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Abstract
Consider a d-uniform random hypergraph on n vertices in which hyperedges are included iid so that
the average degree is nδ . The projection of a hypergraph is a graph on the same n vertices where an
edge connects two vertices if and only if they belong to some hyperedge. The goal is to reconstruct
the hypergraph given its projection. An earlier work of Bresler et al. (2024) showed that exact
recovery for d = 3 is possible if and only if δ < 2/5. This work completely resolves the question
for all values of d for both exact and partial recovery and for both cases of whether multiplicity
information about each edge is available or not. In addition, we show that the reconstruction fidelity
undergoes an all-or-nothing transition at a threshold. In particular, this resolves all conjectures
from Bresler et al. (2024).

1. Introduction

The overall goal of community detection is recovering clusters of vertices given observations of
noisy associations between them. The most popular version is that of pairwise associations (New-
man, 2006): in friendship graphs, social networks, co-purchase data, etc., an edge between two
vertices appears more often when vertices belong to the same latent cluster. However, oftentimes
the interactions are of higher order. For instance, in scientific communities, the data comes in the
form of co-authorship (Newman, 2004), which is a form of multi-vertex association relation. A
statistical model for this kind of data, known as the hypergraph stochastic block model (HSBM),
has been actively investigated recently, starting from Ghoshdastidar and Dukkipati (2014); Angelini
et al. (2015).

This paper focuses on a particular subproblem in this general research area: recovery of the
multi-vertex association data (i.e. a hypergraph) from the pairwise association data (i.e. a graph).
As an example, consider the case of a large group of people working together on multiple projects
(project membership becomes the multi-association data, a hypergraph), but due to data collection
limitations we only observe the existence of email exchanges between pairs of co-workers (Klimt
and Yang, 2004), which for simplicity we further simplify into a graph with an edge between any
pair of people who exchanged an email. Clearly, the mapping from a hypergraph to a graph gen-
erally loses information. The question we study in this work is how well we can infer the original
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hypergraph given only the projected graph, i.e. a graph that connects any pair of vertices that belong
to some hyperedge.

The problem of recovery from the projected graph has been studied in the last few years, both
theoretically and empirically. Wang and Kleinberg (2024) assumes access to a sample of a hyper-
graph from the underlying distribution and proposes a scoring method to select hyperedges based
on their similarity to the sampled hypergraph. Another algorithmic approach is to sample from the
posterior distribution given the projected graph (Young et al., 2021; Lizotte et al., 2023). In Chen
et al. (2024), a large foundational model is used to recover a weighted hypergraph from a sample of
its hyperedges, where each hyperedge is assigned a probability proportional to its weight.

Theoretically, interest in reconstructing a hypergraph from its projection arose following the
work of Gaudio and Joshi (2023), which proposed to solve the HSBM community detection task
by leveraging well-known graph algorithms. This motivated Bresler et al. (2024) to investigate the
amount of information loss introduced by projecting the hypergraph data to graph data. Somewhat
surprisingly, Subsection 1.2.1 ibid demonstrated no loss, thus validating this general approach to
HSBM.

Note that as the hypergraph becomes more dense (contains more hyperedges), the recovery task
becomes harder. While in HSBM the hypergraph is so sparse that the projection can be “undone”
without error, a more general question of exact recovery threshold was only answered in Bresler
et al. (2024) for d = 3-uniform hypergraphs. In this work, we not only settle the value of the
threshold for all d, but also establish the value of the (generally higher) threshold for partial recovery
of the hypergraph, in which the algorithm is allowed to miss a fraction of the hyperedges.

In addition to finding the value of the threshold, we also establish a so-called “all-or-nothing”
phenomena for our problem. It was previously demonstrated in Wu et al. (2022), which considers
exact and partial recovery for graph matching and exhibits that at a threshold the best algorithm
transitions from recovering almost all of the assignment to almost none of the assignment. Even
earlier, this was demonstrated in the problem of sparse linear regression (Reeves et al., 2019). Simi-
larly, we demonstrate that for partial recovery, the fraction of hyperedges recovered transitions from
1− on(1) to on(1) while for exact recovery, the probability of success transitions from 1− on(1) to
on(1).

To understand what threshold we are talking about, let us specify the random hypergraph model
that we consider. It is a natural extension of the Erdős-Rényi random graph model G(n, p). Suppose
that d ≥ 3 and n is a positive integer. In this paper we often denote the set of d-uniform hypergraphs
with vertex set [n] as {0, 1}(

[n]
d ). Letting δ ∈ (−∞, d− 1) and taking

p ∝ (1 + on(1))n
−d+1+δ ,

the random d-uniform hypergraph H is sampled from the product measure Ber(p)⊗(
[n]
d ). So the

recovery threshold corresponds to the largest value of δ for which recovery is possible. See Table 1
for a summary of previous and new results.

For partial recovery, the efficient algorithm that outputs the set of cliques in the projection of
H achieves a partial recovery loss of on(1) when partial recovery is possible, see Subsection 2.2.
For exact recovery, the MAP algorithm is efficient with high probability when exact recovery is
possible, see (Bresler et al., 2024, Theorem 10).

Notice that the hypergraph reconstruction problem is a particular example of a planted con-
straint satisfaction problem (CSP): the planted (latent) assignment is the hypergraph and the set
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of constraints is defined by the observed edges in the projection. The problem of reconstruction
given the weighted projection is also a linear inverse problem, since we can describe the problem
as AH = W , where A ∈ {0, 1}(

n
2)×(

n
d) is a fixed (non-random) matrix encoding the incidence

relation between edges and hyperedges, H ∈ {0, 1}(
n
d)×1 is the iid Bernoulli planted hypergraph,

and W ∈ Z(
n
2)×1

≥0 is the observed weighted projection. (For the unweighted projection, we have

W ∈ {0, 1}(
n
2)×1 and the problem is a generalized linear inverse problem: min(AH, 1) = W .)

Thus, our work can be seen as deriving sharp thresholds for exact and partial recovery of these
planted CSPs, contributing to a long line of work of Krzakala and Zdeborová (2009); Abbe and
Montanari (2015); Barbier et al. (2019); Feng et al. (2022) and many others.

1.1. Main results

We consider two recovery objectives given the projection of a random hypergraph H . In exact
recovery the algorithm is required to precisely recover the hypergraph. The metric is the probability
of correct recovery. In partial recovery, the algorithm is required to produce a hypergraph Ĥ with
a small partial recovery loss, which equals the ratio of incorrect hyperedges (either missing or
spurious) to the total number of true hyperedges. See Subsection 1.3.1 for more precise definitions.

Theorem 1 (Partial Recovery) If δ < d−1
d+1 then the partial recovery loss is on(1) and if δ > d−1

d+1
then the partial recovery loss is 1− on(1).

This theorem statement follows by combining Corollary 28, Theorem 11, and Theorem 14. We
prove Theorem 2 in Subsection A.2 using a similar framework and we prove Theorems 3 and 4 in
Appendix D.

Next, we also study the problem of recovering from a weighted projection graph, which counts
the multiplicity of each edge inside true hyperedges thus making the recovery problem easier. How-
ever, as the next result shows, this extra information is not able to shift the partial recovery threshold.

Theorem 2 (Partial Recovery for Weighted Projection) If δ < d−1
d+1 then the weighted partial

recovery loss is on(1) and if δ > d−1
d+1 then the weighted partial recovery loss is 1− on(1).

Theorem 3 (Exact Recovery) Suppose 3 ≤ d ≤ 5. If δ < 2d−4
2d−1 , then the probability of exact

recovery is 1− on(1). Conversely, if δ > 2d−4
2d−1 , then the probability of exact recovery is on(1).

Suppose d ≥ 5. If δ < d−1
d+1 , then the probability of exact recovery is 1 − on(1). Conversely, if

δ > d−1
d+1 , then the probability of exact recovery is on(1).

In particular, Theorem 3 verifies the conjecture from (Bresler et al., 2024, Appendix C) that the
exact recovery threshold is 2d−4

2d−1 for d = 4, 5.
Going to recovery from a weighted projected graph, surprisingly we discover that unlike in

partial recovery, the side information is able to move the threshold, but only for d = 3, 4.

Theorem 4 (Exact Recovery for Weighted Projection) Suppose d ≥ 3. If δ < d−1
d+1 , then the

probability of weighted exact recovery is 1 − on(1). If δ > d−1
d+1 , then the probability of weighted

exact recovery is on(1).
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We remark that for the unweighted projection when d = 3, 4, there are two separate (both
all-or-nothing) thresholds of d−1

d+1 and 2d−4
2d−1 for partial recovery and exact recovery, respectively;

when d ≥ 5, both thresholds are at d−1
d+1 . Interestingly, for the weighted projection, there is a single

threshold of d−1
d+1 for both exact and partial recovery. The reason for this is that the bottleneck for

exact recovery, which is called an ambiguous graph, in the two models are different. We will discuss
the definition of ambiguous graphs in Subsection 2.6.

The contributions of this paper as compared to previously established exact recovery thresholds
for d ≥ 4 are summarized in Table 1.

d Previous work (exact recovery) New (exact recovery) New (partial recovery)
3 2/5 2/5 1/2
4 [1/2, 4/7] 4/7 3/5
5 [1/2, 2/3] 2/3 2/3

≥ 6 [d−3
d , d

2−d−2
d2−d+2

] d−1
d+1

d−1
d+1

Table 1: Recovery thresholds (critical value of δ): comparison of known results and this work.
Note that exact recovery threshold for weighted projection graph coincides with the third
column (partial recovery).

1.2. Notation

For a hypergraph H = (V,E) let the projection of H be the graph with vertex set V and edge set
equal to the set of {i, j} such that i, j ∈ V , i ̸= j, and there exists h ∈ E such that {i, j} ⊂ h; we
denote the projection of H by Proj(H). Let the weighted projection of H be the weighted graph
with vertex set V and edge weight of {i, j} equal to the number of h ∈ H that contain {i, j} for all
i, j ∈ V , i ̸= j; we denote the weighted projection of H by ProjW (H).

Suppose d ≥ 2 and H is a d-uniform hypergraph. Let E(H) and V (H) denote the sets of
edges and vertices of H , respectively and let e(H) = |E(H)| and v(H) = |V (H)|. Furthermore
let α(H) = e(H)

v(H) and m(H) = maxK≤H α(H), where the maximum is over subgraphs K of H .
Let G (resp. GW ) be the set of projections (resp. weighted projections) of some d-uniform hyper-

graph. For G ∈ G (resp. GW ), the hypergraph H ∈ {0, 1}(
[n]
d ) is a preimage of G if Proj(H) = G

(resp. ProjW (H) = G).

1.3. Random graph model and recovery criteria

We now introduce the random hypergraph model from Bresler et al. (2024) that we study. Suppose
δ ∈ (−∞, d − 1) and c ∈ (0,∞). Unless otherwise stated assume that p = (c + on(1))n

−d+1+δ.
Furthermore, we assume that δ < 1 in all sections of the paper except for Section 1 and Sub-
section B.1. Suppose H ⊂ {0, 1}(

[n]
d ) the random variable such that each element of

([n]
d

)
is a

hyperedge of H independently with probability p. Furthermore we denote by Hc ∈ {0, 1}(
[n]
d ) the

random d-uniform hypergraph with edge set equal to the set of d-cliques in Proj(H). We observe
Proj(H) and use this projected graph to make statistical inferences about H. We also sometimes
use the random variable Ψ to denote Proj(H), for brevity.
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Remark 5 The regime of p we consider differs by a constant factor from the regime p = n−d+1+δ

that Bresler et al. (2024) considers because we hope to be more precise. Despite this, many of the
results from the paper Bresler et al. (2024) are still true and provable with the same methods, so we
do not repeat the proofs after citing results from that paper.

We sometimes refer to elements of E(Hc)\E(H) as fake hyperedges. Let q ≜ Pr[[d] ∈ E(Hc)];
note that q is the probability that any element of

([n]
d

)
is an edge of Hc by symmetry, so q is the

hyperedge density of Hc.

1.3.1. PARTIAL RECOVERY

Suppose B : G → {0, 1}(
[n]
d ) is a partial recovery algorithm for the unweighted projection. We

define the loss of B to be

ℓ(B) ≜ E[|B(Proj(H))∆E(H)|]
p
(
n
d

) ,

where ∆ denotes the symmetric difference. Note that p
(
n
d

)
= EH[|E(H)|], so ℓ corresponds to the

fraction of edges in H that are predicted incorrectly. Hence, the optimal unweighted partial recovery
algorithm is B∗ : G → {0, 1}(

[n]
d ) where

B∗(G) =

{
h ∈

(
[n]

d

)
: Pr[h ∈ H|Proj(H) = G] ≥ 1

2

}
.

For a partial recovery algorithm BW : GW → {0, 1}(
[n]
d ) for the weighted projection, the loss of

BW is

ℓW (BW ) ≜
E[|BW (ProjW (H))∆E(H)|]

p
(
n
d

) .

The optimal weighted partial recovery algorithm B∗
W is defined analogously to B∗.

Definition 6 The partial recovery loss is ℓ(B∗). If ℓ(B∗) = on(1), then almost exact recovery is
possible.

The weighted partial recovery loss is ℓW (B∗
W ). If ℓW (B∗

W ) = on(1), then almost exact weighted
recovery is possible.

Partial recovery is considered in other problems such as the HSBM (Gu and Polyanskiy, 2023)
and almost exact recovery is also considered in graph matching (Wu et al., 2022) and the HSBM (Du-
mitriu and Wang, 2024).

1.3.2. EXACT RECOVERY

Suppose A : G → {0, 1}(
[n]
d ) is an exact recovery algorithm for the unweighted projection. Its

probability of error is Pr[A(Proj(H)) ̸= H]. As discussed in (Bresler et al., 2024, Section 2.3), the

algorithm minimizing the probability of error is the MAP algorithm A∗ : G → {0, 1}(
[n]
d ) where

(assuming that p < 1
2 , which is true if n is sufficiently large)

A∗(G) ∈ argmax
H: Proj(H)=G

Pr[H = H] = argmin
H: Proj(H)=G

e(H).
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Similarly, for an exact recovery algorithm AW : GW → {0, 1}(
[n]
d ) for the weighted projection,

its probability of error is Pr[AW (ProjW (H)) ̸= H]. The algorithim minimizing the probability

error is the MAP algorithm A∗
W : GW → {0, 1}(

[n]
d ), which is analogous to A∗.

Definition 7 The probability of exact recovery is Pr[A∗(Proj(H)) = H]. The weighted probability
of exact recovery is Pr[A∗

W (ProjW (H)) = H].

2. Overview of main ideas

2.1. Weighted Versus Unweighted Projection

We remark that recovery from the weighted projection is always easier than from the unweighted
projection, for both partial and exact recovery. This is because we can always obtain the vanilla pro-
jection from the weighted one by forgetting the weights. Therefore, all algorithms for unweighted
projections also apply to the weighted case. In particular:

Lemma 8 ℓ(B∗) ≥ ℓW (B∗
W ) and Pr[A∗(Proj(H)) = H] ≤ Pr[A∗

W (ProjW (H)) = H].

To introduce the main ideas, we will focus on unweighted projections for simplicity. The im-
possibility of partial recovery is stronger for weighted projections than for unweighted projections,
but we defer the discussion of weighted projections to Appendix A, since the proof techniques are
similar.

2.2. Maximum Clique Cover Algorithm

Let us focus on partial recovery first. We know that every hyperedge in H corresponds to a d-clique
in Ψ, where Ψ = Proj(H) by definition. A naive algorithm would be to output the hypergraph Hc,
which consists of all d-cliques in Ψ. We call this algorithm Maximum Clique Cover and denote it
by BC . However, since only a subset of cliques correspond to hyperedges, BC is not optimal; the
loss of BC is the following:

ℓ(BC) =
E
[∑

T⊂[n], |T |=d 1{
(
T
2

)
⊂ Ψ} − |H|

]
p
(
n
d

) =
Pr
((

[d]
2

)
⊂ E(Ψ)

)
p

− 1.

As a reminder, q = Pr
((

[d]
2

)
⊂ E(Ψ)

)
is the hyperedge density of Hc. For the proof of the

following result, see Subsection C.2. The main idea is that a hyperedge of Hc is either a hyperedge
of H, which occurs with probability p, or each of its edges is contained in a hyperedge of H. Then,
we can approximate the probability of a hyperedge appearing in Hc with the sum of p and the
product of the probabilities of each of its edges being contained in a hyperedge of H.

Theorem 9

q = (1 + on(1))(p+

(
cnδ−1

(d− 2)!

)(d2)
).

Corollary 10

q =


(1 + on(1))p if δ < d−1

d+1 ,

p+Θn(p) if δ = d−1
d+1 ,

ωn(p) if δ > d−1
d+1 .
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The following theorem tells us that BC achieves a partial recovery loss of on(1) whenever δ is
below d−1

d+1 , because BC falsely recovers q
p − 1 = on(1) of the hyperedges of H on average.

Theorem 11 Almost exact recovery is possible if δ < d−1
d+1 .

This simple algorithm actually achieves the optimal threshold for almost exact recovery and
partial recovery, as we will show in the next section.

2.3. Relating partial recovery loss to preimage overlap

We discuss some fundamental equalities for the partial recovery loss introduced in Subsection 1.3.1.
First we have that for G ∈ G,

EH|Ψ=G

[
|B∗(G)∆H|

]
=

∑
h∈([n]

d )

min
{
Pr[h ∈ H|Ψ = G],Pr[h /∈ H|Ψ = G]

}
. (1)

Furthermore, ℓ(B∗) ≤ 1 since the trivial algorithm that always outputs the empty set has a loss of 1.
The partial recovery loss can be captured by the expected size of the intersection of two ran-

dom hypergraphs with the same projection: Let H′ be another random hypergraph that is in-
dependently and identically distributed as H after conditioning on the projected graph; that is,
when Proj(H) = G for some G ∈ G, H′ is sampled independently of H from the distribution
pH|Proj(H)=G. Because H and H′ are independent after conditioning on Proj(H), we have the
Markov chain H → Proj(H) = Proj(H′) → H′.

We consider the size of the intersection of H and H′ to prove the upper bounds of the partial
recovery thresholds. The motivation for this is the following lemma.

Lemma 12 The partial recovery loss can be expressed in terms of the overlap:

(a) ℓ(B∗) ≥ 1− E[|E(H)∩E(H′)|]
p(nd)

≥ ℓ(B∗)/2. If E[|E(H)∩E(H′)|] = on
(
p
(
n
d

))
then the partial

recovery loss is 1− on(1).

(b) E[|E(H) ∩ E(H′)|] =
(
n
d

)∑
G∈G Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2.

Proof The proof of (b) is straightforward. For (a), first observe that using (1) gives that

p

(
n

d

)
ℓ(B∗) = EG∼Ψ[EH|Ψ=G[|B∗(G)∆H|]]

=
∑
G∈G

∑
h∈([n]

d )

Pr[Ψ = G] min(Pr[h ∈ H|Ψ = G],Pr[h /∈ H|Ψ = G])

=
∑

h∈([n]
d )

∑
G∈G

Pr[Ψ = G] min(Pr[h ∈ H|Ψ = G],Pr[h /∈ H|Ψ = G])

=

(
n

d

)∑
G∈G

Pr[Ψ = G] min(Pr[[d] ∈ H|Ψ = G],Pr[[d] /∈ H|Ψ = G])

=

(
n

d

)∑
G∈G

Pr[Ψ = G]

(
1

2
−
∣∣∣Pr[[d] ∈ H|Ψ = G]− 1

2

∣∣∣) .

(2)

7



BRESLER GUO POLYANSKIY YAO

Using this then gives that

1 ≤
∑

G∈G Pr[Ψ = G]
(
1
2 −

∣∣Pr[[d] ∈ H|Ψ = G]− 1
2

∣∣)∑
G∈G Pr[Ψ = G]

(
1
4 −

(
Pr[[d] ∈ H|Ψ = G]− 1

2

)2) ≤ 2

⇔1 ≤
∑

G∈G Pr[Ψ = G]
(
1
2 −

∣∣Pr[[d] ∈ H|Ψ = G]− 1
2

∣∣)
p−

∑
G∈G Pr[Ψ = G] Pr[[d] ∈ H|Ψ = G]2

≤ 2

⇔ ℓ(B∗) ≥ 1− E[|E(H) ∩ E(H′)|]
p
(
n
d

) ≥ ℓ(B∗)/2.

The remaining result of (a) is straightforward to prove.

2.4. Information-theoretic argument proving weaker impossibility of partial recovery

To gain some intuition on why partial recovery is impossible, we can look at the question from an
information-theoretic view. Since we are recovering H after observing Ψ, if H(Ψ) is significantly
smaller than H(H), we will not be able to recover much information about H. This is the case when
δ > d−1

d+1 because H is sufficiently dense, see Lemma 58. A weaker version of the impossibility
result in Theorem 1 can thus be obtained.

Lemma 13 If δ > d−1
d+1 , then the partial recovery loss is Ωn(1).

Proof From Lemma 58, if δ > d−1
d+1 then H(Ψ) = (1 − Ωn(1))H(H). Afterwards, H(H|Ψ) =

H(H,Ψ)−H(Ψ) = H(H)−H(Ψ), so H(H|Ψ) = Ωn(H(H)).
Let Pe be the probability that B∗ predicts 1{[d] ∈ H} incorrectly given Ψ. Then, ℓ(B∗) = Pe

p .
Applying Fano’s lemma gives that(

n

d

)
HB(Pe) ≥

(
n

d

)
H(1{[d] ∈ H}|Ψ) =

∑
h∈([n]

d )

H(1{h ∈ H}|Ψ)

≥ H(H|Ψ) = Ωn(H(H)) =

(
n

d

)
Ωn(HB(p)) ⇒ Pe = Ωn(p) ⇒ ℓ(B∗) =

Pe

p
= Ωn(1).

However, we cannot extend this argument to prove that ℓ(B∗) = 1− on(1) if δ > d−1
d+1 . For this

to be the case, we must show that Pe = (1 − on(1))p since ℓ(B∗) = Pe
p ; then, using the previous

chain of inequalities, we require that H(H|Ψ) = (1− on(1))H(H). We will see in Theorem 59 or
Lemma 61 that H(Ψ) = Ωn(H(H)), i.e. H(H|Ψ) = (1− Ωn(1))H(H). So we cannot extend the
argument. In the next section, we explain how we circumvent this problem.

2.5. Impossibility of partial recovery

The goal of this subsection is to prove that partial recovery is impossible when δ > d−1
d+1 , which is

stated in the following result.

Theorem 14 Suppose δ > d−1
d+1 . Then the partial recovery loss is 1− on(1).
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To prove the theorem, we use Lemma 12, which means that we need to prove that E[|E(H) ∩
E(H′)|] = on

(
p
(
n
d

))
. One of the main ideas is that we can restrict the set of H and H′ we compute

the expectation over by using expressions such as E[|E(H) ∩ E(H′)|1{H ∈ A}1{H′ ∈ A′}] for
sets A and A′ that contain H and H′, respectively, with high probability. We use the following
lemma for this approach.

Lemma 15 Suppose Un ⊂ {0, 1}(
[n]
d ), n ≥ 1 satisfy Pr[H ∈ Un] = on(1). Then

EH,H′ [|E(H) ∩ E(H′)|1{H ∈ Un}] = on

(
p

(
n

d

))
.

Proof The Cauchy-Schwarz inequality gives that∑
H∈Un, H′∈{0,1}(

[n]
d ),

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]
|E(H) ∩ E(H ′)| ≤

∑
H∈Un

Pr[H = H]e(H)

≤

( ∑
H∈Un

Pr[H = H]

) 1
2

 ∑
H∈{0,1}(

[n]
d )

Pr[H = H]e(H)2


1
2

= on

(
p

(
n

d

))
.

First observe that e(H) is concentrated around its mean p
(
n
d

)
and Corollary 41 gives that e(Hc)

is concentrated around its mean q
(
n
d

)
. Suppose ϵ = on(1) satisfies e(H) ∈ [(1−ϵ)p

(
n
d

)
, (1+ϵ)p

(
n
d

)
]

and e(Hc) ∈ [(1−ϵ)q
(
n
d

)
, (1+ϵ)q

(
n
d

)
] with probability 1−on(1). Let Z be the set of H ∈ {0, 1}(

[n]
d )

such that e(H) ∈ [(1−ϵ)p
(
n
d

)
, (1+ϵ)p

(
n
d

)
] and e(Hc) ∈ [(1−ϵ)q

(
n
d

)
, (1+ϵ)q

(
n
d

)
]. From Lemma 15,

E[|E(H) ∩ E(H′)|] = E[|E(H) ∩ E(H′)|1{H,H′ ∈ Z}] + on

(
p

(
n

d

))
, (3)

because Pr[H /∈ Z] = Pr[H′ /∈ Z] = on(1). This means we can focus only on the case where both
e(H) and e(Hc) are concentrated.

The concentration of e(H) and e(Hc) is important for the proof of the key result Theorem 16.
Essentially, it allows us to count instances of H and H′ with a particular set of overlapping hyper-
edges. See Subsection A.1 for the proof of the result, which we state next.

Theorem 16 Suppose δ > d−1
d+1 and M ∈ (0, 1). Then

Pr

(
H,H′ ∈ Z, |E(H) ∩ E(H′)| ≥ Mp

(
n

d

))
= on(1).

Proof [Proof of Theorem 14] From Lemma 12 and (3), it suffices to prove that

E[|E(H) ∩ E(H′)|1{H,H′ ∈ Z}] = on

(
p

(
n

d

))
.

9
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Observe that

E[|E(H) ∩ E(H′)|1{H,H′ ∈ Z}]

= E
[
|E(H) ∩ E(H′)|1{H,H′ ∈ Z, |E(H) ∩ E(H′)| < Mp

(
n

d

)
}
]

+ E
[
|E(H) ∩ E(H′)|1{H,H′ ∈ Z, |E(H) ∩ E(H′)| ≥ Mp

(
n

d

)
}
]

< Mp

(
n

d

)
+ Pr

(
H,H′ ∈ Z, |E(H) ∩ E(H′)| ≥ Mp

(
n

d

))
(1 + ϵ)p

(
n

d

)
,

since H ∈ Z ⇒ e(H) ≤ (1 + ϵ)p
(
n
d

)
. Using Theorem 16 and ϵ = on(1) then gives that

E[|E(H) ∩ E(H′)|1{H,H′ ∈ Z}] ≤ (M + on(1))p

(
n

d

)
.

Considering the limit as M → 0 completes the proof.

2.6. Ambiguous graphs and exact recovery

We now find the threshold for exact recovery. The methods that we discuss in this section are used
to prove Theorem 3 in Appendix D; the proof of Theorem 4 follows a similar argument, although
the threshold is different in the weighted case. First, since the impossibility of partial recovery
implies the impossibility of exact recovery, based on Theorem 14, exact recovery is impossible if
δ > d−1

d+1 . Next, we explain how the exact recovery threshold is determined by the threshold for
the existence of ambiguous graphs and the notion of two-connected components, which are both
introduced in the paper Bresler et al. (2024). We also define an important ambiguous graph which
the paper discovers, see Definition 18.

Definition 17 For G ∈ G, we refer to a preimage H of G that minimizes e(H) as a minimal
preimage of G. The graph G is ambiguous if it has at least two distinct minimal preimages. Also,
the graph G is weighted-ambiguous if it has at least two distinct minimal preimages with respect to
the weighted projection.

Now we explain why the presence of ambiguous graphs implies the impossibility of exact
recovery. Suppose that H ∈ {0, 1}(

[n]
d ) and G = Proj(H) is ambiguous. Then, there is a

preimage H ′ of G different from H with at most the same number of hyperedges. We have that
Pr[H = H] = pe(H)(1−p)(

n
d)−e(H) ≤ pe(H

′)(1−p)(
n
d)−e(H′) = Pr[H = H ′], since p = on(1) <

1
2

when n is sufficiently large; then, Pr[H = H|Proj(H) = G] ≤ Pr[H = H ′|Proj(H) = G]. So,
whenever Proj(H) = G, we will not be able to recover H with probability at least 1

2 . As discussed
in Lemma 20, the converse is also true: the absence of ambiguous graphs implies exact recovery
with high probability. We will show the following ambiguous graph is the key bottleneck in exact
recovery.

Definition 18 Suppose H = (V,E) is a d-uniform hypergraph such that:

10
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• V = {u,w}⊔ {vi : 1 ≤ i ≤ d− 1}
⊔

1≤i≤d−1 S
u
i

⊔
1≤i≤d−1 S

w
i , where |Su

i | = |Sw
i | = d− 2

for 1 ≤ i ≤ d− 1 (note the usage of disjoint unions).

• E consists of {u} ∪ {vi : 1 ≤ i ≤ d− 1}, {u, vi} ∪ Su
i for 1 ≤ i ≤ d− 1, and {w, vi} ∪ Sw

i

for 1 ≤ i ≤ d− 1.

Then, define Ga,d := Proj(H).

See Figure 1 for an illustration when d = 3. Observe that Ga,d is an ambiguous graph, see
(Bresler et al., 2024, Lemma 27), which explains that if H ′ is H with the hyperedge {u} ∪ {vi :
1 ≤ i ≤ d− 1} replaced with {w} ∪ {vi : 1 ≤ i ≤ d− 1}, then H and H ′ are two distinct minimal
preimages of Ga,d.

u

v1

w

v2

Su
2

Su
1 Sv

1

Sw
2

Figure 1: This figure displays Ga,3. One minimal preimage consists of the gray and red triangles while the
other consists of the gray and blue triangles. For d > 3 the red and blue triangles are replaced
with cliques of size d, the sets Su

i , Sw
i change to (d − 2)-cliques and their number changes from

2 to d− 1.

We state the key lemma for exact recovery after introducing the notion of two-connected com-
ponents, which are defined based on a graph constructed from a d-uniform hypergraph.

Definition 19 Suppose H is a d-uniform hypergraph. The two-connected components of H are
the connected components of the graph with vertex set E(H) and edge set {{h1, h2} : h1, h2 ∈
E(H), h1 ̸= h2, |h1 ∩ h2| ≥ 2}.

Parts (a) and (b) of Lemma 20 are from Lemmas 12 and 19 of the paper Bresler et al. (2024),
respectively. After stating the lemma, we discuss the main aspects of the paper’s proof of the lemma
in Remark 21.

Lemma 20 Suppose δ < d−1
d+1 .

(a) With high probability, all two-connected components of Hc have size On(1).

(b) If for all finite ambiguous graphs Ga,

Pr[Cli(Ga) is a two-connected component of Hc] = on(1),

then Pr[A∗(Ψ) = H] = 1− on(1).

11
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Remark 21 Part (a) of Lemma 20 is the reason for the importance of the threshold d−1
d+1 . In par-

ticular, this result is essential for the proof of part (b) of the lemma. The reason for considering
two-connected components is that for exact recovery, we can consider each component individ-
ually. If none of the two-connected components are ambiguous, then the projected graph has a
unique minimal preimage. Since the two-connected components have bounded size by part (a), the
condition for part (b) implies that this is the case with probability 1 − on(1). Afterwards, we can
use part (a) again to deduce that H equals the unique minimal preimage with probability 1−on(1).

In order to upper bound the probability of an ambiguous graph being a two-connected com-
ponent for the purpose of applying Lemma 20, we upper bound the probabilities of the graph’s
minimal preimages being an induced subgraph of H; this method is valid because if an ambiguous
graph is a two-connected component, then one of its preimages must be an induced subgraph of H.
The following lemma is useful for this purpose; m(·) is defined in the notation section.

Lemma 22 ((Bresler et al., 2024, Lemma 17)) Suppose K is a fixed d-uniform hypergraph. Then,

Pr[K ⊂ H] =


on(1) if δ < d− 1− 1

m(K) ,

1− on(1) if δ > d− 1− 1
m(K) ,

Ωn(1), if δ = d− 1− 1
m(K) ,

where Pr[K ⊂ H] is the probability that K appears as an induced subgraph of H.

The previous lemma states that the asymptotic probability that a fixed d-uniform hypergraph
K appears as an induced subgraph of H is determined by comparing p with n

− 1
m(K) , with the

conclusion being the same as the analogous computation when d = 2.
Observe that for the minimal preimage H of Ga,d, we have that d − 1 − 1

m(H) = 2d−4
2d−1 . So,

2d−4
2d−1 is the threshold at which H appears as an induced subgraph. In fact, we will prove that Ga,d

minimizes this threshold over ambiguous graphs in Theorem 23.
Another key idea of the proof of Theorem 3 is Theorem 46, which states that exact recovery

has probability on(1) if δ > 2d−4
2d−1 ; this is the regime in which Ga,d appears in the projection

with high probability by Lemma 22. We already know that exact recovery has probability on(1) if
δ > d−1

d+1 because the partial recovery loss is 1 − on(1) in this regime, but for d = 3, 4 we have
that 2d−4

2d−1 < d−1
d+1 , so the exact recovery threshold is not always d−1

d+1 . The main idea of the proof
of Theorem 46 is that if there are k ambiguous induced subgraphs of H that are disjoint, then the
posterior probability of any preimage is at most 1

2k
. Then, if δ > 2d−4

2d−1 , the probability of exact
recovery is on(1) because a disjoint union of any fixed number of copies of a minimal preimage of
Ga,d appears as an induced subgraph of H with high probability.

Theorem 23 Suppose d ≥ 3 and h is a preimage of an ambiguous graph. Then, d − 1 − 1
m(h) ≥

2d−4
2d−1 .

Proof The d = 3 case is resolved in (Bresler et al., 2024, Appendix D). The result is proved in a
slightly more general setting for d = 4 and d ≥ 5 in the sense that the projected graph does not
need to be ambiguous in Theorem 50 and Theorem 51, respectively.

12
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We describe the setting of Subsection E.2, where Theorems 50 and 51 are proven to justify the
d = 4 and d ≥ 5 cases of Theorem 23, respectively. Instead of assuming that h is a preimage of
an ambiguous graph as Theorem 23 does, we assume that h is a d-uniform hypergraph such that
there exists a d-uniform hypergraph g with the same projection such that e(g) ≤ e(h). Note that
this generalizes the assumption that Proj(h) is ambiguous.

The following lemma is essential for justifying the d = 4 and d ≥ 5 cases of Theorem 23;
its proof can be found in Subsection E.1. To apply the result in Subsection E.2, we would set
I = E(h) ∩ E(g) and Eh = E(h)\I .

Lemma 24 Suppose d ≥ 3 and γ ∈ [d−1
d+1 ,∞). Assume that h is a d-uniform hypergraph. Assume

that the set of edges of h is Eh ⊔ I , where Eh and I are disjoint. Suppose U is a set of vertices of
h such that each hyperedge in Eh is a subset of U . Suppose P is a set of edges such that for all
{a, b} ∈ P , {a, b} ⊂ U and there exists i ∈ I such that {a, b} ⊂ i. If

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

≥ γ,

then d− 1− 1
m(h) ≥ min(γ, 1).

Essentially, Theorem 23 and the partial recovery threshold tells us that exact recovery is possible
if and only if δ < min(d−1

d+1 ,
2d−4
2d−1); this is exactly the contents of Theorem 3. For more details of

the proof as well as the argument for weighted exact recovery, see Appendix D.

3. Future directions

In this paper we essentially fully close the exact and partial recovery questions for projections of
hypergraphs. There are a number of interesting directions for future exploration. A few of these are:

1. A potential future direction is to study the same recovery questions but for non-uniform hy-
pergraphs, i.e., when the hyperedges have differing sizes. A natural model is to include
a hyperedge on each given subset S ⊂ [n] independently with probability p|S| depending
only on the size of S. For each d ≥ 2, we might take pd ∝ (1 + on(1))n

−d+1+δd , where
δd ∈ [−∞, d− 1).

2. A specific instance of the above non-uniform hyperedge problem arises in the context of
random intersection graphs (RIG). Each node i ∈ [n] is associated with an independent
random subsets Si of [m] such that j ∈ [m] is an element of Si independently with probability
p. The RIG includes edge {u, v} if and only if Su and Sv are not disjoint. For j ∈ [m], define
Cj to be the set of i ∈ [n] such that j ∈ Si, and note that the graph has a clique on each
Cj . When can one recover the sets Cj , given the graph? Brennan et al. (2020) finds a phase
transition for the total variation convergence of an RIG to Erdös-Rényi. We expect a phase
transition to occur for the feasibility of recovering the cliques Cj .

3. One might aim to recover a hypergraph from a noisy unweighted projection; for example, we
could flip each of the edges of Proj(H) with some fixed probability. We expect that noise will
lower the partial recovery threshold for δ. What is the new recovery threshold?

13
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Appendix A. Partial recovery results

A.1. Proof of Theorem 16

As a reminder, q = Pr[
(
[d]
2

)
⊂ Proj(H)] is the hyperedge density of Hc.

Lemma 25 Suppose δ > d−1
d+1 . Let G′ = Proj(Z). Then

∑
H,H′∈Z,

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]2
≤ |G′| ≤

(
(1 + on(1))e

(d2)

q

)(1+ϵ)p(nd)

.

Proof We have that∑
H,H′∈Z,

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]2
≤
∑
H∈Z

Pr[H = H]

Pr[Proj(H) = Proj(H)]
≤ |G′|.
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The maximum number of edges in some G ∈ G′ is (1 + ϵ)
(
d
2

)
p
(
n
d

)
. Therefore,

|G′| ≤ (1 + ϵ)

(
d

2

)
p

(
n

d

)( (
n
2

)
(1 + ϵ)

(
d
2

)
p
(
n
d

)),
if n is sufficiently large so that (1 + ϵ)

(
d
2

)
p
(
n
d

)
< 1

2

(
n
2

)
. Stirling’s approximation gives that k! ≥(

k
e

)k
.

When δ > d−1
d+1 , the fraction of the hyperedges of H in the hyperedges of Hc is on(1), so we

have that q = (1+on(1))
(

cnδ−1

(d−2)!

)(d2)
= (1+on(1))

(
(d2)p(

n
d)

(n2)

)(d2)
, see Theorem 9. This gives that

( (
n
2

)
(1 + ϵ)

(
d
2

)
p
(
n
d

)) ≤

(
e
(
n
2

)
(1 + ϵ)

(
d
2

)
p
(
n
d

))(1+ϵ)(d2)p(
n
d)

=

(
(1 + on(1))e

(d2)

q

)(1+ϵ)p(nd)

.

Proof [Proof of Theorem 16] If H ′ ∈ Z then

Pr[H = H ′] ≤
(

p

1− p

)(1−ϵ)p(nd)
(1− p)(

n
d).

Suppose I ∈ [Mp
(
n
d

)
, (1 + ϵ)p

(
n
d

)
] is an integer. Next we upper bound the number of choices for

H ′ given H and |E(H) ∩ E(H ′)| = I .
Suppose H ∈ Z . The number of choices for E(H) ∩ E(H ′) is at most(

⌊(1 + ϵ)p
(
n
d

)
⌋

I

)
.

Since E(H ′) is a subset of the d-cliques of H , the number of choices for E(H ′)\E(H) is at most( ⌊(1 + ϵ)q
(
n
d

)
⌋

⌊(1 + ϵ)p
(
n
d

)
⌋ − I

)
assuming that n is sufficiently large so that p ≤ q

2 . Hence∑
H,H′∈Z,

Proj(H)=Proj(H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′]

≤
∑
H∈Z

Pr[H = H]

(
p

1− p

)(1−ϵ)p(nd)
(1− p)(

n
d)
(
⌊(1 + ϵ)p

(
n
d

)
⌋

I

)( ⌊(1 + ϵ)q
(
n
d

)
⌋

⌊(1 + ϵ)p
(
n
d

)
⌋ − I

)

≤
(

p

1− p

)(1−ϵ)p(nd)
e−p(nd)

(
e(1 + ϵ)

I/(p
(
n
d

)
)

)I (
e(1 + ϵ) qp

1 + ϵ− I/(p
(
n
d

)
)

)(1+ϵ−I/(p(nd)))p(
n
d)

≤ (1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)
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·

(
1 + on(1)

(I/(p
(
n
d

)
))I/(p(

n
d))(1 + ϵ− I/(p

(
n
d

)
))1+ϵ−I/(p(nd))

)p(nd)

.

Observe that the inequalities are true even for the edge-case I = ⌊(1 + ϵ)p
(
n
d

)
⌋. Let

α = maxm∈[M,1)
2

mm(1−m)1−m . Then if n is sufficiently large,

∑
H,H′∈Z,

Proj(H)=Proj(H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′] ≤ (1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)αp(nd).

(4)
Using Cauchy-Schwarz gives that

∑
H,H′∈Z,

Proj(H)=Proj(H′),

Mp(nd)≤|E(H)∩E(H′)|≤(1+ϵ)p(nd)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = H]

≤


∑

Mp(nd)≤I≤(1+ϵ)p(nd)

∑
H,H′∈Z,

Proj(H)=Proj(H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′]



1
2

×

 ∑
H,H′∈Z,

Proj(H)=Proj(H′)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = Proj(H)]2


1
2

Afterwards, using (4) and Lemma 25 gives that

∑
H,H′∈Z,

Proj(H)=Proj(H′),

Mp(nd)≤|E(H)∩E(H′)|≤(1+ϵ)p(nd)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = H]

≤

( ∑
Mp(nd)≤I≤(1+ϵ)p(nd)

(1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)αp(nd)

·

(
(1 + on(1))e

(d2)

q

)(1+ϵ)p(nd)) 1
2

=

( ∑
Mp(nd)≤I≤(1+ϵ)p(nd)

(
(1 + on(1))

(
p

q

)I/(p(nd))
p−2ϵαe(

d
2)

)p(nd)) 1
2

.

17



BRESLER GUO POLYANSKIY YAO

Observe that using Theorem 9 gives that

q

p
≥ (1 + on(1))

c(
d
2)−1

(d− 2)!(
d
2)
n(

d
2)(δ−1)+d−1−δ.

Because δ > d−1
d+1 ,

(
d
2

)
(δ − 1) + d − 1 − δ > 0. Suppose Mp

(
n
d

)
≤ I ≤ (1 + ϵ)p

(
n
d

)
. Then

I/(p
(
n
d

)
) ≥ M so

(1 + on(1))

(
p

q

)I/(p(nd))
p−2ϵαe(

d
2) = On(n

−M((d2)(δ−1)+d−1−δ)+2ϵ(d−1−δ)).

Particularly, if n is sufficiently large then

(1 + on(1))

(
p

q

)I/(p(nd))
p−2ϵαe(

d
2) = On(n

−M
2 ((

d
2)(δ−1)+d−1−δ))

since ϵ = on(1). We therefore have that∑
H,H′∈Z,

Proj(H)=Proj(H′),

Mp(nd)≤|E(H)∩E(H′)|≤(1+ϵ)p(nd)

Pr[H = H] Pr[H = H ′]

Pr[Proj(H) = H]

≤
(
(1 + ϵ)p

(
n

d

)
On(n

−M
2 ((

d
2)(δ−1)+d−1−δ))p(

n
d)
) 1

2

= on(1).

A.2. Weighted partial recovery

For weighted partial recovery, we can prove a similar result as Theorem 14 using a similar method.

Theorem 26 Suppose δ > d−1
d+1 . Then the weighted partial recovery loss is 1− on(1).

Proof Suppose k ≥ 1. For i, j ∈ [n], i ̸= j, the probability that {i, j} is contained in at least k
hyperedges of H is

(1− p)(
n−2
d−2)

(n−2
d−2)∑
m=k

((n−2
d−2

)
m

)(
p

1− p

)m

≤
∑
m≥k

((
n− 2

d− 2

)
p

)m

= On(n
k(δ−1)).

Then, the expected number of {i, j} that are contained in at least k hyperedges of H is
On(n

2+k(δ−1)). By selecting k to be sufficiently large, this expected value will be on(1), so the
probability that there exists an edge {i, j} that is contained in at least k hyperedges is on(1).

Suppose k is sufficiently large. Then, set Z ′ to be the set of H ∈ Z such that each edge {i, j}
is contained in less than k hyperedges. We have that Pr[H ∈ Z ′] = 1− on(1), so we can use Z ′ in
place of Z by Lemma 15.
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We can now essentially use the same proof as Theorem 14, of course after replacing Proj with
ProjW and Z with Z ′. The only significant step is to prove the analogue of Theorem 16; the
remaining steps are straightforward to verify. For this proof, we can follow the framework given in
Subsection A.1.

The most important step is to justify the analogue of Lemma 25. Letting G′′ = ProjW (Z ′), since
each edge of Proj(H) is contained in less than k hyperedges and the number of edges in Proj(H) is
at most (1 + ϵ)

(
d
2

)
p
(
n
d

)
for H ∈ Z ′, we have that

|G′′| ≤ (k − 1)(1+ϵ)(d2)p(
n
d)|G′|,

so using Lemma 25 gives that

∑
H,H′∈Z′,

ProjW (H)=ProjW (H′)

Pr[H = H] Pr[H = H ′]

Pr[ProjW (H) = ProjW (H)]2
≤ |G′′| ≤

(
(1 + on(1))(ke)

(d2)

q

)(1+ϵ)p(nd)

.

Furthermore, it is clear that∑
H,H′∈Z′,

ProjW (H)=ProjW (H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′] ≤
∑

H,H′∈Z,
Proj(H)=Proj(H′),
|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′]

for all I ∈ [Mp
(
n
d

)
, (1 + ϵ)p

(
n
d

)
], so the analogue∑

H,H′∈Z, ProjW (H)
=ProjW (H′),

|E(H)∩E(H′)|=I

Pr[H = H] Pr[H = H ′] ≤ (1 + on(1))p
(I/(p(nd))−2ϵ)p(nd)q(1+ϵ−I/(p(nd)))p(

n
d)αp(nd)

of (4) is true. Afterwards, we can follow the same steps to prove the analogue of Theorem 16.

Proof [Proof of Theorem 2] Since the partial recovery loss is on(1) for δ < d−1
d+1 by Theorem 1, the

same is true for the weighted partial recovery loss, see Lemma 8. Afterwards using Theorem 26 and
Theorem 27 finishes the proof.

Appendix B. Additional partial recovery results

B.1. The dense regime δ ≥ 1

In this section, we consider when 1 ≤ δ < d−1. In any other parts of the paper other than Section 1,
it is assumed that δ < 1. The goal of this subsection is to prove that the partial recovery and weighted
partial recovery losses are 1 − on(1) in the regime δ ≥ 1, see Theorem 1 and Theorem 2. We first
prove that the weighted partial recovery loss is 1 − on(1), since the partial recovery loss being
1− on(1) would directly follow, see Lemma 8.

Theorem 27 Suppose 1 ≤ δ < d− 1. The weighted partial recovery loss is 1− on(1).
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Proof Suppose the function f : GW → {0, 1} satisfies the condition that if G ∈ G then f(G) =
1{[d] ∈ B∗(G)}. Using (2) gives that

E[|B∗(ProjW (H))∆H|] =
(
n

d

)
Pr
H
[f(ProjW (H)) ̸= 1{[d] ∈ E(H)}]. (5)

From Fano’s inequality,

H(1{[d] ∈ E(H)}|ProjW (H)) ≤ HB(Pr
H
[f(ProjW (H)) ̸= 1{[d] ∈ E(H)}]).

Using this gives that(
n

d

)
HB(Pr

H
[f(ProjW (H)) ̸= 1{[d] ∈ E(H)}]) ≥

∑
h∈([n]

d )

H(1{h ∈ H})|ProjW (H))

≥ H(H|ProjW (H)) = H(H)−H(ProjW (H)).

(6)

First suppose δ > 1. Then, for all i, j ∈ [n], i ̸= j, we have that

H(|{h ∈ E(H) : {i, j} ⊂ h}|) ≤ log

((
n− 2

d− 2

))
.

Thus,

H(ProjW (H)) ≤
∑

1≤i<j≤n

H(|{h ∈ E(H) : {i, j} ⊂ h}|) ≤
(
n

2

)
log

((
n− 2

d− 2

))
.

Since H(H) =
(
n
d

)
HB(p) = Ωn(n

1+δ log(n)), we then have that H(ProjW (H)) = on(H(H)).
Hence, (6) gives that Pr[f(ProjW (H)) ̸= 1{[d] ∈ E(H)}] = (1− on(1))p so using (5) gives that

ℓ(B∗) =
EH[|B∗(Ψ)∆H|]

p
(
n
d

) =
PrH[f(Ψ) ̸= 1{[d] ∈ E(H)}]

p
= 1− on(1).

Next suppose δ = 1. Suppose i, j ∈ [n], i ̸= j. We have that

|{h ∈ E(H) : {i, j} ⊂ h}| ∼ Binomial
((

n− 2

d− 2

)
, p

)
so

H(|{h ∈ E(H) : {i, j} ⊂ h}|) = On(1)

since |{h ∈ E(H) : {i, j} ⊂ h}| has mean
(
n−2
d−2

)
p = On(1), see (Polyanskiy and Wu, 2025,

Exercise I.4). Then,

H(ProjW (H)) ≤
∑

1≤i<j≤n

H(|{h ∈ E(H) : {i, j} ⊂ h}|) = On(n
2).

Since H(H) = Ωn(n
2 log(n)), H(ProjW (H)) = on(H(H)) and we conclude similarly as the case

δ > 1.

Corollary 28 Suppose 1 ≤ δ < d− 1. The partial recovery loss is 1− on(1).

Proof This follows from Lemma 8 and Theorem 27.
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B.2. Correlation inequality

It is in fact possible to extend the results from Theorem 14 from one hyperedge to multiple hyper-
edges. As explained in the proof of the following result, the case k = 1 is equivalent to Theorem 14.

Theorem 29 Suppose δ > d−1
d+1 and k ≥ 1. Then

sup
h1,...,hk∈([n]

d )
distinct

∑
G∈G

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G] = on(p
k).

Proof First we resolve the case k = 1. From Lemma 12, it suffices to prove that EH,H′ [E(H) ∩
E(H′)] = on

(
p
(
n
d

))
, which we show in the proof of Theorem 14.

Next, assume that k ≥ 2. Suppose h1, . . . , hk ∈
([n]
d

)
. Suppose Si, 1 ≤ i ≤ k are disjoint sets

of ⌊nk ⌋ − d vertices that are disjoint from hi, 1 ≤ i ≤ k, assuming that n ≥ kd. Let Ti = Si ∪ hi
for 1 ≤ i ≤ k. Let Hi be H with vertex set restricted to Ti for 1 ≤ i ≤ k. Observe that the Hi do
not have any overlapping hyperedges. Furthermore, let HC denote H\

(⋃k
i=1Hi

)
, that is, HC is

H restricted to
([n]
d

)
\
(⋃k

i=1

(
Ti
d

))
.

Suppose G ∈ G. Where Gi is some graph with vertex set Ti for 1 ≤ i ≤ k and GC is some
graph with vertex set [n], we have that

Pr[Proj(H) = G] =
∑

Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi] Pr[Proj(HC) = GC ]

and

Pr[h1, . . . , hk ∈ E(H),Proj(H) = G]

=
∑

Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)] Pr[Proj(HC) = GC ].

Using the Cauchy-Schwarz inequality gives that

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G]

=

(∑
Gi,1≤i≤k,GC ,
projection is G

∏k
i=1 Pr[Proj(Hi) = Gi, hi ∈ E(Hi)] Pr[Proj(HC) = GC ]

)2

∑
Gi,1≤i≤k,GC ,
projection is G

∏k
i=1 Pr[Proj(Hi) = Gi, hi ∈ E(Hi)] Pr[Proj(HC) = GC ]

≤
∑

Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
Pr[Proj(HC) = GC ].

Afterwards summing over the G gives that∑
G∈G

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G]
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≤
∑
G∈G

∑
Gi,1≤i≤k,GC ,
projection is G

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
Pr[Proj(HC) = GC ]

=
∑

Gi,1≤i≤k,GC

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
Pr[Proj(HC) = GC ]

=
∑

Gi,1≤i≤k

k∏
i=1

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]

=

k∏
i=1

∑
Gi

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
.

Observe that the Hi follow the same random model as H but with a different value of p. The Hi

have ⌊nk ⌋ vertices and each hyperedge appears with probability (c+on(1))n
−d+1+δ. Thus, when the

Hi have n vertices, each hyperedge appears with probability (c + on(1))k
−d+1+δn−d+1+δ. From

repeating the case k = 1 for this random model,∑
G∈G

Pr[h1, . . . , hk ∈ E(H)|Proj(H) = G]2 Pr[Proj(H) = G]

≤
k∏

i=1

∑
Gi

Pr[Proj(Hi) = Gi, hi ∈ E(Hi)]
2

Pr[Proj(Hi) = Gi]
= on(p

k).

Remark 30 The previous proof exhibits an advantage of considering the parameterization p =
(c+ on(1))n

−d+1+δ.

Appendix C. Structures of the Projected Graph

C.1. Projection covers and convex relaxations

First we give two lemmas that generalize ideas from (Bresler et al., 2024, Proof of Lemma 39). We
do not include the proofs, which are straightforward.

Lemma 31 Suppose k ≥ 2 and U ⊂ 2[k]. The probability that there exists h ∈ E(H) such that
h ∩ [k] = u for all u ∈ U is ∏

u∈U
(1− (1− p)(

n−k
d−|u|)).

Furthermore this probability is at most

p|U|
∏
u∈U

(
n− k

d− |u|

)
= Θn(n

(1+δ)|U|−
∑

u∈U |u|).
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Lemma 32 Suppose k ≥ 2 and E ⊂
(
[k]
2

)
. The probability that E ⊂ E(Proj(H)) is at most

∑
U

p|U|
∏
u∈U

(
n− k

d− |u|

)
,

where the sum is over U ⊂ 2[k] satisfying the following conditions:

• For all u ∈ U , |u| ≥ 2 and
(
u
2

)
̸⊂
⋃

u′∈U\{u}
(
u′

2

)
.

• E ⊂
⋃

u∈U
(
u
2

)
.

Remark 33 Proj(H) is a 2-uniform hypergraph so E(Proj(H)) is a set of edges, which are hyper-
edges with size 2.

Next we discuss a technique from Bresler et al. (2024) that involves using a relaxation tech-
nique to establish a convex optimization problem after applying Lemmas 31 and 32. Suppose
k ≥ 2 and E ⊂

(
[k]
2

)
. The goal is to upper bound the probability that E ⊂ E(Proj(H)) using

Lemma 32. Suppose U satisfies the conditions of Lemma 32; the lemma implies that an upper
bound on p|U|∏

u∈U
(
n−k
d−|u|

)
is an upper bound on the probability that E ⊂ E(Proj(H)) after scaling

by some constant since the number of U is finite.
First observe that |E| ≤

∑
u∈U ,|u|≥2

(|u|
2

)
. The relaxation technique is to replace

(
x
2

)
for some

real variable x ≥ 2 with the real variable y ≥ 1; that is, y =
(
x
2

)
and x = 1+

√
1+8y
2 . If yu =

(
xu

2

)
for u ∈ U such that |u| ≥ 2 then |E| ≤

∑
u∈U ,|u|≥2 yu. From Lemma 31,

p|U|
∏
u∈U

(
n− k

d− |u|

)
= Θn(n

(1+δ)|U|−
∑

u∈U |u|) = Θn(n
(1+δ)|U|−

∑
u∈U

1+
√
1+8yu
2 ).

Suppose M = |U|; the conditions of Lemma 32 imply that 1 ≤ M ≤ |E|. Then maximizing
the quantity p|U|∏

u∈U
(
n−k
d−|u|

)
corresponds to maximizing (1 + δ)M −

∑M
i=1

1+
√
1+8yi
2 given that∑M

i=1 yi ≥ |E| and yi ≥ 1 for 1 ≤ i ≤ M , which is a convex optimization problem. Particularly,
since the function (1 + δ)M −

∑M
i=1

1+
√
1+8yi
2 is convex, it is maximized at a vertex of the set of

inputs.
Some results of Bresler et al. (2024) that are proved using the methods described in this subsec-

tion are (Bresler et al., 2024, Lemmas 35, 39, and 40). In this paper we prove results in Appendix C,
Theorem 9, and Lemma 24 using these methods.

Remark 34 For the proof of Lemma 37 we also impose the constraint that |u| ≤ d for all u ∈ U ,
which corresponds to yi ≤

(
d
2

)
for 1 ≤ i ≤ M , because the hyperedges of H have size d. It

is necessary to impose this constraint because the value k in Lemma 31 and Lemma 32 may be
greater than d in the context of Lemma 37.

C.2. Proof of Theorem 9

First we lower bound q. Note that if [d] ∈ E(H) then [d] ∈ E(Hc) so q ≥ p. Suppose [d] /∈ E(H);
this event occurs with probability 1 − p. Then, [d] ∈ E(Hc) if and only if for each edge {i, j} for
1 ≤ i < j ≤ d, there exists h ∈

([n]
d

)
\{[d]} such that {i, j} ⊂ h and h ∈ E(H).
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Suppose 1 ≤ i < j ≤ d. The probability there exists h ∈
([n]
d

)
\{[d]} such that {i, j} ⊂ h and

h ∈ E(H) is 1− (1− p)(
n−2
d−2)−1. Using the Harris inequality gives that

Pr[[d] ∈ E(Hc)|[d] /∈ E(H)] ≥ (1− (1− p)(
n−2
d−2)−1)(

d
2)

≥
((

n− 2

d− 2

)
p− p−On((n

d−2p)2))

)(d2)
≥ (1− on(1))

((
n− 2

d− 2

)
p

)(d2)
= (1− on(1))

(
cnδ−1

(d− 2)!

)(d2)
.

Hence,

q = Pr[[d] ∈ E(Hc)] ≥ p+ (1− p)(1− on(1))

(
cnδ−1

(d− 2)!

)(d2)

= p+

(
cn(δ−1)

(d− 2)!

)(d2)
+ on(n

(d2)(δ−1)).

(7)

Next we upper bound q using the technique discussed in Subsection C.1. From Lemma 32 with
[k] replaced by [d] and E replaced by

(
[d]
2

)
,

q = Pr[[d] ∈ E(Hc)] ≤
∑
U

p|U|
∏
u∈U

(
n− d

d− |u|

)
,

where the sum is over U ⊂ 2[d] satisfying the conditions of the lemma. For convenience, denote the
set of such U by P .

Suppose U ∈ P and M = |U|. It is clear that 1 ≤ M ≤
(
d
2

)
. If M = 1 (U = {[d]}) the

probability is p and if M =
(
d
2

)
(U =

(
[d]
2

)
) then the probability is (1 + on(1))

(
cnδ−1

(d−2)!

)(d2). Using
the union bound gives that

q ≤ p+ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)
+

∑
2≤M≤(d2)−1,

U∈P, |U|=M

Θn(n
(1+δ)M−

∑
u∈U |u|). (8)

Suppose U ∈ P and M = |U|; recall that 1 ≤ M ≤
(
d
2

)
. Furthermore suppose yu =

(|u|
2

)
for

u ∈ U . Then yu ≥ 1 for u ∈ U and
∑

u∈U yu ≥
(
d
2

)
. Furthermore

M(1 + δ)−
∑
u∈U

|u| = M(1 + δ)−
∑
u∈U

1 +
√
8yu + 1

2
. (9)

Suppose 1 ≤ M ≤
(
d
2

)
. Let RM be the set of (yi)1≤i≤M such that yi ≥ 1 for 1 ≤ i ≤ M and∑M

i=1 yi ≥
(
d
2

)
. Let

f(y1, . . . , yM ) = M(1 + δ)−
m∑
i=1

1 +
√
8yi + 1

2
.

24



PARTIAL AND EXACT RECOVERY OF A RANDOM HYPERGRAPH

An upper bound of (9) is the maximal value of bound f over RM . Since f is convex, this maximal
value occurs at the vertex yi = 1 for 1 ≤ i ≤ M − 1 and yM =

(
d
2

)
−M +1. The value of f at this

vertex is

g(M) := M(1− δ) + 2−
1 +

√
8(
(
d
2

)
−M + 1) + 1

2

and maxy∈RM
f(y) = g(M). Observe that g is convex in M over [1,

(
d
2

)
]. Hence, the maximum

value of g for M ∈ [1,
(
d
2

)
] is g(1) = −d+1+δ or g(

(
d
2

)
) =

(
d
2

)
(δ−1). Particularly, if 1 < M <

(
d
2

)
then g(M) < max(−d+1+ δ,

(
d
2

)
(δ− 1)). Using the fact that an upper bound of (9) is g(M) then

gives that if U ∈ P and 1 < |U| <
(
d
2

)
,

|U|(1 + δ)−
∑
u∈U

|u| < max(−d+ 1 + δ,

(
d

2

)
(δ − 1)).

Using (8) then gives that

Pr[[d] ∈ E(Hc)] ≤ p+ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)
+ on(p+ n(

d
2)(δ−1)).

Using this inequality and (7) completes the proof.

Remark 35 Observe that Theorem 9 for δ > d−1
d+1 is implied by Theorem 39 with l = m = 0.

C.3. Results about combinatorial structures in Hc

The main goal of this section is to prove that E(Hc) is concentrated around its mean if δ > d−1
d+1 ,

see Corollary 41. Observe that Lemmas 36 and 37 have similar statements and proofs as (Bresler
et al., 2024, Lemma 35 and Lemma 40), but some differences are that we require different bounds
and only consider when δ > d−1

d+1 . Furthermore we use methods discussed in Subsection C.1 in this
section.

Lemma 36 Suppose δ > d−1
d+1 . Suppose m is an integer such that 0 ≤ m ≤ d − 1. Assume that

{Ki : 1 ≤ i ≤ M} is a set of subsets S of [d] such that 2 ≤ |S| ≤ d. Assume that

M⋃
i=1

(
Ki

2

)
⊃
(
[d]

2

)
\
(
[m]

2

)
.

Then

(1 + δ)M −
M∑
i=1

|Ki| ≤
((

d

2

)
−
(
m

2

))
(δ − 1).

Equality occurs if and only if the Ki are distinct and {Ki : 1 ≤ i ≤ M} =
(
[d]
2

)
\
(
[m]
2

)
.

Proof First we may assume that
(
Ki
2

)
∩
((

[d]
2

)
\
(
[m]
2

))
̸⊂
⋃

j∈[M ]\{i}
(Kj

2

)
for 1 ≤ i ≤ M . We

can assume this because if the condition is not true we can remove Ki and increase (1 + δ)M −∑M
i=1 |Ki|. This condition implies that the Ki are distinct and M ≤

(
d
2

)
−
(
m
2

)
.
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Suppose yi =
(|Ki|

2

)
for 1 ≤ i ≤ M , then yi ≥ 1 for 1 ≤ i ≤ m and

∑M
i=1 yi ≥

(
d
2

)
−
(
m
2

)
. We

have that

(1 + δ)M −
M∑
i=1

|Ki| = (1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Let

f(y1, . . . , yM ) = (1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Since f is convex, its maximal value occurs at a vertex. Suppose (yi)1≤i≤M is the vertex such
that yi = 1 for 1 ≤ i ≤ M − 1 and yM =

(
d
2

)
−
(
m
2

)
−M + 1. Then

f(y1, . . . , yM ) = (δ − 1)M + 2−
1 +

√
1 + 8(

(
d
2

)
−
(
m
2

)
−M + 1)

2
.

Since f(y1, . . . , yM ) is convex with respect to M , the maximum value of f(y1, . . . , yM ) for 1 ≤
M ≤

(
d
2

)
−
(
m
2

)
occurs when M ∈ {1,

(
d
2

)
−
(
m
2

)
}.

Suppose M = 1. Then

f(y1, . . . , yM ) = 1 + δ −
1 +

√
1 + 8(

(
d
2

)
−
(
m
2

)
)

2
.

Because the number of edges in [d] but not [m] is greater than M , we also must prove that equality
does not hold. Because δ > d−1

d+1 it suffices to prove that

1 +
d− 1

d+ 1
−

1 +
√

1 + 8(
(
d
2

)
−
(
m
2

)
)

2
≤ −

((
d

2

)
−
(
m

2

))
2

d+ 1
.

This can be proved using expansion.
Next suppose M =

(
d
2

)
−
(
m
2

)
. Then yM = 1 so

f(y1, . . . , yM ) =

((
d

2

)
−
(
m

2

))
(δ − 1).

Afterwards it is straightforward to verify the equality case.

Lemma 37 Suppose δ > d−1
d+1 . Suppose m and k are integers such that m ∈ {0, 1, 2, d − 1} and

m ≤ k ≤ d − 1. Assume that {Ki : 1 ≤ i ≤ M} is a set of subsets S of [1, 2d − k] such that
2 ≤ |S| ≤ d. Assume that

M⋃
i=1

(
Ki

2

)
⊃
((

[d]

2

)⋃(
[k] ∪ {i : d+ 1 ≤ i ≤ 2d− k}

2

))
\
(
[m]

2

)
Then

(1 + δ)M −
M∑
i=1

|Ki| ≤ k −m+ (d(d− 1)−m(m− 1))(δ − 1). (10)

Equality occurs if and only if k = m, the Ki are distinct, and
{Ki : 1 ≤ i ≤ M} =

((
[d]
2

)⋃ ([k]∪{i:d+1≤i≤2d−k}
2

))
\
(
[m]
2

)
.
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Proof Let

E =

((
[d]

2

)
∪
(
[k]
⋃
{i : d+ 1 ≤ i ≤ 2d− k}

2

))
\
(
[m]

2

)
.

Similarly to the proof of Lemma 36, assume the condition (∗1) that for 1 ≤ i ≤ M ,
(
Ki
2

)
∩ E ̸⊂⋃

j∈[M ]\{i}
(Kj

2

)
. Note that (∗1) implies that the Ki are distinct and that

M ≤ |E| = 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
.

We must prove that the equality case of (10) occurs if and only if M = 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
. Fur-

thermore, since each element of [2d − k] must be a vertex of one of the Ki and 2d − k > d,
M ≥ 2.
Case 1: m ∈ {0, 1, 2}, m < d− 1

Suppose m ∈ {0, 1, 2} and m < d− 1. (We do not consider when m = 2 and d = 3.)
Suppose yi =

(|Ki|
2

)
for 1 ≤ i ≤ M . Then, 1 ≤ yi ≤

(
d
2

)
for 1 ≤ i ≤ M and

M∑
i=1

yi ≥ 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
.

Furthermore, the left hand side of (10) is

(1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Let RM be the set of (yi)1≤i≤M such that 2 ≤ yi ≤
(
d
2

)
for 1 ≤ i ≤ M and

∑M
i=1 yi ≥ 2

(
d
2

)
−(

k
2

)
−
(
m
2

)
. Additionally, let

f(y1, . . . , yM ) = (1 + δ)M −
M∑
i=1

1 +
√
1 + 8yi
2

.

Observe that f is convex so the maximum value of f over RM occurs at a vertex of RM . Suppose
(yi)1≤i≤M is a vertex of RM such that yi ∈ {2,

(
d
2

)
} for 1 ≤ i ≤ M − 1.

Suppose 2 ≤ M ≤
(
d
2

)
−
(
k
2

)
−
(
m
2

)
. If yi = 1 for 1 ≤ i ≤ M − 1 then

yM ≥ 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1 >

(
d

2

)
,

which is a contradiction. Assume that one of the yi, 1 ≤ i ≤ M − 1 equals
(
d
2

)
; it is clearly not

optimal if two distinct yi for 1 ≤ i ≤ M −1 equal
(
d
2

)
since we will then have that

∑M
i=1 yi > 2

(
d
2

)
,

so we can increase the value of f by decreasing some of the yi. Without loss of generality, assume
that yi = 1 for 1 ≤ i ≤ M − 2, yM−1 =

(
d
2

)
, and

yM =

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 2.
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Then,

f(y1, . . . , yM ) = (δ − 1)M + 2(δ + 1) + 4− d− 1 +
√
1 + 8yM
2

.

Since M < 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
, we must prove that equality does not occur. Therefore, we must

prove that

(δ − 1)M + 4− d− 1 +
√
1 + 8yM
2

< k −m+ (d(d− 1)−m(m− 1))(δ − 1)

It suffices to prove that this inequality is true for 2 ≤ M ≤
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+1 (observe that we add(

d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1 as a value for M to simplify calculations). The left hand side is convex with

respect to M , so it suffices to prove that the inequality is true for M ∈ {2,
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1}.

First, suppose M = 2. The required inequality is

2(δ − 1) + 4− d−
1 +

√
1 + 8(

(
d
2

)
−
(
k
2

)
−
(
m
2

)
)

2
< k −m+ (d(d− 1)−m(m− 1))(δ − 1).

Since δ > d−1
d+1 and d(d− 1)−m(m− 1) > 2, it suffices to prove that

− 4

d+ 1
+ 4− d−

1 +
√

1 + 8(
(
d
2

)
−
(
k
2

)
−
(
m
2

)
)

2
≤ k −m− 2

d+ 1
(d(d− 1)−m(m− 1)).

This inequality can be verified by expansion. Note that equality occurs if and only if k = m = 0 or
k = m = 1.

Although Lemma 37 is true for m ∈ {0, 1, 2, d−1}, we only use the case m = 0, see Remark 38.
Therefore, for completeness, we include the expansion for the case m = 0 and equivalently m = 1.
It suffices to prove that

− 4

d+ 1
+ 4− d− 1 +

√
1 + 4d2 − 4d− 4k2 + 4k

2
≤ k − 2d(d− 1)

d+ 1

⇔2d2 − 2d− 4

d+ 1
+ 4− d− k − 1

2
≤

√
1 + 4d2 − 4d− 4k2 + 4k

2

⇔2d− 2k − 1 ≤
√

1 + 4d2 − 4d− 4k2 + 4k ⇔ 8k2 ≤ 8dk,

which follows from 0 ≤ k ≤ d− 1.
Next, suppose M =

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1. Then, yM = 1 so the required inequality is

(δ − 1)

((
d

2

)
−
(
k

2

)
−
(
m

2

)
+ 1

)
+ 2− d < k −m+ (d(d− 1)−m(m− 1))(δ − 1).

This is equivalent to

(1− δ)

((
d

2

)
−
(
m

2

)
+

(
k

2

)
− 1

)
+ 2 < k −m+ d.
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We need to prove this inequality for δ > d−1
d+1 , so it suffices to prove that

2

d+ 1

((
d

2

)
−
(
m

2

)
+

(
k

2

)
− 1

)
+ 2 ≤ k −m+ d.

This inequality is equivalent to

(k −m)(d+ 2− k −m) ≥ 0,

which is true since m ≤ k ≤ d− 1 and m ≤ 2.
Suppose

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+1 ≤ M ≤ 2

(
d
2

)
−
(
k
2

)
−
(
m
2

)
. It is clearly not optimal for two of the

yi for 1 ≤ i ≤ M − 1 to equal
(
d
2

)
. Suppose one of the yi for 1 ≤ i ≤ M − 1 equals

(
d
2

)
. Without

loss of generality, suppose yi = 1 for 1 ≤ i ≤ M − 2 and yM−1 =
(
d
2

)
. Then,

yM ≥
(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 2.

Since
(
d
2

)
−
(
k
2

)
−
(
m
2

)
−M + 2 ≤ 1,

f(y1, . . . , yM−2, yM−1, yM ) ≤ f

(
y1, . . . , yM−2,

(
d

2

)
, 1

)
≤ f

(
y1, . . . , yM−2, 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1, 1

)
= f

(
y1, . . . , yM−2, 1, 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1

)
.

Then, we may assume that yi = 1 for 1 ≤ i ≤ M − 1. We have that

yM = 2

(
d

2

)
−
(
k

2

)
−
(
m

2

)
−M + 1.

Furthermore,

f(y1, . . . , yM ) = (δ − 1)M + 2−
1 +

√
1 + 8(2

(
d
2

)
−
(
k
2

)
−
(
m
2

)
−M + 1)

2
.

Observe that f convex with respect to M . Therefore, f is maximized over
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1 ≤

M ≤ 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
when M ∈ {

(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1, 2

(
d
2

)
−
(
k
2

)
−
(
m
2

)
}.

Suppose M =
(
d
2

)
−
(
k
2

)
−
(
m
2

)
+ 1. Then yM =

(
d
2

)
so this case is equivalent to the previous

case we considered where (y1, . . . , yM ) = (1, . . . , 1,
(
d
2

)
, 1).

Next suppose M = 2
(
d
2

)
−
(
k
2

)
−
(
m
2

)
. Then yM = 1 so the required inequality is

(δ − 1)

(
2

(
d

2

)
−
(
k

2

)
−
(
m

2

))
≤ k −m+ (d(d− 1)−m(m− 1))(δ − 1).

This is equivalent to

(1− δ)

((
k

2

)
−
(
m

2

))
≤ k −m.
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If k = m then it is clear that equality occurs. Suppose k > m. We must prove that

(1− δ)

((
k

2

)
−
(
m

2

))
< k −m.

Since δ > d−1
d+1 , it suffices to prove that

2

d+ 1

((
k

2

)
−
(
m

2

))
≤ k −m.

This is equivalent to
1

d+ 1
(k −m)(k +m− 1) ≤ k −m,

which is true since m ≤ 2 and k ≤ d− 1.
Case 2: m = d− 1

Next suppose m = d− 1. Since k = m = d− 1, we must prove that

(1 + δ)M −
M∑
i=1

|Ki| ≤ 2(d− 1)(δ − 1)

and that equality occurs if and only if {Ki : 1 ≤ i ≤ M} = E . Note that

E = {{d, j} : j ∈ [d− 1]} ∪ {{d+ 1, j} : j ∈ [d− 1]} ⊂
M⋃
i=1

(
Ki

2

)
.

Suppose
{Ki : 1 ≤ i ≤ M} = Sa ⊔ Sb ⊔ Sab,

where Ki ∈ Sa if Ki ∩ {d, d+ 1} = {d}, Ki ∈ Sb if Ki ∩ {d, d+ 1} = {d+ 1}, and Ki ∈ Sab if
Ki ∩ {d, d+ 1} = {d, d+ 1} for 1 ≤ i ≤ M .

Let Z = {j : j ∈ [d−1],∃k ∈ Sab such that j ∈ k}. For all j ∈ Z, both edges in E that contain
j are covered by an element of Sab. Suppose k ∈ Sa contains an element j of Z. If k = {d, j}
then (∗1) will be contradicted so |k| ≥ 3. If we remove j from k then the left hand side of (10) will
decrease but all of the edges of E will remain covered. Hence, we can assume that no element of Sa

contains an element of Z. We can similarly assume that no element of Sb contains an element of Z.
Furthermore, assume that j ∈ [d − 1] and k1, k2 ∈ Sa satisfy k1 ̸= k2 and j ∈ k1 ∩ k2. If

k1 = {d, j} then (∗1) will be contradicted so |k1| ≥ 3. If we remove j from k1 then the left hand
side of (10) will decrease but all of the edges of E will remain covered. Hence, we can assume that
no element of [d− 1] is contained in two elements of Sa. We can similarly assume that no element
of [d − 1] is contained in two elements of Sb and that no element of [d − 1] is contained in two
elements of Sab.

Suppose k ∈ Sa and |k| ≥ 3. Suppose j ∈ [d − 1] ∩ k. Suppose we remove j from k and add
{d, j} to {Ki : 1 ≤ i ≤ M}. Then, the left hand side of (10) will increase by δ. Hence, we can
assume that |k| = 2 for all k ∈ Sa and similarly that |k| = 2 for all k ∈ Sb.

Since each element of Sa is {d, j} for some j ∈ [d − 1]\Z, |Sa| = d − 1 − |Z|. Similarly,
|Sb| = d− 1− |Z|. Furthermore, the left hand side of (10) is

2(δ − 1)(d− 1− |Z|) +
∑
k∈Sab

1 + δ − |k| = (δ − 1)(2d− 2− 2|Z|+ |Sab|)− |Z|.
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The inequality
(δ − 1)(2d− 2− 2|Z|+ |Sab|)− |Z| ≤ (δ − 1)(2d− 2)

is equivalent to
−(1− δ)|Sab| ≤ (2δ − 1)|Z|.

If |Z| = |Sab| = 0, then the inequality holds with equality. Suppose |Z| > 0. Then, the inequality
is strict because δ > d−1

d+1 ≥ 1
2 . Hence, equality holds if and only if |Z| = |Sab| = 0. Furthermore,

|Z| = |Sab| = 0 if and only if {Ki : 1 ≤ i ≤ M} = E .

Remark 38 It may be possible to generalize the previous result to more values of m. We use the
case m = 0 and intermediate results to prove Corollary 41, which is used in Subsection 2.5.

Theorem 39 Suppose δ > d−1
d+1 . Suppose m is an integer such that 0 ≤ m ≤ d − 1 and l is

an integer such that l ≥ m. Let X be the set of elements h of
([n]
d

)
such that h ∩ [l] = [m] and(

h
2

)
\
(
[m]
2

)
⊂ E(Ψ), where [0] is the empty set. Then

E[|X|] = (1 + on(1))

(
n

d−m

)(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

Proof The proof of this theorem has the same structure as the proof of Theorem 9. Suppose
h ∈

([n]
d

)
and h ∩ [l] = [m]. The number of h is

(
n−l
d−m

)
. Hence, it suffices to prove that

Pr[h ∈ X] = Pr

[(
h

2

)
\
(
[m]

2

)
⊂ E(Ψ)

]
= (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

Using the Harris inequality gives that

Pr[h ∈ X] ≥ (1− (1− p)(
n−2
d−2))(

d
2)−(

m
2 )

≥
((

n− 2

d− 2

)
p− p−On((n

d−2p)2)

)(d2)−(m2 )
≥ (1− on(1))

((
n− 2

d− 2

)
p

)(d2)−(m2 )
= (1− on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

From Lemma 32 with [k] replaced by h and E replaced by
(
h
2

)
\
(
[m]
2

)
,

Pr

[(
h

2

)
\
(
[m]

2

)
⊂ E(Hc)

]
≤
∑
U

p|U|
∏
u∈U

(
n− d

d− |u|

)
,

where the sum is over U ⊂ 2h satisfying the conditions of the lemma.
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If U =
(
h
2

)
\
(
[m]
2

)
, then

p|U|
∏
u∈U

(
n− d

d− |u|

)
≤ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

Otherwise

p|U|
∏
u∈U

(
n− d

d− |u|

)
= Θn(n

(1+δ)|U|−
∑

u∈U |u|) = on

(
n((

d
2)−(

m
2 ))(δ−1)

)
by Lemma 36. Therefore

Pr[[d] ∈ X] ≤ (1 + on(1))

(
cnδ−1

(d− 2)!

)(d2)−(m2 )
,

which finishes the proof.

Theorem 40 Suppose δ > d−1
d+1 . Suppose m is an integer such that m ∈ {0, 1, 2, d − 1} and l is

an integer such that l ≥ m. Let X be the set of elements h of
([n]
d

)
such that h ∩ [l] = [m] and(

h
2

)
\
(
[m]
2

)
⊂ E(Ψ), where [0] is the empty set. Then Var[|X|] = on(E[|X|]2).

Proof Let S be the set of elements of
([n]
d

)
that have intersection with [l] equal to [m]. We have that

E[|X|2] =
∑
a,b∈S

Pr[a, b ∈ X].

Suppose m ≤ k ≤ d− 1. Suppose a, b ∈ S and k = |a∩ b|. From Lemma 32 with [k] replaced
by a ∪ b and E replaced by (a ∪ b)\

(
[m]
2

)
,

Pr[a, b ∈ X] = Pr

[((
a

2

)
∪
(
b

2

))
\
(
[m]

2

)
⊂ E(Hc)

]
≤
∑
U

p|U|
∏
u∈U

(
n− 2d+ k

d− |u|

)
, (11)

where the sum is over U ⊂ 2a∪b satisfying the conditions of the lemma. For convenience, denote
the set of such U by P .

Suppose k > m. From Lemma 37, for U ∈ P we have that

(1 + δ)|U| −
∑
u∈U

|u| < k −m+ (d(d− 1)−m(m− 1))(δ − 1),

where the equality case of the lemma cannot occur. Using (11) then gives that

Pr[a, b ∈ X] = on(n
k−m+(d(d−1)−m(m−1))(δ−1)).

Suppose k = m. From Lemma 37, for U ∈ P we have that

(1 + δ)|U| −
∑
u∈U

|u| ≤ (d(d− 1)−m(m− 1))(δ − 1)
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with equality if and only if U = (
(
a
2

)
∪
(
b
2

)
)\
(
[m]
2

)
. Using (11) then gives that

Pr[a, b ∈ X] ≤ (1 + on(1))

(
cnδ−1

(d− 2)!

)d(d−1)−m(m−1)

.

We therefore have that

E[|X|2] =
∑
a,b∈S

Pr[a, b ∈ X] =
d∑

k=m

∑
a,b∈S, |a∩b|=k

Pr[a, b ∈ X]

≤E[|X|] +
d−1∑

k=m+1

(
n− l

d−m

)(
d−m

k −m

)(
n− l − d+m

d− k

)
on(n

k−m+d(d−1)(δ−1))

+

(
n− l

d−m

)(
n− l − d+m

d−m

)
(1 + on(1))

(
cnδ−1

(d− 2)!

)d(d−1)−m(m−1)

=E[|X|] + (1 + on(1))

(
n

d−m

)2( cnδ−1

(d− 2)!

)d(d−1)−m(m−1)

.

Furthermore, from Theorem 39,

E[|X|] ≥ (1− on(1))

(
n

d−m

)(
cnδ−1

(d− 2)!

)(d2)−(m2 )
.

It follows that
Var[|X|] = E[|X|2]− E[|X|]2 = on(E[|X|]2),

which finishes the proof.

Corollary 41 Suppose δ > d−1
d+1 . Then Var[e(Hc)] = on(E[e(Hc)]

2).

Proof This follows from Theorem 40 with l = m = 0.

Remark 42 We expect Corollary 41 to be true for δ ≤ d−1
d+1 as well although we omit a rigorous

proof. For δ < d−1
d+1 , the idea is that almost all hyperedges of Hc are hyperedges of H, the number

of which we know is concentrated.

Appendix D. Exact Recovery

D.1. Proof of Theorem 3

From (Bresler et al., 2024, Theorem 4), the probability of exact recovery is 1− on(1) if d = 3 and
δ < 2d−4

2d−1 . In this section we address the remaining cases of Theorem 3. First we address the lower
bound of the exact recovery threshold.

Corollary 43 Suppose d = 4. If δ < 2d−4
2d−1 then the probability of exact recovery is 1− on(1).
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Proof Suppose δ < 2d−4
2d−1 . From Lemma 20, it suffices to prove that for all ambiguous graphs

Ga, the probability that Cli(Ga) is a 2-connected component of Hc is on(1). Suppose Ga is an
ambiguous graph. Let P be the set of hypergraphs h such that Proj(h) = Ga. Then,

Pr[Cli(Ga) is a two-connected component of Hc] ≤
∑
h∈P

Pr[h ⊂ H]. (12)

Suppose h ∈ P . Using Theorem 23 gives that

δ <
2d− 4

2d− 1
≤ d− 1− 1

m(h)
.

Then, Lemma 22 implies that Pr[h ⊂ H] = on(1). Using (12) finishes the proof.

Corollary 44 Suppose d ≥ 5. If δ < d−1
d+1 then the probability of exact recovery is 1− on(1).

Proof Since 2d−4
2d−1 ≥ d−1

d+1 when d ≥ 5, we can prove this theorem using the same argument as the
proof of Corollary 43. The only difference is in the application of Theorem 23. We have that using
the theorem gives that if h ∈ P , then

δ <
d− 1

d+ 1
≤ 2d− 4

2d− 1
≤ d− 1− 1

m(h)
,

so Lemma 22 implies that Pr[h ⊂ H] = on(1).

Remark 45 It suffices to the weaker result Lemma 49 rather than Theorem 23 in the proof of Corol-
lary 44. Using the lemma gives that if h ∈ P , then

δ <
d− 1

d+ 1
≤ d− 1− 1

m(h)
,

and similarly Lemma 22 implies that Pr[h ⊂ H] = on(1).

Next we address the upper bound of the exact recovery threshold. Observe that it suffices to
prove that if δ > min(d−1

d+1 ,
2d−4
2d−1), then the probability of exact recovery is on(1). From Theorem 1,

the partial recovery loss is on(1) if δ > d−1
d+1 , which implies that the probability of exact recovery is

on(1) in this regime. Proving the following result completes the proof of Theorem 3.

Theorem 46 Suppose d ≥ 3. If δ = 2d−4
2d−1 then the probability of exact recovery is 1− Ωn(1) and

if δ > 2d−4
2d−1 then the probability of exact recovery is on(1).

Remark 47 The case where δ ≥ 2d−4
2d−1 implies exact recovery having 1 − Ωn(1) probability has

been proved in (Bresler et al., 2024, Appendix A) for 3 ≤ d ≤ 5 using two-connected components.
Furthermore, when d ≥ 5 the probability of exact recovery is on(1) if δ > 2d−4

2d−1 ≥ d−1
d+1 from Theo-

rem 1. Hence the main contribution of this result is proving that the probability of exact recovery is
on(1) if δ > 2d−4

2d−1 and d = 3, 4.

34



PARTIAL AND EXACT RECOVERY OF A RANDOM HYPERGRAPH

Proof [Proof of Theorem 46] Suppose δ ≥ 2d−4
2d−1 . It suffices to prove that A∗ fails with probability

Ωn(1) and 1− on(1) if δ > 2d−4
2d−1 .

We consider a graph that is Ga,d repeated over many two-connected components. Suppose
m ≥ 1 and h is a d-uniform hypergraph with vertex set V . Suppose V =

⊔m
i=1 Vi. For 1 ≤ i ≤ m

suppose
Vi = {vij : 1 ≤ j ≤ d+ 1}

⊔
1≤j≤d−1

S1;i
j

⊔
1≤j≤d−1

S2;i
j ,

where |S1;i
j | = |S2;i

j | = d − 2 for 1 ≤ j ≤ d − 1. Furthermore, suppose that for 1 ≤ i ≤ m the
hyperedges of the subgraph of h induced by Vi are {vi1, . . . , vid}, {vid, vij , S

1;i
j } for j ∈ [d− 1], and

{vid+1, v
i
j , S

2;i
j } for j ∈ [d− 1]. Additionally assume that h has no other hyperedges.

We have that
Pr[A∗(Ψ) ̸= H|h ⊂ H,H is not minimal] = 1.

For all G ∈ {0, 1}(
[n]
2 ), let S(G) be the set of hypergraphs H such that Proj(H) = G, h ⊂ H ,

and H is minimal. Let G∗ be the set of G such that |S(G)| ≥ 1.
Suppose G ∈ G∗. Suppose H ∈ S(G). For 1 ≤ i ≤ m, let H i be the hypergraph obtained from

H after the hyperedge for {vi1, . . . , vid} is removed and the hyperedge for {vi1, . . . , vid−1, v
i
d+1} is

added. Note that H and H i are distinct elements of S(G) for 1 ≤ i ≤ m so |S(G)| ≥ m+ 1.
Furthermore, for all G ∈ G∗, let P (G) be Pr[H = H] for a hypergraph H such that Proj(H) =

G and H is minimal. We have that

Pr[h ⊂ H,H is minimal] =
∑

h⊂H,H is minimal

Pr[H = H] =
∑
G∈G∗

∑
H∈S(G)

Pr[H = H]

=
∑
G∈G∗

P (G)|S(G)|.

Furthermore,

Pr[A∗(Ψ) = H, h ⊂ H,H is minimal] =
∑
G∈G∗

∑
H∈S(G)

Pr[A(Ψ) = H,H = H].

Suppose G ∈ G∗. We have that∑
H∈S(G)

Pr[A∗(Ψ) = H,H = H] =
∑

H∈S(G)

Pr[A∗(Ψ) = H|H = H] Pr[H = H]

= P (G)
∑

Proj(H)=G,h⊂H,
H is minimal

Pr[A∗(Ψ) = H|Ψ = G]

≤ P (G).

Therefore,
Pr[A∗(Ψ) = H, h ⊂ H,H is minimal] ≤

∑
G∈G∗

P (G).

Since |S(G)| ≥ m for all G ∈ G∗,

Pr[A∗(Ψ) = H, h ⊂ H,H is minimal] ≤
∑
G∈G∗

P (G) ≤ 1

m+ 1

∑
G∈G∗

P (G)|S(G)|
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=
1

m+ 1
Pr[h ⊂ H,H is minimal].

It follows that

Pr[A∗(Ψ) ̸= H, h ⊂ H,H is minimal] ≥ m

m+ 1
Pr[h ⊂ H,H is minimal].

Thus,

Pr[A∗(Ψ) ̸= H] ≥Pr[A∗(Ψ) ̸= H, h ⊂ H,H is not minimal]

+ Pr[A∗(Ψ) ̸= H, h ⊂ H,H is minimal]

≥Pr[h ⊂ H,H is not minimal] +
m

m+ 1
Pr[h ⊂ H,H is minimal]

≥ m

m+ 1
Pr[h ⊂ H].

Because
− 1

m(h)
= −d+ 1 +

2d− 4

2d− 1
≤ −d+ 1 + δ,

Pr[h ⊂ H] = Ω(1) so Pr[A∗(Ψ) ̸= H] = Ω(1). Assume that δ > 2d−4
2d−1 . Then, − 1

m(h) < −d+1+δ

so Pr[h ⊂ H] = 1− on(1). It follows that for all m ≥ 1,

Pr[A∗(Ψ) ̸= H] ≥ m

m+ 1
(1− on(1)).

Therefore Pr[A∗(Ψ) ̸= H] = 1− on(1).

D.2. Proof of Theorem 4

Observe that the probability of weighted exact recovery being on(1) if δ > d−1
d+1 follows from the

weighted partial recovery loss being 1− on(1) if δ > d−1
d+1 by Theorem 2. Thus it suffices to prove

that the probability of weighted exact recovery is 1− on(1) if δ < d−1
d+1 .

First note that the analog of Lemma 20 is true with projections replaced by weighted projections.
Afterwards we can use Theorem 55 and the same argument as the proof of Corollary 43.

Appendix E. Ambiguous graph results

The goal of this section is to prove combinatorial results that will eventually justify upper bounds of
the thresholds for exact recovery. We apply these results in Appendix D to prove Theorems 3 and 4.

E.1. Proof of Lemma 24

Assume that
(d− 1)|Eh| − |U |+ |P|

|Eh|+ |P|
≥ γ.

For all i ∈ I , let xi = |i∩U |. Let Z be the set of i ∈ I such that xi ≤ 1. Let V be the set of vertices
in U or some hyperedge in I\Z; that is, V = U

⋃
i∈I\Z i. Suppose h′ is the subgraph of h that is

induced by V .
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Start with the vertex set U . The number of vertices is |U |. After adding the hyperedges i ∈ I\Z,
the number of vertices |V | satisfies

|V | ≤ |U |+
∑
i∈I\Z

|i\U | = |U |+
∑
i∈I\Z

(d− xi).

Therefore,

α(h′) ≥ |Eh|+ |I\Z|
|V |

≥ |Eh|+ |I\Z|
|U |+

∑
i∈I\Z(d− xi)

.

Note that

d− 1− 1

m(h)
≥ d− 1− 1

α(h′)

≥ d− 1−
|U |+

∑
i∈I\Z(d− xi)

|Eh|+ |I\Z|

=
(d− 1)|Eh| − |U |+ (d− 1)|I\Z| −

∑
i∈I\Z(d− xi)

|Eh|+ |I\Z|

=
(d− 1)|Eh| − |U | − |I\Z|+

∑
i∈I\Z xi

|Eh|+ |I\Z|
.

Hence, it suffices to prove that

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z xi

|Eh|+ |I\Z|
≥ min(γ, 1).

Next we use the technique from Subsection C.1 to finish the proof. Observe that∑
i∈I\Z

(
xi
2

)
≥ |P|

from the definition of P . For all i ∈ I\Z, let yi =
(
xi
2

)
. Note that

xi =
1 +

√
1 + 8yi
2

for all i ∈ I\Z. Because xi ≥ 2 for all i ∈ I\Z, 1 ≤ yi ≤
(
d
2

)
for all i ∈ I\Z. We have that

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z xi

|Eh|+ |I\Z|

≥ min
1≤yi≤(d2), i∈I\Z,∑

i∈I\Z yi≥|P|

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z
1+

√
1+8yi
2

|Eh|+ |I\Z|
.

Hence, it suffices to prove that

min
1≤yi≤(d2), i∈I\Z,∑

i∈I\Z yi≥|P|

(d− 1)|Eh| − |U | − |I\Z|+
∑

i∈I\Z
1+

√
1+8yi
2

|Eh|+ |I\Z|
≥ min(γ, 1).
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Assume that M = |I\Z| and replace I\Z with {1, . . . ,M}, for simplicity. Furthermore, let
RM = {(yi)1≤i≤M : 1 ≤ yi ≤

(
d
2

)
, 1 ≤ i ≤ M,

∑M
i=1 yi ≥ |P|} for M ≥ 1.

Case 1: M = 0
If M = 0, then |P| = 0, so

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
=

(d− 1)|Eh| − |U |
|Eh|

=
(d− 1)|Eh| − |U |+ |P|

|Eh|+ |P|
≥ γ.

Case 2: 1 ≤ M ≤ |P|
Suppose 1 ≤ M ≤ |P|. Observe that

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M

is concave in (yi)1≤i≤M , so the function is minimized over RM at a vertex.
At the vertex, M − 1 of the values must be elements of {1,

(
d
2

)
}. Without loss of generality,

assume that yj ∈ {1,
(
d
2

)
} for 1 ≤ j ≤ M − 1. Assume that A of these values equal

(
d
2

)
and

M −A− 1 equal 1. Then, since
∑M

i=1 yi ≥ |P|,

yM − 1 +A

((
d

2

)
− 1

)
≥ |P| −M ⇒ (d− 2)A+

2(yM − 1)

d+ 1
≥ 2(P −M)

d+ 1
. (13)

Furthermore,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M

=
(d− 1)|Eh| − |U | −M +Ad+ 2M − 2A− 2 + 1+

√
1+8yM
2

|Eh|+M

=
(d− 1)|Eh| − |U |+ |P| − (|P| −M) +Ad− 2A+ −3+

√
1+8yM
2

|Eh|+ |P| − (|P| −M)
.

Let X = (d−1)|Eh|−|U |+|P|, Y = |Eh|+|P|, W = |P|−M , and ∆ = Ad−2A+ −3+
√
1+8yM
2 .

Then,
(d− 1)|Eh| − |U | −M +

∑M
i=1

1+
√
1+8yi
2

|Eh|+M
=

X −W +∆

Y −W
,

and we know that X
Y ≥ γ ≥ d−1

d+1 . Observe that

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
− X

Y
=

W (X − Y ) + ∆Y

(Y −W )Y
=

W (X−Y
Y ) + ∆

Y −W
.

Because X−Y
Y ≥ γ − 1 ≥ − 2

d+1 ,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
− X

Y
≥

∆− 2W
d+1

Y −W
.

38
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The goal is to prove that (d−1)|Eh|−|U |−M+
∑M

i=1

1+
√

1+8yi
2

|Eh|+M ≥ X
Y . For this, it suffices to prove that

∆ ≥ 2W
d+1 .

Since ∆ = (d − 2)A + −3+
√
1+8yM
2 , in order to prove that ∆ ≥ 2W

d+1 , using (13) gives that it
suffices to prove that

−3 +
√
1 + 8yM
2

≥ 2(yM − 1)

d+ 1
,

where 1 ≤ yM ≤
(
d
2

)
. We have that f(x) = −3+

√
1+8x

2 − 2(x−1)
d+1 is concave, so f(x) is minimized

over the interval [1,
(
d
2

)
] at its endpoints. Since f(1) = f(

(
d
2

)
) = 0, f(x) ≥ 0 over [1,

(
d
2

)
], which

shows that ∆ ≥ 2W
d+1 . Thus,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
≥ X

Y
≥ γ.

Case 3: M > |P|
Next, suppose M > |P|. Then,

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M

is minimized over RM at yi = 1 for 1 ≤ i ≤ M . Therefore, over RM we have that

(d− 1)|Eh| − |U | −M +
∑M

i=1
1+

√
1+8yi
2

|Eh|+M
≥ (d− 1)|Eh| − |U |+M

|Eh|+M

=
(d− 1)|Eh| − |U |+ |P|+ (M − |P|)

|Eh|+ |P|+ (M − |P|)
≥ min(γ, 1).

We are done.

E.2. Lower bounds of m(h) for a nonminimal unweighted preimage h

Suppose G ∈ G has covers h and g (i.e. Proj(h) = Proj(g) = G) such that h ̸= g and e(h) ≥ e(g).
Note that G is not necessarily ambiguous (despite the title of this section) and g is not necessarily
minimal. In this section we derive lower bounds for d− 1− 1

m(h) for d ≥ 4.
Let Eh be the set of hyperedges in h but not g and Eg be the set of hyperedges in g but not h.

Furthermore, let I be the set of hyperedges in both h and g.
Let Eh be the set of edges of Proj(Eh) and Eg be the set of edges of Proj(Eg). Furthermore, let

E be the set of edges of Proj(I).

Lemma 48 The set Eh is a subset of E ∪ Eg and the set Eg is a subset of E ∪ Eg.

Proof Suppose {i, j} ∈ Eh. Then, {i, j} is an edge of Proj(h) = G. Hence, {i, j} is an edge of
Proj(g) = G, which implies that {i, j} ∈ E ∪ Eg.

Let P be the symmetric difference of Eh and Eg. From Lemma 48, P ⊂ E . Let U be the set of
vertices in some hyperedge in Eh ∪ Eg. Observe that for all {a, b} ∈ P , {a, b} ⊂ U and because
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P ⊂ E , there exists i ∈ I such that {a, b} ⊂ i. Hence, Eh, I , U , and P satisfy the conditions of
Lemma 24.

Let Vh be the set of vertices that are in Eh but not Eg, Vg be the set of vertices that are in Eg but
not Eh, and VI be the set of vertices that are in both Eg and Eh. Observe that

U = Vh ⊔ Vg ⊔ VI .

Suppose v ∈ U . Let dh(v) be the number of elements of Eh that contain v and d∗h(v) be the
number of u ∈ U such that {u, v} ∈ Eh\Eg. Similarly, let dg(v) be the number of elements of Eg

that contain v and d∗g(v) be the number of u ∈ U such that {u, v} ∈ Eg\Eh.
Suppose v ∈ VI . Let k(v) be the largest positive integer k such that there exists ih ∈ Eh and

ig ∈ Eg such that v ∈ ih, ig and |ih\ig| = |ig\ih| = k. Assume that ih ∈ Eh and ig ∈ Eg satisfy
v ∈ ih, ig and |ih\ig| = k(v). We have that ih ̸= ig so ih\ig and ig\ih are nonempty. Let ih(v) = ih
and ig(v) = ig. If there are multiple choices for (ih, ig), we can select one choice randomly. Let
nh(v) be the number of w ∈ ih\ig such that {v, w} ∈ Eh\Eg and ng(v) be the number of w ∈ ig\ih
such that {v, w} ∈ Eg\Eh.

The following lemma is implied by Theorem 51. However, we include its proof since its con-
tents motivate later methods.

Lemma 49 Suppose d ≥ 5. Then d− 1− 1
m(h) ≥

d−1
d+1 .

Proof From Lemma 24, it suffices to prove that

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

≥ d− 1

d+ 1
.

Thus, it suffices to prove that

d(d− 1)|Eh|+ 2|P| ≥ (d+ 1)|U |. (14)

We have that

d|Eh| =
∑
v∈U

dh(v) =
∑

v∈Vh∪VI

dh(v) and d|Eg| =
∑

v∈Vg∪VI

dg(v).

Furthermore,
2|P| =

∑
v∈U

d∗h(v) + d∗g(v),

so
2|P| =

∑
v∈Vh

d∗h(v) +
∑
v∈Vg

d∗g(v) +
∑
v∈VI

(d∗h(v) + d∗g(v)). (15)

Suppose v ∈ VI . For simplicty, let ih = ih(v) and ig = ig(v).
Assume that nh(v) = 0. Suppose w ∈ ih\ig. Then, there exists i ∈ Eg such that {u,w} ∈ i

because {u,w} ∈ Eh and {u,w} /∈ Eh\Eg. Because w /∈ ig, i ̸= ig. As v ∈ i, ig, dg(v) ≥ 2.
Assume that nh(v) > 0. Then, there exists w ∈ ih\ig such that {u,w} ∈ Eh\Eg, so d∗h(v) ≥ 1.

Observe that dg(v) ≥ 1 because v ∈ ig.
Hence,

dg(v) ≥ 1 + 1{nh(v) = 0} and d∗h(v) ≥ 1− 1{nh(v) = 0}.
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We similarly have that

dh(v) ≥ 1 + 1{ng(v) = 0} and d∗g(v) ≥ 1− 1{ng(v) = 0}.

Let
Nh =

∑
v∈VI

1{nh(v) = 0} and Ng =
∑
v∈VI

1{ng(v) = 0}.

We have that dh(v) ≥ 1 for all v ∈ Vh and dg(v) ≥ 1 for all v ∈ Vg. Thus,

d|Eh| =
∑

v∈Vh∪VI

dh(v) ≥ |Vh|+
∑
v∈VI

(1 + 1{ng(v) = 0}) ≥ |Vh|+ |VI |+Ng (16)

and similarly,
d|Eg| ≥ |Vg|+ |VI |+Nh. (17)

Adding (16) and (17) gives that

d(|Eh|+ |Eg|) ≥ |Vh|+ |Vg|+
∑
v∈VI

(2 + 1{nh(v) = 0}+ 1{ng(v) = 0})

= |Vh|+ |Vg|+ 2|VI |+Nh +Ng

= |U |+ |VI |+Nh +Ng.

Since |Eh| ≥ |Eg| because g is minimal,

d|Eh| ≥
|U |+ |VI |+Nh +Ng

2
. (18)

Suppose v ∈ Vh. Suppose v ∈ i for i ∈ h. We have that for all w ∈ i such that v ̸= w,
{v, w} ∈ Eh\Eg because v ∈ Vh. Therefore, d∗h(v) ≥ d − 1. Similarly, if v ∈ Vg, d∗g(v) ≥ d − 1.
Hence, (15) gives that

2|P| ≥ (d− 1)|Vh|+ (d− 1)|Vg|+
∑
v∈VI

(2− 1{nh(v) = 0} − 1{ng(v) = 0})

= (d− 1)(|Vh|+ |Vg|) + 2|VI | −Nh −Ng.

(19)

We have that

d(d− 1)|Eh|+ 2|P| ≥ (d− 1)|U |
2

+
(d+ 3)|VI |

2
+ (d− 1)(|Vh|+ |Vg|) +

d− 3

2
(Nh +Ng)

=
(d− 1)|U |

2
+

(d+ 3)|U |
2

+
d− 5

2
(|Vh|+ |Vg|) +

d− 3

2
(Nh +Ng)

= (d+ 1)|U |+ d− 5

2
(|Vh|+ |Vg|) +

d− 3

2
(Nh +Ng)

≥ (d+ 1)|U |.

This proves that (14) is true, which finishes the proof.

Theorem 50 Suppose d = 4. Then, d− 1− 1
m(h) ≥

2d−4
2d−1 = 4

7 .
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Proof For the sake of contradiction, that d−1− 1
m(h) <

4
7 < 3

5 , where d−1
d+1 = 3

5 . From Lemma 24,

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

<
3

5
.

This is equivalent to
12|Eh|+ 2|P| < 5|U |. (20)

For the sake of contradiction, assume that |Vh| = 0. Using (18) gives that

4|Eh| ≥
|U |+ |VI |+Nh +Ng

2

and using (19) gives that

2|P| ≥ 3|Vg|+ 2|VI | −Nh −Ng = 2|U |+ |Vg| −Nh −Ng.

Hence,

12|Eh|+ 2|P| ≥ 12

8
(|U |+ |VI |+Nh +Ng) + 2|U |+ |Vg| −Nh −Ng

=
7

2
|U |+ (|VI |+ |Vg|) +

1

2
(|VI |+Nh +Ng)

=
9

2
|U |+ 1

2
(|VI |+Nh +Ng).

Therefore, (20) implies that

9

2
|U |+ 1

2
(|VI |+Nh +Ng) < 5|U |,

so
|VI |+Nh +Ng < |U |. (21)

Additionally, using (17) gives that,

4|Eh| ≥ 4|Eg| ≥ |Vg|+ |VI |+Nh = |U |+Nh.

We therefore have that

12|Eh|+ 2|P| ≥ 3(|U |+Nh) + 2|U |+ |Vg| −Nh −Ng

= 5|U |+ |Vg|+ 2Nh −Ng.

Thus, (20) gives that

5|U |+ |Vg|+ 2Nh −Ng < 5|U | ⇒ 2Nh + |Vg| < Ng.

Substituting this in (21) implies that

|VI |+ 3Nh + |Vg| < |U |,

which is a contradiction to |U | = |VI |+ |Vg|. Thus, |Vh| > 0.
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Next we prove that m(h) ≥ 1
d−1− 2d−4

2d−1

= 7
17 . Suppose v ∈ Vh. Assume that i ∈ h and v ∈ i.

Suppose i = {v, u1, u2, u3}. Observe that because v ∈ Vh, {v, u1}, {v, u2}, {v, u3} ∈ Eh\Eg.
Hence, each of these edges is contained in an element of I by Lemma 48. Let

I = {{v, u1}, {v, u2}, {v, u3}}.

Step 1: Covering the edges of I
We cannot cover the edges in I with one element of I . Suppose we cover the edges with a, b ∈ I ,

where {v, u1, u2} ⊂ a and {v, u3} ⊂ b without loss of generality. Then, if κ is the subgraph of h
induced by the vertices of a, b, and i, e(κ) ≥ 3 and v(κ) ≤ 7 so

e(κ)

v(κ)
≥ 3

7
>

7

17
.

Hence, m(h) > 7
17 .

Suppose we cover the edges in I with a, b, c ∈ I , where {v, u1} ⊂ a, {v, u2} ⊂ b, and
{v, u3} ⊂ c. Let f(a) = {v, u1}, f(b) = {v, u2}, f(c) = {v, u3}, and f(i) = {v, u1, u2, u3}. For
any two distinct elements x, y ∈ {a, b, c, i}, f(x) ∩ f(y) ⊂ x ∩ y since f(x) ⊂ x and f(y) ⊂ y.
Suppose there exists two distinct elements x, y ∈ {a, b, c, i} such that f(x) ∩ f(y) is a strict subset
of x ∩ y. Then, if κ is the subgraph of h induced by the vertices of a, b, c, and i, then e(κ) ≥ 4 and
v(κ) ≤ 9 so

e(κ)

v(κ)
≥ 4

9
>

7

17
.

Assume that for any two distinct elements x, y ∈ {a, b, c, i}, f(x) ∩ f(y) = x ∩ y. Then, if κ is the
subgraph of h induced by the vertices of a, b, c, and i, e(κ) ≥ 4 and v(κ) = 10.
Step 2: Covering {u1, u2}, {u2, u3}, and {u3, u1}

We have that the edges {u1, u2}, {u2, u3}, and {u3, u1} must be covered by elements of Eg ∪ I
by Lemma 48.

Assume that d ∈ (Eh ∪ I)\{a, b, c, i} and |d ∩ {u1, u2, u3}| ≥ 2. If κ is the subgraph of h
induced by the vertices of a, b, c, d, and i, then

e(κ)

v(κ)
≥ 5

12
>

7

17
.

Next, assume the condition (∗2) that there does not exist d ∈ (Eh ∪ I)\{a, b, c, i} such that
|d ∩ {u1, u2, u3}| ≥ 2. In particular, this implies that the edges {u1, u2}, {u2, u3}, and {u3, u1}
must be covered by elements of Eg.

Let V be the set of vertices of a, b, c, and i; observe that |V| = 10.
Step 2.1: Covering {u1, u2}

Suppose d ∈ Eg and {u1, u2} ⊂ d. The two cases are d ∩ {u1, u2, u3} equals {u1, u2} or
{u1, u2, u3}.
Step 2.1.1: d ∩ {u1, u2, u3} = {u1, u2, u3}

Assume that d ∩ {u1, u2, u3} = {u1, u2, u3}. Suppose d = {w, u1, u2, u3}. By Lemma 48, all
edges in the set

S = {{w, u1}, {w, u2}, {w, u3}}

must be covered by an element of Eh ∩ I .
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Assume that w ∈ V . For the sake of contradiction, assume that all edges in S are covered by an
element of {a, b, c, i}. Then, {w, u1} is covered by some element of {a, b, c, i}. Thus, w ∈ a ∪ i
since u1 /∈ b, c. Since w /∈ i, w ∈ a. Similarly, w ∈ b, c. Hence, w ∈ a ∩ b ∩ c = {v}, which
is a contradiction to d ̸= i. Suppose e ∈ Eh ∪ I is not an element of {a, b, c, i} and covers some
element of S. If κ is the subgraph of h induced by the vertices of a, b, c, e, and i, e(κ) ≥ 5 and
v(κ) ≤ 12 so

e(κ)

v(κ)
≥ 5

12
>

7

17
.

Assume that w /∈ V . Then, no element of S is covered by an element of {a, b, c, i}. By (∗2),
each of the elements of S must be covered by a distinct element of (Eh ∪ I)\{a, b, c, i}, otherwise
two elements of {u1, u2, u3} will be contained in a single element of (Eh ∪ I)\{a, b, c, i}. Hence,
this is the only case that we consider.

Suppose the elements of S can be covered by three elements of (Eh ∪ I)\{a, b, c, i} but not
less than three. Then, there exists e, f, j ∈ Eh ∪ I such that {w, u1} ⊂ e, {w, u2} ⊂ f , and
{w, u3} ⊂ j. If κ is the subgraph of h induced by the vertices a, b, c, e, f , j, and i, e(κ) ≥ 7 and
v(κ) ≤ 17 so

e(κ)

v(κ)
≥ 7

17
.

Step 2.1.2: d ∩ {u1, u2, u3} = {u1, u2}
Suppose d ∩ {u1, u2, u3} = {u1, u2}. Suppose d = {u1, u2, w1, w2}. Observe that the five

edges in the set
S = {{u1, w1}, {u1, w2}, {u2, w1}, {u2, w2}, {w1, w2}}

must be covered by elements of Eh ∪ I by Lemma 48.
Assume that w1, w2 ∈ V . For the sake of contradiction, assume that all edges in S are covered

by some element of {a, b, c, i}. Then, {w1, u1} must be covered by a or i, so w1 ∈ a ∪ i. Also,
{w1, u2} must be covered by b or i, so w1 ∈ b ∪ i. Observe that (a ∪ i) ∩ (b ∪ i) = i, so w1 ∈ i.
Similarly, w2 ∈ i. This is a contradiction to d ̸= i. Thus, some edge in S is not covered by some
element of {a, b, c, i}. This edge must be covered by e ∈ Eh ∪ I . Note that because d ⊂ V and
|d ∩ e| ≥ 2, |e\V| ≤ 2. Then, if κ is the subgraph of h induced by the vertices of a, b, c, e, and i,
e(κ) ≥ 5 and v(κ) ≤ 12 so

e(κ)

v(κ)
≥ 5

12
>

7

17
.

Assume that |{w1, w2} ∩ V| = 1. Without loss of generality, assume that w1 ∈ V and w2 /∈ V .
We have that the edges {w2, w1}, {w2, u1}, and {w2, u2} in S are not covered by elements of
{a, b, c, i}. Let

Q = {{w2, w1}, {w2, u1}, {w2, u2}}.

The cases that we must consider are that the elements of Q are covered by two or three elements of
Eh ∪ I . By (∗2), they cannot be covered by one element of Eh ∪ I .

Suppose the elements of Q can be covered by two elements of Eh∪I . There exists e, f ∈ Eh∪I
such that w2 ∈ e, f and {w1, u1, u2} ⊂ e ∪ f . Suppose e, f ∈ Eh ∪ I such that {w2, w1, u1} ⊂ e
and {w2, u2} ⊂ f , without loss of generality; note that the vertices {w1, u1, u2} can be considered
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to be equivalent for the purposes of this computation. If κ is the subgraph of h induced by the
vertices of a, b, c, e, f , and i, e(κ) ≥ 6 and v(κ) ≤ 14 so

e(κ)

v(κ)
≥ 6

14
>

7

17
.

Suppose the elements of Q can be covered by three elements of Eh ∪ I but not less than three
elements. Then, there exists e, f, j ∈ Eh ∪ I such that {w2, u1} ⊂ e and {w2, u2} ⊂ f , and
{w2, w1} ⊂ j. Assume that e, f , and j satisfy this condition. If κ is the subgraph of h induced by
the vertices of a, b, c, e, f , j, and i, e(κ) ≥ 7 and v(κ) ≤ 17 so

e(κ)

v(κ)
≥ 7

17
.

Next, assume that w1, w2 /∈ V . Then, none of the elements of S are covered by elements of
{a, b, c, i}. The cases we consider are when the elements of S are covered by at least 2 and at most 5
elements of Eh ∪ I . Furthermore, recall that there does not exist an element of (Eh ∪ I)\{a, b, c, i}
that contains {u1, u2} by (∗2).

Suppose the elements of S can be covered by two elements of Eh∪I . There exists e, f ∈ Eh∪I
such that {w1, w2, u1} ⊂ e and {w1, w2, u2} ⊂ f . Assume that e and f satisfy this condition. If κ
is the subgraph of h induced by the vertices of a, b, c, e, f , and i, then e(κ) ≥ 6 and v(κ) ≤ 14 so

e(κ)

v(κ)
≥ 6

14
>

7

17
.

Suppose the elements of S can be covered by three elements of Eh ∪ I but not less than three
elements. Then, there exists e, f, j ∈ Eh ∪ I such that either {w1, w2, u1} ⊂ e, {w1, u2} ⊂ f ,
and {w2, u2} ⊂ j or {w1, w2, u2} ⊂ e, {w1, u1} ⊂ f , and {w2, u1} ⊂ j. Without loss of
generality, suppose e, f, j ∈ Eh ∪ I satisfy the condition that {w1, w2, u1} ⊂ e, {w1, u2} ⊂ f ,
and {w2, u2} ⊂ j. If κ is the subgraph of h induced by the vertices of a, b, c, e, f , j, and i, then
e(κ) ≥ 7 and v(κ) ≤ 17 so

e(κ)

v(κ)
≥ 7

17
.

Next, suppose the elements of S can be covered by four elements of Eh ∪ I but not less than
four elements. Suppose e, f, j, k ∈ Eh ∪ I cover the elements of S. Since |S| = 5, at least one
of e, f, j, k must contain three elements of {u1, u2, w1, w2}. Without loss of generality, suppose e
satisfies this condition. Since e cannot contain {u1, u2}, suppose {w1, w2, u1} ⊂ e, without loss
of generality. The uncovered edges of S are {w1, u2} and {w2, u2}. There exists two elements
of {f, j, k} that covers both of these edges, so the elements of S can be covered by at most three
elements, which is a contradiction.

Suppose the elements of S are covered by five elements of Eh ∪ I but not less than five
elements. Suppose e, f, j, k, l ∈ Eh ∪ I and {u1, w1} ⊂ e, {u1, w2} ⊂ f , {u2, w1} ⊂ j,
{u2, w2} ⊂ k, and {w1, w2} ⊂ l. Let f(e) = {u1, w1}, f(f) = {u1, w2}, f(j) = {u2, w1},
f(k) = {u2, w2}, and f(l) = {w1, w2}. For any two distinct elements x, y ∈ {a, b, c, e, f, j, k, l, i},
f(x) ∩ f(y) ⊂ x ∩ y since f(x) ⊂ x and f(y) ⊂ y. Suppose there exists two distinct elements
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x, y ∈ {a, b, c, e, f, j, k, l, i} such that f(x) ∩ f(y) is a strict subset of x ∩ y. Then, if κ is the
subgraph of h induced by the vertices of a, b, c, e, f , j, k, l, and i, then e(κ) ≥ 9 and v(κ) ≤ 21 so

e(κ)

v(κ)
≥ 9

21
>

7

17
.

Assume that for any two distinct elements x, y ∈ {a, b, c, e, f, j, k, l, i}, f(x)∩f(y) = x∩y. Then, if
κ is the subgraph of h induced by the vertices of a, b, c, e, f , j, k, l, and i, e(κ) ≥ 9 and v(κ) = 22.
Step 2.2: Covering {u3, u1}

There exists d′ ∈ Eg such that {u3, u1} ⊂ d′. Assume that d′ ∩ {u1, u2, u3} = {u3, u1}; we
have already considered the case d′ ∩ {u1, u2, u3} = {u1, u2, u3} in the case d ∩ {u1, u2, u3} =
{u1, u2, u3}. Suppose d′ = {u3, u1, w′

1, w
′
2}. By symmetry, we have that the only case we must

consider is if w′
1, w

′
2 /∈ V and the edges in the set

{{u3, w′
1}, {u3, w′

2}, {u1, w′
1}, {u1, w′

2}, {w′
1, w

′
2}}

are covered by five elements e′, f ′, j′, k′, and l′ of Eh ∩ I . Suppose {u3, w′
1} ⊂ e′, {u3, w′

2} ⊂ f ′,
{u1, w′

1} ⊂ j′, {u1, w′
2} ⊂ k′, and {w′

1, w
′
2} ⊂ l′. Let f(e′) = {u3, w′

1}, f(f ′) = {u3, w′
2},

f(j′) = {u1, w′
1}, f(k′) = {u1, w′

2}, and f(l′) = {w′
1, w

′
2}. By symmetry, we may further assume

that for any two distinct elements x, y ∈ {a, b, c, e′, f ′, j′, k′, l′, i}, f(x) ∩ f(y) = x ∩ y.
Let V ′ be the set of vertices of elements of {a, b, c, e, f, j, k, l, i}; observe that |V ′| = 22.
Suppose w′

1, w
′
2 ∈ V ′\V . Note that the edges {w′

1, u3} and {w′
2, u3} are not covered by any

element of {e, f, j, k, l} since no element of {e, f, j, k, l} contains u3. Because, w′
1, w

′
2 /∈ V ,

{w′
1, u3} and {w′

2, u3} are not covered by any element of {a, b, c, i}. Since {w′
1, u3} is covered

by e′ and {w′
2, u3} is covered by f ′, we have that e′, f ′ /∈ {a, b, c, e, f, j, k, l, i}. Then, if κ is the

subgraph of h induced by the vertices of a, b, c, e, e′, f , f ′, j, k, l, and i, e(κ) ≥ 11 and v(κ) ≤ 26
so

e(κ)

v(κ)
≥ 11

26
>

7

17
.

Assume that |{w′
1, w

′
2} ∩ V ′\V| = 1. Without loss of generality, assume that w′

1 ∈ V ′\V and
w′
2 /∈ V ′. Using the argument from the previous case gives that {w′

1, u3} is not covered by any
element of {a, b, c, e, f, j, k, l, i}, so e′ /∈ {a, b, c, e, f, j, k, l, i}. Because w′

2 /∈ V ′, any element
of {e′, f ′, j′, k′, l′} that contains w′

2 is not an element of {a, b, c, e, f, j, k, l, i}. Thus, f ′, k′, l′ /∈
{a, b, c, e, f, j, k, l, i}. Then, if κ is the subgraph of h induced by the vertices of a, b, c, e, e′, f , f ′,
j, k, k′, l, l′, and i, e(κ) ≥ 13 and v(κ) ≤ 31 so

e(κ)

v(κ)
≥ 13

31
>

7

17
.

Assume that w′
1, w

′
2 /∈ V ′. Then, e′, f ′, j′, k′, l′ /∈ {a, b, c, e, f, j, k, l, i}. Thus, if κ is the

subgraph of h induced by the vertices of a, b, c, e, e′, f , f ′, j, j′, k, k′, l, l′, and i, e(κ) ≥ 14 and
v(κ) ≤ 34 so

e(κ)

v(κ)
≥ 14

34
=

7

17
.

This proves that m(h) ≥ 7
17 .
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Theorem 51 Suppose d ≥ 5. Then, d− 1− 1
m(h) ≥

2d−4
2d−1 .

Proof For the sake of contradiction, assume that d − 1 − 1
m(h) < 2d−4

2d−1 . Let γ = 2d−4
2d−1 . We must

have that d− 1− 1
m(h) < γ. Because γ ≥ d−1

d+1 , Lemma 24 gives that

(d− 1)|Eh| − |U |+ |P|
|Eh|+ |P|

< γ.

This is equivalent to
(d− 1− γ)|Eh|+ (1− γ)|P| < |U |.

Observe that
|Eh| ≥

1

2d
(|Vh|+ |Vg|+

∑
v∈VI

(dh(v) + dg(v)))

and from (15),

|P| ≥ 1

2
((d− 1)(|Vh|+ |Vg|) +

∑
v∈VI

(d∗h(v) + d∗g(v))).

Hence,

d− 1− γ

2d
(|Vh|+ |Vg|+

∑
v∈VI

(dh(v) + dg(v)))

+
1− γ

2
((d− 1)(|Vh|+ |Vg|) +

∑
v∈VI

(d∗h(v) + d∗g(v))) < |U |.

For v ∈ VI , let

f(v) =
d− 1− γ

2d
(dh(v) + dg(v)) +

1− γ

2
(d∗h(v) + d∗g(v)).

We have that (
d− 1− γ

2d
+

(d− 1)(1− γ)

2

)
(|Vh|+ |Vg|) +

∑
v∈VI

f(v) < |U |. (22)

Lemma 52 Suppose v ∈ VI . If nh(v) < k(v) then dg(v) > 1 and if ng(v) < k(v) then dh(v) > 1.

Proof Suppose v ∈ VI , ig = ig(v), and ih = ih(v). Assume that nh(v) < k(v); the case ng(v) <
k(v) follows similarly. Then, there exists w ∈ ih\ig such that {v, w} ∈ Eh and {v, w} /∈ Eh\Eg.
Assume that w satisfies this condition. Then, there exists i ∈ Eg such that i ̸= ig and {v, w} ⊂ i,
so dg(v) ≥ 2.

Let V be the set of v ∈ VI such that:

1. dh(v) = dg(v) = 1.

2. k(v) = nh(v) = ng(v) = 1.
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Observe that if v ∈ V , ih(v) and ig(v) are deterministic since dh(v) = 1 and dg(v) = 1, respec-
tively. Furthermore, the formulation of V corresponds to the ambiguous graph Ga,d from Bresler
et al. (2024). For the sake of contradiction, assume the condition (∗3) that there does not exist
ih ∈ Eh and ig ∈ Eg such that |ih\ig| = 1 and ih ∩ ig ⊂ V .

Suppose v ∈ V . Since dh(v) = dg(v) = 1, d∗h(v) ≥ nh(v) = 1, and d∗g(v) ≥ ng(v) = 1,

f(v) ≥ d− 1− γ

d
+ (1− γ). (23)

Let C = d−1−γ
d + (1− γ).

Suppose v ∈ VI\V . If nh(v) < k(v) or ng(v) < k(v), then using Lemma 52 gives that

f(v) ≥ C +
d− 1− γ

2d
− 1− γ

2
.

If k(v) = nh(v) = ng(v) > 1, then,

f(v) ≥ C + (1− γ).

If dh(v) > 1 or dg(v) > 1 and k(v) = nh(v) = ng(v) = 1, then

f(v) ≥ C +
d− 1− γ

2d
.

Suppose β ∈ R such that d−1−γ
d ≥ (1+2β)(1−γ) and 0 ≤ β ≤ 1. Then, since d−1−γ

2d − 1−γ
2 ≥

β(1− γ) and β ≤ 1,

f(v) ≥ C + β(1− γ) =
d− 1− γ

d
+ (1 + β)(1− γ). (24)

Note that d−1−γ
d ≥ (1 + 2β)(1− γ) if and only if

β ≤ 1

2

(
d− 1− γ

d(1− γ)
− 1

)
=

1

2

(
2d

3
− 8

3
+

5

3d

)
. (25)

Let A be the set of v ∈ VI such that dh(v) + dg(v) ≥ 3 and there exists ih ∈ Eh and ig ∈ Eg

such that v ∈ ih ∩ ig and |ih\ig| = 1. Let S be the set of v ∈ A such that dh(v) + dg(v) = 3 and
T be the set of v ∈ A such that dh(v) + dg(v) > 3.

Let V∗ be the set of v ∈ V such that ih(v)∩ ig(v)∩S is nonempty. Furthermore, let V∗∗ be the
set of v ∈ V such that ih(v) ∩ ig(v) ∩ T is nonempty.

Suppose v ∈ V . By (∗3), there exists u ∈ ih(v)∩ ig(v) such that u /∈ V . Assume that u satisfies
this condition. We have that there exists i ∈ Eh∪Eg\{ih(v), ig(v)} such that u ∈ i because u /∈ V ,
so dg(u) + dh(u) ≥ 3 and u ∈ A. This implies that V∗ ∪ V∗∗ = V .

Lemma 53 (d− 1)(
∑

v∈S dh(v) + dg(v)) ≥ 3|V∗|.

Proof Suppose v ∈ S . Without loss of generality, assume that dh(v) = 2 and dg(v) = 1. Suppose
i1h, i

2
h ∈ Eh, i1h ̸= i2h, ig ∈ Eg, |i1h\ig| = 1, and v ∈ i1h ∩ i2h ∩ ig. Let

s(v) = ((i1h ∩ ig) ∪ (i2h ∩ ig)) ∩ V∗.
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Note that s(v) ⊂ ig\{v} so |s(v)| ≤ d− 1. Hence,

(d− 1)(dh(v) + dg(v)) = 3(d− 1) ≥ 3|s(v)|.

This implies that
(d− 1)

∑
v∈S

(dh(v) + dg(v)) ≥ 3
∑
v∈S

|s(v)|.

Suppose u ∈ V∗ and suppose v ∈ ih(u) ∩ ig(u) ∩ S; note that ih(u) ∩ ig(u) ∩ S is nonempty
by the definition of V∗. We have that u ∈ s(v). Hence, V∗ ⊂

⋃
v∈S s(v) so |V∗| ≤

∑
v∈S |s(v)|.

This finishes the proof.

Lemma 54 (d− 1)(
∑

v∈T dh(v) + dg(v)) ≥ 2|V∗∗|.

Proof Suppose v ∈ T . Define

t(v) =


⋃

ih∈Eh,ig∈Eg ,
v∈ih∩ig ,
|ih\ig |=1

(ih ∩ ig)

 ∩ V∗∗.

Suppose ih ∈ Eh and v ∈ ih. Note that ih ∩ t(v) ⊂ ih\{v} so |ih ∩ t(v)| ≤ d− 1. We have that

|t(v)| ≤
∑

ih∈Eh:v∈ih

|ih ∩ t(v)| ≤ (d− 1)dh(v).

Similarly, |t(v)| ≤ (d− 1)dg(v). Hence,

(d− 1)(dh(v) + dg(v)) ≥ 2|t(v)|.

We then have that
(d− 1)

∑
v∈T

(dh(v) + dg(v)) ≥ 2
∑
v∈T

|t(v)|.

Suppose u ∈ V∗∗. We have that ih(u) ∩ ig(u) ∩ T is nonempty by the definition of V∗∗. If
v ∈ ih(u) ∩ ig(u) ∩ T then u ∈ t(v). Hence, V∗∗ ⊂

⋃
v∈T t(v), so |V∗∗| ≤

∑
v∈T |t(v)|. We are

done.

Observe that (22) implies that

(−d− 1− γ

2d
+

(d− 1)(1− γ)

2
)(|Vh|+ |Vg|) +

∑
v∈VI

(f(v)− d− 1− γ

d
) <

1 + γ

d
|U |.

Note that −d−1−γ
2d + (d−1)(1−γ)

2 ≥ 1+γ
d , so

1 + γ

d
(|Vh|+ |Vg|) +

∑
v∈VI

(f(v)− d− 1− γ

d
) <

1 + γ

d
|U |.
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This implies that ∑
v∈VI

(f(v)− d− 1− γ

d
) <

1 + γ

d
|VI |. (26)

If v ∈ V , then (23) gives that

f(v)− d− 1− γ

d
≥ 1− γ.

Hence, using (24) gives that∑
v∈VI

(f(v)− d− 1− γ

d
)

≥ (1− γ)|V|+
∑

v∈S∪T
(f(v)− d− 1− γ

d
) +

∑
v∈VI\(V∪S∪T )

(f(v)− d− 1− γ

d
)

≥ (1− γ)|V|+
∑

v∈S∪T
(f(v)− d− 1− γ

d
) + (|VI | − |V| − |S ∪ T |)(1 + β)(1− γ)

= (1− γ)|V|+
∑

v∈S∪T
(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) + (|VI | − |V|)(1 + β)(1− γ).

(27)

Suppose v ∈ S. Then,

d− 1− γ

2d
(dh(v) + dg(v)) ≥ 3

d− 1− γ

2d
.

Without loss of generality, assume that dh(v) = 2 and dg(v) = 1. Suppose ih ∈ Eh, ig ∈ Eg, and
v ∈ ih ∩ ig. Observe that for all w ∈ ih\ig, {w, v} ∈ Eh\Eg since dg(v) = 1. Since |ih\ig| ≥ 1,
d∗h(v) ≥ 1. Similarly, if dh(v) = 1 and dg(v) = 2, d∗g(v) ≥ 1. It follows that

d∗h(v) + d∗g(v) ≥ 1.

Hence, ∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥ |S| · (d− 1− γ

2d
− (

1

2
+ β)(1− γ)).

Furthermore, using Lemma 53 gives that∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ))

≥ d− 1− γ

2d

∑
v∈S

(dh(v) + dg(v))− (
d− 1− γ

d
+ (

1

2
+ β)(1− γ))|S|

≥ d− 1− γ

2d
· 3|V

∗|
d− 1

− (
d− 1− γ

d
+ (

1

2
+ β)(1− γ))|S|.
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Next, we consider a linear combination of these two inequalities. If

c∗ =
d−1−γ

2d − (12 + β)(1− γ)(
d−1−γ

2d − (12 + β)(1− γ)
)
+
(
d−1−γ

d + (12 + β)(1− γ)
) =

d−1−γ
2d − (12 + β)(1− γ)

3d−1−γ
2d

,

then ∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ))

≥ (1− c∗)|S| · (d− 1− γ

2d
− (

1

2
+ β)(1− γ))

+ c∗(
d− 1− γ

2d
· 3|V

∗|
d− 1

− (
d− 1− γ

d
+ (

1

2
+ β)(1− γ))|S|)

= (
d− 1− γ

2d(d− 1)
−

(12 + β)(1− γ)

d− 1
)|V∗|.

Observe that c∗ ≥ 0 because d−1−γ
d ≥ (1 + 2β)(1− γ).

Suppose v ∈ T . Then,

f(v) ≥ 2
d− 1− γ

d
.

Hence, ∑
v∈T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥ |T | · (d− 1− γ

d
− (1 + β)(1− γ)).

Furthermore, using Lemma 54 gives that∑
v∈T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ))

≥ d− 1− γ

2d

∑
v∈T

(dh(v) + dg(v))− (
d− 1− γ

d
+ (1 + β)(1− γ))|T |

≥ d− 1− γ

d
· |V

∗∗|
d− 1

− (
d− 1− γ

d
+ (1 + β)(1− γ))|T |.

Next, we consider a linear combination of these two inequalities. If

c∗∗ =
d−1−γ

d − (1 + β)(1− γ)(
d−1−γ

d − (1 + β)(1− γ)
)
+
(
d−1−γ

d + (1 + β)(1− γ)
) =

d−1−γ
d − (1 + β)(1− γ)

2d−1−γ
d

,

then∑
v∈S

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥ (1− c∗∗)|T | · (d− 1− γ

d
− (1 + β)(1− γ))

+ c∗∗(
d− 1− γ

d
· |V

∗∗|
d− 1

− (
d− 1− γ

d
+ (1 + β)(1− γ))|T |)
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= (
d− 1− γ

2d(d− 1)
− (1 + β)(1− γ)

2(d− 1)
)|V∗∗|.

Similarly, c∗∗ ≥ 0 because d−1−γ
d ≥ (1 + β)(1− γ).

Let β∗ = 1
2 + β. Because d−1−γ

d ≥ (1 + 2β)(1 − γ), d−1−γ
d ≥ 2β∗(1 − γ). Furthermore,

1
2 + β ≥ 1+β

2 since β ≥ 0. It follows that∑
v∈S∪T

(f(v)− d− 1− γ

d
− (1 + β)(1− γ)) ≥(

d− 1− γ

2d(d− 1)
− (

1

2
+ β)

1− γ

d− 1
)|V∗|

+ (
d− 1− γ

2d(d− 1)
− (1 + β)(1− γ)

2(d− 1)
)|V∗∗|

≥(
d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
)(|V∗|+ |V∗∗|)

≥(
d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
)|V|.

Using this inequality and (27) gives that∑
v∈VI

(f(v)− d− 1− γ

d
) ≥ (1− γ +

d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
)|V|+ (|VI | − |V|)(1 + β)(1− γ).

Afterwards, (26) implies that

(1− γ +
d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
)|V|+ (|VI | − |V|)(1 + β)(1− γ) <

1 + γ

d
|VI |.

From (25), we can set β to be 1
3 . Let β = 1

3 and β∗ = 1
2 + β = 5

6 . Furthermore, let

ℓ(x) = (1− γ +
d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
)x+ (|VI | − x)(1 + β)(1− γ).

We have that ℓ(|V|) < 1+γ
d |VI |. Note that ℓ is a linear function and 0 ≤ |V| ≤ |VI |. Then,

ℓ(|V|) < 1+γ
d |VI | implies that min(ℓ(0), ℓ(|VI |)) < 1+γ

d |VI |.
First, observe that

ℓ(0)− 1 + γ

d
|VI | = ((1 + β)(1− γ)− 1 + γ

d
)|VI | =

1

2d− 1
(3(1 + β)− 4d− 5

d
)|VI |.

Since
3(1 + β)− 4d− 5

d
=

5

d
> 0,

ℓ(0) ≥ 1+γ
d |VI |.

Furthermore,

ℓ(|VI |) = (1− γ +
d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
)|VI |.

We have that

1− γ +
d− 1− γ

2d(d− 1)
− β∗ 1− γ

d− 1
− 1 + γ

d
=

7d− 5− 6β∗d

2d(d− 1)(2d− 1)
.
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Since β∗ = 5
6 ,

7d− 5− 6dβ∗ = 2d− 5 > 0.

Thus, ℓ(|VI |) ≥ 1+γ
d |VI |. This is a contradiction to min(ℓ(0), ℓ(|VI |)) < 1+γ

d |VI |.
Therefore, there exists ih ∈ Eh and ig ∈ Eg such that |ih\ig| = 1 and ih ∩ ig ⊂ V . Assume

that ih and ig satisfy this condition. Suppose ih = (ih ∩ ig) ∪ {vh} and ig = (ih ∩ ig) ∪ {vg}.
Because ih ∩ ig ⊂ V , dh(v) = dg(v) = 1 for all v ∈ ih ∩ ig, which implies that {vh, v} ∈ Eh\Eg
and {vg, v} ∈ Eg\Eh for all v ∈ ih ∩ ig.

Let E′
h = {ih}, E′

g = {ig}, U ′ = ih ∪ ig, and P ′ = {{vh, v} : v ∈ ih ∩ ig} ∪ {{vg, v} : v ∈
ih ∩ ig}. Let I ′ be the set of i ∈ I such that there exists e ∈ P ′ such that e ⊂ i′. Because P ′ ⊂ P ,
each edge in P ′ is contained in some element of I ′. Let V ′ be the set of vertices in ih, ig, or some
hyperedge in I ′. Let h′ be the subgraph of h induced by V ′. Furthermore, let h′′ be the graph with
vertex set V ′ and edge set E′

h ∪ I ′. We have that

d− 1− 1

m(h)
≥ d− 1− 1

α(h′)
≥ d− 1− 1

α(h′′)

so it suffices to prove that

d− 1− 1

α(h′′)
≥ 2d− 4

2d− 1
.

Using Lemma 24 gives that to prove that d− 1− 1
α(h′′) ≥

2d−4
2d−1 , it suffices to prove that

(d− 1)|E′
h| − |U ′|+ |P ′|

|E′
h|+ |P ′|

≥ 2d− 4

2d− 1
.

Observe that

(d− 1)|E′
h| − |U ′|+ |P ′|

|E′
h|+ |P ′|

=
d− 1− (d+ 1) + 2(d− 1)

1 + 2(d− 1)
=

2d− 4

2d− 1
,

which finishes the proof.

E.3. Lower bounds of m(h) for a nonminimal weighted preimage h

For recovery after observing the weighted projection, we consider when two hypergraphs have
the same weighted projections, which would imply that they have the same projection. First con-
tinue using the notation of the previous section. Additionally, add the condition that ProjW (h) =
ProjW (g). Furthermore, observe that e(h) = e(g) rather than e(h) ≥ e(g), which follows from
ProjW (h) = ProjW (g). The goal is to prove the following result:

Theorem 55 Suppose d ≥ 3. Then d− 1− 1
m(h) ≥

d
2 − 1 ≥ d−1

d+1 .

First, observe that we can remove all hyperedges in both h and g; afterwards, the condition
ProjW (h) = ProjW (g) will still be satisfied, and d − 1 − 1

m(h) will be decreased. Hence, assume
that E(h) and E(g) are disjoint. Since h ̸= g, both E(h) and E(g) are nonempty.

Lemma 56 Suppose v ∈ V . Then, dh(v) ̸= 1.
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Proof For the sake of contradiction, assume that dh(v) = 1. Suppose i is the hyperedge of h
that contains v. Then, the weight of {v, u} for all u ∈ i\{v} in ProjW (h) equals one. Since
ProjW (g) = ProjW (h), each edge {v, u} for u ∈ i\{v} is contained in a hyperedge iu of g. If all
of the iu are equal, then they must all equal i, which is a contradiction to E(h) and E(g) being
disjoint. Therefore, some two of the iu are distinct, which implies that dg(v) ≥ 2. However,
ProjW (h) = ProjW (g) implies that dg(v) = dh(v) = 1, which is a contradiction.

Proof [Proof of Theorem 55] Let V ′ be the set of v ∈ V such that dh(v) ≥ 1. Let h′ be the subgraph
of h induced by V ′. Using Lemma 56 implies that

de(h′) = de(h) =
∑
v∈V ′

dh(v) ≥ 2v(h′),

so m(h) ≥ α(h′) ≥ 2
d ⇒ d− 1− 1

m(h) ≥
d
2 − 1. It is straightforward to verify that d

2 − 1 ≥ d−1
d+1 .

Observe that the threshold in Theorem 55 is greater than the threshold in Theorem 23. The
reason for this is that the graph Ga,d is not ambiguous under the weighted projection. In fact, we
show that the threshold d

2 − 1 in Theorem 55 is achievable.
Define the hypergraph H = (V,E) as follows:

• V = S1 ⊔ S2 ⊔ {w1, w2, w3, w4}, where |S1| = |S2| = d− 2.

• E consists of S1 ∪ {w1, w2}, S1 ∪ {w3, w4}, S2 ∪ {w2, w3}, and S2 ∪ {w4, w1}.

Then, define Gw
a,d := Proj(H).

Suppose H ′ has the same vertex set as H and edge set S2 ∪ {w1, w2}, S2 ∪ {w3, w4}, S1 ∪
{w2, w3}, and S1∪{w4, w1}. Then, H and H ′ are two distinct minimal preimages of Gw

a,d, so Gw
a,d

is a weighted-ambiguous graph. Since each vertex of H is contained in two hyperedges, we also
observe that H achieves the lower bound in Theorem 55.

Appendix F. Entropy of the projected graph

For simplicity, assume that the logarithms in entropy are base e. In this section we mainly analyze
the entropy of Proj(H) and hence the conditional entropy H(H|Proj(H)) = H(H)−H(Proj(H)).

Lemma 57 e−p ≥ 1− p for all p ≥ 0 and e−2p ≤ 1− p if p is sufficiently small.

Lemma 58 Suppose δ > d−1
d+1 . Then there exists C > 0 such that C does not depend on c and

H(H|Ψ) ≥ (C + on(1))H(H).

Proof Since H(H|Ψ) = H(H)−H(Ψ), it suffices to prove that H(H)−H(Ψ) = Ωn(H(H)) if
δ > d−1

d+1 .
First observe that

H(H) = −
(
n

d

)
HB(p) = c

d− 1− δ

d!
log(n)n1+δ + on(log(n)n

1+δ). (28)
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For all i, j ∈ [n] such that i ̸= j, let X{i,j} = 1{{i, j} ∈ E(Ψ)}. We have that

H(Ψ) = H(X{i,j} : 1 ≤ i < j ≤ n) ≤
∑

1≤i<j≤n

H(X{i,j}) =

(
n

2

)
HB(1− (1− p)(

n−2
d−2)). (29)

Bernoulli’s inequality implies that

1− (1− p)(
n−2
d−2) ≤

(
n− 2

d− 2

)
p

and for sufficiently large n we have that
(
n−2
d−2

)
p ≤ 1

e . Hence, for sufficiently large n we have that

−(1− (1− p)(
n−2
d−2)) log(1− (1− p)(

n−2
d−2)) ≤ −

(
n− 2

d− 2

)
p log(

(
n− 2

d− 2

)
p)

since −x log(x) increases as x increases over [0, 1e ]. Then,

HB(1− (1− p)(
n−2
d−2)) ≤ −

(
n− 2

d− 2

)
p log(

(
n− 2

d− 2

)
p)− (1− p)(

n−2
d−2) log((1− p)(

n−2
d−2))

= (1− δ)

(
n− 2

d− 2

)
p log(n) + on(log(n)n

δ−1).

Using this inequality and (29) gives that

H(Ψ) ≤ c
1− δ

2(d− 2)!
log(n)n1+δ + on(log(n)n

δ+1).

Using this inequality and (28) then gives that it suffices to prove that

1− δ

2(d− 2)!
<

d− 1− δ

d!
;

afterwards we can let C =
d−1−δ

d!
− 1−δ

2(d−2)!
d−1−δ

d!

, which does not depend on c. This inequality is true

because δ > d−1
d+1 , which finishes the proof.

Firstly observe that H(H|Ψ) = H(H)−H(Ψ) and

H(Ψ) ≤ H(H) = Θn(n
1+δ log(n)).

We analyze H(H|Ψ) and H(Ψ) in the next result.

Theorem 59 H(Ψ) = Θn(n
1+δ log(n)). Furthermore

H(H|Ψ) =


on(n

1+δ) if δ < d−1
d+1 ,

On(n
1+δ) if δ = d−1

d+1 ,

Θn(n
1+δ log(n)) if δ > d−1

d+1 .
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Proof We have that

H(Ψ) = I(H; Ψ) ≥
(
n

d

)
I(1{[d] ∈ E(H)}; Ψ)

=

(
n

d

)(
HB(p)−

∑
G∈G

Pr[Ψ = G]H(1{[d] ∈ E(H)}|Ψ = G)

)

=

(
n

d

)HB(p)−
∑

G∈G,([d]2 )⊂E(G)

Pr[Ψ = G]H(1{[d] ∈ E(H)}|Ψ = G)

 .

Observe that q =
∑

G∈G,([d]2 )⊂E(G)
Pr[Ψ = G]. Then Jensen’s inequality implies that

∑
G∈G,([d]2 )⊂E(G)

Pr[Ψ = G]H(1{[d] ∈ E(H)}|Ψ = G) ≤ qHB

(
p

q

)
.

Therefore

H(Ψ) ≥
(
n

d

)(
HB(p)− qHB

(
p

q

))
=

(
n

d

)(
−(1− p) ln(1− p)− p ln(q) + (q − p) ln(1− p

q
)

)
.

(30)

Assume that δ < d−1
d+1 . Then Corollary 10 gives that q = (1 + on(1))p so qHB(

p
q ) = on(p) and

(30) gives that H(Ψ) = H(H)− on(n
1+δ)

Next assume that δ = d−1
d+1 . We have that q = (1 + Θn(1))p from Corollary 10 so qHB(

p
q ) =

On(p) and (30) gives that H(Ψ) = H(H)−On(n
1+δ).

Suppose δ > d−1
d+1 . Then q = ωn(p) from Corollary 10 so if n is sufficiently large then

Lemma 57 gives that
(q − p) ln(1− p

q
) ≥ −2(q − p)

p

q
= Ωn(p)

and using (30) gives that H(Ψ) = Ωn(n
1+δ log(n)). Furthermore Lemma 58 gives that

H(H|Ψ) = Θn(H(H)).

Corollary 60 The conditional entropy H(H|Ψ) is on(H(H)) if δ ≤ d−1
d+1 .

Proof This follows from Theorem 59.

Lemma 61 If n is sufficiently large then

H(Ψ) ≥

(
1−

(
n

d−2

)
p

1−
(

n
d−2

)
p

)
n−d+2∑
i=2

(i− 1)HB(1− (1− p)(
n−i
d−2)) = Ω(n1+δ log(n)).
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Proof Assume that n is sufficiently large throughout the proof. Suppose the set of vertices in H is
[n]. We construct a sequence of edges S. Initialize S as the empty sequence. From i = 2 to i = n,
add the edges {i, j} to S from j = 1 to j = i − 1. Note that S contains each edge between two
vertices of [n] exactly once. It follows that

H(Ψ) =

(n2)∑
a=1

H(XSa |XSb
, 1 ≤ b ≤ a− 1).

Suppose 1 ≤ a ≤
(
n
2

)
. Assume that Sa = {i, j} where 1 ≤ j < i ≤ n. Observe that the

random variables 1{h ∈ H} for h ∈
(([n]\[i−1])∪{j}

d

)
are independent of the random variables XSb

for 1 ≤ b ≤ a − 1. This is because no hyperedge in
(([n]\[i−1])∪{j}

d

)
contains Sb as an edge for

1 ≤ b ≤ a− 1. The probability that a hyperedge in
(([n]\[i−1])∪{j}

d

)
that contains Sa is present in H

is
1− (1− p)(

n−i
d−2).

Suppose xb ∈ {0, 1} for 1 ≤ b ≤ a− 1. Hence,

Pr[XSa = 1|XSb
= xb, 1 ≤ b ≤ a− 1] ≥ 1− (1− p)(

n−i
d−2).

Note that 1− (1− p)(
n−i
d−2) ≤

(
n−i
d−2

)
p ≤ 1

2 if n is sufficiently large. Thus, if

Pr[XSa = 1|XSb
= xb, 1 ≤ b ≤ a− 1] ≤ (1− p)(

n−i
d−2)

as well, then

H(XSa |XSb
= xb, 1 ≤ b ≤ a− 1) = HB(Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1])

≥ HB(1− (1− p)(
n−i
d−2)).

(31)

We have that

EXSb
,1≤b≤a−1[Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1]] = Pr[XSa = 1] ≤
(

n

d− 2

)
p.

Therefore, Markov’s inequality implies that

Pr
XSb

,1≤b≤a−1
[Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1] > (1− p)(
n−i
d−2)] ≤

(
n

d−2

)
p

(1− p)(
n−i
d−2)

.

Observe that
( n
d−2)p

(1−p)(
n−i
d−2)

<
( n
d−2)p

1−( n
d−2)p

. Using (31) then gives that

H(XSa |XSb
, 1 ≤ b ≤ a− 1) = EXSb

,1≤b≤a−1[H(XSa |XSb
= xb, 1 ≤ b ≤ a− 1)]

≥ (1− Pr
XSb

,1≤b≤a−1
[Pr[XSa = 1|XSb

= xb, 1 ≤ b ≤ a− 1] ≤ (1− p)(
n−i
d−2)])

·HB(1− (1− p)(
n−i
d−2))
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≥ (1−
(

n
d−2

)
p

1−
(

n
d−2

)
p
)HB(1− (1− p)(

n−i
d−2)).

Summing this inequality from a = 1 to a =
(
n
2

)
gives

H(Ψ) ≥ (1−
(

n
d−2

)
p

1−
(

n
d−2

)
p
)
n−d+2∑
i=2

(i− 1)HB(1− (1− p)(
n−i
d−2)).

Observe that we use the fact that if i > n−d+2 then HB(1−(1−p)(
n−i
d−2)) = 0. It is straightforward

to check that this lower bound on H(Ψ) is Ωn(n
1+δ log(n)).

F.1. Exact recovery in a general setting

The following result is relevant to the impossibility of exact recovery in a more general setting.
Although we do not include all of the details, it is applicable in the problem we consider in this
paper.

Theorem 62 Suppose X is a finite set. Suppose S ⊂ Z≥1 contains infinitely many elements.
Suppose n ∈ S. Suppose fn : X n → Yn and An : Yn → X n are functions such that for all y ∈ Yn,
fn(An(y)) = y. Suppose Xn ∈ X n is a random variable such that Xi, i ≥ 1 are independent and
identically distributed with distribution pn. Assume that x− ∈ X and limn→∞ pn(x) = 0 and
limn→∞ npn(x) = ∞ for all x ∈ X− := X\{x−}, where the limits are over S. Also assume that
supy∈Yn

Pr[fn(X
n) = y] ≤ 1

e if n is sufficiently large. The probability that An(fn(X
n)) is not Xn

is at least 1− H(fn(Xn))
H(Xn) + on(1), where the asymptotic term on(1) does not depend on fn.

Proof Suppose n ∈ S. Let Un be the set of xn ∈ X n such that there does not exist y ∈ Yn such
that An(y) = xn. Observe that Pr[An(X

n) ̸= Xn] = Pr[Xn ∈ Un].
First observe that

H(Xn) =−
∑
y∈Yn

Pr[Xn = An(y)] log(Pr[X
n = An(y)])

−
∑

xn∈Un

Pr[Xn = xn] log(Pr[Xn = xn]).
(32)

Suppose xn ∈ Un. Then,

log(Pr[Xn = xn]) = (n−
∑

x∈X−

Nx(x
n)) log(pn(x

−)) +
∑

x∈X−

Nx(x
n) log(pn(x)).

Using Lemma 57 and the fact that limn→∞ pn(x) = 0 for x ∈ X− gives that

0 ≥ (n−
∑

x∈X−

Nx(x
n)) log(pn(x

−)) ≥ −2n
∑

x∈X−

pn(x)

if n is sufficiently large. Observe that

H(Xn) ≥ −n
∑

x∈X−

pn(x) log(pn(x))
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and − log(pn(x)) = Ωn(1) since pn(x) = on(1) for all x ∈ X−. Hence

(n−
∑

x∈X−

Nx(x
n)) log(pn(x

−)) = on(H(Xn)) (33)

so
log(Pr[Xn = xn]) =

∑
x∈X−

Nx(x
n) log(pn(x)) + on(H(Xn)).

This implies that

−
∑

xn∈Un

Pr[Xn = xn] log(Pr[Xn = xn])

= on(H(Xn))−
∑

xn∈Un

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x)).

(34)

Let Wn be the set of xn ∈ X n such that

Nx(x
n) ∈ [npn(x)− (npn(x))

3
4 , npn(x) + (npn(x))

3
4 ]

for all x ∈ X−. For all x ∈ X− the random variable variable |Nx(X
n)| has mean npn(x) and

variance npn(x)(1 − pn(x)). Because pn(x) = on(1) for all x ∈ X−, Chebyshev’s inequality
implies that Xn ∈ Wn with probability 1−on(1). Therefore, Pr[Xn ∈ Un\Wn] = on(1). Observe
that ∑

xn∈Un

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x))

=
∑

xn∈Un∩Wn

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x))

+
∑

xn∈Un\Wn

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x))

= Pr[Xn ∈ Un]

n
∑

x∈X−

pn(x) log(pn(x))


+

∑
xn∈Un\Wn

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x)) + on(H(Xn)).

Suppose x ∈ X−. We have that∑
xn∈Un\Wn

Pr[Xn = xn]Nx(x
n) ≤ (

∑
xn∈Un\Wn

Pr[Xn = xn])
1
2 (

∑
xn∈Un\Wn

Pr[Xn = xn]Nx(x
n)2)

1
2

≤ (
∑

xn∈Un\Wn

Pr[Xn = xn])
1
2 (n2pn(x)

2 + npn(x)(1− pn(x)))
1
2

= on(npn(x)).

Hence ∑
xn∈Un\Wn

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x)) = on(H(Xn)).
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Therefore using (33) with xn = (x−)n gives that∑
xn∈Un

Pr[Xn = xn]
∑

x∈X−

Nx(x
n) log(pn(x))

= Pr[Xn ∈ Un]

n
∑

x∈X−

pn(x) log(pn(x))

+ on(H(Xn))

= Pr[Xn ∈ Un]H(Xn) + on(H(Xn)).

Then, using (32) gives that

H(Xn) = −
∑
y∈Yn

Pr[Xn = An(y)] log(Pr[X
n = An(y)])+Pr[Xn ∈ Un]H(Xn)+ on(H(Xn)).

(35)
For all y ∈ Yn we have that Pr[fn(Xn) = y] ≤ 1

e if n is sufficiently large and

Pr[fn(X
n) = y] ≥ Pr[Xn = An(y)].

Afterwards using the fact that the function −x log(x) increases as x increases over [0, 1e ] gives that

H(fn(X
n)) ≥ −

∑
y∈Yn

Pr[Xn = A(y)] log(Pr[Xn = A(y)]) (36)

if n is sufficiently large. Afterwards using (35) and (36) gives that

H(Xn)−H(fn(X
n)) ≤ Pr[Xn ∈ Un]H(Xn) + on(H(Xn)).

This finishes the proof.
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