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Abstract

We study the Gaussian sequence model, i.e. X ~ N(0,1-), where 8 € T' C {3 is assumed to be
convex and compact. We show that goodness-of-fit testing sample complexity is lower bounded by the
square-root of the estimation complexity, whenever I' is orthosymmetric. This lower bound is tight
when I is also quadratically convex (as shown by [DLM90, Ney23]). We also completely characterize
likelihood-free hypothesis testing (LFHT) complexity for £,-bodies, discovering new types of tradeoff
between the numbers of simulation and observation samples, compared to the case of ellipsoids (p = 2)
studied in [GP24].
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1 Introduction

Two flagship problems in non-parametric statistics are establishing minimax rates (or, equivalently, minimax
sample complexities) of density estimation and testing. In the case of density estimation, statistician is given
an apriori fixed large class ' of probability distributions and n iid samples Xi,...,X,, from P € T" and is
tasked with producing an estimate P of the distribution such that E[d(P, P)] < e, where d is a distance and
€ is the target accuracy. The minimal number n of samples required for the worst-case choice of P is the
sample complexity s (T, ). For example, if I' consists of all -smooth densities on a compact set in R?
and if accuracy metric is d = || - ||2 (the ¢2 distance), then the classical work of Ibragimov and Khasminskii
[TKm83] showed that nes (T, ) < e~ (28+4)/8 upto universal constants, cf. [Tsy08].

In the case of testing (or goodness-of-fit), statistician is given an apriori fixed large class T" of probability
distributions, a member Py € I' and n iid samples Xq,...,X,, from some P € I', and is tasked with
testing hypothesis P = Py against d(P, Py) > ¢ with a fixed small probability of error under either of the
alternatives. The minimal number of samples needed for accomplishing this task (worst case over P and
Py) is the complexity of testing ngos(I',€). This way of looking at non-parametric testing, as well as many
foundational results, was proposed by Ingster [Ing82, Ing86, Ing87]. In particular, for the Lipschitz class and
TV metric his result shows that ng.s (T, €) < e=(4/242)  The fact that testing can be done with significantly
fewer samples was both surprising and impactful for the development of theoretical statistics in 20th century.

Despite the similarities of two problems, our level of understanding of nes; and nger is dramatically
different. Specifically, the work of LeCam [LC12], Birge [Bir83, Bir86], Yatracos [Yat85], Yang and Barron
[YB99] established a direct characterization of nes in terms of metric entropy of the class T', thus reducing
the problem to that of approximation theory. At the same time, while several powerful tools [IS03] were
developed for bounding ng.f, its evaluation for each class I' is largely still ad hoc. Thus, our longer term
goal is to obtain metric entropy type characterization of ng.¢. This work is a step in this direction: by
establishing general inequalities relating ngor and nest, implicitly we also obtain entropic bounds on ngot.

The origin of these kind of relations is the work [GP24], which studied yet another statistical problem
of likelihood-free hypothesis testing (LFHT), see (10) below, which “interpolates” between estimation and
testing. By inspecting the minimax region for LFHT at two endpoints [GP24] observed that for rather
different non-parametric types of models (smooth densities, discrete distributions, Gaussian sequence model
over ellipsoids) one has a general relationship

Nest (T €)
rellE) o (re). 1)

This relation can informally be “derived” as follows. Up to precision ¢ the non-parametric model I' can
be thought of as a model of finite dimension D(T',¢), rigorously defined below as a Kolmogorov dimension.
Then, classical parametric estimation and testing rates allow us to guess

D(T',¢)
e2

D(T,e)
2

Nest (T, €) < , ngot (I', €) =< , (2)



which clearly imply (1). In addition to examples from [GP24], the relationship (1) also holds for a special
class of Gaussian sequence models with a QCO (compact , convex, quadratically convex and orthosymmetric)
constraint set, as follows from [DLM90] and [Ney23] (see Prop. 4 below).

While these considerations support the validity of (1), unfortunately neither (2) nor (1) hold in general.
Indeed, a counter-example is implicitly contained in [Bar02], see (4) below. Nevertheless, in this work we
show that the < direction of (1) holds under the mere assumption of orthosymmetry, see (3).

This paper is written solely in the context of Gaussian sequence model, for which T' consists of infinite-
dimensional Gaussian densities N'(6, I,) with mean 6 constrained to belong to a compact convex set in £5.
We will abuse notation and simply write 6 € I identifying densities with their means. Such models are both
simplest to study and are universal: any non-parametric class I' of densities can be shown to be Le Cam
equivalent (in the limit of n — 00) to a certain Gaussian sequence model, cf. [Nus96, BLIG].

1.1 Owur Contribution

Our contributions are two-fold. First, we derive a collection of results bounding nge¢ in terms of nes. Second,
we also completely characterize LFHT region of general £,-bodies.

More specifically, for any convex, compact and orthosymmetric set I' (see definitions below), we show
in Corollary 2 that the minimax sample complexity ngof(I',€) of goodness-of-fit testing and the minimax
sample complexity nest (T, €) of density estimation satisfy

Nest (Fa 5) S
where D(T', ¢) is the Kolmogorov dimension of I" (see also Prop. 7). Hence, under rather general conditions
half of the relationship (1) holds up to polylog factors. The unusual aspect of our proof is that a lower bound
on testing is shown by extracting a hard to test mixture distribution from the analysis of a soft-thresholding
estimator.

As we mentioned above, if in addition to orthosymmetry one also assumes quadratic-convexity of T'
(i.e. if T'is QCO), then results of [DLM90] on estimation and [Ney23] on testing together imply validity
of (1) for such sets (see Prop. 4), thus showing that our lower bound is generally tight. We recall that
¢,p-bodies [Bar02, DLM90] with p > 2 are QCO sets.

Are there any counter-examples to (1)?7 The answer is positive as in fact already implicitly shown
in [Bar02]. Specifically, let us define the following

D={0=(0roc):» i1 <1y, (4)

i>1

which is an example of a more general class of an ¢,-body with p = 1. For this specific class, we find out in
Proposition 2 and Proposition 3 that

Ngot ([, 6) = O (871752) and e (T,e) = O (57%) ,

thus clearly violating (1) and showing that one can indeed have nes; < ngof /2.

Our second contribution is in establishing minimax rates (regions) for the LFHT problem defined in (10).
Recall that in [GP24], it was shown that the optimal testing region of LFHT for Gaussian sequence model
over an ellipsoid I' satisfies

1 2
m > = n 2 ngof(lye), and mn 2 nge(Tse) o (5)
It is natural to ask whether this relation is in some sense universal. In this work, we show that for I", which
are orthosymmetric, convex and quadratically convex (e.g. ¢p-bodies with p > 2), the LFHT region remains



the same. In particular, this is true for ¢, bodies with p > 2. For p < 2, the general form of the LFHT
region is given in terms of an “effective dimension” d(T',n,e) depending on n. Specifically, we show that the
testing region is given by

{m > %7 n> 7d(F;n,5)’ and mn 2> LF’ZL’E) }
€ 5 5

For example, for the set Eq. (4), we have d(T',n, &) < ﬁ and the LFHT region is given by

_ _ 12 3 _
{stQ,nZ£ 5, and m-n2 e 6}.

In particular, this shows that the “regular LFHT” region, where the boundary is defined in terms of the
product mn as in (5), is specific to £,-bodies with p > 2, while for p < 2 the region is rather different.

1.2 Related Works

We review some related literatures in this section.

Non-parametric Density Estimation: As we already discussed in the introduction, there has been a
long line of work studying the density estimation. For fairly general non-parametric classes and distances
between distributions Le Cam [LC12] (also in [vdV02]) and Birge [Bir83, Bir86] characterized the minimax
rate in terms of the (local) Hellinger metric entropy. Other general estimators were proposed by Yang-
Barron [YB99], Yatracos [Yat85] and others. In the context of estimating smooth densities, the study of
kernel density estimators is a rich subject [Tsy08, Chapter 1], as is the method of wavelet-based techniques
[DJKP96]. In the context of Gaussian sequence models, density estimation corresponds to parameter (mean)
estimation, with state of the art beautifully summarized in [Joh19].

Gaussian sequence model: In the context of Gaussian sequence model density estimation is equivalent to
parameter () estimation. This question received significant attention, see [JN20, Chapter 4]. We specifically
mention pioneering work of Pinsker [Pin80], who demonstrated optimality of linear estimators for the case of
certain ellipsoids, and [DLM90], who significantly extended this idea by showing optimality (upto a universal
factor) of projection estimators for all quadratically convex sets — a notion which also found application in
stochastic optimization [CLD19].

Goodness-of-Fit Testing: The sample complexity of goodness-of-fit testing has been pioneered by the
already mentioned works of Ingster, whose book [IS12] surveys many of the classical developments. Subse-
quently, [LS99] obtained tight goodness-of-fit testing rate for Besov bodies Bs , 4(R) where p € (0,2).

For Gaussian sequence model, we mention results of [Erm91] and, very relevant for our work, a comprehen-
sive paper of Baraud [Bar02]. Specifically, for ¢, bodies {61.p : Zil 60,7 /al < 1} wherea; > ag > -+ > ap,
they proposed the following dimension

p(n) = sup [(Vd/n® A ag[Vd]'~2/7)],

de[D]

and they show that the minimax sample complexity of goodness-of-fit testing is the smallest n such that
p(n) < e. More recently, [WW20] refined sample complexity to make it depend on a specific (rather than
worst-case) choice of the mean in the null-hypothesis. In the special case of QCO sets I' Neykov [Ney23]
characterizes (within a constant factor) the goodness-of-fit testing sample complexity in terms ofcritical
radius, which in turn is derived from Kolmogorov widths. The case of I' being a d-dimensional convex cone
was studied in [WWG19], in particular demonstrating that in the case of “ice-cream cones” one can get
Ngof X Eiz but nest < E%, due to null-case being at the apex of the cone.

A large amount of work has also been done on the topic in computer science literature under different
names of identity testing or uniformity testing, see [GGR98, BFR100, Pan08, VV17, VV20, CW21, CHL"23].
A recent lower bound for robust testing was proposed in [DKS17]. [CCK™'21, DKP23] proposed minimax



optimal testing scheme for cases with unknown variances. An excellent monograph [Can22] surveys this line
of work.

Likelihood Free Hypothesis Testing: The form of likelihood free hypothesis testing was firstly introduced
in [Gut89, Ziv88]. They studied the problem in fixed finite alphabet. [ZTM19] showed that the testing scheme
introduced in [Gut89] is second-order optimal. This problem is extended into sequential and distributional
setting in [HW20, HZT20, HTK21, BGiF22]. In this work, we will focus on the setting introduced in [GP24].

1.3 Organization

In Section 2 we review the basic concepts of goodness-of-fit testing, density estimation and likelihood-free
hypothesis testing. In Section 3, we study the relationship between goodness-of-fit testing and density
estimation. In Section 4 we study the feasible region of likelihood-free hypothesis testing. Specifically,
in Section 4.1 we build up relationship between the LFHT feasible region and density estimation, and in
Section 4.2 we calculate the LFHT feasible region for £, bodies with p < 2.

1.4 Notations

For § € R?, we use N'(0,1;) to denote the multivariate Gaussian distribution with mean  and variance
matrix to be the identity matrix. We use 0 to denote the all-zero vector. We use a, = O(b,,) or a, < by,

(an, = Q(b,) or a, = b,) to denote the inequality a,, < ¢- b, (a, > c¢-by,) for all n for some fixed positive
constant c.

2 Preliminaries and notation

We review some basic concepts of the Gaussian sequence model [IS12], goodness-of-fit testing [IS12], density
estimation [Joh19] and likelihood-free hypothesis testing [GP24] in this section.

Gaussian Sequence Model. We focus on unit-variance multivariate Gaussian location model, which
is specified by an integer D € [1,00] and a subset I' C RP| so that the model consists of all distributions
P(T) £ {N(6,Ip) : 6 € T}. When D = co we also refer to this model as Gaussian sequence model. In the
following, we often use subset I' to denote the model P(T") itself.

Goodness of Fit Testing. Given an integer D € [1,00], we conduct the goodness of fit testing in
RP. In this task, the statistician is given an class of parameters I' C RP, and has the knowledge that the
true parameter of the model 8 € T'. However, 6 is unknown and the statistician can only obtain information
of @ through n samples X = (Xy.,) ~ PY" where Px = N (6, Ip). The statistician conducts the following
hypothesis testing problem

Hy:0=0 versus Hj: |02 > e, (6)

i.e., based on the samples in X, the statistician makes choice ¥(X) € {0,1}, where ¥(X) = 0 denotes the
statistician accepts hypothesis Hy and ¢(X) = 1 denotes the statistician rejects Hy. We focus on the smallest
number of n such that

max_sup P(¢(X) #1i) <
i€{0,1} PeH;

; (7)

=

where suppc, denotes the case @ = 0, and supp.y, denotes the supreme over 6 with [|f]]2 > . We let
ngot (I, €) to denote the smallest number of samples such that Eq. (7) holds.

Density Estimation. Given an integer D € [1, 0], we conduct the density estimation task in RP. In
this task, the statistician is given an class of parameters I' C R”, and has the knowledge that the parameter of
the groundtruth distribution § € I'. However, 6 is unknown and the statistician can only obtain information
of @ through n samples X = (Xy.,,) ~ PY" where Px = N'(8, Ip). Based on the samples in X, the statistician

proposes an estimator 8(X) € RP. We focus on the smallest number of samples n such that there exists an



estimator which achieves expected ¢5 estimation error no more than e for any distribution in the distribution
class, i.e.
—~ 2
infsupE [H0(X) - OH } <el (8)
6 6cr 2
We use nest (I, €) to denote the smallest number of samples such that Eq. (8) holds.

Likelihood Free Hypothesis Testing. The task of likelihood free hypothesis testing was first
introduced in [GP24]. The statistician conducts the testing in RP, and the statistician is given the class T' of
the Gaussian sequence model. Suppose there are two artificial densities Px = N (01, Ip), Py = (02, Ip) and
a true density P; = A (@, Ip) where 6',0%,0 c I' are unknown to the statistician. After collecting n samples
from Py and Py each to form artificial datasets X ~ ]P)?” and Y ~ ]P’?", and collecting m samples from P; to
form the ground truth dataset Z ~ P$™, the statistician conducts the following hypothesis testing problem:

Hy:0=0" versus H:0=86> (9)

To characterize the minimax sample complexity of the above hypothesis testing problem, we suppose 6" and
6° satisfies ||0" — 0%||2 > & for some € > 0, and this piece of information is given to the statistician. After
receiving data (X, Y, Z) € (RP)" x (RP)" x (RP)™ the statistician makes choice (X, Y, Z) € {0, 1}, where
P(X,Y,Z) = 0 denotes the statistician accepts hypothesis Hy and ¢(X,Y,Z) = 1 denotes the statistician
rejects Hy. We focus on the conditions of (m,n) such that

max sup P((X,Y,Z) #1) <

, 10
i€{0.1} pen, (10)

-~ =

where suppcy, denotes the supreme over 6" and 6% with ||0' —6%||; > ¢ and 8 = 6", and suppey, denotes
the supreme over 8" and 0% with [|0" —6°||, > ¢ and 6 = 6°.

For any pair (m,n), we say that (m,n) lies in the feasible region of the likelihood-free hypothesis test if
and only if there exists some test scheme 1 such that Eq. (10) holds.

¢, Bodies. Given an integer D € [1,00], the ¢, bodies in R is characterized by a non-increasing
nonnegative sequence a; > ag > --- > ap > 0. The ¢, body (also appears in [Bar(02]) characterized by ai1.p
is given by

D

9,|P

r{a(el,eg,m,aD)’ Z'tp' §1}§RD. (11)
=1

When D = oo, in order to guarantee the compactness of this infinite-dimensional set, we only consider the

¢, bodies characterized by sequence a; goes to zero, i.e. lim;_,o a; = 0.

Orthosymmetric Sets. We recall the definition of orthosymmetric sets, first introduced in [DLM90]:
Given an integer D € [1,00], we say I' C R is an orthosymmetric set if for any element § = (61,60, --- ,0p) €
I'and € = (e1,€2,-+ ,ep) € {—1,1}7, we have

0. = (101,202, - ,epbp) €T

We notice that many sets satisfy the orthosymmetric property. It is easy to verify that the £, bodies
introduced in Eq. (11) are orthosymmetric. Additionally, if there exists a function f : (Ry U {0})P — R
such that T" can be represented as

I'= {0 = (917027"' agD) : f(|01|’ |02|7 7|0DD > 0}7 (12)

then I' is an orthosymmetric set. It is easy to see that all £, bodies can be written in the above form for
some function f.

Kolmogorov Dimension and Coordinate-wise Kolmogorov Dimension. Given an integer
D € [1, 0], the Kolmogorov dimension of a set I' C R is a notion to measure the minimal dimension of an
affine space so that the distance between any point in I and the affine space is bounded by some tolerance.
This notion is given formally as in the following definition.



Definition 1 (Kolmogorov Dimension). Suppose I' € RP. For any ¢ > 0, we define the Kolmogorov
dimension D(T',e) of T’ at scale € to be the largest integer d < D such that

infsup ||@ — I140]2 < ¢,
Ia ger

where Iy denotes a d-dimensional linear projection, and the infimum is over all possible d-dimensional linear
projections.

Notice that in the above definition, the projection operator can be chosen to be any linear projections.
However, in some cases, we have to restrict ourselves to project only along the coordinates. In this way, we
define the following coordinate-wise Kolmogorov dimension.

Definition 2 (Coordinate-wise Kolmogorov Dimension). Suppose I' C RP. For any ¢ > 0, we define the
coordinate-wise Kolmogorov dimension D¢(T,e) of T at scale € to be the largest integer d < D such that

inf sup Z (0;)? < &2, where § = (601,03, ,0p),
AAl=doer £ |

where the infimum is over all size-d subsets A of {1,2,---,D}.

It is clear that for any set I' and € > 0, D(I',e) > D(T',e). However, it is possible to have D, > D.
Fortunately, our bounds depend on D, only logarithmically, and hence the following pair of results can be
used to roughly relate D. to D and €.

Proposition 1. For any orthosymmetric, convex, compact set I', we have

D (N gy ) 2 0 2

Corollary 1. Suppose orthosymmetric, convezx, compact set I' satisfies D(I',e) < e™P for some 0 < p < 1.
Then the coordinate-wise Kolmogorov dimension satisfies

D(T,e) S e P/(=p),

3 Goodness-of-Fit and Density Estimation

We return to the testing-estimation relation (1) that was shown in [GP24] to hold for a variety of models,
including Gaussian sequence models with I' being an ellipsoid. Our first goal (Section 3.1) is to exhibit a
natural Gaussian sequence model with convex I', for which the sample complexity of goodness-of-fit testing
is ©(¢71%/%), while the sample complexity of density estimation is ©(¢~8/3), thus showing that (1) fails.
Next, in Section 3.2 we show that nevertheless, for orthosymmetric convex I' a one-sided comparison always
holds: €’nZ ¢ 2 Nes. Finally, in Section A.4 we show that two-sided relationship (1) in fact holds for all
orthosymmetric, compact, convex and quadratically-convex T'.

3.1 A Counter Example
We consider the set defined in Eq. (4): for D = oo, and

I=0=(01o): Y i-|0i]<1pCRP.
i>1

Then we have the following characterization in the goodness-of-fit testing sample complexity and density
estimation sample complexity.



Proposition 2. For set I defined in Eq. (4), the minimaz density estimation sample complezity nest(T, €)
satisfies

Nest (I, €) = © (5—8/3) .

Proposition 3. For setT" defined in Eq. (4), the minimaz goodness-of-fit testing sample complexity ngo(I', €)
satisfies

Ngot (T, €) = © (5_12/5) .

The proof of Proposition 2 and Proposition 3 are deferred to Section A.1. From Proposition 2 and
Proposition 3, we learn that for this specific set I, Eq. (1) cannot hold when € goes to zero, even up to log
factors this conjecture still fails.

3.2 One-side inequality for Orthosymmetric Convex Sets

Even though there exists a set T' such that Eq. (1) fails, we show that a one-side inequality between the min-
imax sample complexity of goodness-of-fit testing and the minimax sample complexity of density estimation
holds up to log factors, if we assume orthosymmetric property, compactness and convexity of the set I'. This
result is summarized in the following theorem.

Theorem 3.1. For positive integer D, suppose I' € RP is an orthosymmetric, compact and convez set
(orthosymmetric sets defined in Section 2). Then we have

2
g 1 Nest (Fa 5)
rh—,| > .
Tigot ( ’ ﬂ) ~ 64log (2D) e?

The proof of Theorem 3.1 is deferred to Section A.2. Theorem 3.1 has the following implication on the
infinite-dimensional orthosymmetric convex sets. Then we have the following corollary, which generalize
Theorem 3.1 into infinite dimensional sets. The following corollary lower bounds ng.¢ in terms of the
coordinate-wise Kolmogorov dimension of the set I' (defined in Definition 2).

Corollary 2. Suppose the coordinate-wise Kolmogorov dimension of I' at scale € to be D.(T',¢€). Then if T
is compact, conver and orthosymmetric, we have for any € > 0,

2
Ngot | I', = > ! . nest(T' \fg)
V2 6410og(2D.(T,¢)) e?

The proof of Corollary 2 is deferred to Section A.2.

Remark 1. It is easy to see that all ¢, bodies defined in Section 2 are orthosymmetric, compact and convex
sets. Hence Theorem 3.1 (for finite dimensional sets), and Corollary 2 (for infinite dimensional sets) holds
for all £, bodies.

Remark 2. The notion of coordinate-wise Kolmogorov dimension D.(T,e) (defined in Definition 2) differs
from the traditional Kolmogorov dimension D(T',¢€) (defined in Definition 1), as the projection spaces in
D. are restricted to be parallel or perpendicular to the coordinate azes. It is clear that D.(T',e) > D(T',¢).
However, in some cases, D.(T',€) can also be upper-bounded in terms of D(T,e). For further discussion, see
Section A.3.

Remark 3. We notice that without assuming the orthosymmetric property, Theorem 3.1 can fail. For
example, [WWG19] shows that for the d-dimensional circular cone with null-hypothesis at the apex of
the cone the goodness-of-fit testing complexity is ngor =< 1/€2 (independent to the dimension d), while the
estimation complexity is the usual nes, < d/c?. Based on this idea, a non-orthosymmetric counter-ezample
to the lower bound in the Theorem can be constructed by taking

{o_ (01,05, - Ze2<9f,91>o}m{0 (01,0, -- Zz 92<1}

Indeed, it can be shown similarly to [WWG19] that ngot < €2, while nest = &3



3.3 Testing-Estimation Equivalence for Quadratically Convex Set

In the above, we already verify that the lower bound side of Eq. (1) holds, if we assume orthosymmetric
property, compactness and also convexity of the set I'. We wonder in what circumstances can the opposite
side of inequality Eq. (1) hold. In the following, we show that if we additionally assume that quadratically
convexity of set I', then the opposite side of Eq. (1) also holds. This result, together with Theorem 3.1 (or
Corollary 2), shows that the equivalence relation Eq. (1) holds up to log factors, if assuming that the set is
orthosymmetric, compact, convex and quadratically convex. Before presenting this result, we first recap the
definition of quadratically convex sets (first introduced in [DLM90]).

Definition 3 (Quadratically Convex Set). We say a set I' C R? is quadratically convex, if the following set
18 convex:

{02 0 c r} :
where 0° = (3,--- ,0%) for @ = (61,--- ,0p) € T.

Remark 4. The main result in [DLM90] was the proof of optimality (upto a universal constant factor 1.25)
of linear estimators (also known as projection estimators) for the minimaz estimation rate in the Gaussian
location model over an orthosymmetric, compact, convex and quadratically convex class.

We have the following theorem for quadratically convex sets.

Proposition 4 ([Ney23, DLM90]). There ezxists universal constants ¢,C > 0 such that for any QCO (com-
pact, convez, quadratically convex and orthosymmetric) set T,

Nest (Fa 5)
2

Ngot (I, 05)2 < 5

< ngot (T, Ce)?, Ve > 0.

Proof. Seminal work [DLM90] shows that for QCO sets, D(T, cg)/e? < nest(T,¢) < D(T, Ce)/e?. In [Ney23]
it is shown that ngot(T, ce) < /D(T,€)/e? < ngot(T, Ce) for QCO sets. These results together imply the
proposition. O

In Section A.4 we also include a slightly more general result showing that the second inequality in the
Proposition holds under the weaker assumption on I' (namely, only requiring that projection estimators be
order-optimal).

Remark 5. As shown in [DLM90], £,-bodies with p > 2 are quadratically convez sets.

4 Likelihood Free Hypothesis Testing

In this section, we study the feasible region of likelihood free hypothesis testing (LFHT) problems, which is
introduced in [GP24]. We already reviewed the basic of LFHT in Section 2.

Earlier in Section 3.2 we established a lower bound for the goodness-of-fit testing sample complexity in
terms of the density estimation sample complexity (for compact, convex and orthosymmetric sets). Under
additional assumption of quadratic convexity (Definition 3), we have shown (Section 3.3) an upper bound
matching the lower bound up to log factors.

4.1 LFHT and Density Estimation

In this section we generalize both of these bounds to the setting of LFHT. Theorem 4.1 establishes the
lower bound (for compact, convex and orthosymmetric sets), while Theorem 4.2 shows a matching upper
bound (under additional assumption of quadratic convexity). As a corollary, this resolves (up to log factors)
characterization of the LFHT region of ¢, bodies with p > 2.



Theorem 4.1. Suppose I C RP is an orthosymmetric, compact and convex set. Then if a pair of integers
(m,n) lies in the LEHT region, i.e. there exists testing scheme 1 : (RP)" x (RP)™ x (RP)™ such that
Eq. (10), then (m,n) satisfies

1 Nest (T, V/2€)

) nz _—————————

g2 8¢ - /log(4D)
nest<F7 \/55) -1
d >
e T = 307262 log(4D)

The proof of Theorem 4.1 can be found in Section B.1. The above theorem provide a lower bound to the
feasible region of LFHT. Next, we provide an upper bound to the feasible region of LFHT, in terms of the
Kolmogorov dimension. We introduce the following testing scheme: For € > 0, let II; to be the d-dimensional
linear projection satisfying

sup |0 — IL0||> < =
1SN

; (13)

w

where d = D(T',¢/3) denotes the Kolmogorov dimension of set I' at scale ¢/3 (Definition 1). Consider
samples X = (X1, -+, X)) Py, Y = (Y1, -, Yn) N Pyand Z = (Z1, -+ , Zn) S P,. Letting

1 1 ¢ 1
éx = E E Xi, éY = ﬁ E Yi and éz = ﬁ E Zi,
i=1 t=1 t=1

we define the testing function

2

~ ~ 112 A~ ~
L ) ’ = - - - )
Tir(X,Y,Z) HHd[Gx 6] HHd[GY 6] (14)

and consider the testing scheme: (X,Y,Z) = I[Tyr > 0]. The following theorem indicates that that
this testing scheme satisfies Eq. (10), as long as m,n lower bounded by some functions of the Kolmogorov
dimension D(T,¢/3).

Theorem 4.2. If the pair of integers (m,n) satisfies

96 96+/D(I',e/3
s % s VDR | TSDT /)
I3 3 £

the testing scheme ¥(X,Y,Z) = I{Tir > 0} with Tir defined in Eq. (14) satisfies Eq. (10).

(15)

The proof of Theorem 4.2 is deferred to Section B.2. The above upper bound characterization is with
respect to the Kolmogorov dimension. We wonder the relationship between the feasible region of the above
testing scheme and the minimax sample complexity of goodness-of-fit testing or density estimation with I'.
With the help of the relations in [DLM90] between the minimax density estimation sample complexity, and
the Kolmogorov dimension, we have the following direct corollary.

Corollary 3. Suppose ' is an uncondintional, compact, conver and quadratically convex set, then there
exists a universal positive constant co such that if the pair of integers (m,n) satisfies
cov/Nest (I, €/9
m > z—g, n O+(/) and mn > ¢ nest (T, €/9)%,
the testing scheme ¥(X,Y,Z) = I{Tir > 0} with Tir defined in Eq. (14) satisfies Eq. (10).

This corollary directly follows from Theorem 4.2 and the lower bound of the minimax density estimation
sample complexity from the Kolmogorov dimension for sets which are orthosymmetric, compact, convex and
quadratically convex. We next apply Theorem 4.1 and Corollary 3 to £, bodies with p > 2 (recall Eq. (11)),
which are orthosymmetric, compact, convex and quadratically convex from [DLM90]. Hence we have the
following characterization.

10



Corollary 4 (LFHT for ¢,-body with p > 2). For ¢, bodies given in Eq. (11), we define

i . 1

D(e)=min<neZ;:VOeT, Z(Hj)z/\ﬁﬁsz
je[D]

Then if there exists a testing scheme v such that Eq. (10) holds, then (m,n) satisfies

1 . | D(V2) D(v/2¢)

_HAVeE) d > _U\WV2E)
2 "Rz log(4D) ana s o log(4D)’

m>i n>\/D(E/3) and mn>D(E/3)
N627 ~ ~ 52 )

then there exists a testing scheme ¢ such that Eq. (10) holds.

mz

and if (m,n) satisfies

™

The proof amounts to applying Theorem 4.1 and Corollary 3 after noticing that mnes(e) = [)(6) for all
all £,-bodies, cf. [Joh19, Chapter 4].

4.2 Tight characterization of LFHT for ¢, Bodies with p <2

From the last section, we have both sufficient and necessary conditions of the feasible region of LFHT, in
terms of the density estimation rate. These characterization are tight for ¢, bodies where p > 2. However,
when p < 2, the set I' is no longer quadratically convex, hence Corollary 3 fails. In this section, we provide
tight characterization for ¢, bodies where p < 2.

Firstly, we recall the form of the testing region in [GP24]:

1

o N 2 Ngot(e) and mn 2 ngof(s)Q} )

{(m, n): m 2
and this work proposed a conjecture that for any set the testing region is always in the above form. While
the results in the previous section does not violates this conjecture, we wonder whether this conjecture holds
for £, bodies where p < 2. Surprisingly, it turns out the testing region for £, bodies is not in the above form.
This can be seen from the following theorem.

Theorem 4.3 (Informal). For given positive integer n and set of parameters T' given in Eq. (11), we define
function d(T',n,€) as
d(T',n,e) = max {d : (CLd)pnp2;2 2 52} .

Then the LFHT region for ' at scale € is given by

1 ar r
{(m,n): ng, nZ% and mnzd(;j’g)}. (16)

In the following, we will first present the results for finite dimensions (in Section 4.2.1 and Section 4.2.2),
and later we will generalize the results to infinite dimensional sets in Section 4.2.4. At the end of this section,
as an example, we revisit the set T' defined in Eq. (4), and we present the closed form of the feasible testing
region of this set.

11



4.2.1 Testing Scheme and Upper Bounds
We first let 6 = 1/32 and define

p—2 82
= : PpYm > —
dy(T',n,e) = max {d t(ag)Pn = 2 576 1og(4D]9) } . (17)

Suppose (m,n) satisfies

(18)

124, (T
,n) m>—, n>—————= an mnzin .
€ €

In this section we will come up with a testing scheme ¥ such that Eq. (10) is achieved. First of all, for cases
where m > n, if we let mg = n, then (mg,n) is also in the above region, and also mg < m. Hence without
loss of generality, we only need to construct a testing scheme for m < n.

Next, when mn > 1024d,(T,n,e)/e2, if m > 324/d.(T,n,e)/e?, we let mg = ng = 321/d, (T, n, )/,
then mog < m and ng < n, and (mg,ng) is in the region defined in Eq. (18), hence we only need to
construct testing for (mg,ng). If m < 324/d.(T,n,e)/e?, by letting ng = [512d, (T, n,c)/(e?>m)] we will
have m < ng < n, and (m,ng) satisfies mngy < 1024d,,(T',n,)/(e>m). We only need to construct testing for
(m,ng). Therefore, without loss of generality, we assume

1024d,, (T, n, ¢)
<t

mn
84

(19)

We introduce a testing scheme for £, bodies in this section. Inspired by the soft-thresholding algorithms
for density estimation, which are known to be minimax optimal for ¢, balls where p € [1,2] [Johl9] and
also the goodness of fit testing algorithms for ¢, bodies [Bar02], we design an algorithm for the setting of
likelihood-free hypothesis testing. To describe the testing regime, we use X = (Xy,--- ,X,,) to denote the

n i.i.d. samples collected from Py, Y = (Y1, -+ ,Y,) to denote the n i.i.d. samples collected from Py and
Z= (X4, - ,Zy) to denote the m i.i.d. samples collected from Pj.
To begin with, we divide those n samples (Xy,---,X,,) from Px and samples Yq,---,Y, from Py each

into two parts: let ng = |n/2], and

Xl:(Xla"' 7Xno)a XQZ(Xno-‘rl)"' 7X’n)7
and Y'= (Y1, -, YY), Y= Yuit,-,Yn).

We use é%, 9)2(, é‘}, é$ and 67 to denote the average of samples within X!, X2, Y', Y2 and Z, i.e.

1 & 1 < 1 &
bx=—> Xi ff=— > Xi f=—3Y
021 0 i—ro+1 031
1 < 1 &
93:77 > Y, and 9Z:EZZJ«.
0 i —mot1 j=1

The testing involves the following two steps:
(i) Calculating a subspace of small dimension such that Py and Py are different within the subspace;
(ii) Adopting the likelihood free hypothesis testing scheme in [GP24, (2.2)] within the subspace.

We will illustrate these two steps in detail:

(a) Calculating the Subspace: Our goal in this step is to use samples from X! and Y! to calculate a
subset T' C [D] such that

12



(i) Limit size: |T| < dy(T,n,¢);
(ii) Enough Separation: ), . ((px): — (py)t)Q > g2,

To achive this, we construct the following set T3, T> C [D] which satisfies Ty NTy = @ and Ty UT, = [D]:
T ={1,2,...,d,(T,n,e)} and To={dy(T,n,e)+1,d,(T,n,e)+2,...,D}, (20)

where dy (I, n, ) is defined in Eq. (17). For t € [D], we suppose the t-th coordinate of 1 and 6} to be
(64); and (6});. We further define

T3:{t: feTy and |(B1), — (1)) > 4 Qk’g(nw/‘s)} (21)

for some parameter § > 0 to be defined later. And we construct T'=T7 U T5.

(b) Testing in the Subspace: After obtaining the set T of coordinates the last step, we use the
samples within X2, Y2 and Z to do likelihood free hypothesis testing within the subspace formed
through coordinates in 7. The testing scheme is similar to [GP24, (2.2)], i.e. if we use (62),, (62); and
(f2); to denote t-th coordinates of 62, #2 and 6, then we define

Tie = 3 | (@3- 60)" = (- 601) ] (22)
teT
And we adopt the testing scheme ¥(X,Y,Z) = I{Tir > 0}.

We argue that the testing scheme obtained in the above steps is minimax optimal up to constants and
log factors. This result is summarized in the following theorem.

Theorem 4.4. For 1 < p < 2, if (m,n) lies in the region Eq. (18), the test Y(X,Y,Z) = I{Tir > 0} with
Tir defined in Eq. (22) satisfies Eq. (10).

The proof of Theorem 4.4 is deferred to Section C.1.

4.2.2 Lower Bounds

In this section, we show that the region in Eq. (16) is also necessary for the testing. We first define
di(T',n,e) = max {d : (ad)pin_2 > 19252} . (23)

This is summarized in the following theorem.

Theorem 4.5. If there exists a testing scheme v, which takes n samples from px and py and m samples
from pz, and ¢ satisfies Eq. (10), then (m,n) satisfies

i n> dl(rvnag)

dl (F, n, E)
= 22 ’

and mn >
96¢e4

m > (24)

g2’

The proof of Theorem 4.5 is deferred to Section C.2.
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4.2.3 Comparison with results of Baraud

In [Bar(02], the minimax sample complexity of goodness-of-fit testing for ¢, bodies is given. According to
[Bar02, Section 4.1] and [Bar(02, Section 4.2], for fixed positive n and ¢, bodies I' defined in Eq. (4), if we let

d= argmax{\jﬁ /\a3~d1_2/p},
d

then the goodness-of-fit testing can be done if and only if €2 > %. Hence the goodness-of-fit testing region

at scale ¢ satisfies
d(T',n,e)

n 2 g

where d(T',n, e) is given by
d(T',n,e) = max {d : (ad)pnp%2 > 52} .
We notice that this form of d(T', n, €) is similar to the form d,(T',n, ) and d;(T',n,€) defined in Eq. (17) and
Eq. (23).
4.2.4 Generalization to Infinite Dimensional Sets

In this section, we generalize Theorem 4.4 and Theorem 4.5 to infinite dimensional ¢, bodies. For a given
positive non-increasing sequence ay > as > - -+ > a,, we consider set

F_{o_ (01:00) : pr } (25)

To guarantee the compactness of the set I', we assume that lim;_,., a; = 0. To begin with, we recall the
definition of the coordinate-wise Kolmogorov dimension in Definition 2. For this set, we can easily check
that

D.(T,e) =min{D >1:ap <e}. (26)

Then we can characterize the feasible region of likelihood-free hypothesis testing in the following theorems:

Theorem 4.6 (Upper Bounds for Infinite Dimensional Sets). For set I' in the form Eq. (25), we let the
Kolmogorov dimension of I' at scale € to be D(I',e). We further define

. . Py €/9
du(rvnvg) = max {d ! (ad) " - 576 log(4D (F 6/3)/5)}

Then if (m,n) satisfies

m,mn) : m>—, n>——-—-""" qand mn>

g2 e

{( 32 32/do (T, n, ) 512d, (T, n, ) }

then if we adopt the testing scheme ¢ defined in Section 4.2.1 with D = D¢(T',e/3), then 1 satisfies Eq. (10).
Theorem 4.7 (Lower Bounds for Infinite Dimensional Sets). For given T, we define

d;(T,n,e) = max {d : (ad)pn%? > 19252} .
Then any (m,n) such that there exists a test ¥ which satisfies Eq. (10) must satisfy

d;(T
l’ n > l( 7”75)’ and mn > dl(ranvs)
g2 2e2 96e4

The proof of Theorem 4.6 and Theorem 4.7 are deferred to Section C.3.

m >
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4.2.5 Examples

We revisit the set defined in Eq. (4). In this section, we will calculate the feasible region of likelihood-free
hypothesis testing for set I', which is summarized in the following proposition.

Proposition 5. The feasible region of (m,n) of likelihood-free hypothesis testing for set T' defined in Fq. (4)
contains the following set:

{(m,n) o m>e? n2e T log?®(1/¢), m - n? > 5_6log(1/5)} ,

and is contained by the following set:

- 12 3 _
{(m,n): m>e %, n>e 5, m-n2 ¢ 6},

where we use 2, to hide universal constant factors.

The proof of Proposition 5 directly follows from Theorem 4.6 and Theorem 4.7 after noticing that
D(T,e) =1/e and

log(1 1
< M, and d;(T,n,e) 2 :
N n - e?

Note that this proposition also provide a hard case where the conditions of likelihood-free hypothesis testing
region do not hold in [GP24, Open Problem 4].

dy (T, n,e)
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A Analysis between Density Estimation and Goodness-of-fit Test-
ing

A.1 Proofs of Proposition 2 and Proposition 3

Proof of Proposition 2. Our proof is divided into two parts: the lower bound to the density estimation sample
complexity and the upper bound to the density estimation sample complexity.

Lower Bound to Density Estimation: Without loss of generality we assume (2¢)~2/% is an integer
(otherwise we replace & by | (2¢)~2/3]~3/2 /2 and the argument follows only up to constant). We first construct
a infinite-dimensional rectangle which is a subset of I:

M:{0:(91792,-~-):|9i|§(25)4/3, V1<i<(26)723, and 6, =0, Vizd}.

We can verify that for any 8 = (01,6s,---) € M,

oo (2¢)72/3
Siel< Y i-@oY<
i=1 i=1

Hence @ € T'. Therefore, M C I". We next lower bound the density estimation error of estimation using n
samples: according to [Joh19, Proposition 4.16], we have

inf sup E [ [0, —0]12] = (25)7%*-inf swp  E (B, —0)?],
0, 0cM 0n 10]<(26)4/3

where §n denotes an estimator with n i.i.d. samples coming from A/ (@, I), and én denotes an estimator with
n ii.d. samples coming from N (6, 1). Next, according to Van trees inequality [VT04] (also in [Joh19, (4.9)]),
we have {1
inf sup E [(Hn - 9)2} > — A= - (2083
On |0)<(2e)4/3 2n 2
Hence we obtain that
~ 1
inf E[0H—02}>2 23— A (26)¥3) =282 A ———
inf sup | 7] > (2¢) 5, N\ (29) SN o ey
Hence in order to achieve no more than 2 density estimation error (i.e. Eq. (8) holds), we require
—8/3

4

Nest (T, €) > (27)

Upper Bound to Density Estimation: Next, we construct an estimator which will achieve €2 density
estimation error (i.e. Eq. (8) holds) with no more than O(e~%/3) samples. For n samples X = (X'") where
cach Xi % N(0,I), we consider the following estimator: let §(X) = (517 By, - - ) =1%" | X, and further
construct estimator 8(X) = (61(X), 62(X), - - ), where

i 6x(0;) V1<i<D,
‘o i>D,

where A > 0 and D € Z, are parameters to be specified later. Here d,(-) : R — R is the soft-thresholding
function defined as:
T— A\ T > A,

Irz)=10 “A<x <A,
x4+ A <=\
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We will show that with proper choices of A and D, the density estimation error can be upper bounded by
2 with n = O(1/¢%/3) number of samples. We write X = (X!, Xi,---). Then we have X}, Xz, X7 £
N(0;,1) for any j > 0. And we only need to verify for some choice of A and D,

i]E [@(X) - eg)?] < &2

When j > D, we have gj(X) = 0, hence

Thus, we obtain

j=1
D nA? S 5 1 9 = 9
< . eXP (—2) +Zm1n{9j,n+)\ }-l— Z 03
Jj=1 j=D+1
Since § € ©, we have
oo
doi-lol <t
j=1
If we choose D = [2/e], for § = (01,05, --), we will have
2
= 1 . 1 g
> < | X il << (28)
j=D+1 j=D+1

D 1
Zmin{G?,n—F/\Q}. (29)

Since set {(01,--- ,0p) : Z]D:lj -10;] < 1} is compact, there must exists some (61, -- ,0p) which maximizes
(29). Without loss of generality we assume |6;] < \/1/n+ A2 (otherwise truncate the value of all 6; to
interval [—+/1/n+ A2,1/1/n+ A2] and it results in another maximizer). Further if there exists ji # Jjo
which both satisfy 0 < |0;] < y/1/n+ A2, then by slightly modifying #;, and 6;, we can make (29) larger,
while keeping the parameter still in the set. This contradicts to the assumption that (61, ---,0p) is a
maximizer. Therefore, there exists at most one of 1 < j < D which satisfies 0 < |0;] < \/1/n+ A2. We let
integer IV to be the smallest integer such that

N(N -1 /1
Q. ,+)\221_
2 n
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Then the maximizer has at most N nonzero items, which implies
D

1 1
sup Y ming 67, =4+ NP <N (=A%),
S jley1<1 T n

Finally, we choose A = (£/8)%/3. When n > (¢/8)%/3 - 4log

—~

1/e) we have

1
N<2-(g/8)7%3 and = < A2
n
which implies
D 1 f g2
Zmin{@?,+>\2} <2-(g/8)723 . 2)2 < 5 (30)
i=1 "
Further according to our choice of n we have
D nA? g2
— —— <= 1
e (1) <5, (31)
Combining Eq. (28), Eq. (30) and Eq. (31), we obtain that
D nA? N (P - Y-CE-C B
—exp (2) +jzlmm{9j,n+A }+ ’;kloj <THTtT =
— j=

Therefore, we obtain
g\ —8/3 1
nest(rag) < (7) ~dlog (- |. (32)
8 €
Above all, according to Eq. (27) and Eq. (32), for set I" defined in Eq. (4), we have
Nest (T, €) = © <€_8/3) )

O

Proof of Proposition 3. Our proof is divided into two parts: the lower bound to the goodness-of-fit testing
sample complexity and the upper bound to the goodness-of-fit testing sample complexity.

Lower Bound to Goodness-of-fit Testing: For any fixed distribution p € A(R*), we define
distribution Py x to be the distribution of (X,Y,Z) sampled according to the following way: first sample
0 ~ u, then sample X = (X!7) s N(6,I). And we define distribution P; x to be the distribution of

X = (Xtn) B N(0,1). According to [GP24, Lemma 5], we have the following lower bound on the testing
error (left hand side of Eq. (7))

inf max sup P(¢(X) #1i) >

nf (1 =TV(Po,x,P1,x)) — u(I) — u(B2(e)), (33)
i€{0,1} peH;

M| —

where T'¢ is the complement of set I', and Bz(e) denotes the £2-ball of radius e. We next construct such a
prior u. First of all, we choose u to be supported in the following subset of I':

Pg={0=(01,02,---):0 €L, 0411 =0q42="--=0} CT,

where d is some positive integer to be specified later. Since for any X* ~ N (8, I), the first d coordinate X7 ,
of X* only depends on 61, -- , 604, and the rest coordinates are pure i.i.d. standard Gaussian noises, in order
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to lower bound the goodness-of-fit testing sample complexity of Iy, without loss of generality we only need
to consider the first N coordinates, i.e. we can ignore coordinates larger than N and assume I'y C R%:

d
Fd={9=(91,92,~-~,Hd):Zi-|9i|§1}. (34)

i=1

Next, we construct a distribution p € A(T'y) with T'y defined in Eq. (34). For some one-dimensional
distribution ¢ € A([—1, 1]), in the following form:

a() = (L= B)o() + 56:() + 56+,

where h € (0,1) and r > 0 are parameters to be specified later, we consider the following product distribution:

d

n=Qa e ARY, (35)

i=1
Next, we will lower bound the right hand side of Eq. (33). First we notice that
TV(Pox,P1.x)* < x*(Prx|Pox) — 1.

We next adopt the Ingster’s trick in [Ing87] and further upper bound the y2-divergence: if we use @g(+) to
denote the probability density function of A(8,1p), we have

n N enns (ot
X*(P1x|Pox) =E, ua / Mdzl coodz"| =E_ 4 [exp(n-(0,0'))]
(RP)" o0=n

0.0 2o(#)

Since p is the product distribution defined in Eq. (35), we have

d 2 2
E&o,%u[exp(n. 0.0'))] = H (1 + hZ - (exp(nr?) — 1) + % - (exp(—nr?) — 1)) .

=1

When nr? < 1, we have
exp(nr?) + exp(—nr?)
2

— 1< n%r.
Therefore, when dh?n?r* < 1, we have

d 2 2
I_Il (1 + — - (exp(nr?) — 1) + hZ - (exp(—nr?) — 1))

4
<1l 1+h—2 -n2r?) <1+ dh*n?rt
— J 2 - )
which implies that
TV(PO’)(, PI,X) S dh2n2r4.

According to Hoeffding inequality, for any é > 0, with probability at least 1 — § we have

d

Zi 10;] < d-dhr+d-r-+/2dlog(1/6).

t=1
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Additionally, again according to Hoeffding inequality, with probability at least 1 — § we have

d d
3102 = S 10:2 > dhr? —r? - \/2d10g(2/6).
t=1

t=1
As long as d > 12/h?, we have with probability at least 4/5,

d d

> i |0s| <2dhr and Y6, >

t=1 t=1

1
—dhr?.
2

Hence if 2d?hr < 1 and dhr?/2 > 2, we have

p(@ €T°) + u(@ € Ba(e)) <

(S

Finally, we choose

1
d:5*4/5, h:1—652/5 and 1= 89%/°,

Then if n < e'2/5/64 we have nr? < 1 and also dh?n?r* < 1. We can also verify that according to the
above choices of (d,h,r), d > 12/h?, 2d?hr < 1 and dhr?/2 > &2 always holds. Hence have

(@ € T¢) + (0 € By(e)) <

and also

1 1 1 1
inf Pp(X)#d)>=-(1—— ) -2 >=.
Hli ig{l(?,)f}ﬁélgi (W(X) #4) 2 2 ( 16) 5 ” 4

Upper Bound to Goodness-of-fit Testing: Given n samples X = (X!") S N(8,1;), we design a

test for the testing problem Eq. (6). We let D = 2/e, and d = e~*/®. For any 1 < i < D, we let
~ 1
0, = — ZXf ,  where X/ is the i-th coordinates of X".
gt

Consider the following test:
(i) If Z‘Z:l(@)Q < e?/2 and maxg<i<p @| < g, we accept the null hypothesis # = 0;
(i) It 5%, (0;)% > 2/2 or maxa<i<p |0i] > €, we reject the null hypothesis § = 0.

Suppose the above testing scheme is 1. Next we will verify Eq. (7) for the testing scheme 1 as long as the

number of sample satisfies

16
n>e1%log <€> . (36)

First we verify the case where i = 0, i.e.

sup P(1(X) = 1) <
PeH,

(37)

N
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Notice that when @ = 0, we have

Hence we only need to prove that

d 2
~o € 1 ~ 7
) ]l <z | < > —.
P ( E (0;)° > 5 ) s and P (d-&?j& 6] 5) g (38)

i=1
To verify the first inequality of Eq. (38), we calculate

d

Z(@-)Q}:d and Var
n

i=1

E

d
Z(@-)?] ==

i=1
Hence according to Chebyshev inequality we obtain that when n satisfies Eq. (36), we have

4 g2 d/n? 1
P <Z(91)2 > 8) < m < 3

i=1

Additionally, since 6; B N(0,1/n), when n satisfies Eq. (36), we have

. D—d 7
1< 6/5) — ( _ 6/5 ) S1_-D. 6/5 ~1_-D. (7 12/5) >0
P <d+r1n§ai>§D 10;] <e > 1—1(e%°v/n) >1—D-p1(e¥°n)>1—D-exp(—ne >3

where 1 (-) is the probability density function of one-dimensional standard normal distribution. Hence both
inequalities in Eq. (38) are verified.
Next, we verify Eq. (7) for the case i = 1, i.e.

sup P(¢(X) = 0) <

1
= —. 39
PcH, 4 ( )

We only need to show that for any § € I with ||@]|2 > €, we always have

Exiinion [WX)=1] <

Notice that when X - N(6,1), we have f; ~ N(0;,1/n) independently. For @ € I which satisfies ||0]|2 > e,

we have
') oo 0o 9
> (3 )< g (3 em) <

i=D+1 i=D+1 i=D+1
which implies that

i=1 i=d+1 i=1

Therefore, we have either 2?21(01-)2 > e2/4, or Zf):d+1(9i)2 > 2/4. If we have Z?:1(9¢)2 > g2 /4, since
0; ~ N (6;,1/n) independently, we can calculate

d d
SCEES YOS
: 4_ 4 2d
Var 2(92)2] = Z(@Z)2 + )
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Therefore, according to Chebyshev inequality we obtain that when n satisfies Eq. (36)

d 2 4 d 2, 2d d 2
S € Lo+ Sl €
P (ZW s 8) S e g S benee P (ZW 2 8) 2
i=1 |Zi:1(9i) + n §| i=1

Next, we consider the case where Zid+1(9i)2 > 2/4. We notice that

D D 1 D 1
)2 < 1. ) Z. AR )
Z«m_<§2&0dﬁﬁDM d(iizmodﬁaDJ—dﬂgwﬂ’

i=d+1 i=d+1 i=d+1

=] W

IN

which implies that
2

max |6;| >d- —>56/5
d+1<i<D 4

Since 6; ~ N'(6;,1/n) independently, when n satisfies Eq. (36), we have

IP’< max _|0; — 0;] < 56/5) = (1 — ¢ (%5y/m))P~4

d+1<i<D
> 1D (Vi) 21— D-exp(—ne'/?) > 2,
which implies that
P (o, 012) 2 ¢
According to the form of the testing scheme v, we verified Eq. (7) for the case i = 1. O

A.2 Proofs of Theorem 3.1 and Corollary 2
In order to prove Theorem 3.1, we first bring up the following property of orthosymmetric convex sets.

Proposition 6. Suppose I' C R? is an orthosymmetric set. If T' is also convex, then for any 6 =
(61,---,0p) €T and a = (ay,--- ,ap) € [-1,1]P, we have 8 -a = (a101, a0, ,apfp) €T.

Now we are ready for the proof of Theorem 3.1.

Proof of Theorem 3.1. Without loss of generality, we assume that nes(I',e) > 4. Our proof proceeds as
follows. First, we consider parameter estimation via soft-thresholding. We show that there must exist 8*
in T such that [|8*||? < €2 and each entry |0} < nest (T, €)= /?polylog(n, e) (for otherwise, soft-thresholding
estimator would beat the optimal sample complexity of estimation). Second, we use Ingster’s method of
simple (@ = 0) vs composite (0 = (£67,...,+07)) hypothesis testing to lower bound the goodness of fit
sample complexity ngoe (I, €).
First Part: Density Estimation Rate: We define the soft-thresholding function sth : R x (Ry U
{0}) - R:
T — A\ if x> A,
sth(z,\) =10 if —A<z<A (40)
T4+ A if x < —A.

For some 6 € T, given n samples X = X" ~ A(0,1p)®", we construct the soft-thresholding estimator
“n ~ L
Oy, = (07, ---,07%) as follows: for any j € [D], we choose

)
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where we denote X' = (X%, Xi,---, X1), and we let

An) 2 \/210g (2D/(ne?)) V O. (41)

n

~n
We let ngn(e) to denote the smallest n such that 8, induces expected estimation error €2 for all § € T,
ie.

Nstn(€) = min {n :supE {H@:th — HHZ} < 52} . (42)
1SN
Since nest (T, €) is the minimal number of samples in order to reach expected estimation error €2, we have
nsth(g) 2 nest(l—‘vg)-

According to Eq. (42), we have

2

~ngen (€)

E 0., —6| | <& 43
3‘2‘3 lemww“w(o’lf’)[ " 2] = )
and for any n < ngn (),

~n 2
. _ 2
SUDE M, 10) U Ostn "M = (44)

Next, according to [Joh19, (8.7), (8.12)], we have for any positive integer n and 8 = (61,--- ,0p) € T

that
~n 2 1 A(n)? 1
E 0., —OM <> —exp (_n (2n) ) +min{9§,n +/\(n)2}’

X1 N (0,10) U

which implies

0., — 0"2] < sup {ZD: % exp <—M(2n)2> + min {93, % + )\(n)Q}} .

With our choice of A(n) in (41), we have for any 1 <14 < D,

D
Zl 2 2 1 1+ (2log (2D/(ne?

exp(_n)\(n)>§€2 and *+)\(7’L)2< +( Og( /(5))\/0)
—'n n

2 - n ’
=1

supEx, . ~n0,1p) U
6er

which implies
n 2 52 & . 2 1+ log (QD/(nEQ))
0st110H2] < 5 tsup E mm{@i, }

n
S

supEx,, ~n(0,1p) U
ocr

We define set L C RP as
2D/ (ne?
L—{e—(el,...,gD)‘|9i|§\/2log( /( ))v0+1}

n

Note that according to Proposition 6 we can replace supgcr with supgepn;, obtaining

min {92 2log (2P/(ne?)) V0 4 1 }
R n

D

0y
0l i1

D
2log (2D/(ne? 1
= sup g min{é)iz, 08 (2P/tn<) VO + } sup [|6]]2.
6eTNL ;= n

26



We choose n = ngn(e) — 1. Since I' N L is compact, the above supreme is achieved at some 0" =
(07,---,05) € I'N L, which has two properties. On one hand it satisfies

107] < 210g (2D/((ness(e)—1)e*)) VO + 1 )
T nsth(g) -1 ’

On the other hand, according to (44), we obtain that

D 2 2 2
~ngen () —1 € €
)2 >s E ii ' — - > —.
;(Gl) 2SR N | O 0 1-323
Additionally, according to [Joh19, Lemma 8.3], we have for any positive integer n and 8 = (0, --- ,0p) €

T,
oH ] > me{af,;ﬂ(n)?}

We choose n = ngn(e) and @ = 0" = (05,--- ,05,) defined above. (43) implies

Exl ZMN(8,1D) [

2
~Nsth (€)

osth -0

] < 22,

* 2
Zmln{ 9 nsth( ) +>\(n5th(€)) } S 2supIE)(I ngth(s)u'gN(o ID) l

ocr 2

Further when ng, () > 4, Eq. (45) gives that for any i € [D],

1

Nsth (5)

1 210g (2P/(nem(e)e?)) VO + 1
nsth(€) nith(g)
1 21og (2D/((newmn(e)-1))e%)) VO + 1
=3 Neen(€) — 1

+ /\(nsth(g))2 =

1 *
> (07

Hence we obtain that

Z 2< 4Zm1n{ (07)? nsth(E) + )\(nsth(e))Q} < 82,

i=1

Overall, we constructed 8* = (05, --- ,0%) € T’ such that

(a) For any 1 <i < D, |07| < \/210g(2D/((”e:.t(5) De?)VO+1

ngen(e)—1
(b) S27.,(6)% > /.
(©) 2, (67)? < 8e.

Second Part: Goodness of Fit Rate: Suppose we already identified 8 which satisfies (a), (b) and
(¢). We consider distribution v =v1 @ v, ® - - - ® vp where v; € A(R) is given by

So-() 6o (-
vi() = ei2()+ 921.().

Since 8" € T" and T is orthosymmetric, we have v € A(T"). And (b) gives for any 8 € supp(v), we always
have ||@|| > ¢/v2. Thus, according to [IS12, Proposition 2.11], for any testing scheme 1 with n samples for
the following testing problem:

Hy:0 =0 versus 162 >

275
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ncst(FaE)

as long as n S Wg(QD)

, we have

sup P(A(X) #1) + sup P(S(X) #1) > 1~ STV(Bous[P5"], ™),
PeH, PeH;

where we denoted Py = N'(8,Ip). Hence, if we can show that the TV > 1 for a certain value of n it must

imply that ngoe(T',¢/v2) > n. We will indeed show that n = W&ZD) works.

To that end, we first use a standard bound [PW25, Proposition 7.15]

n n 1 n
TV(EPNM(U) [P® ]7P0® ) < \/4X2 (EPNH(V) [P(Xm}HPO@ )

Next, we have the standard bound of Ingster

2 (EPNIL(V) [P®”]||PO® ) < Hexp <2n2(9i )4> —1=-exp (2 Z(Qi )4 -1,
i=1

i=1

where (i) uses [Ing87, (3.68)] and the inequality 1 exp(z) + 3 exp(—x) < exp (32?). Next according to (a)
and (c), we obtain that when neg (T, &) > 4,

i(e;ﬁ)‘* < (Ig[ag] 92‘|)2 : <§(97)2>

210g (2D/((ness (e)—1)e?)) VO + 1 < 642 log (2P/(nest(Tye)e?)) V.0 + 1
Nstn(€) — 1 - Nest (I, €)

< 8¢2

Next, we notice that when the diameter diam(T") of " is less than ¢, then the density estimation rate neg (I, €)
is zero, hence the inequality in Theorem 3.1 obviously holds. When diam(I") > €, the density estimation
complexity nes; (T, €) satisfies nes (I, €) > 2. Hence we obtain that

log (2D/(nes (Te)e?)) V 0+ 1 < log(2D)

Hence when n satisfies

nQ < nest(FaE)
= 64¢2 -log(2D)’
we have 9
X (Eput [P FS™) < exp(1/2) 1< 2,
completing the proof. O

Proof of Corollary 2. We fix ¢ > 0 and let D = D.(T',e). According to the definition of coordinate-wise
Kolmogorov dimension Definition 2, there exists a subset A of Z, such that

Without loss of generality that we assume A = {1,2,---, D}, and we use IIp to denote the projection
operator onto the first D coordinates.

We construct I'p = {IIpf : @ € T'}. Then for any density estimator 517 for I'p, we can construct a density
estimator 8: when taking X, we define estimator 0 as

0(X)=( 6:(X),0:(X),--,05(X) ,0,0,---),

first D coordinates match 5D(HDX)
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where IIp X denotes the data after taking projection IIp for all elements in X. Then we have for any § € T,
E 116 - 8(X)|13] =B [0 — 8o (I X) 3] + ITIp0 — 6] < B [IT1p8 — O (1 X) 3] + 26
Notice that IIp X can be viewed as i.i.d. samples collected through N (I1p@, Ip), we obtain that

Nest (F; \/35) S Nest (FDa 5)' (46)

Additionally, since I" is orthosymmetric and convex, we have I'p C I'. When carrying the goodness of
fit test for I'p, the data after D-th coordinate are generated according to N'(0,1) and independent to the
parameter 8 € I'p. Therefore, carrying goodness of fit testing to I' is no easier than carrying goodness of fit

testing to I'p, which implies
5 €
ngof <F7 \/i) 2 ngof (FD7 \/§> . (47)

Since I' is compact, orthosymmetric and convex, I'p is a D-dimensional compact, orthosymmetric and
convex set as well. Hence Theorem 3.1 implies that

2
£ 1 nest(FDae)
I'p,— | > . .
Tgof ( = \/§> = 64log(2D) e2
Bringing in Eq. (46) and Eq. (47), we obtain that
2
nor (1,52) > 1 st (T, V/3¢)
V2 64log(2D) g2
_ 1 st (T, V3 s)
~ 64log(2D) g2

O
A.3 Discussion between Kolmogorov Dimension and Coordinate-wise Kolmogorov
Dimension

For any orthosymmetric set I, we have the following relationship, which provides an upper bound of the
coordinate-wise Kolmogorov dimension D (T, ) in terms of the traditional Kolmogorov dimension D(T,¢).

Proposition 7. For any orthosymmetric, convex, compact set I', we have

p(r o) 2

The proof of Proposition 7 requires the following lemmas.

Lemma A.l. Suppose set A = {e1, - ,e4} consists of orthogonal unit vectors. Then for any (d — 1)-
dimensional projection 11, we have
1
max |le; — 11 > — 48
i e Tl ]| > . (48)
Proof of Lemma A.1. Suppose vy, ,vg_1 to be a set of orthogonal basis of the image of projection II.
Then for any i € [d],
d—1
2
lles — Tile][|* = [les | — |[Tes]||* = 1= > (es, v;)?
Jj=1
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which implies that

d d—1 d-1 / d
ZHel— [e:]] :d—z (ei,vj)de—l (Z(ei,vj>2>.

i=1j=1 j=1 \i=1
Since eq, - - - ,eq are orthogonal unit vectors,
d
Z<eiavj>2 = ||Hspan(e1,---,ed)[vj]|’ < 17 Vj € [d - 1]7
i=1
where the above II denotes the projection onto the space spanned by ey, -+ ,e4. Therefore,

ZHeZ e[| >d—(d—1) =1

which implies Eq. (48). O
Lemma A.2. For orthosymmetric, convex, compact set I, suppose d = D (I',e) — 1, then there ezists d
orthogonal vectors uy, -+ ,Uyase) € ' such that for any 1 < i < |d/2], ||lul| > ¢/V4d.

Proof of Lemma A.2. Suppose eg,es,- - are unit vectors of each coordinates, and we let v; = sup{v > 0 :
ve; € I'}. Then since T is closed, we have v; = v;e; € I'. Without loss of generality we assume vy > vy > - -
Then according to the definition of coordinate-wise Kolmogorov dimension in Definition 2, we have

D
Z (v;)* > €%
i=d+1
If vg > £/+/d, then by choosing u; = v;, these vectors satisfy the conditions. Next we assume vy < £/v/d.
To construct uy,--- ,u|4/2), we initiate the following process: letting u; = Zf;d+1(vi)2, where kp is the
smallest number such that |[u;|| > ¢/v/d. Then let uy = Zfik1+1(vi)2 where ko is the smallest number such
that ||ug|| > &/+/d, and so on. Since v; < vq < £/+/d holds for any i > d + 1, the above construction gives

that
J3s
7 Vi

Therefore, since Zidﬂ(m)z > 2, the above process can proceed at least |d/2] times. Hence it is eligible to

< i <

construct uy,--- ,u|q/) 5o that [u;|| > £/+/d holds. Tt is easy to verify that uy, - - - ,U|4/2] are orthogonal.
And since T' is orthosymmetric and convex, we have u; € T" for any 3. O

Now we are ready to prove Proposition 7.

Proof of Proposition 7. Let d = D.(T';e) — 1. According to Lemma A.2, there exists orthogonal vectors
Ui, , Uy € I such that ||u;|| > e/V/d. By injecting orthogonal unit vectors v/du; /e into Lemma A.1,

we have
€

gy o~ > s >
where the infimum is over all possible |d/2] — 1 projections. Since u; € F, we obtain that
€
D.(T,e)’
Hence we have the following lower bound to the traditional Kolmogorov dimension:

inf max ||lu — H[u]|| >
II uel

- 2.
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Proposition 7 has the following direct corollary.

Corollary 5. Suppose orthosymmetric, convezx, compact set I' satisfies D(T',e) < e™P for some 0 < p < 1.
Then the coordinate-wise Kolmogorov dimension satisfies

D(T,e) S e7P/0=p),

A.4 Alternative proof of Proposition 4
We present a version of the second inequality in Proposition 4 in this section.

Proposition 8. Suppose I' any set such that the projection estimator is minimax optimal up to constants,
i.e. there exists a positive constant ¢ such that

. 2
inf sup E [HH(X) —0|3| <c-infsupE {HG(X) — OH ] ) (49)
II ger 6 ocr 2

where II denotes the class of projection estimators, and 6 denotes any estimators. Then we have

8lnest (I
g (I, 2/62)? < 2ol DE)

We remind that [DLM90] famously showed that (49) holds for QCO sets. Thus, the result above strictly
generalizes second inequality in Proposition 4.

Proof. We let D(T',\/ce) to be the Kolmogorov dimension of set I' at scale y/ce (the definition of Kolmogorov
dimension is given in Definition 1). We use S* to denote the D(T', 3¢)-dimensional subspace which achieves
the minimizer in the definition of Kolmogorov dimension Definition 1, and Ilg- is the projection into S*.
According to [Bar02], as long as n > 94/D(T,/cg)/(ce?), there exists a constant ¢ such that the testing

scheme )
1 n
Y(X) =1]|s- HZXZ“| >cl,
i=1 2
satisfies
1 1
PXiiNdN(OJ)(zZJ(X) =1)< 1 and IPXi’i\(}N(e,I) W(X)=0) < 1 for any |02 > 2v/c.

This implies that

94/ D(T, \/ce)

ngof(ra 2\/66) S 052

Next, according to Eq. (49),

Y

Ol= ol

. ~ 2
e oo

. 2

-lrﬁfgteurﬂE [HH(X) —HIIQ}

. d
-inf {lr?fi?r’ {IIHd(G) — 0l + n}} :

where infy; denotes infimum over all projections. Hence when n < D(T,+/cg)/(ce?), for any integer d <

D(T, Vee),

>

d
infsup{ndw») o3+ } > inf sup [T1,(8) — B3 > (v/ee)? = e,
a ger n a ger
and when d > D(T', \/ce),
d d
inf I,(0) — 0|2+ = p > — > 2.
llllldglelg{ll a(0) — 03 n} > >ce
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Therefore, we obtain that

~ 2 ce?
infsupE MO(X) —0” ] > =g
6 6cr 2 c
which implies that
81D(T, \/ce)

81nest (Fv 5) Z C€2

> &% - ngot(T, 2¢/ce)?.
O

We note that we use [DLM90] to show that a quadratically convex and orthosymmetric set © has a lower
bound on the estimation sample complexity nest 2 Ds(f). This result would automatically follow if we could
show a geometric result that any such set necessarily contains 2 D(e) orthogonal vectors of length ¢ (or,
equivalently, contains a ball of dimension D and radius €), since then the lower bound would follow from
standard results on Gaussian location model, e.g. [PW25, Theorem 30.1]. We summarize this observation

into the following conjecture. It is an interesting question in convex geometry to prove or disprove it.

Conjecture There exist universal positive constants c; and ¢y such that for any orthosymmetric, compact,
convex and quadratically convex set O, there exist D(0©, ¢1¢) orthogonal vectors of length (cqe) all contained
within ©.

B Analysis of LFHT for General Convex Sets

B.1 Proof of Theorem 4.1
Proof of Theorem 4.1. Same as the proof of Theorem 3.1, there exists 8° = (65,--- ,6%) € T' such that

(b) Z?:l(ef)z > 2.
() 324, (67)% < 16e2.

Next, we use these three properties to bound the LFHT testing region of set I'. First of all, according to
[GP24, Proposition 1], if (m,n) lies in the LFHT testing region, we must have

1 1 Nest (F7 \/55)
m>— and n > nge(le) > : . (50)

g2 8y/log(2D) €

where the last inequality follows from Theorem 3.1. Hence we only need to verify that if (m,n) lies in the
LFHT testing region, then

Nest (T, v/26) — 1
> Mest\l, V28) = = 51
"= 3072¢2 1og(2D) (51)

Without loss of generality, we assume

nest(F7 \@5) -1
1924/log(2D)

: (52)

otherwise the inequality Eq. (51) follows from the lower bound to n in Eq. (50). Next we will verify that if
(m,n) satisfies
nest(F7 \/55) - 1

< ——J Z 53
"= 307262 - log(2D) (53)
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then Eq. (10) fails.
For any fixed distribution p € A(T"), we define distribution Py xy z to be the distribution of (X,Y, Z)

sampled according to the following way: first sample 8 ~ pu, then sample X = (X1") id N@,Ip), Y =
(Y1) X N(0,1p) and Z = (ZV™) X (8, Ip). And we define distribution Py xyz to be the distribution
of (X,Y,Z) sampled according to the following way: first sample @ ~ pu, then sample X = (X!") i
N(O,Ip), Y = (Yi") X N(0,1p) and Z = (Z¥™) % N(0,1p). Similarly, we can define distribution
Po,xz,P1,x2,Po,x,P1,x, and also conditional distribution Py |x and P; 7 x. Then [GP24, Lemma 5] gives
that for any such p supported in I'\ By(¢),

inf max sup P(¢Y(X,Y,Z) #1i) >

1-TV(P P ) 54
¥ i€{0,1} peH, ( ( 0,XYZ, 1,Xyz)) (54)

DN =

In the following proof, we choose distribution p € A(T') to be the product of symmetric ternary distributions,
i.e. for 6, = (91, s ,GD) el

According to (c) and the property of orthosymmetric, we have p € A(I"). We can also verify that for any
6 = (61, ,0p) which belongs to the support of y, we have |0;| = |0F| for any j € [D]. Hence

D D

1613 => (6> = (6;)* > ¢*,

j=1 j=1
where the last inequality uses (b). This verifies that p is supported in I'\ By(e).
Next, we will calculate the TV distance TV(Py xyz,P1 xvz):
TV(Po xyz P1,xvz)? = TV(Po xz,P1,x2)* < Dxi(Po,xz || P1,x2)
= DkL(Po,zx || P1,zx | Po,x) + DxL(Po,x || P1,x)
= Dk1L(Po,zix || P1.zx | Po,x) < x*(Po,z1x || P1.z1x | Po,x). (55)

Hence in order to bound the above TV distance, we only need to upper bound the conditional y2-divergence
in the right hand side. Using @g(-) to denote the density function of A (8, Ip), according to Ingster’s trick
[Ing87], we have

X*(Pozix || P1,zix | Pox) +1

_ , T ve(z)eer(2)
= Ex~p, x _Ee|x,o X l/(RD)m tl;[l o(2) dzy - - dz,, | XH
= EXNPO,X [E0|X,9’\X[6XP (m(O,G’)) | X]]
D
= Exrox | [ (P(6; =6} | X) - exp(m(6;)?) + P(0; # 0} | X) - exp(—m(6;)?))
j=1
. B
=[] Exrox [B(0; = 0} | X) - exp(m(6;)) + P(6; # 0} | X) - exp(—m(67)*)] . (56)
j=1

where 6,0" are i.i.d. sampled according to P(@ | X), and the last equation uses the fact that conditioned on
X, we have (6;,6}) independent to each other for any j € [D]. In the following, we write X = X" which
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denotes the n samples, and we further denote X* = (X1, - 7X}‘))7 where X; denotes the j-th coordinate of

X%, We notice that 0; only depends on X}:” = (le, “ee 7X;l). According to Bayes rule, we can calculate
Pr(X}n n=1)
PH; =1|X) = J
( J | ) PI"(X;”LJH — _1) + PI’(X;:n,nj — 1)
) T, exp (—X5 - 03)2/2)
[T, exp (—(X;» — 9;)2/2) + [T, exp (—(XJ’» + 9;)2/2)
exp (07 - 205, Xj) +exp (=07 - 21, X))
Similarly, we get
exp (=05 - Y0 . Xt
P(9; = —1|X) = _ fp(iﬂ iz J*) S— (58)
exp (ej i1 Xj) +exp (_ej i1 Xj)
In the following, we use [0, 1]-valued random variable p;(X) to denote
pj(X) = ]P)(GJ =1 | X)7 Vj c [D]
We further notice that 0;- and ¢; are i.i.d. conditioned on X. Hence we obtain
P(0; = 0} | X) - exp(m(6)?) + P(6; # 0} | X) - exp(—m(6;)?)
= (p;(X)? + (1 = p;(X))?) exp(m(65)?) + 2p;(X)(1 — p;(X)) exp(~m(6})?)
* * 1- 2p X 2 * *
= exp(m(8)?) + exp(-m(#})?) — 1+ L2 e m(07)2) —exp(-mi@)) . (59)
Next according to Eq. (52) and (a), we have for any j € [D], m(#})* < 1, which implies that
exp(m(67)?) + exp(—m(0})?) —2 < 1+ 4m2(9;)4
and eXp(m(é?J*»)Q) - exp(—m(@})z) < 4m(9j*~)2. (60)

We further notice that
(1—2p;(X))?  (exp (07 - 201, X7) —exp (=07 - X0, X7))?

2 N 2(exp (9]* P X;) + exp (_9;_ S ijj))z
_ (exp (0 - 0, XG) —exp (=07 - S0 X))
< 2 ’

which implies that

(exp (07 - 351, Xj) —exp (=07 - 0L, X))?
8

(1- 2pj(X))T

]EXNIP’O,X |: 9

< Exnop, x [

exp(4n(05)?) — 1
8 b

where the last equation uses the equation E[exp(aX)] = exp(ap + o?0?%/2) for X ~ N(p, o), and also the
way of sampling X from Py x. For j € [D], if n(#})* < 1, then according to the inequality exp(z) — 1 < 2
for 0 < z < 1, we have Exp, , [(1 —2p;(X))?/2] < n(0})%. If n(6})? > 1, since p;(X) € [0,1], we have
Ex~p, x [(1—2p;(X))?/2] <1< n(6})?. Hence we obtain that for any j € [D],

(1 —2p;(X))?

EXNPO,X |: 2

] < n(6;)*
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Bring this inequality and Eq. (60) back to Eq. (56), we obtain that

D
X*(Po,zix || Przix | Po,x) H (1+4m?(0)* + 4mn(6))*)
b D
4m? + 4mn
S et D N I
=1

where the last inequality uses the Jensen’s inequality. Therefore, if Eq. (53) holds, then together with
Eq. (52) and also (a) and (c¢), we have

D D
4m? + 4mn) 4m + 4mn) - max |0% -
( Dl )30 g 5 <

which implies that

1
2
Hence according to Eq. (54), Eq. (10) fails. O

TV(Po,xvz,P1xvz) < \/X (Po,zix || P1,zix [ Po,x) < \/(1 +1/(6D))P —1 < el/6 -1 <

B.2 Proof of Theorem 4.2
Proof of Theorem 4.2. To verify Eq. (10), we only need to show that

sup P(Y(X,Y, Z) # i) <
PeH,;

. Vie{0,1}.

=

Without loss of generality, we only prove the above inequality for i = 0, i.e. when p; = px, we always have

P(Tir 2 0) < (61)

|

The proof of cases where i = 1 follows similarly.
Without loss of generality, we assume the projection IT; is onto the first d-coordinates. Assume

éx = (éx)LD, év = (éY>1:D7 éz = (éZ)lzDa DPx = (Px)l:D7 by = (pY)l:D and pz = (pz)l:D

For every t € [d], we let

Then we have
(0x)e ~ N ((px)tv 711) L (B~ N ((py)t, 711) and  (6g); ~ N ((pz)t, 711) .

Hence we get
Elus] = [(px)e]* = [(p)e]* = 2((px)s — (pv)e) (p2)¢

and
Var(u;) = E[(u)?] — (E[u])?

- %((p")t — (p2):)* + %((pY)t — (p2)i)? + %((Px)t — (p)e)* + hd + i
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Notice that p; = px, we get

Efue] = ~((px)e = (pv)e)* and Var(u) = (:711 * 4> ((x)e = (pv)e)® + ;12 °

n mn

Next notice that Tir = Zte[d] u;, we obtain

E[Twe] = - Z((px)t —(py)+)? and Var(Tip) = (;; + 4) : Z ((px)e — (py)e)* + 1d + ﬁ

n n2  mn
te(d] teld]
According to our choice of d in Eq. (13), we have
Z((px)t - (pv)t)2 = [|px —PY||§ - Z((Px)t - (pv)t)2
te[d) tZ[d]
262 2% g2
>e2 9 —2 e
> =23 ((p)0)” =2 () = e
té(d] t¢Z(d]

Therefore, if m > 96/¢%, n > 96\/3/52 and mn > 768d/c*, we have
1 2
Var(TLF) S Z . (E[TLF]) .

Therefore, according to Chebyshev’s inequality, we obtain that

VI'TLF 1
Pi(fir 20) < (i < 5

which verifies Eq. (61).

C Analysis of LFHT for /, Bodies
C.1 Proof of Theorem 4.4

The proof of theorem Theorem 4.4 requires the following lemma:

Lemma C.1. Suppose that 1 < p < 2. For px,py € I' with ||px — pyll2 > &, with probability at least 1 — ¢,
the set T' calculated in (a) satisfies

(@) Ser ((0x)e — (0)e)” > 5
(b) card(T') < 2d,(T',n,¢).

Proof of Lemma C.1. Since (fy)¢, (fy)¢ are empirical estimation of (py)¢ and (py)s, with n samples each:
(X2)e 5 (Xa)e ©N((px)in 1), and (Ya)e oo, (Ya)e © N((pr)in1), W€ [D]

we have (fy)¢ ~ N((px)s, 1/n) and (fy); ~ N ((py)s, 1/n). Hence according to [Verl8, Proposition 2.1.2], we
have with probability at least 1 — ¢, for any ¢t € [D], both of the following events hold:

2log(4D/4)

n

2log(4D/4)

n

(B): — (pa)e| < and (B — (pr)e] < (62)
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In the rest of the proof, we assume both events in Eq. (62) holds for any ¢ € [D], and we will prove the two
conditions in Lemma C.1.

We first verify (a). According to our construction of set 75 in Eq. (20) for any ¢t € Ty, we have t >
du(I',n,€). Hence for any t € Ty, the coefficient a; in Eq. (11) satisfies a; < ag, (0 n,e)+1- Since py,py € T,

we obtain (ul? | |
Px) px
A sl 5l
tem, \Gdu(Tn &+1)P teTs te[D]
. o I (o
y AP <Y s
teTy (ad, (0n,e)+1)7 teTs te[D]
which implies that
D 0 = )il <2 [1@x)el” + 1(pe)el”] < 4(aa, (0 ne)+1)7s (63)
teTs teTs

where the first inequality uses the fact that |a —b|P < 2(|a|? +b|P) for any a,b € R and 1 < p < 2. Therefore,

Z ((px)e — (pY)t)2 1 l'(px)t —(py)e| <6 w
teTs
2—p
< [Z |(px)e — (pY)t|p] : (6 210g(;4D/5)>
teTs

< 4(ag, (rmer41)Pn"T - \/T2log(4D/3)
< A(ag, (rmerp1)Pn T - 1210g(4D/6)
According to the definition of d,(T',n,e) in Eq. (17), we have
2
P, 252 €
O 576log(4D/6)’

which implies that

2log(4D/3) | _ &
n -2

> (o) = (pr)e)* -1 [(px)t —(py)el <6

teTs

According to the construction of set T', we have for any ¢t € [D]\T,

(Be)e — (o] < 4 2BUDI)

Hence the conditions in Eq. (62) indicates that

[(px): — (py)e] < 1(6x): — (By)¢| + 2\/21055(31)/5) < 6\/210g(3D/5)

n

which implies that

Z ((px)e — (Pv)t)2

teT
D
2> (e = (00 = > ()i = (p0)o)* - 1 [<px>t ~ (pr)el < 6 ng(ﬁw/&]
t=1 teTs
>
- 2
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We next verify (b). Since card(Ty) = d,(T',n,e) and T = Ty UT3 according to its definition, we only need
to verify card(T3) < d,(T',n,e). We further notice that the conditions in Eq. (62) gives that for any t € T3,

2log(4D/6) N 2\/210g(4D/5)

n n

(po)r = (pr)el = [(Br)e — (G| — 2\/

Next, since T3 C T5, Eq. (63) indicates that

Z I(px)e — (py)i|” < Z |(px)e — (py)e]” < 4(ag, (rn.e)+1)"s

teTs teT>

which implies that

4(aq, (rmn,e)+1)? (i) 2ne?

D < 2(adu(F,n,6)+1)pnp/2
(2 /2log(4D/§) )

where inequality (7) uses Eq. (64). Notice from Eq. (19) and also the condition that

card(T3) <

< - < pe
= 576log(4D/5)2 = "¢

< 1024d,,(T", n, €)

mn
c4

)

we have
ne® < dy(T,n,¢),

which implies that
card(T) = card(Ty) + card(T3) < d,(T',n,e) + dy (T, n,e) < 2d, (T, n,e).
Hence (b) is verified. O
Now equipped with Lemma C.1, we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. To verify Eq. (10), we only need to show that

sup P(Y(X,Y, Z) # i) <
PeH;

, Vie{0,1}.

NG

Without loss of generality, we only prove the above inequality for ¢ = 0, i.e. when p; = px, we always have

P(Tir > 0) <

RNy

The proof of cases where ¢ = 1 follows similarly.

For every t € [D], we let
2

A ~ 2 ~ ~
w = (03 = B)e) = (03 = (Ba).)
And for simplicity, we set N =n —ng =n — [n/2]. Then we have

@~ N (00 )+ @~ A () and G N ().

m

Therefore, since (X2,Y?2 Z) I (X!, Y"), we can calculate

Efu | leYl] = [(px)t]Q - [(pY)t]2 = 2((px)e — (pv)e) (P2)e,
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and further

Var(u; | X', Y") = Elu? | X', Y'] - (E[u; | X', Y"))?

= (B0 — @) + 3 () = B2))? + - ((m)e — ()0 + 5 +
When p; = px, we have
Eluy | XlaYl] = —((px)e — (px)1)?
Var(un | X1 = (24 ) ()= 00 4 3z + o

According to our construction of set T C [D], set T is deterministic when conditioned on samples X!, Y.
Therefore, we obtain that

E[Tir | XL Y == ((px) — (pr)e)?

teT
4 4 4 8
Var(Tiy | X', YY) = (m + N> : (teZT((Px)t - (pY)t)2> + <NQ + mN) T
When the conditions (a) and (b) in Lemma C.1 holds, we have
2 €
> ((o)e = (p))? > 5 and [T] < 2du (T, n,€).
teT

Next we notice that N =n — |n/2| > n/2. Hence, when (m,n) satisfies

32 32/d,(T,n,¢)
mz—, N2 ———5 and mn >
€ €

1024d,, (T, n, )
-2

)

which implies that

T(E[Tr | X1, Y1)2
32 '
Therefore, according to Chebyshev’s inequality, we obtain that

Var(Tir | X1, Y <

Var(TLF | X.l Y1> 7
Pr(Tir >0 XL YY) < ’ —.
T 2 01 XY < e S xa vy = 32

Finally, we notice that according to Lemma C.1 with é = 1/32, with probability at least 31/32, conditions
(a) and (b) both holds, which implies that

1 7 1 1
>0) < > Pyhy4 — < — 4+ — =,
Pr(TLpio)iPr(TLp70|X ,Y )+32 >~ 32+32 4

C.2 Proof of Theorem 4.5

We present the proof of Theorem 4.5 in this section.
Proof of Theorem 4.5. According to [Bar02, Proposition 3], the condition of goodness-of-fit test (the condi-

tion where Eq. (7) holds) is

di(T,n,
n > Ngof £ 7l<2€2n E).
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According to [GP24, Proposition 1], if there exists a test which satisfies Eq. (10), then (m, n) has to satisfies

1 di (T, n,
ng—z, and nanofz%.

Therefore, we only need to verify the third condition, i.e.

dl(r7n7€)

If m > n, since n satisfies n > /d(T',n,€)/(2¢?), we have

2 di(T,n, )

mn>n
- = 4e2

and the third condition of Eq. (24) is automatically satisfied. In the following, we assume m < n, and we
will verify the third condition of Eq. (24). Above all, in the following we assume

dl(l“, n, E)

o, (65)

1
n>mZ—27 and n >
€

and we will show that if (T )
1 , N, €

< —— 66

MIS Toget (66)

then Eq. (10) fails.
In the following, we assume Eq. (66) holds, and we let d = d;(I',n,e). For any fixed distribution

p € A(RP), we define distribution Py xyz to be the distribution of (X,Y,Z) sampled according to the
following way: first sample § ~ y, then sample X = (X!m) S N(@O,Ip), Y = (YEm) s N(0,Ip) and Z =
(ZLm) id N (0. Ip). And we define distribution Py xy z to be the distribution of (X,Y, Z) sampled according
to the following way: first sample 6 ~ y, then sample X = (X!") K N@,Ip), Y = (Yim) ig N(0,1p) and
Z=(Z"m) id N(0,Ip). Similarly, we can define distribution Py xz,P1 xz,Po x,P1,x, and also conditional
distribution Py z|x and Py zx. Then [GP24, Lemma 5] gives that for any such s,

inf max sup P(¢(X,Y,Z) #4) >

, (1=TV(Po,xyz,P1,xvz)) — u(l°) — u(Ba(e)), (67)
¥ i€{0,1} peH,

DN | =

where I'® denotes the complement of set T, i.e. I'* = {I' € RP | § ¢ T'}, and Bs(e) denotes the f5-ball of
radius ¢, i.e. Ba(e) = {# € RP : ||0]2 < }. In the following proof, we choose distribution u to be the
following product of symmetric ternary distributions, i.e. for 8 = (61,--- ,0p) € T,

D
0) — (0. h =
1(0) jl;[lug(g) where 1 {50 ifd+1<j<D,

where 4, denotes the point distribution at » € R, and parameters d € [D], h € [0,1] and » > 0 will be
specified later. Then we have

TV(Po xvz Pixvz)? = TV(Po xz,P1.x2)* < DxL(Po.xz || P1.x2)
= DkL(Po,zix || P1,z1x | Po,x) + DxL(Po,x || P1,x)
= Dxr(Po z1x || P1,z1x | Po,x) < x*(Po,z/x || P1,zx | Pox)- (68)
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If we use pg(-) to denote the density function of N'(8, Ip), according to Ingster’s trick [Ing87] we have

Y?(Poz1x || Przix | Pox) +1

0(z
= Ex~p, x |Eoix,0/1x [/ H d d z1 - dzp, | XH
Y =1

= Ex~p, x [Eo|x o' x [exp (m(6,6")) |X]]

=Ex~py x H (0; =0 # 0| X)(exp(mr®) — 1) + P(6; = =0 # 0 | X)(exp(—mr?) — 1) 4 1)

| j=1

d
= H Ex~pyx [P(0; =0 # 0| X)(exp(mr?) — 1) + P(0; = =0} # 0 | X)(exp(—mr?) — 1)+ 1], (69)

where 0,0" are i.i.d. sampled according to P(@ | X), and the last equation uses the fact that conditioned on
X, we have (6;,6}) independent to each other for any j € [D]. In the following, we write X = X' which

denotes the n samples, and we further denote X* = (X1, - ,XiD), where X; denotes the j-th coordinate of
X*. We notice that 6; only depends on X}:" = (le, e ,X;-L). According to Bayes rule, we can calculate
P; =1|X)

_ Pr(X}",n=1)
Pr(XI7, 1, = 0) + Pr(XL ",y = —1) + Pr(X )7, = 1)
_ h/2-TI", exp (,(in —1)?%/2)
(1—"h)- H;Lzl exp (—(X;)Q/Q) +h/2- HZL:I exp (—(X; — 7")2/2) +h/2- H:L:l exp (—(X;: + 7“)2/2)
h/2-exp (r- Y7, X7)

= - —. 70
(1—"h)-exp(r2/2) + h/2-exp (r DY X;) + h/2-exp (—r DY X;) (70)
Similarly, we get
h/2 - RN ¢
PO, = 1| X) = 2 0 (7 L X)) (71)

(1—=h)-exp(r2/2) + h/2-exp (r- Y1) Xi) +h/2-exp (—r- >0 X))
In the following, we use [0, 1]-valued random variables p;(X) and ¢;(X) to denote
pi(X)=P(0; =1[X) and ¢;(X)=P(0; =—-1[X), Vjel[D]
We further notice that 0’ and ¢; are i.i.d. conditioned on X. Hence we obtain
P(0; =0; #0| X) (eXp(mrz) -1)+P0; = —0; #0] X) (exp(—mrQ) —1)+1
=1+ (p;(X)* + ;(X)?) (exp(mr?) — 1) + 2p;(X)q;(X) (exp(—mr?) 1)

050 + () 0509 =G0 () exp(mrt))

(72)

—14 - (exp(mr?) + exp(—mr?) — 2) +

Next using the AM-GM inequality we obtain that

(1—h)~exp(r22)+ exp< ZX>+ exp( iX;)zl.
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Bringing this back to Eq. (70) and Eq. (71), we obtain that

2 n n 2
(pi(X) +¢;(X))* < hz . <exp (r . ZX;) + exp (—r ) ZX;>>

i=1

2
h? oy oy
and (p;(X) — qj(X))2 < il (exp (r . ZXJ) — exp (—7‘ : ZX])) . (73)
i=1 i=1
We notice that according to the method of collecting samples,
XS N(0;,1) and 05 ~ (1—h) -6y + g b+ g 6,

which implies

ZX;:N(l—h)-N(O,ﬂ)—l—Z-N(nr,n)—i—g-/\/'(—nr,n).

Next, we notice that for Gaussian random variable X ~ A (p, o), we have

Efexp(aX)] = exp (au + 0‘22“2) .

Bringing this back to Eq. (73) we obtain that

2 n n
E [(pj(X) + qj(X))Q} < hz -E |exp <2r : ZX;) +2+exp | —2r- ZX;)]
i=1 i=1
2 2
= h— exp (27"271) . (1 —h+ ﬁ exp (27"271) + ﬁ exp (—2r2n)) + h—
2 2 2 2
h2 n n
E [(p] (X) - qj(X))2] < T -E |exp <2r ZX;) —2+exp| —2r ZX;)]
i=1 =1
h? h

Hence if conditions
mr?<1 and nr?<1 (74)

both hold, we have the following inequalities:
E [(pj(X) + qj(X))ﬂ <30n%, E {(pj(X) - qj(X))Q} < 30h%?n,
and exp(mr?) + exp(—mr?) — 2 < 2m?r?, exp(mr?) — exp(—mr?) < 3mr?.
Bringing them back to Eq. (72), we obtain that

E[P(6; = 0; # 0| X) (exp(mr®) — 1) + P(0; = —0; # 0 | X) (exp(—mr?) — 1) + 1]
< 1+ 30h%m%r* 4+ 45h%mnr* < 1+ 75h%mnr?,

where the last inequality uses the assumption m < n. Bring back to Eq. (69), we obtain that

X*(Bo,zix || Przix | Pox)]
d
< H P(0; = 0; # 0| X) (exp(mr®) — 1) + P(0; = —0; # 0 | X) (exp(—mr?) — 1) + 1] —

< (1 +75h%mnr)? — 1.
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Hence according to Eq. (68), this implies that

TV(Po.xvz,P1xvz)? < \/(1 + 75h2mnr4)d — 1. (75)

Finally, we calculate the probability p(I'¢) and p(Baz(g)). According to our choice d = d(T',n,€), when
sampling @ = (01, -+ ,0p) ~ u, with probability at least 1 — 6 we have

& |67 |9t dhrp r? . /2dlog(2/9)
> Z <7+ s
=1 Y t=1 g
where the last inequality uses Hoeffding inequality. Additionally, when sampling § = (61,--- ,0p) ~ p, with

probability at least 1 — & we have

D
> 107 = Z|0t|2>dhr —r?.\/2d1og(2/9).
t=1

t=1

As long as h?d > 24, with probability at least 9/10 we have both

D
2
Z|9t dhr and ZIWZ*
ag t=1

We choose d = d;(T",n, ) (here d;(T',n, ) is defined in Eq. (23)), then we have

(aq)Pn"= > 19222,
We further let
i
According to the first inequality in Eq. (65), and also Eq. (66), we have n < d/(96¢?). This implies that
h < 1. Additionally, according to Eq. (65) we have

96e*n? _ 96e* d 24

= > . > —.
d2 T d? 4et T d
Hence with probability at least 9/10 we have both
A 2dh =" D 1
Z 10, T <1922 >— <1, and Z 104]? > ~dhr? > &2,
@ a t=1 2

which implies that

Additionally, by our choice of r and also Eq. (65), Eq. (74) always holds. Hence by Eq. (75),

1
TV(Povxyz,]Pnyz)z S \/(1 + 75h2mm"4) -1 S E
Therefore, according to Eq. (67), we obtain that
1
inf max sup P(¥(X,Y,Z) #1i) > —,
uf max, sup. (v( )#1) >
which implies that Eq. (10) fails.
Above all, we have verify that we must have
mn dl (Fa n, 6)
~ 96et
in order to let Eq. (10) satisfied. O
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C.3 Proof of Theorem 4.6
We present the proof of Theorem 4.6 in this section.
Proof of Theorem 4.6. Suppose py = N(0°,1), py = N'(0Y,I) and p; = N(6%,1), and we let
0" = (07.c), 0Y=(0].), and 0% =(07.).

We let D = D(T,¢), and we define 8 ,0°,8 € RP as

~T ~Y ~Z

0 :(9f730%)7 0 :(911!’70%)7 and 6 :(QT,,GZD),
and we further define D-dimensional distributions

=N@ ,Ip), pr=N@®.Ip), and 5 =N@O ,Ip).

According to the definition of D, we have for any § = (01.o.) € O,

= 0P O el 6 e
(0:)? < (ap)?- < (ap)”- <(ap)® < —,
2 2 2y ;

where (i) uses the fact that |6¢]|/a; < 1 for any ¢, and (i7) uses Eq. (26). Therefore, since
102 = 8ylj2 > ¢,

we have
e & €

HEI _gy”? > ||0z _0y||2 - How _530”2 - ||0y _57;”2 > e — g — g = g

Hence via taking the testing scheme in Section 4.2.1 for the first D coordinates, and also replacing ¢ with
€/3, we have that as long as (m,n) satisfies

]- du Fa ) du F’ )
{(m,n): mz =, ni# and mnz(fs)},
€ € €
then ¢ is a feasible testing scheme which satisfies Eq. (10). O

Proof of Theorem 4.7. We set d = d;(I",n,e). We consider the following subset of I":

p
Fd={0:(91m):z|9t| <1, and 6;=0, Vt2d+1}gr.

t=1 (ae)?

Then if we can do likelihood-free hypothesis testing with (m, n) samples for ', then we can also do likelihood-
free hypothesis testing with (m,n) samples for T'y. Notice that to do likelihood-free hypothesis testing, the
data from coordinates greater than d are completely independent to the pyx, py and pz;. Hence without loss
of generality we can assume that the model consists of dimension-d distributions. Therefore, according to
Theorem 4.5, we get the desired result. O

C.4 Missing Proofs in Section 4.2.5

Proof of Proposition 5. We notice that the T' defined in Eq. (4) is an infinite dimensional ¢; body with
a; = 1/t. Therefore, we can calculate that

1
V/ne?’

1
D(T,e) = o and d;(T,n,e) < dy(T,n,e) <
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where in the above equations, we use < to hide constants and log factors of n and ¢ as well. Therefore,
according to Theorem 4.7 and Theorem 4.6, we obtain the feasible region of likelihood-free hypothesis testing:

{(m,n): m>e 2 n>e 10 mn?’/zzs*(s}.
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