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ABSTRACT. As large language models scale to longer contexts, attention layers
suffer from a fundamental pathology: attention scores collapse toward unifor-
mity as context length n increases, causing tokens to cluster excessively, a
phenomenon known as rank-collapse. While attention scaling effectively ad-
dresses this deficiency by rescaling attention scores with a polylogarithmic
factor [, theoretical justification for this approach remains lacking.

We analyze a simplified yet tractable model that magnifies the effect of
attention scaling. In this model, attention exhibits a phase transition gov-
erned by the scaling factor (3,: insufficient scaling collapses all tokens to a
single direction, while excessive scaling reduces attention to identity, thereby
eliminating meaningful interactions between tokens. Our main result identifies
the critical scaling 8,, = logn and provides a rigorous justification for atten-
tion scaling in YaRN and Qwen, clarifying why logarithmic scaling maintains
sparse, content-adaptive attention at large context lengths.
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1. INTRODUCTION

The attention mechanism is a cornerstone of modern transformer architectures
on which Large Language Models (LLMs) rely. Mathematically, an attention layer
is a nonlinear operator ATT that maps a collection of tokens {z1,...,x,} from R
to IR?. This operator is parametrized by three (possibly sparse) d by d matrices
K,Q, and V and maps {z1,...,2,} to {zf,..., 2]} using the following formula.
Define the normalization operator N(z) = z/|z| and for any i = 1,...,n define
g = QN (x;), k; = KN(z;). Then z} = ATT(21,...,%,); is defined as

Qi j

n
1.1 o =V S N@)Ai, Ay = =
( ) i ]Zzl ( J) 1] 1] ZZ:1 eWik
where the terms a;; = ¢ k; are called attention scores.

A recent line of theoretical work has demonstrated that attention acts as a
contractive operator that tends to cluster tokens together; see [DCL21, GLPR24,
GLPR25, KPR24, GKPR24, BPA25a, PRY25, CLPR25, CNQG24, GG25]. This
clustering effect is also known as “rank-collapse” or “token uniformity” and arises
because the distribution of attention scores tends to flatten as the sequence length
n grows, causing each token to disperse its attention across too many other tokens
rather than focusing selectively.

Various practical solutions have been proposed to curb this clustering behav-
ior. In this work, we focus on simple context-length-aware modifications of the
attention mechanism following ideas practically implemented as YaRN [PQFS23],
Qwen [BBCT23], SSMax [Nak25], and SWAN-GPT [PLS*25|. These methods em-
ploy a straightforward strategy that rescales attention scores a;; by a single poly-
logarithmic factor f3,,; see Table 1. Our goal in this paper is to answer the following
fundamental question:

What is the optimal order of magnitude of the 3, scaling?

To address this question, we propose a highly
simplified yet completely tractable model for at- Method By, scaling
tention. This model exhibits a phase transition

2
governed by the parameter 3, as n — 00: when éf;f (1100 gr;)
[, is below a critical threshold, attention be- &

SSMax logn

comes overly contractive and collapses all to-
kens to a single direction, while when 3, is too
large, attention acts as an identity operator and ) )
fails to process information effectively. More +table 1. Attention scaling factors

. . . for various methods. The stan-
precisely, we establish that the critical param- . T N\

. dard attention score exp(k; g;) is re-

eter 3, scales as logn, which corroborates the . T

.. - . placed with exp(CBrnk; ¢;), C > 0.
empirical guidelines underlying YaRN, Qwen,
SSMax, and SWAN-GPT.

Our work is intimately connected to the recent contributions of [CNQG24| and
[GG25], who investigate the contractive effects of attention mechanisms with ran-
dom key and query matrices K and @ to establish proper initialization schemes for
these parameters. A crucial insight from [CNQG24] is that analyzing the evolu-
tion of symmetric token configurations provides a more mathematically tractable
framework compared to the generic input distributions considered in [GLPR25].

SWAN-GPT logn
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This symmetric setting, while simplified, captures essential dynamics of the atten-
tion mechanism and enables rigorous theoretical analysis; see also [KGPR25].

The choice 8,, = vlogn appears natural in retrospect. As noted in [Nak25], with
such a scaling the attention weights A;; in (1.1) become

nYdii
22:1 nYeik
To illustrate the resulting dynamics, consider a simplified regime where all attention

scores a;; are of order one: specifically, let a;; = 1 and a;; = p > 0 for ¢ # j. In
this setting, the off-diagonal weights satisfy

s nP Ln if v < 1
Yy 4 (n— 1)ne - LprG=e) if v >

Aij =

|-

—
hs)

1

p

This analysis reveals two distinct regimes. When + is small (subcritical regime),
attention weights are asymptotically uniform, resulting in diffuse attention that, as
we demonstrate below, leads to severe token contraction. Conversely, when -y is
large (supercritical regime), off-diagonal weights become negligible with respect to
the diagonal ones so that the attention mechanism is effectively suppressed.

The critical regime emerges at the phase boundary v = 1%,) where attention
can concentrate on a sublinear yet nontrivial number of tokens so as to maintain
sufficient connections to facilitate information flow from a small set of important to-
kens. This sparse attention is related to structured attention mechanisms employed
in long-context architectures such as Longformer [BPC20] and SWIN [LLC™*21]
which implement a sliding window over k « m-nearest neighbors but where prox-
imity is measured in terms of token position rather than embedding. Unlike these
structurally constrained approaches that rely on fixed positional neighborhoods, the
logarithmic scaling enables the attention pattern to be entirely content-adaptive, al-
lowing each token to dynamically select its most relevant context based on semantic
similarity rather than positional proximity.

Following similar motivations, [GG25] establish a compelling analogy between
attention dynamics and the random energy model from statistical physics [Der81].
Using the replica method—an analytical heuristic from statistical physics—they
identify a phase transition occurring at 8, ~ +/logn, which differs from the scal-
ings presented in Table 1. This result represents a significant discrepancy from our
findings and highlights fundamental differences in modeling assumptions. More
specifically, their approach assumes that the attention scores a;; are correlated
Gaussian random variables. This assumption effectively induces a random geome-
try on the token space, where similarity between tokens is treated as fundamentally
random. In this sense, their model bears closer resemblance to recent Kuramoto
models on random graphs studied in [ABK™"22, JMS25], where the authors inves-
tigate the synchronization of oscillators interacting across the edges of a (sparse)
Erdgs—Rényi random graph with unit edge weights. However, in the case of [GG25],
the random graph is both directed and dense, with the edge pointing from token j
to token ¢ having weight given by

eBnaij
n a;
Zk:l eﬁn k

where a;; are Gaussian random variables. While [GG25] assumes a specific corre-
lation structure between the Gaussian random variables, the phase transition they

(1.2) Ay =
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uncover is expected to be universal within a large class of random matrices includ-
ing Wigner ones. Crucially though, in such models, the interaction strength A;;
is independent of the positional relationship between tokens ¢ and j, making this
model qualitatively different from standard attention mechanisms where attention
is focused on few (or all) of the preceding tokens.

[BPA25b] adopt a different approach to studying the regime where n — oo and
B, — 00, in a more general setting than ours. By considering various levels of
generality for the matrices K, Q,V, this work identifies distinct regimes of token
dynamics and relates them to the hardmax (8 = 00) limit. Importantly, the analysis
is conducted in the subcritical regime and differs from the present work in focusing
on a broader class of models, for which the critical regime has yet to be precisely
characterized. We believe that combining the analytical tools developed in both
papers could yield a deeper understanding of this critical regime and represents a
promising direction for future research.

The remainder of the paper is organized as follows. Section 2 provides a precise
mathematical formulation of the phase transition phenomena for the rescaled at-
tention layer. We begin by analyzing token angles and the contractive behavior of
tokens under two settings: an idealized but intuitive simplex model (Section 2.1)
and a more realistic model with the simplex constraint relaxed (Section 2.2). In both
cases, we identify three distinct regimes of the scaling parameter, each leading to
qualitatively different contrastive behaviors of the self-attention layer. Section 2.3
turns to the gradient norm of the rescaled attention operator. Because rank col-
lapse is often accompanied by vanishing gradients, we characterize the gradient
dynamics across scaling regimes and show when gradients vanish, or stabilize to
non-trivial limits. Section 3 presents our numerical experiments, which validate
these theoretical predictions.

Throughout this paper, when we denote a quantity as o,(1), where n is the
number of tokens, we mean there are positive constants C7, Cy independent of the
dimension d, such that |o,(1)] < Cin~2. The constants C1,Cy depend on the
assumptions in theorems.

2. A PHASE TRANSITION FOR ATTENTION

In this section, we establish the main theorem of this paper, namely a phase
transition for the contractive properties of the attention layer when g, = vylogn
for some v > 0.

Following [GLPR25], we study a simplified version of the attention layer with pre-
layer norm that is described in the introduction by assuming that K = Q =V = I,.
More specifically, the model we study is given as follows.

For any two points z,y € R?, let (x,y) = 2"y denote the standard Euclidean
inner product in R?, and |x| = \/{x, ). Finally, recall that N(z) == z/|z].

For any collection of tokens {x1,...,7,} in IR, define y; = N(x;) € S~ for
i=1,...,n and

(2.1) Z; = Z edik | Aij = Q5 = B<yiayj> )
k=1
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fori,5 =1,...,n. We then define
j=1

Since the seminal work of [HZRS16], residual connections are added to modern
architectures and naturally act as a regularization scheme of the attention map
towards the identity; see [CLC'25]. With said residual connections, each token x;
is mapped to x} using the following update rule

(2.3) x = ATT(y;) + ax;, a=0.

Our first goal is to understand where the angle (=}, 2”;) compares to £ (v, x;). If
L(x},2%) < L(wi,x5)—or equivalently (y;,y;) > {yi,y;), with y; = N(z})—we say
that attention is contractive.

The nonlinear update rule (2.3) can produce complex dynamics, in which some
pairs of tokens move closer together while others drift apart. This diversity of
motion is in fact the most desirable outcome in practice, and it emerges precisely
at the phase transition identified in this study. Beyond this critical regime, the
tokens exhibit an unexpectedly cohesive behavior. To delineate the boundaries of
the critical regime, we assume that the size and relative positions of the initial
tokens are governed by constants independent of the number n of tokens. As an
analytically tractable extreme of this assumption, we first consider the case in which
the tokens form a regular simplex in R? as in [CNQG24|. Despite its symmetry, this
configuration is sufficient to capture and predict the onset of the phase transition.
We subsequently relax this constraint in Section 2.2 to show that the same phase
transition occurs in more realistic configurations.

2.1. The simplex case. The following assumption was made in [CNQG24] and
subsequently in [GG25]. While rather stringent—in particular, it requires d = n—
it turns out to provide a tractable yet predictive setup to study the contractive
properties of attention.

Assumption 1. There exists nonnegative constants ¢ = 0 and p € (0,1) such that
|zi|> = q and {y;,y;y = p, for anyi,j =1,...,n and i # j.

Under Assumption 1, it is easy to see that there are positive constants p’ and ¢’
such that (y;,y;) = p’ for all i # j and |#;|? = ¢ for all 4. This simplification gives
rise to a tractable phase transition.

Theorem 2.1. Under Assumption 1, there is a p' € (0,1) such that (y;,y;) = p'
for all v # j. Moreover, if B = ylogn where v is a positive constant, then for any
i # 7, it holds

play/g+1)® : 1
aZq+2a./gp+p ify < 1—p>
. VAN p(o¢\/§+1)2 . _ 1
(2.4) nl—l>l-rrloo<y“yj> aQq+aﬁ(1+p)+% Zf’y T 1-p2
p if v > ﬁ.

Note that when v < 1%;;’ the right hand sides of (2.4) are strictly larger than p
for any a > 0. In other words, in the critical and subcritical regimes attention is
contractive even in the presence of a residual connection. Of course, when o — o0,

the effects of attention dissipates and the limit tends to p for all phases. This is
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expected as the update from y; to y} tends to the identity map, an effect known to
“mitigate oversmoothing” in residual neural networks; see [CLCT25].

Note also that for o = 0, that is in absence of residual connections, the limit in
(2.4) reduces to

1-p?
(2.5) Jim Gylyf) =4 o iy =1
p if v > lflp.

In the subcritical case, the tokens contract in one step towards a single cluster
when n — oo while in the supercritical case, their inner product does not change.
In fact, a careful inspection of the proof reveals that in this supercritical regime the
attention operator converges to the identity as n — c0. When a > 0, the subcritical
case is mitigated by the residual connection which prevents token to collapse to
a single point in one step. Nevertheless, this singular behavior reveals a major
limitation in the simplex case: since the tokens are equidistant the phase transition
reveals an all-or-nothing phenomenon where attention transitions from A;; ~ 1/n
so that ATT(y;) =3 = %Z;”:l y; for all ¢ to A;; = J;; so that ATT(y;) = y; for all
i. In the next section, we present a similar result Theorem 2.2, where the simplex
assumption is relaxed.

Before we end this section, we present the proof for (2.5) as a special case of
Theorem 2.1. The detailed proof for Theorem 2.1 and the later Theorem 2.2 in
Section 2.2 is included in Appendix A.

Proof of (2.5). In (2.3), when a = 0, we have that =, = ATT(y;) for each i =
1,2,...,n. In (2.1), under Assumption 1, we notice that the quantity Y ;_, e** in
the denominator of A;; is independent of the choice of i, and equals to e’ +(n—1)e??.
Denote this as Z := €® + (n — 1)e??. Then (2.2) and (2.3) become

1
I N = — | By E B8
Ty = ATT(yz) - VA (6 Yi + ef ym> .

m#£i

Under Assumption 1, a direct computation shows that for any i = 1,2,...,n,
1
@ty = 75 (% 4200 = Dol 4 (n = 1)1+ (n - 2)p)e”)
and for any two different 7,5 = 1,2,...,n,
1
(x}, x) = 72 (pem +2(1+ (n—2)p)e’ P 4 ((n—2) + (n® — 3n + 3)p) 625”> :

See also Lemma A.3 and Lemma A.4 for more detailed computations for {(z}, x.)
and (zj, 77).

For Z = € + (n — 1)e”?, when we let 3 = vylogn, we see that ¢ = n7 and
nefB = n'*tP7 in Z. The largest term in Z then depends on the relation between
v and 1+ py: when v < ﬁ, n'*P7 is the largest term; when v > 1%, n” is the
largest term. We then directly get the following three phases for Z from the above

arguments:
. 1
(14 0,(1)) -ne”? ify < st
(2.6) Z={(2+0,(1)) € if y= —ﬁp,
. 1
(14 o0,(1)) € ify> 1,
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where the terms o0,,(1) go to 0 as n — +0o0. Similarly, we can get the the following
three phases for {(z}, x}):

p if v < %5,

. / AN 1+3 . _ 1
(2.7) nETw<$i7$i> = Tp if v = ip
1 if v > 1.
For (x}, ), we always have that lim,,, y o(z}, 2;) = p for v in these three different

regimes. Then (2.5) follows from these two limits since {y;, y;) = (z}/|z|, = /| 2} )

2.2. The almost-simplex case. In this section, we relax Assumption 1 to allow
pairwise angles and lengths to vary slightly. This relaxation makes it possible for
tokens to lie in a dimension d « n. Although the resulting bounds are not as sharp
as those obtained under Assumption 1, they demonstrate that the critical scaling
Brn = O(logn) is intrinsic and not merely an artifact of a particular geometric
construction.

Assumption 2. There exist constants q1,q2 € (0,00), p1, p2 € (0,1) such that ¢1 <
|zi|? < g2 and p1 < {yi,y;> < pa, for any i,j = 1,...,n and i # j. Moreover,
p1 = {Yi,y;) for some i,j.

It is easy to see using standard probabilistic tools that Assumption 2 holds
with high probability when the y;’s are independent random vectors uniformly
distributed on a half-sphere for example.

Theorem 2.2. Under Assumption 2, we have the following phase transition when
B = vlogn for some fized v > 0.
If v < ﬁ, then there is a constant € > 0 depending on «, p2, q1,q2, such that

(2.8) lim m1n<yl,y]> p1+e€ > pi,

n—+oo ¥
which implies that the angle between tokens becomes strictly smaller after an atten-
tion layer (2 3).
If v > 7=, then for any i€ [1,n],

(2.9) ATT(yi) =y, + on(1), and hence @, = y; + az; + 0,(1),

where the term o, (1) goes to 0 as n — +00 with a speed uniform in i. Hence, when
> = p , for any two different i, j € [1,n],
(2~10) Jm i i) = (v yg)-

which implies that the angle between tokens does not change after an attention layer
(2.3).

The proof for Theorem 2.2 is included in Appendix A, but the general intuition
is similar to the proof for (2.5) in Section 2.1. As we have seen in that proof, the
first step to build up phase transition regimes for (y;,y;) is to study the phase
transition regimes for Z; in (2.1). Adjusting the logarithmic scaling factor v causes
different phase transition regimes for Z; first. When = is small enough, the weights
e%* consisting of Z; are asymptotically uniform, and each token almost equally
interacts with the other tokens. When ~ is large enough, each token mostly focuses
on itself.
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Building on this observation, Theorem 2.1 and Theorem 2.2 together demon-
strate that v controls the effective interaction range of each token. In particular,
we have seen in Theorem 2.1 the existence of the critical regime when v = 1%{).
In this case, although the tokens continue to contract, their rate of shrinkage is
evidently slower than in the subcritical regime, as shown in (2.4) and (2.5).

It is hence natural to ask whether further regimes emerge when v is varied be-
tween the supercritical and subcritical threshold. Indeed, in Appendix C, we prove
the existence of a nontrivial middle phase when ~ is between the two extrema ﬁ
ﬁ, under a refined assumption on the distribution of tokens, which allows
for a sharper characterization of the transition. Under this refined assumption,
Theorem C.2 show the existence of 1,2 such that (2.3) presents three different
phases: v < 71, 711 <77 < 72, and 7 > 7. In the extreme regimes, when v < 4,
each token interacts with almost all the remaining tokens, while when v > ~5,
each token only focuses on itself, consistent with Theorem 2.2. In the intermediate
regime v, < v < 72, however, the weights e** concentrate on only a small subset of
tokens, so that each Z; and hence the update in (2.3) is dominated by a few highly
relevant interactions. This shows that the logarithmic scaling enables each token
to dynamically select its most relevant context.

We conclude by noting that those o, (1) terms in our theorems satisfy the bound
lo,(1)] < C1n~% for some positive constants C,Cy that are independent of d
(though varying across theorems). As a result, the simplex configuration (Assump-
tion 1) and the almost simplex configuration (Assumption 2) remains valid under
repeated application of the ATT operator up to poly(n) iterations. In particular, the
accumulated error remains negligible at this scale, so our theorems and arguments
extend to transformers with many layers.

and

2.3. Propagation of Gradients under Attention Layer. In the previous sec-
tion, we established how attention scaling influences the propagation of token rep-
resentations, corresponding to running the Transformer in the forward (inference)
direction. During training, however, the Transformer is also executed in the back-
ward direction to compute gradients via backpropagation [RHWS86]. In this section,
we show that a similar phase transition arises in the backward pass: in the subcrit-
ical regime—where token representations rapidly collapse in the forward pass—the
gradients also collapse, whereas in the supercritical regime they retain their scale.
The stability of gradients is a crucial computational consideration that strongly af-
fects a model’s ability to be trained effectively. For this reason, several theoretical
analyses of gradient dynamics in Transformers have been conducted, albeit without
attention scaling; see, for example, [CNQG24, DCL21, NAB*22].

Let the input token configuration be denoted by X (0), and let X (¢) represent the
positions of all tokens at the output of Transformer layer ¢. To compute gradients,
one needs to evaluate the end-to-end input—output Jacobian across L layers of the
Transformer. By the chain rule, this Jacobian can be expressed as

0X(L)  o0X(L) oX(L-1) 0X(1)

0X(0)  0X(L—-1)0X(L—-2) 0X(0)
Thus, the end-to-end Jacobian can be obtained by recursively computing and mul-
tiplying the layer-wise Jacobians. This procedure is known as the adjoint method in

dynamical systems theory [Lio71], and as backpropagation in the machine learning
community.
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Our main result shows that when (,, = vlogn with subcritical -, the typical sin-

UX)(; (+ )1) are close to zero (apart from the contribution of the residual

gular values of
connection). In contrast, for supercritical values of v, the contribution of the at-
tention component to the Jacobian is non-trivial and behaves as a normalization
map. In this case, the attention component does not amplify the total noise
cross layers.

We now proceed with formal definitions. For z € IR?, let (x), denote its u-

th coordinate for u = 1,2,...,d. The concatenation X = (z1,2s,...,2,) € R"?
represents the configuration of all tokens. The normalization map is defined by
(2.11) N(X) =N(z1,22,...,2,) == (N(z1), N(z2),...,N(z,)),

and the attention map by

where ATT(y;) is defined in (2.2) and Y = (y1,...,¥n). Under these definitions,
the update (2.3) can be written compactly as

(2.13) X' = ATT(N(X)) + aX,

where X' = (2, 25,...,2),).

We define the nd x nd Jacobian matrix as

oz,
(2.14) VxX' = ( ( J)”> ,

Awi)u/ (o) (i)
fori,j=1,...,nand u,v = 1,...,d. The matrix norm of Vx X’ is given by

2
(2.15) IVxX'|? = tr[(Vx X)) VxX'] 2 Z < )
i,j=1u,v=1
Let o1,09,...,0,4 denote the singular values of VxX’. Then the normalized

Jacobian norm satisfies

1 1 nd
2.16 — X'|? = — 2
(216) Ll VX = G 3t

which represents the mean squared singular value of the Jacobian.

Before stating our results on -4||Vx X’||?, we note that the Jacobian Vx X’ can
be decomposed into the residual part al,,q and the attention part Vx(ATT(NV(X))).
As shown in Theorems 2.1 and 2.2, the residual component «l,4 does not affect
the phase transition behavior. Therefore, to streamline the analysis, we focus ex-
clusively on the attention term V x(ATT(N(X))) by setting o = 0 in (2.13). The
following theorems characterize |V x X’ under this setting.

Theorem 2.3. Adopt Assumption 1 and (2.13) with o = 0. Then, we have the
following phase transition phenomenon: let B = vlogn where 7y is a positive con-
stant.

Ify < 1,

1
(2.17) @HVXX’Hz =0+ o,(1).
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Ify =15

1 1 1
2.1 —|VxX'|P=—(1-+ 1).
(2.18) 2l VX = 1 (1= 3) o)
If’y>ﬁ

1 1 1
2.1 —|VxX'|P==(1-= 1).
(2.19) VX =2 (1= 3) o)

In both cases, the terms o,(1) go to 0 as n — 400, with speeds depending on
Y P q-

The results of the previous theorem show that under the simplex assumption,
the phase transition in the backward dynamics (for gradients) is as sharp as for the
forward pass: for small v, gradients do not flow through the attention block.

We can also extend the analysis for Theorem 2.3 to the relaxed Assumption 2.

Theorem 2.4. Adopt Assumption 2 and (2.13) with o = 0. Then, we have the
following phase transition phenomenon: let B = vylogn where v is a positive con-
stant.

1
If v < T’
1 7*(log(n))?
2.2 VX2 <422, (1),
(220) Vx| B+ ou()
1
Ifv> 1=,
1 1 1
2.21 —|VxX'|P>—(1-= (1
(2:21) VX (1= 1) o)
which is away from 0 even when d,n is very large. Indeed, when v > ﬁ, for any
fized i,j € [1,n],
O(ATT(N(z;)))v Jij T
(2.22 (] = 4 (Lo —yii ) +0n(1) + 0, (1) - L,
: Aede s T )
AN (24))v

where the leading order term is exactly as shown in Proposition B.1. Here,

14 is the d x d identity matriz, the term 0, (1) (0n(1), respectively) is a d x d matriz
(constant, respectively) with matriz norm as defined in (2.15) (value, respectively)
going to 0 as n — +00, with a speed independent of i,j but only depending on

Y, P2,41-

We present the proofs for Theorem 2.3 and Theorem 2.4 in Appendix B. Note
that the @ term in (2.20) is small for typical values of n and d used in Transform-
ers. Theorem 2.3 and Theorem 2.4 also corroborate the fact that tokens collapse
fast when +y is in the subcritical regime, while each token only focuses on itself when
~ is in the supercritical regime.

3. NUMERICAL EXPERIMENTS

This section reports numerical experiments designed to corroborate our theoreti-
cal predictions. In the following numerical experiments, we test the phase transition
in the almost-simplex case as Section 2.2. We generate samples {z1,...,z,} c R?
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such that the expectations E||lz;|? = 1 and E(z;,z;) = p € [0,1] for i # j. More
precisely, we generate x; according to

(3.1) Ty =+/pzo+/1—pz,

where zg,21,..., %, are i.i.d. standard Gaussian vectors in R?. The generated
samples satisfy the Assumption 2 with high probability.
In Figure 1, we plot the input-to-output angle ratio A, defined as

n(n—1) 1= iy’

for samples processed through a single self-attention layer with different v and of
different dimensions d. Consistent with our theoretical predictions, the layer acts
as a contraction mapping when + is small, reducing pairwise output angles, whereas
for large v the output angles remain nearly unchanged from the input. Moreover, in
the large d regime the angle between input tokens (y;, y;) (¢ # j) concentrate near p,
so that the simplex Assumption 1 is effectively satisfied. In this setting, we observe
a sharp phase transition in agreement with Theorem 2.1. In the small d regime,
however, the input tokens (y;, y;) randomly distributed in an interval (p1, p2), and
an intermediate phase emerges in which the contraction is only partial: some angles
shrink significantly while others remain close to their original values, which smooths
out the transition.

1<i<jy<n

1.0

0.0

d =512

Figure 1. Plots of the input-to-output angle ratio A, defined in (3.2),
as a function of p and . The tokens are first normalized by a pre-layer
normalization and then passed through a single self-attention layer (2.2),
with residual connections and MLP layers omitted. The dashed curve
corresponds to v = ﬁ7 which approximates the actual phase transition
with increasing accuracy as d grows, as implied by Theorem 2.1.

In Figure 2, we plot the normalized matrix norm for the nd x nd matrix Vx X',
defined as

1
3.3 = —|VxX'|?
(3.3) n=—|VxX'|?,

for samples passed through a single self-attention layer with varying v and dimen-
sion d. Across all three plots, the normalized gradient norm remains close to 0
when ~ is small, while for large ~ it approaches 1 — 1/d, consistent with Theo-
rem 2.4. Similar to the token-angle behavior, a sharp phase transition emerges
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near vy = ﬁ in the large-d regime, in agreement with the predictions under the

simplex assumption. In lower dimensions, fluctuations in the pairwise angle prevent
perfect concentration, and the transition is smoothed into an intermediate regime
where the gradient norm only partially stabilizes.

1.0

0.0

d =512

Figure 2. Plots of the normalized norm 7 of the gradient, defined by
(3.3), as a function of p and v. The tokens are first normalized by a
pre-layer normalization and then passed through a single self-attention
layer (2.2), with residual connections and MLP layers omitted. The
dash curve shows 1%/), which approximate the actual phase transition
with increasing accuracy as d grows, as implied by Theorem 2.3. The

matrix norm 7 is computed by the Hutchinson trace estimator [Hut89)],
based on the definition in (2.15).

APPENDIX A. PROOF OF THEOREM 2.1 AND THEOREM 2.2

In this section, we adopt Assumption 2 and prove Theorem 2.2 first. Then, we
prove Theorem 2.1. To simplify notations, we define [1,n] := {1,2,...,n} for any
ne’l;.

We study the asymptotics of the quantity (z},2’) as n — +oo. We use the
notation

(A1) Z; = Z e%ik — P 1 Z edik
k=1 k#i
Lemma A.1. Let § = ylogn where 7y is a positive constant. Under Assumption 2
and (2.3), for any i€ [1,n],
(A.2) = (Lt on(1) - (Bpwi ™) v < =505
(1+0,(1)) - €” ify> =,

where the terms 0,(1) go to 0 as n — +00 with speeds independent of i but only
depending on v, p1, p2.

Proof of Lemma A.1. We notice that

(A.3) Zi=¢éP + Z ek,
ki
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We also notice that e/* = n7* for any t. It then holds that ¢ = n and
(A.4) nP(n—1) < Y et <n(n—1).
k#1

1 1+~ 3 3 3 a;
Hence, when v < = n? < n TP the leading order term in Z; is Zk#— ek 'We
also see that

b
A5 Zi= | m—— 1| Y],
s () ()

with
b _ nY
(X €i) — mPr(n—1)

which goes to 0 as n — +00, and is independent of ¢ but only depending on ~, p;.

Similarly, when v > ﬁ, nY > n'*t7P2 the leading order term in Z; is €, and
similar arguments hold true. (]

(A.6)

Lemma A.2. Let 5 = vylogn where 7y is a positive constant. Under Assumption 2
and (2.3), if v > ﬁ, then for any i € [1,n],

(A7) ATT(y;) = yi + on(1), and hence x}, = y; + ax; + o,(1),
where the term o0,(1) goes to 0 as n — +00 with a speed independent of i but only
depending on v, ps.

_1

T ps n’ >

Proof of Lemma A.2. According to Lemma A.1, we see that when v >
n'T7P2 and hence,

(A.8) ATT(y) = 2" (eﬁyi +) e‘“jyj> = (1 +o0,(1)) (y +e Py e“”w) :
i g7
Because |y;| =1,

e P Z e*iy;

J#i

(A.9) <e Z e’ < n”Y - nP?(n—1),

Jj#i

which goes to 0 as n — +00, and is independent of i but only depending on ~, ps.
This shows that when v > ﬁ,

(A.10) ATT(yi) = (1 + 0n(1))(yi + 0n(1)) = yi + 0n(1).

Lemma A.3. Under Assumption 2 and (2.3), for any i€ [1,n],
@y = ol + 200 (004 S ey,
(X2 Z2 )

J#i

1 . ais tai
toa <€2ﬁ +2¢7 ) e I yi gy + ), Y et ”‘<yk,yj>> :

' J#i jAik#i

(A.11)

K2
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Let B = vlogn where v is a positive constant. When v < ﬁ,
(A.12)

Do €Y Yi) N Dihri i €V Y, Y1)
Dk € (Xprie ”“)

(@i, @iy = o[l * + 20| +on(1).

When vy > m,
(A.13) (afyai) = (allzi] +1)% + on(1).

In both cases, the terms 0,(1) go to 0 as n — +00 with speeds independent of i but
only depending on v, p1, p2, &

Proof of Lemma A.3. According to (2.3), we see that

(A.14) (ahyxy = a?|ai]|? + 20w, ATT (i) + AT T (y:), ATT (3i))-
(A.11) follows from direct computations. Two phase transitions (A.12) and (A.13)
follow from similar arguments as in Lemma A.1. [

Lemma A.4. Under Assumption 2 and (2.3), for any two different i,j € [1,n],
(A.15)
(x}, @) = o*(wi, x5)

el ( Sy + Y <yy>) ol <eﬁ<yi7yj> ) eaﬂ<yz-,yl>>

k#i 1£31

1
+ - 7.7, < 2 lyiyyp) + €f 2 "y, yny + € Zea”@ yiy + Z 26 Uy, yl>> .

k#i l#j5 k#il#7
Let B = vlogn where v is a positive constant. When v <
7y log 0 p v 1—p1’
eQik ) el -
(@}, @) = o™ (wi, x5y + a|xj2k#zl iijjk be) + a|xi|w
k#i 1#5
Al . .
(A.16) S Zl;ej ekt ey

(g €%k - (Zl;&j ea.ﬂ) + on(1).

When v > ﬁ,

(A.17) @i, ) = (afzi] + D(ellz; | + 1)<yi, y;) + on(1).

Proof of Lemma A.4. According to (2.3), we see that for two different 4, j € [1, n],

(A18) (af,a%) = a®p + alw, ATT (y;)) + alay, ATT (y:)) + (ATT (), ATT (y5))-

(A.15) follows from direct computations. Two phase transitions (A.16) and (A.17)

follow from similar arguments as in Lemma A.1. ([l
Next, we prove Theorem 2.2.

Proof of Theorem 2.2. We first discuss the case when v < %pl. According to

1
(A.16) and Assumption 2, we see that

(apyxyy = oPlaillzsln + allzjlor + alwilor + p1 + 0n(1)

(A.19) = pr(afaz]| + D) (ez;] + 1) + 0.(1).
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By (A.12), we see that

(@, ah) < ||z + 2alailpa + p2 + on(1)
(A.20) = ||z + 20z + 1 — (1 = pa)(1 + 20| z;]) + 0, (1)
< (afzi]| +1)% — (1 — p2)(1 + 2aq1) + 0n(1).

We have a similar inequality for (z, ). So, there is a constant § > 0 depending

on p2,,q1,qe and independent of n, such that

1 1+6 1 1+6
(A.21) s 0 ), and = 0 (1),
|z~ ol + 1 Iz~ efzs] +1
Hence,
(A.22) Wiy = pr(1+0)> + 0n(1) = p1 + € + 0n(1),

for € = p1(1 + 20)d > 0 independent of n.
For the case when v < ﬁ, (2.9) and (2.10) follow directly from Lemma A.2,

Lemma A.3, and Lemma A.4. O

Proof of Theorem 2.1. We notice that Assumption 1 corresponds to the special case
when g1 = ¢ = ¢ and p; = p2 = p in Assumption 2. Clearly, Z; is independent
of the choice of i € [1,n] by its definition (A.1). According to the explicit forms
(A.11) in Lemma A.3 and (A.15) in Lemma A.4, one directly sees that both {z;, z;)
and (z;,z;) are independent of the choices of 4, j € [1,n]. We can further compute
that for any i € [1,n],

a?q + 2a,/qp + p if'y<ﬁ7
(A.23) nl_l)rf@@é,x;} =<{a%q+ayql+p) + 22 ify = ﬁ7
2 - 1

and for any two different i, j € [1, n],

(A.24) lim (xf,2)) = p(a/g + 1)°.

n——+00

(2.4) follows from (A.23) and (A.24).
When v < ﬁ, we see that

play/q +1)2 - play/q +1)2 _,
a?q+2a,/qp+p  o?q+2a/q+1 ’

. A AN
(A.25) Jim Cyi ) =

where the strict inequality is because p < 1. When v = flp, we can similarly show
that lim,, +0(y;,y}) > p. This completes the proof for Theorem 2.1. |

APPENDIX B. PROOF OF THEOREM 2.3 AND THEOREM 2.4

OATT(N ()

We prove Theorem 2.4 first. We need to explicitly compute terms in =) ,

for which we need the following lemmas.
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B.1. Proof of Theorem 2.4.

Lemma B.1. For any i,k € [1,n] and u,w € [1,d],

ON (z))w _ 5 6wukaH2 — (@K)w(@k)u
B A EAE
Proof of Lemma B.1.
AN (@) k™) Swallzal = (@a)u -
(B2) T S P ENE |

Lemma B.2. For any k,j € [1,n] and w,v € [1,d],

(B.3)
O(ATT(y;))w
a(yk)w

= |: <5k]/8 < Z eﬁ<y11ym>(ym)w(ym)v> + 6ﬂ<ijyk>(ﬂ(yj)’w(yk)v + (;wv)) . (Z eﬁ@j,yz})
m=1 &
— <6k)jﬂ <Z €ﬁ<yj7yl>(yl):w> + /Beﬁ<y1>yk>(yj)w> . <Z 65<y77ym>(ym)u> :|

=1 m=1

n —2
. (Z eﬁ<yj,yz>> )
=1

Proof of Lemma B.2. By (2.2),

ZZL:1 eB<yj’ym>(ym)v
Z?:l eﬁ<yj 1yl>

(B4) (ATT(y;))0 =

Lemma B.2 then follows from a direct computation. (I

For z,y € IR%, we use r ® y to denote the d x d matrix with (u,v)-th element
(T @Y)uww = (2)u(Y)o, i, @y = xy’. We then have the following proposition.
Lemma B.3. Adopt Assumption 2 and (2.3). For any i,j € [1,n], consider the
d x d matriz formed by W, foru,v e [1,d]. Denote yi, = N(xy) for each
k€ [1,n]. Then, this matriz has the following form:

AATT(N (2;)))e . .
) (DT} e R+ RaZ (U U OV 2
where Z; = 3 ePYiv0 as in (A1),
(B.6)

Ry =08 (W; = 5:® (Wyy)),  Ra = ePUv ((—y; + BPy,y;) @ yi + la)
and

(B.7) Uy =058 (P, V), U= Yy (P, y,).
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n (B.6) and (B.7),

(B.8)

n

n
Vj — Z €ﬂ<yj’ym>ym, Wj = Z eﬁ<i‘/j1?¥1ﬂ>ym ®ym’ ny =y — <y,;zj>aj
m=1

m=1
Proof of Lemma B.3. By chain rule and Proposition B.1, we have that

O(ATT(N (25)))
o(z;

N>

u

B Pl DI E
k=1w=1 Y=N(X) ATi)u
B.9
S () AT _ 3 o) LT
w=1 a(yz)w Y:N(X)
~ o] M e 3 ) ST T |
i a(yz)u o Z)w Y oA (X)
According to Proposition B.2 and the notation Z; = > | e%!, we see that
(B.10)
d AATT(y;))o

= |: <6’Lj/3 (i 66<yj’ym><ym7yi>(ym)v> + eﬁ<yj’yi>(ﬂ<yj7yi> + 1)(%)1;) : Zj
_ (%ﬂ (Z 65<yj’yl><yl,y,->> + 566<yj¢yi><yj7yi>> . (Z eB<yf’ym>(ym)U> ] 'Zj_2-
=1 m=1
Hence,
qa ATT(N (25)))w
Jailt - T
(AT S ATT(y»m
a ( O(Yi)u Wi)u Z: Yidu (Yi)w ) Y=N(X)
= [[W ( 3T U () g — Y yi><ym>v<yi>u>>
(B.11) m=t

# SDI B0 + G~ (B + 1) ()| 2

- [%ﬂ (i VIV (1) — (i, yi>(y¢)u)>

=1

+ BPW (). <yj,yz>ym] (Z ey )]Z
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We then adopt the notation (B.8), i.e.,
(B.12)

n

n
Vj = Z eﬁ<yj’ym>ym7 Wj = Z €5<y'7’ym>ym & Ym, ny =Y—- <y,x>x

m=1 m=1
So, the matrix form of (B.11) becomes
(B.13)

H%‘ﬁ (W, — 3 ® (W) + P9 (By; @ y; + Ta — (Byj,yip + 1) yi ®yz):| - Zj
- [&jﬁ(vj — (Vi yipys) + BePWiv) (y; — <yjayi>yi)] ®Vj] 75"
- Hw (W, — 1 ® (W) + 55550 (—y, + 8P, 1) @ i + m] .z,

— [%’5 (P,,V;) + BePvrve (P%yj)] ®Vj] : Zfz'

We further use the notations in (B.6) and (B.7), i.e.,
(B.14)

Ry = 0;;8¢” (W, — y; ® (Wjy3)),  Ra = W0 ((—y; + BPy,y;) @i + La)
and
(B.15) U, =6;8(P,,V;), Us=pe’ v (P,y;).
Finally, the matrix form of (B.11) becomes
(B.16) [(R1+R2)Z — (U1 +U)®V,]- Z; %

O

Lemma B.4. Let 8 = ylogn where v is a positive constant. Under Assumption 2
and (2.3), if v > ﬁ, then for any fizxed i,j € [1,n], the d x d matriz satisfies

O(ATT(N(z4)))w 8ij
man (P — 2 (L= g @) + 0a(1) + on(1) -
(i) axa il
where the leading order term is exactly % The term o, (1) (0n(1), respec-

tively) is a d x d matriz (constant, respectively) with matriz norm as defined in
(2.15) (value, respectively) going to 0 as n — 400, with a speed independent of i, j
but only depending on v, p2,q; .

Proof of Lemma B.4. We frequently use this formula: for two vectors Vi, Vs, the
matrix norm of V3 ® V, as defined in (2.15) is |V1||Vz]. When v > ﬁ, nY >

n! 772 and we know from Lemma A.1 that Z; = (1 +0,(1))-€? for any j € [1,n].
Adopt the notations in Proposition B.3, we then show the following facts when
V>

P2
(B18)  RiZ;'=o0,(1), RoZ;' =0 (~yi ®yi + La) + 0n(1) + 0n(1) - I,
and

(B.19) (U1 +Us)®@V,]-Z;2 = on(1).
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First, for Ry Zj_l, when ¢ # j, we have that Ry = 0 by its definition. When i = 7,
Ry = BY0 _, Py (y,0 @ Y — (Y, YidYi @ Ypm) and we notice that the term
when m = i is 0. So, because || ym @Ym — Ym, Yi)¥i @Um| < |Ym > + lym [*|:l* = 2,
ef =n7,

(B.20) IR1[Z; < B(n—1)ePP2 - 2251 < 2ylog(n) - n7P2+1 77 (1 + 04 (1)),
which goes to 0 with a speed independent of i, j, because vyps +1 — v < 0.

For Rng_l7 we notice that when ¢ # j, eB<y¢,yj>ij1 < PPN (1 4 0,(1)) =
nY(P2=1)(1 4 0,,(1)), which goes to 0 with a speed independent of 7, j. So, Rng_l =
0,(1) + 0,(1) - I; when i # j. When i = j, Ry = € (—y; ®y; + I3), and so
RyZ; ' = (—yi Qi + 1a) + 0n(1) + 0n(1) - 1.

For [(U; + U) ® V,] - Zj_2, we see that when ¢ # j, U; = 0, and so

(U1 +Ua) @ V|- 272 < 27726 ), P Wvm™uoy, || P,y

(le) m=1
—2, B(1+ _ —1)+1
< Z; Pe (A+r2)p, — ylog(n)n P2~ D+ (1 + 0, (1)),
which goes to 0 with a speed independent of i, j because v > ﬁ When i = 7,
U, =0, and so

[(U1 +U2) @V, - 272 < Z725|Py, Vil | Vi

522 < Z;2B (Z €ﬂ<yi»ym>Pyiym|> . (e[i + Z eﬁ<yi,ym>||pyiym|>

m#£1 m#£1
< Z;Qﬁ (eﬁ"?n) . (eﬁ + eBan)
— Vlog(n)n'Y(pQ_l)'*'l(l + n’Y(Pz—l)-‘rl)(l + On(l)),

which goes to 0 with a speed independent of ¢,j because v > ﬁ. Hence,

(U1 +U3)®@V,]-Z;% = on(1). .

Lemma B.5. Let 8 = vylogn where v is a positive constant. Under Assumption 2
and (2.3), if v < ﬁ, then for fixed i,j € [1,n], the d x d matriz satisfies

(B.23) ‘ (W)dxd

Proof of Lemma B.5. According to Lemma A.1, when v < ﬁ, Zi = (1+o0,(1))-
(Zk#j e“ﬂ'k> for any j € [1,n], and Z; = n?"* 1 (1+0,(1)) > n?(1+0,(1)), because
vp1 + 1 > . Adopt the notations in Proposition B.3, we then show the following
facts when v < —L

<zl % - (zfsaij + (28 + Vd)e® zj—l) .

1—171:
(B.24) IR\IZ; " <68, |Ra|Z;" < 27 e (5 VA= 1) :
and
(B.25) [(Uy + U2) @ V|- 272 < B (635 + e Z;).

First, for Rle*l, when i # j, we have that Ry = 0 by its definition. When
i =j, R = B0 _, YV (4 @ Y — Yy YidYi @ Ym). So, because we have
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that [|ym @ Ym — Ym> Yi)¥i @ Ym| = HPyzyn ® Ymll = HnyynH”ym” <1

(B.26) IR\ Z7 < BZ; -2 = 8.
For RgZ{l, because | — y; ® y; + 14| = v/d — 1, we have that
(B.27) IR:|Z; ! < Z e (B - 1) :

For [(U; +Uy)®Vy] - Zj_g, we see that [V,]| < 3 _, ePWivm) = 7, Also,
HU1HZJ-71 < 6ijﬁHVjHZ;1 < 65, HU2HZ;1 < ﬂea”Zj*l. Hence, we have that
(B.28) (U1 +U)® V|- Z;2 < B (0 + e Z").

U

Proof of Theorem 2.4. Theorem 2.4 follows directly from Lemma B.4 and Lemma B.5.
O

B.2. Proof of Theorem 2.3. The proof for Theorem 2.3 requires more delicate ar-

guments. The part when v > ﬁ in Theorem 2.3 directly follows from Lemma B.4,

so we only focus on the part when v < 1%/). We remark that when v < 1%/), our
result is that -1 |VxX'|? = 0+ 0,(1), which is a better estimate than (2.20) in
Theorem 2.4.

We first have the following lemma which replaces Lemma B.3 when we adopt

Assumption 1.

Lemma B.6. Adopt Assumption 1 and (2.3). For any i,j € [1,n], consider the
d x d matriz formed by w, foru,v e [1,d]. Denote yx, = N(xy) for each

k€ [1,n]. Then, this matrioa:(xi;gs the following form:
(B.29)
(W) — ¢ 7[Ry +R2)Z — (U + Uy) @ (Us + Uy)] - 272,
(@)u dxd
where Z = e + (n — 1)eP?,
(B.30)

Ry = 6;;8¢” (W — 4; @ (Wy,)), Ro =W ((—y; + BPyy;) @y + 1),
and
U, = 6;;8¢7 (P, V), Uy = eV (P y,),
Us = (e —PP)y;, Uy = ePrv.
In (B.30) and (B.31),

(B.31)

(B.32) Vie Y ym, Wi= D 4 ®um, Poyi=y—{y,2)z.
m=1 m=1

Proof of Lemma B.6. We first apply Lemma B.3 to get (B.5). After replacing
Yj,Ymy = p for m # j, we can obtain (B.29). The only remark is that the
term 0;;(W; — y; ® (W;y;)) in Ry of (B.6) is nonzero when ¢ = j. Then, when
i=7, Wi =4 ® (Wiyi) = X021 7YV (4 @ Yo — i ® YnYims yi))- I m = 4,
the summand (Ym ® Ym — Yi ® Ym(Ym, ¥i)) becomes 0. Hence, W; —; @ (Wy;) =
Y naes €YY (Y @Y = Yi @Y Yms ¥i)) = €72 X (Ym @Ym — Yi @Y Yom: Yi)) =
PP (W — y; ® (Wy,)). a
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Next, to compute the matrix norm of (B.29), we see that for any matrix K, its
matrix norm square equals to Tr(K T K). Hence, the matrix norm square of (B.29)
equals to

(B.33)
gzt (Tr [Z°(R1 + R2)T(Ry + Ra)] — 2Z(U; + Us)"(Ry + R2)(Us + Uy)

+10: + Uaf?[Ua + Uaf?).
We then compute these terms separately, and sum them in i, 5. We first have the
following basic equalities for the notations V, W in (B.32).
Lemma B.7. For the notations in (B.32), i.e.,

(B34) V = Z Ym.y W = Z Ym ®ym7 Pwy =Yy - <y,30>30a
m=1 m=1

we have that
Tr(W2) = > (o 10)? = n(np® + (1 - p%)),
(B35) m,l
Te(W) =n, Tr(Wyiy] ) =np® + (1= p°), [Pyy;l*=1-p"

Also,
Wyi = 3 Y Yidym = (1= p)yi + PV,
m=1
Voyiy = > moyiy =np + (1= p),
(B.36) m=1
IVI? =D ymow) = n+ pn(n — 1) = n(np + (1 - p)),
m,l
[Py, VI? = [V]* = {V.y)* = (n = 1) (np + (1 = p))(1 - p),
[Wyi* = n?p® + 3np?(1 — p) + (1 + 2p)(1 — p)*.
Proof of Lemma B.7. Direct Computations. ]

Lemma B.8. For terms R1,Ry in Lemma B.6, we have that
DT [(Ri + Ry)" (R + Ro)]
0,J
B37) =8P n[n?p*(1—p) + (1 - p)(1+p—3p%) — (1 +2p)(1 - p)*]
+ 8P n(n —1)(1 - p?)
+e(d—1)n+e2PP[B2(1 - p*) +d— 1] n(n—1).

As a corollary, when we pick 8 = vlogn, we have the following phase transition
limits as n — +00:

(B.38)
. Bp*(L—p)+ou(1)  ify <1t
_ 2 201 .
—3 2, Tr (R + Ro)"(Ry +Ry)] = § 22050 0, (1) iy = 1L,
i d—1+o0,(1) ifv> 15
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Proof of Lemma B.8. We first notice that W is a symmetric matrix and |y;| = 1.
We then expand each term in Lemma B.8 and use Lemma B.7.

Z Tr [(Rl)TRl]

= 5262ﬁp2 (Tr (W? = 2Wy(Wyi) ") + ][ Wi *)

(B.39)
= 8% Y (TrW?2 — 2| Wy, [* + [Wy|?)
= %€ n [n?p*(1 = p) +n(1 - p)(1 + p —3p%) — (1 +2p)(1 - p)?].
Then,
(B.40)
D ITr[(R1) Ry
%]
= Tl“Z@jﬂ@ﬁp (W = Wy,yl') Vv (—y; + BPyy;) ®yi + La)

%,
= Beﬁ(”Jrl)TrZ (W — Wytle) (—yiyiT + 1) = ﬂeﬁ(pH)TrZ (W — Wylle)

? K2

= 8" n(n —1)(1 - p?),

where the second equality is because P, y; = 0.

ZTI‘ [(RQ)TRQ]
,J
= Z 2Py [(—yi + BPy )yl + 1a) (yi(—yi + BPyy;)" + 14
(B.41) i
=D [(1+ 21— pY)) —2+d]+ > e*(d—1)
i#j i
=e?(d—1)n+e* 21— p®) +d—1]n(n—1).

Next, we show the asymptotics (B.38) as n — +00. According to Lemma A.1,
we have that

.nebr i 1
(B.42) Z- {(1 Fon() e iy < g
(14 o0,(1)) € if v > Yt

That is, when v < 1%9’ the leading order terms are those terms involving nef?,
and all the remaining terms go to 0 after dividing ne®?; when vy > ﬁ, the leading
order terms are those terms involving e”, and all the remaining terms go to 0 after
dividing e”. Hence, when v < ﬁ, the leading order term in (B.37) is the term
B2e28Pn3p2(1 — p); when v > 1T1p7 the leading order term is €2#(d — 1)n. This

proves (B.38). O
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Lemma B.9. For terms R, Ry, Uy, Uy, Uz, Uy in Lemma B.6, we have that
(UL + U2)"(Ry + Ry)(Us + Uy)
0,J
= pB2e*?P (e — "P)n(n —1)(np + (1 — p))(1 - p)
(B.43) + B2 n(n — 1)(np + (1 ))2(1 - p)
T B2 N n(n ~ 1) (np + (1 - )1~ p)
T Be202(ef — P7)(Bp + Dnfn — 1)(1— p?)
+Be%Pn(n —1)(np + (1= p)(B(L = p?) + (1 = p)).
As a corollary, when we pick B = vylogn, we have the following phase transition
limits as n — +o0:
(B.44)
) B2p*(1—p) +on(1) ify <,
2 2
@Z(U1 +Uo) (R + Ro)(Us + Uy) = { 228020 46, (1) ify = s
i 0+ o0,(1) ifv> 15

Proof of Lemma B.9. We expand each term in Lemma B.9 and also apply Lemma B.7
to each term. We first estimate terms involving Uj.

DIUTRIU, = 8260 — %) (P, V)T (W — 3, @ (W) w,
i i

(B.45) = g2e2Pr(ef — ePP) Z (PyiV)T Wy; = pB2e2?(ef — e7) Z (PyiV)TV
= B2 (e — eP)n(n —1)(np + (1 - p))(1 = p),

where the second and the third equality is because (P, V,y;) = 0.

MUTR, UL = Y 8263 (P, V)T (W — 3, ® (Wy)) V
2,7 7
(B.46) = 873 Y (P, V)T WV = 8267 (np + (1 - ) ) [Py, V|

— B2eHn(n — 1)(np + (1 — p))2(1 - p),
where the second equality is because (P,,V,y;» = 0.
(B.47)
Y IUTR,U; = Y 8?0t (8 — ) (Py, V)T (=i + BPy, i) @y + 1a) yi = 0,
i.j i
where the second equality is because (P, V,y;» = 0 and P, y; = 0.
Y IUTR,U, = ) 8D (P, V)T ((y; + Py,u:) @ui + 1) V
(B.48) I ’
= 37D S [P, VI = 8P Dn(n — 1)(np + (1 - p)) (1L~ p),
i
where the second equality is because (P,, V,y;) = 0 and P,,y; = 0.
Next, we estimate the terms involving Us. We recall that Uy = BefWi-ve) (P, ;).
Because P,,y; = 0 when ¢ = j, we can just replace ePUivi) with PP in Us, ie,
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U, = Be’? (P,,y;). Hence,
(B.49) Y UIR Uz =0, Y UJR, U, =0,
] .7
because 6;;(P,,y;) = 0 for any 4,5 in UL R;.
(B.50)
D UTR Uy =y BP0t wini) (ef — ) (Py,y;)" ((—yi + BPy.y;) @ yi + 1a) y;

i,j ,J
= Be*P(e” — %) 3 (Py,y;)" ((—yi + BPy.y5)p + 1)
i#£j
= BePr(ef — BP)(Bp + 1) Z 1Py, y;]?
i#]
= Be*7(e” — %) (Bp + 1)n(n — 1)(1 — p?).

where the second equality is because P, y; # 0 only when ¢ # j, on which {y;, y;) =
p, and the third equality is because (P, y;,y;) = 0.

D UTR U, = ) BelCorivid) (P y )T ((—yi + BPy,y;) @ yi + 1a) V

= 8 3" (BIPy,y12(np + (1= p)) + (Pyp)" V)
(B.51) i#]
= B Y (B(1=p*)(np+ (1= p)) + (1= p)(np+ (1= p)))
i#j

= Be*Pn(n — 1) (np + (1= p))(B(1 = p?) + (1 = p)).

where the second equality is because P, y; # 0 only when ¢ # j, on which (y;,y;) =
p, and the third equality is because (P, y;,y;» = 0.

The proof for (B.44) is similar to the proof for (B.38) in Lemma B.8. Notice
that when v < fp, we need to pick up terms involving ne?, and the leading order
term in (B.43) is the one in the second line of (B.43), which is 32n*e3%?p?(1 — p);
when v > ﬁ, after diving nZ3, all terms in (B.43) are o0,(1) terms. O
Lemma B.10. For terms Uy, Uy, Uz, Uy in Lemma B.6, we have that

Z |01 + U2 Us + Uy
— 522 n(n — 1)(np +2)(1 - p)
(€ —ePP)? + 2ePP (P — ePP)(np + (1 - p)) + e*Pn(np + (1 - p))].

(B.52)

As a corollary, when we pick 8 = vylogn, we have the following phase transition
limits as n — +o0:

. B2*(1—p) +ou(1)  ifv <,
2 — .

(B.53) —3 Z | UL + Ug|?[Us + Uy|? = { L0p0830) 4 5 (1) if 4 = =

" 0+ 0,(1) ify> 14
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Proof of Lemma B.10. We notice that (U, Us) = 0 because §;;P,,y; = 0 for any
i,7. So,
|UL + Usy|)? = 6,827 Py, V| + 82w Py 5
= 0i;82*P(n — 1) (np + (1 = p))(1 = p) + (1 = 6;5)8%*7* (1 = p?),

P,.y;|? # 0 only if i # j, on which

(B.54)

where the second equality is because e2Ps vy
28w | P, y; |2 = €287 (1 — p?).

U3 + Uyl = (eﬂ — PP 4 266”(66 — eﬂp)<V, yj) + empHVH2
— (e — P 4+ 265(68 — ) (mp+ (1 - p)) + Penlnp + (1 p),

(B.55)

which is independent of 7, j. Hence,

(B.56)
UL+ U, Us + Uy

4,3

(e —€PP)? + 287 (P — ePP)(np + (1 — p)) + €2Pn(np + (1 — p))].

The proof for (B.53) is similar to the proof for (B.38) in Lemma B.8. Notice
that when v < ﬁ, we need to pick up terms involving ne®?, and the leading order
term in(B.52) is is 32n°e*?Pp%(1 — p); when v > ﬁ, after diving nZ4, all terms in
(B.43) are 0,(1) terms. O

Proof of Theorem 2.3. As we have mentioned at the beginning of Appendix B.2, we
only need to focus the case when v < ﬁ, which follows directly from Lemma B.8,
Lemma B.9, and Lemma B.10. We notice that, in these three lemmas, the leading
order terms are the same, $%p%(1 — p), which cancels in (B.33). Hence, when
v < l%p, LIVxX'|? = 0+ 0,(1). When y = 1T1p7 we also only need to use the
corresponding cases in these three lemmas and combine them in (B.33) to get the
conclusion in Theorem 2.3. One remark is that under Assumption 1, we have that
n < d implicitly. So, when v = fp, terms in (B.33) involving %2 = M also

become o, (1). O

APPENDIX C. MODIFIED ASSUMPTIONS WITH MORE MEDIAN PHASES

In this section, we modify Assumption 2, so that we can prove the existence
of three different phases like Lemma A.1, Theorem 2.2, Theorem 2.4. We remark
that we only showed the existence of two phases (two extrema) in Lemma A.1,
Theorem 2.2, Theorem 2.4, but it doesn’t mean under Assumption 2, there is no
other transition phase between these two phases (two extrema). Under the following
Assumption 3, we can show there are indeed at least three phases. Recall that for
any i € [1,n], we defined y; = N(z;).

Assumption 3.

o For anyiec [1,n], |z;|? € [q1,q2] for some positive constants g1 < gz.
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o There is a T € (0,1], four positive constants ps, pa, K3, k4 with ps < pa,
k3 < kg, and pg < 1, such that for any i € [1,n], if we define
(C.1) Ki=A{m #i | Ym,¥i) € [p3, pal},
then we have that
il

n‘l’

(C.2) K3 <

< K4.

o For any i€ [1,n] and any j ¢ K;  {i}, {yi,y;) € [p1, p2] for some nonneg-
ative constants pi1, p2 satisfying p1 < p2 < p3 < py.
e For technical reason, we further assume that (1 —7)(1 — p2) + p2 < p3.

Lemma C.1. Let 8 = ylogn where v is a positive constant. Under Assumption 2
and (2.3), for any i€ [1,n],

(1+o0n(1))- (Zmezzciu{i} eaim> if v < min { 1_1p1 ) p}l:;l }7
©3)  Zi={(0+0n() e, ™) i A2 <y < 12

(14 0,(1)) € if’y>max{ﬁ,11p4}7

where the terms 0,(1) go to 0 as n — +o0 with speeds independent of i but only
depending on 7, p1, P2, P3, Pa, T, K3, K.

Proof. The proof is similar to Lemma A.1. We notice that

Zi — 65 + Z eaim + Z eaim

(C 4) mek; mgk; u{i}
’ — n'Y + Z n’Y<yi>ym> + Z n7<yz‘,ym>.
mekC; mgk,; u{i}

We also notice that kgn™ < |K;| < k4n” according to Assumption 3. Hence,
(C.5) KanT TIPS K| -nPs < Z P < (I - P < Ran TP,
mekC;

and

(C.6) (n—rgn™ —1)-n"Pt < Z nYWom) < (n — |Ky| — 1) - 0P < pttoee,
mek, u{i}

When v < min { 1}p1, pi:;l }, the leading order term in Z; is meciu{i} nYYiym),
1—7

ps=ps < < ﬁ, the leading order term in Z; is Zme)@, nY¥i¥m). when
v > max {ﬁ, ﬁ}, the leading order term in Z; is n”. We also remark that the
last assumption in Assumption 3 is to ensure the existence of the middle phase, i.e.,

ﬁ <y < ﬁ. This finishes the proof for Lemma C.1 by similar arguments as
in Lemma A.1. O

when

A direct corollary of Lemma C.1 is the following theorem.

Theorem C.2. Under Assumption 2 and (2.3) we have the following phase tran-
sition phenomena: let 5 = ~vlogn where v is a positive constant. For any i € [1,n]
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the updating dynamics (2.3) can be written as

Limgic;ofiy € Ym : . 11
Smgkgofiy 7 Im 1 < min =7
Dimgk; o (i € +on(l) iy 1=p1? pa—p1 §’

merc; € " Ym 1 e 1—7
—~—a < <
ZmE)Ci etim + On( ) Zf pP3—p2 v

y1+0n(1> if’y>max{ﬁ71jp4}a

(C.7) T = ax; + =

The terms o,(1) represent vectors in R with norms going to 0 as n — +00, with
a speed independent of i but only depending on 7y, p1, p2, P3, P4, T, K3, K4.

The proof of Theorem C.2 is similar to Lemma C.1 so we omit its proof.
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