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Abstract

This paper considers the speed of convergence (mixing) of a finite Markov kernel P with
respect to the Kullback-Leibler divergence (entropy). Given a Markov kernel one defines either
a discrete-time Markov chain (with the n-step transition kernel given by the matrix power Pn)
or a continuous-time Markov process (with the time-t transition kernel given by et(P−Id)). The
contraction of entropy for n = 1 or t = 0+ are given by the famous functional inqualities,
the strong data processing inequality (SDPI) and the modified log-Sobolev inequality (MLSI),
respectively. When P = KK∗ is written as the product of a kernel and its adjoint, one could
also consider the “half-step” contraction, which is the SDPI for K, while the SDPI for P is called
the “full-step” contraction. Del Moral, Ledoux and Miclo (PTRF, 2003) claimed that these
contraction coefficients (half-step, full-step, and continuous-time) are generally comparable, that
is their ratio is bounded from above and below by two absolute constants. We disprove this
and related conjectures by working out a number of different counterexamples. In particular,
we construct (a) a continuous-time Markov process that contracts arbitrarily faster than its
discrete-time counterpart; and (b) a kernel P such that Pm+1 contracts arbitrarily better than
Pm. Hence, our main conclusion is that the four standard inequalities comparing five known
notions of entropy contraction are generally not improvable (even in the subclass of factorizable
Markov chains).

In the process of analyzing the counterexamples, we survey and sharpen the tools for bound-
ing the contraction coefficients and characterize properties of extremizers of the respective func-
tional inequalities, showing, for example, that while MLSI extremizer always has full support
(unless MLSI constant equals twice the spectral gap), the SDPI extremizers can have partial
support. As our examples range from Bernoulli-Laplace, random walks on graphs to birth-death
chains, the paper is also intended as a tutorial on computing MLSI, SDPI and other constants
for these types of commonly occurring Markov chains.
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1 Introduction

Markov chains are widely used in almost all areas of science and engineering, in the form of MCMC
averaging in numerical analysis, approximation algorithms in computer science, generative modeling
in artificial intelligence, and so on. Perhaps the most important problem in the study of Markov
chains is to understand their equilibration properties. One example of such property is the mixing
time, characterizing the time it takes for the marginal distribution to come close to the stationary
one, as measured by some statistical distance: the total variation (most commonly) or Wasserstein
distance, χ2 or Kullback-Leibler (KL) divergence.

In this paper, we focus on Markov chains on a finite state space. There are two common ways
to define or implement Markov processes. In a discrete-time Markov chain, the state is updated at
every discrete time t ∈ Z≥1; meanwhile, in a continuous-time Markov chain, the update times are
distributed as a Poisson point process on the positive real axis R≥0. For example, if the single-step
kernel for the former is given by a row-stochastic matrix P then the corresponding continuous-time
chain has kernel Tt = et(P−Id). Due to concentration of the number of updates in the time interval
[0, t], both versions are known to have almost equal mixing times in total variation (e.g., [LP17,
Theorem 20.3]). Thus, for the study of total-variation mixing time probabilists are free to switch
between the discrete and continuous times as convenient.

One common approach (e.g., [DSC96]) to show rapid mixing of Markov chains is to prove
that they “make progress” step-wise in terms of some f -divergence, most commonly the χ2 or
the KL divergence. For discrete-time Markov processes, this means that the f -divergence to the
target distribution decreases by a certain factor in every step, which can be described by the
contraction coefficient of the associated Markov kernel. For continuous-time chains, this corresponds
to the derivative of f -divergence with respect to time is suitably bounded away from zero from
below, and hence the f -divergence to the target distribution decreases at a certain speed. For
the KL divergence, the respective contraction inequalities are known as the strong data processing
inequality (SDPI) and the modified log-Sobolev inequality (MLSI), respectively for discrete-time and
continuous-time. See Eqs. (5) and (13) below for formal definitions.

For a large family of Markov chains, including the Glauber dynamics and random walks on
high-dimensional simplices (e.g., [KM17]), the transition kernel P consists of two stages, for which
P = KK∗ is written as the product of a kernel and its adjoint. The first stage (K) is often described
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as the downward, forward, or noising move, and the second stage (K∗) as the upward, backward,
or denoising move. Recent success on analyzing such two-stage processes (e.g., [CLV21, BCC+22])
considers the decay of f -divergence in a single stage K or K∗, which for many specific problems
turns out to be easier to handle. For such chains it is then natural to define a half-step contraction
coefficient (corresponding to application of K only) and ask how it compares with full-step, multi-
step and continuous-time ones.

Given the equivalence between continuous-time and discrete-time mixing times, one naturally
expects similar equivalence between the contraction coefficients. This turns out to be true for
the χ2 contraction ([Rag16, Remark 4.2]). Thus, it was not surprising when the work [DMLM03]
claimed to show such equivalence for the KL divergence contraction as well (that is showing that
the ratio of the MLSI and SDPI constants is universally bounded). Specifically, they claimed
an equivalence (up to universal multiplicative factors) between the MLSI and the half-step SDPI,
which implies in particular that the MLSI and the full-step SDPI (i.e., continuous-time and discrete-
time entropy contraction) are equivalent. The present paper originated from us discovering a gap
in their proof (see Section 3.6) and realizing that their claim cannot hold true because the ratio
between the MLSI constant and the half-step SPDI constant can be arbitrarily large for the random
transposition model (Example 24). However, the question of whether the MLSI and the full-step
SDPI are equivalent remained open.

We answer this question by presenting an example (Example 20) separating the MLSI and the
full-step SDPI. That is, there exist cases where the contraction rate of the discrete-time chain can
be much slower than that of the continuous-time one. The example is adapted from [Mün23]’s
counterexample to the Peres-Tetali conjecture, although there seems to be no direct relationship
between the properties used here and op. cit.

The separation between continuous-time and discrete-time entropy contraction leads us to con-
sider the related question of comparing the entropy contraction of the m-step kernel Pm versus the
(m + 1)-step one Pm+1. If a separation is possible, then it would explain how a continuous-time
chain (which averages over many Pm’s) could have better convergence properties at finite time
than the corresponding discrete-time chain (see discussions at the end of Section 3.2). It turns out
that a counterexample is again possible (see Example 18 below).

To avoid trivial counterexamples, we restrict our attention to factorizable kernels, which are
kernels that can be written in the form P = KK∗. As discussed above, this is a natural class of
Markov kernels to study. All our examples are factorizable.

In all, the main purpose of this paper is to give a self-contained and thorough introduction
of all notions of relative entropy decay for finite-state Markov chains, for both continuous-time
and discrete-time versions. We summarize known comparisons among these notions (including,
the recent half-step contraction) and we give examples, demonstrating, that in all cases where
comparisons are not available there exist counterexamples, in the sense that the ratio can be
arbitrarily large. Along the way, we correct several misstatements that appeared in previous works,
we show how to get sharp upper and lower bounds for these coefficients and study the extremizers
in the respective functional inequalities.

Organization. This paper’s content is succinctly summarized in three tables: Table 1 gives
definitions of 5 main contraction coefficients, Table 2 lists all known comparison inequalities along
with (new) counterexamples for the missing comparisons, Table 3 summarizes the list of coun-
terexamples. The rest of the introduction defines all notions rigorously and recalls the standard
comparison chain (27):

ρ ≤ α ≤ δ ≤ ρ0 ≤ 2λ .

Then, after introducing factorizable Markov kernels (P = KK∗) in Section 2, Section 3 shows that
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every inequality above can have arbitrarily high ratio, even when restricted to factorizable kernels.
Section 4 concludes with some results on the properties of extremizers of functional inequalities.
on complete and complete bipartite graphs.

Notation. Throughout the paper, let X be a finite set, P : X → X be a Markov kernel with
an invariant distribution π. Assume that (π, P ) is reversible, i.e., π(x)P (x, y) = π(y)P (y, x) for all
x, y ∈ X . For a Markov kernel K : X → Y and a distribution π on X , we define the reverse channel
K∗

π : Y → X as

K∗
π(y, x) =

{
π(x)K(x,y)
(πK)(y) , if (πK)(y) > 0,

π(x), otherwise.
(1)

Note that π is an invariant distribution of KK∗
π and (π,KK∗

π) is reversible.

1.1 Continuous-time contraction notions

For f, g : X → R, define the Dirichlet form as

Eπ,P (f, g) = −π[f(Lg)] (2)

where L = P − I is the Markov generator.
The Poincaré constant (also called the spectral gap) λ = λ(π, P ) is the largest number such

that

λVarπ(f) ≤ Eπ,P (f, f), ∀f : X → R, (3)

where Varπ(f) := π[f2] − (π[f ])2 is the variance of f under π. When f = dν
dπ for some ν ∈ P(X )

(where P(X ) denotes the space of distributions on X ), we have Varπ(f) = χ2(ν∥π) where χ2(·∥·)
stands for the χ2-divergence. Eq. (3) is called the Poincaré inequality.

The log-Sobolev constant (LSC) ρ = ρ(π, P ) is the largest number such that

ρEntπ(f) ≤ Eπ,P (
√
f,

√
f), ∀f : X → R≥0, (4)

where Entπ(f) := π
[
f log f

π[f ]

]
is the entropy of f . When f = dν

dπ for some ν ∈ P(X ), we have

Entπ(f) = D(ν∥π) where D(·∥·) stands for the Kullback-Leibler (KL) divergence. Eq. (4) is called
the log-Sobolev inequality (LSI).

The modified log-Sobolev constant (MLSC) ρ0 = ρ0(π, P ) is the largest number such that

ρ0 Entπ(f) ≤ Eπ,P (f, log f), ∀f : X → R≥0. (5)

Eq. (5) is called the modified log-Sobolev inequality (MLSI).
For reversible (π, P ), we always have ([DSC96, BT06])

4ρ ≤ ρ0 ≤ 2λ. (6)

The constants ρ, ρ0, and λ represent the contraction ability of the continuous-time Markov chain
(also known as the Markov semigroup) (Tt)t≥0, where Tt = exp(−tL).1 These constants are prop-
erties of the Markov generator L (which can be arbitrarily scaled), rather than the Markov kernel
P .

1In this work we focus on continuous-time Markov chains of this type and do not consider more general continuous-
time Markov chains.
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Let ν be a distribution on X . Define νt = νTt to be the distribution of the Markov chain at time
t ≥ 0 when initialized at ν, and define ft =

dνt
dπ to be the relative density. A direct computation

yields

d

dt
Varπ(ft) = −2Eπ,P (ft, ft), (7)

d

dt
Entπ(ft) = −Eπ,P (ft, log ft). (8)

Therefore the Poincaré inequality and the modified log-Sobolev inequality can be equivalently stated
as

d

dt
Varπ(ft) ≤ −2λVarπ(ft), (9)

d

dt
Entπ(ft) ≤ −ρ0 Entπ(ft). (10)

Eqs. (9) and (10) can also be understood as alternative definitions for λ and ρ0, from which one
immediately obtains

Varπ(ft) ≤ exp(−2λt)Varπ(f0), (11)

Entπ(ft) ≤ exp(−ρ0t) Entπ(f0). (12)

We remark that the log-Sobolev inequality is equivalent to hypercontractivity by [DSC96].
Furthermore, [BG99] shows that the log-Sobolev inequality is equivalent (up to a constant factor)
to the Poincaré inequality on an Orlicz space. In this work we consider only the Poincaré inequality
on the L2 space.

We refer the reader to [DSC96, BT06] for more discussions on (modified) log-Sobolev constants.

1.2 Discrete-time contraction notions

Another class of contraction notions comes from contraction coefficients for f -divergences. We
refer the reader to [PW24, Chapter 7] for an introduction to f -divergences. Let K : X → Y be a
Markov kernel and π be a distribution on X . For any f -divergence, we define the (input-restricted2)
f -contraction coefficient

ηf (π,K) := sup
ν∈P(X )

0<Df (ν∥π)<∞

Df (νK∥πK)

Df (ν∥π)
. (13)

In other words, we have

Df (νK∥πK) ≤ ηf (π,K)Df (ν∥π), (14)

known as the strong data processing inequality (SDPI). By the data processing inequality (DPI),
we always have 0 ≤ ηf (π,K) ≤ 1, and a smaller value means a stronger contraction ability for
f -divergence. The most commonly used f -contraction coefficients include the total variation (TV)
contraction coefficient ηTV(π,K), the Kullback-Leibler (KL) contraction coefficient ηKL(π,K) (the

2One could also consider the input-unrestricted contraction coefficient defined as ηf (K) := supπ∈P(X ) ηf (π,K).
In this paper we focus on the input-restricted version.
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subscript KL is sometimes omitted), and the χ2-contraction coefficient ηχ2(π,K). It is known
([AG76, PW17]) that

ηχ2(π,K) ≤ ηKL(π,K) ≤ ηTV(π,K). (15)

The TV contraction coefficient ηTV(π,K) is also known as the Dobrushin’s coefficient ([Dob56]),
and satisfies

ηTV(π,K) = max
x,x′∈X

TV(K(x, ·),K(x′, ·)). (16)

Via Eq. (15), Eq. (16) provides an easy upper bound for ηχ2(π,K) and ηKL(π,K).
We refer the reader to [Rag16, PW24] for more discussions on contraction coefficients.
Let P = KK∗

π. We define the half-step entropy contraction coefficient

α(π,K) = 1− ηKL(π,K) = inf
ν∈P(X )

0<D(ν∥π)<∞

D(ν∥π)−D(νK∥πK)

D(ν∥π)
(17)

and the full-step entropy contraction coefficient

δ(π, P ) = 1− ηKL(π, P ) = inf
ν∈P(X )

0<D(ν∥π)<∞

D(ν∥π)−D(νP∥π)
D(ν∥π)

. (18)

By rearranging, we have inequalities

EntπK(K∗
πf)− Entπ(f) ≤ −αEntπ(f), (19)

Entπ(Pf)− Entπ(f) ≤ −δ Entπ(f), (20)

for all f : X → R≥0. Eqs. (19) and (20) can be seen as definitions of α and δ, and can be compared
with Eqs. (11) and (12). In the next section, we will discuss relationships between the discrete-time
contraction notions α, δ and the continuous-time contraction notions ρ, ρ0, λ.

1.3 Continuous-time versus discrete-time contraction

As we discussed above, the log-Sobolev constant ρ(π, P ), modified log-Sobolev constant ρ0(π, P ),
and the Poincaré constant λ(π, P ) represent the contraction ability of the continuous Markov chain,
while the contraction coefficients represent the contraction ability of the discrete-time Markov
chain. These constants allow one to derive mixing time bounds for associated Markov chains in the
continuous-time and discrete-time settings respectively, see e.g. [Cap23] and the references therein
for more details. In this paper, we give a full comparison between the discrete-time contraction
notions and the continuous-time contraction notions.

The χ2-contraction coefficient has a close relationship with the Poincaré constant λ. We have

1− ηχ2(π,K) = λ(π,KK∗
π). (21)

For P = KK∗
π, the two versions of contraction are equivalent up to a constant factor. By Eq. (21)

and 1− λ(π, P 2) = (1− λ(π, P ))2, we have

1−
√
ηχ2(π, P ) = λ(π, P ). (22)
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In particular,

1

2

(
1− ηχ2(π, P )

)
≤ λ(π, P ) ≤ 1− ηχ2(π, P ). (23)

This shows that the rates of χ2-divergence contraction for continuous-time and discrete-time Markov
chains are within a factor of two of each other.

If we consider entropy (KL divergence) rather than χ2-divergence, then previous works have
shown a one-sided inequality. [BCP+21] shows that

δ(π, P ) ≤ ρ0(π, P ). (24)

[Mic97] proves that

ρ(π, P ) ≤ α(π,K). (25)

By the data processing inequality, we have

α(π,K) ≤ δ(π, P ). (26)

Summarizing the above, we have a chain of inequalities

ρ ≤ α ≤ δ ≤ ρ0 ≤ 2λ. (27)

In other words, we have the following implications:

Log-Sobolev Inequality =⇒ Half-Step Entropy Contraction =⇒ Full-Step Entropy Contraction

=⇒ Modified Log-Sobolev Inequality =⇒ Poincaré Inequality (28)

In Section 3, we show that the gap between any two adjacent constants in Eq. (27) can be arbitrarily
large. In particular, unlike the χ2-divergence, the discrete-time entropy contraction δ(π, P ) is not
equivalent to the continuous-time entropy contraction ρ0(π, P ).

Table 1 summarizes the main constants discussed in this paper, and Table 2 summarizes re-
lationships between these contraction notions. While these contraction notions are in general
non-equivalent (up to a constant factor), we will see in Section 3.5 that under extra conditions,
some of them could become equivalent for certain chains.

Symbol Name Inequality (Definition)

ρ(π, P ) Log-Sobolev Constant ρEntπ(f) ≤ Eπ,P (
√
f,

√
f)

α(π,K) Half-Step Entropy Contraction αEntπ(f) ≤ Entπ(f)− EntπK(K∗
πf)

δ(π, P ) Full-Step Entropy Contraction δ Entπ(f) ≤ Entπ(f)− Entπ(Pf)

ρ0(π, P ) Modified Log-Sobolev Constant ρ0 Entπ(f) ≤ Eπ,P (f, log f)
λ(π, P ) Poincaré Constant λVarπ(f) ≤ Eπ,P (f, f)

Table 1: Contraction notions discussed in this paper. We assume that P = KK∗
π. See Table 2 for

relationships between the constants.
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Relationship Explanation Reference

ρ(π, P ) ≤ α(π,K)
Log-Sobolev Inequality

⇒ Half-Step Entropy Contraction
[Mic97, Prop. 6]

ρ(π, P ) ̸≳ α(π,K)
Half-Step Entropy Contraction

̸⇒ Log-Sobolev Inequality
Section 3.1

α(π,K) ≤ δ(π, P )
Half-Step Entropy Contraction

⇒ Full-Step Entropy Contraction
Data processing inequality

α(π,K) ̸≳ δ(π, P )
Full-Step Entropy Contraction

̸⇒ Half-Step Entropy Contraction
Section 3.2

δ (π, Pm) ̸≳ δ
(
π, Pm+1

) (m+ 1)-Step Entropy Contraction
̸⇒ m-Step Entropy Contraction

Section 3.2

δ(π, P ) ≤ ρ0(π, P )
Full-Step Entropy Contraction

⇒ Modified Log-Sobolev Inequality
[BCP+21, Lemma 2.7]

δ(π, P ) ̸≳ ρ0(π, P )
Modified Log-Sobolev Inequality
̸⇒ Full-Step Entropy Contraction

Section 3.3

ρ0(π, P ) ≤ 2λ(π, P )
Modified Log-Sobolev Inequality

⇒ Poincaré Inequality
[BT06, Prop. 3.6]

ρ0(π, P ) ̸≳ λ(π, P )
Poincaré Inequality

̸⇒ Modified Log-Sobolev Inequality
Section 3.4

Table 2: Relationships between contraction notions. The setting is the same as Table 1. a ̸≳ b
means b

a can be arbitrarily large. Inequality A ⇒ Inequality B means Inequality A with constant
a implies Inequality B with constant Ca for some absolute constant C > 0.

2 Factorizable kernels

Definition 1 (Factorizable pairs). Let X be a finite set and P : X → X be a Markov kernel with
invariant distribution π. We say (π, P ) is factorizable if P = KK∗

π for some finite Markov kernel
K : X → Y.

Lemma 2 (Factorizable implies reversible). A factorizable pair (π, P ) is reversible.

Proof. Suppose P = KK∗
π for a finite Markov kernel K : X → Y. For x, y ∈ X , we have

π(x)P (x, y) = π(x)
∑
z∈Y

K(x, z)K∗
π(z, y) (29)

= π(x)π(y)
∑
z∈Y

1

(πK)(z)
K(x, z)K(y, z) = π(y)P (y, x).

So (π, P ) is reversible.

Factorizability is a reasonable assumption for several reasons. Recall that ρ, ρ0, and λ are
properties of the Markov generator L, while α and δ are properties of the Markov kernel P , and
the two are related by L = P − I. If we do not make extra assumptions on P , then it could
happen that for two Markov kernels P1 and P2, P1 contracts better than P2, but the corresponding
Markov generators L1 and L2 satisfy that L2 contracts better than than L1. Consider the example

where X = [2], π = Unif(X ), Pc =

(
1− c c
c 1− c

)
for c ∈ [0, 1]. Then the contraction ability (as

Markov kernels) is increasing for c ∈
[
0, 12

]
and decreasing for c ∈

[
1
2 , 1

]
. However, the contraction
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ability for the corresponding Markov generators Lc = Pc − I is increasing on the whole interval
[0, 1]. To avoid such undesirable beahvior, we need to impose extra assumptions like factorizability.
Furthermore, Eqs. (25) and (26) imply that

ρ(π, P ) ≤ δ(π, P ) (30)

for factorizable P . While the statement of Eq. (30) does not involve factorizability, it does not

hold if P is not factorizable. Consider the same example with c = 1, that is, P =

(
0 1
1 0

)
. Then

δ(π, P ) = 0 but ρ(π, P ) = 1.

2.1 Important classes of factorizable kernels

Another reason that the factorizability assumption is reasonable is that many natural Markov
chains considered in the literature are factorizable. In this section we discuss two important classes
of factorizable kernels: lazy kernels and the Glauber dynamics.

Lemma 3 (Lazy implies factorizable). Let (π, P ) be a reversible pair. If P (x, x) ≥ 1
2 for all x ∈ X ,

then there exists Y and K : X → Y such that P = KK∗
π.

Proof. Let Y =
(X
1

)
∪
(X
2

)
. Let K : X → Y be the map

K(x, e) =


2P (x, x)− 1, if e = {x},
2P (x, y), if e = {x, y},
0, if x ̸∈ e.

(31)

Then K∗
π(e, ·) = Unif(e). For y ̸= x ∈ X , we have

(KK∗
π)(x, y) = K(x, {x, y})K∗

π({x, y}, y) = P (x, y). (32)

Therefore P = KK∗
π.

Lazy chains are quite common. In particular, many of our examples are lazy random walks on
regular graphs.

Definition 4 (Lazy random walk Markov chain). Let G = (V,E) be a d-regular graph. We
associate with it a canonical Markov chain called the (lazy) random walk. Let X = V , Y = E, and
K : X → Y be K(x, e) = 1

d1{x ∈ e} for x ∈ X , e ∈ Y. Then K∗
π(e, ·) = Unif(e) and P = KK∗

π

satisfies

P (x, y) =


1
2 , if x = y,
1
2d , if (xy) ∈ E,
0, otherwise.

(33)

The Glauber dynamics is an important class of Markov chains that have shown huge practical
and theoretical success in sampling spin systems. Let us consider a general α-weighted block
dynamics, defined as follows. Let π be a probability measure on Ω = [q]n (e.g., the Ising model on
a graph with n vertices). For any σ, η ∈ Ω and A ⊆ [n], consider the conditional probability of η
given the configuration σ on A:

π(η|σA) =
π(η)1{σ|A = η|A}∑

η′∈Ω π(η
′)1{σ|A = η′|A}

. (34)
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Let S = 2[n] be the set of all subsets of [n]. For any probability measure α = (αA)A∈S on S, the
α-weighted block dynamics is the Markov chain on Ω with transition matrix

P (σ, σ′) =
∑
A∈S

αAπ(σ
′|σAc) (35)

where Ac = [n]\A. The case αA = 1
n1{|A| = 1} is known as the Glauber dynamics. The pair

(π, P ) is reversible. A factorization of the α-weighted block dynamics can be defined as follows.
Let X = Ω, Y = S × Ω, and K : X → Y be defined as

K(σ, (A, η)) = αAπ(η|σAc). (36)

One can compute that (πK)(A, η) = αAπ(η) and that K∗
π((A, η), σ) = π(σ|ηAc) for all (A, η) ∈

S × Ω, σ ∈ Ω. Therefore, for all σ, σ′ ∈ Ω,∑
(A,η)∈S×Ω

K(σ, (A, η))K∗
π((A, η), σ

′) =
∑
A∈S

αA

∑
η∈Ω

π(η|σAc)π(σ′|ηAc) = P (σ, σ′). (37)

Thus P = KK∗
π is a factorization of the α-weighted block dynamics. Half-step entropy contractions

for such Markov chains have been recently investigated in the context of spin systems under the
name of block factorizations of entropy (e.g., [BCC+22]).

2.2 Non-uniqueness of factorization

In general, a factorizable pair (π, P ) can be factorized in more than one different ways, and the
associated half-step contraction rates may differ considerably. This is illustrated in the following
example.

Example 5 (Complete graph). Let n ≥ 3 be an integer. Let X = [n], π = Unif(X ). Let P : X → X
be the lazy random walk on the complete graph. That is,

P (x, y) =

{ 1
2 , if x = y,

1
2(n−1) , if x ̸= y.

(38)

Given an integer 2 ≤ ℓ ≤ n, let Y be the set of all subsets A ⊆ [n] with either |A| = 1 or |A| = ℓ,
and define K(ℓ) : X → Y as

K(ℓ)(x, y) =


ℓ−2

2(ℓ−1) , if y = {x},
ℓ

2(ℓ−1)(n−1
ℓ−1)

, if |y| = ℓ, x ∈ y,

0, otherwise.

(39)

One can check that K(ℓ)∗π(y, ·) = Unif(y) and that K(ℓ)K(ℓ)∗π = P . We also note that when ℓ = 2
this reduces to the construction in the proof of Lemma 3.

[BC24, Theorem 1.1] computes the half-step entropy contraction coefficient α(π,K(ℓ)) for every
ℓ, and shows that

α(π,K(ℓ)) =
ℓ log ℓ

2(ℓ− 1) log n
, (40)

achieved at and only at point distributions. From Eq. (40) we see that α(π,K(ℓ)) increases with ℓ
from the minimum value α(π,K(2)) = log 2

logn to the maximum value α(π,K(n)) = n
2(n−1) . The former

is of the same magnitude of the log-Sobolev constant ρ(π, P ) = n−2
2(n−1) log(n−1) ([DSC96, Corollary

A.5]) and the latter matches asymptotically with the full-step contraction rate δ(π, P ) = 1
2 ± o(1)

([GP23, Eq. (131)]).
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2.3 Characterizations of factorizable kernels

An interesting question is to characterize the set of factorizable kernels for a fixed π. Lemma 3
provides a sufficient condition and it is certainly not necessary. For example, any pair (π, P )
satisfying P (x, ·) = π for all x ∈ X is factorizable (see Example 10). On the other hand, a
necessary condition for factorizability is positive semidefiniteness.

Lemma 6 (Factorizable implies positive semidefinite). Let (π, P ) be a reversible pair. If P is
factorizable, then the matrix Diag(π)P is positive semidefinite (PSD), where Diag(π) denotes the
X × X diagonal matrix with diagonal π.

Proof. Let A = Diag(π)P . Let K : X → Y be a Markov kernel such that P = KK∗
π. WLOG

assume that πK has full support. Then

Ax,y = π(x)
∑
z∈Y

K(x, z)K∗
π(z, y) = π(x)π(y)

∑
z∈Y

1

(πK)(z)
K(x, z)K(y, z). (41)

So A =MM⊤ where M = Diag(π)K Diag(πK)−1/2. This finishes the proof.

In particular, while a factorizable kernel is not necessarily lazy, when π has full support, P must
have strictly positive diagonal entries.

For a distribution π on X , let Fπ denote the set of Markov kernels P : X → X such that (π, P )
is factorizable.

Lemma 7 (Fπ is convex). For any distribution π, the set Fπ is convex.

Proof. Let P0, P1 ∈ Fπ and K0 : X → Y0, K1 : X → Y1 be the corresponding factors. Let t ∈ [0, 1].
We prove that Pt := (1− t)P0 + tP1 is in Fπ. Let Kt : X → Y0 ⊔ Y1 be defined as

Kt(x, y) =

{
(1− t)K0(x, y), if y ∈ Y0,
tK1(x, y), if y ∈ Y1.

(42)

Then we can verify that Kt is a Markov kernel, and

Kt(Kt)
∗
π = (1− t)K0(K0)

∗
π + tK1(K1)

∗
π = Pt. (43)

For a distribution π on X , let Pπ denote the set of Markov kernels P : X → X such that
Diag(π)P is PSD. By Lemmas 6 and 7, Fπ is a convex subset of Pπ. When the state space is
binary, the two sets are equal, but this is not true in general.

Lemma 8. If |X | = 2, then for any distribution π on X , we have Fπ = Pπ.

Proof. Direct calculation shows that Pπ is the convex hull of {J Diag(π), I}, where J is the all-ones
matrix. Both extreme points are in Fπ.

Lemma 9. For n ≥ 5, X = [n], and π = Unif(X ), the set Fπ is strictly smaller than Pπ.

Proof. An n × n matrix A is called completely positive if it can be written as A = MM⊤ for
some (not necessarily square) matrix M with non-negative entries. Clearly, all completely positive
matrices are PSD. It is known ([MM62, BSM03]) that for n ≤ 4, a PSD matrix is completely

11



positive if and only if all its entries are non-negative, while for n ≥ 5, there exist PSD matrices
with strictly positive entries that are not completely positive.

Fix n ≥ 5, X = [n], and π = Unif(X ). Then Pπ is exactly the set of doubly stochastic PSD
matrices. Let A be an n×n PSD matrix with strictly positive entries that is not completely positive.
By Sinkhorn’s theorem ([MN61, Sin64]), there is a diagonal matrix D with strictly positive entries
such that DAD is doubly stochastic. Let P = DAD. Clearly P is in Pπ. We claim that P is not
in Fπ. Suppose for the sake of contradiction that P = KK∗

π for some K. Then

A = D−1PD−1 =
1

n
D−1K Diag(πK)−1K⊤D−1 =MM⊤ (44)

where M = 1√
n
D−1K Diag(πK)−1/2 is non-negative. This contradicts with the assumption that A

is not completely positive.

It remains an interesting open problem to characterize Fπ, even for uniform π.

3 Comparison between constants

In this section we compare constants in Table 1, showing that there is a superconstant separation
between any two of them. Table 3 summarizes examples in this section.

Example Description Separation

Example 10 One-step chain
Log-Sobolev Constant ρ(π, P )

vs Half-Step Entropy Contraction α(π,K)

Example 11 1-to-k chain
Half-Step Entropy Contraction α(π,K)
vs Full-Step Entropy Contraction δ(π, P )

Example 13 Bernoulli-Laplace model
Half-Step Entropy Contraction α(π,K)
vs Full-Step Entropy Contraction δ(π, P )

Example 16 Three-state chain
One-Step Entropy Contraction δ(π, P )

vs Two-Step Entropy Contraction δ
(
π, P 2

)
Example 18 Birth-death chain

m-Step Entropy Contraction δ (π, Pm)
vs (m+ 1)-Step Entropy Contraction δ

(
π, Pm+1

)
Example 20 Three-state chain

Full-Step Entropy Contraction δ(π, P )
vs Modified Log-Sobolev Constant ρ0(π, P )

Example 23 Expander graph
Modified Log-Sobolev Constant ρ0(π, P )

vs Poincaré Constant λ(π, P )

Example 24 Random transposition model
Half-Step Entropy Contraction α(π,K)

vs Modified Log-Sobolev Constant ρ0(π, P )

Table 3: Examples in Section 3 and the separations they witness.

3.1 Log-Sobolev constant ρ vs half-step entropy contraction α

By [Mic97], we always have ρ(π, P ) ≤ α(π,K) for P = KK∗
π. The following example shows that

the gap can be arbitrarily large.
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Example 10 (A one-step Markov chain). Let X be a finite set, π be a distribution on X with full
support. Let Y = {∗} and K : X → Y be the unique Markov kernel from X to Y. Then P = KK∗

π

satisfies P (x, y) = π(y) for all x, y ∈ X . By [DSC96, Theorem A.1],

ρ(π, P ) =
1− 2π∗

log(1/π∗ − 1)
(45)

where π∗ = minx∈X π(x). On the other hand, α(π,K) = 1 − ηKL(π,K) = 1. As π∗ → 0, we have
α(π,K)
ρ(π,P ) → ∞.

3.2 Half-step entropy contraction α vs full-step entropy contraction δ

By the data processing inequality, we always have α(π,K) ≤ δ(π, P ) for P = KK∗
π. Example 5

with ℓ = 2 already shows that the gap can be arbitrarily large. Below we present a few different
examples.

Example 11 (A 1-to-k Markov chain). Let X = [n], Y = [n]k, K(x, y) = 1
knk−1

∑
j∈[k] 1{yj = x},

π = Unif(X ). In other words, on input x ∈ X , this chain generates a uniform length-k output
string and then randomly overwrite one of the k positions with x. Then K∗

π : Y → X satisfies
K∗

π(y, x) =
1
k

∑
j∈[k] 1{yj = x}. Let P = KK∗

π. The motivation for this chain comes from analysis

of the Glauber dynamics on Unif
(
X k

)
. The Markov kernel K∗

π is the k-to-1 walk, and its entropy
contraction is called entropic independence in [AJK+22]. Proposition 12 shows that for constant

k ≥ 2, as n→ ∞, we have δ(π,P )
α(π,K) → ∞.

Proposition 12 (A 1-to-k Markov chain). Let π,K, P be as in Example 11. Then we have

α(π,K) = O
(

1
logn

)
and δ(π, P ) ≥ 1− 1

k . In particular, for fixed k ≥ 2, δ(π,P )
α(π,K) = Ω(log n).

Proof. Upper bound on α(π,K). Let ν be the point distribution at 1 ∈ X . ThenD(ν∥π) = log n.
Consider the distribution νK. For y ∈ Y, if y contains i copies of 1, then (νK)(y) = i

knk−1 . So

D(νK∥πK) =
∑

1≤i≤k

(
k

i

)
(n− 1)k−i · i

knk−1
log

ni

k
(46)

= log n−
∑

1≤i≤k

(
k − 1

i− 1

)
(n− 1)k−i

nk−1
log

k

i
.

For constant k ≥ 2, as n→ ∞, we have D(νK∥πK) = log n−Θ(1). Therefore

α(π,K) ≤ 1− D(νK∥πK)

D(ν∥π)
= Θ

(
1

log n

)
. (47)

Lower bound on δ(π, P ). Let M : Y → [k] × [n] be the Markov kernel defined as M(y, ·) =
Unif({(i, yi) : i ∈ [k]}). By the data processing inequality,

1− δ(π, P ) = ηKL(π, P ) ≤ ηKL(πK,K
∗
π) ≤ ηKL(πK,M). (48)

Let ν be any distribution on Y, and νi (i ∈ [k]) be the i-th marginal of ν. Then

D(ν∥πK) = D
(
ν∥π×k

)
= D(ν∥ν1 × · · · × νk) +

∑
i∈[k]

D(νi∥π) ≥
∑
i∈[k]

D(νi∥π). (49)

13



On the other hand,

D(νM∥πKM) = D(νM∥Unif([k])× π) =
1

k

∑
i∈[k]

D(νi∥π). (50)

Therefore

ηKL(π,M) ≤ 1

k
. (51)

So

δ(π, P ) ≥ 1− 1

k
. (52)

Example 13 (Bernoulli-Laplace model). Let n be a positive integer and 1 ≤ k ≤ n − 1. We

define a graph G = (V,E). Let V =
([n]
k

)
(i.e., size-k subsets of of [n]). Equivalently, V is the

set of length-n bit strings with Hamming weight k. There is an edge (x, y) for x, y ∈ V if and
only if ∥x − y∥1 = 2 (considered as elements in {0, 1}n). The Bernoulli-Laplace model is the lazy
random walk on G (Definition 4). That is, X = V , π = Unif(X ), Y = E, K : X → Y is defined
as K(x, e) = 1

k(n−k)1{x ∈ e}. For (ij) ∈
(
[n]
2

)
, define map σij : X → X by swapping the i-th

coordinate and the j-th coordinate (under the bit string interpretation). Then

P (x, ·) = 1

2
1x +

1

2k(n− k)

∑
i∈x

j∈[n]\x

1σij(x). (53)

Proposition 14 shows that for constant k ≥ 1, as n→ ∞, we have δ(π,P )
α(π,K) → ∞.

Proposition 14 (Bernoulli-Laplace model). Let π,K, P be as in Example 13 with 1 ≤ k ≤ n− 1.

Then α(π,K) = O

(
1

log (nk)

)
and δ(π, P ) ≥ n

2k(n−k) . In particular, for constant k ≥ 1, we have

δ(π,P )
α(π,K) = Ω(log n).

Proof. Upper bound on α(π,K). Let ν be the point distribution on any x ∈ X . Then D(ν∥π) =
log |X | = log

(
n
k

)
,

νK =
1

k(n− k)

∑
i∈x

j∈[n]\x

1{x,σij(x)}. (54)

Because πK = Unif(Y),

D(νK∥πK) = log |Y| − log(k(n− k)) = log

(
n

k

)
− log 2. (55)

Therefore

α(π,K) ≤ 1− D(νK∥πK)

D(ν∥π)
=

log 2

log
(
n
k

) . (56)

Lower bound on δ(π, P ). We make use of the following useful result from [CMS24].
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Lemma 15 ([CMS24, Theorem 1]). Let d be a metric on X . Let Wp denote the Wasserstein
p-distance on P(X ) If

W∞(P (x, ·), P (y, ·)) ≤ d(x, y), ∀x, y ∈ X , (57)

W1(P (x, ·), P (y, ·)) ≤ (1− κ)d(x, y), ∀x, y ∈ X , (58)

then

δ(π, P ) ≥ κ. (59)

For the Bernoulli-Laplace model, we let d be the graph distance on V =
([n]
k

)
. To prove Eqs. (57)

and (58), it suffices to prove the result for adjacent x and y. By symmetry, WLOG assume that
x = {1, 3, 4, . . . , k+1}, y = {2, 3, . . . , k+1}. We define a coupling between P (x, ·) and P (y, ·) such
that Eqs. (57) and (58) are both satisfied.

(1) For 3 ≤ i ≤ k + 1, k + 2 ≤ j ≤ n, couple σij(x) with σij(y). This happens with probability
(k−1)(n−k−1)

2k(n−k) and incurs distance 1.

(2) For k + 2 ≤ j ≤ n, couple σ1j(x) with σ2j(y). This happens with probability n−k−1
2k(n−k) and

incurs distance 0.

(3) For 3 ≤ i ≤ k + 1, couple σ2i(x) with σ1i(y). This happens with probabilities k−1
2k(n−k) and

incurs distance 0.

(4) Couple σ12(x) with y, and x with σ12(y) each with weight 1
2k(n−k) . This happens with

probability 1
k(n−k) and incurs distance 0.

(5) At this point, all remaining mass in P (x, ·) (resp. P (y, ·)) is at x (resp. y). Couple them
directly. This happens with probability 1

2 − 1
2k(n−k) and incurs distance 1.

To summarize, the coupling has distance at most one and expected distance 1 − n
2k(n−k) . By

Lemma 15, we have

δ(π, P ) ≥ n

2k(n− k)
. (60)

We remark that for the Bernoulli-Laplace model, the exact value of α(π,K) has been determined
in [BC24, Theorem 1.12], where it is shown that Eq. (56) is tight. For δ(π, P ), by considering a
point distribution at any x ∈ X , we have

δ(π, P ) ≤ log(2n(n− k))

2 log
(
n
k

) . (61)

Therefore, for n, k satisfying log k = (1− Ω(1)) log n, we have δ(π, P ) = Θ
(
1
k

)
.

Examples 11 and 13 show that there is a separation between α(π,K) and δ(π, P = KK∗
π).

In these examples, K∗
π can be quite different from K. One natural question is whether there is a

separation between δ(π, P ) and δ
(
π, P 2

)
. That is, can running the same Markov kernel twice result

in much better contraction than running only once? The following example shows that indeed such
a separation exists. This example is adapted from [Mün23]’s counterexample to the Peres-Tetali
conjecture. We note, however, that the properties of this chain we use here and in Example 20 are
different from those used op. cit.
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Example 16 (A three-state Markov chain). Let M be a positive real number. Let X = [3],

π =
(

M
M+2 ,

1
M+2 ,

1
M+2

)
. Let P : X → X be defined as

P =

1− 1
4M

1
4M 0

1
4

1
2

1
4

0 1
4

3
4

 . (62)

It is easy to see that π is the invariant distribution of P and (π, P ) is reversible. Note that by

Lemma 3, P is factorizable. By Proposition 17,
δ(π,P 2)
δ(π,P ) → ∞ as M → ∞.

Proposition 17 (A three-state Markov chain). Let π, P be as in Example 16. Then δ(π, P ) =

O
(

1
logM

)
and δ

(
π, P 2

)
= Ω(1). In particular,

δ(π,P 2)
δ(π,P ) = Ω(logM).

Proof. Upper bound on δ(π, P ). Let ν be the point distribution at 3 ∈ X . Then D(ν∥π) =
log(M + 2),

D(νP∥π) = 1

4
log

M + 2

4
+

3

4
log

3(M + 2)

4
= log(M + 2)− h(1/4) (63)

where h(x) : [0, 1] → [0, log 2] is the binary entropy function

h(x) = −x log x− (1− x) log(1− x). (64)

Therefore

δ(π, P ) ≤ 1− D(νP∥π)
D(ν∥π)

= O

(
1

logM

)
. (65)

Lower bound on δ
(
π, P 2

)
. We prove that for large M , we have P 2(x, 1) = Ω(1) for all

x ∈ X . In fact, P 2(1, 1) ≥ P (1, 1)2 = Ω(1), P 2(2, 1) ≥ P (2, 1)P (1, 1) = Ω(1), and P 2(3, 1) ≥
P (3, 2)P (2, 1) = Ω(1). So TV(P 2(x, ·), P 2(x′, ·)) = 1 − Ω(1) for all x, x′ ∈ X . By Eq. (16), the
Dobrushin’s coefficient satisfies ηTV(π, P

2) = 1− Ω(1). By Eq. (15), we have

δ
(
π, P 2

)
≥ 1− ηTV(π, P

2) = Ω(1). (66)

We generalize Example 16 as follows, showing that for any positve integer m, there exists a
Markov kernel such that running (m + 1) steps results in entropy contraction much better than
running m steps. We note that there is a relatively simple characterization of the LSI for birth-
death chains ([Che05, Che03]), but for MLSI or SDPI no such characterizations are known, except
for partial progress in [Rob01, CDPP09].

Example 18 (A birth-death Markov chain). We fix a positive integer m and let M be a large
positive real number. Let X = [m + 2], π(x) = 1

M+m+1 + 1{x = 1} M−1
M+m+1 . Let P : X → X be a

birth-death Markov chain, where P (x, y) = 0 for |x − y| ≥ 2, P (x, x − 1) = 1
4 for 2 ≤ x ≤ m + 2,

P (x, x+ 1) = 1
4 for 2 ≤ x ≤ m+ 1, P (1, 2) = 1

4M , and P (x, x) = 1− P (x, x− 1)− P (x, x+ 1). It
is easy to verify that (π, P ) is a reversible pair and P (x, x) ≥ 1

2 for all x ∈ [m+ 2]. By Lemma 3,

(π, P ) is factorizable. Proposition 19 shows that as M → ∞, we have
δ(π,Pm+1)
δ(π,Pm) → ∞.
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Proposition 19 (A birth-death Markov chain). Let π, P be as in Example 18. Then δ (π, Pm) =

O
(

1
logM

)
and δ

(
π, Pm+1

)
= Ω(1). In particular,

δ(π,Pm+1)
δ(π,Pm) = Ω(logM).

Proof. Upper bound on δ (π, Pm). Let ν be the point distribution at m+2 ∈ X . Then D(ν∥π) =
log(M +m+ 1). Note that (νPm)(1) = 0, (νPm)(x) = cx for some cx = Θm(1) for 2 ≤ x ≤ m+ 2,
where Θm hides a constant factor depending on m. Furthermore, (c2, . . . , cm+2) is a distribution
on {2, . . . ,m+ 2}. Then

D(νP∥π) = log(M +m+ 1)−H(c2, . . . , cm+2) (67)

where H is the entropy function

H(c2, . . . , cm+2) = −
∑

2≤i≤m+2

ci log ci. (68)

Because ci = Θm(1) for all 2 ≤ i ≤ m+ 2, we have H(c2, . . . , cm+2) = Θm(1). Therefore

δ (π, Pm) ≤ 1− D(νP∥π)
D(ν∥π)

= Θm

(
1

logM

)
. (69)

Lower bound on δ
(
π, Pm+1

)
. Note that for any x ∈ [m+ 2], we have

Pm+1(x, 1) ≥ P (x, x− 1) · · ·P (2, 1) · P (1, 1)m+1−x = Ωm(1) (70)

where Ωm hides a constant factor depending on m. By Eqs. (15) and (16),

δ
(
π, Pm+1

)
≥ 1− ηTV(π, P

m+1) = Ωm(1). (71)

If a Markov kernel (π, P ) separates δ (π, Pm) and δ
(
π, Pm+1

)
, then it also separates δ(π, Tt)

(where Tt = et(P−Id)) and δ (π, Pm) for finite t. In other words, the continuous-time chain contracts
entropy at finite time better than the discrete-time counterpart. To see this, we note that for any
function f on X , we have

Entπ(Ttf) ≤ En∼Pois(t) Entπ (P
nf) (72)

≤ En∼Pois(t)

[
1{n ≤ m}Entπ(f) + 1{n ≥ m+ 1}Entπ

(
Pm+1f

)]
≤ P[Pois(t) ≤ m] Entπ(f) + P[Pois(t) ≥ m+ 1]

(
1− δ

(
π, Pm+1

))
≤ Entπ(f)

(
1− P[Pois(t) ≥ m+ 1]δ

(
π, Pm+1

))
,

where the first step is by convexity of Entπ, and the second step is by the data processing inequality.
Therefore

δ(π, Tt) ≥ P[Pois(t) ≥ m+ 1]δ
(
π, Pm+1

)
, (73)

which is separated from δ (π, Pm) for finite t, assuming that δ
(
π, Pm+1

)
is separated from δ (π, Pm).
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3.3 Full-step entropy contraction δ vs modified log-Sobolev constant ρ0

By [BCP+21, Lemma 2.7], we always have δ(π, P ) ≤ ρ0(π, P ) for any reversible (π, P ).3 If we allow
non-factorizable (π, P ), then it is easy to give an example where the gap is infinite: take X = [2],

π = Unif(X ), and P =

(
0 1
1 0

)
. The following example shows that the gap can be arbitrarily large

even if we restrict to factorizable (π, P ).

Example 20 (A three-state Markov chain). This example is the same as Example 16. Proposi-

tion 21 shows that we have ρ0(π,P )
δ(π,P ) → ∞ as M → ∞.

Proposition 21 (A three-state Markov chain). Let (π, P ) be as in Example 16. Then δ(π, P ) =

O
(

1
logM

)
and ρ0(π, P ) = Θ

(
log logM
logM

)
. In particular, ρ0(π,P )

δ(π,P ) = Ω(log logM).

Proof. Upper bound on δ(π, P ). We have established in Proposition 17 that δ(π, P ) = O
(

1
logM

)
.

Lower bound on ρ0(π, P ). We will show that there exists a sufficiently large universal constant
C > 0 such that, for any positive function f : [3] → R+, it holds

Entπ(f) ≤
C logM

log logM
Eπ,P (f, log f). (74)

This implies ρ0(π, P ) = Ω
(
log logM
logM

)
. By applying suitable scaling, we assume that f(1) = x,

f(2) = 1, and f(3) = y for some x, y > 0. Furthermore, we may assume without loss of generality
that x ≥ β

M where β > 0 is some tiny absolute constant, due to [TY24, Lemma 2.1]. More
specifically, [TY24, Lemma 2.1] shows that to establish a modified log-Sobolev inequality Eq. (74), it
suffices to consider a restricted class of functions such that, among other restrictions, f(1) ≥ β′Eπf
for an absolute constant β′ > 0; such a restriction immediately implies

x = f(1) ≥ β′
(

Mx

M + 2
+

1

M + 2
+

y

M + 2

)
≥ β′

M + 2
≥ β′

3M
. (75)

Hence, we can safely assume x ≥ β
M where β = β′/3.

A direct calculation yields

(M + 2) · Entπ(f) =Mx log x+ y log y − (Mx+ y + 1) log

(
Mx+ y + 1

M + 2

)
, (76)

and

4(M + 2) · Eπ,P (f, log f) = (x− 1) log x+ (y − 1) log y. (77)

The following claim is helpful.

Claim 22. We have

Entπ(f)

4 Eπ,P (f, log f)
≤

(2x− y − 1) + y log y + (y + 1) log
(
1
x

)
(x− 1) log x+ (y − 1) log y

. (78)

3They in fact prove a more general statement that works for non-reversible (π, P ).
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Proof. We rewrite the entropy as

(M + 2) · Entπ(f) =Mx log x+ y log y − (Mx+ y + 1) log

(
Mx+ y + 1

M + 2

)
(79)

= (Mx+ y + 1) log

(
(M + 2)x

Mx+ y + 1

)
+ y log y + (y + 1) log

(
1

x

)
.

Notice that the first term above can be controlled by

(Mx+ y + 1) log

(
(M + 2)x

Mx+ y + 1

)
= (Mx+ y + 1) log

(
1 +

2x− y − 1

Mx+ y + 1

)
(80)

≤ (Mx+ y + 1) · 2x− y − 1

Mx+ y + 1
= 2x− y − 1.

The claim then follows.

We consider two separate cases of (x, y) to establish Eq. (74).
Case 1: (x, y) /∈ (12 ,

3
2)× (12 ,

3
2). In this case, we have

(x− 1) log x+ (y − 1) log y ≥ 1

10
. (81)

Since we have

2x− y − 1 ≤ 2x− 1 ≤ 2(x− 1) log x+ 3 ≤ 32 ((x− 1) log x+ (y − 1) log y) (82)

and also

y log y ≤ 2(y − 1) log y + 1 ≤ 12 ((x− 1) log x+ (y − 1) log y) , (83)

we deduce from Claim 22 that

Entπ(f)

4 Eπ,P (f, log f)
≤ 44 +

(y + 1) log
(
1
x

)
(x− 1) log x+ (y − 1) log y

. (84)

Consider three subcases.

(i) If x ≥ 3
2 , then log(1/x) < 0 and hence

Entπ(f)

4 Eπ,P (f, log f)
≤ 44. (85)

(ii) If x ≤ 1
2 , then consider how large y is. If y ≤ logM

log logM , then by (x− 1) log x ≥ 1
2 log(1/x) and

(y − 1) log y ≥ 0 we deduce that

(y + 1) log
(
1
x

)
(x− 1) log x+ (y − 1) log y

≤ 2(y + 1) ≤ 4 logM

log logM
. (86)

If y > logM
log logM , then by (x− 1) log x ≥ 0, y+1

y−1 ≤ 3, and x ≥ β
M we deduce that

(y + 1) log
(
1
x

)
(x− 1) log x+ (y − 1) log y

≤
(y + 1) log

(
1
x

)
(y − 1) log y

≤
3 log(Mβ )

log( logM
log logM )

≤ C0 logM

log logM
, (87)

for some C0 = C0(β) > 0 when M is sufficiently large.
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(iii) If x ∈ (12 ,
3
2), then by our assumption it must hold y /∈ (12 ,

3
2). Since log(1/x) ≤ 1 when x > 1

2 ,
we have

(y + 1) log
(
1
x

)
(x− 1) log x+ (y − 1) log y

≤ y + 1

(y − 1) log y
≤ 10, (88)

when y /∈ (12 ,
3
2).

Therefore, in all three subcases we have

Entπ(f)

4 Eπ,P (f, log f)
≤ C logM

log logM
(89)

where C = C(β) > 0 is constant, whenever M is sufficiently large.
Case 2: (x, y) ∈ (12 ,

3
2)× (12 ,

3
2). In this case, we have

(x− 1) log x+ (y − 1) log y ≥ 1

2
(x− 1)2 +

1

2
(y − 1)2, (90)

and also

(2x− y − 1) + y log y + (y + 1) log

(
1

x

)
(91)

≤ 2(x− 1)− (y − 1) + y(y − 1) + (y + 1)

(
1

x
− 1

)
=

1

x
(x− 1) (2x− y − 1) + (y − 1)2

=
2

x
(x− 1)2 − 1

x
(x− 1)(y − 1) + (y − 1)2

≤ 4(x− 1)2 + 2|(x− 1)(y − 1)|+ (y − 1)2

≤ 5(x− 1)2 + 5(y − 1)2.

By Claim 22,

Entπ(f)

4 Eπ,P (f, log f)
≤ 10. (92)

Combining the two cases, we conclude that

ρ0(π, P ) = Ω

(
log logM

logM

)
. (93)

In fact, this lower bound on ρ0(π, P ) is asymptotically tight and can be achieved by, for example,
f(1) = 1/M , f(2) = 1, and f(3) = logM as given in [Mün23]. Therefore,

ρ0(π, P ) = Θ

(
log logM

logM

)
(94)

as M → ∞.
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3.4 Modified log-Sobolev constant ρ0 vs Poincaré constant λ

[BT06] shows that ρ0(π, P ) ≤ 2λ(π, P ), and gave an example showing that the gap can be arbitrarily
large. We record their example here.

Example 23 (Expander graphs). Let G = (V,E) be a expander graph with bounded degree.

Consider the lazy random walk on G (Definition 4). [BT06] shows that ρ0(π, P ) = Θ
(

1
log |V |

)
=

Θ
(
λ1(π,P )
log |V |

)
. Therefore as |V | → ∞, we have λ1(π,P )

ρ0(π,P ) → ∞.

3.5 Other comparisons

[DSC96] shows that the spectral gap λ and the log-Sobolev constant ρ differ by at most a factor of
O(log(1/πmin)) where

πmin = min
x∈X :π(x)>0

π(x). (95)

More precisely, [DSC96, Corollay A.4] shows that, assuming πmin ≤ 1/2, it holds

λ

2 + log(1/πmin)
≤ (1− 2πmin)λ

log(1/πmin − 1)
≤ ρ ≤ λ

2
. (96)

This in particular shows that all constants discussed in this paper, including also the half-step
entropy contraction α, the full-step entropy contraction δ, and the modified log-Sobolev constant
ρ0, differ by at most a factor of O(log(1/πmin)) from each other.

In a recent work [STY23], Salez, Tikhomirov, and Youssef establish a surprising and remarkable
comparison between the modified log-Sobolev constant ρ0 and the log-Sobolev constant ρ. For a
reversible Markov kernel P with respect to a probability measure π, define the sparsity parameter
as

pmin = min
(x,y)∈X 2:P (x,y)>0

P (x, y). (97)

Then, [STY23, Theorem 1] shows that

ρ0
20 log(1/pmin)

≤ ρ ≤ ρ0
4
. (98)

Hence, all entropy-related constants discussed in this paper, including also the half-step entropy
contraction α and the full-step entropy contraction δ, differ by at most a factor of O(log(1/pmin))
from each other.

3.6 Comments on several previous works

[DMLM03, Prop. 5.1] claims that

cρ0 ≤ α (99)

for some universal constant c > 0. In fact, Eq. (99) fails for the random transposition model,
showing that the claim must be incorrect.
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Example 24 (Random transposition model). Let n be a positive integer. Let G = (V,E) be the
Cayley graph on the symmetric group Sn generated by transpositions. That is, V is the set of
permutations of [n], and there is an edge between σ, τ ∈ V if and only if they differ by exactly two
entries. The random transposition model is the lazy random walk on G (Definition 4). Considering

the point measure at any x ∈ X gives α ≤ log 2
log(n!) = Θ

(
1

n logn

)
. In fact, [BC24, Theorem 1.9] shows

that this is tight, i.e, α = log 2
log(n!) . On the other hand, [GQ03] shows that ρ0 = Θ

(
1
n

)
. Therefore, as

n→ ∞, we have ρ0
α → ∞.

Our separations of α vs δ (Section 3.2) and δ vs ρ0 (Section 3.3) also provide alternative coun-
terexamples to the claim. We now explain briefly the issue in the proof of Eq. (99) in [DMLM03].
In their proof of Prop. 5.1, the authors apply a technical result, Lemma 5.2, which represents the
(relative) entropy of a function f with expectation En(f) = 1 (where n denotes the underlying prob-
ability measure) as an integral of the covariance between ft and log(ft) where ft = e−tf+(1−e−t),
t ∈ R≥0 represents an interpolation between f and 1. However, in the actual application of Lemma
5.2, the measure n is a conditional probability measure under which the expectation of f is no
longer 1, and hence the interpolation function ft should be replaced by ft = e−tf +(1− e−t)En(f);
this would require the function ft to depend on the conditioning and the proofs following afterwards
no longer work.

[Rag16, Prop. 4.3] claims that

ρ0 ≤ 1− c(1− α) (100)

for some universal constant c > 0. Our examples do not disprove the claim. However, the proof of
[Rag16, Theorem 4.4] is a generalization of that of [DMLM03, Prop. 5.1], so it has the same error.
In particular, the last display of the proof of [Rag16, Prop. 4.3] implies that cρ0 ≤ α for some
constant c > 0, which we have shown to be incorrect. Therefore the proof of [Rag16, Prop. 4.3] is
incorrect and does not establish Eq. (100). It is unclear whether Eq. (100) as stated is correct.

4 Extremal functions

In this section we discuss another difference between the continuous-time entropy contraction con-
stants and the discrete-time entropy contraction constants. It is known ([BT06]) that for irreducible
(π, P ), the log-Sobolev constant ρ(π, P ) and the modified log-Sobolev constant ρ0(π, P ) satisfy a di-
chotomy: they are either equal to twice the Poincaré constant λ(π, P ) or achieved at a full-support
function. We show that this is no longer true for the discrete-time entropy contraction constants
α(π,K) and δ(π, P ) by providing explicit examples whose extremal functions have non-full support.

4.1 Log-Sobolev constant ρ, modified log-Sobolev constant ρ0, Poincaré con-
stant λ

[BT06] studies extremal functions for ρ, ρ0, λ. The extremal functions for the Poincaré constant
λ(π, P ) are easy to describe. They are the (right) eigenfunctions of −L corresponding to the
eigenvalue λ. In particular, λ is always achieved at some non-constant function f : X → R.

For the log-Sobolev constant ρ, [BT06] shows that for any reversible (π, P ), either

(i) ρ(π, P ) = 2λ(π, P ), or

(ii) there exists a non-constant function f : X → R≥0 with π[f ] = 1 such that

ρEntπ(f) = Eπ,P (
√
f,

√
f). (101)
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Furthermore, such f satisfies the equation

−L
√
f = ρ

√
f log f. (102)

If (π, P ) is irreducible, then f has full support.

For the modified log-Sobolev constant ρ0(π, P ), [BT06] shows that for any reversible (π, P ),
either

(i) ρ0(π, P ) = 2λ(π, P ), or

(ii) there exists a non-constant function f : X → R≥0 with π[f ] = 1 such that

ρ0 Entπ(f) = Eπ,P (f, log f). (103)

Furthermore, such f satisfies the equation

−Lf − fL(log f) = ρ0f log f. (104)

If (π, P ) is irreducible, then f has full support.

4.2 Half-step entropy contraction α and full-step entropy contraction δ

In this section we study the extremal distributions for ηKL, which includes both α and δ.

Lemma 25 (Extremal distributions for ηKL). Let π be a distribution on X and K : X → Y be a
Markov kernel. Then either

(i) ηKL(π,K) = ηχ2(π,K), or

(ii) there exists distribution ν on X such that

ηKL(π,K) =
D(νK∥πK)

D(ν∥π)
. (105)

Proof. WLOG assume that π has full support. If Item (ii) does not happen, then there exists a

sequence {fn}n (fn : X → R≥0, π[fn] = 1) satisfying ∥fn−1∥∞ → 0 and EntπK(K∗
πfn)

Entπ(fn)
→ ηKL(π,K)

as n→ ∞.
Write fn = 1 + ϵngn, where ϵn ≥ 0, π[g2n] = 1. Note that the space G := {g : X → R : π[g] =

0, π[g2] = 1} is compact. By replacing the sequence {fn}n with a subsequence, we can WLOG
assume that there exists g∗ ∈ G such that ∥gn − g∗∥∞ → 0 as n→ ∞.

Now let us prove that

lim
n→∞

EntπK(K∗
πfn)

Entπ(fn)
=

VarπK(K∗
πg

∗)

Varπ(g∗)
. (106)

If Eq. (106) holds, then

ηχ2(π,K) = sup
g∈G

VarπK(K∗
πg)

Varπ(g)
≥ ηKL(π,K), (107)

and Item (i) holds.
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By Lemma 26,

∥(1 + ϵngn) log(1 + ϵngn)− (1 + ϵng
∗) log(1 + ϵng

∗)− ϵn(gn − g∗)∥∞ (108)

= O
(
ϵ2n(ϵn + ∥gn − g∗∥∞)

)
.

Taking expectation and using triangle inequality, we get

|Entπ(fn)− Entπ(1 + ϵng
∗)| = O

(
ϵ2n(ϵn + ∥gn − g∗∥∞)

)
. (109)

It is known that

lim
ϵ→0

1

ϵ2
Entπ(1 + ϵg∗) =

1

2
Varπ(g

∗). (110)

So

lim
n→∞

1

ϵ2n
Entπ(fn) =

1

2
Varπ(g

∗). (111)

Similarly

lim
n→∞

1

ϵ2n
EntπK(K∗

πfn) =
1

2
VarπK(K∗

πg
∗). (112)

This finishes the proof of Eq. (106).

Lemma 26. There exists C > 0 such that for ϵ, ϵ′ > 0 small enough, for x, y, z, w ∈ R satisfying
|x|, |y|, |z|, |w| ≤ ϵ, |x− z|, |y − w| ≤ ϵϵ′, we have

|(1 + x) log(1 + y)− (1 + z) log(1 + w)− (y − w)| ≤ Cϵ2(ϵ+ ϵ′). (113)

Proof. First note that | log(1 + y)− (y − y2/2)| = O(ϵ3). Then

|(1 + x) log(1 + y)− (1 + z) log(1 + w)− (y − w)| (114)

= |(1 + x)(y − y2/2)− (1 + z)(w − w2/2)− (y − w)|+O(ϵ3)

= |xy − zw|+ |y2 − w2|/2 + |xy2|/2 + |zw2|/2 +O(ϵ3)

= |(x− z)y + z(y − w)|+ |(y − w)(y + w)|/2 +O(ϵ2(ϵ+ ϵ′))

= O(ϵ2(ϵ+ ϵ′)).

Unlike ρ and ρ0 where the extremal functions (if they exist) have full support, the extremal
distributions for ηKL may have non-full support.

Example 27 (Complete graph). Let n ≥ 3 be an integer. Let X = [n] and π = Unif(X ). Let
K : X → X be the (non-lazy) random walk on the complete graph. That is,

K(x, y) =
1

n− 1
1{x ̸= y} (115)

for x, y ∈ X . [GP23, Prop. 33] proves that ηKL(π,K) = logn−log(n−1)
logn , and is achieved at and only

at point distributions.
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In the above example, K is not factorizable, so it corresponds to the half-step contraction
coefficient α. The next example shows the extremal distributions for the full-step contraction
coefficient δ can have non-full support.

Example 28 (Complete bipartite graph). Let n ≥ 3 be an integer. Let G = Kn,n be the complete
bipartite graph. That is, V = [2] × [n], and there is an edge between (1, i) and (2, j) for all
i, j ∈ [n]. Let (π, P ) be the random walk on G (Definition 4). Numerical computation suggests
that ηKL(π, P ) =

logn
2 log(2n) , and equality is achieved at and only at point distributions. Proposition 29

proves this observation for n = 3.

Proposition 29 (Complete bipartite graph). Let π, P be as in Example 28. For n = 3, ηKL(π, P ) =
logn

2 log(2n) , and equality is achieved at and only at point distributions.

Proof. Let ν be the point distribution on any x ∈ X . Then

D(ν∥π) = log(2n), (116)

D(νP∥π) = 1

2
log n. (117)

So

ηKL(π, P ) ≥
D(νP∥π)
D(ν∥π)

=
log n

2 log(2n)
. (118)

Note that this holds for any n ≥ 3.
We prove that for n = 3, the point distributions are the only maximizers. We represent

a distribution ν using a tuple (t, ν1, ν2), where t ∈ [0, 1] and νi (i = 1, 2) is a distribution on
Xi = {i} × [n] ⊆ X . Given ν, the corresponding tuple ϕ(ν) = (ν(X1), ν|X1 , ν|X2), where ν|Xi

denotes the conditional distribution (if ν(Xi) = 0, then choose an arbitrary distribution on Xi).
Given a tuple (t, ν1, ν2), the corresponding distribution ν is ψ(t, ν1, ν2) = tν1 + (1 − t)ν2. Let
πi = Unif(Xi) for i = 1, 2. By symmetry, we only need to consider the case 1

2 ≤ t ≤ 1.
Under the tuple parametrization, we have

D(ψ(t, ν1, ν2)∥π) = dKL

(
t∥1
2

)
+ tD(ν1∥π1) + (1− t)D(ν2∥π2), (119)

ϕ(ψ(t, ν1, ν2)P ) =

(
1

2
, tν1 + (1− t)π1, (1− t)ν2 + tπ2

)
, (120)

where dKL(x∥y) = x log x
y + (1 − x) log 1−x

1−y is the binary KL divergence function. So for ν =
ψ(t, ν1, ν2), we have

D(νP∥π)
D(ν∥π)

=
1

2
· D(tν1 + (1− t)π1∥π1) +D((1− t)ν2 + tπ2∥π2)

dKL

(
t∥1

2

)
+ tD(ν1∥π1) + (1− t)D(ν2∥π2)

. (121)

When t = 1, Eq. (121) simplifies to

D(νP∥π)
D(ν∥π)

=
1

2
· D(ν1∥π1)
log 2 +D(ν1∥π1)

(122)

which is maximized when and only when ν1 is a point measure, taking value logn
2 log(2n) . Note that

when t = 1 and ν1 is a point measure, ν = ψ(t, ν1, ν2) does not depend on ν2 and is always a point
measure.
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Now assume that 1
2 ≤ t < 1. By [GP23, Prop. 17], for fixed D(ν1∥π1) (resp. D(ν2∥π2)),

D(tν1 + (1− t)π1∥π1) (resp. D(ν2 + tπ2∥π2)) is uniquely (up to permutation of the alphabet) at a

distribution of form
(
x, 1−x

n−1 , . . . ,
1−x
n−1

)
where 1

n ≤ x ≤ 1. Therefore, we can assume WLOG that

ν1 =
(
x, 1−x

n−1 , . . . ,
1−x
n−1

)
, ν2 =

(
y, 1−y

n−1 , . . . ,
1−y
n−1

)
for some x, y ∈

[
1
n , 1

]
. In this case, we can simplify

Eq. (121) as

D(νP∥π)
D(ν∥π)

=
1

2
·
fn

(
tx+ 1−t

n

)
+ fn

(
(1− t)y + t

n

)
f2(t) + tfn(x) + (1− t)fn(y)

=: Fn(t, x, y), (123)

where

fn(x) = D

((
x,

1− x

n− 1
, . . . ,

1− x

n− 1

)
∥Unif([n])

)
= log n+ x log x+ (1− x) log

1− x

n− 1
. (124)

Therefore, computing ηKL(π, P ) is equivalent to computing

sup
1
2
≤t≤1

1
n
≤x,y≤1

(t,x,y)̸=( 1
2
, 1
n
, 1
n)

Fn(t, x, y) (125)

We have reduced the original problem of computing ηKL(π,K), which is a priori an (2n −
1)-dimensional optimization problem, to a optimization problem with three real variables t ∈
[0, 1], x, y ∈

[
1
n , 1

]
. The following lemma helps us reduce it further to two real variables.

Lemma 30. For any n ≥ 3, there exists t∗ > 1
2 such that

sup
0<t<t∗
1
n
<x≤1

fn
(
tx+ 1−t

n

)
tfn(x)

<
log n

log(2n)
. (126)

Proof. By [GP23, Eqs. (23) and (27)], for fixed 0 ≤ t ≤ 1, we have

sup
1
n
<x≤1

fn
(
tx+ 1−t

n

)
tfn(x)

≤ t
1

logn . (127)

For any t < exp
(
(log n) log logn

log(2n)

)
, we have

t
1

logn <
log n

log(2n)
. (128)

Furthermore, notice that exp
(
(log n) log logn

log(2n)

)
> 1

2 for all n ≥ 3. So we can take t∗ to be any

number smaller than exp
(
(log n) log logn

log(2n)

)
.

Note that all arguments until this point work for any n ≥ 3. From now on we will use the

assumption n = 3. For n = 3, we take t∗ = 0.58 < exp
(
(log 3) log log 3

log 6

)
and apply Lemma 30 to

Eq. (125). For 1
2 ≤ t ≤ t∗, we can apply Lemma 30 to (t, x) and (1− t, y) and get

sup
1
2
≤t≤t∗

1
3
≤x,y≤1

(t,x,y)̸=( 1
2
, 1
3
, 1
3)

F3(t, x, y) <
log 3

2 log 6
(129)
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For t∗ < t < 1, we have

sup
t∗<t<1
1
3
≤x,y≤1

F3(t, x, y) ≥ lim
t→1−

F3

(
t, 1,

1

3

)
=

log 3

2 log 6
. (130)

Applying Lemma 30 to (1− t, y) we see that for any (t, x, y) with t∗ < t < 1 and F3(t, x, y) ≥ log 3
2 log 6 ,

we have F3(t, x, y) ≤ F3

(
t, x, 13

)
. So

sup
t∗<t<1
1
3
≤x,y≤1

F3(t, x, y) = sup
t∗<t<1
1
3
≤x≤1

F3

(
t, x,

1

3

)
= sup

t∗<t<1
1
3
≤x≤1

1

2
·
f3

(
tx+ 1−t

3

)
f2(t) + tf3(x)

. (131)

In the following, we prove that for t∗ < t < 1, 1
3 ≤ x ≤ 1, we have

G3(t, x) =
log 6

log 3
· f3

(
tx+

1− t

3

)
− (f2(t) + tf3(x)) < 0. (132)

Note that Eq. (132) implies the desired result by Eqs. (129) and (131).
Case 1: t ≥ 0.999, x ≥ 0.999. For simplicity of notation, write a = 1 − t and b = 1 − x.

Then 0 < a ≤ 0.001 and 0 ≤ b ≤ 0.001. Let c = 1 −
(
tx+ 1−t

3

)
= 2

3a + b − ab. Write gn(u) =
−(1− u) log(1− u)− u log u

n ≥ 0. Then

G3(1− a, 1− b) (133)

=
log 6

log 3
· (log 3− g2(c))− (log 2− g1(a) + t(log 3− g2(b)))

≤ log 6

log 3
· (log 3− g2(c))− (log 2− g1(a)− a log 3 + log 3− g2(b))

= g3(a) + g2(b)−
log 6

log 3
· g2(c).

For 0 ≤ w ≤ 0.001, we have

0.999w ≤ −(1− w) log(1− w) ≤ w. (134)

So

g3(a) ≤ a log
3e

a
, g2(b) ≤ b log

2e

b
, g2(c) ≥ c

(
0.999 + log

2

c

)
=: h(c). (135)

Because h(c) is concave and increasing for 0 ≤ c ≤ 0.002, we have

h(c) ≥ 1

2
h

(
4

3
a

)
+

1

2
h(2b(1− a)) ≥ 1

2
h

(
4

3
a

)
+

1

2
h(1.998b). (136)

For 0 < a ≤ 0.001 and 0 ≤ b ≤ 0.001, we have

a log
3e

a
<

1

2
h

(
4

3
a

)
, b log

2e

b
≤ 1

2
h(1.998b). (137)

So G3(t, x) < 0 for 0.999 ≤ t < 1, 0.999 ≤ x ≤ 1. This finishes the proof for Case 1.
Case 2: t ≤ 0.999 or x ≤ 0.999. Let A =

(
[t∗, 1]×

[
1
3 , 1

])
\ ([0.999, 1]× [0.999, 1]). Our goal

is to prove that G3(t, x) < 0 for all (t, x) ∈ A. The proof strategy is as follows. We choose ϵ, δ > 0
and a finite set A∗ ⊆ A such that the following are true.
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(a) G3(t, x) < −ϵ for all (t, x) ∈ A∗;

(b) For any (t, x) ∈ A, there exists (t∗, x∗) ∈ A∗ such that max{|t− t∗|, |x− x∗|} ≤ δ;

(c) For any (t, x), (t′, x′) ∈ A, if max{|t− t′|, |x− x′|} ≤ δ, then |G3(t, x)−G3(t
′, x′)| ≤ ϵ.

If all three items hold, then they imply our goal.
We take ϵ = 0.00078, δ = 10−5, A∗ = A ∩

(
10−5Z× 10−5Z

)
. Item (a) is verified using a

computer program by iterating over all points in A∗. Item (b) is immediate by our choice of A∗.
It remains to prove Item (c). Note that on A, f3

(
tx+ 1−t

3

)
and f2(t) + tf3(x) are non-decreasing

in both t and x. By convexity and monotonicity,

sup
1
3
≤u,u′≤1

|u−u′|≤δ

|f3(u)− f3(u
′)| = |f3(1)− f3(1− δ)| ≤ 0.00014, (138)

sup
1
2
≤u,u′≤1

|u−u′|≤δ

|f2(u)− f2(u
′)| = |f2(1)− f2(1− δ)| ≤ 0.00013. (139)

So for (t, x), (t′, x′) ∈ A with max{|t− t∗|, |x− x∗|} ≤ δ, we have

|G3(t, x)−G3(t, x
′)| ≤ max

{
log 6

log 3
·
∣∣∣∣f3(tx+

1− t

3

)
− f3

(
tx′ +

1− t

3

)∣∣∣∣ , (140)∣∣(f2(t) + tf3(x))− (f2(t) + tf3(x
′))

∣∣}
≤ max

{
log 6

log 3
· 0.00014, 0.00014

}
≤ 0.00023,

|G3(t, x
′)−G3(t

′, x′)| ≤ max

{
log 6

log 3
·
∣∣∣∣f3(tx′ + 1− t

3

)
− f3

(
t′x′ +

1− t′

3

)∣∣∣∣ , (141)∣∣(f2(t) + tf3(x
′))− (f2(t

′) + tf3(x
′))

∣∣}
≤ max

{
log 6

log 3
· 0.00014, 0.00013 + δ log 3

}
≤ 0.00023.

Therefore

|G3(t, x)−G3(t
′, x′)| ≤ 0.00023 + 0.00023 = 0.00046 < ϵ. (142)

This proves Item (c), thus finishing the proof for Case 2.
Eq. (132) follows by combining the three cases. This finishes the proof that ηKL(π, P ) =

log 3
2 log 6

and equality is achieved at and only at point distributions.

Using the same proof strategy one could in principle prove the statement of Proposition 29 for
any given n ≥ 3 (assuming it is true). However it is unclear to us how to prove uniformly for all
n ≥ 3.

Finally, we provide sufficient conditions for the extremal distribution for ηKL to have full support.
This result can be contrasted with Examples 27 and 28, and [BC24] where it is shown that the
half-step entropy contraction for many natural chains (e.g., the random transposition model) has
point measures as their only extremizers.

Lemma 31. Let (π, P ) be a reversible pair where P is irreducible. Suppose that either

(i) P (x, x) ≥ 1
2 for all x ∈ X , and ηKL(π, P ) >

1
2 , or
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(ii) P (x, y) > 0 for all x, y ∈ X .

Let ν be a distribution on X satisfying ηKL(π, P ) =
D(νP∥πP )
D(ν∥π) . Then ν has full support.

Proof. Let f = dν
dπ be the Radon-Nikodym derivative. For the sake of contradiction assume that

supp f ̸= X . Choose a ∈ X −supp f and b ∈ supp f such that P (a, b) > 0. Because P is irreducible,
such (a, b) always exists.

Let h = 1a − π(a)
π(b)1b and fϵ = f + ϵh. For small enough ϵ > 0, we have fϵ ≥ 0 and π[fϵ] = 1.

We prove that for ϵ > 0 small enough, we have

d

dϵ

Entπ(Pfϵ)

Entπ(fϵ)
> 0. (143)

Computation shows that

d

dϵ

Entπ(Pfϵ)

Entπ(fϵ)
=

1

Entπ(fϵ)2
(π[Ph log(Pfϵ)]π[fϵ log fϵ]− π[h log fϵ]π[Pfϵ log(Pfϵ)]) . (144)

Expanding near ϵ = 0 gives

π[h log fϵ] = π(a) log ϵ+O(1), (145)

π[Ph log(Pfϵ)] =
∑
j∈X

π(j)

(
P (j, a)− P (j, b)

π(a)

π(b)

)
log(Pfϵ(j)) (146)

=
∑

j∈X−supp(Pf)

π(j)P (j, a) log(P (j, a)ϵ) +O(1)

= π(a)P (a,X − supp(Pf)) log ϵ+O(1),

π[fϵ log fϵ] = Entπ(f) + o(1), (147)

π[Pfϵ log(Pfϵ)] = Entπ(Pf) + o(1). (148)

Case Item (i). Because P (a, b) > 0, we have a ∈ supp(Pf). Because P is lazy, we have

P (a,X − supp(Pf)) ≤ 1− P (a, a) ≤ 1

2
. (149)

By assumption, Entπ(Pf)
Entπ(f)

= ηKL(π, P ) >
1
2 . Therefore (143) holds for ϵ > 0 small enough.

Case Item (ii). In this case, P (a,X − supp(Pf)) = 0. So (143) holds for ϵ > 0 small
enough.
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