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Abstract

This work applies modern AI tools (transformers) to solving one of the oldest statistical problems:
Poisson means under empirical Bayes (Poisson-EB) setting. In Poisson-EB a high-dimensional mean
vector θ (with iid coordinates sampled from an unknown prior π) is estimated on the basis of X =
Poisson(θ). A transformer model is pre-trained on a set of synthetically generated pairs (X, θ) and learns
to do in-context learning (ICL) by adapting to unknown π. Theoretically, we show that a sufficiently
wide transformer can achieve vanishing regret with respect to an oracle estimator who knows π as
dimension grows to infinity. Practically, we discover that already very small models (100k parameters)
are able to outperform the best classical algorithm (non-parametric maximum likelihood, or NPMLE)
both in runtime and validation loss, which we compute on out-of-distribution synthetic data as well as
real-world datasets (NHL hockey, MLB baseball, BookCorpusOpen). Finally, by using linear probes, we
confirm that the transformer’s EB estimator appears to internally work differently from either NPMLE
or Robbins’ estimators.
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1 Introduction

Transformers have received a lot of attention due to the prevalence of large language models (LLM). More
generally, we think of (encoder-only) transformers as generic engines for learning from exchangeable data.
Since most classical statistical tasks are formulated under iid sampling assumption, it is very natural to try
to apply transformers to them [GTLV22].

Training transformers for classical statistical problems serves two purposes. One is obviously to get
better estimators. Another, equally important, goal of such exercises is to elucidate the internal workings of
transformers in a domain with a much easier and much better understood statistical structure than NLP.
In this work, we believe, we found the simplest possible such statistical task: empirical Bayes (EB) mean
estimation. We believe transformers are suitable for EB because EB estimators naturally exhibit a shrinkage
effect (i.e. biasing mean estimates towards the nearest mode of the prior), and so do transformers, as shown
in [GLPR24] that the attention mechanisms tend to cluster tokens. Additionally, the EB mean estimation
problem is permutation equivariant, removing the need for positional encoding. In turn, estimators for
this problem are in high demand [KG24, GK23, GK22] and unfortunately the best classical estimator (so-
called non-parametric maximum likelihood, or NPMLE) suffers from slow convergence. In this work, we
demonstrate that transformers outperform NPMLE while also running almost 100x faster. We now proceed
to defining the EB task.

Poisson-EB task: One observes n samples X1, . . . , Xn which are generated iid via a two-step process.
First, θ1, . . . , θn are sampled from some unknown prior π on R. The π serves as an unseen (non-parametric)
latent variable and we assume nothing about it (not even continuity or smoothness). Second, given θi’s, we

sample Xi’s conditionally iid via Xi ∼ Poi(θi). The goal is to estimate θ1, · · · , θn via θ̂1, · · · , θ̂n upon seeing

X1, · · · , Xn that minimizes the expected mean-squared error (MSE), E[(θ̂(X) − θ)2]. If π were known, the
Bayes estimator that minimizes the MSE is the posterior mean of θ, which also has the following form.

θ̂π(x) = E[θ|X = x] = (x+ 1)
fπ(x+ 1)

fπ(x)
. (1)

where fπ(x) ≜ Eπ[e
−θ θx

x! ] is the posterior density of x. Given that π is unknown, an estimator π can only

instead approximate θ̂π. We quantify the quality of the estimation as the regret, defined as the excess MSE
of θ̂, over θ̂π.

Regret(θ̂) = E
[(

θ̂(X)− θ
)2

]
− E

[
(θπ(X)− θ)

2
]

= E
[(

θ̂(X)− θ
)2

]
−mmse(π)
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In this Poisson-EB setting, multiple lines of work have produced estimators that resulted in regret that
vanishes as sample size increases [BGR13, PW21, JPW22, JPTW23]. Robbins estimator [Rob51, Rob56]
replaces the unknown posterior density fπ in (1) with Nn(·), the empirical count among the samples
X1, · · · , Xn. Minimum distance estimators first estimate a prior (e.g. the NPMLE estimator π̂NPMLE =

argmaxQ
∏n

i=1 fQ(Xi)), and then produces the plugged-in Bayes estimator θ̂π̂. Notice that Robbins estima-
tor suffers from multiple shortcomings like numerical instability (c.f. [EH21]) and the lack of monotonicity

property of Bayes estimator θ̂π (c.f. [HS83]), while minimum-distance estimators are too computationally
expensive and do not scale to higher dimensions. [JPTW23] attempts to remedy the ‘regularity vs efficiency’
tradeoffs in these estimators with an estimator based on score-estimation equivalent in the Poisson model.
However, despite the monotone regularity added, this estimator still does not have a Bayesian form: a cost
one pays to achieve an efficient computational time.

Solving Poisson-EB via transformers. We formulate our procedure for solving Poisson-EB as follows:
we generate synthetic data and train our transformers on those. Then, we freeze their weights and present
new data to be estimated. To our knowledge, this is the first line of work that studies using neural network
models for empirical Bayes. Concretely, our contributions are as follows:

1. In Section 4, we show that transformers can approximate Robbins and the NPMLE via the universal
approximation theorem. We also use linear probes to show that our pre-trained transformers work
differently than the two aforementioned estimators.

2. In Section 5, we set up synthetic experiments to demonstrate that synthetically pre-trained transformers
can generalize to unseen sequence lengths and evaluation priors. This is akin to [XRLM21] where ICL
occurs at test time despite distribution mismatch.

3. In Section 6, we evaluate these transformers on real datasets for a similar prediction task to demonstrate
that they often outperform the classical baselines and crush them in terms of speed.

One significance of our synthetic experiments is that transformers demonstrate length-generalization by
achieving lower regret upon being tested on sequence lengths up to 4x the length they are trained on, even
on unseen priors. This comes as multiple works show mixed success of length-generalization of transformers
[ZAC+24, WJW+24, KPNR+24, AWA+22].

We mention that there is a long literature studying transformers for many statistical problems [BCW+24].
What makes this work different is that a) our estimator does not just match but improve upon existing
(classical) estimators, thus advancing the statistical frontier; b) our setting is unsupervised and much closer
to NLP compared to most previous work considering supervised learning (classification and regression), in
which data comes in pairs, thus requiring unnatural tricks to pair tokens; c) our problem is non-parametric.

In summary, we demonstrate that even for classical statistical problems, transformers offer an excellent
alternative (in runtime and performance). For the simple 1D Poisson-EB task, we also found that already
very economically sized transformers (< 100 k parameters) can have excellent performance.

2 Related Work

Transformers and in-context learning (ICL). Transformers have shown the ability to do ICL, as per
the thread of work summarized in [DLD+22]. ICL is primarily manifested in natural language processing
[BMR+20, DSD+22] and learning linear models [ASA+22, ZFB23]. Other examples that transformers can
learn are gradient descent [BCW+24], several non-linear function classes [GTLV22], and support vector
machine [TLTO23], while having limited ability on boolean functions [BPBK23]. Recent works have also
explained ICL from the Bayesian point of view [MHH24, PAG23], including showing Bayesian behavior even
upon train-test distribution mismatch [XRLM21].

How do transformers work? [YBR+19] have established the universal approximation theorem of
transformers. This was later extended for sparse transformers [YCB+20] and ICL setting [FdHP24]. Its
limitations are further discussed in [NKB24]. Transformers have also been shown to do other approximation
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tasks, like Turing machines [WCM22, PBM21]. From another perspective, [AB18] introduces linear probes as
a mechanism of understanding the internals of a neural network, which is further studied in [Bel22]. Linear
probe has also been applied in transformers to study its ability to perform NLP tasks [TDP19], achieve
second order convergence [FCJS24], and learn various functions in-context [GHM+23]. One such application
is ICL linear regression to look for moments [ASA+22]. Recently, linear probe has been used by [AZR+24]
to improve in-context learning.

Empirical Bayes. Empirical Bayes is a powerful tool for large-scale inference [Efr12]. Some of its
applications include performing downstream tasks like linear regression [KWCS24, MSS23], estimating the
number of missing species [FCW43], and large scale hypothesis testing [ETST01]. In computational biology,
empirical Bayes has also been used in sequencing frameworks [HK10, LDT+13], though these frameworks
are mostly parametric and rely on estimating the parameters of a prior.

In the theoretical setting, multiple lines of work have established the theoretical bounds that can be
achieved by empirical Bayes estimators. In the Poisson-EB problem, Robbins [Rob51, Rob56] formulated
an estimator based on Tweedie’s formula, known as f -modelling. In the normal means EB problem, [JZ09]
formulated a g-modelling approach via prior estimation, which was also adapted to the Poisson-EB problem.
More recently, [JPTW23] formulated an estimator based on ERM on monotone functions, which introduces
regularity to the estimators while also escaping the computationally expensive prior estimation process.
The optimality of these estimators has been established in the following works: [BGR13, PW21, JPW22,
JPTW23].

3 Preliminaries

3.1 Baselines description

We outline some of the classical algorithms that we will be benchmarking against.
Non empirical Bayes baselines. When nothing is known about the prior π the minimax optimal

estimator is the familiar maximum-likelihood (MLE) estimator θ̂MLE(x) = x. However, when one restricts
priors in some way, the minimax optimal estimator is not MLE, but rather a Bayes estimator for the worst-
case prior. In this work, we consider priors restricted to support [0, 50]. The minimax optimal estimator for
this case is referred to as the gold standard (GS) estimator to signify its role as the “best” in the sense of
classical (pre-EB) statistics. Appendix A.1 contains derivation of GS.

Empirical Bayes baselines. We will use the following empirical Bayes estimators as introduced in
Section 1: the Robbins estimator, NPMLE estimator, and the ERM-monotone estimator with algorithm
described in Lemma 1 of [JPTW23].

3.2 Transformer Architecture

Next, we describe our transformer architecture, which closely mimics the standard transformer architecture
in [VSP+17]. Given the permutation invariance of the Bayes estimator, we do not use positional encoding
or masking. Thus effectively, it is a full-attention encoder-only transformer with one linear decoder on top.

One aspect worth mentioning is that at the encoding stage, we are using two different weights, split
evenly across the N layers. The intuition behind it is that one learns the encoding part (input) and the
other the decoding part (output).

3.3 Training Protocol

Data generation. We emphasize that all our transformers are trained on synthetic data, using the Poisson-
generated integers X as inputs and the hidden parameters θ as labels. We use the plain vanilla MSE loss∑

(θ̂(Xi) − θi)
2. There are two classes of priors from which we generate θ, the neural-generated prior-on-

priors, and Dirichlet process with base distribution Unif[0, 50] within each batch. We fix the sentence length
= 512 throughout training. With the exception as noted later in Section 5.1, we cap the label at θmax = 50
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(i.e. our priors are in the class P([0, 50]). We defer the detailed discussion to Appendix A.2, including the
motivation to train with a mixture of the two priors.

Parameter Selection. We consider models of 6, 12, 18, 24, and 48 layers, embedding dimension dmodel
either 32 or 64, and number of heads in 4, 8, 16, 32. We fix the number of training epochs to 50k, the
learning rate to 0.02, and the decay rate every 300 epochs to 0.9. Among the trained models, we chose
our models based on the mean-squared error evaluated on neural prior-on-prior and Dirichlet process during
inference time. We then arrive at the two models described in Table 1, which we will name T18 and T24
depending on their number of layers. Both have around 25.6k parameters. We also define T18r and T24r as
the transformers we train with random θmax.

1

Table 1: The characteristics of T18 and T24, respectively.

Transformer Layers Embedding dimension # Heads θmax

T18 18 32 16 50
T24 24 32 8 50
T18r 18 32 16 Random [10, 150]
T24r 24 32 8 Random [10, 150]

4 Understanding transformers

In this section, we try to gain an intuition on how transformers work in our setting. We achieve this from two
angles. First, we establish some theoretical results on the expressibility of transformers in solving empirical
Bayes tasks. Second, we use linear probes to study the prediction mechanism of the transformers.

4.1 Expressibility of Transformers

We discuss the feasibility of using transformers to solve the empirical Bayes prediction task. Indeed, the study
of the universal approximation theorem has been done on multilayer perceptron, c.f. [Aug24], with some
variations like bounded weights [GI18] and width [KL20, PYLS20]. More recently, universal learnability of
transformers has been established, first in [YBR+19], which shows that 2 heads, each of size 1, and 4 hidden
dimensions are all we need. [FdHP24] further characterizes universal learnability in terms of in-context
learning.

To start with, we consider the clipped Robbins estimator, defined as follows:

θ̂Rob,d,M (x) =

{
min{(x+ 1)N(x+1)

N(x) ,M} x < d

M x ≥ d
(2)

Here, we show that transformers can learn this clipped Robbins estimator up to an arbitrary precision.

Theorem 4.1. Set a positive integer d and a positive real number M . Then for any ϵ > 0, there exists a
transformer architecture with one encoding layer, skip connection, and embedding dimension d+1 that learns
the clipped Robbins estimator θ̂Rob,d,M up to a precision ϵ.

Similarly, we may show that transformers can approximate NPMLE up to an arbitrary input value and
precision.

Theorem 4.2. Let M > 0, and denote the NPMLE estimator θ̂NPMLE,M , the NPMLE estimator chosen
among P([0,M ]). For each integer d > 0 consider the following modified NPMLE function:

θNPMLE,d,M (x) =

{
θ̂NPMLE(x) x ≤ d

M x > d

1In the future, we will add T18r and T24r to all comparisons, but for now they only appear on Fig. 5 and Section 5.1.
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then for any ϵ > 0 there exists a transformer network that can approximate θNPMLE,d uniformly up to ϵ-
precision.

Full proofs are deferred to Appendix B and we only give a sketch for now. For Robbins approximation,

we create an encoding mechanism that encodes N(Xi)
N(Xi)+(Xi+1)N(Xi+1) at position i among 1, · · · , n and use

a decoder to approximate the function x → min{ 1
x − 1,M}. For NPMLE approximation, we pass in

the Sigmoid of the integer inputs as embedding, and show that θ̂NPMLE can be continually extended, with
sigmoid-transformed empirical distribution as arguments. For the encoding part, we provide a pseudocode
in Appendix C that closely follows PyTorch’s implementation.

To illustrate the significance of both of these theorems, we demonstrate that transformers can learn an
empirical Bayes prediction task to an arbitrarily low regret.

Corollary 4.3. For any ϵ > 0, there exists an integer N and a transformer network Γ such that for all
n ≥ N , the minimax regret of Γ(X1, · · · , Xn) on prior π ∈ P([0, θmax]) satisfies

sup
π∈P([0,θmax])

Regret(Γ(X1, · · · , Xn)) ≤ ϵ

4.2 How do transformers learn?

We study the mechanisms by which transformers learn via linear probe [AB18]. To this end, we take the
representation of each layer of our pretrained transformers, and train a decoder that comprises a layer
normalization operation, linear layer, and GeLU activation. This decoder is then trained with the following
labels: frequency N(x) within a sequence, and posterior density fπ̂(x) estimated by the NPMLE. The aim
is to study whether our transformers function like the Robbins or NPMLE. In the plot in Fig. 1, we answer
this as negative, showing that our transformers are not merely learning about these features, but instead
learning what the Bayes estimator θ̂π is.

Figure 1: R2 score of linear probe results against N(x),fπ(x) and x for T18 (the plots for T24 appear
similar). We see that while x itself is easily recoverable from any layer, “knowledge” about the former two
quantities appears to decrease with depth.
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5 Synthetic Experiments

We now evaluate our trained transformers on the following: How well do they generalize? This can be done
by evaluating on the following: sequence lengths other than the ones we have trained on, unseen priors,
and unknown bound θmax. We also compare against the classical algorithms introduced in Section 3 to
demonstrate the superiority of these transformers by showing the average regret; most other details are
deferred to Appendix D.1. We also investigate the inference time to show its advantage over NPMLE.

5.1 Ability to Generalize

Adaptibility to various sequence lengths. In this experiment, we evaluate the ability of transformers
to adapt to different sequence lengths, both fewer than and more than what is trained. To do so, we evaluate
them on 4096 neural prior-on-priors (which is part of the training distribution), but on various sequence
length n: 128, 256, 512, 1024, and 2048. For each such prior, we generate 192 batches for evaluation. We
report the average regret over the 4096 priors in Fig. 2.

Figure 2: Regret vs sequence length (neural prior). The regret decreases for both transformers as the
sequence length increases, showing that they do have the ability to generalize. We nevertheless note that
NPMLE has a better generalization ability, as shown by the regret at sequence length 2048 as compared to
smaller sequences. In comparison, the average regret for ERM monotone is 11.20, 8.19, 5.58, 3.66, and 2.36
for the various sequence lengths, while the average regret for MLE and GS stays constant at 14.816 and
14.658, respectively.

Robustness against unseen priors. Our transformers are trained on a mixture of neural and Dirichlet
priors. Here, we consider their performances on the worst case prior in P([0, 50]) as mentioned in Section 3.1
and further explained in Appendix A.1. The numbers of batches we use in this prior are 786k (for sequence
lengths n = 128, 256, 512), 393k (for n = 1024), and 197k (for n = 2048). We also consider another unseen
prior-on-prior: the multinomial prior supported on [0, 50] with fixed, evenly split grids and weights distributed
as Dirichlet distribution, using sequence lengths 512, 1024, and 2048, using 192 batches for each of the 4096
priors we evaluate on. We report the estimated regret in Fig. 3 and Fig. 4 to show that transformers produce
regret comparable to the strongest alternative (NPMLE).

Training under randomized θmax. In another experiment, we investigate the effect of mismatched
θmax. on the performance of transformers without knowledge of θmax. Specifically, we train two sets of
transformers, one as reported in Table 1, the other set (T18r, T24r) with the same parameters but with θmax
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Figure 3: Regret of various transformers on worst prior compared to NPMLE. Again, transformers show the
ability to generalize to longer sequence lengths, although for longer sequences NPMLE generalizes better.
Note that this is already better than ERM-monotone’s regret at 12.79, 9.80, 6.99, 4.81, and 3.26 across the
5 sequence lengths, while MLE’s regret stays at 11.73.

randomized according to the following mixture:

θmax ∼ 3

4
N (0, 50, 102) +

1

8
Exp(50) +

1

8
Cauchy(50, 10)

and clamped at [10, 150]. Then, for the two sets of transformers, we evaluate them on 4096 neural prior-on-
priors, using the default sequence length = 512 and 192 batches for each prior. We report the distribution of
regrets in Fig. 5 which demonstrates that transformers trained with randomized θmax see a small deterioration
in regret, but nonetheless still outperform NPMLE in regret minimization.

5.2 Inference Time Comparison

We evaluate their inference time of various estimators over 4096 neural prior-on-priors, where for each prior
we consider the time needed to estimate the hidden parameter of 192 batches and sequence length 128, 256,
512, 1024, and 2048. Each program is given 2 Nvidia Volta V100 GPUs and 40 CPUs for computation. The
results are tabulated at Fig. 6, where we see that the transformers’ runtime is comparable to that of ERM’s.

6 Real Data Experiments

In this section, we answer the following question: Can our transformers that are pre-trained on synthetic
data perform well on real datasets without re-training on any part of the real datasets?

To do so, we consider the following experimental setup: Given an integer-valued attribute, let X be
the count of the attribute in the initial section we observe, and Y be the count of a similar attribute in
the remaining section that we should predict. We assume that given a horizon length (duration, sentence
length, etc) nX and nY of the two sections, there exist hidden parameters θi such that Xi ∼ Poi(nXθi) and
Yi ∼ Poi(nY θi), independently (for convenience we will scale θi such that nX = 1). Our goal is to predict

Ŷ = nY θ̂(X) using empirical Bayes methods. We will focus on the following two types of datasets: sports
and word frequency. Below, we describe the types of datasets that we would study. Throughout this section,
we name (X,Y ) as the input and label sets, respectively.
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Figure 4: Average regret of various transformers on multinomial priors compared to NPMLE. Here, trans-
formers show ≥ 2 times improvement over NPMLE even on sequence lengths it never trained on. In compar-
ison, ERM-monotone’s regret across sequence lengths are at 5.17, 3.69, 2.57, while MLE’s and GS’s regrets
stay at 5.87 and 5.63, respectively.

6.1 Sports datasets

Here, X and Y are the numbers of goals scored by a player within disjoint and consecutive timeframes, and
θ represents the innate ability of the given player. We will consider two datasets: National Hockey League
(NHL) and Major League Baseball (MLB).

NHL dataset. We proceed in the same spirit as [JPW22], Section 5.2, and study the data on the total
number of goals scored by each player in the National Hockey League for 29 years: from the 1989-1990
season to the 2018-2019 season (2004-2005 season was canceled). The data is obtained from [Hoc00], and
we focus on the skaters’ statistics. Here, given the number of goals a player scored in season j, we wish to
predict the same for season j + 1 (thus the input and label sets are the number of goals a player scored in
consecutive seasons, and nY = 1). We study the prediction results when fitting all players at once, as well
as fitting only positions of interest (defender, center, and winger).

MLB dataset. The dataset is publicly available at [Ret96], and can be processed by [Est18]. Here,
we study the hitting count of each player in batting and pitching players from 1990 to 2017. Unlike the
between-season prediction as we did for the NHL dataset, we do in-season prediction. That is, we take X
as the number of goals scored by a player in the beginning portion of the season, and Y in the rest of the
season. For batting and pitching players (which we fit separately), we use X as the goals in the first 1

5 and
first 1

6 of the season (i.e. nY = 4, 5), respectively.

6.2 Word frequency datasets

In this setting, we model the alphabet of tokens as M categorical objects A = {A1, · · · , AM}. Given n
samples from these objects, and denote (X1, · · · , XM ) the frequency of the samples. Suppose we are to
estimate the frequencies (Y1, · · · , YM ) of an unseen section of length t (here t known). We model as follows:
consider p1, · · · , pM as the “inherent” probability distribution over M (or proportion in a population), so∑M

i=1 pi = 1. Now the frequency Xi ∼ Binom(n, pi), which we may instead approximate as Xi ∼ Poi(npi).

Thus we may use empirical Bayes method to estimate θ̂i = np̂i based on the frequencies X1, · · · , XM , and
then predict Ŷi =

t
n θ̂i.

BookCorpusOpen. BookCorpus is a well-known large-scale text dataset, originally collected and ana-
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Figure 5: Comparison of regrets when θmax is trained randomly. The mean regret increases by 18.5% and
23.4% for the transformers with 18 and 24 layers, respectively, when compared against transformers that
learn the true θmax during training, but still outperforms NPMLE. All comparisons resulted in a significant
t-score (p <1e-100).

lyzed by [ZKZ+15]. Here, we use a newer version named BookCorpusOpen, hosted on websites like [Dil24].
This version of the dataset contains 17868 books in English; we discard 6 of the books that are too short
(≤ 2000 tokens), and 5 other books where NPMLE incurs out-of-memory error. To curate the dataset, we
first tokenize the text using scikit-learn’s CountVectorizer with English stopwords removed. For each book,
the input set comprises the beginning section containing approximately 2000 tokens, while the label set the
remainder of the book. Then for each word, X and Y are the frequency of each word within the input and
label set, respectively. We will then use the prediction Ŷ = nY · θ̂(X) where nY is the ratio of the number
of sentences in the label set to that of the input set.

6.3 Evaluation Methods

We will use the RMSE of each dataset item, normalized by nY , as our main evaluation metric. Specifically,
for each dataset, we compute the RMSE incurred by each estimator. We then compare them using the
following guidelines.

Comparison against MLE. We consider the ratio of RMSE of each estimator against that of the MLE,
and ask, “how much improvement did we achieve against the MLE” by looking at the average of the ratio.

Relative ranking. We use the Plackett-Luce [Pla75, Luc59] ranking system to determine how well one
estimator ranks over the other.

Significance of improvement. We will also consider whether one improvement is significant by per-
forming paired t-test on the RMSE of transformers against the baselines.

We tabulate our findings in Table 2 and Table 3. In addition, we also show a few violin plots in Fig. 7,
Fig. 8, Fig. 9 for NHL, MLB batting, and Bookcorpus to supplement Table 2 (with Robbins removed due
to its wide variance). From Table 3, we conclude a nontrivial improvement of the transformers over the
classical methods in most of the datasets. A more detailed comparison (e.g. the ELO rating of estimators’
RMSE and the MAE metric), is shown in Appendix D.2.
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Figure 6: Time vs sequence length, showing that the inference time of transformers is comparable with that
of ERM monotone. We nevertheless qualify this finding by noting that these running times seem to scale
superlinearly with sequence length. For comparison, the running time of NPMLE for sequence lengths 128,
256, 512, 1024, and 2048 are 41.69, 67.70, 109.81, 175.72, and 289.79 seconds, respectively, which indicates
that transformers are 2 orders of magnitudes faster than NPMLE.

Table 2: 95% confidence interval of the percentage improvement of RMSE by each algorithm over MLE.

Dataset Robbins ERM NPMLE T18 T24

NHL -30.55 ± 6.55 1.46 ± 0.65 3.24 ± 0.92 3.51 ± 1.01 3.46 ± 1.00
NHL (defender) -19.54 ± 6.35 3.19 ± 1.32 6.48 ± 1.63 7.25 ± 1.88 7.41 ± 1.86
NHL (center) -49.89 ± 10.36 0.38 ± 0.82 3.44 ± 0.94 4.12 ± 1.14 4.06 ± 1.07
NHL (winger) -42.63 ± 7.58 0.76 ± 0.69 3.06 ± 0.87 3.39 ± 1.03 3.38 ± 1.01

MLB (batting) -32.80 ± 5.67 2.50 ± 0.36 4.30 ± 0.41 4.45 ± 0.37 4.58 ± 0.39
MLB (pitching) -21.71 ± 2.45 2.51 ± 0.31 4.70 ± 0.41 4.89 ± 0.42 4.95 ± 0.38

BookCorpusOpen -4.58 ± 0.43 9.38 ± 0.10 10.82 ± 0.11 10.38 ± 0.18 11.43 ± 0.17

7 Conclusion and Future Work

We have demonstrated the ability of transformers to learn EB-Poisson via in-context learning. This was
done by evaluating pre-trained transformers on synthetic data of unseen distribution and sequence length,
and compared against baselines like the NPMLE. In this process, we showed that transformers can achieve
decreasing regret as the sequence length increases. On the real datasets, we showed that these pre-trained
transformers can outperform classical baselines in most cases.

One future direction will be to extend our work to multi-dimensional input, as discussed in [JPTW23]
(Section 1.3), [JPW22] (Section 6). We believe that the transformers would still be able to learn the ‘context’
of the inputs in multi-dimensional settings. On the other hand, the g-modelling methods like the NPMLE
can take nΘ(d) inference time, which makes it not scalable. In addition, given that the focus of this work is
on Poisson-EB, one natural direction is to extend it to the normal-means model [JZ09]. On the theoretical
front, the expressibility and limitations of the transformers can be further studied, including settings where
the model dimension is bounded. Finally, given that the focus has been studying transformers trained and
evaluated on priors with compact support ([0, 50] in our case), we plan to study further the behavior of

11



Figure 7: Violin plots of RMSE ratio achieved by multiple estimators over MLE on NHL.

Table 3: P[RMSE(transformers) > RMSE(baselines)] obtained via paired t-test.

T18 T24
Dataset MLE Robbins ERM NPMLE MLE Robbins ERM NPMLE

NHL 1.44e-06 2.51e-11 8.42e-06 0.120 1.57e-06 3.14e-11 8.96e-06 0.150
NHL (defender) 2.15e-08 9.76e-11 4.71e-08 8.72e-05 1.48e-08 9.67e-11 3.54e-08 4.77e-05
NHL (center) 1.14e-06 1.33e-11 6.01e-07 2.98e-03 6.38e-07 1.73e-11 5.61e-07 1.65e-03
NHL (winger) 1.76e-06 8.01e-13 1.33e-05 0.153 1.54e-06 8.29e-13 1.16e-05 0.152

MLB batting 1.39e-21 6.51e-14 1.30e-11 1.08e-03 8.49e-22 6.21e-14 1.93e-12 2.11e-08
MLB pitching 9.62e-20 1.21e-16 1.49e-12 2.34e-03 5.95e-21 1.13e-16 2.10e-13 4.78e-06

BookCorpusOpen < 1e-100 < 1e-100 0.0104 1 - 1.19e-05 < 1e-100 < 1e-100 6.88e-15 0.133

transformers on priors with unbounded support (akin to how we did in one of the studies in Section 5.1).
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A Detailed Discussion on Setups

A.1 Worst-case prior and Gold-Standard Estimator

We first define the worst-case prior and the gold-standard estimator.

Definition A.1 (Worst-case prior). Let A be a compact subset of R. Then the worst-case prior π!,A is
defined as

π!,A = argmax
π∈A

mmse(π)

A sample distribution of the worst-case prior on [0, 50] is illustrated in Figure 1 of [JPW22].
One motivation for using the worst case prior is that the Bayes estimator is considered the “gold standard”

which minimizes the maximum-possible MSE across all priors supported on A. A concrete statement can be
found in the following lemma.

Lemma A.2. Let θ̂π be the Bayes estimator to a prior π. and let A be any compact subset of the reals.
Then the least favorable prior π!,A of A satisfies the following:

MSEδθ (θ̂π!,A
) ≤ mmse(π!,A),∀θ ∈ A

and equality holds whenever θ ∈ Supp(π!,A).

This leads to the following corollary.

Corollary A.3. For any compact subset A of the reals, we have

min
θ̂

max
π∈P(A)

E[(θ̂(X)− θ)2] = mmse(π!,A)

achieved by the Bayes estimator fπ!,A
of the least favourable prior, π!,A.

Proof. From Lemma A.2, we haveMSEπ(θ̂π!,A
) ≤ mmse(π!) for any π ∈ P(A). Therefore minθ̂ maxπ∈P(A) E[(θ̂(X)−

θ)2] ≤ mmse(π!) by taking θ̂ = θ̂π!,A
. Now, for any θ̂, we have Eπ!,A

[(θ̂(X)− θ)2] ≥ mmse(π!). Therefore the
conclusion follows.

On the flip side, however, this estimator fπ!,A does not leverage the fact the low-MMSE nature of some
prior, leading to suboptimal regret produced by fπ!,A. Indeed, we consider the priors generated by the neural
prior on prior protocols, and the histogram of MMSEs as shown in Fig. 10a. The MSE given by fπ!,[0,50] on
priors that are point masses as per Fig. 10b suggests that fπ!,[0,50] is incapable of achieving low regrets on
priors with low MMSEs.
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(a) MMSE of neural priors in P([0, 50]) (b) MSE of fπ!,[0,50] at point masses

Figure 10: Discussion on Worst Prior

A.2 Training Priors

We now offer a more detailed description of the training priors.
Neural-generated: prior on priors. We sample the hidden mean parameter θ via the following: first,

let M be classes of priors determined by some two-layer perceptron with a non-linear activation in-between.
This is concretely defined as:

M = {π : π = φW1,W2,σ
♯ Unif[0, 1]}

where φW1,W2,σ(x) = Sigmoid(10W2σ(W1x)), W1,W2 are linear operators, and σ is an activation function
chosen randomly from

GELU,ReLU, SELU,CELU, SiLU, Tanh, TanhShrink.

The parameter θ is then produced by sampling from a mixture of 4 priors in M, and multiplied by θmax (or
in the random θmax experiment as described in Section 5.1, each θ is then scaled differently).

Dirichlet process. Let the base distribution be defined as H0 ≜ Unif([0, h]). Within each batch the
elements θ1, · · · , θs are generated as follows:

θj =

{
θi w.p. j−1

α+j−1 ,∀i = 1, · · · , j − 1

x ∼ H0 w.p. α
α+j−1

where α is a parameter that denotes how ‘close’ we are to iid generation (α = ∞ essentially means we have
iid). We use α = 50 for a sequence length of 512. Note that Dirichlet process implies that our data is not
generated iid for each batch, so the Bayes estimator has to be estimated differently. We omit the calculation
of this Bayes estimator.

A.3 Why do we train using a mixture of two prior classes?

We consider the hypothesis: that our transformer trained under the mixture of the two priors is robust
when evaluated under each of the priors. This can be verified via the following two tests: when evaluated
on neural prior, is the performance (in terms of MSE) of the mixture-trained transformers closer to that of
neural-trained ones as compared to the Dirichlet-trained ones? Similarly, when evaluated on Dirichlet prior,
is the performance (in terms of MSE) of the mixture-trained transformers closer to that of Dirichlet-trained
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ones as compared to the neural-trained ones? Through the table of T -stat comparison done on the MSEs
of 4096 seeds, we answer both these questions in the positive (the difference is especially obvious when
evaluated on neural prior).

Table 4: Table of regret difference; A − B denotes the difference of regret of transformers trained on A vs
trained on B

Evaluated on Neural Evaluated on Dirichlet

# lyr mix − neu dir − mix mix − dir neu − mix
12 0.0038 0.8645 0.0184 0.0379
18 0.0133 1.0647 0.0173 0.0469
24 0.0082 1.0021 0.0202 0.0388

B Technical Proofs

B.1 Approximation of known empirical Bayes baselines

Proof of Theorem 4.1. Encoding step. We embed our inputs representation X ∈ Rn into one-hot vector
Y ∈ Rn×(d+1) such that Yi = eXi+1 if Xi = 0, 1, · · · , d, and 0 otherwise. Then given sample size n,
Y ∈ R(d+1)×n. Now recall the following attention layer definition in (1) of [VSP+17]:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

where Q = YWQ,K = YWK , V = YWV , and WQ,WK ∈ R(d+1)×dk . Let Z = Attention(Q,K, V ). We now
design en encoding mechanism such that the representation after skip connection has the following:

(Y + Z)ij =


1 + N(Xi)

N(Xi)+(Xi+1)N(Xi+1) j = Xi + 1 ≤ d
(Xi+1)N(Xi+1)

N(Xi)+(Xi+1)N(Xi+1) j = Xi + 2 ≤ d

1 j = Xi + 1 = d

0 otherwise.

Define D be a large number, WQ = Id+1 the d-dimensional identity matrix, WV =

(
Id 0
0 0

)
and WK ∈

Rd×d satisfying

(WK)i,j =


D i = j

D +
√
d+ 1 log i j = i+ 1

0 otherwise

(thus dk = d+ 1). Then

(QKT )i,j =


D Xi = Xj = d

D +
√
k log(Xi + 1) Xj = Xi + 1 ≤ d

0 otherwise

.

Thus we have the following structure for M ≜ Softmax(S): rowi(M) = 1
n if Xi ≥ d+ 1, otherwise

Mij =


1

N(Xi)+(Xi+1)N(Xi+1) Xi = Xj ≤ d− 1
Xi+1

N(Xi)+(Xi+1)N(Xi+1) Xj = Xi + 1 ≤ d− 1

0 otherwise.
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Now given that V =
(
Col1(Y ) · · · Cold(Y ) 0

)
, Zij =

∑
k:j=Xk+1 Zik for all k ≤ d− 1 (and 0 for k) This

means:

Zij =


N(Xi)

N(Xi)+(Xi+1)N(Xi+1) j = Xi + 1 ≤ d− 1
(Xi+1)N(Xi+1)

N(Xi)+(Xi+1)N(Xi+1) j = Xi + 2 ≤ d

0 otherwise.

Thus adding back Y gives the desired output.
Decoding step. We define Y1 = ReLU(Y + Z − 1), i.e. a linear operation (with bias) followed by the

ReLU nonlinear operator. Notice that Z has entries all in [0, 1], so Y1 acts like Y ∗ Z (i.e. Z masked with

Y ). Let Z ′ ∈ Rn to be the row-wise sum of Y1, i.e. Z
′
i =

N(Xi)
N(Xi)+(Xi+1)N(Xi+1) if Xi ≤ d− 1 and 0 otherwise.

Then we consider the following decoding function f : [0, 1] → [0, θmax] by:

f(x) =

{
1
x − 1 x ≥ 1

1+M

M otherwise
.

Then f is continuous, and f(Z ′) is indeed θ̂Rob,d,M . Therefore by universal approximation theorem, there
exists a multilayer perceptron that approximates f within [0, 1], as desired.

Before proving Theorem 4.2, we need to establish the continuity of the clipped NPMLE, with arguments
the sigmoid of the input integer and empirical distribution.

Lemma B.1. Let φ : R≥0 → [0, 1] be a strictly increasing and continuous function, and Sig = {φ(z) : z ∈ Z}.
Let S = sup(Sig) and Sig+ = Sig ∪ {S}. Denote θ̃ : (P(Sig+) × Sig+ → [0,M ] be such that for each

pemp ∈ P(Z≥0) and x ∈ Z≥0, the function θ̃(φ♯(p
emp), φ(x)) = θ̂NPMLE,d,M (pemp, x). Then θ̃ can be extended

into a function that is continuous in both arguments. (Here pemp acts like an empirical distribution).

Proof of Theorem 4.2. Starting with the input tokens (X1, · · · , Xn), we consider the token-wise embedding
Yi = Sigmoid(Xi). Note that Sigmoid satisfies the assumption of φ in Lemma B.1. Denote pemp

n as the

empirical distribution determined by (X1, · · · , Xn). By Lemma B.1, the function θ̂NPMLE,d(p
emp
n , ·) can be

continually extended (in the (weak∗, ℓ2) metric). Then [FdHP24], Theorem 1 says that there exists a
transformers network Γ that satisfies

|θ̂(x1, · · · , xn)i − Γ(x1, · · · , xn)i| ≤ ϵ ,

as desired.

Proof of Lemma B.1. To establish continuity, it suffices to show that given a sequence of distributions
pemp
1 , pemp

2 , · · · and integers x1, x2, · · · such that φ♯(p
emp
n ) → ϕ0 and φ(xn) → y0 in (weak∗, ℓ2) metric,

we have θ̂NPMLE(p
emp
n , xn) → θ̃(ϕ0, y0). Note that xn are nonnegative integers, so given that φ is increasing

and injective, either xn is eventually constant (in which case xn → x0 for some x0), or xn → ∞ (in which
case y0 = S ≜ sup(Sig)). Note first that in the case y0 = S we have θ̃(φ♯(p

emp
n ), φ(xn)) = M for all n

sufficiently large. Note also that pemp is a distribution on nonnegative integers so φ♯(p
emp
n )(S) = 0, which

then follows that ϕ0(S) = 0 too. Thus ϕ0 ∈ P(Sig) and so there exists p0 such that ϕ0 = φ♯(p0).
It now remains to consider the case where xn = x0 for all sufficiently large n; w.l.o.g. we may even

assume xn = x0 for all n. If x0 > d we are done since θ̂NPMLE(p
emp, x0) = M for all π. Assume now that

x0 ≤ d. Recall that θ̂NPMLE(p
emp, x0) = (x0 + 1) fπ̂(x0+1)

fπ̂(x0)
where π̂ is the prior estimated by NPMLE. Thus

denoting π̂n as NPMLE prior of pemp
n , for each x it suffices to show that convergence of fπ̂n

(x). Now note
that NPMLE also has the following equivalent form: π̂n = argminQ KL(pemp

n ||fQ, and note that KL can be
written in the following form (c.f. Assumption 1 of [JPW22]).

KL(π1||π2) = t(π1) +
∑
x≥0

ℓ(π1, π2) (3)
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Notice that ℓ(a, b) := a log 1
b fulfills b → ℓ(a, b) is strictly decreasing and strictly convex for a > 0. Fix

x0 ≤ d+ 1, we now have two subcases:
Case p0(x0) > 0. The claim immediately follows from that ℓ(p0(x0), b) is strictly convex in b, and that

for each x we have pemp
n (x) → p0(x) following the weak convergence of pemp

n .
Case p0(x0) = 0. Let Q0 ∈ argminQ t(p0) +

∑
x≥0 ℓ(p0(x), fQ(x)). By Theorem 1 of [JPW22], this Q0

is unique. Now suppose that there is a subsequence n1, n2, · · · and a real number ϵ > 0 such that

|fπ̂ni
(x0)− fQ0

(x0)| > ϵ

By the previous subcase, we have fπ̂ni
(x) → fQ0

(x) for all x ∈ Supp(p0). We now consider Q1 as the solution
to (3), but among the class of functions satisfying the constraint |fQ1

(x)− fQ0
(x)| > ϵ. Such a constrained

space is closed by proof of Theorem 1 in [JPW22], so there exists δ > 0 such that

KL(p0||fπ̂ni
)−KL(p0||fQ0

)

≥ KL(p0||fQ1)−KL(p0||fQ0) ≥ δ

On the other hand, by fixing Q,Q′, we have

(KL(pemp
n ||fQ)−KL(pemp

n ||fQ′))

− (KL(p0||fQ)−KL(p0||fQ′)) → 0

given that pemp
n → p0 weakly and that KL(p||fQ)−KL(p||fQ′) =

∑
y p(y) log

f ′
Q

fQ
, which is a contradiction.

Proof of Corollary 4.3. Choose d such that P[X > d] < ϵ
6·θ2

max
. Note that there exists an N such that for

n ≥ N , both the Robbins estimator [BGR13] and NPMLE [JPW22], Theorem 3 enjoy a minimax regret
bounded by ϵ

6 over the class P([0, θmax]). Now, by the previous two theorems, there exists a transformers

model Γ that can approximate either Robbins or NPMLE up to
√

ϵ
6 precision uniformly for inputs up to d.

Then we have

Regret(Γ) ≤ 2(Regret(θ̂) + E[(θ̂ − Γ)2])

≤ 2(
ϵ

6
+ E[(θ̂(X)− Γ(X))21{X≤d}]

+ E[θ2max1{X>d}])

≤ 2(
ϵ

6
+

ϵ

6
+

ϵ

6
)

= ϵ

B.2 Identities on Worst Prior

Proof of Lemma A.2. We consider the prior πϵ ≜ (1− ϵ)π!+ ϵδθ0 for some θ0 ∈ A. Then ∂
∂ϵmmse(πϵ)|ϵ=0 ≤ 0

with equality if θ0 ∈ supp(π!,A). Consider, now, the following form:

mmse(π) = E[θ2]− EX [E[θ|X]2] = E[θ2]− EX [E[θ|X]2]

= E[θ2]−
∑
x

eπ(x)
2

mπ(x)

where mπ(x) =
∫
p(x|θ)dπ(θ) and eπ(x) =

∫
θp(x|θ)dπ(θ) are the PMF and posterior mean of x, respectively.
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Algorithm 1 Pseudocode that approximates θ̂Rob,d,θmax
using a transformer.

Input: Inputs x1, · · · , xn, θmax, d.
Define: dk = d+ 1, nhead = 1.
Define: D = max{100, d2k}.
Define: WQ = Idk

, WV = diag(1, 1, · · · , 1, 0),WK .
for i = 1 to d+ 1 do
Wk[i, i] = D

end for
for i = 1 to d do
Wk[i, i+ 1] = D +

√
dk log i

end for
Define: AttnLayer = Attn(WQ,WK ,WV ).
Define: Z = AttnLayer(Y, Y, Y ).
Z ′ = ReLU(Y + Z − 1).
Z1 = rowsum(Z ′).
return min{ 1

Z1
− 1,M}.

Now denote eθ0(x) = θ0p(x|θ0) and mθ0(x) = p(x|θ0). Denote also the difference d(x) ≜ mθ0(x)−mπ!
(x)

and k(x) ≜ eθ0(x)− eπ!
(x). Then

mmse(πϵ)

= Eπ!
[θ2] + ϵ(θ20 − Eπ!

[θ2])−
∑
x

(eπ!
(x) + ϵk(x))2

mπ!
(x) + ϵd(x)

which means the derivative when evaluated at 0:

0 ≥ ∂

∂ϵ
mmse(πϵ)|ϵ=0

= θ20 − Eπ!
[θ2]−

∑
x

2mπ!
(x)eπ!

(x)k(x)− eπ!
(x)2d(x)

mπ!
(x)2

= θ20 −
∑
x

2mπ!
(x)eπ!

(x)eθ0(x)− eπ!
(x)2mθ0(x)

mπ!
(x)2

−mmse(π!)

= θ20 − 2
∑
x

eθ0(x)
eπ!

(x)

mπ!
(x)

+
∑
x

mθ0(x)

(
eπ!

(x)

mπ!
(x)

)2

−mmse(π!)

= mseδθ (fπ!)−mmse(π!)

where the last equality follows from that
eπ!

(x)

mπ!
(x) = fπ!

(x). Therefore the conclusion follows.

C Pseudocode on Robbins Approximation via Transformers

We present a pseudocode in Algorithm 1 on how a transformer can be set up to approximate Robbins, using
a formulation that closely mimics the PyTorch module. All vectors and matrices use 1-indexing. Note that

the attention output is Z = Softmax(
YWQWT

KY T

√
dk

)YWV .
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D Further Analysis on Experimental Results

D.1 Synthetic Experiments

We recall that our synthetic experiments are measuring regret w.r.t. sequence length for both the neural
and worst-prior. In the main section, we show a plot of how the regret decreases with sequence length; here,
we provide a more comprehensive result on the Plackett-Luce rankings in Table 5, along with the p-value
by pairwise t-test of T18 and T24 against relevant classical baselines, as per Table 6 and Table 7. From
the p-value we conclude that the transformers outperform other baselines by a significant margin on various
experiments. (except in a handful of cases).

Table 5: Plackett-Luce coefficients of estimators’ regrets on synthetic experiments. The coefficient of MLE
is set to 0 throughout.

Experiments GS Robbins ERM NPMLE T18 T24

Neural-128 -0.003 -3.196 0.965 4.310 7.497 7.696
Neural-256 -0.023 -3.090 1.678 4.885 7.624 8.002
Neural-512* -0.044 -3.016 2.421 5.534 7.646 8.084
Neural-1024 -0.066 -2.930 3.032 6.197 7.579 7.983
Neural-2048 -0.092 -2.813 3.430 6.806 7.455 7.816

WP-128 - -4.925 -2.434 2.476 7.416 4.945
WP-256 - -2.470 2.470 4.943 9.878 7.412
WP-512 - -2.466 2.463 4.924 9.842 7.385
WP-1024 - -2.738 2.735 8.543 8.664 5.476
WP-2048 - -2.468 2.470 9.863 7.405 4.938

Multn-512 0.505 -2.664 2.239 4.877 9.686 7.339
Multn-1024 0.463 -2.635 3.328 5.764 9.615 8.240
Multn-2048 0.471 -2.728 3.432 5.963 8.971 8.811

Table 6: P[Regret(T18) > Regret(Classical)] obtained via paired t-test.

Experiments MLE GS Robbins ERM NPMLE

Neural-128 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-256 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-512* < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-1024 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-2048 < 1e-100 <1e-100 < 1e-100 < 1e-100 0.987

WP-128 < 1e-100 - < 1e-100 < 1e-100 < 1e-100
WP-256 < 1e-100 - < 1e-100 < 1e-100 < 1e-100
WP-512 < 1e-100 - < 1e-100 < 1e-100 < 1e-100
WP-1024 < 1e-100 - < 1e-100 < 1e-100 7.13e-04
WP-2048 < 1e-100 - < 1e-100 < 1e-100 >1 - 1e-100

Multn-512 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Multn-1024 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Multn-2048 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
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Table 7: P[Regret(T24) > Regret(Classical)] obtained via paired t-test.

Experiments MLE GS Robbins ERM NPMLE

Neural-128 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-256 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-512* < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-1024 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Neural-2048 < 1e-100 <1e-100 < 1e-100 < 1e-100 0.273

WP-128 < 1e-100 - < 1e-100 < 1e-100 < 1e-100
WP-256 < 1e-100 - < 1e-100 < 1e-100 < 1e-100
WP-512 < 1e-100 - < 1e-100 < 1e-100 < 1e-100
WP-1024 < 1e-100 - < 1e-100 < 1e-100 >1 - 1e-100
WP-2048 < 1e-100 - < 1e-100 < 1e-100 >1 - 1e-100

Multn-512 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Multn-1024 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100
Multn-2048 < 1e-100 <1e-100 < 1e-100 < 1e-100 < 1e-100

D.2 Real Data Experiments

In the main section, we focused on reporting the RMSE. We supplement our finding on RMSE by showing
a Plackett Luce ELO coefficient of RMSEs of the estimators in Table 8, which shows that the transformers
are consistently ranked at the top.

Here, we also study what happens if we compare the Mean Absolute Error (MAE) of various estimators
on each datapoint. Apart from the average percentage improvement of each algorithm over the MLE as per
Table 9, we also display the p-values based on paired t-test of transformers vs other algorithms in Table 10,
and Table 11. In Fig. 11, Fig. 12, Fig. 13 and Fig. 14, we also include the violin plots.

Table 8: Plackett-Luce coefficients of estimators’ RMSE on real datasets. The coefficient of MLE is set to 0
throughout.

Dataset Robbins ERM NPMLE T18 T24

NHL -2.536 1.458 3.252 3.756 3.587
NHL (defender) -1.730 1.577 3.973 5.366 5.636
NHL (center) -2.739 0.399 2.111 3.118 3.408
NHL (winger) -3.350 0.674 2.271 3.004 2.756

MLB (batting) -2.981 2.991 5.145 6.221 8.575
MLB (pitching) -3.217 3.225 5.916 6.696 7.689

BookCorpusOpen 0.024 1.547 2.341 2.012 2.698
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Table 9: 95% confidence interval of the percentage improvement of MAE by each algorithm over MLE.

Dataset Robbins ERM NPMLE T18 T24

Hockey (all) -20.14 ± 4.44 -0.20 ± 0.60 0.90 ± 0.58 0.76 ± 0.58 0.77 ± 0.59
Hockey (defender) -13.38 ± 4.24 1.44 ± 1.16 3.26 ± 1.07 3.66 ± 1.23 3.62 ± 1.22
Hockey (center) -41.43 ± 9.21 -0.65 ± 0.86 2.26 ± 0.82 2.87 ± 0.86 2.76 ± 0.86
Hockey (winger) -32.43 ± 7.23 -0.12 ± 0.78 1.43 ± 0.63 1.77 ± 0.67 1.68 ± 0.67

Baseball (batting) -25.97 ± 3.81 3.50 ± 0.32 5.22 ± 0.36 5.60 ± 0.34 5.53 ± 0.36
Baseball (pitching) -16.74 ± 2.19 3.45 ± 0.46 5.65 ± 0.48 5.60 ± 0.47 5.70 ± 0.44

BookCorpusOpen 28.05 ± 0.14 29.54 ± 0.10 29.65 ± 0.10 31.70 ± 0.15 27.85 ± 0.15

Table 10: P[MAE(Transformers) > MAE(Classical)] obtained via paired t-test.

T18 T24
Dataset MLE Robbins ERM NPMLE MLE Robbins ERM NPMLE

NHL 0.0103 6.69e-10 9.32e-05 0.868 0.0111 7.95e-10 1.33e-04 0.887
NHL (defender) 9.42e-07 6.53e-10 1.54e-05 1.78e-03 9.03e-07 6.22e-10 4.45e-05 0.013
NHL (center) 5.97e-07 3.04e-10 3.27e-08 2.48e-03 1.02e-06 3.98e-10 1.23e-07 8.20e-03
NHL (winger) 7.33e-06 7.49e-10 1.13e-05 0.0173 1.35e-05 7.98e-10 2.75e-05 0.0518

MLB batting 1.63e-24 6.01e-16 5.06e-12 6.57e-07 3.68e-24 6.74e-16 1.49e-11 3.04e-07
MLB pitching 5.67e-21 2.76e-16 6.36e-12 0.780 7.27e-22 2.38e-16 7.12e-13 0.203

BookCorpusOpen <1e-100 <1e-100 5.31e-26 3.62e-23 <1e-100 9.5e-69 1-6.32e-10 1-1.87e-12

Table 11: Plackett-Luce coefficients of estimators’ MAE on real datasets. The coefficient of MLE is set to 0
throughout.

Dataset Robbins ERM NPMLE T18 T24

NHL -2.928 -0.023 1.769 1.490 1.435
NHL (defender) -2.182 0.795 2.170 2.674 2.667
NHL (center) -3.201 -0.472 1.678 2.617 2.525
NHL (winger) -2.820 0.196 1.464 2.302 1.916

MLB batting -3.076 3.080 5.572 7.968 7.391
MLB pitching -3.332 3.331 6.677 6.253 7.146

BookCorpusOpen 4.325 4.896 5.067 5.319 4.704
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Figure 11: Violin plots of MAE ratio achieved by multiple estimators over MLE on NHL.

Figure 12: Violin plots of MAE ratio achieved by multiple estimators over MLE on MLB batting.
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Figure 13: Violin plots of MAE ratio achieved by multiple estimators over MLE on MLB pitching.

Figure 14: Violin plots of MAE ratio achieved by multiple estimators over MLE on BookCorpusOpen.
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