Minimum energy per bit with and without feedback

With feedback: convergence is very fast.

• Without feedback: convergence to Shannon limit is slow, \(O(\frac{1}{\sqrt{n}}) \)

• With feedback: convergence is very fast.

• Surprisingly: decision feedback is enough!

• Plot: block error probability \(\epsilon = 10^{-3} \), see [PPV10a]

• Our work: How do \(M^*(E, \epsilon) \) and \(M^f(E, \epsilon) \) compare for finite \(E \)?

Results

Highlights:
- Horizontal axis: \(k = \log_2 M \)
- Without feedback: convergence to Shannon limit is slow, \(O(\frac{1}{\sqrt{n}}) \)
- With feedback: convergence is very fast.
- Surprisingly: decision feedback is enough!
- Plot: block error probability \(\epsilon = 10^{-3} \), see [PPV10a]

• Without feedback:
 \[
 \log M^*(E, \epsilon) \approx \frac{E}{N_0} \log \epsilon - \frac{E}{N_0} Q^{-1}(\epsilon) + \frac{1}{2} \log \frac{E}{N_0} + O(1), \quad \epsilon > 0
 \]

 \[
 \log M^f(E, \epsilon) = 0
 \]

• With feedback:
 \[
 \log M^f(E, \epsilon) \approx \frac{E}{N_0} \log \epsilon - \frac{E}{N_0} Q^{-1}(\epsilon) + O(\log \epsilon), \quad \epsilon > 0
 \]

Note: feedback makes zero-error communication possible.