ’ W)> —¢ (%(Ut \ W)) — el <Qt(yt ‘ W)> e <Qt(2t ’ W)>
pr(we | w) pe(ve | w) pe(ye | W) pe(ze | W)
¢ <Qt(wt \ W))2 . <Qt(Ut | W)>2 _¢ <Qt(yt | W)>2 . (Qt(zt | W))2
pe(we | w) pe(ve | w) pe(ye | w) pe(ze | w))
Bringing this back to Eq. (40) and further back to Eq. (38), we obtain that
E

E

and

yNPRn(Qa va)

pZ {ft@' (o)~ (i)

2 2
oo (st o)~ st ()
222;{“ <§EZ||‘$>‘410g<1n|:v>C 0 Zlfi H

zggtzn;{(—aﬁé (ZEZ |‘ :‘3) 4log(1n!y\) < (ztn )> }]

where the last inequality uses Jensen’s inequality. |

<E

<E

~+

+E
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B.4. Missing Proofs in Section B.1.4
Proof [Proof of Lemma 26] We fix p € A(Y"). Forq € Q,v' € V(a) and w,y € V", if we have

n 2
a
(st 2z G
then we let v = v’ and it is easy to see that Eq. (29) and Eq. (30) both hold. Next we assume
zn:<<%( > Z<< ))2' (41)
= \pe(ve | =1 )
With v =p € V() U {p} we will verify Eq. (29) and Eq. (30). First, since ((1) = 0, we have
R - GRI)
= \pew [ w) =1 )]

hence Eq. (30) holds. Next, according to Eq. (41) and Cauchy-Schwarz inequality,
N (s (w0
- e (ye W) <Utyt W>
<Z<< >)<Z<< >>_<;C<m(yt!“’) il Tw)) )

we have

t=1

which implies that

hence Eq. (29) holds. |

Proof [Proof of Lemma 28] According to our choice of v[q, p, w,y, an]| € V(anx)U{p}, Eq. (30)
holds with v = v[q, p, w,y, an]. Hence, we can upper bound the left hand side of Eq. (31) as
follows:

3~ e (S e ()]
- s { S fo (b (slaponl )
- W,y,« t | W vt|q, P, W,y, t | W 2
+Z{5tg< q’p’m;ﬁx])(y' )>‘16log1<n\y|><( [qpmyytx])(y' )>}
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I

“%zzg{ie{ <zzizzn:z§> i)
el (R <o)

n e | w) B 1 ve(ye | W) ?
* vGV(i}IlVI))U{P} {; { ( | W)) 1610g(n|y\)C <pt(yt | W)> }} ’ -

where (7) uses the condition Eq. (30), and (%) uses the Jensen’s inequality and the chioce v[q, p, w,y, ay] €
V(an) U{p}. Next, we introduce v[q, p, w,y, «;], and further upper bound the first term above
via telescoping:

oS e (i) e (o))
(Soefe (o) < (o)
= w,y,o;|(y: | w v[q, P, W, Y, : | W

3 ft{C(Ut[q?p’pt(yf]w])(y| ) e (R ))}H
zzg;a%(zzizit‘;%)—<<“*‘*"”;Zz;f£f”"’”)}]

+ZE supiet{ ( q,p,wy,az]<yt|w>>_C(vt[q,p,w,y,am](ytw>>}]’

acQ Pe(ye | w) pe(ye | w)
where the last inequality is due to Jensen’s inequality. Bringing this back to Eq. (42), we obtain
Eq. (31). |

=E

su
qe

~

p
Q

3

~+

3

<E

B.5. Proof of Theorem 2

Proof [Proof of Theorem 2] First of all, according to Lemma 18, for any joint distribution class
Q C A(Y™), we have
Rn(g) = Sup EprRn(Qa P, Y)a
p

where the supreme is taken over all p € A()"). According to Lemma 19 and Lemma 20, we have
1
Ey p [Rn(Q:P,y)] < Eyps [Rn(Qg, p’,y)| + 6n%Y|dlog 5
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Choosing 6 = 1/(n?|Y)]) for n > 2, we conclude that

E[Ra(Q.p,)] < E[Ra(Q,0%,3)| + 1210g(n/Y)).

Hence in order to prove Theorem 2, we only need to prove that

Sy (5.~ st fo0 BT+ T [ @i @)

(43)
holds for any p € A, (V") and Q C A, (Y"), where A, (V") is defined in Eq. (25). To prove this,
we first notice that according to Lemma 25, for p € A, (V") and Q C A, (Y™), we have

pr (Q p7 )

< a3 (te120) st (3 1)|
v oS (503 - st (227) ]

In the following, we will upper bound the right hand side in the above formula. For convenience,
we only provide upper bounds to the first term in the right hand side. The upper bound to the second
term in the right hand side can be obtained similarly.

Next, we choose [V positive real numbers a1 < --- < an (values to be specified later). We let
V(«;) be a smallest sequential square-root cover (as per Definition 1) at scale «;. For any q € Q,
w,y € Y"and t € [n], we let

ipwy.on] < mgain {37 (¢ (L) ()L
According to Lemma 26, there exists some v]q, p, w,y, ax] € V(ax) U {p} such that
> (¢ () (M v v ) )
Z( ( g ;)_C<U1/£[Q7P>W7Y7Oé]v](yt|W)>)2, (45)

pe(ys | W)

and

g w(ye | W)\ 1 tla P w, v, an] (e | W)\
() =i ( ).
t=1

yt ’ W - pt(yt | W)

both hold. For 1 < i < N — 1, we use V(«;) to denote the sequential cover of Q at scale «;. For
everyq € Qand w,y € V", we let

_ - yt|w>)_ <vt<yt|w>>)2 A
vlq, p,w,y, o] = a:/lfegvralr)l{g<< o w )~ ot Tw) L@
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ugg {C ()~ i€ (e 3)}]
225&’*%(%) o (tlammaul )
R e e Rl o |

- v (Yt | W)) 1 <Ut(yt | W)>2
sup e ( — ¢ . (48)
veV(an)U{p} {; { pe(ye | w) 161og(n|Y]) > \ pe(y: | W)
In the following, we upper bound the three terms in Eq. (48) respectively.
We let

E

<E

+E

viq,p,w, aN]—argmln{maxmax‘\/qty|w \/vty\w ‘} (49)
veV(an) te[n] yey

Then for (¢, w,y, z) ~ ©p, we have
oo () (ot ) )
)-(zrer=)]
Pt Yt W
S ( (i) < [q’z::m<>yt'w>>>1

2
(444) n o
< 4E supz a(ye | w) _ vq, p, W, an](y: | w)
acQ = \ | pe(ye [ W) pe(ye | w)

(iv) “ o’ = 1
< 4E |sup —N 1 =404 -E —
q€Q =] pe(ye | W)] Y ; pe(ye | W)]
(v) 9
< 4dnay|V, (50)

where (i) uses Eq. (45), (i) uses the definition of v/[q, p, w,y, ay] in Eq. (44), (iii) uses the
Lipschitz property of ¢ function in Proposition 23, (iv) uses the definition of v in Eq. (49) and
Definition 1: for fixed p, q and w, for any ¢ € [n] and y; € ),

Valun Tw) = /ol b, w,an](ue | w)|

= min maxmax W (% )%
veV(an) t€[n] yey ‘\/Qt b | \/ ! yt | ’

< sup max min maxmax‘ w — /v w’<0¢
qegwey” veV(an) te[n] yey \/Qt yt | \/ t(yt ’ ) = O
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and finally (v) uses the fact that for any ¢t € [n], conditionally on wy.;—1, the distribution of y; is
pe(- | w), hence

1
E|—— — V.
|:pt(yt’W } D pily | w)- V|

Z I

Then similar to Eq. (50) (the definition of v[q, p,w,y,q;] for 1 < i < N — 1 is similar to the
definition of v'[q, p, W, y, an], hence the following inequality can be obtained by starting from the
second line of Eq. (50)), we can show that with (e, w,y,z) ~ Op, forany i € [N — 1],

Supzn: << <‘It(yt|w)> ¢ (Ut[qvpaway;ai](yt | W))>2] <ana2lY. D)

E
acQ I\ \pe(yt | W) Pe(ys | W)

We are now ready to provide upper bounds for the three terms in Eq. (48). For the first term in
Eq. (48), we have

e oG < () )

(<i)\/ﬁ-E sup f:( <Qt Yt "W;>_C<Ut[qap,W,y,a1](yt|w))>2
pe(ye | w

E

qco P pe(ye | w)
2. Y yt|w>>_ <vt[q,p,w,y,a11<yt|w>>>2
= Ve B §<C< (welw)) ¢ Py T w)
Zz Znal\/W (52)

where (7) uses Cauchy-Schwarz inequality, (i7) uses Jensen’s inequality and (7i7) uses Eq. (51).
We next analyze the second term in Eq. (48). Notice that for any 7 € [V — 1] and A > 0, we can
decompose the second term in Eq. (48) as

gt {;E fe (i) e () }H

- E[S“p { Z {C <vt[q,p,w,y,ai]<yt | w)) e (vt[q, P, W, Y, st (| w))}

pe(ye | W) Pe(ye | W)

) (e}

+X-E lsupi {g <”t[qvp7w7y704i](3/t ! W)) e <’Ut[q, p.wW, v, i) (e | W)) }2]

acQ = pe(ye | w) pe(ye | w)

(53)
For fixed p and ¢ € [N — 1], we define set I; as

U; = {u:u=ul[v', vl for some v' € V(o) and v € V(e 11) U {p}},
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where for v € V(a;) and viT! € V(a;11) U {p}, the element u[v?, vi*!] is defined as (u1.,) with
ug = ug(- | ) : Y x Y71 — R defined as

Ut(yt\W)ZCC}W)—C(m), Vw,y € Y'andt € [n].

Then we have |U| = |V(a;)| - (]V(i+1)| + 1), and we can further upper bound Eq. (53) by

sn{Se (e (omgger=) < (e
<E ilégi {evur(ye | w) — X we(ye | W)Q}]
ok [supZ{ ( o, pow,y, il (| w)) e <vt[q, P.W,y, i) (3 | w>> }]

E

acQ = pe(ye | w) pe(y | w)
(54)
For the first term in Eq. (54), we adopt Lemma 16 with
st = (Wit—1,Yt), Gt = 0(Y1t, 214, w1e—1)  and - ar(s) = we(ye | W),
it is easy to see that E[; | G;] = 0, and o (s;) C G;. Hence we have
n
E supz {evue(ys | W) — X we(yy | w)2}]
ueld ;7
_log U] _ log(V(an)(V(ass)] + 1)) _ 2log[V(ay) 5

- 22 T 2\ A ’
where the last inequality uses the fact that o; < ;41 hence |V(a;+1)| < [V(a;)|. For the second
term in Eq. (54), we have

A-E [pz {c (“t[q’ﬁway,aikyt W) ) . <vt[q, P.w,y, it (41| w)) }]

acQ = Pe(ye | w) Pe(ys | w)

B (2a1) o (mztat)

()
<2\-E

- , 2
+2X-E |sup Z (g (qt(ytlw)> —¢ (Ut[qvpvwvy’aﬁ-l](yt | W)))
a€Q i pe(ys | W) pe(ys | W)
(@) 9 ) (i) )
< 8Ana | Y| + 8Anaj, |V < 16Anag, |V, (56)

where (i) we uses Cauchy-Schwarz inequality, (ii) we uses Eq. (50) and Eq. (51), and (iii) uses
a; < a41. Finally we choose A = , /128 V@)l Then bringing Eq. (56) and Eq. (55) into Eq. (54),

8nai+1|y|

we obtain

[225{§€t{ (* q’p’piyf]avlv])(%'w)‘<<vt[q’p’vg§<ilclwv+vl>](yt|W)>}H
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< 210g\>\V(a,)| + 16 na?, |V < 8ait1v/2n|Y|log V()] (57)
Remark 29 Let us briefly discuss the novel and key aspect of the approach used to upper bound
the left-hand side of (57). In the classical case when the coefficients are non-random, one simply
observes that the supremum is a maximum over a finite collection. Unfortunately, here the squared
increments are themselves random and only small in expectation, due to the presence of the p;(y; |
w) term in the denominator. The key technical observation here is that one can alternatively work
with the offset process (55), which can be controlled for any predictable coefficients irrespective
of their magnitude, as well as the expected squared distance between the coefficients in (56). We
believe that this technique, which is summarized in Lemma 17, will be useful beyond this paper.

Finally, we analyze the last term (offset term) in Eq. (48). We let the filtration G; = o (y1.¢, 21:¢, £1:4—1)
for t € [n]. Then we have E[e; | G;] = 0, and according to the process of getting w1.,,, o (wy.4—1) C
G;. We let s; in Lemma 16 to be (wy.4—1,y:), and

A:{a:(al,---,an)

ar(wi—1,yt) = C (vt(yt‘wlt_l)> for any ¢ € [n] for some v € V(an) U {p}}
pe(ye | wiie—1)

1
16 log(n|Y])

L wlp W)y _ 1 vy | w))?
: Lev&‘ffiu{p} {; {Etg <Pt(yt | W>> 161og(nD)° <pt(yt | W)> }}]

< 8log(n|V]) - log([V(an)| + 1). (58)

Applying Lemma 16 with A = , we obtain

Finally, we specify the scales a; = 2~ for some positive integer [ > N. Bringing Eq. (52),
Eq. (57) and Eq. (58) into Eq. (48), we obtain that

= a(ye [ W)\ 1 (e | w)\’
E |sup ) e {C (o)~ gt (ot o) H
N—-1
< 2nary/ DT+ 3 Sai1y/20lY] - v/log V{a)] + 8log(nlY) - (log [V(ax)] + 1)
=1

() N-1

S narV/ I+ ) ainV/nlY] - [ Hsq(Q, i) + log(n|V]) - Hsq(Q, )
=1

(i) N-1

S na /I + D (i = aim)V/nlY] -\ Hs(Q, @iy ) + log(n|Y]) - Hsq(Q, an,n)
=1

oN—I

(i) 9 /
< L A [ Hea(@ e+ og(al) - M @2 ),

where (i) uses the definition of the covering V(a;) we have log(|V(c)| + 1) S Hsq(Q, o, n) for
any p € A(QY™), (i1) uses a1 = 20; = 41, and (44i) uses the fact that for any a;—1 < a < a,

qu(Q7 Ofi, n) S qu(Qa a?”)'
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For 0 < 0 < v < 1, letting I = log,(1/d) and N = [ + log,(7y), and according to Lemma 25, we
obtain that for any p € A, (Y"),

ywp[ (pr <n6\/‘y +\/n‘y/ \/2qu QandOH-lOg n‘yD qu(Q 7, n )7

hence Eq. (43) is verified. |

Appendix C. Missing Proofs in Section 3
C.1. Missing Proofs in Section 3.1
Proof [Proof of Lemma 4] We write the proof for
n
O(Y1in, T1m) = Inf Yy L(f (1), ye),

ferF —

but it will be clear from the following that this particular structure is not used. When £ is convex
with respect to its first argument, we can write

sup inf sup} [Z L(pryye) — J}Ielgrzg(f(xt)a yt)]
t=1 | 1= t—1

z¢ D Yt

{supmfsupEywpt} [Ee Brvye) — }Q;Zzwt),yt)]
t=1 — t=1

Tt Pt pt
2 supsuplanEytht} Zﬁ(@,yt) — inf Zf(f(mt),yt)
pt Dt =1 | 1= fe]-‘ —
= {supsupEytht} inf By, ~p, L(Dt, ye) — mf ZZ ]
t=1 [t=1 bt
(#9) sup {sup Eywm} Zigf Ey,~p LD, yt) — mf Zﬂ Yt)
x Pt t=1 [ =1 pt
= sup {sup 1anEytht} [ 0(py,y¢) — inf Zé(f(a:t(y)),yt)]
X pt Dt t=1 | =1 fe}—t:l

(ii) sup {igf sup} L (Dt yt) — }ngEZE(f(xt(y)), yt)]

x Pt oyt t=1

=sup R, (F ox),

where (i) and (7i7) use the minimax theorem for convex-concave functions (Fan, 1953, Theorem
1.(ii)), and also the fact that ¢ is convex with respect to its first argument, and (i7) uses the fact that
interleaving the supremum of x; and expectation over y; is equivalent to taking the supremum over
trees x first (or, skolemization). |
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Proof [Proof of Theorem 6] For a given function 7 C [0, 1] and depth-n X-valued tree x, we
define aclass F(x) = {f(x) : f € F} C A({0, 1}") of joint distributions over {0, 1}" as follows:
fory = (y1.n) € {0,1}", the probability of joint distribution f(x) takes value y equals to

n

f&)(y) = Hf(x)t(yt |Y),

t=1

and
< _ ) (@(y) ify = 1,
F&)e(ye |y) {1—f($t(y)) o0

According to Lemma 4 (see also (Bilodeau et al., 2020, Lemma 6), Liu et al. (2024) and (Rakhlin
and Sridharan, 2015b, Eq. 27)), we can write

(39)

Rul(F) = $1p Ey oy Ro(F(x),p.y) = sup [y (F(x)]
where R, (-, p,y) is defined in Eq. (23), and R,,(F(x)) is the Shtarkov sum Eq. (3) for joint distri-
bution class F(x).

In order to prove Theorem 6, we only need to verify that Heq(F, o, n,x) < Heq(F(x),n, )
for any tree x. In the following, we verify this by showing that the sequential square-root covering
of F o x defined in Definition 5 can form a sequential square-root covering of F(x) defined in
Definition 1 of the same size.

Suppose V() is the sequential square-root covering of F o x at scale « defined in Definition 5.
We define U (a) € A({0,1}") from V:

U(@)Z{ vl € A({0,1}"),v € V(e Hut (we |'y), vy €0, 1}”}

1—v(y) ify,=0.

Then we have |U(a)| = |V(«)|. And according to Definition 5 we have for any f € F, and
w € {0, 1}", there exists u € U such that for any ¢ € [n],

wlv](y: | y) = {Ut(Y) if yt.: 1,

max ‘\/uty|w Vf(x) y\w‘ga.
ye{0,1}

Therefore, U () is a sequential square-root covering of F(x) according to Definition 1. Noticing

that |/ («)| = |V(«)|, Theorem 6 directly follows from Theorem 2. [

Proof [Proof of Corollary 7] Corollary 7 follows from Theorem 6 after replacing Hsq(F, i, 1, X)
with O(a~P) and the following choices of v and 9:

1
njﬁﬂfg if0<p<2,

(7,9) = ,1)

1,n »

(60)
if p> 2.
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C.2. Missing Proofs in Section 3.2

Proof [Proof of Proposition 8] This proposition directly follows from the following inequality: for
any p,q € [0,1] withp € [0, 1 — 4],

mawe {5 = vl [VI=p - VI=a]} < 2

In fact, we have

max {|v5 - vl

V=)

A EE
VPHVENVI=p+VI=q) = V5
|

Proof [Proof of Proposition 9] This proposition is a direct corollary of the standard inequality,
e.g. (Polyanskiy and Wu, 2024, (7.22)), which shows that the squared Hellinger distance and TV
distance satisfy the bound:

H(p7 Q)Z S 2DTV(p7 Q)

Appendix D. Missing Proofs in Section 3.3

In this section, we will present the formal proof to Theorem 10 and Theorem 11.

D.1. Proof of Theorem 10

To prove Theorem 10, we define a dimension of function classes which characterizes the difficulty
of sequential learning with the class. We will relate both the sequential square-root entropy and
minimax regret to this dimension of the function class.

First, we define distance h between two real numbers in [0, 1]:
\/1—a—\/1—b}}, Va,b € [0,1]. 61)

9

h(a,b) :max{‘\/a—\/l;

Definition 30 Suppose F € [0,1]% is a function class and 0 < < «. An X-valued depth-d
tree X is said to be («, B)-shattered by F distance if there exists a [3,1 — 5] x [B,1 — B]-valued
depth-d tree s such that: for any path'y = (y1.q) € {0,1}%, si(y) = (s¢(y)[0], se(y)[1]) with
se(y)[0] < s¢(y)[1], and also there exists f¥ € F such that

[P (2e(y) = se(¥)lyell < B and b (se(y)[0], se(y)[1]) >, Vi€ [d].

The dimension © (F, «, [3) is defined to be the largest d such that there exists a depth-d tree x which
is («, B)-shattered by F.

The following proposition relates the dimension D (F, o, 3) to the sequential square-root en-
tropy.
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Proposition 31 For any class X, function class F € [0,1]%, positive integer n and o > 0, we
have

sup Hsq(F,a +1/28,n,x) < D(F,a, ) log <eg> ,

where the supremum is over all depth-n X -valued tree Xx.

The following proposition relates the dimension © (F, o, 5) to the minimax regret R, (F)
=0

Proposition 32  Suppose the function class F C [0,1]% satisfies D(F, o, a*/16) (a7P).

Then for any positive integer n,

Ru(F) = (nﬁ)

With the above two propositions of the dimension ©(F, «, 5), we are ready to prove Theo-
rem 10.
Proof [Proof of Theorem 10] Suppose class F satisfies supy Heq(F, @, n,%x) = Q(a~P). Then
according to Proposition 31, we have

O(F.,04/10) = sup Hl(Fr + 02/ (23, o (1) =2 (7).

Hence according to Proposition 32, we have
Ro(F) = (ni'7) .
|

The following two subsections will be devoted to the proof of Proposition 31 and Proposition 32.
A more general treatment of this approach, including the non-sequential analogue, will appear in
the companion paper Jia et al. (2025).

D.1.1. PROOF OF PROPOSITION 31

Before proving Proposition 31, we first prove a similar results for sets of discrete-valued function
classes. Suppose 3 € (0, 1) satisfies M = 1/(203) is an positive integer. We define set:

And we further define the dimension D (F, «) for the discrete-valued function class F which con-
tains functions mapping X into the set Ug.

Definition 33  Fix real number (3 € (0, 1) which satisfies 1/(203) is a positive integer. For function
F C (Up)* and real number o > 0, a depth-d X-valued x is said to be shattered by F at scale
«, if there exists a depth-d (Us x Ug)-valued tree s such that: for any'y € {0,1}9, si(y) =
(51(9)[0], s¢(y)[1]) satisfies s:(y)[0] < se(y)[1}, and for any t € [d), h(5(¥)[0], s:(y)[1]) > o
(where h is defined in (61)), and for anyy € {0,1}, there exists f¥ € F such that ¥ (z4(y)) =
st(y)[ys] holds for all t € [d).

The dimension ©(F,«) of F is defined to be the largest d such that there exists a depth-d
X-valued tree x shattered by F at scale .
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The following lemma indicates that for discrete-valued function set F, the sequential square-root
covering number of class F can be bounded by the dimension ® (F, «) of class F.

Lemma 34 For function class F : X — Ug, then for any depth-n X-valued tree x, we have

€7’L> D(F,a)
B

Proof [Proof of Lemma 34] For any 3 > 0 such that 1/(203) is an integer, we define

st =3 () -0 -1y,

1=0

Neg(Fox,a,n) < (

which satisfies Rakhlin and Sridharan (2015a)

We will prove this result by induction with the following induction argument:
®(n,d): For any function class F C (Ug)X with © (F, «) < d, and any depth-n X-valued tree x,
Neq(F ox,a,n) < gg(d,n).

Base: There are two base case: n < d and d = 0.
When n < d, we let

V:{V[llle,"'7ln]3l1,"‘,lnEUg},

where v|[lq,- - , 1] denotes the tree which takes value [; at depth ¢ along any path. Then it is easy
to see that for any f € F, depth-n X-valued tree x, and any path y € {0, 1}", there exists some
v € Vsuch that f(z:(y)) = v(y) for all ¢ € [n]. Hence V is a O-sequential covering of F o x,
hence V is also an a-sequential covering of F o x as well. Hence we have

d

Na(F o) < M = 051" = 217 =3 () (01 1) = g,
=0

When d = 0, there is no depth-1 X-valued tree which shatters F at scale o. This implies
for any two z, 2’ € X, we always have h(f(z),h(z')) < « (otherwise we can construct depth-
1 tree x with 21(0) = z and z1(1) = 2/, then this tree is shattered by F). For any zy € X,
we construct depth-n [0, 1]-valued tree v which always takes value f(zp) no matter the path and
depth. Then for any f € F, depth-n X-valued tree x and any path y € {0,1}, we always have
h(f(ze(y)),ve(y)) = h(f(ze(y)), f(x0)) < a. Hence V is an a-sequential covering of F o x, and
it satisfies [V| = 1 = gg(n,0).

Induction:  Suppose the induction hypothesis &(n — 1,d — 1) and &(n — 1, d) both holds. We
will prove induction statement &(n, d). For fixed function class F with © (F, «) = d and depth-n
X-valued tree x, we will construct a a-sequential covering to F o x whose size is no more than
gg(n, d). Suppose the root of tree x is x1, the left subtree of x; is x', and the right subtree of z; is
x". We partition the function class F as:

F=FUFU---UF g where Fp={fecF:f(x1)=02k-1)8},VI<k<M.
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Then we have D (F, o) < D(F, ) =dforall k € [M]. Welet K = {k € [M] : D(Fy, ) = d}.
Then for any a,b € K and a < b, there exist two depth-d X'-valued trees x* and x°, and also two
depth-d (U x Ug)-valued trees s and s’ such that for any y € {0,1}% and ¢ € [d],

h(s{ ()]0, sf(v)[1]) > @ and  h(s;(y)[0], s{(v)[1]) > e,

and further for any y € {0, 1}<, there exists fJ € F, and f} € F, such that for any ¢ € [d],

f(f(y) = sty and 7 (27(y)) = s(y) el

If we further have h((2a — 1)5,(2b — 1)) > «, we construct a depth-(d + 1) X-valued tree x
with root x, left subtree of the root to be x, and right subtree of the root to be x°, and also a
depth-(d + 1) Ug x Ug-valued tree s with root ((2a — 1)8, (2b — 1)[3), left subtree of the root
to be s?, and right subtree of the root to be s®. Then we can verify that for any y € {0,1}4+1,
and any t € [d + 1], we have s2(y)[0] < s?(y)[1], and h(s;(y)[0], s¢(y)[1]) > c. Further we let
Yy = (y2,93, - ,yar1) € {0,1}¢, and if y; = 0, then by letting f¥Y = fg’/ we can verify that
fY(xe(y)) = s¢(y)[ys] for any ¢t € [d + 1], and if y; = 1, then by letting f¥Y = fg'l we can verify
that f¥(z:(y)) = s¢(y)[y:] for any t € [d + 1]. Hence, F is shattered by tree x of depth-(d + 1),
leading to contradiction. Therefore, we have

h((2a—1)B,(26-1)B) <a,  Va,bek (63)

Next, for any k € [M] with ©(Fj, o) < d—1, according to induction hypothesis & (n—1,d—1),
there exists a sequential cover Vi of size gg(n — 1,d — 1) for the depth-(n — 1) X-valued tree
x!, and also a sequential cover VI of size gs(n — 1,d — 1) for the depth-(n — 1) X-valued tree
x". We then combine the elements in V}C and V] into a set V), of depth-n Ug-valued trees. We
let v; = (2k — 1) € Ug. Then according to the construction of Fj, we have for any f € F,
f(z1) = v1 hence h(f(x1),v1) < a. For vl € Vi and v" € VI, we define depth-n Ugs-valued tree
v[v!,v"] as: for any path y € {0,1}", we let y' = (y2.,) € {0, 1}, and let v{ [v!, v"](y) = v1.
If y; = 0, then let v, [v!, v"|(y) = v!_;(y'), and if y; = 1, then let v;[v!,v"](y) = v_;(y’). We
construct Vi, = {v[v!,v"]} with [Vy| < max{|VL|,|V|} to make sure that every element in V}
and V] at least appear once in the construction of V. Next, we will argue that )}, is a a-sequential
cover of F, o x. Forany f € Frandy € {0,1}", if y; = 0, then since V,lC is a a-sequential
cover of Fy, there exists v € V! such that for any 2 < ¢ < n, h(f(z+(y)),v}(y)) < «. Suppose
v = v[vl,v"] € V for some v" € VI, and we also have h(f(21(y)),v1(y)) < o according to the
construction of F. Hence for any ¢ € [n], we always h(f(x(y)),v:(y)) < a. Therefore, V' is a
cover of F. Further by induction hypothesis we have max{|Vi|, [V|} < gg(n — 1,d — 1). Hence
Vel < gs(n—1,d—1).

If K = (), then by letting V = Uge[m] Vi, V will be a a-sequential cover of F o x, and also

V| <M -gg(n—1,d—1) <gg(n—1,d)+ (M —1)gg(n —1,d — 1) = gg(n,d),

where the inequality follows from the fact that gg(n — 1,d — 1) < gg(n — 1,d) for any n,d, and
the last equation follows from Eq. (62).

Next, we consider cases where || > 1 We construct ' = Uy F, then we have D (F, o) <
D(F,a) = d. According to the induction hypothesis @& (n — 1, d), there exists a sequential cover V'
of size gg(n — 1,d) for the depth-(n — 1) X'-valued tree x!, and also a sequential cover V' of size
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g3(n—1, d) for the depth-(n— 1) X-valued tree x'. We then combine the elements in V! and V" into
a V' of depth-n Ug-valued trees. We let v; = f(z1) € Ug for some f € F'. Then according to the
construction of F’ we have for any f € F/, h(f(z1),v1) < a. For vl € V! and v € V", we define
depth-n Ug-valued tree v[v!,v"] as: for any path y € {0,1}", we lety’ = (y2.n) € {0,1}"71,
and let v1[v!,v"|(y) = v1. If y1 = 0, then let v, [v!,v"](y) = v!_,(y'), and if y1 = 1, then let
v[vh,v7](y) = vl (y"). We construct V' = {v[v!,v"]} with [V'| < max{|V'|,|V"|} to make
sure that every element in V' and V" at least appear once in the construction of V’. Next, we will
argue that V' is a a-sequential cover of ' o x. Forany f € F andy € {0,1}", if 3 = 0,
then since V' is a a-sequential cover of F’, there exists vl € V! such that for any 2 < t < n,
h(f(z:(y)),vi(y)) < a. Suppose v = v[vl,v"] € V' for some v € V", and we also have
h(f(z1(y)),v1(y)) < « according to Eq. (63) and the construction of F’. Hence for any ¢ € [n],
we always h(f(z(y)), v:(y)) < a. Therefore, V' is a cover of F’. Further by induction hypothesis
we have max{|V!|, |[V"|} < gs(n — 1,d). Hence |V'| < gg(n — 1,d).
We further let V = V' U (Upgx Vi), and we have

|V’ < (M - 1) : g/@’(’l’L - 1>d - 1) + gﬁ(n - Ld) = gﬁ(nvd)v
where the last equation follows from Eq. (62). Above all, we finish the proof of induction statement

&(n,d).
Hence by induction, we have

D(F,) n ' en D(F,@) en\ 2(F:)
Neq(Fox,a,n) < gg(n,D(F, o)) = Z (z>(M —1)i< (533(]—“@) < <5)
i=0 ’
|

Equipped with Lemma 34, we are ready to prove Proposition 31 that works for real-valued
function classes.
Proof [Proof of Proposition 31] For 5 > 0 where 1/(20) is an integer, we let M = 1/(203), and we
define

UB = {67 367 567 T (2M - 1)6} :
And for every u € [0, 1], we define |u |z = arg min,.cy;, |u—r|. For any function f € F, we define
LfJ 8- X —-U g as
Lf]s(@) = Lf(2)]p-
We further let | F |3 = {[f]s : f € F}. According to Definition 30 and Definition 33 we know
that if | F | is shattered by some X'-valued tree x at scale c, then x also also («, 3)-shattered by F.
Hence we have
D(F, o, 8) 2 D(|Flp,a).

Hence Lemma 34 gives that for any depth-n X’-valued tree x,
g —\B '

We let V to be the covering of | F| s at scale a with size no more than (en/3)°®5). Hence for
any f € F,x € X andy € {0, 1}", there exists v € V such that for any ¢ € [n],

h (L p(zi(y)), vi(y)) < .

N([Flsox,an) < (

41



J1A POLYANSKIY RAKHLIN

According to the construction of | f | g, we have || f]g(z:(y)) — f(2:(y))| < B, which implies that
(L ]p(@e(y)), f(@:(y)))

2
< (YUlatay) - VI ) (/1= Ulstarty)) - VI~ o)
L 1) — Flanly )|+ 11— ) s(anly)) — (- Flaly )] < 26,

where the first inequality uses the fact that (a — b)2 < (a — b)(a + b) for a,b > 0. Therefore, for
any t € [t], we have

h(f (@e(y))s0e(y) < (L1 (xe(y)s fae(9))) + B (LF ) s(ae(y)), vily)) < @+ /28,

which implies that V is an (« + 1/203) sequential covering of F, i.e.

IN

en) D(Fa,8)

N(Fox.a+vEin <M < (5

Taking supremum over x, we obtain that

sup Heq(F,a +1/28,n,x) = suplog N (F o x,a + /25,n) < D(F,a, B)log <en>

s
|
D.1.2. PROOF OF PROPOSITION 32
Before proving Proposition 32, we present the following helper lemma.
Lemma 35 Suppose real number p, o, 3 € [0, 1] and integer n satisfies 3 < o and
1—
at+pf<p<l—a—p, and n§p§24a];)\/1. (64)
We collect n samples from Ber(p) to form an empirical estimation p € [0, 1], and we define
1 ifp >
= h=v (65)
-1 ifp < p.
Then we have
. ptea—pf . l—p—ca—p a?
E|plog——— + (1 —p)log > , (66)
[ (1) 1-p 8p(1 —p)
where the expectation is over p and €. Additionally, when choosing n = L%zl = IQ)J V 1, we have
— ﬁ . l-p—ea—p 1
E [plo —p)l > . 67
n- [p p + (1 —p)log T e T (67)
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Proof [Proof of Lemma 35] Without loss of generality, we assume p < 1/2 (otherwise we replace
p with 1 — p and the argument follows similarly). Then we have o < 1/2 and § < 1/4. Consider
the following three cases:

(1) 1/36 < a <1/2,
(1) a+ B >p/2and o < 1/36,
(791) o+ < p/2and o < 1/36.

When 1/36 < a < 1/2, since p(1 —p) < 1/4 and o > 1/1296, we always have n = 1, which
implies

E {ﬁlog ptea—p +(1—p)log l-p-ca-p —pl—_€;é — ﬁ]
a—p a—pB\ O a—p () q @) a?
—p-lo 1+)+ 1-p)-lo <1+ >z > 2
P g( p (1-p)-log l-p 2 4 = 8p(l—p)

where (i) uses «—f > 0 and either («—3)/p > 1/20r (a—3)/(1—p) > 1/2and log(1+x) > z/2
for 0 < x < 2, (i) uses the fact that « < 1/2 and 8 < o?, and (ii4) uses the fact @ < p and
1—p>1/2.

When o + 3 > p/2 and a < 1/36, since 3 < o we have a > p/3, which implies that

p(1 —p)

< el S
"= 39402

V1<1/p.

Hence p < p, i.e. ¢ = —1 if and only if p = 0. Therefore,

_ 1—p—co —
E ﬁqogp<+fxxﬁ+(1jnlog11_j;¥/3}
_ _ 1—p—a—
:Pr(ﬁ:O).log<1+i‘_£>+E[<ﬁlogW+(1—ﬁ)logW>.H[ﬁ>o]].

(68)

Since p < 1/2, we have a+ 3 < 1/36+1/362 < (1—p)/2, which implies (a+3)/(1—p) < 1/2.
After noticing that log(1 + ) > x — 22 holds for all z > —1/2 and also o — 3 > 0, we can further
upper bound Eq. (68) by

Pdﬁ=®'<(?:§>_<?:§>j
(ﬁ- <<a;5> B (a;5>2) F—p)- <<—1a_—p5> B (—1a_—p5>2>> [p > 0]]
5. ((mp—B) N (ﬂlp—ﬁy) +(1-p)- ((_iif) - <_ia—_pﬂ>2>]

L L AR S IR LS
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(i) [s@—p)a L < —ﬁ)a} 95 (atp) <1 + 1)
p

D I—-p I1-p
e p=pl ] L, (@4 B)?
" [p(l —p)} 2 p(1—p)
@ —Tlp-pl] 2
s ok [p(l—p)] p(1—p)

where (i) uses |ea — B| < a+ B, | —ea — | < a+ [ and E[p] = p, (ii) uses the definition of €
in Eq. (65) and (ii7) uses the fact that 0 < 3 < a2 < 1/1296. According to Khintchine inequality
Haagerup (1981), we have

Ellp—pl] >
which implies
202 o?

(6%
LHS of Eq. (66) > - > :
2np(1 —p) p(1—p) = p(l—p)

where the last inequality uses the fact that

p(1 —p) o D 1
= 32402 1—p) Ve i < 3ve

When '+ 8 < p/2and a < 1/36, we have (p—a— 8)/p > 1/2and also (1 —p—a—3)/(1—
p) > 1/2, then for any ¢ € {—1, 1},

p+6a—521’ and 1—p—5a—521'
P 2 1—p 2
Notice that log(1 + z) > = — 22 holds for all # > —1/2, which implies

LHS of Eq. (66)

_ 2 2
= (5) (55 ) e (55)-(5))
=[p(5) 0on (557) o (452) -0-n (557

@) _[epoa  —e(1—P p 1-p P —p
SE|PY el p)a]—ﬁ-E[erl p]—(a+ﬁ)2-E[p+ ! p]
L P IL—p P —p
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where (i) uses |ea — B3| < a+ B, | —ea — B| < a+ B and E[p] = p, (ii) uses the definition of
¢ in Eq. (65) and (4i7) uses the fact that 0 < 5 < a? < 1. According to (Berend and Kontorovich,
2013, Theorem 1), we have

. p(1 —p)
Ellp — >\ —2

[P —pll > 5
which implies

2 2 2
LHS of Eq. (66) > a S S
2np(1 —p) p(1—p) ~ p(l—p)

where the last inequality uses the fact that

p(1—p) o P 1
n<——=’v1l and ——— < a- < :
32402 /(1 = p) p(1—p) ~ 3v2
Above all, we have verified Eq. (66), and Eq. (67) follows from Eq. (66) directly. |

Now we are ready to prove Proposition 32.
Proof [Proof of Proposition 32] Let g € X" be an arbitrary context. For fixed positive integer n,

we let )
o =g {207 0.010): (|| V1) <0}
Since D (F, o, a*/16) = Q (o~ P) for every o > 0, we have
D(F, o,k /16) = Q (nﬁ) .

In the following, we will prove that for any positive integer n, we have

D(F, an, oy /16)
> .
Rl F) 2 5184
We fix n, and let @ = oy, d = D(F,an,at/16). We let X to be the depth-d X-valued
tree shattered by F at scale (v, /16). Then according to Definition 30, there exists a depth-d
[0,1] x [0, 1]-valued tree s such that for any path ¥ = (§1.4) € {0, 1}¢, there exists f¥ € F such
that

~ a4
| F¥(@:(3)) — se(3)[5]] < 16 d A0 s()) 2a Ve ld], (69)

After noticing that h(u,v)?/2 < |u — v| for any u, v € [0, 1], we have

(5:(3)[0] — s¢(3)[1]))”
4

‘ff’(@t(y)) —si(V)[G]| <
We define depth-d [0, 1]-valued v as

oy _ st()[0] + s (¥)[1]

v (y) = 5 , Vy e {0,1}". (70)

We can further verify that
h(s:(¥)[0], s¢(¥) [1])2
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= (s:(9)[0] = s:(3)[1])°

1 1
S { (Vo@D + Vs @2 (V1= s@)0] + v/1— st<y>m>2}

~ ~ 1 !
< (5:(3)[0] — s:(3)[1]))? - (st(S’) 0] + s:(3)[1] Tz s¢(y)[0] +1 — St(i)[1}>
_ 2(s:(¥)[0] — s¢(¥)[1]))°

ve(@)(1 = ve(y))

Next, we will show R, (F) > d. According to Lemma 18, for any p € A({0, 1}") and depth-n
X-valued tree x, we have

(71)

Rn(F) = By pRn(F(x),p,y). (72)

In the following, we will construct specific p and x so that the right-hand side in the above inequality
is lower bounded by d. For a fixed a path y € {0,1}", we first define an auxillary {0, 1}-path
¥ = (1.9) € {0,1}% of length-d and also d integers: ky, ko, - - - , kg in the following way: calculate
71.q and k1.4 by turn:

- vr(@) (A = ve(9))
kt B \‘324 (&5(}7)[1] _ St(y)[ODQJ V1, Yt € [d] (73)
and )
"= H{ D hrtthia s 2 hi vt(y)}’ vt € [d], (74)
j=1

where v,(y) is defined in Eq. (70). Notice that according to the above definition, k; only depends
onyi, -, Yk, +-+k,_,> and y; depends on y1, - - - , Yk, +...+k,. Additionally, according to Eq. (71)
and Eq. (69), we have
ktgva vt € [d]
which implies k1 + - - - + k4 < n always holds according to our choice of o = «,,. Hence k1.4 and
71.q are all well-defined.
The value of (z1(y),z¢(y), - ,zn(y)) are in the following form:

(@1(3), 21(9), -+, 21(¥), 22(¥), 22(3), - -+, Z2(¥), -+ Ta(Y), Ta(Y), -+, Zaly), @0, To,- -, T0 ),

k1 pieces k2 pieces kg pieces (n—k1—ko—---—kg) pieces

Similarly, the value of (p1(y),p:(y), -+ ,pn(y)) are in the following form:

(7}1(}7),1}1(}7), U ,Ul(y),vg(y)ﬂ&(y), U 7U2($’)7 e 7Ud(y)7vd(y)7 T 7vd(y)afy(x0)7fy($0) o 'fy(xo))7

k1 pieces ko pieces kq pieces (n—k1—ko—--—kgq) pieces

where z is the state we fixed at the beginning of the proof.
Then we write R,,(F(x), p,y) in terms of segments 1 to d, and after noticing that f¥ € F for
any depth-d path y € {—1,1}%, we obtain

Rn(F(x),P,y)
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yk1+ +ki_1+j | G 1+j(Y))

(£50

J Wi otbgrs | @)

= sup
feF Ly 1j=1 Ply ke 1+](yk1+ Fki—1+] |Y)
—k—ee—k
VS g F Wt | ety ()
Jj=1 Pt thati (Yhittkat | Y)
- FWrysry g | Fe()) "R
= sup 10 ! (o + log
f€.7: ;; Ut ykl“r ki 1—‘,—] |y) j:zl f (yk1+
> zdjzl ka‘ +ki—1+7 | 2(y))

=1 j=1 Ut yk?1+ k147 |Y)

where the last step takes f = f¥Y € F. Next, for fixed y, we define

vt = I E :yk1+"'+kt71+j7
t 1
‘]:

and let

i) = B =]

Then using inequality h(u,v)?/2 < |u — v| for any u, v € [0, 1], we have

h(se(3)[1], 5:3)[0))* _ o
4 4

Y (y) >

v

Notice that 7;(y) and v:(y) is independent to Y, .4k, ,+1, "
Eq. (75) as

d T
Ao 100 ZEE) L1
Rn(f(X)py)Zt;kt <t1g ") +(1— o) log

+ka+i | o)

(75)

(76)

7

s Yky4-+ky_1+k;» WE Can rewrite

1— fY(i(y))
1 —u(y) > '

Next, we will calculate Eyp, [Ry(F(x), p,y)]. According to the above equation, we can separate

the expectation into the sum of d expectations as follows:

IEy’"P [Rn (F(X)7 b, y)]

g L= fY(xt@)))]

1—'Ut )

¢ tzd;E [E [kt . (U log <Y)[i’;](;)a4/16 + (1)1 G

v (y) + £(00)%(¥) — %(¥)?

ve(y)
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—v(y) — e(0r)ve(y) — t~2
+ (1 — o) log L ) 1€£ Uz(y()y) 1(9) > ’ 3/1:(k:1+~~~kt_1)H (78)

where (i) uses the choice of f¥ in Eq. (69), and in (i) we define

R 1 lf f)t Z Ut (S’)7

-1 if 0 < ’Ut(y).
and it follows from our construciton of §; in Eq. (74) and also a?/4 < ~,(y) from Eq. (77). In
Eq. (78), conditioned on y.(x, 4...4k,_, ) there is no randomness on &y, v(y) and also Z¢(y), hence
all the randomness of the inner expectation comes from ¢; and also s;(y)[y:]. With our choice
of 3(y) in Eq. (76), we can further verify that v,(y) + v(¥)* < s:(9)[0] + %(¥) < vi(¥).
Hence, after noticing Eq. (73), we can verify that the conditions in Lemma 35 hold with o =
%(¥), 8 = 1(¥)% p = vi(y) and n = k;. Additionally, according to our construction of p;(y),
when conditioned on yy.(x, 4...4k,), We have

ii.d. ~
Yki+ke1+1 " s Ykt ke1+ke ™ Ut(' | y)'

Hence Eq. (67) in Lemma 35 implies that

—

Vv
ot
=

E |:kt . <@t log u(y) +e(0)n(¥) — ()

1 —v(y) — e(0)ve(y) — 71&(5’)2)
u(y) y

+ (1 — 0¢) log T 03)

yl:(kl +---k‘t_1):|

Bringing this back to Eq. (78) and then further back to Eq. (72), we obtain that

1 D(F,a,at/16) p_
> 4 > . e ’ ? g .
Rn(F) > Ru(F,a,a”)/16 > d =164 F13d Q(nrt2)

D.2. Proof of Theorem 11

We present the proof of Theorem 11 in this section. We first present a lemma showing that when
fop € le,1—c], wehave h(f,p) < [f —pl.

Lemma 36 Suppose c to be a positive constant in (0,1/2), then for any f,p € [c,1 — c|, we have

|f —pl |f —pl
V2 2\/c

Proof As for the lower bound part, we notice that

< h(f,p) <

h(f,p)22;'((\/f—\/ﬁ)2+(\/1_f_\/1_p)2>
1 2 1 !
=5 () '(<ﬁ+ﬁ>2+<¢1—f+¢1—1?>2>
Z;.(f—p)Q-<2(f1+p)+2(2_1f—p)>
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1
>

(f —p)%

O |

where the second and third inequalities both use Cauchy-Schwarz inequality.
Next we prove the upper bound part. Since f,p € [c,1 — ¢, we have

(\/f+\/]3)224c and (\/1—f+\/1—p)224c,

which implies that

N2
M < (-pp = L2

We are now ready to prove Theorem 11.
Proof [Proof of Theorem 11] Since sup, Hsq(F, @, n,x) = Q(a~P), by choosing 8 = a?/2 in
Definition 30, we obtain
O(F,a,0?/2) =Q (@7?), VYa>0.

Hence if we choose 3 such that
B =sup{B € (0,1/16) : D(F,B,5%/2) > n},

we have 8 = Q (n_l/ p). And according to Definition 30, there exists a depth-n X'-valued tree x
shattered by JF at scale (3, 3%/2), i.e. there exists a depth-n [0, 1] x [0, 1]-valued tree s such that

for any pathy = (y1.4) € {0,1}%, si(y) = (s¢(y)[0], s¢(y)[1]) with s,(y)[0] < s,(y)[1], and also
there exists f¥Y € F such that

2
| (@e(y)) — se(y)[we]| < % and  h (s¢(y)[0], se(y)[1]) > B, vt € [n]. (79)

We further define [0, 1]-valued tree u where for any y € {0,1}? and ¢ € [n],

s:(y)[0] + s:(y)[1]
5 :

u(y) =

Since F C [7/16,9/16]*, according to Lemma 36 we have for any y € {0, 1}", 3/8 < s;(y)[0] <
st(y)[1] < 5/8, which implies that

se()[L] = s:(¥)[0] = 2v/3/8 - A (s0(y)[0], s:(y)[1]) > 5.

Hence we have u;(y) € [7/16,9/16], and for any y € {0,1}",
e | 2e(y) —uelye | y) = 8 =

We next notice that forany f € F,y € {0,1}" and ¢ € [n],

[y | 2e(y))

(o) 2T lae)) 2 7/16,
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hence according to inequality log(1 + x) > x — 32%/2 for any z > —9/16, we have

og T 120(y)) S (fwlay) 3 (fudmy) )
Zl Tulnly) 2;{<ut<yt\y> )3 (Caly 1>} )

We choose f = fY in the above inequality. After noticing that

Jy(yt | xt(Y)) € [176’ 196} ) Ut(yt | }’) € {176’ 196] and fy(yt \ l't(y)) > B} +Ut(yt \ ;Y),
we have ( ‘ ( )) ) 7/16 5
JT\Ye [ 2e\Y)) _ =z
0 < ut(yt ‘ y) 1< 7/16 -1 7

Therefore, we have

(wm_l>_g.<w_1f

us(ye | y) u(ye |y

4 (el 2ely)
?7( W] y) 1)
2 P | o) — e | y) >

s

where inequality (i) uses the fact that u,(y; | y) < 9/16 < 4/7. Bringing back to Eq. (80), we
obtain that

nB  ~/ p=1
Ron(F) = By 2729(,”)
ol VP rer s T wlnly) 2
|
Appendix E. Missing Proofs in Section 3.4
We first prove Lemma 12.
Proof [Proof of Lemma 12] Recall from Lemma 18 we have
1 n
Rn(F) = sup sup log ——— — inf log —m——
() =e1 y~p Z pelys ly)  ferim 7 flye [ aly))
Hence we only need to prove that for any path y = (y1.,) € {0,1}",
n n
sup » log f(ye | we(y)) < sup Y log f(y | wi(y)) + 2. 81)
fer i S )

According to the definition of Hilbert ball class Eq. (17), for any f € F, there exists w € Ba(1)

such that 1 .
fly | ze(y)) = +(=1) 2(xt(y),w)'

50



ON THE MINIMAX REGRET OF SEQUENTIAL PROBABILITY ASSIGNMENT VIA SQUARE-ROOT ENTROPY

Next, we notice that for any real number a € (—1,1), we have

< log

a+n/(n—1) (I1-1/n)a+1 n
2 2

1
logi < log + log
2 n—1

(L-lma+1 1

<1 .
= 108 2 n—1

Therefore, we obtain

L+ (D" (m(y), w) _ L+ ()" ((y), (1 = U/njw) 1
2 = 2 n—1

which implies that

zn:1+(—1)yt x(y z":l—i— Wiz (y), (1 — 1/n)w) n
2 n—1
t=1 t=1
Since for any w € By(1), we always have (1 — 1/n)w € By(1 — 1/n), according to the definition
of function class 7, we have

?ugz log f(y: | 2¢(y))

< sup log f(ys | z¢(y)) +
fej:l/ntzl n_l

n

< sup Zlogf ye | z(y)) +2,
fej-—l/nt 1

which proves Eq. (81). |

We next prove Proposition 13. Our proof requires the following definition of skipping binary
tree.

Definition 37 For a given binary tree x, we say a binary tree y is a skipping tree of x if
1. The set of vertices of y is a subset of the set of vertices of X.

2. For two vertices a,b of y, if a is b’s left child in y, then a is a descendant of b’s left child in
x; and if a is b’s right child in y, then a is a descendant of b’s right child in x.

We have the following properties of coloring over binary trees.

Lemma 38 We consider k-coloring over the vertices of a depth-n binary tree x, where each ver-
tices has been colored in one of k colors. Then when n > k(d — 1) + 1, x has a skipping tree of
depth d whose nodes are of the same color.

Proof

We prove a stronger result: For integers di,da,...,dr > 0, if binary tree x has depth at least
di+do+---+dp+1,andis colored in 1, ..., k. Then there exists 1 < ¢ < k, such that x has a
skipping tree of depth d; + 1 whose vertices are all in color i.
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We will prove this result by induction on dy + --- 4+ di. When d; + --- + di = 0, we have
dy = --- = dj, = 0. In this case, assuming the root is colored in ¢, then the root itself is a skipping
tree with depth d; + 1.

Next we assume that this result holds when dy + - - - +d, = m. Whendy +--- +dp, = m + 1,
we assume the root a is colored in j (1 < j < k). If d; = 0, then we already have a skipping tree
with only one vertex a in color j at depth d; + 1. Next, we assume that d; > 1. We consider the left
binary tree x; rooted at the left child of a, and also the right binary tree x» rooted at the right child
of a. Then both x; and x5 are binary trees with depth

m:ler+dj,1+(dl*1)+d]+1++dk:jl++czk

where we let cil = d; if i # j and cfl = d; — 1if ¢ = j. According to induction, 31 < i1,i0 < k
such that there exists x;’s skipping tree u; of depth czil + 1 whose vertices are all in color ¢; and
also x3’s skipping tree uy of depth cZiQ + 1 whose vertices are all in color i9. If i; # j, then we have
ciil = d;,. Hence the skipping tree u; is also a skipping tree of x with depth d;, 4+ 1 whose vertices
are all in color i;. This skipping tree is desirable. If i3 # j, similarly we can also find a desirable
skipping tree of x. Finally if i; = 99 = j, we consider the tree y with root j, and two subtrees of j’s
left child and right child to be u; and us. Then since the root of u; is a descendant of j’s left child
the root of uy is a descendant of j’s right child, y is a skipping tree of x. And we further know that
vertices of y are all in color j and the depth of y is d; + 1. Therefore, y is a desirable skipping tree.
And we have finished proving the result for dy + - - - + d, = m + 1.

According to induction, this result holds for any dy, ..., d, > 0. |

Now we are ready to prove Proposition 13.
Proof [Proof of Proposition 13] First by choosing 3 = /2 in Proposition 31 and replacing o by
4a, we obtain

2
sup Hag(Fi ns 50, n,%) < D(F, 4o, 0%/2) - log (;5) :

Therefore, in order to prove Proposition 13, we only need to verify

logn
2 —
D(Fijn,da,a”/2) =0 ( 2 > . (82)
We let tree x" of depth d’ to be the largest tree shattered by J7, at scale (4a, a?/2). Without
loss of generality we assume d’ is an odd number and d’ = 2d + 1. Then there exists a depth-d’
([0,1] x [0,1])-valud tree s’ such that for any path y’ € {0,1}%, si(y") = (si(y")[0], s;(y")[1])
with s;(y")[0] < s,(y’)[1], and for any y’ € {0,1}%, there exists w¥" € By(1 — 1/n) such that

2

L+ (¥, m(y)) <% and h (sy(y")[0], s, (y")[1]) > 4a,  Vte[d] (83)

9 - St(y/)[yt]

We further construct a depth-d’ [0, 1]-valued tree u’ where for any y’ € {0,1}% and ¢ € [d'],

st(Y)0) <up(y) < st h(uy(y'), s, (y)[0]) = 2a and  h(uy(y'), s, (y")[1]) = 20

According to Eq. (83), we have for any y’ € {0,1}% and ¢ € [d],

2y — 1) - (1 + <wy2’ “)) _ uQ(Y')) >0 and h (1 * <wy2’ xé(y%,ué(y’)) > a.
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We color the tree x’ with two colors according to u.(y’): for each node x}(y’), if u)(y’) < 1/2
we color it with color 1, otherwise we color it with color 0. According to Lemma 38, there exists a
skipping tree of depth d = (d’ —1)/2 such that every node in this tree are of the same color. Without
loss of generality, we assume that the skipping tree is in color 1. In the following, we only consider
nodes of x’ in this skipping tree, and also the corresponding nodes (along the same path) of u’. And
we obtain a tree x of depth d and an [0, 1/2]-valued tree @ of depth d such that for any y € {0, 1}¢,
there exists w € Ba(1 — 1/n) such that for any ¢ € [d],

@%—1y<1+@gmw»—u4w>zo and h<1+@gmw»wgw)za.

We next notice that since function 21/x and log 2 — 2/ are both monotonically increasing function
over [0, 1], for any p, f € [0, 1] we have

llogp — log f| > 2|v/p — /[

Additionally, since for any p € [0,1/2] and f € [0, 1], we always have

9

o W= f o (V24— f] N A=y S
V= Vil= b m e e e = (V) VT - VT

which implies that |\/p — v/f| > h(f,p)/4. Hence we obtain

h
l%fA%pzigﬂ

By letting depth-d R-valued tree s to be s;(y) = log @i;(y) for any path y € {0,1}%, we have that
fory € {0,1}9, there exists w € Ba(1 — 1/n) such that for any ¢ € [d],

2y — 1) - <log1+<wéxt(y)> _ St(y)) > %

Since x4(y) and s;(y) only depend on y;.;—1, by choosing y; = 1, we obtain for some w €
By(1—1/n),
1+ (w, 24(y))

1
og 5

—s(y) > % > 0,

which implies that

1+ [[wll2flz:(y)ll2
2

1+1
-

1+ (w, z,(y))
2

si(y) < log < log < log 0.

Similarly by choosing y; = 0, we obtain for some w € Bo(1 — 1/n),

o L (0. 71(7)

which implies that

1+ <w7 xt(}’»
9 Z

si(y) > log
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Hence we obtain that for any ¢, we always have s;(y) € (— log(2n),0).

Next, we will color the binary tree x with [log(2n)]| number of colors 0, 1, ..., |log(2n)|: for
y € {0,1}%,if s4(y) € [~k — 1, —k), we will color vertex z(y) in color k. According to Lemma
38, there exists some i such that there exists a skipping tree v of depth d > Tog@n)] whose nodes
are all colored in k.

We consider a sequence of nodes v;(y) — v:(y) — - -+ — vz(y) in the skipping tree v. Here
we assume v;+1(y) is the left child or descendant of the left child of v; if y; = 0, or the right child
or the descendant of the right child of v; if y; = 1. We let

vi(y) = @ig = - = @iy, = viga(y) (84)

to be the sequence of nodes in tree x from v;(y) to v;41(y), where x5 is the right child of x; i,
and x; ; is a child of z; j_; (since v;11(y) is a descendant of v;(y), there must exist such a path).
We consider the following sequence of nodes in tree x:

T11 7 X127 X1l —»X22 — 0 2 XYy —> L322 > > T3y 7 R D) — ”'xd_,lg’
(85)
We define length-d {0, 1}-valued path

S’ = (gl,lagl,27"' agl,llag2,1a' "g27l2—15g3,17"' ag3,l3—17" ' 7@J,1>“' 7gJ,lJ—1ayQ+1,1a'” 7yJ+17l(z+1_1)7

where g; ; is chosen to be 1 if x; ; is the right child of x; ;1 and be 0 if z; ; is the left child of
Tij—1a0d Ygi g1, 5 Ygi1,,, -1 can be arbitrarily chosen with lgg1—1=d—-l1 —---—lj+d.
Then according to the construction of this path we have

Jin =y, V1<i<d.

Suppose the vertices we meet in tree s along path y at the same depth as x; j to be s; ;(¥). Then
according to our assumption, there exists some w € Ba(1 — 1/n) such that

1 i 5 . = .
(2455 — 1) <log+“;”‘“> - si,j(y>> >3, VISi<dl<j<l.  (86)

We further define depth-d R-tree u = (uy, ..., ug) as

ui(y) = si1(y)-

Choosing j = 1 in Eq. (86) and notice that v;(y) = z;; from Eq. (84) and y; = ;1 from Eq. (85),
we obtain

1 ; -
(29— 1) (1ogw - m(y)) -2 wi<i<d
According to our coloring and the definition of s; j(¥), we know that u;(y) = s;1(y) € [~k —
1, —k) holds forany 1 < i < d. Therefore, for any y € {0, 1}¢, there exists w € By(1 —1/n) such
that for any i € [d],

L+ (w, vi(y))

(2y; — 1) - <10g 5

- ui(y)> > % and  wi(y) € [~k —1,—k). (87
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The above inequality is equivalent to for any y € {0, I}J, there exists w € Ba(1 — 1/n) such that
for any ¢ € [d],

(w,v(y)) > 2e"We/2_1 ify, =1, and (w,v(y)) < 2e“We 21 ify, = 0. (88)

For any given path y € {0, 1}, we call the w € By(1 — 1/n) which satisfies the above inequalities
as wly]. We use v9 = v1(y) to denote the root of the tree y. Then for any path y = (y1,...,y7)
with y; = 0, i.e. turn to left subtree in the first step, according to Eq. (88) we have

(wly],vo) = (wly],v1(y)) < 2em(¥)e—a/2 _ 1 < 9~k _ 1

where in the last inequality we uses the second inequality in Eq. (87).

In the following, for every vector v, we decompose it into the parallel component and perpen-
dicular component with respect to vector vg: v = vt 4+ oll, where ol || vo and vt L vy. Then we
have

lwly]'l2llvollz = [(wly], vo)| = 1 = 2¢7*.

Noticing that ||vol|2, |w[y]l||2 < 1, we will have ||vg |2, [|w[y]l]|2 > 1 — 2e~*, hence

lwfy]!+volla < 1—(1-267) = 2¢7% and  ufy]* 2 < /1 - (1 - 2e4)2 < 2e72. (89)

Next, we consider any node v;(y) on the left subtree of y, where we require the path y to the node
satisfies y; = 0. By letting y; = 0 (since v;(y) does not depends on y; so we can assign arbitrary
value of y; to obtain some properties of v;(y)), according to (88) and the second inequality of
Eq. (87), we obtain

(wly], ve(y)) < 2e%™e=/2 _1 < 2¢7F -1,

which implies

[wly] +vr(y)ll2 < \/Ilw[Y]H% + loe(¥)113 + 2(wly], ve(y)) < \/2 +2(2e7F — 1) = 2742,

Choosing t = 1 in the above inequality we obtain ||w[y] 4 vo||2 < 2¢~*/2. These two inequalities
together indicates that
lor(y) — volla < 4e7*/2.

Hence we have,
lve () ll2 < oely) — voll2 < 4e7F/2. (90)

Next, we decompose the inner product into the sum of inner product of parallel components and
perpendicular components:

€L J_>‘

(wlyl, ve(y)) = (wlyl!, o)) + (wly]* vily)
Noticing ||w[y]*||2 < 2¢7%/2 and |jv;(y)"|]2 < 4e~*/? from Eq. (89) and Eq. (90), we obtain that
(wiy]l, o)) = (wlyl,ve(y)) = (wly]" vi(y)t) < 27" = 14272 472 = 10e7% — 1.
Since ||w[y]l||2 < 1 and ||vs(y)]|2 < 1, we have ||w[y]!|2, |lvs(y)||2 > 1 — 10e~*. Hence,

w[y]l +v(y)l]ls <1 — (1 = 10e7*) = 10e7F,
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This inequality together with the first inequality of Eq. (89) indicates that
oo ()1 — voll2 < 127,

Finally, we construct a tree z of depth d — 1 shattered by the following function class G at
scale 1/(20e) (definition of the shattering in the sense of Rakhlin et al. (2015a)), hence according
to (Rakhlin, 2024, Page 67-68) we have an upper bound on d.

G ={fIf(z) = (w,z),w,z € Ba(1)} (€]
For any y € {0, l}J_l, we let

1 1 -
a(y) = g0 ((0.y)* + zoa (), Vi<t<d-1, (92)
where we use (0,y) to denote the path of length d whose ¢-th element equals to ;1 for ¢ > 2 and
the first element equals to 0. Then according to Eq. (90), for any path y we have

1

1 1 4
let(3)ll2 < Ze 2ot (0, 9) 12 + 5 loea (O 3Dl < 5 + 5 =1,

which implies that z;(y) € Ba(1). We further notice from Eq. (89) that
lw((0, ) +volla < 2¢7F and  [lw((0,¥))" [l < 2¢72.

Hence by choosing

w(y) = 7¢ (w(©O.3) +w0) + 1 u((0.9)" 93)

we have

1
1¢
which implies that w(y) € Ba(1). According to our choice of w(y) in Eq. (93) and z:(y) in
Eq. (92), we have

(@(y), 2(y)) = (@), 2y + (w(y)*, z(y)H)

ol < g6 @@y + ||, + 32wty |, < 2+ 3 =1,

— 217061C <w((0,}’))H + o, Ut+1<(O7Y))H> + %ek <w((O’Y))L7”t+1((O’y)>L>
= o (((0,3)),m1((0,3))) + (w0, ves(0,3))).

We construct another (d — 1)-depth R-valued tree § as: for any pathy € {0,1}91,

1 1
sily) = spetert (O (22 4 e=0/2) (g 0y ((0,)) — goe

The above defined S is a tree since u and v are both trees. When y; = 1, according to the first
inequality of Eq. (88) and also u;+1((0,y)) > —k—1 according to the second inequality of Eq. (87),
we have

(), 21(9)) — 513) = g - ({0((0,3)),v1((0,3) — 2O (/2 4 em/2) 1 1)
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> Lok, (2eut+1(<o,y>>ea/2 _ _ puna((0y) (ea/z n efa/2) n 1)

20
20
1 1 1

where in the second inequality we use the fact that e®/? — ¢=/2 > o. And when 3, = 0, we have

((y), 2y~ 5u(y) = ¢ - (W(0,3),v02((0,y))) — (O3 (072 4 =0/2) 1 1)

20
< ?1()6k . (2€ut+1(<o,y)>efa/2 1 pusa((0) <€a/2 . efa/2) L 1)
_ L kg (09)) (pa/2 _ a2
=3¢ ¢ (e e %)

1, 1 ., 1
< kemt+1((0y)) (g « _ — pke=k-1, - __—
=0 ¢ C=T90C YT 790"

Therefore, tree z € Ba(1) is shattered by function class G (defined in Eq. (91)) at scale 1/(20e)c.
According to (Rakhlin, 2024, Page 67-68), the sequential fat shattering dimension of G at scale
« is upper bounded by 16/a2. Hence we have

. 16 6400¢>

S W@ear T @

d—1
log(2n)]

d <1+ [log(2n)] - <1 n 640262> —0 (h’g") .

This inequality, together with the fact that d >

, implies that

—

o a?

Therefore, we have

which verifies Eq. (82). |

Appendix F. Renewal Process and Hardness through Sequential Square-root
Entropy

We consider the following class of renewal process, originally introduced in Csiszar and Shields
(1996).

Definition 39 (Renewal Process Class Csiszar and Shields (1996)) This class Q is defined over
the alphabet Y = {0,1} and parameterized by a distribution p € A(Zy). Given p, we sample

ﬂ%ipandsetyt =1ift =T+ -+ T; for somei > 1 and otherwise y; = 0.

For this class Q the work Csiszar and Shields (1996) established that log-loss regret is ©(y/n).
Their proof leveraged sophisticated estimates on the partition number by Hardy and Ramanujan.
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Unfortunately, as we show in this appendix, the entropic bounds that we developed in this work, as
well as those that were proposed before, are not able to yield correct upper bound on regret.
Specifically, we will verify that the sequential square-root entropy (defined in Definition 1), and
also the sequential log entropy defined in Cesa-Bianchi and Lugosi (1999, 2006) are both (1), no
matter what scale we choose. Therefore, by simply applying Theorem 2 or the entropy bound in
Cesa-Bianchi and Lugosi (1999, 2006) will only give a vacuous bound O(n) on regret.

Proposition 40 For any 0 < a < 1/6, we have Hsq(Q, ,n) > n. As for the log entropy (en-
tropy with respect to distance Eq. (5)) defined in Cesa-Bianchi and Lugosi (1999, 2006), we have
Hiog(Q, ,n) > (1 —log 2)n — o(n).

Proof For any e € {—1,1}", we construct a distribution p* € A(Z,) as

0 =TT (3 +3000) T1 (5 +340).

i=1

It is easy to see that pf is a distribution on Z,. We let ¢° to be the distribution in Q which is
parametrized by pf. Then we can calculate that with y° = (0,0, ---,0) € {0,1}",

1
G0]y) =5 +3e-a, Vien]

We first lower bound the sequential square-root entropy (defined in Definition 1). Suppoose V is a
finite cover of Q at scale . Then fore € {—1,1}", there exists v € V such that

max max max
W y€{0,1} t€n]

oE T w) = it )] < o

which implies that

max /v£(0 | y0) — \/¢£(0 | y0)| < o
ten]
If there exists € and €’ such that v = v€ , then
max (/¢ (0| ¥°) — /450 ¥)| < 201
te(n]

However, if &; # £}, then

—\/1+3 \/1 3a > 2
=\3 o 5 o a,

leading to contradiction. Therefore, for any € # €, we have v¢ # v€ . This implies that |V| > 27,
hence

Oy - 0]y

H(Q,a,n) > n.

Next we lower bound the log-entropy H|og, Which is the entropy with respect to the distance
defined in Eq. (5). Suppose V is a finite cover of Q at scale . We first define set £ C {—1,1}"
such that for any two distinct items £,&’ € E, we have

n

PR CEEARS (94)

t=1
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According to the lower bound of packing number under Hamming distances (see (Polyanskiy and
Wu, 2024, Theorem 27.5)), there exists such set £/ which satisfies

log |E| > (1 —log2)n — o(n).
Next, since V is a covering of Q, for any € € F, there exists v € V such that

> sup(logvf (v | ) — log ¢f (e | ¥))* < na?,

t=1 Y

which implies that

n

> (logvf (0| y°) —loggf (0] y°))* < na’.
t=1

If there exists £ and &’ such that v€ = v€, then

n

> (log (0| y°) —loggf (0 ]y°))? < 4na®. (95)
t=1

However, if £, # £}, then

1—
log a’ > 6a,

log £(0 | v°) — log ¢¢ (0 | y*)| >
[loggi (0| y”) —loggf (0|y°)] > 1+ 6a

which implies that

n n
> (logqf(0|y®) —loggf (0]y")? > 360 > Iley # &f] > 9na?,
t=1 t=1

where the last inequality follows from the construction of set £, i.e. Eq. (94). This contradicts to
Eq. (95). Hence for any €,&’ € E, we have v # v&'.

H(Q,a,n) >log |E| > (1 —log2)n — o(n).
|

We see that the root cause of entropies being §2(n) is the same: both definitions of Hsq and Hiog
in Definition 1 and (5) take supremum over the “true path” y on the tree. In the example above,
this corresponds to simply taking a path on the very left of the tree. The process class is so rich
that already on this left-most path the entropy is 2(n). However, this should not concern log-loss
prediction as this left-most path would not happen too-often, unless p in (23) places all mass on
all-0 input, in which case the R,,(Q,p) = 0. Searching for the correct definition of entropy to
handle this class is left to future work.
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