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Minimum energy per bit with and without feedback

Non-asymptotic problem statement

Z∼ N (0, 1

2
N0)

↓
X −→ ⊕ −→ Y

• (E,M, ǫ) code with feedback is given by a decoder g : R
∞ → {1, . . . ,M} and a sequence

of encoder functions fj : {1, . . . ,M} × R
j−1 → R, used to generate channel inputs:

Xj = fj(W,Y j−1) ,

and satisfying
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 ≤ E , P[g(Y ∞) 6= W ] ≤ ǫ .

• (E,M, ǫ) code (without feedback) is required to satisfy fj(W,Y j−1) = fj(W ).

• Energy-information tradeoff:

M∗(E, ǫ) = max{M : ∃(M,E, ǫ) code} ,

M∗
f (E, ǫ) = max{M : ∃(M,E, ǫ) code with feedback}

• Asymptotically we have [CS49]:

lim
E→∞

1

E
log M∗(E, ǫ) = lim

E→∞
1

E
log M∗

f (E, ǫ) =
log e

N0
, 0 < ǫ < 1

I.e. feedback does not improve minimum energy per bit.

•Our work: How do M∗(E, ǫ) and M∗
f (E, ǫ) compare for finite E?

Results
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Highlights:

• Horizontal axis: k = log2 M

• Without feedback: convergence to Shannon
limit of −1.59 dB is slow, O( 1√

k
).

• With feedback: convergence is very fast.

• Surprisingly: decision feedback is enough!

• Plot: block error probability ǫ = 10−3;
see [PPV10a].

• Without feedback:

log M∗(E, ǫ) =
E

N0
log e −

√

2E

N0
Q−1(ǫ) log e +

1

2
log

E

N0
+ O(1) , ǫ > 0

log M∗(E, 0) = 0

• With feedback:

log M∗
f (E, ǫ) =

E

N0

log e

1 − ǫ
+ O

(

log
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N0

)

, ǫ > 0

log M∗
f (E, 0) ≥
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E

N0

⌋

• Note: feedback makes zero-error communication possible.

Variable-length coding with feedback

Non-asymptotic problem statement

Encoder Channel
W

z−1

Y t−1

• (ℓ,M, ǫ) variable-length feedback (VLF) code: sequences of encoder fn and decoder func-
tions gn and a stopping time τ of filtration σ{Y n} such that:

P[gτ (Y τ ) 6= W ] ≤ ǫ , E [τ ] ≤ ℓ ,

where distribution PWY n is given by

PWY n(w, yn) =
1

M

n
∏

j=1

PY |X(yj|fj(w, yj−1)) .

•Non-asymptotic fundamental limit:

M∗(ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ) -VLF code} .

• Burnashev [MB76] has shown:

lim
ℓ→∞

1

ℓ
log M∗(ℓ, exp{−ℓE}) = C

(

1 − E

C1

)

,

where C is the capacity and

C1 = max
a1,a2∈A

D(PY |X=a1
||PY |X=a2

) .

•Our work: What is the behavior of M∗(ℓ, ǫ) for a fixed ǫ?

Results

VLF codes over BSC(0.11).
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Highlights:

•Without feedback: convergence to capacity
is slow, O( 1√

ℓ
).

•VLF codes: dispersion is zero, i.e. conver-
gence is much faster.

•Achievability (blue) bound: decision feed-
back only.

• Plot: probability of block error ǫ = 10−3.

•Main result [PPV10b]:

log M∗
f (ℓ, ǫ) =

ℓC

1 − ǫ
+ O(log ℓ) , 0 < ǫ < 1

•Recall that without feedback [PPV10c]:

log M∗(ℓ, ǫ) = ℓC −
√

ℓV Q−1(ǫ) + O(log ℓ) ,

where V is the channel dispersion.

Variable-length coding with termination

•Problem: Burnashev model assumes that control bits have the same reliability as infor-
mation ones: in practice start/end is handled by upper layers.

•Modified model: “use-once” noiseless termination symbol.

010110T → Channel → 100110TTTTT . . .

•VLFT code: a VLF code that employs T ⇐⇒ τ is a stopping time of filtration
σ{W,Y n}, n = 1, . . .

M∗
t (ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ) VLFT code} .

• Examples of VLFT: ARQ, fountain codes.

•Question: Does M∗
t (ℓ, ǫ) differ significantly from M∗

f (ℓ, ǫ)?

Results

•Without termination: for all channels with C1 < ∞ (e.g. BSC) we have:

VLF : log M∗
f (ℓ, 0) = 0

•With termination: ARQ paired with optimal fixed-length code achieves capacity [PPV10c]:

ARQ : log M∗
t (ℓ, 0) ≥ ℓC−const

√

ℓ log ℓ

• But we can do much better [PPV10b]:

VLFT : log M∗
t (ℓ, 0) ≥ ℓC + O(1)

Zero-error VLFT codes over BSC(0.11).
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Highlights:

– ARQ: very slow convergence even when
the best possible block codes are used.

– New codes: capacity is achievable at
very short code-length (and with zero
error).

• In summary, the minimal blocklength to achieve R = 0.9C for BSC(0.11):

fixed-length : ℓ ≈ 3100 penalty term: O(
√

ℓ)

VLF : ℓ . 200 penalty term: O(log ℓ)

VLF + termination : ℓ . 20 penalty term: O(1)
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