A Partial Order Approach to Decentralized Control

Parikshit Shah

Joint work with Pablo A. Parrilo

LIDS, EE/CS, MIT
Motivation

- Many decision-making problems are large-scale and complex.
- Complexity, cost, physical constraints \(\implies\) Decentralization.
- Fully distributed control is notoriously hard.
- A common underlying theme: flow of information.
- What are the right language and tools to think about flow of information?

Contributions

A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.
Motivation

▶ Many decision-making problems are large-scale and complex.
▶ Complexity, cost, physical constraints ⇒ Decentralization.
▶ Fully distributed control is notoriously hard.
▶ A common underlying theme: flow of information.
▶ What are the right language and tools to think about flow of information?

Contributions
A framework to reason about information flow in terms of partially ordered sets (posets).

An architecture for decentralized control, based on Möbius inversion, with provable optimality properties.
Motivation

- Many interesting examples can be unified in this framework.
- Example: Nested Systems [Voulgaris00].

Emphasis: *Flow of information*. Can abstract away this flow of information to picture on right.

Natural for problems of causal or hierarchical nature.
Outline

- Basic Machinery: Posets and Incidence Algebras.
- Decentralized control problems and posets.
- \mathcal{H}_2 case: state-space solution
- Zeta function, Möbius inversion
- Controller architecture
Partially ordered sets (posets)

Definition
A poset \(P = (P, \preceq) \) is a set \(P \) along with a binary relation \(\preceq \) which satisfies for all \(a, b, c \in P \):

1. \(a \preceq a \) (reflexivity)
2. \(a \preceq b \) and \(b \preceq a \) implies \(a = b \) (antisymmetry)
3. \(a \preceq b \) and \(b \preceq c \) implies \(a \preceq c \) (transitivity).

► Will deal with finite posets (i.e. \(|P| \) is finite).
► Will relate posets to decentralized control.
Incidence Algebras

Definition
The set of functions $f : P \times P \to \mathbb{Q}$ with the property that $f(x, y) = 0$ whenever $y \not\leq x$ is called the incidence algebra I.

- Concept developed and studied in [Rota64] as a unifying concept in combinatorics.
- For finite posets, elements of the incidence algebra can be thought of as matrices with a particular sparsity pattern.
Example

\[\begin{pmatrix} a & b & c \\ a & * & 0 & 0 \\ b & * & * & 0 \\ c & * & 0 & * \end{pmatrix} \]
Example

- Closure under addition and scalar multiplication.
- What happens when you multiply two such matrices?

\[
\begin{bmatrix}
* & 0 & 0 \\
* & * & 0 \\
* & 0 & *
\end{bmatrix}
\begin{bmatrix}
* & 0 & 0 \\
* & * & 0 \\
* & 0 & *
\end{bmatrix}
=
\begin{bmatrix}
* & 0 & 0 \\
* & * & 0 \\
* & 0 & *
\end{bmatrix}
\]

- Not a coincidence!
Example

- Closure under addition and scalar multiplication.

What happens when you multiply two such matrices?

\[
\begin{bmatrix}
 * & 0 & 0 \\
 * & * & 0 \\
 * & 0 & * \\
\end{bmatrix}
\begin{bmatrix}
 * & 0 & 0 \\
 * & * & 0 \\
 * & 0 & * \\
\end{bmatrix}
=
\begin{bmatrix}
 * & 0 & 0 \\
 * & * & 0 \\
 * & 0 & * \\
\end{bmatrix}
\]

- Not a coincidence!
Incidence Algebras

- Closure properties are true in general for all posets.

Lemma

Let \(\mathcal{P} \) be a poset and \(\mathcal{I} \) be its incidence algebra. Let \(A, B \in \mathcal{I} \) then:

1. \(c \cdot A \in \mathcal{I} \)
2. \(A + B \in \mathcal{I} \)
3. \(AB \in \mathcal{I} \).

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since \(I \) is in every incidence algebra, if \(A \in \mathcal{I} \) and invertible, \(A^{-1} \in \mathcal{I} \).
- Properties useful in Youla domain.
Incidence Algebras

- Closure properties are true in general for all posets.

Lemma
Let \(P \) be a poset and \(I \) be its incidence algebra. Let \(A, B \in I \) then:

1. \(c \cdot A \in I \)
2. \(A + B \in I \)
3. \(AB \in I \).

Thus the incidence algebra is an associative algebra.

- A simple corollary: Since \(I \) is in every incidence algebra, if \(A \in I \) and invertible, \(A^{-1} \in I \).
- Properties useful in Youla domain.
Control problem

A given matrix P.

Design K.

Interconnect P and K.
Control problem

- A given matrix P.
- Design K.
- Interconnect P and K
Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

- Find “best” K.
Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$
Control problem

- A given matrix P.
- Design K.
- Interconnect P and K

$$f(P, K) = P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21}.$$

- Find “best” K.
Modeling decentralized control problems using posets

- All the action happens at $P_{22} = G$. Focus here.
- G (called the plant) interacts with the controller.
- Plant divided into subsystems:

```
\[
\begin{bmatrix}
G_{11} & 0 & 0 \\
G_{21} & G_{22} & 0 \\
G_{31} & 0 & G_{33}
\end{bmatrix}
\]
```
Let G be the transfer function matrix of the plant. We divide up the plant into subsystems:
Let G be the transfer function matrix of the plant. We divide up the plant into subsystems:
Modeling decentralized control problems using posets

Denote this by $1 \preceq 2$ and $1 \preceq 3$.

Subsystems 2 and 3 are in cone of influence of 1

This relationship is a causality relation between subsystems.

We call systems with $G \in \mathcal{I}$ poset-causal systems.
Modeling decentralized control problems using posets

Denote this by $1 \preceq 2$ and $1 \preceq 3$.

Subsystems 2 and 3 are in cone of influence of 1.

This relationship is a causality relation between subsystems.

We call systems with $G \in I$ poset-causal systems.
Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, $i \preceq j$ means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.
Controller Structure

- Given a poset causal plant $G \in \mathcal{I}$.
- Decentralization constraint: mirror the information structure of the plant.
- In other words we want poset-causal $K \in \mathcal{I}$.
- Similar causality interpretation.
- Intuitively, $i \preceq j$ means subsystem j is more information rich.
- The poset arranges the subsystems according to the amount of information richness.
Examples of poset systems

- Independent subsystems

- Nested systems

- Closures of directed acyclic graphs
Optimal Control Problem

Given a system P with plant G, find a stabilizing controller $K \in \mathcal{I}$.

$$\begin{align*}
\text{minimize}_K & \quad \| f(P, K) \| \\
\text{subject to} & \quad K \text{ stabilizes } P \\
& \quad K \in \mathcal{I}.
\end{align*}$$

- Here $f(P, K) = P_{11} + P_{12}K(I - GK)^{-1}P_{21}$ is the closed loop transfer function.

- Problem is nonconvex.

- Standard approach: reparametrize the problem by getting rid of the nonconvex part of the objective.
Convex reparametrization

- "Youla domain" technique: define $R = K(I - GK)^{-1}$.

$$\begin{align*}
\text{minimize} & \quad \| \hat{P}_{11} + \hat{P}_{12} R \hat{P}_{21} \| \\
\text{subject to} & \quad R \text{ stable} \\
& \quad R \in \mathcal{I}.
\end{align*}$$

- Algebraic structure of \mathcal{I} allows reparametrization.
- Recover via $K = (I + GR)^{-1} R$.

- Extensions:
 1. Can extend to different constraints: Galois connections.
 2. Time-delayed systems.
 3. Spatio-temporal systems.
Posets and Quadratic Invariance

- Quadratic invariance: $K \in S \Rightarrow KGK \in S$.
- Algebraic property guarantees quadratic invariance.
- Question: Does Quadratic Invariance imply existence of poset structure?
- In certain settings, yes.
- Key: Quadratic invariance can be interpreted as a transitivity property.
- Posets have lot more structure. Can we extract more out of it?
Drawbacks

- Control problems convex in Youla parameter.
- Main difficulty: Infinite dimensional problem.
- Approximation techniques, but drawbacks.
- Desire state-space techniques. Advantages:
 1. Computationally efficient
 2. Degree bounds
 3. Provide insight into structure of optimal controller.
State-Space Setup

- Have state feedback system:
 \[
 x[t + 1] = Ax[t] + Bu[t] + w[t] \\
 y[t] = x[t] \\
 z[t] = Cx[t] + Du[t]
 \]

- Poset causal: \(A, B \in \mathcal{I} \).

- Find \(K^* \) which is stabilizing, optimal.

\[
\min_K \| P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21} \|^2 \\
K \in \mathcal{I} \\
K \text{ stabilizing.}
\]

- Key property we exploit: separability of the \(\mathcal{H}_2 \) norm.
\mathcal{H}_2 Optimal Control

- Recall Frobenius norm:
 \[\|H\|_F^2 = \text{Trace}(H^TH). \]

- \mathcal{H}_2 norm is its extension to operators.
- Solution to optimal centralized problem standard.
- Based on algebraic Riccati equations:
 \[
 X = C^T C + A^T X A - A^T X B (D^T D + B^T X B)^{-1} B^T X A \\
 K = (D^T D + B^T X B)^{-1} B^T X A.
 \]
Decentralized Control Problem

- System poset causal: $A, B \in \mathcal{I}(\mathcal{P})$.
- Solve:

$$\min_K \| P_{11} + P_{12}K(I - P_{22}K)^{-1}P_{21} \|^2$$

$$K \in \mathcal{I}$$

K stabilizing.

- Due to state-feedback: $P_{21} = (zI - A)^{-1}$.
- Define $Q := K(I - GK)^{-1}P_{21}$.
- Problem reduces to:

$$\min_Q \| P_{11} + P_{12}Q \|^2$$

$$Q \in \mathcal{I}$$

Q stabilizing.
\mathcal{H}_2 Decomposition Property

- Let $G = [G_1, \ldots, G_k]$.

\[
\|G\|^2 = \sum_{i=1}^{k} \|G_i\|^2.
\]

- This *separability property* is the key feature we exploit.

Example

\[
\begin{align*}
\min & \quad \| P_{11} + P_{12} \begin{bmatrix} Q_{11} & 0 & 0 \\ Q_{21} & Q_{22} & 0 \\ Q_{31} & 0 & Q_{33} \end{bmatrix} \|^2 \\
\text{s.t.} & \quad Q \text{ stabilizing.}
\end{align*}
\]

\[
\begin{align*}
\min & \quad \| P_{11}(1) + P_{12} \begin{bmatrix} Q_{11} \\ Q_{21} \\ Q_{31} \end{bmatrix} \|^2 + \| P_{11}(2) + P_{12}(2)Q_{22} \|^2 \\
& \quad + \| P_{11}(3) + P_{12}(3)Q_{33} \|^2 \\
\text{s.t.} & \quad Q \text{ stabilizing.}
\end{align*}
\]
State Space Solution

This decomposition idea extends to all posets.

Theorem (S.-Parrilo)

Problem can be reduced to decoupled problems:

\[
\begin{align*}
\text{minimize} \quad & \| P_{11}(j) + P_{12}(\uparrow j)Q^{\uparrow j} \|^2 \\
\text{subject to} \quad & Q^{\uparrow j} \text{ stabilizing} \\
& \text{for all } j \in P.
\end{align*}
\]

- Optimal \(Q \) can be obtained by solving a set of decoupled centralized sub-problems.
- Each sub-problem requires solution of a Riccati equation.
Can recover K from optimal Q.

Q and K are in bijection, $K = QP_{21}^{-1}(I + P_{22}QP_{21}^{-1})^{-1}$.

Further analysis gives:

1. Explicit state-space formulae.
2. Controller degree bounds.
3. Insight into structure of optimal controller.
General Controller Architecture

- What is the “right” architecture?

- Ingredients:
 1. Lower sets and upper sets
 2. Local variables (partial state predictions)

- Simple separation principle

- Optimality of architecture for \mathcal{H}_2.
General Controller Architecture

- What is the “right” architecture?
- Ingredients:
 1. Lower sets and upper sets
 2. Local variables (partial state predictions)
- Simple separation principle
- Optimality of architecture for \mathcal{H}_2.
Lower sets and upper sets

- Each “node” in \mathcal{P} is a subsystem with state x_i and input u_i.
- Lower set: $\downarrow p = \{ q \mid q \preceq p \}$.
- Corresponds to “downstream” known information.

- Upper set: $\uparrow p = \{ q \mid p \preceq q \}$.
- Corresponds to “upstream” unknown information.

u_i has access to x_j for $j \in \downarrow i$ (downstream).
Lower sets and upper sets

- Each “node” in \mathcal{P} is a subsystem with state x_i and input u_i.
- Lower set: $\downarrow p = \{ q \mid q \preceq p \}$.
- Corresponds to “downstream” known information.

![Diagram with nodes and arrows]

- Upper set: $\uparrow p = \{ q \mid p \preceq q \}$.
- Corresponds to “upstream” unknown information.
- u_i has access to x_j for $j \in \downarrow i$ (downstream).
Local Variables

- Overall state x and input u are global variables.
- Subsystems carry local copies.
Local Variables

- Local variable
 $X_i : \uparrow i \rightarrow \mathbb{R}$.
- Can think of it as a vector in $\mathbb{R}^{|P|}$

- Two local variables of interest:
 1. X: $X_{ij} = x_i(j)$ is the (partial) prediction of state x_i at subsystem j.
 2. U: $U_{ij} = u_i(j)$ is the (partial) prediction of input u_i at subsystem j.
Local Variables

- Local variable $X_i : \uparrow i \rightarrow \mathbb{R}$.
- Can think of it as a vector in \mathbb{R}^{P}.

Two local variables of interest:

1. $X: X_{ij} = x_i(j)$ is the (partial) prediction of state x_i at subsystem j.
2. $U: U_{ij} = u_i(j)$ is the (partial) prediction of input u_i at subsystem j.

\[
X_1 = \begin{bmatrix}
x_1 \\
x_2(1) \\
x_3(1) \\
x_4(1)
\end{bmatrix}, \quad X_2 = \begin{bmatrix}
* \\
x_2 \\
* \\
x_4(2)
\end{bmatrix}, \quad X_3 = \begin{bmatrix}
* \\
x_3 \\
* \\
x_4(3)
\end{bmatrix}, \quad X_4 = \begin{bmatrix}
* \\
* \\
* \\
x_4
\end{bmatrix}
\]
Local Products

- Local gain: $G(i) : \uparrow i \times \uparrow i \rightarrow \mathbb{R}$. Think of it as zero-padded matrix:

$$G(2) = \begin{bmatrix}
0 & 0 & 0 & 0 \\
0 & G_{22} & 0 & G_{24} \\
0 & 0 & 0 & 0 \\
0 & G_{42} & 0 & G_{44}
\end{bmatrix}$$

- Define $\mathbf{G} = \{G(1), \ldots, G(s)\}$.

- Local Product: $\mathbf{G} \circ X$ defined columnwise via:

$$(\mathbf{G} \circ X)_i = G(i)X_i.$$

- If $Y = \mathbf{G} \circ X$, then local variables (X_i, Y_i) decoupled.
Zeta and Möbius

For any poset \mathcal{P}, two distinguished elements of its incidence algebra:

- The Zeta matrix is

 $\zeta_{\mathcal{P}}(x, y) = \begin{cases}
 1, & \text{if } y \preceq x \\
 0, & \text{otherwise}
 \end{cases}$

- Its inverse is the Möbius matrix of the poset:

 $\mu_{\mathcal{P}} = \zeta_{\mathcal{P}}^{-1}$.

E.g., for the poset below, we have:

$\zeta_{\mathcal{P}} = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}$,

$\mu_{\mathcal{P}} = \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}$.
Zeta and Möbius

For any poset \mathcal{P}, two distinguished elements of its incidence algebra:

- The Zeta matrix is

$$\zeta_\mathcal{P}(x, y) = \begin{cases}
1, & \text{if } y \preceq x \\
0, & \text{otherwise}
\end{cases}$$

- Its inverse is the Möbius matrix of the poset:

$$\mu_\mathcal{P} = \zeta_\mathcal{P}^{-1}.$$

E.g., for the poset below, we have:

$$\zeta_\mathcal{P} = \begin{bmatrix}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}, \quad \mu_\mathcal{P} = \begin{bmatrix}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-1 & 0 & 1
\end{bmatrix}.$$
Möbius inversion

Given \(f : P \rightarrow \mathbb{R} \), we can define

\[
(\zeta f)(x) = \sum_y \zeta(x, y)f(y), \quad (\mu f)(x) = \sum_y \mu(x, y)f(y).
\]

These operations are obviously inverses of each other.

For our example:

\[
\zeta(a_1, a_2, a_3) = (a_1, a_1+a_2, a_1+a_3), \quad \mu(b_1, b_2, b_3) = (b_1, b_2-b_1, b_3-b_1).
\]

Möbius inversion formula

\[
g(y) = \sum_{x \leq y} h(x) \quad \Leftrightarrow \quad h(y) = \sum_{x \leq y} \mu(x, y)g(x)
\]
Möbius inversion

Given $f : P \to \mathbb{R}$, we can define

$$(\zeta f)(x) = \sum_y \zeta(x, y)f(y), \quad (\mu f)(x) = \sum_y \mu(x, y)f(y).$$

These operations are obviously inverses of each other.

For our example:

$$\zeta(a_1, a_2, a_3) = (a_1, a_1+a_2, a_1+a_3), \quad \mu(b_1, b_2, b_3) = (b_1, b_2-b_1, b_3-b_1).$$

Möbius inversion formula

$$g(y) = \sum_{x \leq y} h(x) \quad \Leftrightarrow \quad h(y) = \sum_{x \leq y} \mu(x, y)g(x)$$
Möbius inversion

Given $f : P \to \mathbb{R}$, we can define

$$(\zeta f)(x) = \sum_y \zeta(x, y)f(y), \quad (\mu f)(x) = \sum_y \mu(x, y)f(y).$$

These operations are obviously inverses of each other.

For our example:

$$\zeta(a_1, a_2, a_3) = (a_1, a_1+a_2, a_1+a_3), \quad \mu(b_1, b_2, b_3) = (b_1, b_2-b_1, b_3-b_1).$$

Möbius inversion formula

$$g(y) = \sum_{x \leq y} h(x) \quad \iff \quad h(y) = \sum_{x \leq y} \mu(x, y)g(x)$$
Möbius inversion: examples

- If \mathcal{P} is a chain: then ζ is “integration”, $\mu := \zeta^{-1}$ is “differentiation”.
- If \mathcal{P} is the subset lattice, then μ is inclusion-exclusion.
- If \mathcal{P} is the divisibility integer lattice, then μ is the number-theoretic Möbius function.
- Many others: vector spaces, faces of polytopes, graphs/circuits, ...
Möbius inversion for control

- μ and ζ operators on X.
- $\mu(X)$ innovations.
- ζ combines downstream information.
- Key insight: Möbius inversion respects the poset structure.
- No additional communication required to compute it.
Möbius operator

\[
\mu(X) = \begin{bmatrix}
 x_1 & * & * & * \\
 x_2(1) & x_2 - x_2(1) & * & * \\
 x_3(1) & * & x_3 - x_3(1) & * \\
 x_4(1) & x_4(2) - x_4(1) & x_4(3) - x_4(1) & x_4 + x_4(1) - x_4(2) - x_4(3)
\end{bmatrix}
\]
Controller Architecture

- Let the system dynamics be $x[t + 1] = Ax[t] + Bu[t]$, where $A, B \in \mathcal{I}(\mathcal{P})$.
- Define controller state variables X_{ij} for $j \leq i$, where $X_{ii} = x_i$.
- Propose a control law:

$$U = \zeta(\mathbf{G} \circ \mu(X)).$$

where $\mathbf{G} = \{G(1), \ldots, G(s)\}$.
Controller Architecture: $U = \zeta(G \circ \mu(X))$

- “Local innovations” computed by $\mu(X)$ (differentiation)
- Compute “local corrections”
- Aggregate them via $\zeta(\cdot)$ (integration)
Can compactly write closed-loop dynamics as matrix equations:

\[X[t + 1] = AX[t] + B\zeta(G \circ \mu(X[t])) + Z_d[t]. \]

- Each column corresponds to a different subsystem
- Equations have structure of \(I \), only need entries with \(j \leq i \)
- Diagonal is the plant, off-diagonal is the controller
- \(Z_d \) downstream influence
- Since \(\zeta \) and \(\mu \) are local, so is the closed-loop
Separation Principle

- Closed-loop equations:

\[X[t + 1] = AX[t] + Bζ(G \circ μ(X[t])) + Z_d[t]. \]

- Apply \(μ \), and use the fact that \(μ \) and \(ζ \) are inverses:

\[
μ(X)[t + 1] = Aμ(X)[t] + B(G \circ μ(X)[t])
= (A + BG) \circ μ(X).
\]

where \((A + BG)(i) = A(↑i, ↑i) + B(↑i, ↑i)G(i) \).

- “Innovation” dynamics at subsystems decoupled!

- Stabilization easy: simply pick \(G(i) \) to stabilize \(A(↑i, ↑i), B(↑i, ↑i) \).
Separation Principle

- Closed-loop equations:
 \[X[t + 1] = AX[t] + B\zeta(G \circ \mu(X[t])) + Z_d[t]. \]

- Apply \(\mu \), and use the fact that \(\mu \) and \(\zeta \) are inverses:
 \[\mu(X)[t + 1] = A\mu(X)[t] + B(G \circ \mu(X)[t]) \]
 \[= (A + BG) \circ \mu(X). \]

 where \((A + BG)(i) = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)\).

- “Innovation” dynamics at subsystems decoupled!
- Stabilization easy: simply pick \(G(i) \) to stabilize \(A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i) \).
Separation Principle

- Closed-loop equations:

\[X[t + 1] = AX[t] + B\zeta(G \circ \mu(X[t])) + Z_d[t]. \]

- Apply \(\mu \), and use the fact that \(\mu \) and \(\zeta \) are inverses:

\[
\mu(X)[t + 1] = A\mu(X)[t] + B(G \circ \mu(X)[t])
= (A + BG) \circ \mu(X).
\]

where \((A + BG)(i) = A(\uparrow i, \uparrow i) + B(\uparrow i, \uparrow i)G(i)\).

- “Innovation” dynamics at subsystems decoupled!

- Stabilization easy: simply pick \(G(i) \) to stabilize \(A(\uparrow i, \uparrow i), B(\uparrow i, \uparrow i) \).
Optimality

Theorem (S.-Parrilo)

\mathcal{H}_2-optimal controllers have the described architecture.

- Gains $G(i)$ obtained by solving decoupled Riccati equations.
- States in the controller are precisely predictions X_{ij} for $j \prec i$.
- Controller order is number of intervals in the poset.
Interesting Directions

Möbius-inversion controller

\[U = \zeta(G \circ \mu(X)). \]

Simple and natural structure, for any locally finite poset.

- Can exploit further restrictions (e.g., distributive lattices)
- For product posets, well-understood composition rules for \(\mu \)
- Generalization of related concepts (Youla parameterization, “purified outputs”, etc)?
- Extensions to output feedback, different plant/controller posets (Galois connections), . . .
Related Work

- Classical work: Witsenhausen, Radner, Ho-Chu.
- Mullans-Elliot (1973), linear systems on partially ordered time sets
- Voulgaris (2000), showed that a wide class of distributed control problems became convex through a Youla-type reparametrization.
- Rotkowitz-Lall (2002) introduced *quadratic invariance* (QI) an important unifying concept for convexity in decentralized control.
- Swigart-Lall (2010) gave a state-space solution for the two-controller case, via a spectral factorization approach.
- S.-Parrilo (2010), provided a full solution for all posets, with controller degree bounds. Separability a key idea, which is missing in past work. Introduced simple Möbius-based architecture (in slightly different form).
Conclusions

- Posets/Incidence algebras: interesting objects in their own right!
- Provide general/useful framework for flow of information.
 1. Conceptually nice.
 2. Computationally tractable.
- Presented \mathcal{H}_2-optimal state-space solutions.
- Simple controller structure based on Möbius inversion.
Conclusions

- Posets/Incidence algebras: interesting objects in their own right!
- Provide general/useful framework for flow of information.
 1. Conceptually nice.
 2. Computationally tractable.
- Presented \mathcal{H}_2-optimal state-space solutions.
- Simple controller structure based on Möbius inversion.
Conclusions

- Posets/Incidence algebras: interesting objects in their own right!
- Provide general/useful framework for flow of information.
 1. Conceptually nice.
 2. Computationally tractable.
- Presented \mathcal{H}_2-optimal state-space solutions.
- Simple controller structure based on Möbius inversion.