

$$X_j = f_j(W, Y^{j-1}),$$

$$\mathbb{E}\left[\sum_{j=1}^{\infty} X_j^2 \middle| W\right] \le E, \qquad \mathbb{P}[g(Y^{\infty}) \neq W] \le \epsilon$$

$$M^*(E,\epsilon) = \max\{M : \exists (M, E, \epsilon) \text{ code}\},\$$

$$M^*_f(E,\epsilon) = \max\{M : \exists (M, E, \epsilon) \text{ code with feedbal}\}$$

$$\lim_{E \to \infty} \frac{1}{E} \log M^*(E, \epsilon) = \lim_{E \to \infty} \frac{1}{E} \log M_f^*(E, \epsilon) = \frac{\log e}{N_0},$$

MEMORYLESS CHANNELS: THE BENEFITS OF FEEDBACK IN THE NON-ASYMPTOTIC REGIME

Yury Polyanskiy, H. Vincent Poor and Sergio Verdú Princeton University, USA

edback	Variable-length co
ement	 <i>Problem:</i> Burnashev model assumes that mation ones: in practice start/end is han <i>Modified model:</i> "use-once" noiseless ter
>	$010110T \rightarrow \underline{\text{Chann}}$
	• VLFT code: a VLF code that employ $\sigma\{W, Y^n\}, n = 1, \dots$
es of encoder f_n and decoder func- h that:	$M_t^*(\ell, \epsilon) = \max\{M$
$[-] \leq \ell$,	• Examples of VLFT: ARQ, fountain codes • Question: Does $M_t^*(\ell, \epsilon)$ differ signification
$f_j(w, y^{j-1}))$.	R
	• Without termination: for all channels wit
VLF code}.	VLF : $\log M_f^*(\ell, 0)$
	• With termination: ARQ paired with optim
$\left(1-\frac{E}{E}\right)$	ARQ : $\log M_t^*(\ell, 0)$
$\begin{pmatrix} C_1 \end{pmatrix}$	\bullet But we can do much better [PPV10b]:
$Y Y - a_{2}$).	$\mathrm{VLFT}: \log M_t^*(\ell, 0)$
$ A - a_2\rangle$	Zero-error VLFT codes over BSC(0.11
	0.5
s:	0.2
$O(\frac{1}{\sqrt{\ell}}).$	0.1 -
es: dispersion is zero, i.e. conver- much faster.	0 0 0 0 0 0 0 0 0 0 0 0 0 0
oility (blue) bound: decision feed- y.	• In summary, the minimal blocklength to
bability of block error $\epsilon = 10^{-3}$.	fixed-length : $\ell \approx$ VI F : $\ell <$
	$VLF + termination : \ell \lesssim$
	Ref CS49 C. E. Shannon, "Communication in th
$0 < \epsilon < 1$	10-21, Jan. 1949 MB76 M. V. Burnashev, "Data transmission
	transmission time," Prob. Peredachi PPV10a Y. Polyanskiy, H. V. Poor and S. Vere without foodbook," submitted to UEFF
$+O(\log \ell),$	PPV10b Y. Polyanskiy, H. V. Poor and S. Verde non-asymptotic regime," submitted to
	PPV10c Y. Polyanskiy, H. V. Poor and S. Verdú regime," <i>IEEE Trans. Inform. Theo</i>

oding with termination

at control bits have the same reliability as inforndled by upper layers. rmination symbol.

 $nel \rightarrow 100110TTTTTT...$

ys $T \iff \tau$ is a stopping time of filtration

 $f: \exists (\ell, M, \epsilon) \text{ VLFT code} \}.$

antly from $M_f^*(\ell, \epsilon)$?

th $C_1 < \infty$ (e.g. BSC) we have:

) = 0

mal fixed-length code achieves capacity [PPV10c]:

 $\geq \ell C - \operatorname{const} \sqrt{\ell \log \ell}$

 $O) \ge \ell C + O(1)$

	_	
200 ре	enalty term:	$O(\log \ell)$
20 ре	nalty term:	O(1)

ferences

the presence of noise," *Proc. IRE*, vol. 37, pp.

over a discrete channel with feedback. Random Inform., vol. 12, no. 4, pp. 10-30, 1976. rdú, "Minimum energy to send k bits with and E Trans. Inform. Theory, Feb 2010.

lú, "Variable-length coding with feedback in the DIEEE Trans. Inform. Theory, Apr 2010. ú, "Channel coding rate in the finite blocklength ory, vol. 56, no. 5, May 2010.