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Abstract

This paper studies the fundamental limits of the minimum average length of lossless and lossy
variable-length compression, allowing a nonzero error probability €, for lossless compression. We give
non-asymptotic bounds on the minimum average length in terms of Erokhin’s rate-distortion function
and we use those bounds to obtain a Gaussian approximation on the speed of approach to the limit

which is quite accurate for all but small blocklengths:
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where Q7! (-) is the functional inverse of the standard Gaussian complementary cdf, and V (S) is the
source dispersion. A nonzero error probability thus not only reduces the asymptotically achievable rate
by a factor of 1—¢, but this asymptotic limit is approached from below, i.e. a larger source dispersion and
shorter blocklengths are beneficial. Variable-length lossy compression under excess distortion constraint

is shown to exhibit similar properties.

Index Terms

Variable-length compression, lossless compression, lossy compression, single-shot, finite-blocklength

regime, rate-distortion theory, dispersion, Shannon theory.

[. INTRODUCTION AND SUMMARY OF RESULTS

Let S be a discrete random variable to be compressed into a variable-length binary string. We
denote the set of all binary strings (including the empty string) by {0, 1}* and the length of a
string a € {0,1}" by £(a). The codes considered in this paper fall under the following paradigm.

This work was supported in part by the Center for Science of Information (CSol), an NSF Science and Technology Center,
under Grant CCF-0939370. This paper was presented in part at ISIT 2014 [1].
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Definition 1 ((L,¢) code). A variable length (L,€) code for source S defined on a finite or
countably infinite alphabet M is a pair of possibly random transformations Py s: M — {0, 1}
and Pgy;,: {0,1}" = M such that'

P[s#8]<e (1)
El((W)] <L (2)

The corresponding fundamental limit is
Ly(e) 2 inf {L: 3 an (L,€) code} 3)

Lifting the prefix condition in variable-length coding is discussed in [2], [3]. In particular, in

the zero-error case we have [4], [5]
H(S) —logy(H(S) + 1) —logy e < L(0) 4)
< H(S), &)

while [2] shows that in the i.i.d. case (with a non-lattice distribution Ps, otherwise o(1) becomes
o)
1
w(0)=kH(S) - 3 log, (8meV (S)k) + o(1) (6)

where V(S) is the varentropy of Ps, namely the variance of the information

1
ZS(S) = 10g2 m (7)

Under the rubric of “weak variable-length source coding,” T. S. Han [6], [7, Section 1.8]
considers the asymptotic fixed-to-variable (M = S*) almost-lossless version of the foregoing
setup with vanishing error probability and prefix encoders. Among other results, Han showed
that the minimum average length Lgx(€) of prefix-free encoding of a stationary ergodic source

with entropy rate H behaves as
1

e—0 k—oo

"Note that L need not be an integer.
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Koga and Yamamoto [8] characterized asymptotically achievable rates of variable-length prefix
codes with non-vanishing error probability and, in particular, showed that for finite alphabet i.i.d.

sources with distribution Ps,

lim %Lsk(E) =(1—€)H(S). )

k—o0

The benefit of variable length vs. fixed length in the case of given ¢ is clear from (9): indeed,
the latter satisfies a strong converse and therefore any rate below the entropy is fatal. Allow-
ing both nonzero error and variable-length coding is interesting not only conceptually but on
account on several important generalizations. For example, the variable-length counterpart of
Slepian-Wolf coding considered e.g. in [9] is particularly relevant in universal settings, and
has a radically different (and practically uninteresting) zero-error version. Another substantive
important generalization where nonzero error is inevitable is variable-length joint source-channel
coding without or with feedback. For the latter, Polyanskiy et al. [10] showed that allowing a
nonzero error probability boosts the e-capacity of the channel, while matching the transmission
length to channel conditions accelerates the rate of approach to that asymptotic limit. The use
of nonzero error compressors is also of interest in hashing [11].

The purpose of Section II is to give non-asymptotic bounds on the fundamental limit (3), and
to apply those bounds to analyze the speed of approach to the limit in (9), which also holds

without the prefix condition. Specifically, we show that (cf. (4)—(5))

L5(e) = H(S,€) + O (logy H(S)) (10)
= E [(15(5))] + O (log, H(S)) (11)
where
H(S, ) 2 min 1(S;2) (12)
P[SQ;}.SG

is Erokhin’s function [12], and the e-cutoff random transformation acting on a real-valued random

variable X is defined as )

X X<n

L n X=n(w.p 1-0)

(X)e = (13)
0 X=n(wp. a)

0  otherwise
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where 7 € R and « € [0, 1) are determined from
PX >n+aP[X =n]=e (14)

While 1 and « satisfying (14) are not unique in general, any such pair defines the same (X),
up to almost-sure equivalence.

The code that achieves (10) essentially discards “rich” source realizations with 15(S) > 7 and
encodes the rest losslessly assigning them in the order of decreasing probabilities to the elements
of {0,1}" ordered lexicographically.

For memoryless sources with S; ~ S we show that the speed of approach to the limit in (9)

is given by the following result.
sk (€)
H(S*, €) = (1 —e)kH(S) —
E [(25:(5%)).]

To gain some insight into the form of (15), note that if the source is memoryless, the

M;(TS) = 10 (log k) (15)

information in S* is a sum of i.i.d. random variables, and by the central limit theorem

151 (S%) = iZS(S") (16)
=1
LN (KH(S),kV(S)) (17)
while for Gaussian X
E[(X),] = (1 - OE[X] -/ ooy 18)

2m

Our result in (15) underlines that not only does € > 0 allow for a (1 —¢) reduction in asymptotic
rate (as found in [8]), but, in contrast to [13]-[16], larger source dispersion is beneficial. This
curious property is further discussed in Section II-E.

In Section III, we generalize the setting to allow a general distortion measure in lieu of the
Hamming distortion in (1). More precisely, we replace (1) by the excess probability constraint
P[d(S,Z) >d] < e In this setting, refined asymptotics of minimum achievable lengths of
variable-length lossy prefix codes almost surely operating at distortion d was studied in [17]

(pointwise convergence) and in [18], [19] (convergence in mean). Our main result in the lossy
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case is that (15) generalizes simply by replacing H(S) and V(S) by the corresponding rate-

distortion and rate-dispersion functions, replacing Erokhin’s function by

Rg(d,e) £ min  I(S; Z), (19)
Pz‘s :
P[d(S,2)>d]<e
and replacing the e-cutoff of information by that of d-tilted information [15], (y5(S,d)).. More-
over, we show that the (d, ¢)-entropy of S* [20] admits the same asymptotic expansion. If only
deterministic encoding and decoding operations are allowed, the basic bounds (4), (5) generalize
simply by replacing the entropy by the (d, €)-entropy of S. In both the almost-lossless and the
lossy case we show that the optimal code is “almost deterministic” in the sense that randomization

is performed on at most one codeword of the codebook. Enforcing deterministic encoding and

decoding operations ensues a penalty of at most 0.531 bits on average achievable length.

II. ALMOST LOSSLESS VARIABLE LENGTH COMPRESSION
A. Optimal code

In the zero-error case the optimum variable-length compressor without prefix constraints f§

is known explicitly (e.g. [4], [21])*:

a deterministic mapping that assigns the elements in M
(labeled without loss of generality as the positive integers) ordered in decreasing probabilities
to {0,1}" ordered lexicographically. The decoder is just the inverse of this injective mapping.
This code is optimal in the strong stochastic sense that the cumulative distribution function of
the length of any other code cannot lie above that achieved with fz. The length function of the

optimum code is [4]:
((f5(m)) = [logym]. (20)
Note that the ordering Ps(1) > Ps(2) > ... implies
[logy m] < u5(m). 2D

In order to generalize this code to the nonzero-error setting, we take advantage of the fact that
in our setting, error detection is not required at the decoder. This allows us to retain the same

decoder as in the zero-error case. As far as the encoder is concerned, to save on length on a

The construction in [21] omits the empty string.
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given set of realizations which we are willing to fail to recover correctly, it is optimal to assign
them all to @. Moreover, since we have the freedom to choose the set that we want to recover
correctly (subject to a constraint on its probability > 1 — ¢€) it is optimal to include all the most
likely realizations (whose encodings according to f§ are shortest). If we are fortunate enough
that ¢ is such that 3-™_ Pg(m) = 1 — ¢ for some M, then the optimal code is f(m) = f5(m),
ifm=1,...,M and f(m) = @, ift m > M.}

Formally, for a given encoder Py, the optimal decoder is always deterministic and we denote
it by g. Consider wy € {0,1}* \ @ and source realization m with Py |g—,(wo) > 0. If g(wy) #
m, the average length can be decreased, without affecting the probability of error, by setting
Py |s=m(wo) = 0 and adjusting Py s—, (@) accordingly. This argument implies that the optimal
encoder has at most one source realization m mapping to each wy # . Next, let my = g(<)
and by a similar argument conclude that Pyy|s—n,,(@) = 1. But then, interchanging m, and 1
leads to the same or better probability of error and shorter average length, which implies that the
optimal encoder maps 1 to @. Continuing in the same manner for mo = g(0),g(1),...,g(f5(M)),
we conclude that the optimal code maps f(m) = f5(m), m = 1,..., M. Finally, assigning the
remaining source outcomes whose total mass is € to @ shortens the average length without
affecting the error probability, so f(m) = @, m > M is optimal.

We proceed to describe an optimum construction that holds without the foregoing fortuitous
choice of e. Let M be the smallest integer such that Zn]\le Ps(m) > 1 —¢€, let n = |logy M|,
and let f(m) = f§(m), if |log, m| < n and f(m) = @, if |log, m| > 7, and assign the outcomes
with |log, m| =7 to @ with probability « and to the lossless encoding f5(m) with probability
1 — o, which is chosen so that*

e=a Y Psm)+ Y Ps(m) (22)
Loy mi=n Llogy mi>n

=E[e"(9)] (23)

3Jelinek [22, Sec 3.4] provided an asymptotic analysis of a scheme in which a vanishing portion of the least likely source
outcomes is mapped to the same codeword, while the rest of the source outcomes are encoded losslessly.

*It does not matter how the encoder implements randomization on the boundary as long as conditioned on |log, S| =), the
probability that S is mapped to @ is a. In the deterministic code with the fortuitous choice of e described above, « is the ratio

of the probabilities of the sets {m € M: m > M, [log, m| = n} to {m € M: |log, m| = n}.
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where

e'(m) = qa Uf5(m)) =n 24)
1 l(f5(m)) >n

We have shown that the output of the optimal encoder has structure’

W m) = fs(m)  {£(fs(m)))e > 0 25)

%] otherwise

and that the minimum average length is given by

L5(e) = E[(t(F5(5). 26)
= L5(0)~  max EE(S)AR(S)) @
= L3(0) ~ B[ (S)UF5(5)] e8)

where the optimization is over ¢: Z" + [0, 1], and the optimal error profile ¢*(-) that achieves
(27) is given by (24).

An immediate consequence is that in the region of large error probability ¢ > 1 — Pg(1),
M =1, all outcomes are mapped to @, and therefore, Lgdet(e) = 0. At the other extreme, if

e =0, then M = | M| and [3]
L5(0) = E[((f5(S))] = > PS> 2] (29)
=1

Denote by Lggc:(€) the minimum average length comparable with error probability e if

randomized codes are not allowed. It satisfies the bounds

L5(€) < Lgget(€) (30)
< L§(€) + ¢(min {e, e_l}), (31)
where
A 1
o(x) = zlog, = (32)

’If error detection is required and ¢ > Ps(1), then f&(m) in the right side of (25) is replaced by f&(m + 1). Similarly, if
error detection is required and Ps(j) > € > Ps(j + 1), f5(m) in the right side of (25) is replaced by f5(m + 1) as long as
m > j, and & in the right side of (25) is replaced by f5(j).

March 20, 2015 DRAFT



Note that 0 < ¢(z) < e 'log, e ~ 0.531 bits on = € [0, 1], where the maximum is achieved at
r=e L
To show (31), observe that the optimal encoder needs to randomize at most one element of

M. Indeed, let my € M be the minimum of my satisfying
P[S > mg||log, S| =n] < « (33)

and map all {m > myg: [log,m| =n} to @, all {m < mg: |log, m| = n} to f&(m), and map my
to @ with probability a~ = (o — P [S > myl||log, S| = 7)) %, and to f5(my) otherwise.
Clearly this construction achieves both (23) and (26). Using (21), it follows that

L e (€) = L(€) + a™ Ps(mo)l(f5(mo)) (34)
1
< L% P logy, —— 35
= S(€> +a S(mo) 089 PS(mO) (35)
To obtain (31), notice that o~ Ps(my) < ¢, and if Ps(mg) > ¢ we bound
1 1
“P logy ——— < elog, ~. 36
Q S(mo) Og2 Ps(m(]) S € Og2 € ( )

Otherwise, since the function ¢(p) is monotonically increasing on p < e~! and decreasing on

!, maximizing it over [0, ¢] we obtain (31).

p>e”
Variants of the variational characterization (27) will be important throughout the paper. In
general, for X € R

E[(X)]=_ min E[(1-c(X)X] (37)

where the optimization is over €: R — [0, 1].

B. Erokhin’s function

As made evident in (10), Erokhin’s function [12] plays an important role in characterizing
the nonasymptotic limit of variable-length lossless data compression allowing nonzero error
probability. In this subsection, we point out some of its properties.

Erokhin’s function is defined in (12), but in fact, the constraint in (12) is achieved with
equality:

H(S,e) = min I(S;2) (38)

PZ\S H
P[S#£Z])=¢
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Indeed, given P[S # Z] < ¢ we may define Z’ such that S — Z — Z' and P[S # Z'] = € (for
example, by probabilistically mapping non-zero values of Z to Z’' = 0).

Furthermore, Erokhin’s function can be parametrically represented as follows [12].

M
1 1 1
H(S, €) = mZZI Ps(m)log, Polm) (1 —¢)log, T~ (M —1)nlog, p (39)
with the integer M and n > 0 determined by e through
M
> Pg(m)=1—e+(M—1) (40)
m=1

In particular, H(S,0) = H(S), and if S is equiprobable on an alphabet of M letters, then
H(S, €) = logy M — elogy(M — 1) — h(e), (41)

As the following result shows, Erokhin’s function is bounded in terms of the expectation of

the e-cutoff of information, (15(.5)),., which is easier to compute and analyze than the exact

€’

parametric solution in (39).
Theorem 1 (Bounds to H(S,¢)). If 0 < e < 1 — Ps(1), Erokhin’s function satisfies
E [(25(5)) ] — €logy(L5(0) + €) — 2h(e) — €log, E < H(S, €) (42)
< E[(15(5)) ] (43)
If e >1— Ps(1), then H(S,¢) = 0.
Proof. The bound in (42) follows from (71) and (45) below. Showing (43) involves defining a
suboptimal choice (in (12)) of

7 (44)

where Pgs = PsPs, and noting that 1(S; Z) < D(Pys||Ps|Ps) = E[(25(S5)).], where D(-| - |-)
denotes conditional relative entropy.

0

Figure 1 plots the bounds to H(S*, ¢) in Theorem 1 for biased coin flips.
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Fig. 1. Bounds to Erokhin’s function for a memoryless binary source with bias p = 0.11.

C. Non-asymptotic bounds

Expression (26) is not always convenient to work with. The next result tightly bounds L*(e)

in terms of the e-cutoff of information, (25(5)),, a random variable which is easier to deal with.

Theorem 2 (Bounds to L%(¢)). If 0 < € < 1 — Pg(1), then the minimum achievable average

length satisfies
E[(1s(S5))l + L5(0) = H(S) < Lg(e) (45)
< E[(s(5))d (46)

If € > 1 — Pg(1), then L%(e) = 0.
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Proof. Due to (37), we have the variational characterization:

E[(15(5)) |=H(S)— max Elg(5)is(S 47

(05(S))) = H(S) ~  max E[E(S)is(S) @)

where £(-) takes values in [0, 1]. We obtain (45)—(46) comparing (27) and (47) via (21). O
Example. If S is equiprobable on an alphabet of cardinality M, then

logg M w.p. 1—¢
(15(9), =4 (48)

0 otherwise

The next result, in which the role of entropy is taken over by Erokhin’s function, generalizes

the bounds in (4) and (5) to ¢ > 0.

Theorem 3 (Relation between L%(e) and H(S,€)). If 0 < € < 1 — Ps(1), then the minimum

achievable average length satisfies
H(S, €) — log,(H(S,€) + 1) — logy e < Lg(e) (49)
< H(S,€) + elogy(H(S) + €) + elog, S +2h(e) (50)
where H(S, €) is defined in (12), and h(x) = xlog, = + (1 — x)log, 7= is the binary entropy
function.
Note that we recover (4) and (5) by particularizing Theorem 3 to € = 0.

Proof. We first show the converse bound (49). The entropy of the output string W € {0, 1}* of
an arbitrary compressor S — W — S with P [S #+ g} < e satisfies

H(W) > I(S;W) = I(S; S) > H(S,¢) (51)

where the rightmost inequality holds in view of (12). Noting that the identity mapping W

W — W is a lossless variable-length code, we lower-bound its average length as
H(W) —logy(H(W) + 1) —logy e < Ly, (0) (52)
< E[((W)] (53)

where (52) follows from (4). The function of H (W) in the left side of (52) is monotonically

increasing if H (W) > log, £ = 0.44 bits and it is positive if H (V') > 3.66 bits. Therefore, it is

€
2
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safe to further weaken the bound in (52) by invoking (51). This concludes the proof of (49). By

applying [2, Theorem 1] to W, we can get a sharper lower bound (which is always positive)
YT (H(S, €) < Ls(e) (54)
where 1)1 is the inverse of the monotonic function on the positive real line:
Y(z) =24 (14 x)logy(l 4+ x) — xlog, x. (55)

To show the achievability bound (50), fix Pyg satisfying the constraint in (38). Denote for

brevity
A £ ((f5(S)) (56)
E21{S+Z} (57)
e(i) 2 P[S # Z|A = i] (58)

We proceed to lower bound the mutual information between S and Z:

1(S:Z) = I(S; Z,\) — I(S; \|Z) (59)
= H(S) — H(A|Z) — H(S|Z,A) (60)
= H(S) - I(A; E|Z) — H(A|Z, E) — H(S|Z, A) 61)
> Ly(e) + H(S) = L5(0) — elogy(L5(0) +) — elogy = = 2h(e)  (62)

where (62) follows from I(A; E|Z) < h(e) and the following chains (63)-(64) and (66)-(70).
H(S|Z,A) <E[e(A)A + h(e(A))] (63)
< Lg(0) = Lis(e) + h(e) (64)
where (63) is by Fano’s inequality: conditioned on A = i, S can have at most 2¢ values, so
H(S|Z,A =1) < ie(i) + h(e(d)) (65)

and (64) follows from (27), (38) and the concavity of A(-).
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The third term in (61) is upper bounded as follows.

H(A|Z, E) = cH(A|Z,E = 1) (66)
< eH(A|S % 2) 67)
< ¢ (logy(1 + E[AIS # Z]) + logye) (68)
<e <log2 (1 + ¥> + log, e) (69)
= elog, E + e(logy(LS(0)) +€) (70)

where (66) follows since H(A|Z,E = 0) = 0, (67) is because conditioning decreases en-
tropy, (68) follows by maximizing entropy under the mean constraint (achieved by the geometric

distribution), (69) follows by upper-bounding
PIS # ZIE[A[S # 2] <E[A]

and (70) applies (29).
Finally, since the right side of (62) does not depend on Z, we may minimize the left side

over Py g satisfying the constraint in (38) to obtain
Li(e) S H(S, €) + L5(0) — H(S) + elogy(L5(0) + €) + 2 h(e) + €log, S (71)

which leads to (50) via Wyner’s bound (5).

0J
Remark 1. The following stronger version of (4) is shown in [4, Lemma 3]:
H(S) < L5(0) + logy(L5(0) + 1) + logy e (72)
which, via the same reasoning as in (51)—(53), leads to the following strengthening of (49):
H(S,€) < Lg(e) + logy(Ls(€) + 1) + logy e (73)

Together, Theorems 1, 2, and 3 imply that as long as the quantities L%(e), H(S,¢) and
E [(25(S5)).] are not too small, they are close to each other.
In principle, it may seem surprising that L% (¢) is connected to H(.S, €) in the way dictated by

Theorem 3, which implies that whenever the unnormalized quantity H(.S, €) is large it must be
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close to the minimum average length. After all, the objectives of minimizing the input/output
dependence and minimizing the description length of S appear to be disparate, and in fact (25)
and the conditional distribution achieving (12) are quite different: although in both cases S and
its approximation coincide on the most likely outcomes, the number of retained outcomes is
different, and to lessen dependence, errors in the optimizing conditional in (12) do not favor

m = 1 or any particular outcome of .S.

D. Asymptotics for memoryless sources
Theorem 4. Assume that:

o Py = Ps x...x PFs.

o The third absolute moment of 1s(S) is finite.

For any 0 < e <1 and k — oo we have

sk (€)
H(S", €) = (1 - e)kH(S) — k‘;frs)e—@z“” +0(k) (74)
E [(15:(5")).]
where the remainder term satisfies
—logy k + O (logy log, k) < 0(k) <O (1) (75)

Proof. If the source is memoryless, the information in S* is a sum of i.i.d. random variables
as indicated in (16), and Theorem 4 follows by applying Lemma 1 below to the bounds in
Theorem 2. O

Lemma 1. Let X, Xs,... be a sequence of independent random variables with a common
distribution Px and a finite third absolute moment. Then for any 0 < € < 1 and k — oo we
have

E

2T

<iX>] _ (1= kR [X] — YA ] e g (76)

Proof. Appendix A. U
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Remark 2. Applying (6) to (45), for finite alphabet sources the lower bound on L%, (¢) is improved
to

o(k) > —%1og2k:+0(1) 77
For H(S*, €), the lower bound is in fact 0(k) > —elogy k + O (1), while for E [(25:(S%)) ],
6(k) =0 (1).

Remark 3. If the source alphabet is finite, we can sketch an alternative proof of Theorem 4 using
the method of types. By concavity and symmetry, it is easy to see that the optimal coupling that

achieves H(S¥, ¢) satisfies the following property: the error profile
e(sF) 2 P[ZF # S¥|SF = ] (78)

is constant on each k-type (see [23, Chapter 2] for types). Denote the type of s* as P and its

size as M (s*). We then have the following chain:

1(S*; 2%y = 1(S*, Pgr; Z%) (79)
= I(S*; Z*|Pgi) + O(log k) (80)
> E [(1—€(S*))log M(S*)] + O(log k) (81)

where (80) follows since there are only polynomially many types and (81) follows from (41).
Next, (81) is to be minimized over all ¢(S*) satisfying IE [¢(.S*)] < e. The solution (of this linear
optimization) is easy: €(s*) is 1 for all types with M (s*) exceeding a certain threshold, and 0

otherwise. In other words, we get
H(S*,¢) = (1 — ¢)E [log M(S*)|M(S*) < ~] + O(logk) (82)

where v is chosen so that P[M(S*) > v] = ¢. Using the relation between type size and its
entropy, we have

M(s*) = H(Py) + O(log k) (83)

and from the central-limit theorem, cf. [13], [24], we get

H(Pg) £ kH(S) + @U +O0(logk) U ~N(0,1). (84)

Thus, putting together (82), (83), (84) and after some algebra (74) follows.
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E. Discussion

Theorem 4 exhibits an unusual phenomenon in which the dispersion term improves the
achievable average rate. As illustrated in Fig. 2, a nonzero error probability ¢ decreases the
average achievable rate as the source outcomes falling into the shaded area are assigned length 0.
The total reduction in average length is composed of the reduction in asymptotically achievable
average length due to nonzero € and the reduction due to finite blocklength. The asymptotic
average length is reduced because the center of probabilistic mass Fig. 2 shifts to the left when
the e-tail of the distribution is chopped off. Moreover, for a fixed ¢ the wider the distribution
the bigger is this shift, thus shorter blocklengths and larger dispersions help to achieve a lower

average rate.

Fig. 2. The benefit of nonzero € and dispersion. The bell-shaped curve depicts an idealized form of the pmf of %4 ( f*(s* ))

For a source of biased coin flips, Fig. 4 depicts the exact average rate of the optimal code as
well as the approximation in (74). Both curves are monotonically increasing in k.

The dispersion term in (74) vanishes quickly with e. More precisely, as ¢ — 0, we have

(Appendix B)
1) [210g, X 85
ﬁe 2 = € 0go g + o0 (E) ( )

Therefore, a refined analysis of higher order terms in the expansion (74) is desirable in order

to obtain an approximation that is accurate even at short blocklengths. Inspired by [25], in Fig. 4
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Fig. 3. Average rate achievable for variable-rate almost lossless encoding of a memoryless binary source with bias p = 0.11

and two values of e. For ¢ < 1074, the resulting curves are almost indistinguishable from the ¢ = 10~* curve.

we adopt the following value for the remainder in (74):

log, k1 D 1
O(k) = (1 — e)< 22 —3 log, (4e*m) + T~ + log, T
1 1—p
1
a2 By )

(86)

where p is the coin bias, which proves to yield a remarkably good approximation, accurate for

blocklengths as short as 20.
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Fig. 4. Bounds to the average rate achievable for variable-rate almost lossless encoding of a memoryless binary source with

bias p = 0.11 and € = 0.1. The lower bound in (49) is virtually indistinguishable from a weakening of (45) using (4).

III. LOSSY VARIABLE-LENGTH COMPRESSION

A. The setup

In the basic setup of lossy compression, we are given a source alphabet M, a reproduction
alphabet M, a distortion measure d: M x M [0, +00] to assess the fidelity of reproduction,

and a probability distribution of the object S to be compressed.

Definition 2 ((L, d, €) code). A variable-length (L, d, €) lossy code for {S,d} is a pair of random
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transformations Pys: M — {0,1}" and Py {0,1}" — M such that
Pd(S,Z) >d| <e (87)

E[((W)] < L (88)

The goal of this section is to characterize the minimum achievable average length compatible

with the given tolerable error e:
L5(d,e) = {min L: 3 an (L,d,¢) code} (89)

Section III-B discusses the properties of the optimal code. Section III-C reviews some back-
ground facts from rate-distortion theory. Section III-D presents single-shot results, and Section

III-E focuses on the asymptotics.

B. Optimal code

Unlike the lossless setup in Section II, the optimal encoding and decoding mappings do not
admit, in general, explicit descriptions. We can however point out several properties of the
optimal code.

We first focus on the case € = 0. The optimal (d,0) code satisfies the following properties.

1) The optimal encoder f* and decoder g* are deterministic mappings.

2) The output W* = f*(S) of the optimal encoder satisfies Py «(@) > Py+«(0) > Py«(1) >

Py+(00) > ...
3) For each w € {0,1}*

f*~H(w) = Bgr(w)\ Up<w Bgr(v) (90)

where < is lexicographic ordering, and

B. = {s:d(s,2) < d} 91)
Let 21, 29,... be a d-covering of M. First, we will show that the foregoing claims hold for
decoders whose image is constrained to the given d-covering 21, 2o, . . .. Then, we will conclude

that since the claims hold for all d-coverings, they hold for the one that results in the minimum

average length as well.
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To show 1), let (Pws, Pzjw) be a (d,0) code. The optimal encoder is deterministic because
if there exist s € M and w < v € {0, 1}* such that Pys—s(w) > 0 and Py |s=s(v) > 0 we may
decrease the average length by setting Py g—s(w) = 1. The optimal decoder is deterministic
because if for some w € {0, 1}* there exist 2/, 2" € {21, z2,...} such that Pyy—,(2") > 0 and
Py w=w(2") > 0, then nothing changes by setting Pz -, (2") = 1.

To show 2), observe that if there exist w < v € {0,1}* such that Py (w) < Py(v), then the
average length is shortened by swapping w and v.

To show 3), notice that the average length decreases as Py (9) increases, and the latter is
maximized by setting f~'(&) = Bgy(s). Further, Py (0) is maximized without affecting Py (&)
by setting f~(0) = By(0)\ Bg(e) and so forth.

We now consider the case € > 0. The optimal (d, €) code satisfies the following properties.

1) The optimal decoder g* is deterministic, and the optimal encoder Py« satisfies Py« s—s(w) =

1 — Py+js=s(@) for all s € M and all w € {0,1}*\@.
2) The output of the optimal encoder satisfies Py« (@) > Py+(0) > Py+(1) > Py+(00) > ...

3) There exist n € R* such that P[¢/(W*) >7n] = 0 and 0 < « < 1 such that for each
w e {0,1}"\@

1, 5 € Bge(w)\ Upw Bgrv) & L(w) <7
Py jg—s(w) = ¢ & (92)

1 —a, 5 € Bge(w)\ Uv<w Bgr(v) & L(w) =1
and

1, s Q_f U B *(w)
Pyysj5=s(2) = ¢ 93)

a, S € Ung*(w) & ﬁ(w) =n

Property 3) implies in particular that /(f*(s)) = 0 as long as d(s, g*(f*(s))) > d.

We say that 7 C M is a (d, €)-covering of M if P[min,cxd(S,z) > d] < e. Note that a
finite (d, €)-covering always exists as long as a d-covering exists [20]: indeed, given a d-covering
21, %, .., let M satisfy Y-\ P[S € B, \Uicp B;] < € and just drop all z,: m > 7 to
obtain a finite (d, €)-covering. Let zy, 23, ..., z) be a (d, €)-covering of M. Observing that an
infinite (d, €)-covering 21, z, ... can only result in a longer average length, we will first show

that the foregoing claims hold for decoders whose image is constrained to a given (d, €)-covering
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21, 22, - .., Zzu- Then, we will conclude that since the claims hold for all finite (d, €)-coverings,
they hold for the one that results in the minimum average length as well.

To show 1), notice that for a given encoder Py |, the optimal decoder is always deterministic.
Indeed, if for some w € {0, 1}* there exist 2/, 2" € {21, 22,..., za} such that Pyy—,(2") > 0,
Prw=w(z") > 0 and Psjw—w(B.) > Psw=w(B.~) then the excess distortion can only be
reduced by setting Py —,(2") = 1, without affecting the average length. Denote that determin-
istic decoder by g. As for the encoder, consider w € {0,1}* \ @ and source realization s with
Pys=s(w) > 0. If d(s,g(w)) > d, the average length can be decreased, without increasing
the excess distortion probability, by setting Py s—s(w) = 0 and adjusting Py s—s(9) = 1
accordingly. This argument implies that the optimal encoder satisfies Pgjy—,(Bgw)) = 1 for
each w # @. Now, if there exist s and w < v € {0,1}*\@ such that Py s—s(w) > 0 and
Py |s=s(v) > 0, we may decrease the average length with no impact on the probability of excess
distortion by setting Py js—s(w) = 1.

To show 2), notice that if there exist w < v € {0, 1}*\@ such that Py (w) < Py (v), then the
average length is shortened by swapping w and v. If there exist w € {0, 1}*\@ with Py (w) >
Py () then the average length is shortened by swapping w and @ and setting Py js—s(w) = 0
while adjusting Pyy|s—s(@) = 1 accordingly for each s ¢ By,).

To show 3), we argue as in the case € = ( that setting

Pyis—s(w) =1, 5 € Bgu)\ Up<w Bgw) (94)
PW\S:S(Q) =1, s ¢ Ung(w) 95)
yields the minimum average length among all (d,€') codes with codebook z1, 2, . .. satisfying

1) and 2) where ¢ £ P [min,, d(S, 2,,) > d]. If € = ¢, there is nothing else to prove. If ¢ < e,

let n € RT and 0 < a < 1 solve
PU(W)>n+aPl(W)=n]=€c—¢ (96)

and observe that dropping all w: ¢(w) > n reduces the average length while keeping the excess
distortion probability below €. Now, letting Pyy|s—s(w) = 1 — a for each s € Bg(u)\ Uy<w Bg(v)
and each w: {(w) = 7 and adjusting Py|s=(2) accordingly further reduces the average length

while making the excess distortion probability exactly e.
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Property 3) implies that randomization is not essential as almost the same average length
can be achieved with deterministic encoding and decoding operations. Precisely, denoting by

L% 4o. (d, €) the minimum average length achievable with deterministic codes, we have
Lg(d7 6) S Lg,det (d7 6) (97)
< Ls(d, €) + ¢(minfe, e™}) (98)

where (98) is obtained in the same way as (31), and 0 < ¢(-) < 0.531 is defined in (32).

C. A bit of rate-distortion theory

The minimal mutual information function

Rg(d) = inf I(S;Z2) (99)
Pz‘s :
E[d(S,2)]<d

characterizes the minimum asymptotically achievable rate in both fixed-length compression under
the average or excess distortion constraint and variable-length lossy compression under the almost
sure distortion constraint [26], [27].

We assume throughout that the following basic assumptions are met.

(A) Rg(d) is finite for some d, i.e. dp;, < 0o, where

din = inf {d: Rg(d) < oo} (100)

(B) The distortion measure is such that there exists a finite set £ C M such that

E {mind(S, z)} < 0 (101)

zeE

The following characterization of Rg(d) due to Csiszér [28] will be instrumental.

Theorem 5 (Characterization of Rg(d) [28, Theorem 2.3]). For each d > d, it holds that
Rs(d) = ax {ELJ(S)] — A} (102)

where the maximization is over J(s) > 0 and A > 0 satisfying the constraint

E [exp {J(S) — Ad(S,2)}] <1Vze M (103)
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Let (Js(s), \s) attain the maximum in the right side of (102). If there exists a transition

probability kernel P.|s that actually achieves the infimum in the right side of (99), then [28]
Js(8) = 15.2+(s; 2) + Agd(s, 2) (104)
= —log, E [exp (—Asd(s, Z7))] (105)

where (104) holds for Pz«-a.e. z, the expectation in (105) is with respect to the unconditional

distribution of Z*, and the usual information density is denoted by

dPz =
S(s:2) 21 |5=s 1
15.2(5:2) £ logy —(2) (106)
Note from (105) that by the concavity of logarithm
0 < Js(s) < Ed(s, 27)] (107)

The random variable that plays the key role in characterizing the nonasymptotic fundamental

limit of lossy data compression is the d-tilted information in s € M [15]:
7s(s,d) £ Js(s) — Asd (108)

It follows from (102) that
Rs(d) = E[3s(S, d)] (109)

Much like information in s € M which quantifies the number of bits necessary to represent s
losslessly, d-tilted information in s quantifies the number of bits necessary to represent s within
distortion d, in a sense that goes beyond average as in (109) [15], [17]. Particularizing (103),

we observe that the d-tilted information satisfies
E [exp(ys(S, d) + Asd — Asd(S, 2))] <1 (110)

Using Markov’s inequality and (105), it is easy to see that the d-tilted information is linked
to the probability that Z* falls within distortion d from s € M:

1
Js(s,d) < logzm (111)

where

By(s) = {z e M: d(s,z) < d} (112)

Moreover, under regularity conditions the reverse inequality in (111) can be closely approached [17,

Proposition 3].
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D. Nonasymptotic bounds

We begin with a simple generalization of basic bounds (4) and (5) to an arbitrary distortion
measure and nonzero €, in which the role of entropy is assumed by the (e, d)-entropy of the
source S, defined as [20]:

H_5(S) & . min_ H(f(S5)). (113)
PUCSHEYS <o

Theorem 6 (Bounds to L .. (d, €)). The minimal average length achievable with deterministic

codes under an excess-distortion constraint satisfies
Hgo(S) — logy(Hae(S) +1) —logye < L .. (d, €) (114)

< Hy(S) (115)

Proof. The converse bound in (114) follows by applying (4) and minimizing over all possible
output entropies. The achievability bound in (115) is implied by Wyner’s bound (5) recalling

(Section III-B) that the codewords of the optimal code are ordered in decreasing probabilities. [

Note that L*(d, €) is also bounded in terms of H,(.S), in view of Theorem 6 and (98).
Particularizing Theorem 6 to ¢ = 0 and using L§(d,0) = L§ .. (d,0) (as shown in Section

II-B), we see that the minimum average length of d-semifaithful codes is bounded by
Hu(S) — logy(Ha(S) + 1) — log, e < Li(d, 0) (116)
< Hy(9), (117)
where H.(S) is the e-entropy of the source S [20]:

H.(S) = . min_ H(f(3)), (118)
d(S,%'ﬁévsl as.

which is bounded as follows:
Rs(d,0) < Hy(S) (119)

where C' is a universal constant, and (120) holds whenever d is a metric by [29, Theorem 2].
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Theorem 6 applies to the almost-lossless setting of Section II, in which case the (e, §)-entropy
particularizes to € = 0 and Hamming distortion as
Hos(S)= min  H(f(9)). (121)
f: M M:
P[S#f(S)]<6
The (¢, §)-entropy is difficult to compute and analyze directly. We proceed to give bounds on
L%(d,e) and H,(S) that will essentially show that all the functions L% (d, €), Hy.(S), Rs(d, €)
(defined in (19)), are within O (log, Rs(d)) bits from the easy-to-analyze function E [(ys(S, d)) |.

We will show that the same is true for the function
RE(d,e) £ inf [(—1log, Pz(B4(9))).], (122)
4

where By(s) is the distortion d-ball around s (formally defined in (112)) and the infimum is
over all distributions on M\,
The next result provides nonasymptotic bounds to the minimum achievable average length

when randomized encoding and decoding operations are allowed.

Theorem 7 (Bounds to L%(d,€)). The minimal average length achievable under an excess-

distortion constraint satisfies
Rg(d, €) —log, (Rs(d, €) + 1) —logye < Lg(d,¢€) (123)
< R¥(d,€) (124)
where Rg(d, €) is the minimal information quantity defined in (19), and R (d,€) is defined in

(122).

Proof. The converse bound in (123) is shown in the same way as (114). To show the achievability
bound in (124), consider the (d, €) code that, given an infinite list of codewords z1, 2o, . . ., outputs
the first d-close match to s as long as s is not too atypical. Specifically, the encoder outputs the
lexicographic binary encoding (including the empty string) of

min {m: d(S, z,,) < d} (—logy Pz(B4(5))). >0

WA (125)
1 otherwise
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The encoded length averaged over both the source and all codebooks with codewords 7, Z5, . ..

drawn i.i.d. from P is upper bounded by

E [[log, W] < E[logy W 1{(~log, Pz(Ba(5))), > 0}] (126)
= E[1{(~logy Pz(Ba(5))). > 0} E [logy W|S]] (127)
< E[1{(—log, Pz(Bq4(S))). > 0} log, E [W]5]] (128)
= E [(—log, Pz(Ba(5)))] (129)

where
e (128) is by Jensen’s inequality;
o (129) holds because conditioned on S = s and averaged over codebooks, W has geometric
distribution with success probability Pz(By(s)).
It follows that there is at least one codebook that yields the encoded length not exceeding the

expectation in (129).

0
Remark 4. Both (114) and (123) can be strengthened as in Remark 1.
Theorem 8 (Bounds to Rg(d, €) and to Hy(S) ). For all d > d;, we have
E[(35(S, d)).] —log, (Rs(d) — Rg(d)d +1) —logy e — h(e) < Ry(d, €) (130)
< R{(d,e) (131)
and for all d > d;,, we have
Ri(d,€) — p(max {1 — e, e '}) < Hy(S) (132)
< R%(d,€) + log, (RE(d,e) + 1+ ¢ (min{e,e7'}))
+ 1+ ¢ (min {e,e”"'}) (133)
where 0 < ¢(-) < e 'log, e is defined in (32).
Proof. Appendix C. ]

Trivially, Rg(d, €) < Hgy(S).
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Remark 5. In the almost-lossless setting (Hamming distortion and d = 0), the following bounds

hold (Appendix D).
E [(15(5)).] — ¢ (max {1 —e,e™'}) < Hy(9) (134)
< E[(15(5))] + ¢ (min {e,e7'}) (135)

Remark 6. Particularizing (132) to the case ¢ = (0, we recover the lower bound on e-entropy in
[20, Lemma 9]:
inf [—logy Pz (Ba(5))] < Ha(S) (136)
zZ

Remark 7. As follows from Lemma 3 in Appendix C, in the special case where
15(S,d) = Rg(d) as. (137)

which in particular includes the equiprobable source under a permutation distortion measure (e.g.

symbol error rate) [30], the lower bound in (130) can be tightened as
Rs(d, ¢) > (1 — )Rs(d) — he) (138)

Remark 8. Applying (37) to the random variable j5(S, d), we have the variational characteriza-

tion:

E[{(15(5,d))] = Rs(d) — _ max E [e(S)ss(S, d)] (139)
E[e(S)]<e

from where it follows, via (111), that

E[(15(5,d))] < E[(—logy Pz+(Ba(5)))] (140)

< E[(15(5,d))] + E[=log, Pz(Ba(5))] — Rs(d) (141)

where Py« is the output distribution that achieves Rg(d).

E. Asymptotic analysis

In this section we assume that the following conditions are satisfied.

(i) The source {S;} is stationary and memoryless, Pgx = Ps X ... X Ps.

(ii) The distortion measure is separable, d(s*, 2*) = L S°F  d(s;, 2).
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(ii1) The distortion level satisfies d,;, < d < diax, Where dy;, 1s defined in (100), and d,.« =
inf,_ 7 E[d(S,z)], where the expectation is with respect to the unconditional distribution
of S.

(iv) E[d'*(S,Z*)] < oo where the expectation is with respect to Ps X P7., and Z* achieves the
rate-distortion function Rs(d).

If conditions (i)—(iii) are satisfied, then Agr = kAs and Pgisgr = Pzxjs X ... X Pz«s, Where

Py7.is achieves Rs(d). Moreover, even if Rs(d) is not achieved by any conditional distribution

k

gse(s*,d) = g5(si, d) (142)

i=1
Finiteness of the twelfth moment of d(S,Z*) in restriction (iv) is required for the achievability

part of the asymptotic expansion in Theorem 9.

Theorem 9. Under assumptions (i)—(iv), for any 0 < e <1

se(d,e)
Rsk (d, 6)
R (d, €) o = (1 —€)kR(d) — M;(Td) e 0(k) (143)
Hgy (S%)
E [(95:(S*, d)) ]
where
V(d) = Var [35(S, d)] (144)

is the rate-dispersion function, and the remainder term in the expansion satisfies

— 2log, k+ O (1) < (k) < glog2k+0(1) (145)

Proof. Due to (107), the assumption (iv) implies that the twelfth (and thus the third) moment of
75(S, d) is finite, and the expansion for E [(75:(S*, d)>6] follows from (142) and Lemma 1. The
converse direction is now immediate from Theorems 7 and 8. The achievability direction follows

by an application of Lemma 2 below to weaken the upper bounds in Theorems 7 and 8. ]

March 20, 2015 DRAFT



Lemma 2. Let 0 < € < 1. Under assumptions (1)—(iv)

kV(d) = QL e)?

E [<_ log, PZk*(Bd(Sk)»J = (1= e)kR(d) — 2w

+0(k)

where

0 (1) < 0(k) <

log, k+ O (1)

N —

Proof. Appendix E.

APPENDIX A

PROOF OF LEMMA 1

29

(146)

(147)

The following non-uniform strengthening of the Berry-Esseén inequality is instrumental in the

proof of Lemma 1.

Theorem 10 (Bikelis (1966), e.g. [31]). Fix a positive integer k. Let X;, i = 1,...

independent, F [X;] = 0, E[|X;|?] < cc. Then, for any real t

k
ZXZ- > t\/kVi
i=1

< B

v = R+ )

— Q(1)

where

i=1
L
T, = - E [|X;]?]
i=1
colk,
By, = V32
k
and cy is a positive constant.
Denote for brevity
k

If Var [X] =0

and (76) holds.
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If Var [X] > 0 notice that
(1= pEX] - E[(Yy)] = E[(Ys = hEX))1{Yi > n}] + a(n - RE[X))P[Yr = n] (154)
:/OOIP[Yk>t]dt+e(n—kE[X]), (155)
where 7 and « are those in (14),nand to write (155) we used
E[Y,1{Y; > n}] = /noolp Y > t]dt + 5P Yy, > 7). (156)

We proceed to evaluate the right side of (155). Using Theorem 10, we observe that 7 that satisfies
(14) has the form

n = kE[X] + /EVar [X]Q " (¢) + by (157)
where b, = O (1). Using (157), we may write
/OOIP Yy, > t] dt
/OOOIP’ Y}, > n+t]dt (158)
= /b P [Yk > kE [X] 4+ /EVar [X]Q 7" (¢) + t} dt (159)
= /OOOIP [Yk > kE [X] + /kVar [X]Q " () + t} dt+ 0 (1) (160)
- \/W/OOIP’ Yk > kE [X] + /&kVar [X](Q (¢) + r)] dr+0(1)  (161)
\/W/ (e) +7)dr+0O(1) (162)
— /EVar [X] / r)ydr 4+ O (1) (163)
FVar [X] U:l(e) \/%xe_z;dx Q! (e)} Lo (164)
kVar [X] (#e-@l«f”? —eQ? (e)) +0(1) (165)
where (162) follows by applying Theorem 10 to the integrand in the left side and observing that
/0 It (Q—?Ze) T (160)

Applying (157) and (165) to (155), we conclude that
EVar [X] @ '@?
—— ¢ 2

(1= rEX] - E[(Yy)] = Nor

+0(1), (167)
which is exactly (76).
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APPENDIX B

PROOF OF (85)

Denote for brevity

1 (o)
€) = e 2
Direct computation yields
1
fle)=—
(@Y (o)
flle)=Q7 ()
1
f// €) = ——
=70
Furthermore, using the bounds
T 2 1 2
—¢€ 2 <Qr) < e 2,x>0
V27 (1 + 22) Q) V21x

we infer that as ¢ — 0

/ 1 1
Q_l (6) = 2 loge E + @) <1Oge 1Oge E)
f(e) — ey /21og, %
lim \/7

e—0 € e—0 €

Finally

where

e (174) is due to (170) and (173);

e (175) is by the I’Hopital rule;

e (176) applies (171);

e (177) is by the I’Hopital rule and (170).
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(168)

(169)

(170)

171)

(172)

(173)

(174)
(175)

(176)

a77)

(178)
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APPENDIX C

PROOF OF THEOREM &

Given Pg, d, denote for measurable 7 C M

Rs)#(d, €) = pin - I(5;2]5 € F) (179)
P[d(S,Z)>d|SeF]<e

In the proof of the converse bound in (130), the following result is instrumental.

Lemma 3. Suppose Ps, d, d > d.;, and F C M are such that for all s € F

95(S,d) > 7 as. (180)
for some real . Then
Rsi7(d, €) > |(1 = €)r + (1 — ¢) log, P[S € F] — h(e)|" (181)
Proof. Denote
ps(2) £ P[d(S,2) <d|S € F] (182)
p = sup ps(2) (183)
zeM

If e >1—p, Rg(d,e) =0, so in the sequel we focus on the nontrivial case
e<1l-p (184)
To lower-bound the left side of (181), we weaken the supremum in (102) by selecting a

suitable pair (J(s), \) satisfying the constraint in (103). Specifically, we choose

I S
(1-¢)(1-p)

exp(J(s)) = exp(J) £ %, seF (186)

exp(—\) = (185)

To verify that the condition (103) is satisfied, we substitute the choice in (185) and (186) into
the left side of (103) to obtain
1 —ps(2)
e—— 4+ (1 —
l—p ( p I—p p
=1 (188)

) L—ps(2) _ps(a)] | ps(2) (187)
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where (187) is due to (184) and the observation that the expression in square brackets in the

right side of (187) is nonnegative. Plugging (185) and (186) into (102), we conclude that

Reiz(d,€) = J — Ae (189)
— d(ell1 — p) - he) (190)
> (1= logy 7 = h(e) (191)
> (1—e)r+ (1 ¢)log, P[S € F| — h(e) (192)

where (192) is due to

ps(z) < Elexp(Asd — Agd(S, 2))|S € F| (193)

< E[exp(35(S,d) + Asd — A\sd(S, z) — 1)|S € F] (194)

< oL Blep(s(S.d) + Asd ~ Asd(5,) (195)
exp(—r)

S PlScrA (136)

where \g¢ = —Rg(d), and
e (193) is Markov’s inequality;
e (194) applies (180);
e (196) is equivalent to (110).
0J

Proof of Theorem 8. We start with the converse bound in (130). Note first that, similar to (38),

the constraint in (19) is achieved with equality. Denoting the random variable

F £ |5s(S,d)] +1 (197)
and the sets
FjE{s e M: F =}, (198)
we may write
I(S;Z)=1(S,F; Z) (199)
=I1(S;Z|F)+ I(F; 2) (200)
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SO

Rs(d,€) > min  I(S; Z|F) (201)
IP[d(S,ZZ‘f;d]Se

= min Pr(7)Rsx (d, e(j 0
a(-):E[a(F)}<5j;oo (7)) Rs7;(d, €(7)) (202)

We apply Lemma 3 to lower bound each term of the sum by

Rz, (d, (7)) > |(1 = (7)) + (1 = ) logs Pe(j) = h(e()]* (203)
to obtain
Rs(d, ) > min  {E[(1—e(F))ys(S,d) —Eh(e(F)]} — H(F)  @04)
= min {E[(1 - (F))s(S, A} — HF) — h(e) (205)
> E[{35(5.))] - H(F) = h(e) (206)
> E[(35(5. )] — log (E[J5(S)] + 1) ~ logy e — h(¢) 07)

where (204) uses (111), (205) is by concavity of A(:), (206) is due to (139), and (207) holds
because F'+ Agd > Jg(S) > 0, and the entropy of a random variable on Z, with a given mean
is maximized by that of the geometric distribution.

To show the upper bound in (131), fix an arbitrary distribution P; and define the conditional
probability distribution Py through®

APys—i(z) | S (—logy P2(Ba(s))), > 0

: _ (208)
dPy(z) 1 otherwise

By the definition of Py s
P[d(S,Z)>d] <e (209)

Upper-bounding the minimum in (19) with the choice of Pyg in (208), we obtain the following

®Note that in general Py — Pys =+ Pgz.
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nonasymptotic bound:

Rs(d,€) < I(S: 2) (210)
= D (Pys||P7|Ps) — D(Py|| Pz) @11)
< D (Pzs|| Pz|Ps) (212)
= E[(—logy Pz(Ba(S5))).] (213)

which leads to (131) after minimizing the right side over all P;.

To show the lower bound on (e, §)-entropy in (132), fix f satisfying the constraint in (113),

denote
Z 21(S) (214)
e(s) £ 1{d(s,f(s)) > d} (215)
and write
H(Z) = H(Z|e(5)) (216)
> P.s)(0)H(Z|2(S) = 0) (217)
= E [12:(5-0(Z)(1 — £(5))] + Px(s5)(0) log, Px(s)(0) (218)
> E[(~log, Pz(Ba(S5)))] — é(min{e,e”"}) (219)

where the second term is bounded by maximizing p log, % over [1 —¢,1], and the first term is

bounded via the following chain.
E [1z:5)-0(2)(1 — &(8))] = E [~ log, P7(Ba(S8))(1 —&(S))] (220)

>  min  E[—log, Pz(Ba(9))(1 —e(9))] (221)

e(): Ele(8))<e

= E[(—log, Pz(Ba(5))) ] (222)
where (220) holds because due to {s € M: f(s) = z,¢e(s) = 0} C By(s) we have for all s € M
P2 = £(s),(S) = 0] < Po(Ba(s)) (223)

and (222) is due to (37).
To show the upper bound on (¢, §)-entropy in (133), fix P, such

Pz (By(s)) >0 (224)
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for Pg-a.s. s € M, let Z° ~ P; x Pz x ..., and define W as

W min {m: d(S, Z,,) <d} (—log, Pz(B4(S5))), >0 225)

1 otherwise

where € is the maximum of € < e such that the randomization on the boundary of (— log, Pz (B4(S5))).
can be implemented without the actual randomization (see Section II-A for an explanation of
this phenomenon).

If 21,25, ... is a realization of Z*°, f(s) = z, is a deterministic mapping that satisfies the

constraint in (113), so, since w — z,, is injective, we have
Hy(S) < HWI|Z® = 2%) (226)

We proceed to show that H(W|Z°°) is upper bounded by the right side of (133). Via the
random coding argument this will imply that there exists at least one codebook 2> such that
H(W|Z> = 2*) is also upper bounded by the right side of (133), and the proof will be complete.

Let

G £ |logy W] (—log, Pz(Ba4(S)))., >0 (227)
and consider the chain
H(W|Z*) < HW) (228)
= HW|G) + I(W;G) (229)
<E[G]+ H(G) (230)
<E[G] +log, (1+E[G]) +log, e (231)

where
e (228) holds because conditioning decreases entropy;
e (230) holds because conditioned on G = ¢, W can have at most ¢ values;
e (231) holds because the entropy of a positive integer-valued random variable with a given
mean is maximized by the geometric distribution.

Finally, it was shown in (129) that
E[G] = E[(—log, Pz(Ba(5))).] (232)

< E[(—1logy Pz(Ba(5))),.] + ¢(min{e,e'}) (233)
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where ¢(-) is the no-randomization penalty as explained in the proof of (31).

APPENDIX D

PROOF OF THE BOUNDS (134) AND (135) ON H; (S) (HAMMING DISTORTION)
The upper bound in (135) is obtained by a suboptimal choice (in (121)) of f(s) = s for all
s < mg, where my is that in (33), and f(s) = mg + 1 otherwise.

To show the lower bound in (134), fix f satisfying the constraint in (121), put

e(S) 2 1{S #f(5)} (234)

and write
H(£(S)) > H(f(S)]e(S) = 0)Py(s)(0) (235)
—E [log, m\ew) — 0| Ps)(0) (236)
> H (S|e(S) = 0) Pus) (0) (237)
— E [15(5)1{e(S) = 0}] + P-(5)(0)1og, Pe(s)(0) (238)
> E[(15(9))] — ¢ (max {1 —e,e7'}) (239)

where

e (235) is because conditioning decreases entropy;
e (236) is due to
n;inE [y (X)] = H(X) (240)
Y

e in (239), the first term is bounded using (37), and the second term is bounded by maximizing

plogzi over [1 — e, 1].

APPENDIX E

PROOF OF LEMMA 2

The following refinement of the lossy AEP is essentially contained in [19].
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Lemma 4. Under restrictions (1)—(iv), there exist constants C, Cy such that eventually, almost

surely

k
- o _ a(qk A/ qky)2
log, PZk*(Bd(Sk)) Z: s(S;, d) + 1og2k: kXs(d — d(S*)) 4+ kCy(d — d(S*))? + O,

(241)

where

||l>

?vli—‘

k
Z (54, 2)|S = si] (242)

Proof. 1t follows from [19, (4.6), (5.5)] that the probability of violating (241) is O (k_12) Since
> pei 7= is summable, by the Borel-Cantelli lemma (241) holds w. p. 1 for k large enough. [J

Noting that d(s*) is a normalized sum of independent random variables with mean d, we

conclude using Lemma 4 that for £ large enough

E < kR(d) + % log, k + O (1) (243)

1
logy —————
82 P, (Ba(SF))
Lemma 2 is now immediate from (140) and (141) and the expansion for E [<jgk(5k, d)>J in
(143).
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