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ABSTRACT

This work presents a modification of the self-attention dynamics proposed by Geshkovski et al. (2023)
to better reflect the practically relevant, causally masked attention used in transformer architectures
for generative AI. This modification translates into an interacting particle system that cannot be
interpreted as a mean-field gradient flow. Despite this loss of structure, we significantly strengthen
the results of Geshkovski et al. (2023) in this context: While previous rigorous results focused on
cases where all three matrices (Key, Query, and Value) were scaled identities, we prove asymptotic
convergence to a single cluster for arbitrary key-query matrices and a value matrix equal to the identity.
Additionally, we establish a connection to the classical Rényi parking problem from combinatorial
geometry to make initial theoretical steps towards demonstrating the existence of meta-stable states.

1 Introduction

The introduction of the Transformer architecture Vaswani et al. (2017) has markedly impacted the landscape of natural
language processing (NLP), signaling the advent of large language models. Central to the Transformer architecture is
the self-attention mechanism, a special kind of layer that distinguishes it from preceding models such as ResNets. This
innovation has yielded unprecedented performance not only in machine translation and text summarization but also
in areas beyond NLP, including computer vision, speech recognition, and robotics. The flexibility and efficiency of
Transformers underscore their integral role in the progression of artificial intelligence. Despite their widespread use, the
theoretical foundations underlying their success remain underexplored.

Following Sander et al. (2022), recent studies by Geshkovski et al. (2024b) and Geshkovski et al. (2023) have proposed
a mathematical framework for analyzing Transformers as interacting particle systems, demonstrating that tokens,
when modeled as particles, exhibit clustering under certain conditions on the Key, Query, and Value matrices. These
works primarily focus on full (mean-field) attention mechanisms, where each token can interact with every other
token. Building upon this foundation, our research extends the analysis to causal attention mechanisms, in which each
token is restricted to interact only with preceding tokens. This distinction is crucial, as causal attention is prevalent in
Transformer models employed in generative AI and known as decoder architectures.

Causal attention is crucial for sequence generation tasks, ensuring that each token only attends to previous tokens and
not future ones, thereby preserving the correct temporal order. This mechanism, also known as autoregressive attention,
masks future tokens during attention computation to prevent the model from accessing information it has not generated
yet. At inference time, causal attention allows the model to generate text one token at a time, using previously generated
tokens to inform the next, ensuring coherent and contextually accurate sequences. This step-by-step generation process
is computationally efficient as each token is produced in a forward pass without need to revisit previous steps. In
contrast to full attention, which considers all tokens simultaneously and is suitable for tasks like machine translation
where the entire sequence is known, causal attention is essential for tasks requiring real-time sequential output. This
computational advantage explains the prevalence of causal attention not only in natural language processing but also
in image generation with tools such as DALL-E (Ramesh et al., 2021), VQGAN (Esser et al., 2021), Parti (Yu et al.,
2022) and multimodal foundation models, notably Chameleon (Team, 2024). More generally, the use of masked
attention in which tokens pay attention to a subset of other tokens has been driving recent scaling efforts and has led to
state-of-the-art models such as MUSE (Chang et al., 2023) or Alphafold 3 (Abramson et al., 2024). Causal attention
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Table 1: Possible Final Configurations of Particles
Largest Eigenvalue Multiplicity Final Configuration Figure

λmax > 0 d First particle x0 1a
λmax > 0 ≥ 2 One point in L 1b
λmax > 0 1 Two points ξ and −ξ 1c
λmax < 0 ≥ 2 Point cloud around L 1d
λmax < 0 1 Two point clouds around ξ and −ξ 1e

(a) V = diag(1, 1, 1) (b) V = diag(1, 1, 0) (c) V = diag(1, 0, 0)

(d) V = diag(-1, -1, -3) (e) V = diag(-1, -3, -3)

Figure 1: Particle trajectories for different Value matrices. In all cases we take simple Query and Key matrices
K = Q = Id, temperature β = 9 and final time T = 5000 for n = 32 particles initialized uniformly at random on the
sphere. Positions of particles at time T are indicated by a red dot.

can also be recast as an interacting particle system, but it requires different analytical techniques. This is the goal of our
paper.

Our contributions. Our main theoretical result establishes asymptotic clustering of tokens for causal self-attention
transformer modeled as an interacting particles system on the sphere (Theorem 4.1). While mathematically accurate,
this asymptotic collapse to a single cluster is seldom observed numerically. Instead, particles collapse to multiple
clusters and stay in this configuration for a very long time (see Fig. 2 for a representative example) — such meta-stable
states were already alluded to in Geshkovski et al. (2023) and their study was recently initiated in Geshkovski et al.
(2024a). In Section 5 we describe such meta-stable states using analogy with the Rényi parking process (Lemma 5.1,
Theorem 5.2). Additionally, Theorem 5.2 covers asymptotic clustering of tokens for causal self-attention with additional
cross-attention component. Moreover, we predict that, akin to linear dynamical systems, the most important factors
that qualitatively describe final particles configuration both in causal and full-attention cases are the eigenvalue of
the Value matrix V with the largest real part λmax and its eigenspace L, while Query and Key matrices Q,K and
temperature parameter β do not matter. Our conjectured atlas of possible meta-stable configurations is listed in Table 1.
We prove the result stated as the first line of this table, namely that particles eventually collapse into a point when
V = Id in Theorem 4.1. We remark that assumptions of Theorem 4.1 are much weaker than for the similar results
in the full-attention case Geshkovski et al. (2023), in particular we put no constraints on K,Q or β. This work is a
combination of rigorous mathematical results and non-trivial predictions based on analytical insights and numerical
simulations. We summarize all limitations in Section 6.

Related work. Our work builds upon the framework of Geshkovski et al. (2023, 2024b) where clustering properties of
transformers are analyzed as systems of particles interacting on the sphere. Specifically, Geshkovski et al. (2023) proved
that encoder-only (i.e. unmasked) self-attention with (post) LayerNorm leads to tokens clustering to a single point, in
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the limit of number of layers going to infinity. This phenomenon is also known as consensus in the related literature of
multi-agent systems Markdahl et al. (2017); Criscitiello et al. (2024) and Kuramoto oscillators Strogatz (2000); Abdalla
et al. (2022). Work Geshkovski et al. (2023) in turn expands on the original perspective brought forward by Sander
et al. (2022) that identify the self-attention layer as a measure-to-measure map, see also Vuckovic et al. (2021). More
recently, Castin et al. (2024) studied the smoothness of this map in a framework that also covers causal attention. This
work introduces a clever reparametrization that allows them to recast causal attention as mean-field dynamics, akin to
their full attention counterpart. Using various approximations, Cowsik et al. (2024) were able to study a more realistic
architecture that also includes MLP layers and produce accurate predictions for the final configuration of particles. This
setup was further investigated by Agrachev and Letrouit (2024) from a geometric control perspective. We note also that
clustering in the absence of a residual connection (replace ẋk(t) with xk(t+ 1) in (SA)) was established in Wu et al.
(2023). Additional effects of the residual connection are studied in Dong et al. (2021) and Zhang et al. (2024).

2 Causal attention

Before describing our model of causal attention dynamics, we review the idea of Geshkovski et al. (2023) for
modeling the full attention dynamics. In that work, the evolution of representations of tokens through the layers
is modeled as a system of n coupled Ordinary Differential Equations (ODEs) describing dynamics of a system of
particles x1(t), . . . , xn(t). A brief part of their derivation of the dynamics from the transformers architecture is written
in Section A.1. The particle position xk(t) corresponds to representation of the k-th token at layer t (where for
convenience, t is allowed to take non-integer values) and due to RMSNorm the particles are forced to live on a unit
sphere Sd−1. (RMSNorm layer usually also includes a multiplication by a trainable diagonal matrix D, but the effect
of this step can be equivalently achieved by multiplying K,Q, V matrices by D.) These ODEs are parametrized by
three matrices, known as the query Q, the key K and the value V , respectively, and that are assumed to be square d× d
matrices. More specifically, token k evolves according to

ẋk(t) = Pxk(t)

( 1

Zk(t)

n∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩V xj(t)
)
, (SA)

where Pxy = y − ⟨x,y⟩x
|x|2 is the projection onto the tangent space of Sd−1 at x, and

Zk(t) =

n∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩

is a normalizing factor. Note that the dynamics of the k-th token depend on the positions of all tokens j ∈ [n], which
is a landmark characteristic of full attention leading to the so-called mean-field dynamics studied in Geshkovski et al.
(2023); see also Geshkovski et al. (2024b); Castin et al. (2024); Paul and Trélat (2024).

In this work we focus on causal attention, where the dynamics of token k depend only on the position of tokens j ≤ k.
As described in the introduction, this modification is by now the dominant type of transformer architecture in generative
AI. To reflect causal masking, we modify the ODE governing the dynamics of token k as follows:

ẋk(t) = Pxk(t)

( 1

Zk(t)

k∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩V xj(t)
)
, (CSA)

where the normalizing factor Zk(t) is naturally updated to

Zk(t) =

k∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩.

3 Single token dynamics

Note that in (CSA) dynamics, the first token is evolving fully autonomously without the influence of others. Thus, we
start from the description of its evolution. It will also guide our understanding of the dynamics of subsequent tokens.
The first token moves according to the equation

ẋ(t) = Px(t)(V x(t)).

To state its behavior for any matrix V , we need a few definitions. Denote λmax as the largest real part of all the
eigenvalues of V . Let L′ be the span of all generalized eigenvectors of V associated to eigenvalues(potentially different)
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with their real part equal to λmax. Let L ⊂ L′ be the subspace generated by only the eigenvectors in L′ with the largest
corresponding Jordan block (the vectors might correspond to different blocks and even to different eigenvalues).
Lemma 3.1. Let x(t) be a solution of an ODE ẋ(t) = Px(t)(V x(t)) defined on the unit sphere Sd−1. Then, for almost
every initial value x(0) ∈ Sd−1, there exists C, c > 0 such that the following convergence rates for the geodesic
distance dist hold:

(i) Exponential convergence to L′: dist(x(t), L′ ∩ Sd−1) ≤ Ce−ct, and

(ii) linear convergence to L: dist(x(t), L ∩ Sd−1) ≤ ct−1

This result can be derived from standard results on the theory of linear ODEs (proof in Section B.1). We note that this
result is important for other tokens as well. Indeed, for every token xk, the contribution to ẋk in (CSA) from the term
with j = k often has the biggest weight, an effect amplified by large β.

In general, eigenvectors corresponding to a real eigenvalue λ = λmax create a fixed set in L ∩ Sd−1, while the complex
eigenvalues with the largest real part produce a limit torus in L ∩ Sd−1. In what follows, we only consider the case
where the eigenvalue with the largest real part is real itself and it only has Jordan blocks of size 1. Then, L = L′ and
convergence to L is exponentially fast. Note also that when dimL = 1, we have L ∩ S1 = {±ξ} for some unit vector
ξ. In this case, x(t) → ±ξ as t→ ∞, again with exponential speed. These observations will be important for the next
section, when we describe asymptotic configurations of tokens.

4 Final Configuration

The system of n tokens that we are studying is far more complicated than for a single token. Even establishing
convergence to some point as t → ∞ is challenging. In Geshkovski et al. (2023), similar models were analyzed
analytically by noticing that the dynamical system has the structure of the gradient flow of some potential function:

ẋ(t) = ∇H(x) .

For such systems, groundbreaking results of Łojasiewicz (1962, 1965, 1984) (see Haraux (2012) for a self-contained
overview) guarantee convergence to a critical point of H assuming it is real-analytic.

However, our system (CSA) does not have a gradient-flow structure and thus techniques of Łojasiewicz are not
applicable. On the other hand, we have a significant advantage in the hierarchical structure of our system, allowing us
to study tokens sequentially.

We have already understood the evolution of the first token. In this section, we do two things. First, we describe, based
on our analytical and numerical insights, conjectures about the asymptotic configuration x(t) for t→ ∞. The surprising
result here is that only the spectral properties of V (and not K or Q) affect asymptotics. Second, we rigorously prove
convergence to a single point for the special case of V = Id. We note that unlike the proof in Geshkovski et al. (2023)
(see also Markdahl et al. (2017); Criscitiello et al. (2024)), our result works for all K and Q matrices, while the proof
in Geshkovski et al. (2023) works only for Q⊤K = V and Markdahl et al. (2017); Criscitiello et al. (2024) is restricted
to Q⊤K = Id.

Our main insight is that there are two major forces that drive each token: its internal force which is described by
Lemma 3.1, and the external force induced by all the particles preceding it, which is either attractive or repulsive
depending on the sign of the top eigenvalue(s) of V . The balance between the two forces is defined via attention.

To get a better grasp of how the external force works, we consider the case where the first (internal) force vanishes, that
is, V = Id. In this case, the tokens collapse asymptotically to a single point.
Theorem 4.1. Let V = Id and Q,K be arbitrary matrices. Then, for almost any starting point (x1(0), . . . , xn(0))
with respect to the volume measure on (Sd−1)n, the causal transformer dynamics (CSA) converge to a single cluster:

∀ k ∈ [n], lim
t→∞

xk(t) = x1(0).

We prove this result in Section B.2. In the proof, weight functions are only required to be positive and continuously
differentiable (C1). This ambiguity suggests that incorporating time-dependence of Q and K might not alter the
theorem’s validity, but it significantly adds complexity to the proof in dealing with non-autonomous systems.

Steps similar to our proof of Theorem 4.1 can be followed to study the more general case of the matrix V ̸= Id.
Unfortunately, one runs into multiple technical issues with application of the stable-manifold theorem from dynamical
systems due to the emergence of critical manifolds (as opposed to critical points in the V = Id) case. Thus, we leave
the general case at the status of conjectures, which we describe next.
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In what follows, we denote the eigenvalue of V with the largest real part as λmax and assume that it is real. If it is not,
the limiting configuration is additionally rotating with a constant speed, which complicates the discussion and so is
omitted.

Let L denote the eigenspace of λmax. If λmax has multiplicity 1, then we denote the corresponding unit eigenvectors as
±ξ. For simplicity we assume that λmax has all of the corresponding Jordan blocks of size 1.

First of all, if dimL = 1 then, according to Lemma 3.1, every token is driven towards ξ or −ξ by their own force.
Moreover, for λmax > 0 the force of other tokens is attractive, while for λmax < 0 it is repulsive.

Thus, for λmax > 0 all the particles collapse into ξ and −ξ, whereas for λmax < 0 the repulsion force prevents the
particles from going all the way to ±ξ and instead the particles stabilize at two clouds around ξ and −ξ. This behavior
is captured in Figures 1c and 1e4. For the case λmax > 0 we formally express it as:

Conjecture 1. Let Q,K be arbitrary matrices and V be diagonalizable with d different positive real eigenvalues.
Denote the largest eigenvalue as λmax and unit vector ξ : V ξ = λmaxξ. Then, for almost any starting point
(x1(0), . . . , xn(0)) with respect to the volume measure on (Sd−1)n, the causal transformer dynamics (CSA) converge
to two clusters

∀ k ∈ [n], lim
t→∞

xk(t) ∈ {ξ,−ξ}.

If λmax has multiplicity at least 2, then from Lemma 3.1 each token internally gets attracted by the eigenspace L. When
tokens are close to L, the action of V becomes close to λmaxId, which for λmax > 0 according to Theorem 4.1 forces
tokens to collapse to a singleton, while for λmax < 0 other tokens exude a repelling force, causing particles to spread
out around L. This behavior is captured in Figures 1b and 1d. For the case λmax > 0 we formalize it as follows:

Conjecture 2. Let Q,K be arbitrary matrices and V be any matrix such that its largest eigenvalue λmax > 0 is real
and has an eigenspace L of dimension dimL ≥ 2, while for any z ∈ L⊥ one has V z ∈ L⊥ with ⟨V z, z⟩ < λmax|z|2.
Then, for almost any initialization (x1(0), . . . , xn(0)), the causal attention dynamics (CSA) converge to one cluster.
More specifically, if we define ξ as the normalized L-component of x1(0), i.e., for y1 := PL⊥(x1(0)), ξ := y1/|y1|,
then

∀ k ∈ [n], lim
t→∞

xk(t) = ξ.

(Note that ξ is undefined when x1(0) ⊥ L, but this happens with probability zero.)

An important practical observation is that these conjectures explain that V performs dimensionality reduction in the
following way. Tokens converge to L ∩ Sd−1 and, in that space, they move as if acted upon by the λId matrix on a
sphere SdimL−1. For the pre-trained Lan et al. (2020) the spectra of value matrices is depicted in Figure 6. Interestingly,
there are heads with negative λmax. Future work will be concerned with studying real-world matrices V and connecting
their top eigenspaces to semantic meaning of layers and tokens.

5 Meta-stable clustering

As we discussed earlier, perhaps the most fascinating discovery of Geshkovski et al. (2023) is the existence of meta-
stable clusters in the full-attention dynamics. It turns out that the same phenomenon persists in the causal-attention
dynamics that we study here.

The dynamical evolution of the system is illustrated in Fig. 2. At t = 150, the initially uniform distribution of 200
particles consolidates into seven distinct clusters. While Theorem 4.1 establishes the eventual collapse into a single
cluster, these intermediate clusters exhibit remarkable metastability, persisting with negligible movement over extended
time periods—at least until t = 500 according to Fig. 2—before sequential merging occurs. We define these meta-stable
configurations as meta-stable clusters, with three-dimensional analogues shown in Fig. 1a and 1b.

Given that the time parameter in our dynamics corresponds to network depth in transformer architectures, the meta-
stable configurations, rather than final states (achieved at t = exp(Ω(

√
β))), hold greater practical significance. The

emergence of meta-stable clustering and its associated dimensionality reduction may provide fundamental insights into
transformers’ capacity for generating efficient context-dependent representations.

From a theoretical perspective, understanding meta-stable clustering presents significant challenges, as traditional
techniques for asymptotic analysis—such as those used in our Theorem 4.1—prove insufficient. Recent work on full

4The spread of the clouds depends on the relative importance of each token’s own attention, that differs with various
K,Q. There are choices of K and Q that result in complex interactions without structure. For example, when Q⊤K =
[[0,−1, 0], [1, 0, 0], [0, 0, 1]], V = −I3
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(a) Time 0 (b) Time 5 (c) Time 10

(d) Time 75 (e) Time 150 (f) Time 500

Figure 2: Evolution of the system (CSA) with K = Q = V = I2 with n = 200, d = 2, β = 64, strong Rényi
centers (red) and Rényi centers (black) with δ = 4β−1/2. Note that strong Rényi centers are visually stationary (as per
Lemma 5.1) but do not explain all clusters. In turn, Rényi centers are moving and merging (one disappears between
t = 75 and t = 150), but capture more meta-stable clusters.

attention transformers has made partial progress in this direction. Geshkovski et al. (2024a) demonstrated that when
self-attention dynamics approach a nearly clustered state, they will converge to a tightly clustered configuration and
remain stable for an exponential time period. Complementing this, Bruno et al. (2024) proved that tokens initialized
near a uniform distribution on the sphere will spontaneously organize into a loosely clustered state. However, the
bounds on the clustering tightness in this second line of work are not sufficient to trigger the convergence conditions
required by Geshkovski et al. (2024a)’s theorem.

This Section presents a fundamental discovery regarding the identification of cluster centers in causal-attention dynamics.
We establish three key claims: First, we demonstrate that initialization irregularities generate distinctive tokens, termed
Rényi parking centers, which evolve into meta-stable cluster nuclei. While this phenomenon is primarily supported by
numerical evidence (Fig. 3), it provides crucial insight into the clustering mechanism. Second, we prove that a subset of
these special tokens, called strong Rényi centers, maintains near-stationarity over extended time periods (Lemma 5.1).
Both Rényi and strong Rényi centers occur with frequency Θ(β

d−1
2 ), confirming the

√
β scaling predicted for d = 2 by

Geshkovski et al. (2023); see also Geshkovski et al. (2024a); Bruno et al. (2024). Third, we establish in Theorem 5.2
that as t → ∞, all remaining tokens will converge to the vicinity of one of these stationary tokens, completing the
meta-stable clustering process.

This section restricts our analysis to the case where V = Id. For general matrices V , our empirical observations
suggest that particles rapidly converge to a lower-dimensional subspace spanned by d1 ≪ d principal eigenvectors.
Consequently, we conjecture that the number of meta-stable clusters should rather be β

d1−1
2 , where the ambient

dimension d is replaced by the effective dimension d1. While a rigorous proof of this dimension-reduction remains an
open problem for future investigation, this phenomenon motivates our focus on low-dimensional cases (specifically
d = 2) throughout this section.

For convenience, we also fix Q = K = Id, though this condition could be easily relaxed (e.g. to Q⊤K = K⊤Q = V ).
Under these assumptions, the system can be rewritten in polar coordinates xk = [cos(φk), sin(φk)]

⊤ as

φ̇k =
1

Zk

k∑
j=1

eβ(cos(φk−φj)−1) sin(φj − φk) =
1

Zk

k−1∑
j=1

h(φj − φk), (CSA-2d)
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Figure 3: Total percentage of particles consumed by Rényi and strong Rényi centers over time. Here we have plotted
average, 0.1 and 0.9 quantiles over 5000 experiments with n = 200, d = 2, β = 64, δ = 4β−1/2.

with interaction potential given by

h(x) := eβ(cos(x)−1) sinx, and Zk =

k∑
j=1

eβ(cos(φk−φj)−1). (IntPot)

5.1 Rényi Parking

The prediction of meta-stable clustering center locations exhibits a notable connection to the Rényi parking problem.

Consider a sequence of tokens (xj)j≥1 on the sphere Sd−1 equipped with geodesic distance dist. For a fixed separation
parameter δ > 0, we define:

• Rényi centers as the subsequence (xsj )j≥1, where (sj)j≥1 is strictly increasing and satisfies:

dist(xsj , xsi) > δ for all i < j

• Strong Rényi centers as the subsequence (xsj )j≥1 satisfying:

dist(xsj , xi) > δ for all i < sj

By construction, the set of Strong Rényi centers forms a subset of Rényi centers.

As demonstrated in Section A.2, particles in our system exert maximal attractive force at distances of order at most
β−1/2, with rapid decay beyond this scale. For strong Rényi centers defined with separation parameter δ = cβ−1/2

(where c is sufficiently large), this decay ensures negligible influence from preceding particles and thus remain stable
for a long time—a phenomenon formally established in Lemma 5.1. This metastability, coupled with rapid particle
aggregation tokens, indicates that strong Rényi centers serve as primary attractors for subsequent tokens.

Rényi centers are unaffected by previous particles but only by previous Rényi centers, thereby generating new clustering
centers. For fixed δ, there are more Rényi centers than strong Rényi centers (see Section C.4 for exact cardinality
analysis). While Rényi centers better capture the meta-stable clustering effect, as illustrated in Figures 3 and 2, they
lack positional stability and may converge to other centers over time. Although Rényi centers rapidly aggregate a large
fraction of particles, some of these particles continue to migrate and eventually converge to strong Rényi centers.

The next result shows that strong Rényi centers remain nearly fixed for a long time.
Lemma 5.1. Let d = 2 and Q = K = V = I2. Consider a subsequence of strong Rényi centers xs1 , . . . , xsm
satisfying the separation condition with constants ε, c > 0

min
i<sj

|xsj − xi| > c(1 + 2ε)β−1/2. (1)
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Assume that
c > β1/2 arccos((−1 +

√
4β2 + 1)/(2β)). (2)

Then for any time Tj such that
Tjsjh(cβ

−1/2) < εcβ−1/2, (3)

where the interaction potential h is defined in (IntPot), the displacement of each center is bounded by

max
t∈[0,Tj ]

|xsj (t)− xsj (0)| < εcβ−1/2.

The key observation driving this result is that strong Rényi centers are weakly affected by all previous particles.
However, though this is correct on short time scales, it should be checked for all times in [0, T ]. A complete proof can
be found in Section C.1.
Remark. Using the properties of h derived in Section A.2 it can be shown that

• For β > 1 a sufficient condition for (2) to hold is simply c > 1,

• a sufficient condition for (3) to hold is

Tjsj < ec
2/2−c4/(24β)ε.

Moreover, it is easy to prove that indexes sj are mostly small. Thus, we see that early strong Rényi centers are almost
stationary for a time that is exponential with the square of separation magnitude.

Rényi centers and strong Rényi centers play a fundamental role in meta-stable clustering, warranting analysis of their
properties as extreme points in a sequence. While defined here using geodesic distance on a sphere, the definition
extends naturally to distances induced by ⟨Qx,Ky⟩ under appropriate conditions. This generalization aligns with our
observation that meta-stable clustering occurs in the subspace L where V sends tokens and acts as the identity on L.

The distribution of these centers under various initialization schemes presents a key analytical challenge. Section C.4
addresses the uniform i.i.d. case, where Rényi’s classical result characterizes the expected number of centers. Extensions
to general distributions and Markov processes—more relevant to language processing applications—remain open for
Rényi centers due to their structural complexity, particularly in higher dimensions (d > 2). In contrast, strong Rényi
centers are much easier to handle: even our computation of the average number of centers in Section C.4 works for any
distribution regardless of the dimension.

5.2 Fixed Meta-stable Clustering Centers

Having established the existence of O(
√
β) quasi-stationary tokens for d = 2 and n≫ 1, we next examine their role as

cluster centers. While Figures 3 and 2 provide substantial numerical evidence that these tokens attract and aggregate
nearby particles, a rigorous proof remains elusive. We establish instead a weaker result: when quasi-stationary tokens
are artificially frozen (analogous to cross-attention in encoder-decoder architectures), all other tokens converge to these
frozen centers. This simplified model, while instructive, differs from true meta-stable clustering in important aspects
detailed in Section 6.

We only state our result for d = 2 and identity parameter matrices as in (CSA-2d).

Theorem 5.2 (Clustering to frozen tokens for K = Q = V = I2). Let θ1, . . . , θm be fixed tokens that are well-
separated, namely |θi − θj | > cβ−1/2. Let µ0 be an absolutely continuous probability measure on (S1)n and let
φ1(0), . . . , φn(0) ∼ µ0. Consider causal attention dynamics (CSA-2d), with additional influence from the fixed tokens
θj , which enter evolution with additional weights aj ≥ 1. Specifically, we have

φ̇k =
1

Zk

( k∑
j=1

eβ(cos(φk−φj)−1) sin(φj − φk) +

m∑
j=1

aje
β(cos(φk−θj)−1) sin(θj − φk)

)
,

with

Zk =

k∑
j=1

eβ(cos(φk−φj)−1) +

m∑
j=1

aje
β(cos(φk−θj)−1).

Define N = n+
∑m

j=1 aj and g = h′ where h is the interaction potential of (IntPot).
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If N, β, ε > 0, and c > 2 + 2ε satisfy:

Nh((c− 1− 2ε)β−1/2) < h(εβ−1/2)

Ng((c− 2ε)β−1/2) < g(εβ−1/2),

then with probability one, φ(t) converges to an asymptotically stable critical point φ∗ ∈ (S1)n satisfying:

∀k ∈ [n], ∃j ∈ [m] : |φ∗
k − θj | < εβ−1/2.

Since our dynamical system is not a gradient flow, the classical Łojasiewicz convergence theorem does not apply.
Instead, we establish convergence by observing that the causal dynamics (both with and without frozen tokens) is, in
fact, a sequential gradient flow, where each particle minimizes a slightly different energy potential. For such systems on
S1, we demonstrate convergence through an alternative approach that circumvents the Łojasiewicz framework.

Lemma 5.3. Consider a system of n particles on S1 with angular coordinates φ1, . . . , φn ∈ 2πR/Z evolving according
to

φ̇k = − 1

Zk(φ1, . . . , φk)

∂

∂φk
Ek(φ1, . . . , φk),

where E1, . . . , En are C1 energy functions and Zk are C1 normalization factors bounded by 0 < c < Zk(φ) < C.
Assume:

1. Each Ek has isolated critical points in φk for fixed φj , j ̸= k (satisfied by analyticity),

2. For any k ∈ [n], critical points restricted to the first k particles are either strongly stable (the Jacobian has
only eigenvalues with strictly negative real parts) or strongly unstable (there is an eigenvalue with a strictly
positive real part).

Then for almost every initial condition φ(0) with respect to Lebesgue measure, φ(t) converges to a strongly stable
critical point φ∗.

The proof is deferred to Section C.2.
Remark. The conditions of Theorem 5.2 are satisfied under the following explicit bounds:

ε < 0.1, c ≥ 5.5 + 2ε, β ≥ (c− 1− 2ε)2/2, N ≤ ε

c− 1
exp(3(c− 1− 2ε)2/8).

Note that this result requires only β ≳ logN . For example, taking ε = 0.1 and c = 6.5 yields β ≥ 14 and N ≤ 700 is
sufficient. See Lemma A.2 for the proof.

6 Limitations

Our analysis presents both theoretical and practical limitations. From a theoretical perspective, we establish two
key results: (1) strong Rényi centers with separation distance cβ−1/2 maintain quasi-stationarity for time scales of
order exp(c2/2) per Lemma 5.1, and (2) exactly stationary centers attract all remaining particles (Theorem 5.2). In
particular, by choosing c ∼ βε, we can get exponential in β time of quasi-stationarity. However, this falls short of
proving meta-stable clustering, as Theorem 5.2 provides no bounds on the convergence time. Consequently, we cannot
guarantee that strong Rényi centers remain sufficiently stationary during particle aggregation. A complete meta-stability
theory would require demonstrating that each Rényi center captures Ω(n) particles in O(1) time as n→ ∞. Currently,
even the weaker claim of capturing ω(1) particles remains unproven, presenting a crucial direction for future research.

The practical limitations stem from two model simplifications: the use of tied weights across layers (though supported
by successful implementations, see Lan et al. (2020)), and the omission of the MLP layer central to Transformer
architectures. Incorporating the MLP dynamics into our theoretical framework remains a significant open challenge.
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A Supplementary Material

A.1 From Transformers to ODEs

The derivation of the equation (SA) was thoroughly described in Geshkovski et al. (2023), but for completeness, we
briefly repeat it here to explain how the problem arises.

In general, a typical Transformer architecture consists of repeated layers of multi-head attention, multi-layer perceptrons
(MLP), normalization, and residual connections Vaswani et al. (2017). In this work, we simplify this setting by focusing
only on the geometric behavior of a single-head attention layer with normalization and residual connections, omitting
the MLP for brevity.

One head of a standard attention layer is defined as follows. Given an input sequence represented by the token
embeddings X ∈ Rn×d, where n is the number of tokens and d is the dimension of the embedding space, and matrices
WQ, WK , WV to compute queries, keys, and values, the attention mechanism computes a weighted sum of values
based on their relevance to a query in the following form

Attention(X) = softmax
(
XWQW

⊤
KX

⊤
√
d

)
XWV .

By adding an RMS normalization from Zhang and Sennrich (2019) and a residual connection, the transformation from
layer t to layer t+ 1 is given by:

Xt+1 = Xt + RMSNorm(Attention(Xt)). (4)

Here, different tokens are represented as rows of the matrix X for computational reasons. For consistency with the
convention that vectors are represented as columns, we transpose everything and denote a sequence of tokens encoded as
particles in the d-dimensional embedding space Rd as (x1, . . . , xn), corresponding to the columns of X⊤. Additionally,
to simplify the notation we denote V := W⊤

V , Q := W⊤
Q , and K := W⊤

K , and introduce an arbitrary temperature
parameter β instead of the fixed scaling factor 1/

√
d. With these notational adjustments, one term of attention added to

the k-th token can be written explicitly as:

attn(x1, . . . , xn)k =
1

Zk

n∑
j=1

eβ⟨Qxk,Kxj⟩V xj ,

where

Zk =

n∑
j=1

eβ⟨Qxk,Kxj⟩.

The equation (4) can be interpreted as a discrete derivative, with Xt+1 −Xt representing the difference between layers.
Therefore, the trajectory Xt can be viewed as a discretization of a continuous flow. RMS normalization ensures that
tokens remain on the scaled unit sphere, but from properly rescaling Q,K, V we can assume that they stay on the
standard unit sphere Sd−1. Combining all these observations, the dynamics of token propagation through layers can be
expressed as:

ẋk(t) =
1

Zk(t)
Pxk(t)

 n∑
j=1

eβ⟨Q(t)xk(t),K(t)xj(t)⟩V (t)xj(t)

 ,

with

Zk(t) =

n∑
j=1

eβ⟨Q(t)xk(t),K(t)xj(t)⟩,

and the projector Px(y) := y − ⟨x, y⟩x/|x|2 ensuring that xk remains on the sphere. This leads to the equation (SA),
and applying a causal constraint, where each token attends only to the previous ones, transforms it into the causal
attention equation (CSA) studied in this work.

A.2 Interaction Potential

For completeness, here we describe the key properties of the interaction potential h(x) = eβ(cos(x)−1) sin(x)
from (IntPot), which defines the interactions between particles, and its derivative g(x) = h′(x).

Lemma A.1 (Properties of Interaction Functions). Let h(x) = eβ(cos x−1) sinx and g(x) = h′(x). Then:
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Figure 4: Interaction function h(x) for β = 10. The blue line is h(x) and the red line is x = β−1/2, close to x = τ∗β .

1. Both h, g are 2π-periodic, h(x) is odd and g(x) is even.

2. h(x) ≥ 0 for all x ∈ [0, π].

3. h(x) is increasing on [0, τ∗β ] and decreasing on [τ∗β , π], where

cos τ∗β =
−1 +

√
4β2 + 1

2β

and for β ≥ 1,
(β + 1/2)−1/2 < τ∗β < β−1/2.

4. For x > 0, h(x) is bounded by

e−βx2/2(x− x3/6) < h(x) < e−βx2/2+βx4/24x.

5. For g(x), the following bounds hold:

g(x) > e−βx2/2(1− x2/2− βx2) for 0 < x < (β + 1/2)−1/2,

g(x) > −e−βx2/2+βx4/24βx2 for x > 0.

Proof. 1. The periodicity, oddness of h and evenness of g follow directly from their definitions.

2. Computing g(x) explicitly:

g(x) = eβ(cos(x)−1)(−β sin2(x) + cos(x)) = eβ(cos(x)−1)(β cos(x)2 + cos(x)− β).

The sign of g(x) changes at τ∗β , where

cos τ∗β =
−1 +

√
4β2 + 1

2β
,

establishing that h(x) increases on [0, τ∗β ] and decreases on [τ∗β , π].

For the the lower bound on τ∗β : For x < (β + 1/2)−1/2, we have

cosx > 1− x2/2 > βx2 > β sin2 x,

implying g(x) > 0 in this region.

For the upper bound on τ∗β , fix z = β−1/2 and observe that it suffices to show

cos τβ∗ =
−1 +

√
4β2 + 1

2β
> cosβ−1/2 = cos z.

Using cos z < 1− z2/2 + z4/24, this reduces to verifying

−z2/2 +
√
1 + z4/4 > 1− z2/2 + z4/24,

which holds for z < 3.13. It is true, because z−2 = β ≥ 1.

3. and 4. The bounds on h and g follow from the standard inequalities
x− x3/6 < sinx < x, and − x2/2 < cosx < −x2/2 + x4/24,

combined with our characterization of g’s sign via τ∗β .
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We now turn to the proof of Remark 5.2.
Lemma A.2. Let N , c, ε, and β satisfy:

c ≥ 5.5 + 2ε,

β ≥ (c− 1− 2ε)2/2,

N < e3(c−1−2ε)2/8 ε

c− 1
.

Then:
Nh((c− 1− 2ε)β−1/2) < h(εβ−1/2) and −Ng((c− 2ε)β−1/2) < g(εβ−1/2).

Proof. Let r := c− 1− 2ε. From the assumptions, we have r ≥ 4.5, β ≥ r2/2 > 10, and ε < 0.1. We must verify:

N <
h(εβ−1/2)

h(rβ−1/2)
,

N <
g(εβ−1/2)

−g((r + 1)β−1/2)
.

Using the bounds from Lemma A.1, these inequalities reduce to:

N <
exp(−ε2/2)εβ−1/2(1− ε2/(6β))

exp(−r2/2 + r4/(24β))rβ−1/2
,

and

N <
exp(−ε2/2)(1− ε2/(2β)− ε2)

exp(−(r + 1)2/2 + (r + 1)4/(24β))(r + 1)2
.

Given N < exp(3r2/8)ε/r, it suffices to verify:

1. First inequality: Taking logarithms and using ε < 0.1, β > 10, we need:

−r
2

8
+

r4

24β
+
ε2

2
< − 3

200
.

Since β ≥ r2/2, this follows from:

−r
2

8
+
r2

12
< − 1

50
,

which holds for r ≥ 4.5.

2. Second inequality: After simplification using β ≥ r2/2, β ≥ 10, ε < 0.1, we need:

f(r) =
3r2

8
− (r + 1)2

2
+

(r + 1)4

12r2
+

1

200
+ 2 ln(r + 1)− ln(9.8r) < 0.

The derivative

f ′(r) =
1

3
r − 1 +

6r3

(r + 1)3(r − 1)
+

2

r + 1
− 1

r
> 0

for r > 4.5, as r > 3 and 2r > r + 1. Therefore, it suffices to verify f(4.5) ≈ −4.14 < 0.

B Final configuration

B.1 Proof of Lemma 3.1

Let us show that trajectories x(t) of our system can be characterized as normalized solutions of a linear homogeneous
ODE in Rd. Consider a solution y(t) of:

ẏ(t) = V y(t), y(0) = x(0). (5)

For s(t) := y(t)/∥y(t)∥, we derive:

ṡ(t) =
ẏ(t)

∥y(t)∥
− y(t)

∥y(t)∥2

〈
y(t)

∥y(t)∥
, ẏ(t)

〉
= V s(t)− ⟨s(t), V s(t)⟩s(t) = Ps(t)(V s(t)).
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Thus x(t) ≡ s(t) = y(t)/∥y(t)∥.

The solution to (5) has the following explicit form. Let {Jk} denote the Jordan blocks of V with: sizes nk, eigenvalues
λk, and generalized eigenvectors {ξk1 , . . . , ξknk

}.

Then:

y(t) =
∑
k

eλkt
nk∑
j=1

ckj

j∑
i=1

tj−i

(j − i)!
ξki , (6)

where the coefficients {ckj } satisfy: ∑
k

nk∑
j=1

ckj ξ
k
j = x(0).

For almost all initial conditions x(0) with respect to the surface measure on the sphere, all coefficients ckj are non-zero.
For complex eigenvalues λk, we combine conjugate terms to obtain real-valued solutions involving trigonometric
functions.

The asymptotic behavior follows from two observations: (i) Terms with largest ℜ(λk) dominate as t→ ∞, correspond-
ing to convergence to L′ ∩ Sd−1 at exponential rate, and (ii) Among these terms, those with highest power of t (i.e.,
tnk−1ξk1 terms) determine the slower convergence to L ∩ Sd−1

B.2 Proof of Theorem 4.1

We begin with a simple geometric lemma.
Lemma B.1. Let x, y, z ∈ Rd with ∥x∥ = ∥y∥ = 1. If |⟨y, z⟩| ≤ ⟨x, z⟩, then:

⟨x, z⟩ ≥ ⟨x, y⟩⟨y, z⟩

with equality if and only if either: (i) ⟨x, z⟩ = 0, or (ii) |⟨y, z⟩| = ⟨x, z⟩ and ⟨x, y⟩ = sign(⟨y, z⟩).

Proof. By the Cauchy-Schwarz inequality and the hypothesis:

⟨x, y⟩⟨y, z⟩ ≤ |⟨x, y⟩||⟨y, z⟩| ≤ |⟨x, y⟩|⟨x, z⟩ ≤ ⟨x, z⟩,

where the last inequality follows since |⟨x, y⟩| ≤ 1 for unit vectors.

The equality conditions follow from examining when each inequality becomes equality in the chain above.

We continue with the proof of Theorem 4.1.

Proof. The system of particles is governed by equations

ẋk =
1

Zk

k∑
j=1

eβ⟨Qxk,Kxj⟩(xj − ⟨xj , xk⟩xk),

where we omit t from the notation for simplicity.

This system is autonomous, so we first explore its critical points and their stability. For autonomous systems with
established convergence, it is well-known that for any absolutely continuous initialization, the limiting point is strongly
unstable with probability zero (see (Shub, 2013, Thm. III.7, Ex. III.3) and (Geshkovski et al., 2023, Lemma B.1)). Note
that the proof in Geshkovski et al. (2023) is stated for gradient ascent dynamics but it readily extends to any smooth
autonomous dynamics on a compact Riemannian manifold.

Define:

fk(x) :=
1∑k

j=1 e
β⟨Qxk,Kxj⟩

·
k∑

j=1

eβ⟨Qxk,Kxj⟩(xj − ⟨xj , xk⟩xk).

We aim to (i) find stationary points x where all fk(x) = 0 and (ii) analyze eigenvalues of the Jacobian (∂fk∂xj
) at said

stationary points.

Any critical point must satisfy one of the following:
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• x1 = . . . = xn = ξ for some ξ ∈ Sd−1,

• There exists s ∈ {2, . . . , n} such that x1 = . . . = xs−1 = ξ and xs = −ξ.

Indeed, if the first condition fails, consider the first token xs where xs ̸= x1. Then fs(x) = 0 implies xs−⟨xs, ξ⟩ξ = 0,
forcing xs = ±ξ so that xs = −ξ since we required xs ̸= x1.

Our goal is to show that stationary points of the second kind are limiting points with probability zero with respect to the
initialization distribution. Observe that since the system formed by the first s particles is independent of subsequent
ones, it suffices to show:

P((x1, . . . , xs−1, xs) → (ξ, . . . , ξ,−ξ)) = 0.

Since x1(t) = x1(0), this reduces to:

P(x1 = ξ, (x2, . . . , xs−1, xs) → (ξ, . . . , ξ,−ξ)) = 0.

By the law of total probability, it suffices to show that for almost all ξ ∈ Sd−1:

Px2,...,xs|x1=ξ((x2, . . . , xs−1, xs) → (ξ, . . . , ξ,−ξ)) = 0.

We are left to the function fs around (x1, . . . , xs−1, xs) = (ξ, . . . , ξ,−ξ). Observe that

fs(ξ, . . . , ξ, xs) = w(ξ, xs)(ξ − ⟨ξ, xs⟩xs),
where

w(ξ, xs) =
(s− 1)eβ⟨Qxs,Kξ⟩

(s− 1)eβ⟨Qxs,Kξ⟩ + eβ⟨Qxs,Kxs⟩
> 0.

Observe that the Jacobian (∂fk∂xj
) is block lower triangular, with blocks given by ∂fk

∂xk
. We show below that ∂fs

∂xs
has an

eigenvalue with positive real part, which is sufficient to establish strong instability.

At x2 = . . . = xs−1 = ξ and xs = −ξ:

fs(ξ, . . . , ξ, xs) = w(ξ, xs)(ξ − ⟨ξ, xs⟩xs),
where

w(ξ, xs) =
(s− 1)eβ⟨Qxs,Kξ⟩

(s− 1)eβ⟨Qxs,Kξ⟩ + eβ⟨Qxs,Kxs⟩
> 0.

The classical Jacobian in Rd is:
∂

∂xs
fs(ξ, . . . , ξ, xs) =

(
∂

∂xs
w(ξ, xs)

)
(ξ − ⟨ξ, xs⟩xs)⊤ + w(ξ, xs)

∂

∂xs
(ξ − ⟨ξ, xs⟩xs).

Hence
∂

∂xs
fs(ξ, . . . , ξ, xs)

∣∣
xs=−ξ

= w(ξ, xs)
∂

∂xs
(ξ − ⟨ξ, xs⟩xs).

The spherical Jacobian is obtained by projecting onto ξ⊥ and given by

(I− ξξ⊤)
∂

∂xs
fs(ξ, . . . , ξ, xs)

∣∣
xs=−ξ

= w(ξ,−ξ) · (I− ξξ⊤).

This linear operator acts on ξ⊥ and has eigenvalues w(ξ,−ξ) with multiplicity d − 1, which are all real positive,
confirming strong instability.

By the center-stable manifold theorem (Shub, 2013, Thm. III.7, Ex. III.3), if a point has at least one eigenvalue with
positive real part, then: (i) The center-stable manifold W cs

loc has positive co-dimension and (ii) Points converging to this
equilibrium must enter W cs

loc at some finite time and (iii) the set of such points has measure zero.

More precisely, if a trajectory (x2, . . . , xs) converges to (ξ, . . . , ξ,−ξ), then:

∃m ∈ Z≥0 : (x2(m), . . . , xs(m)) ∈W cs
loc.

Since our flow is a diffeomorphism, the pre-image of W cs
loc is also a manifold of positive codimension. Therefore, the

set of initial conditions leading to convergence to (ξ, . . . , ξ,−ξ) is contained in a countable union of measure-zero sets,
making it a measure-zero set itself.
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We continue with an induction on the number of particles to show that with probability one, x2, . . . , xn all converge to
ξ.

For the base case k = 2, observe that x2 converges to ξ except when initialized unstable equilibrium x2(0) = −ξ.

Assume next that x2, . . . , xk−1 → ξ with probability one so that for any ε > 0, there exists a time T0 after which

min
j<k

⟨xj , ξ⟩ > 1− ε a.s.

Consider:

d⟨xk(t), ξ⟩
dt

=

〈
Pxk(t)

 1

Zk(t)

k−1∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩xj(t)

 , ξ

〉

=
1

Zk(t)

k−1∑
j=1

eβ⟨Qxk(t),Kxj(t)⟩(⟨xj(t), ξ⟩ − ⟨xj(t), xk(t)⟩⟨xk(t), ξ⟩)

 .

From Lemma B.1 we get that ⟨xj(t), ξ⟩ − ⟨xj(t), xk(t)⟩⟨xk(t), ξ⟩ > 0 if ⟨xj , ξ⟩ > 0 and |⟨xk, ξ⟩| < ⟨xj , ξ⟩. In
particular, we get that the time derivative above is positive after time T0 whenever −1 + ε < ⟨xk, ξ⟩ < 1 − ε since
we are guaranteed that ∀j < k, ⟨xj , ξ⟩ > 1− ε > 0 after that time. But from the center-stable theorem argument, we
know that ⟨xk, ξ⟩ does not converge to −1 so there exists a time T1 > T0 at which ⟨xk, ξ⟩ > −1 + ε. After this time,
either xk gets closer to ξ (positive derivative) until ⟨xk, ξ⟩ = 1− ε after which time, ⟨xk, ξ⟩ ≥ 1− ε forever. Since this
argument is valid, for all ε > 0, we get that xk → ξ.

By induction, all points converge to ξ with probability one.

B.3 Spectrum of pre-trained value matrices V

To support our theoretical focus on real eigenvalues, we analyze the spectrum of value matrices V across different
attention heads in pre-trained transformers. Figure 6 presents these spectra, revealing several key insights:

1. The majority of heads exhibit real maximal eigenvalues λmax, validating our theoretical emphasis on the real
case.

2. Notably, two heads—1 and 6—display negative λmax. This is particularly interesting since standard Gaussian
initialization (see Figure 5) places the initial spectrum far from the left half-plane. The emergence of negative
maximal eigenvalues through training suggests that such configurations may serve specific functional purposes.

These observations have important implications for transformer architecture design, particularly regarding the initializa-
tion of value matrices V . The presence and apparent utility of negative λmax indicates that alternative initialization
schemes, beyond standard Gaussian, might better accommodate the learned spectral properties.

Figure 5: Eigenvalues of a value matrix at initialisation for albert-xlarge-v2.
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Figure 6: Eigenvalues of the pre-trained albert-xlarge-v2 model value matrices for different heads.

C Meta-stable clustering

C.1 Proof of Lemma 5.1

Proof. For d = 2, using polar coordinates xk = eiφk , the system becomes:

φ̇k =
1

Zk

k−1∑
j=1

h(φj − φk), (7)

where we recall that h(x) = eβ(cos x−1) sinx is the function studied in Lemma A.1 and

Zk =

k∑
j=1

eβ(cos(φj−φk)−1) ≥ 1

due to the j = k term.

Let φr∗ denote the closest preceding particle to φsk . Because of periodicity we may assume that |φj − φk| < π for all
particles. Without loss of generality, assume φr∗ > φsk and set ∆ = φr∗ − φsk .

We first show that ∆ cannot decrease fast. To that end, observe that the evolution of ∆ follows:

−∆̇ = φ̇sk − φ̇r∗ =
1

Zsk

sk−1∑
j=1

h(φj − φsk) +
1

Zr∗

r∗−1∑
j=1

h(φr∗ − φj),

where we use the fact that h is odd. Recall that h is decreasing on [τ∗β , π] so for ∆ > τ∗β , we bound each term as follows.

For the first term, by definition of ∆,

φ̇sk ≤ |φ̇sk | ≤
sk−1∑
j=1

eβ(cos(φj−φsk
)−1)| sin(φj − φsk)| =

sk−1∑
j=1

h(|φj − φsk |) ≤ skh(∆). (8)

For the second term, observe that h(φr∗ − φj) > 0 if and only if φr∗ > φj . But since φr∗ is larger and closest to φsk ,
we must have that φj < φsk −∆ < φr∗ − 2∆. Hence the terms that contribute positively to the second term are such
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that φr∗ − φj > 2∆. We get

−φ̇r∗ ≤
r∗−1∑
j=1

h(φr∗ − φj)1φr∗−φj>2∆ ≤ r∗h(2∆) ≤ skh(∆).

Combining the last three displays, we get the following upper bound on the rate of decay of ∆:

−∆̇ ≤ 2skh(∆) for ∆ > τ∗β .

Using this, we can show that that ∆(t) > cβ−1/2 for t ∈ [0, Tk], by checking that (i) cβ−1/2 > τ∗β , which is precisely
condition 2, and (ii) ∆(0) > cβ−1/2 + 2skTkh(cβ

−1/2), which follows readily from the Renyi center condition (1)
together with (3).

To conclude the proof of the Lemma, note that

|φsk(t)− φsk(0)| = |
∫ t

0

φ̇sk(u)du| ≤ tmax
u

|φ̇sk(u)| ≤ tskh(∆) ,

where we used (8) in the last inequality.

It yields
max

t∈[0,Tk]
|φsk(t)− φsk(0)| < skTkh(cβ

−1/2) < εcβ−1/2

by (3).

C.2 Proof of Lemma 5.3

Proof. We prove that the particles converge exponentially fast to some strongly stable critical point φ∗ via induction on
their number.

Induction base. In this proof the induction base for n = 1 follows from the induction step proof applied to the first
particle φ1.

Induction step. Consider φ1(t), . . . , φn−1(t). They do not depend on φn and from induction hypothesis converge
exponentially fast to some asymptotically stable point φ∗

1, . . . , φ
∗
n−1. In particular, one has φ̇k ∈ L1([0,∞)), k ∈

[n− 1].

Consider full derivative

dEn(φ(t))

dt
=

n−1∑
j=1

∂En

∂φj
φ̇j(t) +

∂En

∂φn
φ̇n(t) =

n−1∑
j=1

∂En

∂φj
φ̇j(t)− Zn(t)|φ̇n(t)|2.

Since all partial derivatives ∂En/∂φj are bounded on the compact manifold and all derivatives φ̇j , j < n are in
L1([0,∞)), one has

g(t) :=

n−1∑
j=1

∂En

∂φj
φ̇j(t) ∈ L1([0,∞)).

For the base case, i.e. n = 1, one simply has g(t) ≡ 0. Let us show that f(t) := dEn(φ(t))
dt is also in L1([0,∞)).

Notice how f(t) has a finite integral on any interval∫ b

a

f(t)dt = En(φ(a))− En(φ(b)) < C <∞ (9)

and is upper bounded
f(t) ≤ g(t) ∈ L1([0,∞)).

Consider f+ = f(t)1f(t)>0, f = f+ − f−. Clearly f+ ∈ L1([0,∞)) as it is upper bounded by |g| ∈ L1([0,∞)).
Moreover, the bound (9) shows that for all T > 0 one has∫ T

0

f−(s)ds ≤
∫ T

0

f+(s)ds+ C < ∥f+∥L1([0,∞)) + C.
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From this we get that f− ∈ L1([0,∞)). Consequently, f ∈ L1([0,∞)). Since

Zn(t)|φ̇n|2 = g(t)− f(t) ∈ L1([0,∞)),

and Zn(t) has a uniform lower bound, we obtain φ̇n ∈ L2([0,∞)).

Let us show that φ̇n is absolutely continuous. The trajectory of all particles φ(t) is absolutely continuous, because φ̇(t)
is bounded as a continuous vector field on a compact manifold. Then, φ̇n(t) is absolutely continuous, because it is a
composition of absolutely continuous vector field and an absolute continuous trajectory φ(t).

Because φ̇ ∈ L2([0,∞)) and φ̇n is absolutely continuous, it satisfies

lim sup
t→∞

|φ̇n(t)| = 0.

In other words, because of the upper bound Zn(t) < C, one has

lim
t→∞

∣∣∣∣ ∂

∂φn
En(φ1(t), . . . , φn(t))

∣∣∣∣ = 0. (10)

Finally, we are going to prove that φn converges to some critical point φ∗
n with

∂

∂φn
En(φ

∗
1, . . . , φ

∗
n) = 0.

Consider the set E = {ψ : ∂
∂φn

E(φ∗
1, . . . , φ

∗
n−1, ψ) = 0}. By assumption, the energy function En(φ

∗
1, . . . , φ

∗
n−1, ψ)

has isolated critical points w.r.t. ψ, thus the set of zeroes E is a finite collection of points E = {ψ1, . . . , ψm}.

When φ1, . . . , φn−1 converge to φ∗
1, . . . , φ

∗
n−1 the set{
φn :

∣∣∣∣ ∂

∂φn
E(φ1, . . . , φn)

∣∣∣∣ < ε

}
is inside a collection of distinct intervals around ψ1, . . . , ψm for small enough ε. Therefore, due to (10), from some
moment φn(t) stays only in one of those intervals. They collapse into points as we take ε→ 0 and t→ ∞, proving
that φn converges to some φ∗

n ∈ E . It remains to prove that observed convergence is to a strongly stable point.

We know that the limiting point is critical and for almost any initialisation it is not strongly unstable. This is a
well-known fact that for autonomous systems convergence to a strongly unstable point happens with probability zero,
that we used in Section B.2. One could find it in (Geshkovski et al., 2023, Lemma B.1), based on the center manifold
theorem (Shub, 2013, Thm. III.7, Ex. III.3). Therefore, from the assumption on critical points, the limiting point
is strongly stable. Then, the convergence happens exponentially fast, because locally the whole neighbourhood of a
strongly stable point is its stable manifold W s

loc, see (Shub, 2013, Thm. III.7, Ex. III.3).

C.3 Proof of Theorem 5.2

Proof. Our prove consists of two parts. In order to obtain convergence we are going to apply Lemma 5.3. The system
has exactly gradient-like form for energy functionals

Ek(φ1, . . . , φk) = −

k−1∑
j=1

eβ(cos(φk−φj)−1) +

m∑
j=1

aje
β(cos(φk−θj)−1)


and bounded normalization factors

Zk(φ1, . . . , φk) =

k∑
j=1

eβ(cos(φk−φj)−1) +

m∑
j=1

aje
β(cos(φk−θj)−1).

Therefore, if conditions of Lemma 5.3 are satisfied, we have convergence to a strongly stable critical point. In that
case, it is sufficient to prove that for any strongly stable critical point φ∗, all particles φ∗

k are εβ−1/2-close to one of the
centers θj . We show this via induction on k, because new particles do not affect the movement of the previous ones.

To justify our use of Lemma 5.3, we need to check that all critical points are either strongly stable or strongly unstable,
i.e. that the Jacobian at any critical point with only non-positive eigenvalues actually has no zero eigenvalues. Moreover,
for our conclusion, we need to check that if all the eigenvalues are negative, then the critical point is clustered around θ.
Let us start with that.
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In what follows we repeatedly use properties of h and g from Lemma A.1.

The system is of the form

φ̇k = − 1

Zk

k−1∑
j=1

h(φk − φj) +

m∑
j=1

ajh(φk − θj)

 =: fk(φ, θ).

Since fk does not depend on φk+1, . . . , φn, the Jacobian ( ∂fk∂φj
) is lower-triangular. Therefore, its eigenvalues are ∂fk

∂φk
.

Let us assume that all of the eigenvalues are non-positive. Since at a critical point fk(φ∗, θ) itself is zero, one has

∂fk
∂φk

(φ∗, θ) = − 1

Zk

k−1∑
j=1

g(φ∗
k − φ∗

j ) +

m∑
j=1

ajg(φ
∗
k − θj)

 ≤ 0.

This implies that one of the terms g(φ∗
k − φ∗

j ) or g(φ∗
k − θj) is positive. From properties of g in Section A.2, we obtain

that φ∗
k is τ∗β -close to either one of the centers θj or one of the previous particles φ∗

j . By induction hypothesis, all
previous particles are εβ−1/2-close to the centers, i.e. φ∗

k is in τ∗β + εβ−1/2-neighbourhood of some center, wlog θ1.

Let us assume that φ∗
k is εβ−1/2-far from θ1. From criticality of the point, it is true that

k−1∑
j=1

h(φ∗
k − φ∗

j ) +

m∑
j=1

ajh(φ
∗
k − θj) = 0,

By induction hypothesis, all previous particles are εβ−1/2-close to some center. Denote the set of particles that are
close to θ1 as S. Then the criticality can be written as

a1h(φ
∗
k − θ1) +

∑
j∈S

h(φ∗
k − φ∗

j ) = −
∑
j /∈S

h(φ∗
k − φ∗

j )−
m∑
j=2

ajh(φ
∗
k − θj).

All of the terms on the left hand side have the same sign, because φ∗
j , j ∈ S are εβ−1/2-close to θ1 and φ∗

k is
(τ∗β + εβ−1/2)-close to θ1. Any other particle/center is at least (c− 2ε)β−1/2 − τ∗β far from φ∗

k, because centers are
cβ−1/2-separated. The absolute value of the l.h.s. can be lower bounded

|a1h(φ∗
k) +

∑
j∈S

h(φ∗
k − φ∗

j )| ≥ h(εβ−1/2).

The absolute value of the r.h.s. can be upper bounded

|
∑
j /∈S

h(φ∗
k − φ∗

j ) +

m∑
j=2

ajh(φ
∗
k − θj)| ≤ Nh((c− 2ε)β−1/2 − τ∗β ) < Nh((c− 1− 2ε)β−1/2),

where in the last part we used the fact from Section A.2 that τ∗β < β−1/2.

Therefore, one has
Nh((c− 1− 2ε)β−1/2) ≥ h(εβ−1/2),

which contradicts our assumption on system parameters.

It remains to check that when the eigenvalues of the Jacobian are not positive, they are actually strictly negative. We
already know that in that case all the particles are clustered around centers θj . Let us assume that

∂fk
∂φk

(φ∗, θ) = 0.

We know that φ∗
k is εβ−1/2-close to some center, wlog θ1. Therefore,

g(φ∗
k − θ1) ≥ g(εβ−1/2).

On the other hand, the only negative terms in the sum
k−1∑
j=1

g(φ∗
k − φ∗

j ) +

m∑
j=1

ajg(φ
∗
k − θj) = 0
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are from particles that are not in the neighbourhood of θ1, so they are at least (c− 2ε)β−1/2-far from φk. Therefore,
for the negative terms to balance the positive g(φ∗

k − θ1), it should be true that

g(εβ−1/2) < −Ng((c− 2ε)β−1/2).

This contradicts the parameters choice.

C.4 Rényi centers vs strong Rényi centers

In this section we estimate the number of clusters our approach predicts. As a reminder, for a sequence of particles Xi

on a unit sphere, and geodesic distance dist, we consider two subsequences

• Rényi centers is Xsj , j ≥ 1 such that ∀jmini<j dist(Xsj , Xsi) > δ,

• strong Rényi centers is Xsj , j ≥ 1 such that ∀jmini<sj dist(Xsj , Xi) > δ.

Estimating the number of elements in the first sub-sequence is well-known as famous Rényi parking problem Renyi
(1958). In the case d = 2, the result from Dvoretzky and Robbins (1964) implies that as δ → 0, the average number of
elements in the sequence approaches c2π/δ superexponentially fast, where c ≈ 0.75 is the Rényi constant. However,
this problem becomes significantly harder in higher dimensions. In contrast, it is easy to compute the average number
of elements in the second sequence in any dimension and even for a wider class of distributions.
Lemma C.1. In an infinitely long sequence Xi the average number of variables Xsj chosen by strong Rényi parking
is the inverse spherical cap surface area 1/σd−1(Bδ). In particular, it grows as 1/δd−1 with dimension and can be
computed directly in lower dimensions

1/σd−1(Bδ) =

{
πδ−1, d = 2

(3 sin2(δ/2))−1, d = 3

Proof. Consider a sequence of i.i.d. points Xi being sampled on a d-dimensional sphere Sd−1 according to some
distribution µ. Let us find the probability that k-th particle Xk is chosen by strong Rényi parking with distance δ. This
event can be written as

P[∩k−1
j=1{dist(Xk, Xj) > δ}] =

∫
Sd−1

P[∩k−1
j=1{dist(x,Xj) > δ}]dµ(x),

where we used total probability formula. Then, since Xj are i.i.d., we can write it as∫
Sd−1

P(dist(x,X1) > δ)k−1dµ(x) =

∫
Sd−1

(1− µ(Bδ(x)))
k−1dµ(x).

From this we obtain that the average number of chosen points is equal to∫
Sd−1

∞∑
k=1

P(dist(x,X1) > δ)k−1dµ(x) =

∫
Sd−1

1

µ(Bδ(x))
dµ(x) =

1

σd−1(Bδ)
,

where the last equality is correct for any spherically harmonic distribution µ, in particular for a uniform measure.
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