
1

Optimal Quantization for Matrix Multiplication
Or Ordentlich and Yury Polyanskiy

Abstract

Recent work in machine learning community proposed multiple methods for performing lossy compression
(quantization) of large matrices. This quantization is important for accelerating matrix multiplication (main component
of large language models), which is often bottlenecked by the speed of loading these matrices from memory. Unlike
classical vector quantization and rate-distortion theory, the goal of these new compression algorithms is to be able
to approximate not the matrices themselves, but their matrix product. Specifically, given a pair of real matrices A,B
an encoder (compressor) is applied to each of them independently producing descriptions with R bits per entry.
These representations subsequently are used by the decoder to estimate matrix product A⊤B. In this work, we
provide a non-asymptotic lower bound on the mean squared error of this approximation (as a function of rate R)
for the case of matrices A,B with iid Gaussian entries. Algorithmically, we construct a universal quantizer based
on nested lattices with an explicit guarantee of approximation error for any (non-random) pair of matrices A, B in
terms of only Frobenius norms ∥Ā∥F , ∥B̄∥F and ∥Ā⊤B̄∥F , where Ā, B̄ are versions of A,B with zero-centered
columns, respectively. For iid Gaussian matrices our quantizer achieves the lower bound and is, thus, asymptotically
optimal. A practical low-complexity version of our quantizer achieves performance quite close to optimal. In addition,
we derive rate-distortion function for matrix multiplication of iid Gaussian matrices, which exhibits an interesting
phase-transition at R ≈ 0.906 bit/entry.

CONTENTS

I Introduction and main results 2
I-A Importance of quantization for modern applications . 5
I-B Sketch of the proof . 6
I-C Related work . 7
I-D Paper organization . 10
I-E Notation . 10

II Compression for Inner Product Computation: General Problem Setup and Simple Bounds 10
II-A Optimal Decoder and Error Expressions . 12
II-B Simple Lower Bounds . 12

III Compression for Inner Product Computation: The Symmetric Case 13
III-A Upper Bound . 13
III-B Lower Bound . 14
III-C The Symmetric Gaussian case . 16

IV Compression for Matrix Multiplication 16
IV-A Setup . 16
IV-B Basic Properties and Bounds . 16
IV-C Maximum Entropy Matrices . 17
IV-D Fundamental Limits . 18
IV-E The Symmetric Gaussian case . 19

V Lattice Quantization Scheme for Matrix Multiplication of Arbitrary Matrices 19

VI Nested Lattice Quantization for Inner Product Computation 23
VI-A Lattices . 23
VI-B Proof of Theorem 11 . 25

VI-B1 Dithered Nested Lattice Quantization for Inner Product 25
VI-B2 Analysis . 25

O. Ordentlich is with the Hebrew University of Jerusalem, Israel (or.ordentlich@mail.huji.ac.il). Y. Polyanskiy is with the
MIT, USA (yp@mit.edu). The work of OO was supported by the Israel Science Foundation (ISF), grant No. 1641/21. The work of YP was
supported in part by the MIT-IBM Watson AI Lab and by the National Science Foundation under Grant No CCF-2131115.

2

VII Practical Implementation of Nested Lattice Quantizers 27

VIII Open problems 32

Appendix A: Convex envelope of Γ1(R) 33

Appendix B: Good Nested Lattices 34

Appendix C: Bounding the Effect of Overload Events 39

Appendix D: Projections of Random Uniform Orthogonal Vectors 40

Appendix E: Tail Probability of U[d] 41

References 42

I. INTRODUCTION AND MAIN RESULTS

Matrix multiplication is a key component of many numerical algorithms, and is often the dominant factor in the
runtime of a program. With the surge of deep neural nets (DNNs) and large language models (LLMs), finding more
efficient ways to perform matrix multiplication have become one of the most pressing challenges. Classical work
in this field focused on minimizing the number of required operations [1], [2], [3], [4]. Specifics of contemporary
problems, however, require rethinking this classical approach to matrix multiplication. First, in machine learning
applications requirements for precision of computing matrix products are quite lax. Second, modern computational
hardware is often bottlenecked by the memory bandwidth. A natural solution explored by many researchers is to
apply lossy compression to matrices leading to deterioration in precision but improvement in the amount of data
transferred between memory and computation cores.

We formalize this problem as follows. Consider a pair of matrices A ∈ Rn×a and B ∈ Rn×b which need to be
described using R bits per entry (using separate compressors), such that a decoder that obtains bit descriptions of both
matrices can estimate Â⊤B. The metric for gauging quality of approximation that we will use is the squared error
between ab entries of Â⊤B and A⊤B. Note that unlike classical vector quantization, we are requiring compression
algorithms to be tailored to the special task of matrix multiplication. As a practical motivation, in Section I-A
below we argue that reducing R down to a few bits/entry is necessary for LLMs to fully leverage modern matrix
multiplication hardware.

Our main result shows existence of universal quantizers (based on lattices) which compress A and B to R
bits/entry and come with explicit precision guarantees. Furthermore, we also show that these guarantees cannot be
generally improved by proving a matching lower bound for the case of matrices A and B with iid Gaussian entries.
We emphasize, though, that quantizers are universal and do not require Gaussian matrices.

To introduce our main results, let us define the function

Γ(R) =

{
1−

(
1− (2 · 2−2R∗ − 2−4R∗

)
)

R
R∗ R < R∗

2 · 2−2R − 2−4R R ≥ R∗ . (1)

where R∗ ≈ 0.906 is the solution to the fixed-point equation

R =
1

2
log2(1 + 4R ln 2) (2)

It will turn out that Γ(R) is distortion-rate function for the matrix multiplication of iid Gaussian matrices.
We say that a matrix A ∈ Rn×m has “M -bounded entries” if |ai,j | ∈ {0} ∪ [M−1,M] for all i ∈ [n], j ∈ [m].

Our results require the matrices A and B to have M -bounded entries, with M = eo(n). To be more concrete,
throughout this paper we take M = n1022000. In particular, this choice of M guarantees that matrices represented
in FP64 format have bounded entries. This extremely mild condition guarantees that we can describe the ℓ2 norm
of each column of A,B with small multiplicative error using o(n) bits (see Section V). Let 1 = (1, . . . , 1)⊤ ∈ Rn

be the all-ones vector. For a column vector x ∈ Rn we denote by x̄ = x−
(
1
n1

⊤x
)
1 its zero-centered version. For

a matrix A = [a1| · · · |aa] ∈ Rn×a we denote Ā = [ā1| . . . |āa]. Our first result is the following.

3

Theorem 1: For any ε > 0 and sufficiently large n, there exist randomized encoders f1 : Rn×a → [2naR],
f2 : Rn×b → [2nbR], and decoders g : [2naR] × [2nbR] → Ra×b and g1−sided : [2naR] × Rn×b → Ra×b such that
for any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

1) Let C = A⊤B, C̃ = Ā⊤B̄, and Ĉ = g(f1(A), f2(B)). Then, for any i ∈ [a], j ∈ [b] we have

E(Ci,j − Ĉi,j)
2 ≤ C̃2

i,j ·
(
Γ2(R) + ε

)
+
∥āi∥2∥b̄j∥2

n

(
Γ(R)− Γ2(R) + ε

)
+ n−8, (3)

and, in particular,

E∥A⊤B − g(f1(A), f2(B))∥2F < ∥Ā⊤B̄∥2F ·
(
Γ2(R) + ε

)
+
∥Ā∥2F ∥B̄∥2F

n

(
Γ(R)− Γ2(R) + ε

)
+ a · b · n−8.

(4)

2) Let C = A⊤B, C̃ = Ā⊤B̄, and Ĉ = g1−sided(f1(A), B). Then, for any i ∈ [a], j ∈ [b] we have

E(Ci,j − Ĉi,j)
2 ≤ C̃2

i,j ·
(
2−4R + ε

)
+
∥āi∥2∥b̄j∥2

n

(
2−2R − 2−4R + ε

)
+ n−8. (5)

and, in particular,

E∥A⊤B − g1−sided(f1(A), B)∥2F < ∥Ā⊤B̄∥2F ·
(
2−4R + ε

)
+
∥Ā∥2F ∥B̄∥2F

n

(
2−2R − 2−4R + ε

)
+ a · b · n−8.

(6)

Note that two parts simply describe the cases, where both or only one matrix needs to be compressed.1 Our
scheme operates by compressing each column of A and B using the same (randomized) nested-lattice quantizer
fcol : Rn → [2nR], which is applied repeatedly to every column, whereas the decoder g simply estimates each
column to get matrices Â and B̂ and computes their scaled matrix product; see Figs. 1 and 2. The parameter κ
shown in Figures is used by the encoders for time-sharing/sparsification and is set to κ = min{R/R∗, 1} in the
Theorem. In particular, for R < R∗ a fraction 1 − (R

R∗) of coordinates are ignored (mapped to 0), corresponding
to κ = R/R∗. As we will see shortly this dimensionality reduction (à la Johnson-Lindenstrauss) turns out to be
necessary to achieve asymptotically optimal distortion.

To get a feel for Theorem 1 let us consider independent matrices A and B drawn iid Gaussian N (0, σ2). For
large n, such matrices have bounded entries and are also arbitrarily close to their centered version, with high
probability. For the second part, where only A needs to be compressed, note that if B is the n × n identity
matrix, the right hand sides of (5) and (6) read σ2(2−2R + 2ε) and naσ2(2−2R + 2ε), respectively, which are
optimal, as they correspond to the Gaussian rate-distortion function. For the first part of the Theorem, we have that
E∥A⊤B∥2F =

E∥A∥2
F ∥B∥2

F

n = σ4 · nab in this case and Theorem 1 shows estimate

E[∥A⊤B − Â⊤B∥2F] ≤ σ4nab(Γ(R) + ϵ) .

It turns out that this is the best possible approximation (at this compression rate), as shown in our next result.
Theorem 2: Let A ∈ Rn×a and B ∈ Rn×b be independent random matrices, with iid N (0, σ2) entries.

1) For any n ≥ 1, and any pair of rate-R encoders f1 : Rn×a → [2naR], f2 : Rn×b → [2nbR] and decoder
g : [2naR]× [2nbR]→ Ra×b, we have

E∥A⊤B − g(f1(A), f2(B))∥2F ≥ σ4 · nab · Γ(R). (7)

2) For any n ≥ 1, and any rate-R encoder f : Rn×a → [2naR] and decoder g : [2naR]×Rn×b → Ra×b, we have

E∥A⊤B − g(f(A), B)∥2F ≥ σ4 · nab · 2−2R. (8)

In other words, the encoders f1, f2, g from Theorem 1 attain the lower bound from Theorem 2, and are therefore
asymptotically optimal for this class of matrices.

We also show a simpler to use bound, based on our compression scheme applied with no “MMSE scaling” and
no time-sharing - that is, with α = κ = 1 in Figures 1, 2. The resulting bound does not meet the lower bound
of Theorem 2 for Gaussian iid matrices. However, for moderate R it is never much worse than the bound from
Theorem 1. For some matrices A,B it is significantly better than the bound from Theorem 1.

1corresponding to the case of “weights and attention” quantization and “weights-only” quantization in LLMs.

4

Theorem 3: For any ε > 0 and sufficiently large n, there exist randomized encoders f1 : Rn×a → [2naR],
f2 : Rn×b → [2nbR], and decoders g : [2naR] × [2nbR] → Ra×b and g1−sided : [2naR] × Rn×b → Ra×b such that
for any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

1) Let C = A⊤B, and Ĉ = g(f1(A), f2(B)). Then, for any i ∈ [a], j ∈ [b] we have

E(Ci,j − Ĉi,j)
2 ≤ ∥āi∥

2∥b̄j∥2

n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
+ n−8, (9)

and in particular

E∥A⊤B − g(f1(A), f2(B))∥2F <
∥Ā∥2F ∥B̄∥2F

n

(
2 · 22R − 1

(22R − 1)2
+ ε

)
+ a · b · n−8. (10)

2) Let C = A⊤B, and Ĉ = g1−sided(f1(A), B). Then, for any i ∈ [a], j ∈ [b] we have

E(Ci,j − Ĉi,j)
2 ≤ ∥āi∥

2∥b̄j∥2

n

(
1

22R − 1
+ ε

)
+ n−8. (11)

and in particular

E∥A⊤B − g1−sided(f1(A), B)∥2F <
∥Ā∥2F ∥B̄∥2F

n

(
1

22R − 1
+ ε

)
+ a · b · n−8. (12)

Note that the term ∥Ā⊤B̄∥2F does not appear at all in Theorem 3, and whenever ∥Ā⊤B̄∥2 ≫ ∥Ā∥2
F ∥B̄∥2

F

n the
error in Theorem 3 is significantly smaller than the error in Theorem 1.

To put Theorem 3 in context, we note that recent work in LLMs suggested to use random rotation of A and B
and then quantize each column of the rotated matrices using sub-optimal lattice quantizers [5], [6]. See more in
Section I-C. In particular, a popular choice is to use the scalar quantizer, which is equivalent to quantizing to the
lattice Zn with a cubic shaping region. In practice, to apply the scalar quantizer on a vector ai ∈ Rn, the common
approach in the DNN and LLM literature is to store ∥ai∥∞, then normalize to ãi = ai/∥ai∥∞ such that all entries
of ãi are in [−1, 1], then use a R-bit scalar quantizer with dynamic range [−1, 1], and finally rescale the result by
∥ai∥∞. See, e.g. [6]. If the vector ai is uniform on

√
nSn−1 (the sphere with radius

√
n), then for large n we

have that ∥ai∥∞ concentrates around
√
2 lnn. It follows that the expected squared quantization error this quantizer

attains per entry is
(
2
3 lnn

)
2−2R. Using this quantizer for matrix multiplication (after rotating each matrix by the

same random rotation) therefore results in

E(Ci,j − Ĉi,j)
2 ≤ ∥ai∥

2∥bj∥2

n

(
2

3
lnn

)(
2 · 22R + 2

3 lnn

(22R)2

)
, ∀i ∈ [a], j ∈ [b]. (13)

Thus, replacing the scalar quantizer Zn with a high-dimensional pair of “good” nested lattices, as we do in the
proof of Theorem 3 saves a factor of 2

3 lnn in the expected squared error for moderate R.

The scheme used for proving Theorem 3 is based on using high-dimensional nested lattices with some asymptot-
ically optimal properties. Unfortunately, such lattices do not lend themselves to efficient implementation. Another
key contribution of this paper, described in Section VII, is a simplified nested-lattice quantization scheme, based on
Conway and Sloane’s Voronoi codes [7], that is similar to the one used in the proofs of Theorem 1 and Theorem 3,
but uses low-dimensional nested lattices. For such lattices, we suggest a fast implementation, whose computational
efficiency does not depend on R. This simplified scheme attains performance fairly close to theoretical estimates
therein. We hope the resulting matrix quantization scheme to be a good candidate for practical application in LLMs
and other algorithms relying on heavy matrix multiplication operations.

Additional contributions of this work include the following:
• We study the inner product case a = b = 1, in full generality, assuming the entries of A are drawn iid from

distribution P , the entries of B are drawn iid from distribution Q, and the rates R1 and R2 are not necessarily
equal. We derive several upper and lower bounds on the smallest attainable distortion in computing the inner
product, and prove some results on the structure of the optimal encoders and decoder.

• For the matrix multiplication case, when the entries of A and B are drawn iid from a distribution P with zero
mean and variance σ2, we show that (7) continues to hold with Γ(R) replaced by Γ(R+D(P∥N (0, σ2)).

Key ideas and proofs of these results are sketched in Section I-B. We proceed to motivation and review of the
literature.

5

ai − × S Pκn + QΛf
(·) modQΛc (Wai

, 1̂
n1

⊤ai, ∥̂āi∥)

(
1
n1

⊤ai
)
1

√
n

∥āi∥
Z1

āi Ui
Ui,[κn] Ũi,[κn]

bj − × S Pκn + QΛf
(·) modQΛc (Wbj ,

1̂
n1

⊤bj , ∥̂b̄j∥)

(
1
n1

⊤bj
)
1

√
n

∥b̄j∥
Z2

b̄j Vj Vj,[κn] Ṽj,[κn]

Fig. 1: Encoders for matrix multiplication. Each column of A is encoded by the same encoder, and each column of
B is encoded by the same encoder. The encoder used for columns of A and that used for columns of B are also
the same, except that for A we use the dither vector Z1 ∈ Rκn, whereas for B we use the dither vector Z2 ∈ Rκn.
We illustrate the operation of the encoders on the ith column of A, ai ∈ Rn, and on the jth column of B, bj ∈ Rn.
The block S corresponds to left multiplication by the rotation matrix S ∈ Rn×n, and the block Pκn corresponds
to projecting the vector Ui ∈ Rn (respectively Vj ∈ Rn) to Rκn, κ ∈ 1

n · {0, 1, . . . , n}, by keeping only its first κn
coordinates. Here, κ is the time-sharing/sparsification parameter, determining the fraction of coordinates in each
vector that are actually “described” to the decoder. The lattices Λc ⊂ Λf ⊂ Rκn are nested. The component QΛf

(·) is
a lattice quantizer which maps a point in Rκn to the closest lattice point in Λf . The component mod Λc maps a point
x ∈ Rκn to x−QΛc(x) ∈ Vc, where Vc is the Voronoi region of Λc. The binary representation Wai (respectively
Wbj) is an encoding of Ũi,[κn] ∈ (Λf ∩ Vc) ∼= Λf/Λc (respectively Ṽj,[κn] ∈ Λf/Λc) using log |Λf/Λc| bits.

The scalars 1̂
n1

⊤ai, ∥̂āi∥ (respectively, 1̂
n1

⊤bj , ∥̂b̄j∥) are high-resolution descriptions of 1
n1

⊤ai, ∥āi∥ (respectively,
1
n1

⊤bj , ∥b̄j∥), which require only O(log n) bits. The dither vectors Z1, Z2 must be known to the decoder. They can
be randomly drawn by the encoders and decoder and require sharing randomness between them (in practice, we just
store random seed with the matrices). The matrix S need not be known by the decoder. The operations marked in
red corresponds to zero-centering the column vectors, and may be avoided altogether. The effect of avoiding those
operations on the performance is replacing Ā with A and B̄ with B in the MSE upper bounds in Theorems 1, 3
and 12.

A. Importance of quantization for modern applications
To set the stage for the problem, let us estimate what level of quantization (in bits / entry) would be relevant

for today’s main consumer of matrix multiplications: the large language models (LLMs). For those, quantization is
typically employed for accelerating inference. During inference LLM is busy computing many products A⊤B of
matrices with sizes d× a and d× b respectively. This requires 2abd FLOPs and ad+ bd+ ab entries to load/store
from memory. Ideally, we would want to quantize entries in such a way that all compute is fully utilized. For that
we need to know the ratio ξ of available FLOPs to available memory bandwidth, a quantity known as “ops:bytes”
of a processor. It ranges from ξ = 5 . . . 20 for modern CPUs (FP32 arithmetic via AVX512) to ξ ≈ 300 for the
fastest GPUs (FP16 on an H100 or B200). The quantization rate saturating compute should then be bounded (in
bits/entry) as

R <
16

ξ

ab

a+ b+ ab
d

. (14)

It turns out that there are two stages of running inference with LLMs: the pre-fill (when the input prompt is
processed) and the generation (when response tokens are sequentially generated). During the pre-fill LLM we have
a = d and b = L (d is the so-called hidden dimension and L is the sequence length), while during the generation
we have a = L and b = 1 (the A matrix coming from KV-cache and B matrix being new token’s embedding).
Thus, to saturate the computation core, we need

Rpre-fill =
16Ld

ξ(d+ 2L)
, Rgenerate =

16L

ξ(L+ 1 + L/d)
≈ 16

ξ
.

6

Wai

Wbj

Λf/Λc-decoder

Λf/Λc-decoder

−

−

modQΛc

modQΛc

⟨·, ·⟩ ×× × + ̂(A⊤B)ij
Z1

Z2

1
n ∥̂āi∥∥̂b̄i∥

α
n · 1̂n1⊤ai · 1̂n1⊤bj

Ũi,[κn]

Ṽj,[κn]

Ûi,[κn]

V̂j,[κn]

Fig. 2: Decoder for the matrix multiplication problem. We illustrate the estimation of (A⊤B)ij . The component
Λf/Λc-decoder maps log |Λf/Λc| bits to points in Λf ∩Vc ⊂ Rκn, where Vc is the Voronoi region of the lattice Λc.
The component ⟨·, ·⟩ computes the inner product Û⊤

i,[κn]V̂j,[κn], and α ∈ [0, 1] is a (MMSE-like) scaling coefficient.
The operation marked in red need only be implemented if the encoders implemented the corresponding zero-
centering operations marked in red in Figure 1. Note that we can estimate the entire product A⊤B by first decoding
ˆ̃A = [Û1,[κn]| · · · |Ûa,[κn]] and ˆ̃B = [V̂1,[κn]| · · · |V̂b,[κn]], computing the matrix α ˆ̃A⊤ ˆ̃B, and then computing its

Kronecker product with the rank-1 matrix N whose ijth entry is Nij = 1
n ∥̂āi∥∥̂b̄j∥, and adding to it the rank 1

matrix µ whose ijth entry is µij = n · 1̂n1⊤ai · 1̂n1⊤bj .

We can see that during generation phase, on CPUs we would want to approach 1-3 bits/entry, while on GPUs
we will not be able to ever saturate compute (that is, a decrease in quantization rate translates proportionally to
decrease in runtime). For the pre-fill phase, for large LLMs we get Rgenerate > 16 bit (that is, just storing plain FP16
is already good enough). Quantization during pre-fill might still be important for “small” LLMs running on fast
GPUs: for example, for BERT [8] we have L = 512, d = 768 and ξ = 300 (for an H100), resulting in quantization
rate R ≈ 11.7 bit/entry.

B. Sketch of the proof

This work started with the goal of trying to understand approximate matrix multiplication for two matrices A
and B which are random, with iid Gaussian entries N (0, 1). We started by trying to solve the case of a = b = 1
(Sections II and III), i.e. when A⊤B is simply an inner product of two iid Gaussian vectors.

Recall that the Gaussian distortion-rate function is D(R) = 2−2R, e.g. [9, Section 26.1.2]. A simple argument
(Thm. 5) shows that compressing A to Â and B to B̂ via rate-R optimal Gaussian vector quantizer achieves error

E[(Â⊤B̂ −A⊤B)2] ≤ ϕ(D(R)), ϕ(x) := 2x− x2 .

It turned out that the function ϕ(D(R)) is monotonically decreasing but not convex. Thus, via time-sharing one
can achieve a lower convex envelope of ϕ(D(R)), which turns out to be the Γ(R) function defined in (1).

We next proceed to lower bounds on distortion or, equivalently, to lower bounds on rate R required for the
existence of encoders f1, f2 and decoder g satisfying

E[(g(f1(A), f2(B))−A⊤B)2] ≤ nD (15)

A simple oracle bound (by revealing B to the decoder) shows that rate R cannot be smaller than the standard Shannon
rate-distortion function of A, see Theorem 4. However, this bound leaves a wide gap with the achievability bound
given above. Next, by a standard data-processing argument (and observation that encoders for A and B can be
without loss of generality be taken identical) in Section III-B we deduce that 15 requires rate

R ≥ lim sup
n→∞

1

n
inf
Â
{I(A; Â) : 1

n

n∑
i=1

ϕ(λi) ≤ D} , (16)

where A ∼ N (0, In), infimum is over all Rn-valued random variables Â and {λi} are the eigenvalues of Cov(A|Â).
This reduces inner product quantization to an optimization of a multi-letter mutual information. Notice that the

7

distortion constraint is no longer separable, and hence the standard single-letterization (e.g. [9, Theorem 24.8])
does not work and the limit on the right-hand side is not possible to evaluate. For the special case of Gaussian
distribution of entries of A we were able to single-letterize the expression on the right-hand side of (16), see
Theorem 6, showing that left-hand side of (16) evaluates to Γ−1(D). Putting both upper and lower bounds together,
we conclude that optimal compression rate for the iid Gaussian inner product problem is thus given by Γ−1(D),
see Theorem 7.

We next proceed to solving the matrix case. Luckily, it turns out that for Gaussian iid matrices, again, the optimal
compression for matrix multiplication of A⊤B is asymptotically achieved by compressing each column separately
via the use of optimal inner product quantizers, see Theorems 8 and 9.

Having solved the iid Gaussian case, we proceed to analyzing general (non-random) matrices and vectors.
Specifically, for the inner product problem we first normalize each of the two vectors to have norm

√
n and these

norms are compressed using a separate high-resolution scalar quantizer. Next, normalized vectors are multiplied
by a common random orthogonal matrix. This makes each resulting vector uniformly distributed on the sphere of
radius

√
n, while their inner product is unchanged. As is well known a high-dimensional vector that is uniform on

the sphere is very similar to an iid Gaussian vector (for example, in terms of joint distribution of small O(
√
n)-sized

subsets). Thus, we reduce the problem to (15) except this time Ai, Bi
iid∼ N

(
0,

(
1 ρ
ρ 1

))
, where ρ = A⊤B

∥A∥·∥B∥ .

This slight change creates a crucial complication compared to the previous case of ρ = 0.
Indeed, suppose we are only tasked with quantizing B and A is given to the decoder undistorted. Because of

dependence between two terms in the product A⊤(B− B̂) we have to recourse to something like Cauchy-Schwarz,
yielding

E[(A⊤B −A⊤B̂)2 ≤ E[∥A∥2∥B − B̂∥2] = Ω(n2) .

Thus, using “black box” quantizers for A and B only yields n2 performance guarantees violating (15). This is
where lattice quantization comes in. Specifically, using the idea of dithering we can make a (randomized) quantizer
whose quantization error (B − B̂) becomes independent of B and A.

In order to guarantee finite quantization rate, we also need to “truncate” the infinite lattice, for which we use
another key idea: a “good” nested lattice quantizer as in [10], [11], [12]. However, due to the nature of the problem
we require construction of nested lattice pairs that satisfy stronger conditions than were known from prior work
(see Theorem 13, whose proof builds upon heavy-lifting in a recent [13]). Overall, we construct quantizers for
inner product problem of non-random vectors with a reconstruction error that depends only on the inner product
between the vectors and their individual ℓ2 norms, see Theorem 11. Since the performance bounds coincides with
the lower bound for the iid Gaussian case, it turns out that the resulting quantizers are optimal and generally cannot
be improved (except, possibly, in terms of finite-n performance). Together these steps complete proof of the main
results quoted above.

Remark on ϵ-nets and randomization via rotation (and dithering). We believe that the effect of randomization is
crucial to our construction. Indeed, consider the special case of (12) with a = b = 1 and vectors A,B constrained
to be norm ∥A∥ = ∥B∥ =

√
n. Suppose for simplicity that vector B is allowed to be quantized at infinite rate

and we are only interested in quantizing A to nR bits. With this budget, the standard idea would be to create
an O(

√
n)-net covering the

√
nSn−1 and set Â to be the nearest neighbor in this net. What performance can this

scheme guarantee? Since A and B can be arbitrary the best we can do to is a Cauchy-Schwarz estimate

(A⊤B − Â⊤B)2 ≤ ∥A− Â∥2∥B∥2 ≍ n2 .

Thus, whereas our lattice quantizer in (12) yields guarantee O(n) on quadratic error for the inner product, the
trivial ϵ-net argument (even with B given for free) only yields n2 bound. As we described above, the key benefit
of rotation, complemented by dithering, is making A− Â a zero-mean vector.

C. Related work

Randomized linear algebra/sketching, and locality-sensitive hashing (LSH) are techniques widely used in practice
for computing approximate inner products and approximate matrix multiplications, as well as other operations, in
reduced dimensions. The figure of merit in these fields is typically the tradeoff between the reduced dimension and
the approximation error. Since the dimension of the reduced matrix/vector is related to the number of bits required
for storing it, this body of work is relevant to our study. However, the tradeoff between the number of bits per
dimension and the total approximation error, and its dependence on the properties of A, B and A⊤B is often subtle.

8

Thus, there is no immediate translation between the required dimension of a sketch and the number of bits needed
for representing it for obtaining the required accuracy.

Many algorithms have been developed for randomized linear algebra, see [14], [15] for a survey, and in particular
for approximate matrix multiplication. A canonical example is the Monte-Carlo Matrix Multiplication (MCMM)
algorithm [16] which randomly samples (the same) c rows from A ∈ Rn×a and B ∈ Rn×b and estimates A⊤B as
the (scaled) matrix multiplication of the sub-sampled matrices. Thus, each matrix is represented by ac (respectively
bc real numbers), and the expected squared Frobenius norm of the approximation error is shown to scale like
O(∥A∥2F ∥B∥2F /c). Similarly, LSH for cosine similarity or ℓ2 distance also produce low-dimensional sketches of
u ∈ Rn and v ∈ Rn, from which the inner product of u⊤v can be approximated. Specifically, in [17] it is proposed
to project the two vectors using c random projections (same random projections for both vectors) and only store the
sign of each projection. The Hamming distance between the obtained vectors is distributed as Binomial

(
c, θ(u,v)π

)
where θ(u, v) = cos

(
u⊤v

∥u∥·∥v∥

)
, such that the expected squared error in estimating θ(u, v) is O(1/c). In [18] it is

proposed to estimate ∥u − v∥ (which is equivalent to estimating u⊤v for u and v on the sphere) by computing
Gaussian linear combinations of each of them, and using a (dithered) scalar quantizer for quantizing each of
the entries of the linear combinations. Specifically, for a vector G ∈ Rn, with iid N (0, 1) entries, we have that
G⊤(u− v) ∼ N (0, ∥u− v∥2), and therefore the probability that G⊤u and G⊤v are quantized (after dithering) to
the same value is a monotone function of ∥u− v∥.

All the schemes mentioned above, as well as many other sketching/LSH schemes suffer from the same short-

coming: their relative error E∥Â⊤B−A⊤B∥2
F

∥A⊤B∥2
F

scales like O
(

1
c
∥A∥2

F ∥B∥2
F

∥A⊤B∥2
F

)
, and typically these schemes are applied

with constant c. When ∥A∥2
F ∥B∥2

F

∥A⊤B∥2
F

= Ω(1), these schemes perform remarkably well, despite the fact that c does

not grow with n. However, when ∥A∥2
F ∥B∥2

F

∥A⊤B∥2
F

= ω(1), as is the case for random iid matrices, their relative error
is very high. A notable exception is the algorithm proposed by Pagh in [19], which represents each matrix using
n·min{m, a} (respectively n·min{m, b}) real numbers, and produces an unbiased estimator for A⊤B with expected

error of E
(
(Â⊤B)i,j − (A⊤B)i,j

)2
= O

(
∥A⊤B∥2

F

m

)
, for all i, j, and does so with runtime proportional to n2+nm

(ignoring logarithmic factors). When the product A⊤B is known to be highly sparse, this allows to estimate the
sparsity pattern with m proportional to the number of nonzero entries.

The topic of matrix quantization has received much attention in the last decade in the context of DNNs and
LLMs. The goal here is to reduce the memory footprint of the weight matrices, allowing to load them to the
main memory using less IOs, as well as speed up the multiplications and additions operations by moving from
floating point numbers to small integers (and when possible, also sparsifying the matrices, saving some operations
altogether). Roughly speaking, one can distinguish between two paradigms: quantization-aware training, where the
training procedure is designed to output weight matrices with “cheap” representation [20], [21], and post-training
quantization, where the training procedure is performed in high precision, and quantization of the weights is only
performed after training has terminated (perhaps with some fine tuning afterwards) [22], [23], [24], [25], [26],
[27], [5]. In order to further speed up matrix multiplication, and reduce the number of IOs needed for using KV-
cache, some works also develop quantizers for the activations [23], [25], [26], [27], while other works assume the
activations are kept in high precision [22], [5]. Quantization for DNNs and LLMs are typically evaluated according
to the end-to-end performance of the quantized architecture, but often the Frobenius norm of the approximation
error is considered as the intermediate optimization criterion for quantizing the weights at each layer [20], [28].
Some works rely on specific empirical observations on the distribution of weights and activations in LLMs. For
example [24], [25], [26] exploit the fact that a small subset of entries in the activations have significantly larger
magnitude than the majority of entries. Notably, in [27] it is observed that for large LLMs, quantizing all weights
to {−1, 0, 1} and the activations to 8 bits, hardly affects the overall performance. Among the work described
above, the algorithm from [5] is closest to the scheme we use in the proof of our Theorem 1 and Theorem 3,
as well as the practical adaptation of the scheme used in those proofs, which is described in Section VII. The
work [5] develops an algorithm for quantizing the weight matrices (keeping the activations in high precision) that
is based on random rotation using the randomized Hadamard transform (that can be performed in time n log n) and
then using the E8 lattice for quantizing the rotated matrix. The mapping from lattice points to bits that was used
in [5] required access to a lookup table, and was tailor-designed for R = 2, while using different rates requires to
further use successive refinement (residual vector quantization). While our practical scheme in Section VII also uses
product-lattice quantization, we use a nested lattice quantizer/Voronoi code [7], which results in a simple mapping

9

from lattice points to bits, regardless of R. Furthermore, we quantize both matrices to be multiplied. In LLMs,
when activations/KV-cache data is also compressed, quantization must occur in inference time, and the encoders are
required to be fast. On the other hand, when weights-only quantization is performed, the encoding is done offline,
and only decoding is required to be efficient. The work [29] leverages this asymmetry and builds a complicated
encoder based on a trellis with a large number of states, while the decoder, on the other hand, is highly efficient.
Such asymmetric schemes are not suitable for quantizing activations/KV-cache, whereas in the scheme we describe
in Section VII both the encoders and the decoder are efficient, and can be both applied in inference time. In addition
to reducing the limitations incurred by the memory bandwidth, an additional benefit of quantizing both matrices,
is that one can replace the decoder with a lookup table, as in [30], [31], [32], [33], resulting in very fast decoding
in CPUs.

Following [5], the QuaRot [6] scheme also uses randomized Hadamard transform prior to quantization, followed
by 4-bit scalar quantization of each entry in both rotated matrices. Our implementation in Section VII quantizes
the entries of the rotated matrices using nested-lattice codes, which come much closer to the optimal rate-distortion
tradeoff than scalar quantizers, with essentially the same complexity (provided that the base lattice has an efficient
nearest-neighbor decoder, as is the case for essentially all “good” lattices in dimensions 2, 3, 4 and 8).

To the best of our knowledge, there was very little work on distributed compression for inner product/matrix
multiplication in the information theory literature. Recently, Malak [34] studied the problem of lossless distributed
compression of binary random matrices for computing their product, and derived non-trivial bounds under stringent
assumptions on the joint distribution. Some prior work considered the problem of distributed compression of random
vectors with the goal of approximately computing a linear function of those vectors [35], [36]. In those works,
the goal was to estimate, say, the difference between the two vectors in Rn, which is itself a vector in Rn. While
the inner product of these vectors, which is a scalar in R, can be computed from their difference (assuming their
individual norms were encoded in high resolution), it seems, a-priory, that distributed compression for inner product
computation is an easier task. Our results show that this is, in fact, hardly the case. Another line of related work
in the information theory literature, is that of Ingber et al. [37] that considered the fundamental limits of lossy
compression of a database in order to support approximate nearest neighbor search (see also [38] for a practical
implementation). We note in passing that much recent work focused on coding for speeding up distributed matrix
multiplication by introducing redundancy for mitigating the effect of “slow workers” (stragglers), see, e.g., [39].
This line of work is not directly related to approximate matrix multiplication via compression, studied in this paper.

Finally, one may wonder if approximating matrix product in mean squared error (MSE) metric is the right
distortion metric. Indeed, it was shown in [40] that if the high-dimensional vectors to be compressed are probability
distributions and the metric is KL divergence (reasonable assumptions for attention matrices in LLMs), the optimal
quantization algorithms become quite different from the MSE ones. We leave these extensions for future work.

To summarize, the main innovations of this work with respect to prior work are:
a. Our work provides, for the first time, the fundamental limits of quantization for matrix multiplication. We derive a

non-asymptotic lower bound on the error of any quantization algorithm for the case of Gaussian iid matrices, and
develop a “robust” quantization algorithm (that makes no assumptions on the matrices A, B) that asymptotically
attains it. This gives a useful benchmark for evaluating the performance of any robust quantization algorithm.

b. On the algorithmic side, we introduce several new components that were not used in previous work on quan-
tization for matrix multiplication: sparsification/time-sharing, MMSE scaling, nested lattice quantization. Those
components, together with randomization in the form of rotation and dithering are required for attaining the
optimal performance. For the analysis, we also prove new results on the existence of high-dimensional lattices
with the required properties for quantized matrix multiplication.

c. We develop a low-complexity framework for approaching our theoretic lower bounds. Our framework is based on
Voronoi codes in low dimensions, but together with an overload avoidance mechanism it nevertheless performs
quite close to the asymptotic limits. It allows for fast encoding and decoding, and works for any R > log q,
where q is an integer. Unlike prior work on lattice-based weights-only quantization, the same scheme can be
used for any such rate, and the encoding/decoding complexity is invariant to the quantization rate R.

d. Our lower and upper bounds give a theoretic justification for the widely used idea of applying the same random
rotation to both matrices A and B prior to quantization. In particular, the schemes used in the proofs of Theorem 1
and Theorem 3 are based on random rotation followed by quantizers based on “good” high-dimensional nested
lattices. Our analysis reveals that using ℓ∞ normalization followed by quantization to Zn on the rotated vectors
(e.g. [6]) is highly sub-optimal, and using “good” nested lattices instead, leads to a multiplicative reduction by

10

of factor O(log n) in the resulting distortion, see (13).

D. Paper organization

We begin our study with the special case where a = b = 1, so that matrix multiplication becomes an inner
product. The reason is twofold: First, it is easier to gain intuition for this problem, and all techniques for proving
converse (impossibility) results for the inner product case, easily extend to the matrix multiplication case. The second
reason is that our achievability results are based on compression of each column of A separately and compression
of each column of B separately, and estimating each inner product forming Cij = (A⊤B)i,j = a⊤i bj separately. In
Section II we formally define the compression for inner product computation problem, identify the structure of the
optimal decoder, and give simple expressions on the attained distortion as a function of the encoders f1 and f2, as
well as a simple lower bound on the distortion in terms of the “standard” distortion-rate function. In Section III we
restrict attention to the symmetric case where the two vectors have the same distribution, and both encoders have the
same rate. We prove lower and upper bounds on the smallest attainable distortion in this case, which coincide in the
Gaussian case. In Section IV we generalize the inner product results for matrix multiplication A⊤B of A ∈ Rn×a

and B ∈ Rn×b, for general a and b. Building on the bounds developed for the inner product case of a = b = 1,
we prove lower and upper bound on the smallest expected squared Frobenius norm of the error. In the special case
where all entries in both matrices are iid Gaussian, the lower bound results in Theorem 2. In Section V we develop
a quantization scheme, based on randomly rotating both A and B by the same rotation matrix, and then using
nested-lattice quantizers for separately quantizing each column of the rotated matrices, for qunatization of arbitrary
matrices A ∈ Rn×a and B ∈ Rn×b. The expected squared Frobenius norm of the approximation error attained by
this scheme is upper bounded in Theorem 12. Our main results stated above, Theorem 1 and Theorem 3, are obtained
as simple corollaries of Theorem 12. The upper bound depends on A and B only through ∥Ā∥F , ∥B̄∥F , ∥Ā⊤B̄∥F ,
and meets the lower bound from Theorem 2 for the case where A and B have Gaussian iid entries. The main
component in the proof of Theorem 12 is a nested lattice quantization scheme for inner product computation of
two arbitrarily correlated vectors, each uniformly distributed on the sphere. This coding scheme is presented and
analyzed in Section VI. For the analysis we also prove new lattice existence results, stated in Theorem 13. Finally,
in Section VII we introduce a practical implementation of the quantization scheme from Theorem 12 for matrix
multiplication of arbitrary matrices. In these scheme, we describe several compromises in the choice of lattices
used for quantization, as well as in the rotation matrix used for rotating both A and B. With these compromises
the quantization scheme and the decoder become extremely simple and fast. Some numerical evidence show that,
nevertheless, the resulting approximation error is quite close to the lower bound from Theorem 2. We conclude the
paper with stating several key open problems in Section VIII.

E. Notation

For x > 0 we denote by log(x) the logarithm of x taken to base 2, and by ln(x) the natural logarithm.
We denote the Euclidean (ℓ2) norm of a vector x ∈ Rn by ∥x∥ =

√∑n
i=1 x

2
i and its ℓ1 norm by ∥x∥1 =∑n

i=1 |xi|. For a matrix A ∈ Rn×m we denote the trace operation as tr(A) =
∑n

i=1Aii, and the Frobenius norm
is ∥A∥F =

√∑n
i=1

∑m
j=1A

2
ij =

√
tr(A⊤A). The multiset of eigenvalues of a square matrix A ∈ Rn×n is denote

by eig(A) = (λ1, . . . , λn). For y > 1 we denote [y] = {1, . . . , ⌊y⌋}. We denote the all ones vector in Rn by
1 = [1, . . . , 1]⊤. For a column vector x ∈ Rn we denote by x̄ = x −

(
1
n1

⊤x
)
1 its zero-centered version. For a

matrix A = [a1| · · · |aa] ∈ Rn×a with columns {ai} we denote Ā = [ā1| . . . |āa] its column-centered version. The
differential entropy, mutual information, and KL divergence are denoted by h(·), I(· ; ·), and D(·∥·). The Gaussian
distribution in Rd with mean µ ∈ Rd and covariance matrix Σ is denoted N (µ,Σ). For two random variables
X,Y the notation X ⊥⊥ Y means that they are statistically independent. For a distribution P on alphabet X , the
distribution P⊗n is its n-product (iid) distribution on Xn.

II. COMPRESSION FOR INNER PRODUCT COMPUTATION: GENERAL PROBLEM SETUP AND SIMPLE BOUNDS

Let P and Q be distributions on R with zero mean and unit variance, and let U ∼ P⊗n and V ∼ Q⊗n be
statistically independent. As we argue below, the unit variance assumption is without loss of generality, and the
zero mean assumption is essentially without loss of generality, as the effect of non-zero mean on the performance

11

can be made negligible for large n. We consider the problem of quantizing U and V in order to compute their
inner product U⊤V . In particular, an (n,R1, R2, D) code consists of mappings

f1 : Rn → [2nR1] (17)

f2 : Rn → [2nR2] (18)

g : [2nR1]× [2nR2]→ R, (19)

with

D = DIP =
1

n
E
(
U⊤V − g(f1(U), f2(V))

)2
. (20)

We define

DIP,∗
n (R1, R2) = DIP,∗

n (R1, R2, P,Q) = inf {D : ∃(n,R1, R2, D)− code} . (21)

We further define the asymptotic function

DIP(R1, R2) = DIP(R1, R2, P,Q) = lim sup
n→∞

DIP,∗
n (R1, R2). (22)

To see that the assumption that P and Q have unit variance is without loss of generality, assume that Ũ ∼ P̃⊗n

and Ṽ ∼ Q̃⊗n, such that Var[Ũ] = σ2
1 and Var[Ṽ] = σ2

2 , and we would like to quantize Ũ and Ṽ in order
to estimate Ũ⊤Ṽ . To that end we may define the unit-variance random variables U = Ũ

σ1
and V = Ṽ

σ2
with

corresponding distributions P and Q, compress them using f1(U) and f2(V), and estimate the inner product as

̂̃U⊤Ṽ = σ1σ2 · g(f1(U), f2(V)), (23)

where f1, f2, g attain DIP,∗
n (R1, R2) for P and Q. This scheme will achieve

E
(
Ũ⊤Ṽ − ̂̃U⊤Ṽ

)2

= σ2
1σ

2
2 · E

(
U⊤V − g(f1(U), f2(V))

)2
= σ2

1σ
2
2 ·DIP,∗

n (R1, R2). (24)

This must be optimal, since otherwise we could have attained a smaller distortion for P and Q by first scaling U
and V by σ1 and σ2, respectively, feeding them to the better inner product quantization system, and scaling the
obtained inner product estimate by 1

σ1σ2
.

Next, let us address the zero-mean assumption. Let P and Q be zero-mean distributions, U ∼ P⊗n, V ∼ Q⊗n,
and let Ũ = U + µU1 and Ṽ = V + µV 1 for some µU , µV ∈ R. To encode Ũ and Ṽ we may use the encoders
f1, f2 designed for P,Q and send

f̃1(Ũ) =
[
f1(Ũ − µU1),1

⊤(Ũ − µU1)
]
=
[
f1(U),1⊤U

]
, (25)

f̃2(Ṽ) =
[
f2(Ṽ − µV 1),1

⊤(Ṽ − µV 1)
]
=
[
f2(V),1⊤V

]
, (26)

and estimate the inner product Ũ⊤Ṽ as

̂̃U⊤Ṽ = g (f1(U), f2(V)) + n · µUµV + µU1
⊤V + µV 1

⊤U, (27)

so that

Ũ⊤Ṽ − ̂̃U⊤Ṽ = (U + µU1)
⊤(V + µV 1)−

[
g(f1(U), f2(V)) + n · µUµV + µU1

⊤V + µV 1
⊤U
]

= U⊤V − g(f1(U), f2(V)). (28)

Thus, the error in the case of zero mean U, V and non-zero mean Ũ = U + µU1, Ṽ = V + µV 1 can be made the
same, at the expense of also sending a description of 1TU and 1TV . As those are scalars, they can be described
to high resolution, say O(n−2) using O(log n) bits. Thus, for large n and finite R1, R2 > 0, the cost of those
descriptions is negligible.

Some of our bounds will rely on the distortion-rate function of R-valued source under quadratic distortion. An
(n,R,D) code for a source U ∼ P⊗n consists of an encoder f : Rn → [2nR] and a decoder g : [2nR]→ Rn with
D = 1

nE∥U − g(f(U))∥2. We denote by D∗
n(R) = D∗

n(R,P) the smallest distortion attained by any (n,R,D)
code, and we denote the distortion-rate function by [9]

DP (R) = lim
n→∞

D∗
n(R,P) = min

PY |U :I(U ;Y)≤R
E(U − Y)2. (29)

It is also well-know [9], that D∗
n(R,P) ≥ DP (R) for any n ≥ 1.

12

A. Optimal Decoder and Error Expressions

In the following, we assume f1 and f2 are fixed. We denote WU = f1(U) and WV = f2(V). Let Û = E[U |WU]
and V̂ = E[V |WV].

Proposition 1: The optimal choice for g is g∗(WU ,WV) = Û⊤V̂ .
Proof. The minimum mean squared error (MMSE) estimator of a random variable X from another random variable
Y is X̂ = E[X|Y]. Thus,

g∗(WU ,WV) = E[U⊤V |WU ,WV] = E[U⊤|WU]E[V |WV] = Û⊤V̂ , (30)

where the second equality follows since (U,WU) ⊥⊥ (V,WV).
Let eU = U − Û and ΣeU = E[(U − Û)(U − Û)⊤]. Similarly, let eV = V − V̂ and ΣeV = E[(V − V̂)(V − V̂)⊤].

Recall that by the orthogonality principle[41, Chapter 4.2], it holds that E[Ûe⊤U] = 0 and E[V̂ e⊤V] = 0.
Proposition 2: Assuming that entries of U and V have zero mean and unit variance, we have that the optimal

decoder achieves

E
(
U⊤V − g∗(WU ,WV)

)2
=

1

n
[tr(ΣeV) + tr(ΣeU)− tr(ΣeUΣeV)] (31)

Proof. We have

DIP = E
(
(Û + eU)

⊤(V̂ + eV)− Û⊤V̂
)2

(32)

= E
(
Û⊤eV + V̂ ⊤eU + e⊤UeV

)2
(33)

= E
(
Û⊤eV

)2
+ E

(
V̂ ⊤eU

)2
+ E

(
e⊤UeV

)2
, (34)

where the last transition is due to the orthogonality principle and the statistical independence of U and V . We have
that

E
(
Û⊤eV

)2
= tr

[
E[Û Û⊤eV e

⊤
V]
]
= tr

[
E[Û Û⊤]ΣeV

]
(35)

Recalling that E[Û Û⊤] = I − ΣeU , again, by the orthogonality principle, we obtain

E
(
Û⊤eV

)2
= tr [(I − ΣeU)ΣeV] = tr(ΣeV)− tr(ΣeV ΣeU), (36)

Similarly,

E
(
V̂ ⊤eU

)2
= tr(ΣeU)− tr(ΣeV ΣeU). (37)

Finally,

E
(
e⊤UeV

)2
= tr

[
E[eUe⊤UeV e⊤V]

]
= tr(ΣeUΣeV). (38)

B. Simple Lower Bounds

We show that computing the inner product with mean squared error (MSE) of nD is necessarily harder than
compressing each of the random vectors U and V with ℓ2 norm of nD. Note that in the inner product quantization
problem we are only interested in a single scalar in R while in the standard problem of quantizing a random vector
we are interested in a vector in Rn. Yet, the former problem is at least as hard as the latter.

Theorem 4: For any n ≥ 1

DIP,∗
n (R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} , (39)

and in particular

DIP(R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} . (40)

13

Proof. From Proposition 2 we have that for any f1 : Rn → [2nR1] and f2 : Rn → [2nR2]

E
(
U⊤V − g∗(WU ,WV)

)2
=

1

n
[tr(ΣeV) + tr(ΣeU)− tr(ΣeUΣeV)] (41)

=
1

n

[
tr(ΣeU) + E(Û⊤eV)

2
]

(42)

≥ 1

n
tr(ΣeU) (43)

≥ D∗
n(R1, P), (44)

where (42) follows from (36), and the last inequality follows since WU is an encoding of U with 2nR1 codewords,
which must incur distortion at least D∗

n(R1, P) by definition. Note that the inequality (43) holds with equality in
the “single-sided” case where only U is quantized while V̂ = V , so that eV = 0. The bound D∗

n(R1, R2, P,Q) ≥
D∗

n(R2, Q) follows similarly. Our statement now follows since D∗
n(R1, P) ≥ DP (R1) and D∗

n(R2, Q) ≥ DQ(R2)
for any n ≥ 1.

III. COMPRESSION FOR INNER PRODUCT COMPUTATION: THE SYMMETRIC CASE

In this section we assume P = Q, R1 = R2 = R, and define DIP,∗
n (R,P) = D∗

n(R,R, P, P), and DIP(R,P) =
DIP(R,R, P, P). We first develop a simple upper bound based on using the same encoder for both vectors (that
is f = f1 = f2), that time-shares between a “good” encoder for P under quadratic distortion, and a zero-rate
encoder. We then develop a lower bound on the distortion of inner product compression, which shows that for the
symmetric case, using the same encoder f = f1 = f2 for both U and V is optimal, and depends on the spectrum
of the covariance matrix of eU = U −E[U |f(U)]. We then give some constraints on the error spectrum that can be
attained by a rate R encoder. Using this characterization we obtain a general lower on DIP(R,P). Thus, overall
we show in this section that for any iid source P = Q with EUi∼P [Ui] = 0, EUi∼P [U

2
i] = 1 we have

Γ(R+D(P∥N (0, 1))) ≤ DIP(R,P) ≤ Γ(R) ,

in particular showing that DIP(R,N (0, 1)) = Γ(R).

A. Upper Bound

Define the function

ϕ(x) = 2x− x2. (45)

and note that x 7→ ϕ(x) is increasing and concave on [0, 1]. We give a time-sharing upper bound on DIP(R,P) in
terms of ϕ(DP (R)).

Theorem 5: Assuming that P has zero mean and unit variance, we have

DIP(R,P) ≤ min
0≤κ≤1

(1− κ) + κ · ϕ
(
DP

(
R

κ

))
≤ Γ(R) , (46)

where Γ(R) is defined in (1).
Proof. Note that it is sufficient to prove the first inequality. Indeed, we know that DP (R) ≤ DN (0,1)(R) = 2−2R,
e.g. [9, Theorem 26.3], and in Appendix A we show that

Γ(R) = min
0≤κ≤1

(1− κ) + κ · ϕ
(
2−2R

κ

)
.

In order to show the first inequality, we will prove that

DIP,∗
n (R,P) ≤ min

κ∈ 1
n{0,1,...,n}

(1− κ) + κ · ϕ
(
D∗

κn

(
R

κ
,P

))
(47)

from which the statement immediately follows. Let κ ∈ 1
n {0, 1, . . . , n}, and consider a compressor for P⊗κn under

quadratic distortion: f : Rκn → [2nR = 2nκ
R
κ] and corresponding optimal decoder g : [2nR = 2nκ

R
κ] → Rκn,

g(w) = Ûκn = E[Uκn|f(Uκn) = w], that attains

D =
1

κn
E∥Uκn − Ûκn∥2 =

1

κn
tr(ΣeUκn). (48)

14

We encode U by applying f on Uκn and do not describe the other coordinates. The resulting covariance error
matrix is therefore block diagonal of the form

ΣeU =

[
ΣeUκn 0

0 I(1−κ)n

]
. (49)

Consequently,

tr(ΣeU) = tr(ΣeUκn
) + tr(I(1−κ)n) = nκD + n(1− κ) (50)

tr(ΣeUΣeU) = tr(ΣeUκn
ΣeUκn

) + tr(I(1−κ)n) = ∥ΣeUκn
∥2F + n(1− κ). (51)

Recall that for a positive semi-definite matrix A ∈ Rm×m it holds that ∥A∥2F ≥ 1
m (tr(A))2. This follows since

the vector λ = eig(A) has non-negative entries, so that tr(A) = ∥λ∥1, and therefore ∥A∥2F = ∥λ∥22 ≥ 1
m∥λ∥

2
1 =

1
m (tr(A))2. Thus,

∥ΣeUκn
∥2F ≥

1

κn
(tr(ΣeUκn

))2 = κnD2, (52)

and, by (51), we have

tr(ΣeUΣeU) ≥ nκD2 + n(1− κ). (53)

We use the same encoder also for encoding V , such that ΣeV = ΣeU , and use the optimal decoder g∗ for estimating
U⊤V . Applying Proposition 2, we obtain

DIP =
1

n
[tr(ΣeU) + tr(ΣeV)− tr(ΣeUΣeV)] (54)

=
1

n

[
2 tr(ΣeU)− ∥ΣeU ∥2F

]
(55)

≤ (1− κ) + κ · (2D −D2) (56)
= (1− κ) + κϕ(D). (57)

Taking the compressor f that attains D∗
κn

(
R
κ , P

)
, we obtain the claimed result.

B. Lower Bound

Lemma 1: For the symmetric case, assuming that P has zero mean and unit variance, there is no loss of optimality
in taking f1 = f2 = f , and

DIP,∗
n (R,P) =

1

n
inf
f

[
2∥λ(f)∥1 − ∥λ(f)∥22

]
=

1

n
inf
f

n∑
i=1

ϕ (λi(f)) , (58)

where the infimum runs over all encoders f : Rn → [2nR], and

λ(f) = eig
(
ΣefU

)
, (59)

where efU = U − E[U |f(U)], ΣefU
= E[efUe

f,⊤
U].

Proof. By Proposition 2, we have that for any two encoders f1 : Rn → [2nR] and f2 : Rn → [2nR], when the
optimal decoder is used, it holds that

DIP =
1

n

[
tr(Σ

e
f1
U

) + tr(Σ
e
f2
V

)− tr(Σ
e
f1
U

Σ
e
f2
V

)
]

(60)

=
1

n

[
tr(Σ

e
f1
U

) + tr(Σ
e
f2
U

)− tr(Σ
e
f1
U

Σ
e
f2
U

)
]
, (61)

where the last equality follows since P = Q, and therefore U and V have the same distribution. Rearranging (61),
we obtain

n(1−DIP) = tr((In − Σ
e
f1
U

)(In − Σ
e
f2
U

)) (62)

≤
√

tr((In − Σ
e
f1
U

)2) tr((In − Σ
e
f2
U

)2) (63)

≤ max
i∈{1,2}

tr((I − Σ
e
fi
U

)2) (64)

15

where (63) follows since (C,D) 7→ tr(CD) defines inner product on symmetric matrices C,D ∈ Rn×n, and
therefore the Cauchy-Schwartz inequality holds. We have therefore obtained

DIP ≥ 1

n
min

i∈{1,2}
(2 trΣ

e
fi
U

− tr Σ2

e
fi
U

) (65)

≥ 1

n
inf
f

[
2∥λ(f)∥1 − ∥λ(f)∥22

]
. (66)

Note that all inequalities in the derivation hold with equality if f1 = f2 = f∗, where f∗ attains infimum above (or
is a sequence of functions approaching this infimum).

The following Shannon-lower-bound-type lemma constrains the eigenvalues of an MSE matrix for estimating U
from a 2nR-level quantizer f : Rn → [2nR].

Lemma 2: Assume P has zero mean and unit variance. Let f : Rn → [2nR] be a 2nR-level quantizer, and define
λ(f) = (λ1, . . . , λn) ∈ [0, 1]n as in (59). Then

1

n

n∑
i=1

1

2
log

1

λi
≤ R+D(P∥N (0, 1)). (67)

Proof. We may assume without loss of generality that h(P) > −∞, as otherwise D(P∥N (0, 1)) = ∞ and the
statement trivially holds. Let efU = U − E[U |f(U)], ΣefU

= E[efUe
f,⊤
U]. Since the Gaussian distribution maximizes

differential entropy under second moment constraints, we have that

h(U |f(U)) ≤ 1

2
log det

(
(2πe)ΣefU

)
= n · 1

n

n∑
i=1

1

2
log(2πeλi). (68)

Consequently,

nR ≥ I(U ; f(U)) = h(U)− h(U |f(U)) ≥ h(U)− n · 1
n

n∑
i=1

1

2
log(2πeλi) (69)

= h(N⊗n(0, 1))− n · 1
n

n∑
i=1

1

2
log(2πeλi) + h(P⊗n)− h(N⊗n(0, 1)) (70)

= n

(
1

n

n∑
i=1

1

2
log

1

λi
−D(P∥N (0, 1))

)
, (71)

which yields the claimed result.
Theorem 6: Assuming P has zero mean and unit variance, for any n ≥ 1

DIP,∗
n (R,P) ≥ Γ (R+D(P∥N (0, 1))) , (72)

where Γ(R) is defined in (1), and in particular

DIP(R,P) ≥ Γ (R+D(P∥N (0, 1))) . (73)

Proof. Let f : Rn → [2nR] be a 2nR-level quantizer, and define λ(f) = (λ1, . . . , λn) ∈ [0, 1]n as in (59). Denote
by K = Kf the uniform distribution over (the multiset) λ(f). By Lemma 1, we have that

DIP,∗
n (R,P) = inf

f
Eλ∼Kf

ϕ(λ) = inf
f

Eλ∼Kf
ϕ
(
2−2RN (λ)

)
, (74)

where RN (λ) = 1
2 log

1
λ . Denote Γ1(R) = ϕ(2−2R). In Appendix A we show that

convex envelope of Γ1(R) = Γ(R). (75)

It therefore follows that

DIP,∗
n (R,P) = inf

f
Eλ∼Kf

Γ1(RN (λ)) (76)

≥ inf
f

Eλ∼Kf
Γ (RN (λ)) (77)

≥ inf
f

Γ
(
Eλ∼Kf

RN (λ)
)

(78)

≥ Γ (R+D(P∥N (0, 1))) , (79)

16

where we have used Lemma 2 in the last inequality.

C. The Symmetric Gaussian case

Combining Theorem 5 and Theorem 6, we obtain a complete characterization for the Gaussian case.
Theorem 7:

DIP(R,N (0, 1)) = Γ(R) =

{
1−

(
1− ϕ(2−2R∗

)
)

R
R∗ R < R∗

ϕ(2−2R) R ≥ R∗ . (80)

Proof. The upper bound follows from applying Theorem 5 with κ = min{R/R∗, 1}, and recalling that DN (0,1)(R) =
2−2R. The lower bound follows directly from Theorem 6.

IV. COMPRESSION FOR MATRIX MULTIPLICATION

A. Setup

Let A ∈ Rn×a be a matrix whose entries are drawn iid from the distribution P and B ∈ Rn×b be a matrix,
statistically independent of A, whose entries are drawn iid from the distribution Q. We assume both P and Q are
distributions with zero mean and unit variance. We consider the problem of quantizing A and B in order to compute
their matrix multiplication A⊤B. In particular, an (n, a, b, R1, R2, D) code consists of mappings

f1 : Rn×a → [2naR1] (81)

f2 : Rn×b → [2nbR2] (82)

g : [2naR1]× [2nbR2]→ Ra×b, (83)

with

D = DMM =
1

n · a · b
E∥A⊤B − g(f1(A), f2(B))∥2F . (84)

We define

DMM,∗
n,a,b (R1, R2) = DMM,∗

n,a,b (R1, R2, P,Q) = inf {D : ∃(n, a, b, R1, R2, D)− code} . (85)

We further define the asymptotic function

DMM
a,b (R1, R2) = DMM

a,b (R1, R2, P,Q) = lim sup
n→∞

D∗
n,a,b(R1, R2), (86)

B. Basic Properties and Bounds

Denote WA = f1(A) and WB = f2(B) and further denote Â = E[A|WA] and B̂ = E[B|WB]. Define ΣA =
E[(A− Â)(A− Â)⊤] ∈ Rn×n and M̄A = E[ÂÂ⊤] ∈ Rn×n. Similarly, ΣB = E[(B − B̂)(B − B̂)⊤] ∈ Rn×n and
M̄B = E[B̂B̂⊤] ∈ Rn×n. As in the scalar case, we still have the identities:

ΣA + M̄A = aIn (87)
ΣB + M̄B = bIn. (88)

The next theorem generalizes the basic bounds we derived above for the inner product case, to the matrix multi-
plication case. The proofs are similar to the statements above, and are therefore omitted.

Theorem 8: Assume P and Q have zero mean and unit variance. The following hold:
1) For fixed f1, f2, the optimal choice for g is g∗(WA,WB) = Â⊤B̂, and the distortion is given by

DMM =
1

n · a · b
[
tr(ΣAM̄B) + tr(ΣBM̄A) + tr(ΣAΣB)

]
=

1

n

[
1

a
tr(ΣA) +

1

b
tr(ΣB)−

1

a · b
tr(ΣAΣB)

]
.

2) The oracle lower bound (taking B̂ = B or Â = A) gives

DMM ≥ max

{
1

n · a
tr ΣA,

1

n · b
tr ΣB

}
,

17

and consequently for any n ≥ 1

DMM,∗
n,a,b (R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} ,

and in particular

DMM
a,b (R1, R2, P,Q) ≥ max {DP (R1), DQ(R2)} .

3) For the symmetric case, where R1 = R2 = R and P = Q, we have

DMM
a,b (R,P) ≤ min

0≤κ≤1
(1− κ) + κ · ϕ

(
DP

(
R

κ

))
This is asymptotically attained by quantizing only the first κn coordinates of each column of A and each
column of B.

4) For the symmetric case, where R1 = R2 = R and P = Q, for any n ≥ 1 we have

DMM,∗
n,a,b (R,P) ≥ 1

n
min

{
inf
fa

[
2∥λ(fa)∥1 − ∥λ(fa)∥22

]
, inf
fb

[
2∥λ(fb)∥1 − ∥λ(fb)∥22

]}
=

1

n
min

{
inf
fa

n∑
i=1

ϕ (λi(fa)) , inf
fb

n∑
i=1

ϕ (λi(fb))

}
, (89)

where the infima runs over all encoders fa : Rn×a → [2naR], fb : Rn×b → [2nbR], and

λ(fa) = eig

(
1

a
ΣefaA

)
, λ(fb) = eig

(
1

b
Σ

e
fb
B

)
(90)

where efaA = A− E[A|fa(A)], ΣefaA
= E[efaA e

fa,⊤
A], and efbB = B − E[B|fb(B)], Σ

e
fb
B

= E[efbB e
fb,⊤
B].

C. Maximum Entropy Matrices

The fact that the Gaussian distribution maximizes the differential entropy of a vector, under second moment
constraints, played a pivotal role in the derivation of our bounds for inner product quantization. For matrix
multiplication quantization, the following lemma will play a similar role.

Lemma 3: Let M ∈ Rn×a be a random matrix with E[M] = 0, and E[MM⊤] = Σ. Then

h(M) ≥ a

2
log det

(
2πe

1

a
Σ

)
= a ·

n∑
i=1

1

2
log(2πeλi), (91)

where λ = eig
(
1
aΣ
)
, and this is attained with equality if the columns of M are independent N

(
0, 1aΣ

)
random

vectors.
Proof. Write M = [m1|m2| · · · |ma], where m1, . . . ,ma are zero-mean random vectors in Rn. Denote the marginal
distribution of mi by Pi. Let Σi = E[mim

⊤
i], and recall that

Σ = E[MM⊤] =

a∑
i=1

E[mim
⊤
i] =

a∑
i=1

Σi. (92)

We further have that

h(M) = h(m1, . . . ,ma) ≤
a∑

i=1

h(mi) ≤ a · h
(
1

a

∑
Pi

)
, (93)

where we have used sub-additivity and concavity of differential entropy in the inequalities above. Noting that the
covariance matrix corresponding to the distribution 1

a

∑a
i=1 Pi is 1

a

∑a
i=1 Σi =

1
aΣ, we have

h(M) ≤ a · h
(
N
(
0,

1

a
Σ

))
=
a

2
log det

(
2πe

1

a
Σ

)
. (94)

All inequalities are attained with equality when mi
iid∼ N

(
0, 1aΣ

)
, for i = 1, . . . , a.

This immediately gives the following generalization of Lemma 2

18

Lemma 4: Assume the distribution P has zero mean and unit variance. Let fa : Rn×a → [2naR] be a 2naR-level
quantizer, and define λ(fa) = (λ1, . . . , λn) ∈ [0, 1]n as in (90). Then

1

n

n∑
i=1

1

2
log

1

λi
≤ R+D(P∥N (0, 1)). (95)

Proof. Without loss of generality, we may assume h(P) > −∞, as otherwise D(P∥N (0, 1)) =∞ and the statement
is trivial. Let efaA = A− E[A|fa(A)], ΣefaA

= E[efaA e
fa,⊤
A]. By Lemma 3, we have that

h(A|fa(A)) ≤
a

2
log det

(
(2πe)

1

a
ΣefaA

)
= na · 1

n

n∑
i=1

1

2
log(2πeλi). (96)

Consequently,

naR ≥ I(A; fa(A)) = h(A)− h(A|fa(A)) ≥ h(A)− na ·
1

n

n∑
i=1

1

2
log(2πeλi) (97)

= h(N⊗na(0, 1))− na · 1
n

n∑
i=1

1

2
log(2πeλi) + h(P⊗na)− h(N⊗na(0, 1)) (98)

= na

(
1

n

n∑
i=1

1

2
log

1

λi
−D(P∥N (0, 1))

)
, (99)

which yields the claimed result.

D. Fundamental Limits

Using Theorem 8 and Lemma 4, we prove the following result for the symmetric matrix multiplication case.
Theorem 9: Assuming the distribution P has zero mean and unit variance, for any n ≥ 1

DMM,∗
n,a,b (R,P) ≥ Γ (R+D(P∥N (0, 1))) , (100)

where Γ(R) is defined in (1), and in particular

DMM
a,b (R,P) ≥ Γ (R+D(P∥N (0, 1))) . (101)

Proof. Let fa : Rn×a → [2naR] be a 2naR-level quantizer, and define λ(fa) = (λ1, . . . , λn) ∈ [0, 1]n as in (90).
Denote by K = Kfa the uniform distribution over (the multiset) λ(fa), and RN (λ) = 1

2 log
1
λ , as in the proof of

Theorem 6, we have that

Eλ∼Kfa
ϕ(λ) = Eλ∼Γfa

ϕ
(
2−2RN (λ)

)
. (102)

Recalling from the proof of Theorem 6 that the Γ1(R) = ϕ(2−2R) ≥ Γ(R) and the function R 7→ Γ(R) is convex
and non-increasing, it follows that

Eλ∼Kfa
ϕ
(
2−2RN (λ)

)
≥ Eλ∼Kf

Γ (RN (λ)) (103)

≥ Γ
(
Eλ∼Kf

RN (λ)
)

(104)
≥ Γ (R+D(P∥N (0, 1))) , (105)

where we have used Lemma 4 in the last inequality. Thus,

1

n

n∑
i=1

ϕ(λi(fa)) = Eλ∼Kfa
ϕ (λ) ≥ Γ (R+D(P∥N (0, 1))) . (106)

Similarly, for any fb : Rn×b →
[
2nbR

]
we have

1

n

n∑
i=1

ϕ(λi(fb)) = Eλ∼Kfb
ϕ (λ) ≥ Γ (R+D(P∥N (0, 1))) . (107)

19

Thus, by (89) in Theorem 8, for any n ≥ 1

DMM
n,a,b(R,P) ≥ min

{
min
fa

1

n

n∑
i=1

ϕ(λi(fa)),min
fb

1

n

n∑
i=1

ϕ(λi(fb))

}
(108)

≥ Γ (R+D(P∥N (0, 1))) , (109)

as claimed.
Proof of Theorem 2. Part 1 follows immediately from Theorem 9. Part 2 follows from part 2 of Theorem 8, and
recalling that DN (0,1)(R) = 2−2R.

E. The Symmetric Gaussian case

Combining Theorem 8 and Theorem 9, we obtain a complete characterization for the Gaussian case.
Theorem 10:

DMM
a,b (R,N (0, 1)) = Γ(R). (110)

Proof. The upper bound follows applying Part 3 of Theorem 8 with κ = min{R/R∗, 1}, and recalling that
DN (0,1)(R) = 2−2R. The lower bound follows directly from Theorem 9.

V. LATTICE QUANTIZATION SCHEME FOR MATRIX MULTIPLICATION OF ARBITRARY MATRICES

Our theoretical analysis in Sections II -IV assumed the entries in the vectors/matrices to be multiplied are drawn
iid from some known distribution. In this section, we drop this assumption, and, building on the observations from
the analysis above, develop a robust scheme for compression for matrix multiplication. Our scheme is designed
to attain the optimal distortion in the case where A and B have iid Gaussian entries, but the error it attains for
arbitrary matrices can also be upper bounded.

We first develop encoders f1, f2 : Rn → [2nR] and a decoder g : [2nR] × [2nR] → R for estimating the inner
product of U, V ∈

√
nSn−1 where Sn−1 = {x ∈ Rn : ∥x∥ = 1} is the unit sphere. We then show how these

encoders and decoder can be leveraged for compression for matrix multiplication. Let On(R) be the orthogonal
group, consisting of all orthonormal matrices in Rn×n. It will be useful to analyze the performance of f1, f2, g
with respect to the following distribution on U, V .

Definition 1 (ρ-correlated spherically uniform random vectors): Let S = [S1|S2| · · · |Sn] ∼ Uniform(On(R)) be
a random matrix uniformly distributed over the group of orthogonal matrices in Rn×n (that is, S is drawn from
the Haar measure on On(R)). We say that the random vectors U ∈ Rn and V ∈ Rn are ρ-correlated spherically
uniform random vectors if U =

√
nS1, Z =

√
nS2 and

V = ρU +
√
1− ρ2Z. (111)

Theorem 11: For any ε > 0, 0 < κ ≤ 1 and sufficiently large n, there exist randomized encoders f1, f2 : Rn →
[2nR] and decoders g : [2nR] × [2nR] → R, and g1−sided : [2nR] × Rn → R, such that if U, V are ρ-correlated
spherically uniform

1) for every −1 ≤ ρ ≤ 1 and 0 ≤ α ≤ 1

1

n
E(U⊤V − αg(f1(U), f2(V))2 < ρ2n (1− κα)2 + κα2

1− κ+ κϕ
(
2−2R

κ

)
1− ϕ

(
2−2R

κ

)
+ ε(1 + ρ2n), (112)

where ϕ(t) = 2t− t2.
2) for every −1 ≤ ρ ≤ 1 and 0 ≤ α ≤ 1

1

n
E(U⊤V − αg1−sided(f1(U), V))2 < ρ2n (1− κα)2 + κα2

(
1− κ+

1

22
R
κ − 1

)
+ ε(1 + ρ2n). (113)

The proof is based on dithered nested lattice quantization, and is brought in Section VI.
Remark 1: The randomization required by the encoders and decoders above is in the form of dithering, as will

become clear in the proof of Theorem 11. For the special case of κ = α = 1, the MSE does not involve ρ, and
therefore, there must exist fixed (deterministic) values for the dither vectors which attain the same MSE as above,
or smaller. We believe that there also exist fixed values for the dithers, for which Theorem 11 holds, and that

20

randomness is not required at all here. The technical challenge is that when κ, α ̸= 1 the MSE is bounded as a
weighted sum of expectations, where the weights depend on ρ and α. Thus, showing the existence of “good” fixed
dithers, requires showing that there are dither values for which all involved expectations are small. This requires
establishing some (very weak form of) of concentration of involved random variables, and is left for future work.
Note that the assumptions of Theorem 11 are that U, V are random vectors on the sphere. This assumption is
enforced in the next Theorem by applying a random rotation on arbitrary matrices. While random dithering is
likely to not be needed, we do believe that the random rotation is necessary for Theorem 12 to hold.

Equipped with Theorem 11, we can now easily prove Theorem 12. Recall that for a column vector x ∈ Rn

we denote by x̄ = x −
(
1
n1

⊤x
)
1 its zero-centered version. For a matrix A = [a1| · · · |aa] ∈ Rn×a we denote

Ā = [ā1| . . . |āa].
Theorem 12: For any ε > 0, 0 < κ ≤ 1 and sufficiently large n, there exist randomized encoders f1 : Rn×a →

[2naR], f2 : Rn×b → [2nbR], and decoders g : [0, 1]×[2naR]×[2nbR]→ Ra×b and g1−sided : [0, 1]×[2naR]×Rn×b →
Ra×b such that for any A ∈ Rn×a and B ∈ Rn×b with bounded entries we have

1) Let C = A⊤B, C̃ = Ā⊤B̄, and Ĉ = g(α, f1(A), f2(B)) for 0 < α ≤ 1. Then, for any i ∈ [a], j ∈ [b] we have

E(Ci,j − Ĉi,j)
2 ≤ C̃2

i,j ·
(
(1− κα)2 + ε

)
+
∥āi∥2∥b̄j∥2

n

κα2

1− κ+ κϕ
(
2−2R

κ

)
1− ϕ

(
2−2R

κ

)
+ ε

+ n−8,

(114)

and in particular

E∥A⊤B − g(α, f1(A), f2(B))∥2F < ∥Ā⊤B̄∥2F ·
(
(1− κα)2 + ε

)
+
∥Ā∥2F ∥B̄∥2F

n

κα2

1− κ+ κϕ
(
2−2R

κ

)
1− ϕ

(
2−2R

κ

)
+ ε

+ a · b · n−8. (115)

2) Let C = A⊤B, C̃ = Ā⊤B̄, and Ĉ = g1−sided(α, f1(A), B) for 0 < α ≤ 1. Then, for any i ∈ [a], j ∈ [b] we
have

E(Ci,j − Ĉi,j)
2 ≤ C̃2

i,j ·
(
(1− κα)2 + ε

)
+
∥āi∥2∥b̄j∥2

n

(
κα2

(
1− κ+

1

22
R
κ − 1

)
+ ε

)
+ n−8. (116)

and in particular

E∥A⊤B − g1−sided(α, f1(A), B)∥2F < ∥Ā⊤B̄∥2F ·
(
(1− κα)2 + ε

)
+
∥Ā∥2F ∥B̄∥2F

n

(
κα2

(
1− κ+

1

22
R
κ − 1

)
+ ε

)
+ a · b · n−8. (117)

Proof of Theorem 12. We only prove part 1. The proofs for part 2 is nearly identical, and we specify the required
modifications in the end of the proof.

Recall that M = n1022000 and let δ =M−5. Let f1, f2, g be the encoders and decoder from Theorem 11. Based
on those f1, f2, g, we propose the following rate-R quantization scheme for quantization of matrices A ∈ Rn×a

and B ∈ Rn×b in order to estimate C = A⊤B:
1) Let µai

= 1
n1

⊤ai for i ∈ [a] (similarly, µbj = 1
n1

⊤bj for j ∈ [b]). Since the matrices A and B have bounded
entries, we have that µai ∈ [−M,M], ∀i ∈ [a], and similarly for µbj , j ∈ [b]. For each i ∈ [a] we quantize
µai

to the nearest point in {k · 2δ}k=M/(2δ)
k=−M/(2δ), such that the quantized value µ̂ai

satisfies µ̂ai
= µai

± δ. This
requires a total of a log(M/δ) bits. Similarly, we quantize µbj to µ̂bj for each j ∈ [b], which requires a total
of b log(M/δ) bits.

2) Let āi = ai−µai1 for i ∈ [a] (similarly, b̄j = bj−µbj1 for j ∈ [b]). Since the matrices A and B have bounded
entries, we have that ∥āi∥ ≤ ∥ai∥ ≤

√
nM , ∀i ∈ [a], and similarly for ∥b̄j∥, j ∈ [b]. We quantize the each ∥āi∥,

i ∈ [a], to the nearest point in the grid {0}∪{M−4(1+δ)k}Tk=0, where T = ⌈log(
√
nM5)⌉

log(1+δ) . This requires a total of
a log(T+2) < a

(
log(3 + log(

√
nM5))− log log(1 + δ)

)
bits. Note that if ∥āi∥ ∈ {0}∪[M−4,

√
nM] we have

that ∥̂āi∥ = ∥āi∥(1± δ), and if 0 < ∥āi∥ < M−4, then |∥āi∥− ∥̂āi∥| < M−4. We quantize each ∥b̄j∥, j ∈ [b]

to ∥̂b̄j∥, in a similar manner, requiring a total of b log(T + 2) < b
(
log(3 + log(

√
nM5))− log log(1 + δ)

)
bits.

21

3) Draw S ∼ Uniform(On(R)) at both encoders (using common randomness), and compute Ã = [ã1| · · · |ãa] =
SĀ, and B̃ = [b̃1| · · · |b̃b] = SB̄, where Ā = [ā1| · · · |āa] and B̄ = [b̄1| · · · |b̄b].

4) Let

Ui =
√
n
ãi
∥āi∥

=
√
nS

āi
∥āi∥

, i = 1, . . . , a (118)

Vj =
√
n
b̃j
∥b̄i∥

=
√
nS

b̄j
∥b̄j∥

, j = 1, . . . , b. (119)

Let

ε0 =
1

n

[
log(M/δ) + log(3 + log(

√
nM5))− log log(1 + δ)

]
(120)

and note that ε0 can be made arbitrarily small for n large enough. Apply f1 : Rn → [2n(R−ε0)] on Ui, for
i = 1, . . . , a, and f2 : Rn → [2n(R−ε0)] on Vj , for j = 1, . . . , b.

5) Use g : [2n(R−ε0)]× [2n(R−ε0)]→ R, to estimate each entry of C = A⊤B as

Ĉij = α
∥̂āi∥ ∥̂b̄j∥

n
g(f1(Ui), f2(Vj)) + nµ̂ai

µ̂bj , i = 1, . . . , a, j = 1, . . . , b. (121)

To analyze the mean squared error E(Cij − Ĉi,j)
2, first note that

ā⊤i b̄j = (ai − µai
1)

⊤ (
bj − µbj1

)
= a⊤i bj − nµai

µbj , (122)

so that

Cij = a⊤i bj = ā⊤i b̄j + nµai
µbj = ā⊤i S

⊤Sb̄j + nµai
µbj = ã⊤i b̃j + nµai

µbj

=
∥āi∥ ∥b̄j∥

n
U⊤
i Vj + nµai

µbj . (123)

We therefore have that

Cij − Ĉij =
∥āi∥ ∥b̄j∥

n
U⊤
i Vj − α

∥̂āi∥ ∥̂b̄j∥
n

g(f1(Ui), f2(Vj)) + nµai
µbj − nµ̂ai

µ̂bj (124)

= eij +∆, (125)

where

eij =
∥āi∥ ∥b̄j∥

n

(
U⊤
i Vj − αg(f1(Ui), f2(Vj))

)
(126)

and ∆ = ∆1 +∆2, where

∆1 = nµaiµbj − nµ̂ai µ̂bj (127)

and

∆2 =
α

n
g(f1(Ui), f2(Vj))

(
∥̂āi∥ ∥̂b̄j∥ − ∥āi∥∥b̄j∥

)
. (128)

We have that

|∆1| ≤ nδ(|µa|+ |µb|) + nδ2 ≤ 3nM−4. (129)

To upper bound |∆2|, first note that without loss of generality we can assume |αg(f1(Ui), f2(Vj)| ≤ n because the
quantity U⊤

i Vj it estimates is in [−n, n]. Furthermore,

∣∣∣∥̂āi∥ ∥̂b̄j∥ − ∥āi∥∥b̄j∥∣∣∣ ≤

∥āi∥ · ∥b̄j∥ · 3δ ∥āi∥, ∥b̄j∥ ∈ {0} ∪ [M−4,

√
nM]

M−8 ∥āi∥, ∥b̄j∥ < M−4

2
√
nM−3 otherwise

. (130)

Thus (for n ≥ 4),

|∆2| ≤ 3M−5∥āi∥ · ∥b̄j∥+ 2
√
nM−3 ≤ 4nM−3. (131)

22

We consequently have that

|∆| < ε1 = 7nM−3, (132)

with probability 1. We have therefore obtained

E(Cij − Ĉij)
2 ≤ E(e2ij) + ε21 + 2ε1E|eij | ≤ E(e2ij) + ε21 + 4ε1∥āi∥ · ∥b̄j∥, (133)

where in the last inequality we have used the fact that both |U⊤
i Vj | ≤ n and |αg(f1(Ui), f2(Vj))| ≤ n.

We are therefore left with the task of upper bounding E(e2ij). To that end, let ρij =
ā⊤
i b̄j

∥āi∥ ∥b̄j∥
. We claim that

Ui, Vj are ρij-correlated spherically uniform random vectors. To see this, note that due to the random rotation
matrix S, we may assume without loss of generality that

āi
∥āi∥

= [1|0|0| · · · |0]⊤, (134)

b̄j
∥b̄j∥

= [ρij |
√

1− ρ2ij |0| · · · |0]
⊤, (135)

and this assumption will have no affect on the joint distribution of Ui, Vj . Writing S = [S1|S2| · · · |Sn], we therefore
have that Ui =

√
nS1 and Vj = ρijUi +

√
1− ρ2ijZ, with Z =

√
nS2. Thus, if f1, f2, g are the encoders and

decoder from Theorem 11, we therefore have that for any ε′ > 0 and n large enough

1

n
E(U⊤

i Vj − αg(f1(Ui), f2(Vj)))
2 < ρ2ijn (1− κα)

2
+ κα2

1− κ+ κϕ
(
2−2

(R−ε0)
κ

)
1− ϕ

(
2−2

(R−ε0)
κ

)
+ ε′(1 + ρ2ijn). (136)

Consequently,

E(e2ij) = E
(
∥āi∥ ∥b̄j∥

n

(
U⊤
i Vj − αg(f1(Ui), f2(Vj))

))2

<
∥āi∥2 ∥b̄j∥2

n
ρ2ijn (1− κα)

2
+ κα2 ∥āi∥2 ∥b̄j∥2

n

1− κ+ κϕ
(
2−2

(R−ε0)
κ

)
1− ϕ

(
2−2

(R−ε0)
κ

)
+

∥āi∥2 ∥b̄j∥2

n
ε′(1 + ρ2ijn)

(137)

= (ā⊤i v̄j)
2
(
(1− κα)2 + ε′

)
+
∥āi∥2 ∥b̄j∥2

n

κα2

1− κ+ κϕ
(
2−2

(R−ε0)
κ

)
1− ϕ

(
2−2

(R−ε0)
κ

)
+ ε′

 . (138)

Therefore,

E(Cij − Ĉij)
2 ≤ (ā⊤i v̄j)

2
(
(1− κα)2 + ε′

)
+
∥āi∥2 ∥b̄j∥2

n

κα2

1− κ+ κϕ
(
2−2

(R−ε0)
κ

)
1− ϕ

(
2−2

(R−ε0)
κ

)
+ ε′

+ 4∥āi∥ ∥b̄j∥ε1 + ε21. (139)

Thus, recalling that ∥āi∥ ∥b̄j∥ ≤ nM2, for any ε > 0 and n large enough

E(Cij − Ĉij)
2 ≤ (ā⊤i v̄j)

2
(
(1− κα)2 + ε

)
+
∥āi∥2 ∥b̄j∥2

n

κα2

1− κ+ κϕ
(
2−2R

κ

)
1− ϕ

(
2−2R

κ

)
+ ε

+ n−8 (140)

The proof of part 1 is complete, by noting that C̃ij = ā⊤i b̄j and that

1

n

∑
i,j

∥āi∥2∥b̄j∥2 =
1

n

a∑
i=1

∥āi∥2
b∑

j=1

∥b̄j∥2 =
∥Ā∥2F ∥B̄∥2F

n
,∑

i,j

C̃2
ij = ∥C̃∥2F . (141)

23

The proof for part 2 follows identically from part 2 of Theorem 11.
With Theorem 12 at hand, we easily obtain Theorem 1 and Theorem 3 as simple corollaries.

Proof of Theorem 1. For part 1, let α = ακ =
(
1− ϕ

(
2−2R

κ

))
. Applying part 1 of Theorem 12 gives

E(Ci,j − Ĉi,j)
2 ≤ C̃2

i,j ·
(
G2(R, κ) + ε

)
+
∥āi∥2∥b̄j∥2

n
((1−G(R, κ))G(R, κ) + ε) + n−8, (142)

where

G(R, κ) = 1− κ+ κϕ
(
2−2R

κ

)
. (143)

Choosing κ = min{R/R∗, 1}, we get G(R, κ) = Γ(R), establishing the claim.

For part 2, let α = ακ = 1− 2−2R
κ = 22

R
κ −1

22
R
κ

. Applying part 2 of Theorem 12 gives

E(Ci,j − Ĉi,j)
2 ≤ C̃2

i,j ·
(
G̃2(R, κ) + ε

)
+
∥āi∥2∥b̄j∥2

n

(
(1− G̃(R, κ))G̃(R, κ) + ε

)
+ n−8, (144)

where

G̃(R, κ) = 1− κ+ κ2−2R
κ . (145)

Choosing κ = 1, we get G̃(R, κ) = 2−2R, establishing the claim.
Proof of Theorem 3. Follows by applying part 1 and part 2 of Theorem 12 with α = κ = 1 (that is, no time-
sharing and no MMSE scaling). Note that a straightforward application of Theorem 12 with α = κ = 1 leaves an
∥Ā⊤B̄∥2F · ε term. However, a careful inspection of the proof of Theorem 11 shows that this term is not needed
for the special case of α = κ = 1.

VI. NESTED LATTICE QUANTIZATION FOR INNER PRODUCT COMPUTATION

A. Lattices

We review some basic lattice definitions. See [11] for a comprehensive treatment of lattices in information theory.
For a lattice L ⊂ Rd we define the nearest neighbor quantizer QL : Rd → L as

QL(x) = argmin
λ∈L

∥x− λ∥, (146)

where ties are broken arbitrarily, but in systematic manner. The Voronoi region VL is defined as the set of all points
in Rn that are closer to 0 than to any other lattice point

VL =
{
x ∈ Rd : QL(x) = 0

}
. (147)

Any lattice L ⊂ Rd has a (non-unique) generating matrix G ∈ Rd×d such that L = GZd. The covolume of the
lattice L, denoted covol(L), is the volume of its Voronoi region (or any other fundamental cell of L), which is also
equal to |detG|. Let B = {x ∈ Rd : ∥x∥ ≤ 1} be the unit ℓ2 ball in Rd, whose volume is

Vd =
πd/2

Γ
(
1 + d

2

) , (148)

where here Γ is Euler’s Gamma function, not to be confused with Γ(R) defined in (1). We denote by reff(L) =
(covol(L)/Vd)

1
d the effective radius of L, that is, the radius of a ℓ2 ball in Rd whose volume Vdrdeff(L) equals

covol(L). The covering radius of L is defined as

rcov(L) = min
{
r > 0 : L+ rB = Rd

}
= max {∥x∥ : x ∈ VL} . (149)

Clearly, reff(L) ≤ rcov(L). Let Z ∼ Uniform(VL) be a random vector uniformly distributed over the Voronoi
region of L. We define the second moment of the lattice L as

σ2(L) =
1

d
E∥Z∥2, (150)

and the covariance matrix of L as

R(L) = E[ZZ⊤]. (151)

24

The modulo operation with respect to the lattice L, is defined in this paper as

[x] mod L = x−QL(x). (152)

Note that [x] mod L ∈ VL.
The proof of Theorem 11 uses a nested-lattice quantizer [11], based on a pair of nested lattices Λc ⊂ Λf in Rd.

A quantizer is constructed from such a pair by first quantizing each point in Rd to QΛf
(x), the nearest point in the

lattice Λf . Since there is an infinite number of points in Λf , the encoder cannot describe QΛf
(x) using dR bits.

Instead, it describes the coset of Λc in which QΛf
(x) lies. There are |Λf/Λc| = covol(Λc)/covol(Λf) such cosets,

and therefore, if |Λf/Λc| ≤ 2dR the encoder can indeed send that information with dR bits. When the decoder gets
this information, it knows that QΛf

(x) ∈ QΛf
(x) + Λc, but does not know which point within this coset QΛf

(x)
belongs to. Typically, the decoder will output the most likely member from the coset. For the case where X is an
iid Gaussian vector in Rd, this (approximately) corresponds to selecting x̂ as the member with the smallest energy
in QΛf

(x) + Λc. Under this paradigm, the reconstruction points are Λf ∩ VΛc
.

Many works have established the existence of nested lattices that simultaneously posses many desired properties,
namely, relatively large packing radius, small covering radius, small second moment, and resilience to noise [10],
[42], [43], [44], [45], [46], [11], [47], [48], [12], [49], [50], [13], [51], [52], [53]. In the problem of quantization for
inner product computation a new ingredient enters the picture, that was not previously needed. The inner product
reconstruction error includes a term that consists of the inner product of the quantization errors of each one of the
vectors. To control this term, we need the variance of the inner product Z⊤Z̄ between two independent dither vectors
Z, Z̄ ∼ Uniform(VL) to be small. This in turn, requires the spectrum of the quantization error to be “nearly-white”
in the Frobenius norm sense. Namely, a good lattice quantizer L for the inner product problem needs to satisfy
1
d∥R(L)∥

2
F ≈ (σ2(L))2. While the optimal lattice quantizer in dimension d always satisfies R(L) = σ2(L) ·Id [11],

[54], we do not know whether it also has the additional required properties, e.g., resilience to noise. We must
therefore resort to analyzing a random ensemble of nested lattices, and show that in addition to all other required
properties, they also typically have small 1

d∥R(L)∥
2
F . Our proof that a random lattice has small 1

d∥R(L)∥
2
F relies

on the fact that the covering density of a random lattice is only polynomial in the dimension, which was recently
proved in [13]. We prove the following result in Appendix B. Except for item 4 which required new ideas, the
proofs for all other items follow the techniques developed in the papers on lattice goodness that were cited above.

Theorem 13: There are universal constants C1, C2 such that for any distribution PU on Rd, any rU > 0, D > 0,
α, β > 0, 0 < ε ≤ 1√

2
, and

R ≥ 1

2
log
(
β2 + α2 rU

D

)
+ C1

(
ε+

log d

d

)
(153)

there exists a pair of nested lattices Λc ⊂ Λf in Rd satisfying the following
1) 1

22
dR ≤ |Λf/Λc| ≤ 2dR

2) rcov(Λf) ≤
√
dD and rcov(Λc) ≤ 2R

√
dD;

3) σ2(Λf) ≤ D;
4) 1

d∥R(Λf)∥2F ≤ D2(1 + C2 log3 d
d);

5) For U ∼ PU , Z ∼ Uniform(VΛf
), Z ⊥⊥ U , we have

Pr(αU + βZ /∈ VΛc
) ≤ Pr(∥U∥2 > d · rU) + 6e−d ε2

2 . (154)

Remark 2: If we further require that R = log q for some integer q ≥ 2, there exists a pair of self-similar nested
lattices Λc = qΛ ⊂ Λ = Λf satisfying the statements in Theorem 13. The proof is essentially the same.

Remark 3: While our proof for Theorem 13 does not impose any particular structure on the lattices Λc ⊂ Λf , it is
possible to prove the existence of Construction A lattices Λc ⊂ Λf satisfying Theorem 13. This follows from [51,
Corollary 1.5] that shows that the covering density of a typical Construction A lattice (with judiciously chosen
parameters) is also polynomial in the dimension.

25

B. Proof of Theorem 11

1) Dithered Nested Lattice Quantization for Inner Product: Let d = ⌊κn⌋, and denote U[d] = (U1, . . . , Ud)
⊤

and similarly V[d] =
√
ρU[d] +

√
1− ρ2Z[d]. Let R̃ = n

dR ≥
R
κ , and let Λc ⊂ Λf be a pair of nested lattices in

Rd, with |Λf/Λc| ≤ 2dR̃. Let Z̃1, Z̃2 ∼ Uniform(VΛf
) be statistically independent dither vectors. Our encoders

f1, f2 : Rn → [2nR] compute

Ũ[d] =
[
QΛf

(
U[d] + Z̃1

)]
mod Λc (155)

Ṽ[d] =
[
QΛf

(
V[d] + Z̃2

)]
mod Λc, (156)

and each of them maps the result to nR = dR̃ bits (which is possible since |Λf/Λc| ≤ 2dR̃).
The decoder g(f1(U), f2(V)) computes

Û[d] =
[
Ũ[d] − Z̃1

]
mod Λc (157)

V̂[d] =
[
Ṽ[d] − Z̃2

]
mod Λc, (158)

and estimates the inner product as

g(f1(U), f2(V)) = Û⊤
[d]V̂[d]. (159)

2) Analysis: We now analyze the performance of this scheme. First, note that

Û[d] =
[
Ũ[d] − Z̃1

]
mod Λc =

[[
QΛf

(
U[d] + Z̃1

)]
mod Λc − Z̃1

]
mod Λc

=
[
QΛf

(
U[d] + Z̃1

)
− Z̃1

]
mod Λc

=
[
U[d] +

(
QΛf

(
U[d] + Z̃1

)
− (U[d] + Z̃1)

)]
mod Λc

=
[
U[d] + Z1

]
mod Λc, (160)

where

Z1 = QΛf

(
U[d] + Z̃1

)
−
(
U[d] + Z̃1

)
(161)

is uniform over −VΛf
= VΛf

and statistically independent of U (and everything else), by the Crypto Lemma [10],
[11]. Similarly, we obtain

V̂[d] =
[
Ṽ[d] − Z̃2

]
mod Λc =

[
V[d] + Z2

]
mod Λc, (162)

where Z2 ∼ Uniform(Vf) is statistically independent of V (and everything else).
Let

Û[d],ideal = U[d] + Z1 (163)

V̂[d],ideal = V[d] + Z2 (164)
(165)

and define the overload events

OL1 = {U[d] + Z1 /∈ VΛc}, OL2 = {V[d] + Z2 /∈ VΛc}, OL = OL1 ∪OL2. (166)

In particular, if OL did not occur, the modΛc operation in (160) and in (162) is inactive, and Û[d] = Û[d],ideal and
V̂[d] = V̂[d],ideal. Let

e = αg(f1(U), f2(V))− U⊤V = αÛ⊤
[d]V̂[d] − U

⊤V, (167)

and

eideal = αÛ⊤
[d],idealV̂[d],ideal − U

⊤V. (168)

26

If Pr(OL) is very small, then intuitively E[e2] should be close to E[e2ideal]. Indeed, we prove the following in
Appendix C

Proposition 3:

E(e2) ≤ E[e2ideal] + 75Pr(OL) ·M4(rcov(Λc)) (169)

where

M(rcov(Λc)) = max{
√
n, rcov(Λc)}. (170)

We therefore proceed to compute E(e2ideal). Note that

eideal = α
(
U⊤
[d]V[d] + U⊤

[d]Z2 + V ⊤
[d]Z1 + Z⊤

1 Z2

)
− ρn. (171)

Since PUV Z1Z2
= PUV PZ1

PZ2
and all random vectors U, V, Z1, Z2 have zero mean, we have

E[U⊤
[d]V[d]] = ρd, E[U⊤

[d]Z2] = 0, E[V ⊤
[d]Z1] = 0, E[Z⊤

1 Z2] = 0, (172)

and therefore

E[e2ideal] = ρ2n2 − 2αρ2nd+ α2
(
E[(U⊤

[d]V[d])
2] + E[(U⊤

[d]Z2)
2] + E[(V ⊤

[d]Z1)
2] + E[(Z⊤

1 Z2)
2]
)
. (173)

In Appendix D we show that

E[(U⊤
[d]V[d])

2] ≤ ρ2nd(d+ 1)

n
+
d(n− d)

n
, (174)

Furthermore,

E[(V ⊤
[d]Z1)

2] = E[(U⊤
[d]Z2)

2] = trE[U[d]U
⊤
[d]]E[Z2Z

⊤
2] = trE[Z2Z

⊤
2] = E∥Z2∥2 = d · σ2(Λf), (175)

E[(Z⊤
1 Z2)

2] = trE[Z1Z
⊤
1]E[Z2Z

⊤
2] = trR2(Λf) = ∥R(Λf)∥2F , (176)

where (175) follows since E[U[d]U
⊤
[d]] = Id. Thus,

E[e2ideal] ≤ ρ2n2 − 2αρ2nd+ α2

(
ρ2n

d(d+ 1)

n
+
d(n− d)

n
+ 2dσ2(Λf) + d

1

d
∥R(Λf)∥2F

)
(177)

= n

[
ρ2n

(
1− 2α

d

n
+ α2 d(d+ 1)

n2

)
+ α2

(
d(n− d)
n2

+ 2
d

n
σ2(Λf) +

d

n

1

d
∥R(Λf)∥2F

)]
(178)

= nξ(Λf) (179)

where

ξ(Λf) = ρ2n

((
1− d

n
α

)2

+ α2 d

n2

)
+ α2 d

n

(
1− d

n
+ ψ

(
σ2(Λf)

))
+ α2 d

n

(
1

d
∥R(Λf)∥2F − σ4(Λf)

)
(180)

and ψ(t) = 2t+t2. Note that ξ(Λf) is monotonically increasing in both σ2(Λf) and 1
d∥R(Λf)∥2F . We have therefore

obtained that
1

n
E(e2) ≤ ξ(Λf) +

75M4(rcov(Λc))

n
Pr(OL). (181)

The expression in (181), holds for any pair of nested lattices Λc ⊂ Λf . We now evaluate it for “good” nested
lattices, whose existence is guaranteed by Theorem 13. Recall that R > 0 is fixed. Applying this theorem with
PU[d]

taken as the uniform (Haar) distribution over
√
nSn−1 projected to the first d ≤ n coordinates, α = 1, β = 1,

ru = 1 + ε0 and some 0 < ε0 ≤ 1√
2

, we have that for

D =
1

22(
n
d R−δ) − 1

; δ = C1

(
2ε0 +

log d

d

)
(182)

27

we can find a pair of nested lattice Λc ⊂ Λf satisfying Items 1-5. In particular, for such lattices we have that

1

n
ξ(Λf) ≤ ρ2n

((
1− d

n
α

)2

+ α2 d

n2

)
+ α2 d

n

(
1− d

n
+ ψ (D)

)
+ α2 d

n
D2C2 log

3 d

d
(183)

1

n
M4(Λc) ≤ nmax{1, D224

n
d R} (184)

Pr(OL) ≤ 2Pr(OL1) = 2Pr
(
U[d] + Z1 /∈ VΛc

)
= 2

(
Pr
(
∥U[d]∥2 > (1 + ε0)d

)
+ 6e−d

ε20
2

)
≤ 16e−d

ε20
96 ,

(185)

where in the last inequality we have used Proposition 4, proved in Appendix E, which shows that

Pr
(
∥U[d]∥2 > (1 + ε0)d

)
< 2e−

ε20
96 d, (186)

for all 0 < ε0 < 1. Plugging these into (181) we get

1

n
E(e2) ≤ ρ2n

((
1− d

n
α

)2

+ α2 d

n2

)
+ α2 d

n

(
1− d

n
+ ψ (D)

)
+D2C2 log

3 d

d
+ 1200nmax{1, D224

n
d R}e−d

ε20
96 . (187)

It can be verified that

ψ(D) =
ϕ
(

D
D+1

)
1− ϕ

(
D

D+1

) , (188)

which implies that

ψ

(
1

22t − 1

)
=

ϕ(2−2t)

1− ϕ(2−2t)
. (189)

Thus, for any κ > 0 and ε > 0 we can take ε0 > 0 small enough and n large enough, we have that

1

n
E
(
U⊤V − αg(f1(U), f2(V))

)2 ≤ ρ2n (1− κα)2 + κα2

1− κ+
ϕ
(
2−2R

κ

)
1− ϕ

(
2−2R

κ

)
+ ε(1 + ρ2n), (190)

such that (112) holds. This establishes the first part of the theorem.
The second part of the theorem follows from the same nested lattice coding scheme for encoding U , setting
ˆV[d] = V[d], and applying the same decoder. The analysis is identical, but with Z2 = 0.

VII. PRACTICAL IMPLEMENTATION OF NESTED LATTICE QUANTIZERS

In the proof of Theorem 11 we used a pair of nested lattices Λc ⊂ Λf ⊂ Rd, with |Λf/Λc| = 2dR. Given
such a pair of lattices in Rd, in order to implement the coding scheme described above, we need to implement the
following procedures:

1) QΛf
(x) = argminλf∈Λf

∥x− λf∥
2) QΛc

(x) = argminλc∈Λc
∥x− λc∥

3) Mapping from Λf/Λc to dR bits
4) Mapping from dR bits to the coset representatives Λf ∩ Vc of Λf/Λc

5) Generating a random dither Z ∼ Uniform(VΛf
), where VΛf

is the Voronoi cell of Λf

Self-similar nested lattice codebooks/Voronoi codes: Let Λ ⊂ Rd be a lattice with generating matrix G ∈
Rd×d, such that Λ = GZd. Assume that we have access to a procedure that implements the lattice quantizer QΛ(x)
efficiently, and that there is some τ > 0 such that τZd ⊂ Λ. The assumption that Zd is nested in Λ (up to scaling)
is not very important, but also not restrictive, since the majority of lattices for which efficient lattice quantizers are
known do satisfy it.

Using the lattice Λ, we can construct a pair of nested lattices Λc ⊂ Λf ⊂ Rd, with |Λf/Λc| = 2dR, that induce
an efficiently implementable coding scheme. In particular, let β > 0 and set Λf = βΛ, Λc = qΛf = β · qΛ, where

28

q = 2R is an integer. In [7], Conway and Sloane propose simple implementation of the encoders and decoder
for the induced nested lattice quantizer, which they referred to as Voronoi codes. Algorithm 1 below provides the
pseudo code for implementing f1, f2 from Subsection VI-B1 for such a nested lattice codebook. Note that the
output OverloadError of Algorithm 1 specifies whether or not the overload event OLi, i = 1, 2, defined in (166)
have occurred. In order to implement the decoder g from Subsection VI-B1, one implements (157) by applying
Algorithm 2 on the output of f1, implements (158) by applying Algorithm 2 on the output of f2, and computes
the inner product of the two vectors. In order to generate the random dithers Z̃1, Z̃2, one applies Algorithm 3.

Algorithm 1 NestedLatticeEncoder

Inputs: vector to be encoded x ∈ Rd′
, lattice Λ ⊂ Rd′

with generating matrix G ∈ Rd′×d′
, nesting ratio q ∈ N,

dither vector z ∈ VΛ ⊂ Rd′
, scaling factor β > 0

Outputs: Enc(x) ∈ [q]d
′

(can be represented using ⌈d′ log q⌉ bits), OverloadError that indicates if a modulo
error occurred

t← QΛ

(
x
β + z

)
y ← G−1t
Enc(x)← [y] mod q (elementwise modulo q reduction)

% check whether a modulo error occurred:

x̃← t− z
λc = q ·QΛ

(
x̃
q

)
OverloadError = 1 {λc ̸= 0}

Algorithm 2 NestedLatticeDecoder

Inputs: The encoding Enc(x) ∈ [q]d
′

of x ∈ Rd′
, lattice Λ ⊂ Rd′

with generating matrix G ∈ Rd′×d′
, nesting

ratio q ∈ N, dither vector z ∈ VΛ ⊂ Rd′
, scaling factor β > 0

Outputs: x̂ ∈ Rd′

ỹ ← G · Enc(x)− z
x̂← β

(
ỹ − q ·QΛ

(
ỹ
q

))

Algorithm 3 GenerateRandomDither

Inputs: Lattice Λ ⊂ Rd′
and a number τ > 0 such that τZd′ ⊂ Λ

Outputs: Z ∼ Uniform(VΛ)

U ← Uniform
(
[0, τ)d

′
)

Z ← U −QΛ(U)

Choice of the parameter β: Using this scheme, we have that

D = σ2(Λf) = β2σ2(Λ). (191)

Thus, since the base lattice Λ is given, the parameter β controls D. We also have that

σ2(Λc) = q2σ2(Λf) = 22RD. (192)

The “no-overload” event is equivalent to U[d] + Z1 ∈ Vc (and similarly, V[d] + Z2 ∈ Vc). If Λ is a “good” high-
dimensional (d ≫ 1) lattice, that is Λ is such that βqΛ = Λc ⊂ Λf = βΛ satisfy all items in Theorem 13,
the “no-overload” event happens with high probability provided that 1 + D = 1

dE∥U + Z1∥2 < 22RD, which is
equivalent to D > D∗(R) = 1

22R−1
. In practice, we will usually work with a base lattice Λ whose second moment

29

and coding goodness are sub-optimal. For this reason, we take D = γD∗(R) = γ
22R−1

, for some γ > 0 (where γ
is not necessarily close to 1), which is done by setting

β =

(
γ

22R − 1
· 1

σ2(Λ)

)1/2

. (193)

Overload avoidance mechanism: Recall that Algorithm 1 also indicates, through the variable OverloadError,
whether or not a modulo error occurred, that is, whether or not U[d] + Z1 ∈ Vc (respectively, V[d] + Z2 ∈ Vc).
Whenever a modulo error does occur, one can increase the value of γ further to a large enough value, such that
a modulo error does not occur with the new value, and inform the decoder on what value of γ was chosen. In
practice, we may choose a bank of M values sorted in increasing order γ ∈ {γ1, . . . , γM}. The encoder first uses
γ1. If OverloadError = 1 it tries again with γ2, and keeps increasing γ to the next value until OverloadError = 0.
If γ1 is chosen such that overload error is already not too common, and the values of γi increase sufficiently fast
with i, say γi = i · γ1, the entropy of the first value of γ that returned OverloadError = 0 will be small. Since
we only have to report this index to the decoder once for d symbols, the effect on the quantization rate is not
significant.

Next, we develop a heuristic for choosing γ1. Recall the definition of reff(Λ) =
(

covol(Λ)
Vd

)1/d
from Section VI-A.

The normalized second moment (NSM) of a lattice Λ is defined as

N(Λ) =
σ2(Λ)

(covol(Λ))2/d
=

σ2(Λ)

V
2/d
d r2eff(Λ)

. (194)

If U[d]+Z1 were Gaussian, the probability that it stays within VΛc
would have been upper bounded by the probability

that it stays within a ball with the same volume, that is, within a ball with radius reff(Λc). Thus, we need r2eff(Λc)
to be greater than E∥U[d] + Z1∥2. This corresponds to

1 <
1
dr

2
eff(Λc)

1
dE∥U + Z1∥2

=
1

d

r2eff(Λc)

σ2(Λc)

σ2(Λc)
1
dE∥U + Z1∥2

=
1

dV
2/d
d N(Λ)

22RD

1 +D
=

1

dV
2/d
d N(Λ)

γ · 22R

22R + γ − 1
≈ γ

dV
2/d
d N(Λ)

,

(195)

where the last approximation assumes that 22R + γ − 1 ≈ 22R. Thus, we will take

γ1 ⪆ dV
2/d
d N(Λ) =

dσ2(Λ)

r2eff(Λ)
. (196)

For a measurable set K ⊂ Rd let UK ∼ Uniform(K) and σ2(K) = 1
dE∥UK∥2. For all measurable sets K with

volume Vdrdeff(Λ), we have that σ2(K) ≥ r2eff (Λ)
d+2 , and this is attained by K = reff(Λ)B [11]. It therefore follows

that the right hand side of (196) is at least d
d+2 .

Product lattices/Product quantization: In order to use the self-similar nested lattice scheme described above, we
need a base lattice Λ with an efficient nearest-neighbor decoder/lattice quantizer QΛ(x) and favorable quantization
and coding properties. While it is easy to find (more accurately, to randomly draw) lattices in high-dimensions that
are good for coding and quantization (see Section VI-A), the task of finding such lattices that also admit an efficient
nearest-neighbor decoder is notoriously difficult and is perhaps the holy grail of coding theory for the additive white
Gaussian noise (AWGN) channel. A popular compromise between efficiency and “goodness”, is to use a product
lattice, with a low-dimensional base lattice that is “pretty-good” for coding and quantization [55], [11].

Let d′ be an integer that divides d, and Λ′ ⊂ Rd′
be a lattice in Rd′

. We construct the lattice Λ ∈ Rd as the
product of K = d/d′ copies of Λ′. Namely,

Λ = Λ′ × · · · × Λ′︸ ︷︷ ︸
K times

= Λ′⊗K (197)

The resulting self-similar nested lattices are also the product of K nested lattice pairs

Λc ⊂ Λf = (β1 · qΛ′ ⊂ β1Λ′)× · · · × (βK · qΛ′ ⊂ βKΛ′), (198)

30

where we allow for different choices of β for each product to accommodate for the overload avoidance mechanism
described above. Algorithm 1, Algorithm 2 and Algorithm 3 tensorize, and should be applied separately for each
k = 1, . . . ,K using the base lattice Λ′ ⊂ Rd′

with generating matrix G′ ∈ Rd′×d′
. We also have that

σ2(Λ) = σ2(Λ′) · 1
K

K∑
ℓ=1

β2
k. (199)

Some lattices in small dimensions have excellent quantization and coding properties, as well as efficient nearest
neighbor decoding algorithms. In particular, A3

∼= D3 has the highest packing density among all lattices in R3 [56],
A∗

3 has the smallest NSM among all lattices in R3 [56] (only slightly smaller than that of A3), D4 has the highest
packing density among all lattices in R4 and lowest known NSM among all lattices in R4 [56], [57], and E8 has
the highest packing density (even among non-lattice packings) [58] and the smallest known NSM among all lattices
in R8 [56], [57]. All four lattices listed above, as well as many others from the An, Dn and En families, admit a
very fast lattice decoding algorithm [59]. Similarly, among all lattices in R24, the Leech lattice Λ24, is the the best
known quantizer [57], has the optimal packing density [60] (this is true even among all non-lattice packings [61]),
and admits a pretty fast nearest neighbor decoding (or approximate nearest neighbor decoding) algorithms [62],
[63], [64]. In addition, the second moment of all these lattices (and others) is calculated in [65] and reported also
in [57, Table I]. We also note that the optimal lattice quantizer in any dimension has R(L) = σ2(L) · Id, so that
1
d∥R(L)∥

2
F = σ4(L) for those lattices. Any one of those lattices is a good candidate for the base lattice Λ′. Another

important advantage of these lattices is that they are all subsets of Zn up to scaling. Thus, when these lattices
are used for quantization for matrix multiplication, and dithering is not applied, we can use integer multipliers
(e.g., int8 tensor core in a GPU), rather than floating point multipliers, for multiplying the quantized matrices. The
lattices of higher dimensions, and in particular the Leech lattice, may yield better rate-distortion tradeoff than the
lower-dimensional ones, but there are advantages to using lower-dimensional lattices in terms of efficiency. One of
those is described next.

Lookup tables: Note that we decode Ûk ∈ Rd′
and V̂k ∈ Rd′

just to compute their inner product Û⊤
k V̂k. If we

use the same dither vectors Z̃1, Z̃2 ∈ VΛ′ for all k = 1, . . . ,K, and the same value of β, namely, βU
k = βV

k = β
for all k = 1, . . . ,K, there are only qd

′
values of Û⊤

k we can get, and only qd
′

values of V̂ ⊤
k we can get. Those

do not depend on k. Thus, we can pre-compute all q2d
′

possible values of Û⊤
k V̂k and store them in a lookup table

(LUT). Then, instead of applying the decoder twice and computing the inner product, we simply fetch the result
of the inner product from the LUT. If βU

k ̸= β or βV
k ̸= β, we simply multiply the value fetched from the LUT by

βU
k

β ·
βV
k

β . On some processors, using LUTs significantly speed up the decoding process, as it completely bypasses all
lattice decoding operations, as well as all inner products. For approximate matrix multiplication A⊤B of A ∈ Rn×a

and B ∈ Rn×b using the product nested lattice quantization scheme above, we need to perform a · b · (n/d′) such
operations, whereas the encoding only involves a(n/d′) + b(n/d′) lattice encoding operations. Thus, for a, b≫ 1,
decoding is the computationally heavy procedure, and speeding it up will result in significant speedup of the total
approximate matrix multiplication procedure. Using LUTs is therefore often highly advantageous. However, in order
to have a very fast access time to the LUT, we would like it to “fit” in the highest levels of the cache, ideally
in the L1 cache. This level has small capacity, which restricts the values of q2d

′
= 22Rd′

. Thus, we must keep
Rd′ small. Taking small R will typically not yield satisfactory resolution, so if LUTs are used, we are limited to
using lattices Λ′ of small dimensions. We note that for GPUs the LUT approach may not be attractive since the
tensor core computes matrix multiplications extremely fast, while LUT probing is less efficient on this hardware.
On CPUs on the other hand, the LUT approach can potentially yield significant speed-up.

Hadamard transform: Our encoders f1, f2 for the matrix multiplication problem, as described in the proof of
Theorem 12 and in Figure 1, multiply each column vector in A as well as each column vector in B (more accurately,
in their centered versions Ā, B̄), by a random projection matrix S drawn from the Haar distribution on On(R). In
general, the matrix S drawn from this distribution will have no structure, and calculating SA (respectively SB)
will require O(an2) (respectively, O(bn2)) real-valued multiplication and summation operations. To significantly
reduce the computational burden of this step, it was proposed in [5] (see also [6]) to restrict S to a certain class
of orthogonal projection matrices: The randomized Hadamard transform. Here, we also follow this approach. In
particular, we draw a vector T ∼ Uniform({−1, 1}n), and set K = diag(T), that is, K is a diagonal matrix with

31

Ki,i = Ti. We then set

S =
1√
n
HK, (200)

where H ∈ {−1, 1}n×n is the Walsh-Hadamard matrix of dimension n. Here, we assumed that n is a power of 2,
such that such a matrix exists. Otherwise, we can add rows of all zeros to both A and B, resulting in larger matrices
A ∈ Rn′×a and B ∈ Rn′×b, with n′ = 2⌈log2(n)⌉. Note that in (118-119) we further scale the result by

√
n, so

this cancels out the scaling by 1√
n

in (200). The gain for using the randomized Hadamard transform (200), is that
its special fast-Fourier transform (FFT) structure allows to compute SA (respectively, SB) using only O(an log n)
(respectively, O(bn log n)) additions and multiplications. Despite its simple implementation, the result of applying
the randomized Hadamard transform on A (or B) is quite similar to that of applying a “pure” random rotation on
A (or B) from various statistical perspectives [66], [67], [68].

Representative numeric example: To better illustrate how the building blocks above connect, we provide a
numerical example. We have implemented a product nested lattice codebook, with Λ′ = D3 (such that d′ = 3) as
the base lattice. The lattice D3 consists of all vectors in Z3 whose entries sum up to an even integer. In particular,
2Z3 ⊂ D3. The simple structure of D3 also gives rise to a very simple algorithm for computing QD3

(x) [59,
Algorithm 2]. The lattice D3 has the highest packing density among all lattices in R3 and its packing radius
satisfies [56] rpack(D3)/reff(D3) ≈ (0.74)1/3 ≈ 0.9045, such that its Voronoi region is quite close to a ball. We
also have that σ2(D3) =

3
24 , so that N(D3) ≈ 0.0787 (since covol(D3) = 2). This NSM is only slightly greater

than the smallest NSM attained by any lattice in R3, which is N(A∗
3) ≈ 0.0785.

We have used this base lattice with q = 6 to construct a product nested lattice code as in (198). We used the
same dither vectors Z̃1, Z̃2 ∈ VD3

for all k = 1, . . . ,K (these vectors were drawn once at the beginning of the
experiment). For this choice of d′ = 3 and q = 6, we can implement the decoder using a lookup table of size
(q3)2 = 26 log2 q < 215.6. For constructing the LUT, we used the value β = 1. While for this choice of β all
inner products between vectors in D3 are integer valued, because of the use of dithers, the entries in our LUT are
not integer-valued in general. We nevertheless rounded each of them to the nearest integer, and their range allows
representing each entry in the LUT using an int8 variable. Consequently, the total size of the LUT is less than
64Kbyte, and it can be fully stored in the L1 cache of a modern processing unit.

For the lattice D3, we have that the right-hand side of (196) evaluates to ≈ 0.6139. For the experiment, we chose
γ1 = 0.7, and set our bank of possible values of γ as {i · γ1}9i=1. The corresponding value of β is given by (193).

We drew two random matrices A ∈ Rn×n, B ∈ Rn×n, with all entries iid N (0, 1), where n = 3 · 211. We used
the product nested lattice codebook from (198) with K = 211 for encoding each column of A (using the dither
vector Z̃1) and for encoding each column of B (using the dither vector Z̃2). Since the iid Gaussian distribution is
already rotation invariant, we have not implemented a random rotation. Since the distribution we have used is zero
mean, we also did not implement the “centering” mechanism. We also used α = κ = 1 (no MMSE scaling and no
time-sharing). For each column, we further report the K values of βi (equivalently γi) used for each column. The
(empirical) entropy of this random variable (that takes values in β1 · {i}9i=1) for the choice γ1 = 0.7 was found
to be around ≈ 1.3bits. Since this value is only reported once for every d′ = 3 symbols (using entropy coding),
its contribution to the coding rate is about 0.43 bits per symbol, such that the total rate of the coding scheme is
Reff ≈ log2(6) + 0.43 ≈ 3.015 bits/symbol.

This approximate matrix multiplication algorithm attained 1
n3 ∥Â⊤B−A⊤B∥2F ≈ 0.0593. Let e = Â⊤B−A⊤B.

The empirical distribution of the normalized approximation error e/
√
n (among the n2 entries) is plotted in Figure 3.

Note that for Reff = 3.015, Theorem 2 states that no scheme can attain distortion smaller than of Γ(Reff) = 0.0304
for A and B drawn as above, and Theorem 1 shows that this can be attained using high-dimensional lattices. Thus,
our low-complexity implementation is not far of the optimal performance attained using optimal lattice codes. For
comparison, we also evaluated the approximation error for a simple 3-bit scalar quantization scheme where each
column ai is normalized by ∥ai∥∞ such that all its entries are in [−1, 1], then each entry ãi,t =

ai,t

∥ai∥∞
is quantized

to 1
4 round(4ãi,t), and in the end the quantized entries are rescaled again by ∥ai∥∞. The empirical error attained by

the 3-bit scalar quantizer is 1
n3 ∥Â⊤B −A⊤B∥2F ≈ 0.1668, about 3 times greater than the error attained using the

D3-based scheme with the same rate. The performance gap between the two scheme grows with n, as the random
variable ∥ai∥∞ concentrates around

√
2 lnn for large n. Thus, the dynamic range for the scalar quantizer increases

with n, which results in greater expected squared error.

32

Fig. 3: The approximation error of the D3-based product nested lattice coding scheme with q = 6, for random iid
Gaussian matrices A,B ∈ Rn×n, n = 3 · 211. We plot the histogram of the entries of 1√

n
(Â⊤B − A⊤B) in blue.

For comparison, we also plot the histogram of the entries of 1√
n
(Â⊤B −A⊤B) for a 3-bit scalar quantizer in red.

VIII. OPEN PROBLEMS

One can interpret our Lemma 2 as follows: Let P = N (0, 1) and Un ∼ P⊗n. Then for any random variable Y
we have that

n∑
i=1

RP (λi) ≤ I(Un;Y), (201)

where RP (D) is the quadratic rate-distortion function for a source with distribution P and (λ1, . . . , λn) are the
eigenvalues of Cov(Un|Y). While Lemma 2 establishes (201) for the Gaussian distribution, we were not able to
prove (201) for a general distribution, and we could neither find a counterexample. If (201) turns out to hold for
any P , the proof of Theorem 6 could be easily extended to show that

DIP(R,P) = convex envelope of (ϕ(DP (R)), (202)

where DP (R) is the quadratic distortion-rate function for a source with distribution P . Thus, proving or disproving
that (201) holds for all P is an interesting problem for future research.

In Theorem 1 we have shown the existence of encoders and decoder for quantization for matrix multiplication
whose expected approximation error depends only on ∥Ā∥2F · ∥B̄∥2F and ∥Ā⊤B̄∥2F , and is optimal for A and B

whose entries are iid Gaussian. For iid Gaussian matrices we have that E[∥A∥2
F ∥B∥2

F]/n

E[∥A⊤B∥2
F]

= 1 so that the two error
terms in (4) are well-balanced, and Theorem 1 essentially gives an upper bound of ∥A⊤B∥2F · Γ(R) on the MSE.
Is there a scheme that attains MSE at most ∥A⊤B∥2FΓ(R) universally (for all matrices A, B, not just iid ones)?

33

Another important question is shared randomness. Our construction crucially depends on encoders and decoder
sharing randomness (which practically is not a big issue, since the random seed used by the encoder can be stored
along the compressed matrix representation). In the single-terminal lossy compression shared randomness is not
necessary. Indeed, suppose we have some compact metric space E with distance d and we proved that there exist a
(shared randomness) encoder-decoder pair (f, g) compressing to L bits and achieving simultaneously for all x ∈ E
guarantee:

E[d(x, g(f(x)))] ≤ ∆ .

Also suppose that there exists an ϵ-net of size M1 in E. Fix δ > 0 and average the previous inequality over all M1

elements of the net. Then there must exist a choice ω1 of shared randomness so that at most M2 = M1

1+δ elements
of the ϵ-net have distortion exceeding (1 + δ)∆. Now repeat the argument for the subset M2 to find choice ω2,
etc. After k ≤ logM1

log(1+δ) steps we get Mk+1 = 0. This shows that there must exist a k2L-sized (1 + δ)∆-net that
approximates each of M1 elements. Thus, the space E can be covered to within distortion (1 + δ)∆ + ϵ without
any shared randomness by compressing down to L + log logM1

log(1+δ) bits. By choosing δ → 0 and ϵ ≪ ∆, one can
thus get rid of shared randomness.

However, this method fails in the case of distributed compression of (A,B). Indeed, the previous argument breaks
down because the choice ω of shared randomness affects both quantization grids of A and B simultaneously. Thus,
it is not possible for the compressor who only knows A to decide which of the k choices of ω to use for quantizing
A. It remains an open question to understand fundamental limits of deterministic quantizers.

As another extension, we may consider the question of quantization for product of k matrices
∏k

t=1At. This
paper solves the case of k = 2, but our methods do not seem to be immediately extendable to the k > 2 case.
One remark we want to make, however, is regarding the critical rate. For k = 2 as we saw quantization below
R < 0.906 bit/entry required additional dimensionality-reduction (or Johnson-Lindenstrauss) step. This critical point
was found by convexifying the function Γ1(R) = 1 − (1 − 2−2R)2. Similarly, if one simply asks the question of
optimal quantization for a product of k diagonal Gaussian matrices, one would need to convexify the function
Γ1(R) = 1 − (1 − 2−2R)k. The associated critical rate grows with k from R ≈ 0.906 for k = 2 matrices to
R ≈ 4 for k = 46 matrices etc. This suggests that quantization for deep LLMs at low rates may benefit from
dimensionality reduction steps.

ACKNOWLEDGEMENTS

The authors thank Omri Weinstein (HUJI) for helping them navigate through the literature on approximate matrix
multiplication and Yoon Kim (MIT) for explaining hardware and performance limitations of modern quantization
algorithms in LLMs.

APPENDIX A
CONVEX ENVELOPE OF Γ1(R)

Recall that ϕ(t) = 2t− t2 and

Γ1(R) = ϕ(2−2R). (203)

We show that the convex lower envelope of Γ1(R) is Γ(R). It is easy to verify that R 7→ Γ1(R) is decreasing,
concave on [0, 1/2) and convex on (1/2,∞). Therefore, its convex envelope consists of a linear segment between
(0,Γ1(0) = 1) and (R∗,Γ1(R

∗)) and agrees with Γ1(R) for R > R∗. The point R∗ ≥ 1/2 is chosen such that the
derivative of Γ(R) is smooth and non-decreasing. Thus, the convex envelope of Γ1(R) is given by

Γ(R) =

{
Γ1(R

∗) + Γ′
1(R

∗)(R−R∗) R < R∗

Γ1(R) R ≥ R∗ (204)

where R∗ is chosen by requiring that Γ(0) = Γ1(0) = 1, or in other words, that

Γ1(R
∗)−R∗ · Γ′

1(R
∗) = 1. (205)

34

Since Γ′
1(R

∗) = −4 ln 2·2−2R∗
(1−2−2R∗

) and we can express Γ1(R
∗) as Γ1(R

∗) = 2·2−2R∗
(1−2−2R∗

)+2−4R∗
,

we have that (205) corresponds to

2−4R∗
+ 2 · 2−2R∗

(1− 2−2R∗
)(1 + 2 ln 2R∗) = 1

⇐⇒2 · 2−2R∗
(1− 2−2R∗

)(1 + 2 ln 2R∗) = (1− 2−2R∗
)(1 + 2−2R∗

)

⇐⇒2 · 2−2R∗
(1 + 2 ln 2R∗) = 1 + 2−2R∗

, (206)

⇐⇒1 + 4 ln 2R∗ = 22R
∗
. (207)

APPENDIX B
GOOD NESTED LATTICES

The proof of Theorem 13 will easily follow from Lemma 5, Lemma 6 and Lemma 7, below. We first state these
Lemmas, and give the proof of Theorem 13, which uses them. The proofs of Lemma 6 and the proof of Lemma 7
are brought afterwards.

Following the notation from [13], we denote by Ld the space of lattices of unit covolume in Rd, and by µd the
natural measure on Ld, which we refer to as th Haar-Siegel measure. Let reff(1) = V

− 1
d

d be such that Vdrdeff(1) = 1
and therefore reff(L) = reff(1) for all L ∈ Ld. For c0, c1 > 0 define the set of lattices

Ec0,c1 =
{
L ∈ Ld : Vdr

d
cov(L) < c0d

c1
}
. (208)

Lemma 5 (Corollary of Theorem 1.2 from [13]): For any c1 > 2 there exists a universal constant c0 > 0 such
that

µd({L /∈ Ec0,c1}) <
1

3
. (209)

Lemma 6: For any c0, c1 > 0, there are universal constants C,C ′ > 0 such that for any L ∈ Ec0,c1 , any κ > 0,
α > 0, and β > 0 the following hold

1) rcov(κL) ≤
(
1 + C log d

d

)
κreff(L);

2) σ2(κL) ≤ 1
d

((
1 + C log d

d

)
κreff(L)

)2
;

3) Let Z ∼ Uniform(VκL), and let U be some random variable statistically independent of Z. Then for any
event A ⊂ Rd we have

Pr(αU + βZ /∈ A) ≤ dC Pr(αU + βZ̃ /∈ A) (210)

where Z̃ ∼ Uniform
((

1 + C log d
d

)
κreff(L)B

)
is statistically independent of U .

4) 1
d∥R(κL)∥

2
F ≤

(
1
d

((
1 + C log d

d

)
κreff(L)

)2)2 (
1 + C ′ log3 d

d

)
;

Lemma 7: Let U ∼ PU be a random variable in Rd that satisfies ∥U∥ ≤
√
d · rU with probability 1, and let

Z̃ ∼ Uniform(
√
d · rbB) be statistically independent of U . For α, β, κ, ε > 0 let

EPU ,rU ,rb
α,β,κ,ε =

{
L ∈ Ld : Pr(αU + βZ̃ /∈ VκL) < 6e−d ε2

2

}
. (211)

Then, for any 0 < ε < 1√
2

and

κ > e
ε2

2

√
1 + ε

√
d(α2rU + β2rb)

reff(1)
. (212)

we have that

µd

({
L /∈ EPU ,ru,rb

α,β,κ,ε

})
<

1

3
. (213)

Proof of Theorem 13. Let p be a prime number and k be a positive integer, such that pk ∈ [1/2, 1]2dR. Such
numbers must exist. Denote by Grd,k(Fp) the collection of subspaces of dimension k in Fd

p. Let L be some lattice
in Ld, S be some subspace in Grd,k(Fp), and let the lattice L(S) be as defined in [51, eq. 13]. We have that

35

L ⊂ L(S) and |L(S)/L| = pk. Fix some c1 > 2 and c0 > 0 for which (209) holds. Let C,C ′ be the universal
constants from Lemma 6 and let

κ =

√
dD

(1 + C log d
d)p−

k
d reff(1)

. (214)

We define

Λf = κL(S), Λc = κL. (215)

Thus, |Λf/Λc| = |L(S)/L| = pk, and Item 1 holds with probability 1. Let PŨ = PU |∥U∥2≤rU . Define the events

Equant
f = {p k

dL(S) ∈ Ec0,c1} , Equant
c = {L ∈ Ec0,c1}, Ecode

c = {L ∈ EPŨ ,rU ,D
α,β,κ,ε }. (216)

and assume they all occur (later we will show that if L ∼ µd and S ∼ Uniform(Grd,k(Fp) are statistically
independent, the three events indeed occur simultaneously with positive probability).

From Lemma 6 we have that

rcov(Λf) = rcov

(
κp−

k
d p

k
dL(S)

)
≤
(
1 + C

log d

d

)
κp−

k
d reff(1) =

√
dD, (217)

rcov(Λc) = rcov(κL) ≤
(
1 + C

log d

d

)
κreff(1) = pk/d

√
dD ≤ 2R

√
dD, (218)

σ2(Λf) = σ2
(
κp−

k
d p

k
dL(S)

)
≤ 1

d

((
1 + C

log d

d

)
κp−

k
d reff(1)

)2

= D (219)

1

d
∥R(Λf)∥2F =

1

d
∥R(κp− k

d p
k
dL(S))∥2F ≤

(
1

d

((
1 + C

log d

d

)
κp−

k
d reff(1)

)2
)2(

1 + C ′ log
3 d

d

)
= D2

(
1 + C ′ log

3 d

d

)
(220)

Thus, Λf and Λc satisfy Items 2-4, with C2 = C ′. To show that Item 5 holds, let Z̃ ∼ Uniform(
√
dDB) be

statistically independent of U and write

Pr(αU + βZ /∈ VΛc) = Pr(αU + βZ /∈ VκL) ≤ Pr(∥U∥2 > dru) + Pr(αU + βZ /∈ VκL| ∥U∥2 ≤ dru) (221)

≤ Pr(∥U∥2 > dru) + dC Pr(αU + βZ̃ /∈ VκL| ∥U∥2 ≤ dru) (222)

≤ Pr(∥U∥2 > dru) + 6e−d ε2

2 , (223)

where (222) follows from Item 3 in Lemma 6 and the definition of κ in (214), and (223) follows since L ∈ EPŨ ,rU ,D
α,β,κ,ε .

It therefore remains to show that there exist L ∈ Ld and S ∈ Grd,k(Fp) for which L is in Ec0,c1 and EPŨ ,rU ,D
α,β,κ,ε

and p
k
dL(S) is in Ec0,c1 . To that end, let L ∼ µd and let S ∼ Uniform(Grd,k(Fp)) be statistically independent of

L. By [13, Proposition 2.2] we have that p
k
dL(S) ∼ µd. Thus,

Pr
(
L ∈ Ec0,c1 , p

k
dL(S) ∈ Ec0,c1 , L ∈ E

PŨ ,rU ,D
α,β,κ,ε

)
≥ 1− Pr (L /∈ Ec0,c1)− Pr

(
p

k
dL(S) /∈ Ec0,c1

)
− Pr

(
L /∈ EPŨ ,rU ,D

α,β,κ,ε

)
(224)

= 1− 2µd({L /∈ Ec0,c1})− µd({L /∈ EPŨ ,rU ,D
α,β,κ,ε }) (225)

>
1

3
− µd({L /∈ EPŨ ,rU ,D

α,β,κ,ε }), (226)

36

where we have used the union bound in the first inequality and Lemma 5 in the last inequality. We will be able to
use Lemma 7 with rb = D to deduce that µd({L /∈ EPŨ ,rU ,D

α,β,κ,ε }) <
1
3 and complete the proof, once we show that

κ in (214) is greater than the right hand side of (212). To that end, we write

e
ε2

2

√
1 + ε

√
d(α2rU+β2D)

reff (1)√
dD

(1+C log d
d)p− k

d reff (1)

= p−
k
d

√
α2
rU
D

+ β2e
ε2

2

√
1 + ε(1 + C

log d

d
) (227)

≤ 2
−
(
R− 1

2 log(β2+α2 r2U
D

)
· 2 1

d e
ε2

2

√
1 + ε(1 + C

log d

d
) (228)

≤ 2−C1(ε+ log d
d) · 2 1

d e
ε2

2

√
1 + ε(1 + C

log d

d
) (229)

< 1 (230)

where the last inequality holds for some universal C1 large enough.
Proof of Lemma 6. Let C0 > 0 be a universal constant satisfying

e
1
d ln(c0d

c1) < 1 + C0
log d

d
, ∀d. (231)

Thus, for L ∈ Ec0,c1 we have

Vdrcov(L)
d

Vdreff(L)d
< c0d

c1 ⇐⇒ rcov(L)

reff(L)
< e

1
d ln(c0d

c1) =⇒ rcov(L)

reff(L)
< 1 + C0

log d

d
(232)

Since rcov(κL) = κrcov(L) and reff(κL) = κreff(L), Item 1 holds for any C ≥ C0. Item 2 follows since
σ2(κL) ≤ 1

dr
2
cov(κL) for any lattice L ⊂ Rd.

To prove Item 3, let fZ and fZ̃ be the densities of the random variables Z and Z̃, respectively. By Item 1 we
have that for any L ∈ Ec0,c1 the support VκL of Z is contained in the support

(
1 + C0

log d
d

)
κreff(L)B of Z̃. Thus,

for any z ∈
(
1 + C0

log d
d

)
κreff(L)B we have that

fZ(z) ≤
Vol

((
1 + C0

log d
d

)
κreff(L)B

)
Vol (VκL)

fZ̃(z) ≤
(
1 + C0

log d

d

)d

fZ̃(z) ≤ d
CfZ̃(z). (233)

It therefore follows that

fαU+βZ(x) ≤ dCfαU+βZ̃ , ∀x ∈ Rd, (234)

and therefore for any A ⊂ Rd

Pr(αU + βZ /∈ A) ≤ dC Pr(αU + βZ̃ /∈ A). (235)

We move on to proving Item 4. Let eig(R(κL)) = (λ1, . . . , λd) be the eigenvalues of R(κL), such that
∑d

i=1 λi =

dσ2(κL), and ∥R(κL)∥2F =
∑d

i=1 λ
2
i . Let Z ∼ Uniform(VκL). Since Vol(VκL) = Vdr

d
eff(κL), we have that

log Vdr
d
eff(κL) = h(Z) ≤ 1

2
log det ((2πe)R(κL)) =

d∑
i=1

1

2
log(2πeλi), (236)

37

where the upper bound follows since the Gaussian distribution maximizes entropy under covariance constraints.
Thus,

d∑
i=1

log(λi) ≥ 2 log Vdr
d
eff(κL)− d log(2πe) (237)

= 2 log
(
V

2/d
d r2eff(κL)

)d/2
− d log(2πe) (238)

= d log

(
V

2/d
d r2eff(κL)

2πe

)
(239)

= d log

(
1

2πe

V
2/d
d r2eff(κL)

σ2(κL)
σ2(κL)

)
(240)

= d log σ2(κL)− d log 2πe ·N(κL), (241)

where N(κL) = σ2(κL)

V
2/d
d r2eff (κL)

is the normalized second moment (NSM) of a lattice κL in Rd.

Denote δ(κL) = 2πe ·G(κL)− 1, and ∥R(κL)∥2 = maxi=1,...,n λi. We now show that

1

d

d∑
i=1

λ2i ≤ (σ2(κL))2 + 2δ(κL)∥R(κL)∥22 (242)

Indeed, in the range 0 < x ≤ ∥R(κL)∥2 the second derivative of x 7→ lnx is upper-bounded by − 1
∥R(κL)∥2

2
. Thus,

from Taylor’s expansion around x = σ2(κL) we have

lnλi ≤ lnσ2(κL) +
λi − σ2(κL)

σ2(κL)
− 1

2∥R(κL)∥22
(λi − σ2(κL))2 .

Summing over i and using the facts that a) 1
d

∑
i λi = σ2(κL) and b) 1

d

∑d
i=1 lnλi ≥ lnσ2(κL)− ln(1 + δ(κL))

we get after rearranging terms

2∥R(κL)∥22 ln(1 + δ(κL)) ≥ 1

d

∑
i

(λi − σ2(κL))2 =
1

d

∑
i

λ2i − (σ2(κL))2 ,

completing the proof of (242).
To complete our statement, it remains to show that δ(κL) ≤ c2 log d

d and ∥R(κL)∥2 ≤ c3 log d r2cov(κL)
d , for some

universal constants c2, c3 > 0. This will imply, by (242), that

1

d
∥R(κL)∥2F ≤ (σ2(κL))2 + 2c2c

2
3

log d

d
· log2(d) ·

(
r2cov(κL)

d

)2

(243)

≤

(
1

d

((
1 + C

log d

d

)
κreff(L)

)2
)2

·
(
1 + 2c2c

2
3

log3 d

d

)
, (244)

where we have used Items 1 and 2 in the last inequality.
For bounding δ(κL), we use σ2(κL) ≤ 1

dr
2
cov(κL) and write

2πe ·N(κL) ≤ 2πe

dV
2/d
d

r2cov(κL)

r2eff(κL)
≤ 2πe

dV
2/d
d

(c0d
c1)

2/d ≤ 1 + c2
log d

d
, (245)

where in the first inequality follows since L ∈ Ec0,c1 , and in the second inequality we have used the fact that
2πe

dV
2/d
d

= 1 +O(log d
d).

We now upper bound the operator norm ∥R(κL)∥2 = maxv∈Sn−1 E(v⊤Z)2, for Z ∼ Uniform(VκL). To that

end, let δd =
√

2(C+1) log d
d . For any v ∈ Sn−1 we have that

E(v⊤Z)2 = E
[
∥v∥2∥∥Z∥2 cos2(∠(v, Z))

]
(246)

≤ r2cov(κL)E
[
cos2(∠(v, Z))

]
(247)

≤ r2cov(κL)
(
δ2d + Pr(| cos(∠(v, Z)| > δd)

)
(248)

38

Let A = {z ∈ Rd : |v⊤z| ≤ δd}, and Z̃ ∼ Uniform
((

(1 + C log d
d

)
κreff(L)B

)
. From Item 3, applied with

α = 0 and β = 1, we have

Pr(| cos(∠(v, Z)| > δd) = Pr(Z /∈ A) ≤ dC Pr(Z̃ /∈ A) = dC Pr(| cos(∠(v, Z̃)| > δd) (249)

= dC Pr(| cos(∠(v, ZB)| > δd), (250)

where ZB ∼ Uniform(B). Thus,

E(v⊤Z)2 ≤ r2cov(κL)
(
δ2d + dC Pr(| cos(∠(v, ZB)| > δd)

)
(251)

≤ r2cov(κL)

(
2(C + 1) log d

d
+ dC Pr

(
| cos(∠(v, ZB)|) >

√
2(C + 1) log d

d

))
(252)

≤ c3 log d ·
r2cov(κL)

d
, (253)

where (253) follows since Pr (| cos(∠(v, ZB)|) >
√

2(C+1) log d
d) ≤ e−

2(C+1) log d
2 = d−(C+1), which follows from

the fact that a spherical cap of height 1 − ε has volume (w.r.t. to Sn−1) at most e−dε2/2 for 0 < ε < 1√
2

[69,
Section 7.2].
Proof of Lemma 7. For r > 0, κ > 0 and x ∈ Rd, let

N∗(κL, rB, x) = |((κL \ {0}) + x) ∩ rB)| . (254)

Note that for any r > 0 we have the inclusion of events

{x ∈ rB, N∗(κL, rB,−x) = 0} ⊂ {x ∈ VκL}, (255)

which implies that

{x /∈ VκL} ⊂ {x /∈ rB} ∪ {N∗(ΛκL, rB,−x) > 0} . (256)

Let X = αU + βZ̃. For any given lattice κL, we therefore have that

Pe(L) = Pr(X /∈ VκL) ≤ Pr(X /∈ rB) + Pr (N∗(κL, rB,−X) > 0) (257)
≤ Pr(X /∈ rB) + EX [N∗(κL, rB,−X)], (258)

where the last inequality follows since Pr(N > 0) ≤ E[N] for a random variable N supported on the non-negative
integers. Taking the expectation with respect to L ∼ µn gives

E[Pe(L)] ≤ Pr(X /∈ rB) + ELEX [N∗(κL, rB,−X)], (259)

Applying Siegel’s summation formula, we have

EκLEX [N∗(κL, rB,−X)] = EX [EκL[N
∗(κL, rB,−x)|X = x]] =

Vol(rB)
covol(κL)

=

(
r

κreff(1)

)d

, (260)

so that

E[Pe(L)] ≤ Pr(X /∈ rB) +
(

r

κreff(1)

)d

. (261)

39

Let r2 = d(α2rU+β2rb)(1+ε), for 0 < ε < 1√
2

and let us upper bound the first term. Recalling that X = αU+βZ̃,
we have

Pr(X /∈ rB) = Pr((αU + βZ̃)2 > r2) (262)

= Pr(α2∥U∥2 + β2∥Z̃∥2 + 2αβU⊤Z > r2) (263)

≤ Pr
(
d(α2rU + β2rb) + 2αβU⊤Z̃ > d(α2rU + β2rb)(1 + ε)

)
(264)

= Pr
(
2αβU⊤Z̃ > d(α2rU + β2rb)ε

)
(265)

≤ Pr
(
2αβd

√
rUrb cos(∠(U, Z̃)) > d(α2rU + β2rb)ε

)
(266)

= Pr

(
cos(∠(U, Z̃)) >

d(α2rU + β2rb)

2dαβ
√
rUrb

ε

)
(267)

≤ Pr
(
cos(∠(U, Z̃)) > ε

)
(268)

≤ e−dε2/2 (269)

where (268) follows from (α
√
ru − β

√
rb)

2 ≥ 0, and the last inequality follows from the fact that a spherical cap
of height 1− ε has volume (w.r.t. to Sn−1) at most e−dε2/2 for 0 < ε < 1√

2
[69, Section 7.2]. We have therefore

obtained that

E[Pe(L)] ≤ e−dε2/2 + e−d log
κreff (1)

r . (270)

Taking

κ > e
ε2

2
r

reff(1)
= (1 + ε)e

ε2

2

√
d(α2rU + β2rb)

reff(1)
, (271)

gives

E[Pe(L)] ≤ 2e−dε2/2. (272)

Thus, using Markov’s inequality, we obtain the claimed result.

APPENDIX C
BOUNDING THE EFFECT OF OVERLOAD EVENTS

Proof of Proposition 3. Let

eOL = Û⊤
[d]V̂[d] − Û

⊤
[d],idealV̂[d],ideal, (273)

such that

e = eideal + αeOL. (274)

With probability 1, we have that

|eOL| < |Û⊤
[d]V̂[d]|+ |Û

⊤
[d],idealV̂[d],ideal| ≤ ∥Û[d]∥ · ∥V̂[d]∥+ ∥Û[d],ideal∥ · ∥V̂[d],ideal∥ (275)

≤ r2cov(Λc) + (
√
n+ rcov(Λf))

2, (276)

where the last inequality follows since Û[d], V̂[d] ∈ VΛc
by definition, and since

∥Û[d],ideal∥ = ∥U[d] + Z1∥ ≤ ∥U[d]∥+ ∥Z1∥ ≤ ∥U∥+ ∥Z1∥ ≤
√
n+ rcov(Λf), (277)

and ∥V̂[d],ideal∥ is bounded similarly. With probability 1, we also have that

|eideal| = |αÛ⊤
[d],idealV̂[d],ideal − U

⊤V | ≤ α|Û⊤
[d],idealV̂[d],ideal|+ |U

⊤V | ≤ α∥Û[d],ideal∥ · ∥V̂[d],ideal∥+ |ρ|n (278)

≤ α(
√
n+ rcov(Λf))

2 + |ρ|n (279)

≤ (
√
n+ rcov(Λf))

2 + n, (280)

where (279) follows from (277), and (280) from 0 ≤ α, |ρ| ≤ 1.

40

Note that max{
√
n, rcov(Λf)} ≤ M(Λc), since Λc ⊂ Λf , and therefore VΛf

⊂ VΛc
. It therefore follows that

with probability 1 we have

|eOL| ≤ 5M2(Λc), |eideal| ≤ 5M2(Λc). (281)

Consequently,

E(e2) = E(e2ideal) + α2E(e2OL) + 2αE[eOLeideal] (282)

≤ E(e2ideal) + 75Pr(OL)M4(Λc), (283)

as claimed, where we have used 0 ≤ α ≤ 1 again.

APPENDIX D
PROJECTIONS OF RANDOM UNIFORM ORTHOGONAL VECTORS

Recall that S ∼ Uniform(On(R)) and we denote U =
√
nS1, Z =

√
nS2 and V = ρU+

√
1− ρ2Z. Furthermore,

d = ⌊κn⌋, and we denote U[d] = (U1, . . . , Ud)
⊤ and similarly V[d] =

√
ρU[d] +

√
1− ρ2Z[d]. We have

E[(U⊤
[d]V[d])

2] = E[(ρ∥U[d]∥2 +
√
1− ρ2U⊤

[d]Z[d])
2] = ρ2E∥U[d]∥4 + (1− ρ2)E[(U⊤

[d]Z[d])
2] (284)

where the last equation follows since E[∥U[d]∥2U⊤
[d]Z[d]] = 0 from symmetry. For d = n we trivially have E∥U∥4 =

n2 and then E[(U⊤Z)2] = 0. We proceed to compute E∥U[d]∥4 and then E[(U⊤
[d]Z[d])

2] for general d ≤ n.
It holds that (using the fact that E(U2

i) = 1)

E∥U[d]∥2 = d. (285)

By symmetry, we also have

E(U⊤
[d]Z[d]) = 0. (286)

We will further use the fact that E(U4
i) =

3n
n+2 [70]. To compute E∥U[d]∥4, we first note that, by symmetry

n2 = E∥U∥4 = E

(
n∑

i=1

U2
i

)2

= nE(U4
1) + n(n− 1)E(U2

1U
2
2), (287)

which implies

E(U2
1U

2
2) =

n− E(U4
1)

n− 1
=

n

n+ 2
. (288)

With this, we can write

E∥U[d]∥4 = E

(
d∑

i=1

U2
i

)2

= dE(U4
1) + d(d− 1)E(U2

1U
2
2) =

n

n+ 2
d(d+ 2). (289)

We move on to calculate E(U⊤
[d]Z[d])

2. We have that

E(U⊤
[d]Z[d])

2 = E

(
d∑

i=1

UiZi

)2

=

d∑
i=1

E(U2
i Z

2
i) +

∑
j ̸=i

E(UiUjZiZj) = dξ + d(d− 1)ν, (290)

where

ξ = E(U2
1Z

2
1), ν = E(U1U2Z1Z2), (291)

and the last equality in (290) follows by symmetry. Taking d = n, we get that U⊤
[n]Z[n] = U⊤Z = 0 w.p. 1.

Invoking (290) therefore gives

0 = nξ + n(n− 1)ν =⇒ ν = − ξ

n− 1
. (292)

Substituting this into (290), we obtain

E(U⊤
[d]Z[d])

2 = d

(
1− d− 1

n− 1

)
ξ =

d(n− d)
n− 1

ξ. (293)

41

In order to compute ξ, define e = U − Z. Note that the symmetry and orthogonality of U and Z implies that
e ∼ Uniform(

√
2nSn−1), where Sn−1 is the unit sphere in Rn. It therefore follows that

E(e41) = 4E(U4
1). (294)

On the other hand

E(e41) = E(U1 − Z1)
4 =

4∑
i=0

(
4

i

)
E(U i

1Z
4−i
1) = E(U4

1) + E(Z4
1) + 6E(U2

1Z
2
1) + 4E(U1Z

3
1) + 4E(U3

1Z1). (295)

By symmetry, we clearly have that E(Z4
1) = E(U4

1). We claim that E(U1Z
3
1) = 0. To see this, note that given Z,

the distribution of U is invariant to negation (in other words pU |Z=z(u) = pU |Z=z(−u)). By symmetry, this also
implies that E(U3

1Z1) = 0. We therefore have that

4E(U4
1) = E(e41) = 2E(U4

1) + 6ξ (296)

=⇒ξ = E(U4
1)

3
=

n

n+ 2
. (297)

Substituting this into (293), we obtain

E(U⊤
[d]Z[d])

2 = d · n(n− d)
(n+ 2)(n− 1)

. (298)

Consequently, by (284), (289) and (298), we have

E[(U⊤
[d]V[d])

2] =
nd

n+ 2

(
ρ2(d+ 2) + (1− ρ2)n− d

n− 1

)
(299)

=
nd

n+ 2

(
ρ2
n(d+ 1)− 2

n− 1
+
n− d
n− 1

)
(300)

≤ ρ2nd(d+ 1)

n
+
d(n− d)

n
, (301)

where in the last inequality we have used the fact that n
(n−1)(n+2) ≤

1
n for all n ≥ 2. This establishes our claim.

APPENDIX E
TAIL PROBABILITY OF U[d]

Proposition 4: Let U be uniformly distributed on
√
nSn−1, and let U[d] = (U1, . . . , Ud)

⊤ be its projection on
the first 1 ≤ d ≤ n coordinates. Then, for any 0 < ε < 1

Pr(∥U[d]∥2 > (1 + ε)d) ≤ 2e−(
ε

1+ε)
2 1

24d ≤ 2e−
ε2

96 d (302)

Proof. Let Z ∼ N (0, In) and note that U has the same distribution as
√
n Z

∥Z∥ . Let

X1 =

d∑
i=1

Z2
i , (303)

X2 =

n∑
i=d+1

Z2
i , (304)

and note that X1 and X2 are independent chi-squared random variables with d and n − d degrees of freedom,
respectively. We therefore have

Pr
(
∥U[d]∥2 > (1 + ε)d

)
= Pr

(
n

X1

X1 +X2
≥ (1 + ε)d

)
= Pr ((n− (1 + ε)d)X1 ≥ (1 + ε)dX2) (305)

= Pr

(
1

n− d
X2 ≤

(
1

1 + ε
− d

n− d
ε

1 + ε

)
1

d
X1

)
(306)

= Pr

(
1

n− d
X2 ≤

(
1− ε

1 + ε

(
1 +

d

n− d

))
1

d
X1

)
(307)

= Pr

(
1

n− d
X2 ≤

(
1− ε

1 + ε

n

n− d

)
1

d
X1

)
. (308)

42

Note that for ε
1+ε ·

n
n−d ≥ 1 the probability above is zero. Thus, for the remainder of the proof, we assume

ε
1+ε ·

n
n−d < 1. For any t > 0 we have that

Pr
(
∥U[d]∥2 > (1 + ε)d

)
≤ Pr

(
1

d
X1 > t

)
+ Pr

(
1

n− d
X2 ≤

(
1− ε

1 + ε

n

n− d

)
t

)
. (309)

Let t = 1 + δ for some 0 < δ < 1, and let

δ′ = 1−
(
1− ε

1 + ε

n

n− d

)
(1 + δ). (310)

By standard Chenroff bounds on the tail of the chi-squared distribution

Pr

(
1

d
X1 > t

)
= Pr

(
1

d
X1 > 1 + δ

)
≤ exp

{
d

2
(ln(1 + δ)− δ)

}
≤ exp

{
−dδ

2

16

}
, (311)

where we have used ln(1 + δ)− δ < δ2

8 for all 0 < δ < 1. Similarly, if 0 < δ′ < 1 we have

Pr

(
1

n− d
X2 <

(
1− ε

1 + ε

n

n− d

)
t

)
= Pr

(
1

n− d
X2 < 1− δ′

)
≤ exp

{
n− d
2

(ln(1− δ′) + δ′)

}
(312)

≤ exp

{
− (n− d)δ′2

16

}
. (313)

We will choose

δ = ε′
1 + η2

1 + η − ε′(1 + η2)
, ε′ =

ε

1 + ε
, η =

√
d

n− d
, (314)

such that
dδ2

16
=

(n− d)δ′2

16
(315)

and δ, δ′ > 0. Note further, that

δ ≥ ε′ 1 + η2

1 + η
≥ ε′2(

√
2− 1), (316)

and we therefore have that

(n− d)δ′2

16
=
dδ2

16
≥ dε′2 (

√
2− 1)2

4
≥ dε′2

24
, (317)

yielding the claimed result.

REFERENCES

[1] V. Strassen, “Gaussian elimination is not optimal,” Numerische mathematik, vol. 13, no. 4, pp. 354–356, 1969.
[2] A. Fawzi, M. Balog, A. Huang, T. Hubert, B. Romera-Paredes, M. Barekatain, A. Novikov, F. J. R Ruiz, J. Schrittwieser, G. Swirszcz

et al., “Discovering faster matrix multiplication algorithms with reinforcement learning,” Nature, vol. 610, no. 7930, pp. 47–53, 2022.
[3] R. Duan, H. Wu, and R. Zhou, “Faster matrix multiplication via asymmetric hashing,” in 2023 IEEE 64th Annual Symposium on Foundations

of Computer Science (FOCS). IEEE, 2023, pp. 2129–2138.
[4] V. V. Williams, Y. Xu, Z. Xu, and R. Zhou, New Bounds for Matrix Multiplication: from Alpha to Omega, 2024, pp. 3792–3835.
[5] A. Tseng, J. Chee, Q. Sun, V. Kuleshov, and C. De Sa, “Quip#: Even better llm quantization with hadamard incoherence and lattice

codebooks,” arXiv preprint arXiv:2402.04396, 2024.
[6] S. Ashkboos, A. Mohtashami, M. L. Croci, B. Li, M. Jaggi, D. Alistarh, T. Hoefler, and J. Hensman, “Quarot: Outlier-free 4-bit inference

in rotated llms,” arXiv preprint arXiv:2404.00456, 2024.
[7] J. Conway and N. Sloane, “A fast encoding method for lattice codes and quantizers,” IEEE Transactions on Information Theory, vol. 29,

no. 6, pp. 820–824, 1983.
[8] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of deep bidirectional transformers for language understanding,”

CoRR, vol. abs/1810.04805, 2018. [Online]. Available: http://arxiv.org/abs/1810.04805
[9] Y. Polyanskiy and Y. Wu, Information theory: From coding to learning. Cambridge university press, 2024.

[10] U. Erez and R. Zamir, “Achieving 1/2 log (1+ snr) on the AWGN channel with lattice encoding and decoding,” IEEE Transactions on
Information Theory, vol. 50, no. 10, pp. 2293–2314, 2004.

[11] R. Zamir, Lattice Coding for Signals and Networks: A Structured Coding Approach to Quantization, Modulation, and Multiuser Information
Theory. Cambridge University Press, 2014.

[12] O. Ordentlich and U. Erez, “A simple proof for the existence of “good” pairs of nested lattices,” IEEE Transactions on Information Theory,
vol. 62, no. 8, pp. 4439–4453, 2016.

http://arxiv.org/abs/1810.04805

43

[13] O. Ordentlich, O. Regev, and B. Weiss, “New bounds on the density of lattice coverings,” Journal of the American Mathematical Society,
vol. 35, no. 1, pp. 295–308, 2022.

[14] M. W. Mahoney et al., “Randomized algorithms for matrices and data,” Foundations and Trends® in Machine Learning, vol. 3, no. 2, pp.
123–224, 2011.

[15] P.-G. Martinsson and J. A. Tropp, “Randomized numerical linear algebra: Foundations and algorithms,” Acta Numerica, vol. 29, pp.
403–572, 2020.

[16] P. Drineas, R. Kannan, and M. W. Mahoney, “Fast monte carlo algorithms for matrices i: Approximating matrix multiplication,” SIAM
Journal on Computing, vol. 36, no. 1, pp. 132–157, 2006.

[17] M. S. Charikar, “Similarity estimation techniques from rounding algorithms,” in Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, 2002, pp. 380–388.

[18] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive hashing scheme based on p-stable distributions,” in Proceedings
of the twentieth annual symposium on Computational geometry, 2004, pp. 253–262.

[19] R. Pagh, “Compressed matrix multiplication,” ACM Transactions on Computation Theory (TOCT), vol. 5, no. 3, pp. 1–17, 2013.
[20] Y. Guo, A. Yao, and Y. Chen, “Dynamic network surgery for efficient dnns,” Advances in neural information processing systems, vol. 29,

2016.
[21] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio, “Quantized neural networks: Training neural networks with low

precision weights and activations,” Journal of Machine Learning Research, vol. 18, no. 187, pp. 1–30, 2018.
[22] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep convolutional networks using vector quantization,” arXiv preprint

arXiv:1412.6115, 2014.
[23] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and D. Kalenichenko, “Quantization and training of neural networks

for efficient integer-arithmetic-only inference,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,
pp. 2704–2713.

[24] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 (): 8-bit matrix multiplication for transformers at scale,” Advances in
Neural Information Processing Systems, vol. 35, pp. 30 318–30 332, 2022.

[25] Z. Yao, R. Yazdani Aminabadi, M. Zhang, X. Wu, C. Li, and Y. He, “Zeroquant: Efficient and affordable post-training quantization for
large-scale transformers,” Advances in Neural Information Processing Systems, vol. 35, pp. 27 168–27 183, 2022.

[26] G. Xiao, J. Lin, M. Seznec, H. Wu, J. Demouth, and S. Han, “Smoothquant: Accurate and efficient post-training quantization for large
language models,” in International Conference on Machine Learning. PMLR, 2023, pp. 38 087–38 099.

[27] S. Ma, H. Wang, L. Ma, L. Wang, W. Wang, S. Huang, L. Dong, R. Wang, J. Xue, and F. Wei, “The era of 1-bit llms: All large language
models are in 1.58 bits,” arXiv preprint arXiv:2402.17764, 2024.

[28] E. Frantar, S. Ashkboos, T. Hoefler, and D. Alistarh, “OPTQ: Accurate quantization for generative pre-trained transformers,” in The
Eleventh International Conference on Learning Representations, 2023. [Online]. Available: https://openreview.net/forum?id=tcbBPnfwxS

[29] A. Tseng, Q. Sun, D. Hou, and C. De Sa, “Qtip: Quantization with trellises and incoherence processing,” arXiv preprint arXiv:2406.11235,
2024.

[30] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest neighbor search,” IEEE transactions on pattern analysis and
machine intelligence, vol. 33, no. 1, pp. 117–128, 2010.

[31] D. Blalock and J. Guttag, “Multiplying matrices without multiplying,” in International Conference on Machine Learning. PMLR, 2021,
pp. 992–1004.

[32] P. Stock, A. Joulin, R. Gribonval, B. Graham, and H. Jégou, “And the bit goes down: Revisiting the quantization of neural networks,”
arXiv preprint arXiv:1907.05686, 2019.

[33] R. Guo, S. Kumar, K. Choromanski, and D. Simcha, “Quantization based fast inner product search,” in Artificial intelligence and statistics.
PMLR, 2016, pp. 482–490.

[34] D. Malak, “Distributed structured matrix multiplication,” arXiv preprint arXiv:2405.02904, 2024.
[35] D. Krithivasan and S. S. Pradhan, “Lattices for distributed source coding: Jointly gaussian sources and reconstruction of a linear function,”

IEEE Transactions on Information Theory, vol. 55, no. 12, pp. 5628–5651, 2009.
[36] A. B. Wagner, “On distributed compression of linear functions,” IEEE Transactions on Information Theory, vol. 57, no. 1, pp. 79–94,

2010.
[37] A. Ingber, T. Courtade, and T. Weissman, “Compression for quadratic similarity queries,” IEEE transactions on information theory, vol. 61,

no. 5, pp. 2729–2747, 2015.
[38] I. Ochoa, A. Ingber, and T. Weissman, “Compression schemes for similarity queries,” in 2014 Data Compression Conference, 2014, pp.

332–341.
[39] Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal

coding,” IEEE Transactions on Information Theory, vol. 66, no. 3, pp. 1920–1933, 2020.
[40] A. Adler, J. Tang, and Y. Polyanskiy, “Efficient representation of large-alphabet probability distributions,” IEEE Journal on Selected Areas

in Information Theory, vol. 3, no. 4, pp. 651–663, 2022.
[41] A. Gersho and R. M. Gray, Vector quantization and signal compression. Springer Science & Business Media, 2012, vol. 159.
[42] U. Erez, S. Litsyn, and R. Zamir, “Lattices which are good for (almost) everything,” IEEE Transactions on Information Theory, vol. 51,

no. 10, pp. 3401–3416, 2005.
[43] D. Krithivasan and S. S. Pradhan, “A proof of the existence of good nested lattices,” submitted to the UM CSPL technical reports series,

2007.
[44] B. D. Kudryashov and K. V. Yurkov, “Random coding bound for the second moment of multidimensional lattices,” Problems of Information

Transmission, vol. 43, no. 1, pp. 57–68, 2007.
[45] C. Ling and J.-C. Belfiore, “Achieving awgn channel capacity with lattice gaussian coding,” IEEE Transactions on Information Theory,

vol. 60, no. 10, pp. 5918–5929, 2014.
[46] C. Ling, L. Luzzi, J.-C. Belfiore, and D. Stehlé, “Semantically secure lattice codes for the gaussian wiretap channel,” IEEE Transactions

on Information Theory, vol. 60, no. 10, pp. 6399–6416, 2014.
[47] B. Nazer, V. R. Cadambe, V. Ntranos, and G. Caire, “Expanding the compute-and-forward framework: Unequal powers, signal levels, and

multiple linear combinations,” IEEE Transactions on Information Theory, vol. 62, no. 9, pp. 4879–4909, 2016.
[48] A. Campello, C. Ling, and J.-C. Belfiore, “Algebraic lattices achieving the capacity of the ergodic fading channel,” in 2016 IEEE Information

Theory Workshop (ITW). IEEE, 2016, pp. 459–463.

https://openreview.net/forum?id=tcbBPnfwxS

44

[49] Y.-C. Huang and K. R. Narayanan, “Construction πA and πD lattices: Construction, goodness, and decoding algorithms,” IEEE Transactions
on Information Theory, vol. 63, no. 9, pp. 5718–5733, 2017.

[50] N. Di Pietro, G. Zémor, and J. J. Boutros, “Lda lattices without dithering achieve capacity on the gaussian channel,” IEEE Transactions
on Information Theory, vol. 64, no. 3, pp. 1561–1594, 2017.

[51] O. Ordentlich, O. Regev, and B. Weiss, “Bounds on the density of smooth lattice coverings,” arXiv preprint arXiv:2311.04644, 2023.
[52] M. Sadeghi, R. Qi, C. Feng, H. Khodaiemehr, and Y.-C. Huang, “A simpler proof on the existence of good nested lattice codes over

imaginary quadratic integers for awgn channel,” IEEE Open Journal of the Communications Society, 2024.
[53] L. Liu, S. Lyu, C. Ling, and B. Bai, “On the quantization goodness of polar lattices,” arXiv preprint arXiv:2405.04051, 2024.
[54] R. Zamir and M. Feder, “On lattice quantization noise,” IEEE Transactions on Information Theory, vol. 42, no. 4, pp. 1152–1159, 1996.
[55] G. Forney and G. Ungerboeck, “Modulation and coding for linear gaussian channels,” IEEE Transactions on Information Theory, vol. 44,

no. 6, pp. 2384–2415, 1998.
[56] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices and Groups. New York: Springer-Verlag, 1988.
[57] E. Agrell and B. Allen, “On the best lattice quantizers,” IEEE Transactions on Information Theory, vol. 69, no. 12, pp. 7650–7658, 2023.
[58] M. S. Viazovska, “The sphere packing problem in dimension 8,” Annals of mathematics, pp. 991–1015, 2017.
[59] J. Conway and N. Sloane, “Fast quantizing and decoding and algorithms for lattice quantizers and codes,” IEEE Transactions on Information

Theory, vol. 28, no. 2, pp. 227–232, 1982.
[60] H. Cohn and A. Kumar, “Optimality and uniqueness of the leech lattice among lattices,” Annals of mathematics, pp. 1003–1050, 2009.
[61] H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska, “The sphere packing problem in dimension 24,” Annals of mathematics,

vol. 185, no. 3, pp. 1017–1033, 2017.
[62] A. Vardy and Y. Be’ery, “Maximum likelihood decoding of the leech lattice,” IEEE Transactions on Information Theory, vol. 39, no. 4,

pp. 1435–1444, 1993.
[63] A. Vardy, “Even more efficient bounded-distance decoding of the hexacode, the golay code, and the leech lattice,” IEEE Transactions on

Information Theory, vol. 41, no. 5, pp. 1495–1499, 1995.
[64] E. Viterbo and J. Boutros, “A universal lattice code decoder for fading channels,” IEEE Transactions on Information Theory, vol. 45, no. 5,

pp. 1639–1642, 1999.
[65] J. Conway and N. Sloane, “Voronoi regions of lattices, second moments of polytopes, and quantization,” IEEE transactions on information

theory, vol. 28, no. 2, pp. 211–226, 1982.
[66] N. Ailon and B. Chazelle, “The fast johnson–lindenstrauss transform and approximate nearest neighbors,” SIAM Journal on computing,

vol. 39, no. 1, pp. 302–322, 2009.
[67] E. Liberty, Accelerated dense random projections. Yale University New Haven, CT, 2009.
[68] J. A. Tropp, “Improved analysis of the subsampled randomized hadamard transform,” Advances in Adaptive Data Analysis, vol. 3, no.

01n02, pp. 115–126, 2011.
[69] S. Boucheron, G. Lugosi, and O. Bousquet, “Concentration inequalities,” in Summer school on machine learning. Springer, 2003, pp.

208–240.
[70] A. J. Stam, “Limit theorems for uniform distributions on spheres in high-dimensional euclidean spaces,” Journal of Applied probability,

vol. 19, no. 1, pp. 221–228, 1982.

	Introduction and main results
	Importance of quantization for modern applications
	Sketch of the proof
	Related work
	Paper organization
	Notation

	Compression for Inner Product Computation: General Problem Setup and Simple Bounds
	Optimal Decoder and Error Expressions
	Simple Lower Bounds

	Compression for Inner Product Computation: The Symmetric Case
	Upper Bound
	Lower Bound
	The Symmetric Gaussian case

	Compression for Matrix Multiplication
	Setup
	Basic Properties and Bounds
	Maximum Entropy Matrices
	Fundamental Limits
	The Symmetric Gaussian case

	Lattice Quantization Scheme for Matrix Multiplication of Arbitrary Matrices
	Nested Lattice Quantization for Inner Product Computation
	Lattices
	Proof of Theorem 11
	Dithered Nested Lattice Quantization for Inner Product
	Analysis

	Practical Implementation of Nested Lattice Quantizers
	Open problems
	Appendix A: Convex envelope of 1(R)
	Appendix B: Good Nested Lattices
	Appendix C: Bounding the Effect of Overload Events
	Appendix D: Projections of Random Uniform Orthogonal Vectors
	Appendix E: Tail Probability of U[d]
	References

