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ABSTRACT This paper addresses the critical problem of interference rejection in radio-frequency (RF)
signals using a novel, data-driven approach that leverages state-of-the-art Al models. Traditionally,
interference rejection algorithms are manually tailored to specific types of interference. This work
introduces a more scalable data-driven solution and contains the following contributions. First, we present
an insightful signal model that serves as a foundation for developing and analyzing interference rejection
algorithms. Second, we introduce the RF Challenge, a publicly available dataset featuring diverse RF
signals along with code templates, which facilitates data-driven analysis of RF signal problems. Third,
we propose novel Al-based rejection algorithms, specifically architectures like UNet and WaveNet, and
evaluate their performance across eight different signal mixture types. These models demonstrate superior
performance—exceeding traditional methods like matched filtering and linear minimum mean square error
estimation by up to two orders of magnitude in bit-error rate. Fourth, we summarize the results from
an open competition hosted at 2024 IEEE International Conference on Acoustics, Speech, and Signal
Processing (ICASSP 2024) based on the RF Challenge, highlighting the significant potential for continued
advancements in this area. Our findings underscore the promise of deep learning algorithms in mitigating
interference, offering a strong foundation for future research.

INDEX TERMS Interference rejection, deep learning, source separation, wireless communication.

I. INTRODUCTION
HE proliferation of wireless technologies is leading to
an increasingly crowded radio spectrum. For example,
services and applications such as virtual reality and aug-
mented reality require large bandwidths to function prop-
erly [1]. These services will have to coexist with others,

such as those belonging to the so-called ultra-reliable low-
latency communications (URLLC), which demand stringent
latency and reliability constraints, and massive machine-
type communication (mMTC), which requires significant
interference management capabilities. It seems unavoidable,
therefore, that different wireless technologies will have to
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share the spectrum to satisfy their demands, necessitating
improved interference management solutions [2], [3].

Hence, if different wireless communication systems co-
exist in the same frequency bands, thus generating unin-
tentional interference among them, the separation of over-
lapping signals will become an essential component in
communication systems to maintain desired reliabilities.

Standard solutions for this ubiquitous problem involve
filtering out interference by masking irrelevant parts of the
time-spectrum grid or using multi-antenna capabilities to
focus on specific spatial directions. In this paper, however,
we focus on the case where the interference overlaps both
in time and frequency with the signal of interest (SOI),
and there is no spatial diversity to be exploited. Such a
challenging case can occur, for example, in single-antenna
devices or multi-antenna devices with insufficient spatial
resolution to satisfactorily spatially filter the interference.
In such situations, any (nondegenerate) solution would have
to—either explicitly or implicitly—exploit the underlying
statistical structure of the interference, potentially via learn-
ing techniques.

Throughout this paper, we will also adopt the common
terminology of co-channel interference to refer to other
waveforms that operate at the same time and the same
frequency band frequnecy as the SOI [4]. Such co-channel
interference can be reduced by the use of interference
mitigation techniques, often via signal separation methods.'
In this context, the goal is to extract the SOI with the
highest possible fidelity, thereby enhancing downstream task
performance (e.g., detection, demodulation, and decoding).

LLA. PREVIOUS WORK

The simplest (and perhaps naive) solution for interference
rejection in communication systems is to filter the received
signal using a matched filter that is matched to the one
used to generate the baseband signal waveform at the trans-
mitter [5], thereby implicitly (and most likely wrongfully)
treating the interference as additive white Gaussian noise
(AWGN). Perhaps surprisingly, this is often the only in-
terference mitigation method employed in existing wireless
communication systems. However, it is well-known that
the matched filter solution, while guaranteed to be optimal
(in the signal-to-noise ratio (SNR) sense) for an AWGN
channel [5], is certainly not necessarily optimal in other
settings. For example, when the interference is a com-
munication signal generated from another communication
system, overlapping with the SOI in time and frequency,
the received (potentially noisy) signal will be contaminated
with non-Gaussian interference as well. In this scenario,
matched filtering is likely to be suboptimal?, thus creating the
possibility for other source separation techniques to provide
performance gains.

"We will henceforth refer to signal separation also as source separation
or interference rejection, interchangeably.
2In some well-defined sense, e.g., minimum bit error rate (BER).

There are, indeed, various source separation methods in
the literature that were proposed and specifically designed for
digital communication signals. One noteworthy approach is
maximum likelihood sequence estimation of the target signal,
for which algorithms such as particle filtering [6] and per-
survivor processing algorithms [7] can be used. However,
methods such as maximum likelihood, often referred to
as “model-based” methods, require prior knowledge of the
statistical models of the relevant signals, which in practice
may not be known or available. As a result, these methods
are often suboptimal, and in some cases perform poorly.

In such cases, a more realistic (though challenging)
paradigm is to assume that only a dataset of the underlying
communication signals is available. This can be obtained,
for example, through direct/background recordings or using
high-fidelity simulators (e.g., [8]), allowing for a data-driven
approach to source separation. In this setup, deep neural
networks (DNNSs) arise as a natural choice. This data-driven
version of the source separation problem has been recently
promoted by the “RF Challenge” [9], where the separation
of signals with little to no prior information is pursued.

While machine learning (ML) techniques have shown
promise in source separation within the vision and audio do-
mains [10], [11], the radio-frequency (RF) domain presents
unique challenges. Typically, these methods exploit domain-
specific knowledge relating to the signals’ characteristic
structures. For example, color features and local dependen-
cies are useful for separating natural images [12], whereas
time-frequency spectrogram masking methods are commonly
adopted for separating audio signals [13]. In contrast to
natural signals, such as images or audio recordings, most
RF signals are different in nature: i) they are synthetically
generated via digital signal processing circuits; ii) they
originate from discrete random variables; iii) they typically
present an intricate combination of short and long temporal
dependencies; and iv) the mixture signals may overlap in
time and frequency. All this together implies that classical
solutions—while successful in other domains—may fail in
the RF signal domain. Moreover, ML-based solutions require
large datasets, and while these are abundantly available and
easily accessible in the vision and audio domains, they are
still scarce in the RF domain.

I.B. THE NEED FOR RF SIGNAL DATASETS

As mentioned above, datasets are imperative for the de-
velopment of data-driven solutions. However, despite the
significant role of digital RF communication signals in our
everyday lives, there are still only a few notable RF signal
datasets that are publicly available (see, e.g., [14, Ch. 2.4]
and references therein). These datasets contain signal record-
ings that can potentially be used for the source separation
task we are interested in for this work. One example is the
dataset shared by DeepSig, a company that made available
several synthetically generated signals from GNU Radio for
modulation detection and recognition [15]. Another example



is the datasets available at IQEngine, a web-based software
defined radio (SDR) toolkit for analyzing, processing, and
sharing RF recordings [16].

A relatively new dataset in this landscape is provided in
the “RF Challenge” [9]—a collaboration between MIT and
the US Department of the Air Force under the Artificial In-
telligence Accelerator Program. This dataset includes several
raw RF signals with minimal to no information about their
generation processes. Within the RF Challenge, the single-
channel signal separation challenge focuses on two goals:

1) Separate a SOI from the interference;
2) Demodulate the (digital) SOI component in such a
mixture.

The lack of prior knowledge of the interference structure,
combined with the possible complete overlap in time and fre-
quency between the constituent signals, renders conventional
separation via classical (certainly linear) filtering techniques
ineffective. Addressing this challenge calls for new learning
methods and architectures [17], [18] that must go beyond the
state of the art. In particular, they need to implicitly identify
less obvious features that are not readily discernible through
conservative time and/or frequency domain analysis.

This paper focuses on the signal datasets provided by the
RF Challenge. The data associated with the RF Challenge
are publicly available at https://rfchallenge.mit.edu/datasets/
and contain several datasets of RF signals recorded over the
air or generated in lab environments. Specifically, the data
were recorded in the industrial, scientific, and medical (ISM)
radio bands with the ultimate goal of improving coexistence
among WiFi, Bluetooth, ZigBee, and other ISM band users.

We believe that one of the most important developments
still needed in the RF domain, to make artificial intelligence
(AID) relevant in next-generation wireless communication
systems, is the availability of sufficiently large datasets of
signal recordings from which ML solutions can be de-
veloped. Indeed, one of the driving forces in the rapidly
evolving research areas of ML and Al are challenges such
as MNIST, ImageNet, VAST, and HPC Challenge, which
catalyzed research considerably in their respective areas by
creating standard benchmarks and high-quality data.

However, in the area of RF signals, such challenges are
still comparatively rare. As a result, progress in problems
such as detection, identification, and geolocation is currently
not seen to the same extent. Our main goal with the RF
Challenge is to promote the development of solutions to
important problems particular to the RF domain, similarly
to how challenges in computer vision have accelerated the
development of ML ideas. As part of our commitment in
this direction, we recently hosted the “Data-Driven Ra-
dio Frequency Signal Separation Challenge” as one of the
ICASSP’24 Signal Processing (SP) Grand Challenges [19].

I.C. CONTRIBUTIONS

The advancement of data-driven solutions in the domain of
RF communications critically depends on the availability of
up-to-date, high-quality RF signal datasets. Only with such
datasets, provided with standard benchmarks, it will be pos-
sible to successfully promote the development of novel ML-
aided solution approaches, particularly in scenarios where
conventional techniques fall short. To this end, our main
contribution in this paper is the comprehensive presentation
of the RF Challenge and its promising yields thus far.

Our focus lies on the source separation problem stated in
the challenge, which requires developing—using ML tools—
a module for signal separation of RF waveforms. Rather than
considering the classical formulation of source separation,
we tackle this problem from a fresh, data-driven perspec-
tive. Specifically, we introduce a novel ML-aided approach
to signal processing in communication systems, leveraging
data-driven solutions empowered by recent advancements in
deep learning techniques. These solutions are made feasible
by progress in computational resources and the publicly
available signal datasets we created and organized. We high-
light that the methods developed within this research domain
not only enable RF-aware ML devices and technology, but
also hold the potential to enhance bandwidth utilization effi-
ciency, facilitate spectrum sharing, improve communication
system performance in high-interference environments, and
boost system robustness against adversarial attacks.

Through an extensive presentation of results stemming
from our efforts in recent years, we show the potential of
data-driven, deep learning-based solutions to significantly
enhance interference rejection, and achieve improvements
by orders of magnitude in both mean-squared error (MSE)
and bit error rate (BER) compared to traditional signal
processing methods. To support this claim, we introduce
two deep learning architectures that we have established
as benchmarks for interference mitigation, along with the
performance results of the top teams from the SP Grand
Challenge competition, which we organized at the 2024
IEEE International Conference on Acoustics, Speech, and
Signal Processing (ICASSP 2024).

Finally, we conclude the paper by outlining a series of
open research challenges and future directions focused on
mitigating non-Gaussian interference in wireless communi-
cation systems. We expect this research direction, reinforced
by competitions such as the recent SP Grand Challenge at
ICASSP 2024, to gain increasing relevance in the near future,
so we invite researchers worldwide to actively contribute to
advancing this field.

I.D. Notations

We use lowercase letters with standard font and sans-serif
font, e.g., z and x, to denote deterministic and random
scalars, respectively. Similarly, we use x and x for deter-
ministic and random vectors, respectively; and X and X for
deterministic and random matrices, respectively. We further
use x[n] to represent the n-th sample of the signal x.
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The uniform distribution over a set S is denoted as
Unif(S), and for K € N, we denote S1.xx = {1,...,K}.
For brevity, we refer to the complex normal distribution
as Gaussian. We denote C,,, £ E [zwH] € CN=*Nw a5
the covariance matrix of z € CM-*! and w € CNwx!
(specializing to C,, for z = w). The indicator function 1¢
return 1 when the event £ occurs, and 0 otherwise.

Il. PROBLEM STATEMENT
We consider the point-to-point, single-channel,® baseband
signal model depicted in Fig. 1, where a transmitter aims
to communicate a signal that carries a stream of encoded
and modulated bits, referred to as the SOI and denoted as
s. The signal is measured at the intended receiver in the
presence of an unknown interference signal, denoted as b.
The ultimate goal of the receiver is to successfully detect (or
recover) the transmitted bits (or message) with the highest
possible reliability, measured by the BER.

The input-output relation for a received, sampled, discrete-
time baseband signal of length IV samples is given by

y=s+b e CN*L (1)

This simplified model allows us to focus solely on the
problem of interference rejection and the potential con-
tributions of ML in this context. One can consider this
model as the resulting input-output relation after successfully
completing crucial processing stages in a communication
system, such as time synchronization, channel estimation,
and equalization. Although these aspects are deferred for
future research, we acknowledge their importance in ensur-
ing the correct operation of any practical communication
system. Nonetheless, as we shall demonstrate throughout this
paper, studying this building block in isolation enables us to
understand the potential impact and challenges of integrating
Al capabilities into RF communication receivers.

Furthermore, we consider the case where the generation
process of the interference signal b is unknown. Specifically,
we assume that the interference consists of an unknown RF
signal originating from another system operating in the same
time-frequency band, possibly contaminated by AWGN.

Recall that we focus on digital communication signals
as SOI in this work. In digital communication systems, the
ultimate goal is to reliably recover the transmitted bits (or
messages). Therefore, we consider the BER as a central
measure of performance in this paper.

Note that we consider a scenario with non-Gaussian in-
terference of unknown generation process, for which the op-
timal solution to minimize the BER is generally unknown.*
Under this setting, various receiver architectural designs can

3The single-channel model encompasses scenarios such as single-antenna
links and multi-antenna links where the spatial resolution is insufficient,

resulting in a single effective channel between the transmitter and receiver.
4If the interference were Gaussian, applying a matched filter at the

receiver, which is matched to the one used to modulate the encoded bits
prior to decoding, would be optimal for the BER criterion (see Sec. III.A).

be devised based on different principles, aiming to achieve
the best possible BER performance. In this work, we propose
a hybrid, “smart” receiver that first performs interference
mitigation in a data-driven manner using a DNN. This
approach aims to learn the relevant features of the unknown
interference signal in order to mitigate it, and then, by
treating the residual interference as Gaussian, apply standard
matched filtering prior to decoding, so as to increase the
postprocessing SNR. Consequently, we introduce a second
measure of performance, namely the MSE between the
estimated SOI S and the true transmitted SOI s, to assess
the signal quality after interference rejection and before
decoding.’®

Il.LA. SIGNAL MODELS

In this section, we categorize the various types of signals
considered in this work based on our knowledge of their
generation process.

When the signal’s generation process is known, we have
detailed information about the generated signal. Specifically,
we can generate a synthetic dataset of signals for the sake
of learning a data-driven source separation module. This
approach is valuable when model-based solutions are infeasi-
ble, either because the model of the interference is unknown
(but the SOI’s model is known) or because the signal models
are analytically intractable or computationally impractical.
We will further categorize signals with a known generation
process into single-carrier and multi-carrier signals.

When the signal generation process is unknown, we
assume that we have datasets available, obtained through
recordings or high-fidelity simulations. Thus, any knowledge
relevant to performing source separation on these types of
signals must be learned from the data.

IILA.1. SIGNALS WITH A KNOWN GENERATION PROCESS
We consider single-carrier and multi-carrier signals gen-
erated by linearly modulating symbols from constellations
in the complex plane. Signals generated in this manner
correspond to a prevalent class of digital communication
signals observed in typical RF frequency bands.

Single-Carrier Signals

We consider single-carrier signals bearing M -bit long mes-
sages, which are mapped to L symbols from a given complex
constellation (e.g., quadrature phase shift keying (QPSK))
using Gray coding. The bits are randomly generated via a fair
coin toss and are all independent and identically distributed

35The interference rejection problem can also be understood as a denoising
problem, where we aim to remove the SOI from the “noise,” which, in this

case, is the non-Gaussian interference signal.
6Other performance measures could be considered depending on the

specific receiver designs under consideration.
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FIGURE 2: Block diagram for the generation process of the single-carrier
signal, which modulates bits that are mapped into symbols from a complex-

valued constellation before being filtered using a given pulse shaping filter.

(i.i.d.). The n-th sample of s € CV*1 is expressed as

L—1

s[n] = Zag-g[n—fF—m], 2)

=0
where a; € A denotes a complex discrete symbol to be
transmitted, with A being the constellation (alphabet) of
(possibly complex-valued) symbols, F' € Z is the symbol
interval (in discrete-time), 79 € Sp.p—1 is the offset for the
first symbol, and g[n] is the discrete-time impulse response
of the transmitter filter (pulse shaping function). Fig. 2
shows a simplified diagram for the generation process of
the considered single-carrier signal type.

Multi-Carrier Signals
For multi-carrier signals, we focus on orthogonal frequency-
division multiplexing (OFDM) signals, one of the most com-
mon types used in key wireless communication technologies
such as 5G and WiFi. An OFDM signal consists of K
orthogonal subcarriers, each carrying a symbol from a given
complex constellation [20].

In this case as well, the bits are randomly generated using
a fair coin toss in an i.i.d. manner and then mapped to
symbols from the given constellation using Gray coding. The
n-th sample of the SOI s € CV*! is given by

P-1K-1

sl = Y ) arprn—p- (K + Top) = Tep, k], (3)

p=0 k=0

where

rn, k] £ exp (j2rkn/K) - L 1., <n<K}- )
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FIGURE 3: Block diagram for the generation process of an OFDM symbol
carrying symbols in each active subcarrier.

Here, K represents the total number of orthogonal complex
sinusoid terms (subcarriers), where not all of them are
necessarily active.” The value of K corresponds to the fast
Fourier transform (FFT) size of the inverse discrete Fourier
transform (IDFT) involved in generating an OFDM signal.
The coefficients aj, € A are the information modulating
symbols, where A represents the alphabet (constellation).’
A cyclic prefix (CP) is typically added before an OFDM
symbol. Thus, each OFDM symbol is described within the
interval [—T,,, K], where T, is the CP length. The signals
then span P = N/(K +T.,,) € Z OFDM symbols, and their
individual finite support is reflected by the finitely-supported
function r[n, k] in (4). Fig. 3 illustrates the block diagram
of the OFDM symbol generation process.

[ILA.2. SIGNALS WITH UNKNOWN GENERATION
PROCESS

When dealing with unknown interference (e.g., from a dif-
ferent technology), accessing the signal generation process,
which could potentially allow for the design of specific
interference rejectors, is often rare. However, one can rely
on recorded interference signals to learn how to design the
interference rejector from the data. Another scenario where
we may lack access to the generation process but still need
to separate signals is the classical blind source separation
problem. In this case, we may not know any of the signal
models involved in the communication process, and our goal
is simply to separate the superimposed signals into their
constituent components. Finally, we could also consider the

7An “active” subcarrier is one that is being used to convey information,

not necessarily random (e.g., pilots for the sake of channel estimation).
8For simplicity, the alphabet includes the zero symbol, so (3) accounts

for inactive subcarriers as well.
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case where the generation process of the signals is known
but too is complicated for deriving analytical solutions.

In any of these cases, the availability of signal datasets
enables the design of data-driven source separators, thus
providing an alternative to these classical approaches. We
note that within the RF Challenge, there is a dataset of
interference signals whose generative models are unknown,
which can be used to develop learned, data-driven solutions.

The collection of datasets of relevant RF communication
signals is therefore an essential component in the devel-
opment of data-driven algorithmic solutions in the context
of wireless communications. Although this work focuses on
interference rejection problems, these signal datasets could
be utilized for other purposes, importantly, for advancing
solutions to various other issues associated with communi-
cation systems. We will further discuss this in Section V.

lll. METHODS

In this section, we review the methods used to perform
interference mitigation over the various combinations of
SOIs and interference signals considered in this work. Recall
that in this work, the signal models are not necessarily
known. Therefore, it is impossible to derive theoretical
bounds on the performance metric of interest. For this reason,
it is crucial that the set of numerically evaluated methods
includes—alongside the novel, data-driven ones—traditional
methods that are commonly used both in the literature and
in practical communication systems, which are suitable and
widely acceptable for benchmarking purposes.

ll.LA. TRADITIONAL METHODS

We now present two prevalent methods whose appeal comes
from the balance between their theoretical justification—and,
in fact, optimality for common criteria under certain condi-
tions—and their simplicity, an important virtue in practical
systems.

IILA.1. LINEAR MMSE ESTIMATION

A computationally attractive approach that exploits the joint
second-order statistics of the mixture (1) and the SOI is
optimal minimum mean-square error (MMSE) linear estima-
tion. Assuming det(C,y) # 0, the so-called linear minimum
mean-square error (LMMSE) estimator [21], given by

/S\LMMSE £ CsyCy_yly = G (Css + (jbb)i1 ye CNXla ®)]

is constructed using the second-order statistics of the mixture
that inherently take into account the potentially nontrivial
temporal structure of the interference expressed through Cyy,.
In other words, if Cp, somehow deviates from a scaled
identity matrix, temporal cross-correlations exist.

While (5) coincides with the MMSE estimator when y
and b are jointly Gaussian, it is generally suboptimal due
to the linearity constraint. In our case, the signal s[n] is a
digital communication signal and is certainly not Gaussian.

As for b[n], its statistical model is assumed to be unknown
throughout the design process of the interference mitigation
module. Still, it would also typically be non-Gaussian, even
if it contains AWGN, which is highly plausible.

Despite (5) not being the MMSE estimator in our sce-
narios of interest, it is still an important benchmark since it
constitutes an attractive method for two main reasons. First,
it is linear, and therefore fast and easy to implement for
moderate values of N. Second, it only requires knowledge
of second-order statistics, which are relatively easy to ac-
curately estimate from data, even in real-time systems. We
therefore use it as one of our benchmarks whenever it is
computationally feasible.’

IILA.2. MATCHED FILTERING

Matched filtering (MF), perhaps one of the most commonly
used techniques in the signal processing chain of commu-
nication systems, exploits prior knowledge about the signal
waveform (only) for enhanced detection of the transmitted
symbols. When the residual (additive) component is Gaus-
sian, it is optimal in the sense that it maximizes the SNR,
and it is therefore also optimal in terms of minimum BER.

If the transmitted signal is represented by s[n] = aq - g[n],
where g[n] is the pulse shaping filter, then the matched
filter would be hys[n] = g*[—n]. In practical scenarios,
the pulse g[n] has finite duration. After performing the
complex conjugation and time-reversal to obtain g*[—n], the
resulting signal is shifted appropriately to ensure causality.
This shift corresponds to aligning the start of the pulse with
the beginning of the observation window.

This method is also an important benchmark as it is
probably still the most commonly used method for symbol
detection, which is the natural choice when the residual
component, be it noise or interference, is treated as AWGN.

To conclude this section, we note in passing that the
(theoretically naive) option of not applying an interference
mitigation method will also be considered in our simulation
as a benchmark. Indeed, with the complete absence of prior
knowledge of the statistical model of the interference, this
plain option of simply ignoring the interference may, after
all, be chosen for practical considerations. While we do not
advocate for such a solution approach, we acknowledge it as
a realistic (even if not a leading) benchmark.

ll.B. DATA-DRIVEN METHODS

This section presents the two most powerful architectures we
found for performing data-driven source separation of RF
signals: the UNet and the WaveNet. We henceforth assume
we have a dataset of D i.i.d. copies of {(y®,s(V)}2 .

For nonstationary input signals, the required inversion of Cy is
computationally impractical at high dimensions—matrix inversion (without

a particular structure to be exploited) is generally of complexity O(N?3).
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FIGURE 4: Architecture of the UNet DNN proposed to perform single-channel source separation of the communication signals. The parameter x denotes

the kernel size of the first layer.

I1.B.1. UNET

The UNet, as depicted in Fig. 4, is a type of DNN originally
proposed for biomedical image segmentation [22]. Its versa-
tility has led to its adoption in various other applications, in-
cluding spectrogram-based RF interference cancellation [23]
and audio source separation [10], [24]. These applications
typically correspond to a multivariate regression setup with
identical dimensions for both input and output data.

Similarly to these aforementioned works, our approach
employs 1D-convolutional layers to better capture the tem-
poral features of time-series data. To effectively handle
(baseband) complex-valued signals, inspired by widely lin-
ear estimation techniques [25], we represent the real and
imaginary parts as separate input channels. The UNet ar-
chitecture comprises downsampling blocks, which operate
on progressively coarser timescales, and incorporates skip
connections to combine features from different timescales
with the upsampling blocks.

It is well known that a careful design of the neural
network architecture, motivated by the specific application at
hand, can significantly impact performance, as demonstrated
in our experiments and architectural choices. Specifically,
unlike standard CNN-based architectures tailored for image
processing, which typically employ short kernels of size ~ 3
in all layers, our UNet architecture features a first convolu-
tional layer with a nonstandard, comparatively long kernel
(indicated by « in Fig. 4), which can be of size ~ 100—a
difference of two orders of magnitude. We observed that
proper adjustment of this parameter to capture the effective
correlation length of both the SOI and interference facilitates
(and perhaps enables, as some of our findings indicates)
the extraction of additional long-scale temporal structures
of both signals, leading to performance gains of an order of
magnitude compared to the originally proposed UNet [22].!

10The latest version of our proposed UNet architecture for source
separation of RF signals can be found at https://github.com/RFChallenge/
icassp2024rfchallenge/blob/0.2.0/src/unet_model.py.
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FIGURE 5: Architecture of the WaveNet DNN proposed to perform single-
channel source separation of the communication signals.

kernel width
dilation rate
receptive field

FIGURE 6: A dilated convolution operation with a kernel width of 3 and a
dilation rate of 2, which results in a receptive field of 5.

I1.B.2. WaveNet

The WaveNet architecture [26] was initially introduced as
a generative neural network for synthesizing raw audio
waveforms. At its core, the architecture uses stacked lay-
ers of convolutions with gated activation units. Unlike the
downsampling and upsampling networks used in UNets,
WaveNet preserves the temporal resolution at each hidden
layer by leveraging dilated convolutions. As shown in Fig. 6,
the dilated convolution can be interpreted as a “virtual”
kernel with spacing between elements, enlarging the effective
receptive field of the convolution. For example, a dilated
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FIGURE 7: Representative frames of the four interference signal types in the dataset: EMISignall, CommSignal2, CommSignal3, and CommSignal5G1.

Top: Real part of the waveforms, Re{s}; Bottom: Spectrogram of the respective signal frames.

convolution with a kernel width of 3 and a dilation of 2 has
an effective receptive field of 5.

As illustrated in Fig. 5, the WaveNet employs R residual
blocks with dilated convolutions, where the output of block
i — 1 serves as the input to block i, for ¢ € {0,...,R —
1}. The dilated convolutions assist in learning long-range
temporal and periodic structures. The dilations start small
and successively increase, such that the dilation at block %
is given by 2¢md™ where m is the dilation cycle length.
For example, if the dilation periodicity is m = 10, then in
block ¢ = 9 the dilation is 512, and in block 10 the dilation
is reset to 1. This allows the network to efficiently trade off
between learning local and global temporal structures. All
residual blocks use the same number of channels, C. Our
WaveNet specifically uses R = 30 residual blocks, with a
dilation cycle m = 10, and a number of channels per residual
block of C' = 128.

Several modifications were made to facilitate training with
RF signals compared to the original WaveNet [26]. First,
since we are dealing with complex-valued continuous wave-
forms, we train on two-channel signals where the real and
imaginary components of the RF signals are concatenated
in the channel dimension. Second, we train with an MSE
(squared ¢5) loss, as we did with the UNet. We monitor
the validation MSE loss, and once the loss stops decreasing
substantially, we stop training early. Lastly, we increased
the channel dimension up to C' = 128 to learn complex
RF signals such as OFDM signals. Additionally, during
data loading, we perform random time shifts and phase
rotations on the SOIs to gain diversity and simulate typical
transmission impairments in RF systems. '!

"'The latest version of our proposed WaveNet architecture for source
separation of RF signals can be found at https://github.com/RFChallenge/
icassp2024rfchallenge/blob/0.2.0/src/torchwavenet.py.

IV. RF CHALLENGE RESULTS

We now present a diverse set of results for RF signal sep-
aration. We consider different types of mixtures, involving
various combinations of signal types, which result in differ-
ent underlying joint statistical characteristics. This leads to
varying levels of difficulty in learning optimal separation
operators, or even finding “good” separators that outper-
form the best computationally feasible methods available
today. We compare the performance of several approaches,
including data-driven, neural network-based separators, as
well as more traditional, commonly used methods. Beyond
showcasing our contributions in developing ML-enhanced
RF signal separation architectures, it is crucial to establish
standardized benchmarks that will serve as baselines for
future research in this emerging field.

To analyze decoding capabilities (in terms of BER) along-
side interference rejection capabilities (in terms of the MSE
of the “denoised” SOI), we consider SOIs with known
generative processes in this work. Specifically, we consider
two different SOIs and four types of interference, resulting in
eight different combinations of mixture types, each of length
N = 40,960 samples.

For the SOIs, we have:

1) QPSK: A single-carrier QPSK signal with an over-
sampling factor of F' = 16, modulated by a root-
raised cosine pulse shaping function with a roll-off
factor of 0.5 that spans 128 samples (8 QPSK symbols
due to the employed oversampling factor). We further
apply an offset for the first symbol of 7, = 8 samples.
See Fig. 2 for a simplified diagram of the generation
process of this SOI. We refer to this signal simply as
“QPSK”.

2) OFDM-QPSK: An OFDM signal where each subcar-
rier bears a QPSK symbol. We refer to this signal
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FIGURE 8: BER and MSE as a function of the target SINR for all
combinations of QPSK SOI and the different interference types considered

in this work.

as “OFDM-QPSK”. We set T, = 16, K = 64
subcarriers, and K = 56 active subcarriers (i.e., the 8
inactive subcarriers “carry” the zero symbol), referring
to the quantities in (3). A simplified diagram of the
generation process of this SOI is shown in Fig. 3.

The four types of interference signals are only available
through provided recordings, hence their generation process
is unknown:

1) EMISignall: Electromagnetic interference from unin-
tentional radiation from a man-made source.

2) CommSignal2: A digital communication signal from
a commercially available wireless device.

3) CommSignal3: Another digital communication signal
from a commercially available wireless device.
4) CommsSignal5G1: A 5G-compliant waveform.

We emphasize that the generative processes of the signals
above are not only considered unknown in the simulations,
but are in fact truely unknown to the authors. The dataset ex-
amples for the first three types (EMISignall, CommSignal2,
and CommSignal3) were recorded over-the-air, while the last
one (CommSignal5G1) was generated and recorded within
a controlled wired laboratory environment, with wireless
impairments introduced via simulators.

To create interference signal examples, a frame of the
respective interference type was selected at random (uni-
formly) from the dataset, and a random window of N =
40,960 samples was extracted. Each interference compo-
nent was scaled to achieve a target (empirical) signal-to-
interference-and-noise ratio (SINR). Since all signal datasets
are normalized to have unit power, for a target SINR level
k% = 10(INRindB)/10 " the interference signal is scaled by
1/k. Each interference frame b also undergoes a random
phase rotation before being added to the SOI s to create
a mixture example y(@ (see (1)).

For the recorded interferences, while the length of each
frame is consistent within a given signal type, it varies
across types: 230,000 samples for EMISignall, 43,560 for
CommSignal2, 260,000 for CommSignal3, and 230,000
for CommSignal5G1. For consistency, we set the length of
all input mixtures to 40,960 samples. Signals EMISignall
and CommSignal5G1 were shifted in frequency to have
their spectral energy content lie in baseband frequencies,
simulating co-channel interference that overlaps both in time
and frequency. Fig. 7 shows the time- and frequency-domain
representations of the recorded signal datasets used as inter-
ferences. More details and code examples can be found at
https://rfchallenge.mit.edu/icassp24-single-channel/.

IV.A. OUR RESULTS

Figures 8 and 9 show the performance of the two traditional
interference rejection algorithms, introduced in Section IIL. A,
and our proposed deep learning-based interference rejec-
tion algorithms, introduced in Section III.B, over the eight
possible SOl-interference combinations. The performance is
measured in terms of BER or MSE as a function of the target
SINR. All plots include the following curves:

e LMMSE: the SOI is estimated via MSE-optimal lin-
ear estimation, the best-performing traditional method
described in Section IIL.A.

e UNet and WaveNet: the architectures we developed,
presented in Section III.B.

Both learning-based solutions described in Section III.B
outperform the best traditional method based on LMMSE
estimation, achieving up to two orders of magnitude per-
formance improvements at considerably low SINR values.
For instance, in Fig. 8d, at an SINR value of —18dB, the
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FIGURE 9: BER and MSE as a function of the target SINR for all
combinations of OFDM-QPSK SOI and the different interference types

considered in this work.

WaveNet model achieves a BER of approximately 10~3 and
an MSE below —20dB. In contrast, the solutions based on
LMMSE and no mitigation only reach a BER slightly above
10~! and an MSE around 0 dB.

IV.B. COMPETITION RESULTS

We recently hosted the “Data-Driven Radio Frequency Sig-
nal Separation Challenge” as one of the ICASSP’24 signal
processing grand challenges [19]. Among the received sub-
missions, only a few outperform the learning-based methods
described in Section III.B [27], [28]. Similar to the previous
section, Figures 10 and 11 show the performance of the
traditional interference rejection algorithm based on LMMSE
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FIGURE 10: BER and MSE as a function of the target SINR for all
combinations of QPSK SOI and the different interference types considered
in this work.

estimation, our proposed deep learning-based interference
rejection algorithms introduced in Section IIL.B, and the
two top-performing teams that participated in the challenge.
We only include these two teams as they were the only
ones that could improve significantly upon our reference
methods at least at one signal mixture case out of the
eight possible SOl-interference combinations. Complete re-
sults including all participant submissions can be found at
https://rfchallenge.mit.edu/icassp24-single-channel/.

As we can see, these two teams improved upon the base-
lines in some cases involving EMISignall, CommSignal2,
and CommSignal5G1 (see Figs. 10b, 10d, 1la, and 11b).
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FIGURE 11: BER and MSE as a function of the target SINR for all
combinations of OFDM-QPSK SOI and the different interference types
considered in this work.

For example, “KU-TII” [27] especially shines in those
mixture involving CommSignal2 interference, where they
gain more than an order of magnitude in BER at SINR
values below —20dB compare to our baseline architec-
tures, and “OnelnAMillion” [28] performs especially well
in the QPSK + CommSignal5G mixture, where they almost
achieved an order of magnitude gain in BER at SINR values
below —20dB. Conversely, mixtures with CommSignal3
consistently challenge all methods. While we believe it is a
multicarrier signal with a high data rate, the specific reasons
for the difficutly to separate CommSignal3 from the SOI
remain unclear, warranting further investigation.

These results show the potential of data-driven, deep-
learning-based solutions to provide significant improvements
in interference rejection tasks when the interference presents
unknown structures that can be learned. They also demon-
strate that the baseline solutions we developed (presented
in Section III.B) are robust and not easily outperformed,
suggesting that innovative solutions are needed to achieve
further performance gains, especially for challenging signals
such as CommSignal3.

V. FUTURE DIRECTIONS AND CONCLUDING REMARKS
In this section, we explore potential future research direc-
tions that can further advance the field of data-driven source
separation of RF signals using deep learning techniques.
We also provide concluding remarks to encapsulate the key
findings of this paper.

V.A. FUTURE RESEARCH DIRECTIONS

This work demonstrates that data-driven deep learning algo-
rithms for RF source separation can yield significant perfor-
mance gains. However, in order to make these techniques
practically relevant, further in-depth research of different
aspect of the problem is necessary, giving rise to several
promising avenues for future research. We believe these
directions can facilitate the integration of such techniques
into next-generation RF systems. Below, we outline some
important areas for further development to achieve this goal.

SOls with Unknown Generation Process

A direct extension of this work is to investigate scenarios
where the generation process of the SOI is unknown. Such
cases are more challenging, as there is no additional infor-
mation to exploit when designing the source separation algo-
rithm. For example, in the results presented in Section IV, we
leveraged knowledge of the modulation scheme of the SOI to
improve performance, which we measured in terms of BER.
However, when the signal generation process is unknown,
this approach is not applicable.

We have conducted preliminary studies using Comm-
Signal2 as the SOI, evaluating the MSE of the SOI
reconstruction post-separation using the UNet architec-
ture (Section III.B.1) and traditional LMMSE estimation
(Section III.A). We used the remaining signals in the
dataset as interference signals. The results, presented in
Fig. 12, demonstrate that the UNet architecture outperforms
LMMSE, except at low SINR levels when CommSignal3
acts as interference. This again highlights the need for
further research into handling such intricate signal types that
constitute bothersome interference.

Extension of Modulation Schemes

Expanding this work to include other types of modulation
schemes with higher-order modulations (e.g., 16-QAM, 64-
QAM) and other waveform designs can provide valuable
insights. Higher-order modulations are commonly used in
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work.

modern communication systems, such as Wi-Fi and 5G, to
achieve higher data rates. Investigating the performance of
source separation algorithms under these conditions will help
in understanding their robustness and adaptability to various
signal characteristics.

Additionally, exploring different modulation formats such
as phase shift keying (QPSK) and frequency shift keying
(FSK), as well as combinations of these, could uncover
potential limitations or strengths of the current deep learn-
ing architectures. These modulation schemes are prevalent
in various wireless technologies, including Bluetooth and
Zigbee, which are integral to many consumer and industrial
applications.

Examining modulation schemes and waveform designs
specific to IoT technologies can be particularly insight-
ful. For instance, LoRa employs chirp spread spectrum
(CSS) [29], Sigfox uses Ultra Narrowband [30], and NB-
IoT utilizes single-tone and multi-tone FSK [31]. These
technologies have unique modulation requirements due to
their focus on low power consumption and extended range.
Understanding how source separation algorithms perform
with these schemes can help in optimizing IoT communi-
cation systems and enhancing their reliability and efficiency.

MIMO Systems

Multiple-input multiple-output (MIMO) systems leverage
spatial diversity by using multiple antennas at both the
transmitter and receiver ends, significantly enhancing com-
munication performance. Exploring how to exploit spatial
structures in tandem with the signals’ unique (and learnable)
statistical characteristics presents another promising avenue
for future research.

Incorporating MIMO capabilities in source separation
algorithms can lead to substantial performance improve-
ments, particularly in terms of signal robustness and data
throughput. MIMO systems are a cornerstone of modern
wireless communication standards such as 5G and Wi-Fi,
where they are utilized to increase capacity and spectral
efficiency. In addition to traditional applications, MIMO
systems are also finding use in emerging technologies such
as vehicle-to-everything communications and industrial IoT.
These applications often require robust and reliable com-
munication in dynamic and interference-prone environments.
Although the multi-channel source separation literature is
significantly richer than the single-channel one(e.g., [32]-
[35]), understanding how modern data-driven deep-learning
algorithms for source separation can be adapted to take
advantage also of the spatial resolution in MIMO systems
is crucial for their potential integration into these future
technologies.

Synchronization and CSI Acquisition
The signal model addressed in the present work is a fairly
accurate representation under the assumption of successful
completion of key stages such as time synchronization,
channel estimation, and equalization. However, these as-
sumptions may not always hold, particularly in scenarios
with persistent (i.e., not bursty) interference. To enhance the
model’s applicability, a more generalized approach is needed.
A comprehensive, baseband, discrete-time system model
should also incorporate effects such as arbitrary time shifts



and fading effects. More generally, the input-output relation-
ship of such an extended model can be expressed as:

ylnl = #H {s[n]} +b[n — ki), n € Z, (6)

where s[n] and b[n] are the SOI and interference, respec-
tively, and H{-} denotes the channel response. For example,
the channel could be H {s[n]} = « - s[n — ky] for some
fading coefficient « € C and an unknow delay ks € N.
Note that 7{-} is not necessarily linear, not time-invariant.
The advantage (and beauty) of the data-driven approach is
that it can potentially learn to compensate for nonlinear,
time-varying effects, provided they are well captured in the
available signal datasets for training.

The parameters ks and k;, both integers in the example
above of the generalized discrete-time model, represent ar-
bitrary time-shifts relative to a reference point within the
signal. Communication signals often exhibit cyclostationary
characteristics, implying that s[n] and b[n]| can be viewed
as cyclostationary processes with known fundamental cyclic
periods K and K3, respectively. If we model the signals
as cyclostationary, one could consider the parameters kg
and k; as discrete time-shifts concerning the start of the
cyclic period of each signal, typically chosen arbitrarily as
n = 0 for convenience. Consequently, one might assume
distributions such as kg ~ Unif (Sk,) and k;, ~ Unif (Sk,)
to represent the variability of these parameters [36].

It is also worth noting that wireless fading channels can
be statistically modeled as well, which usually allow for
tractable mathematical analyses. For instance, the quasi-
static fading channel maintains a constant fading coeffi-
cient throughout the transmission, whereas the block-fading
channel preserves this constancy within a coherence interval
before changing independently and identically across suc-
cessive intervals. The choice of a specific model depends on
the application’s requirements [37, Ch. 5]. Efficient channel
state information (CSI) acquisition, with the ultimate goal
of performing interference rejection, presents an interesting
research topic.

An RF Signal Separation “Foundation-like” Model

The data-driven solutions presented in this work are all ones
that were specifically tailored for a given type of mixture,
namely a mixture of a specific SOI type and a specific inter-
ference type. While this is clearly statistically preferable (i.e.,
a model trained for each mixture type), it generally implies
a high demand of resources from a system perspective (e.g.,
memory—a NN for every possible received mixture). In this
respect, it would be attractive to obtain a single model that
can mitigate several types of interference. Such a model
can be viewed as a (“micro”) instance of an RF foundation
model [38], [39], where the different signal types (i.e., codes,
modulations, pulse shaping functions, etc.) are viewed as
the different “modalities”. One of the first steps towards
such a powerful architecture is to show (both theoretically
and empirically) that it is indeed possible to have a single

model that can cope with a few types of intereference signals,
while attaining the same performance (in terms of inference
time and signal reconstruction accuracy) as the individually
trained ones.

Real-Time Operation and Computational Efficiency

One of the main challenges in integrating deep learning
techniques into RF systems is ensuring real-time operation
while maintaining computational efficiency. The computa-
tional complexity and energy consumption of deep learning
models pose significant hurdles for practical implementation
in communication standards (e.g., [40]). Therefore, develop-
ing efficient algorithms with a clear understanding of their
computational costs is crucial.

Efforts in this direction include the design of low-
complexity schemes capable of competing with architec-
tures optimized for performance. Additionally, examining
the computational complexity and resource requirements
of algorithms when dealing with higher-order and more
complex modulation schemes is essential. This assessment
is particularly vital for practical implementations, especially
in resource-constrained environments like IoT devices and
mobile communications.

Ensuring that the proposed methods are not only effective
but also efficient will be key to their adoption in next-
generation RF systems.

V.B. CONCLUDING REMARKS
This paper, using the RF Challenge developments, illustrates
the promising potential of deep learning-based algorithms for
source separation of RF signals. Specifically, we show that
mitigating strong unintentional interference from other sys-
tems utilizing the same time-frequency resources with data-
driven methods leads to considerable gains relative to conser-
vative methods. Through extensive simulations encompass-
ing eight different signal mixtures, we have demonstrated the
superior performance of deep learning architectures such as
UNet and WaveNet over traditional signal processing meth-
ods like matched filtering and LMMSE estimation across
various scenarios. However, results from different leading
research teams that participated in the RF Challenge show
that this is not a straightforward problem and that surpassing
the established deep-learning benchmarks is not an easy task,
especially in mixtures involving multi-carrier signals.
Ultimately, the results described herein represent merely
an initial phase of a more extensive journey towards integrat-
ing Al capabilities into receivers for enhanced interference
rejection. The path forward will involve addressing interme-
diate challenges and presenting viable solutions to demon-
strate the tangible benefits of these approaches. Indeed, the
results motivate further research and development for this
dynamic domain within the broader community, with the
ultimate goal of significantly improving future generations
of RF systems spanning diverse applications.
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