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Variable-length compression allowing errors

Victoria Kostina, Yury Polyanskiy, Sergio Verdú

Abstract

This paper studies the fundamental limits of the minimum average length of lossless and lossy

variable-length compression, allowing a nonzero error probability ǫ, for lossless compression. We give

non-asymptotic bounds on the minimum average length in terms of Erokhin’s rate-distortion function

and we use those bounds to obtain a Gaussian approximation on the speed of approach to the limit

which is quite accurate for all but small blocklengths:

(1− ǫ)kH(S)−
√

kV (S)

2π
e−

(Q−1(ǫ))2

2

where Q−1 (·) is the functional inverse of the standard Gaussian complementary cdf, and V (S) is the

source dispersion. A nonzero error probability thus not only reduces the asymptotically achievable rate

by a factor of 1−ǫ, but this asymptotic limit is approached from below, i.e. a larger source dispersion and

shorter blocklengths are beneficial. Variable-length lossy compression under excess distortion constraint

is shown to exhibit similar properties.

Index Terms

Variable-length compression, lossless compression, lossy compression, single-shot, finite-blocklength

regime, rate-distortion theory, dispersion, Shannon theory.

I. INTRODUCTION AND SUMMARY OF RESULTS

Let S be a discrete random variable to be compressed into a variable-length binary string. We

denote the set of all binary strings (including the empty string) by {0, 1}⋆ and the length of a

string a ∈ {0, 1}⋆ by ℓ(a). The codes considered in this paper fall under the following paradigm.

This work was supported in part by the Center for Science of Information (CSoI), an NSF Science and Technology Center,

under Grant CCF-0939370. This paper was presented in part at ISIT 2014 [1].
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Definition 1 ((L, ǫ) code). A variable length (L, ǫ) code for source S defined on a finite or

countably infinite alphabet M is a pair of possibly random transformations PW |S : M 7→ {0, 1}⋆

and PŜ|W : {0, 1}⋆ 7→ M such that1

P

[
S 6= Ŝ

]
≤ ǫ (1)

E [ℓ(W )] ≤ L (2)

The corresponding fundamental limit is

L⋆
S(ǫ) , inf {L : ∃ an (L, ǫ) code} (3)

Lifting the prefix condition in variable-length coding is discussed in [2], [3]. In particular, in

the zero-error case we have [4], [5]

H(S)− log2(H(S) + 1)− log2 e ≤ L⋆
S(0) (4)

≤ H(S) , (5)

while [2] shows that in the i.i.d. case (with a non-lattice distribution PS, otherwise o(1) becomes

O(1))

L⋆
Sk(0) = kH(S)− 1

2
log2 (8πeV (S)k) + o(1) (6)

where V (S) is the varentropy of PS, namely the variance of the information

ıS(S) = log2
1

PS(S)
. (7)

Under the rubric of “weak variable-length source coding,” T. S. Han [6], [7, Section 1.8]

considers the asymptotic fixed-to-variable (M = Sk) almost-lossless version of the foregoing

setup with vanishing error probability and prefix encoders. Among other results, Han showed

that the minimum average length LSk(ǫ) of prefix-free encoding of a stationary ergodic source

with entropy rate H behaves as

lim
ǫ→0

lim
k→∞

1

k
LSk(ǫ) = H. (8)

1Note that L need not be an integer.
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Koga and Yamamoto [8] characterized asymptotically achievable rates of variable-length prefix

codes with non-vanishing error probability and, in particular, showed that for finite alphabet i.i.d.

sources with distribution PS,

lim
k→∞

1

k
LSk(ǫ) = (1− ǫ)H(S). (9)

The benefit of variable length vs. fixed length in the case of given ǫ is clear from (9): indeed,

the latter satisfies a strong converse and therefore any rate below the entropy is fatal. Allow-

ing both nonzero error and variable-length coding is interesting not only conceptually but on

account on several important generalizations. For example, the variable-length counterpart of

Slepian-Wolf coding considered e.g. in [9] is particularly relevant in universal settings, and

has a radically different (and practically uninteresting) zero-error version. Another substantive

important generalization where nonzero error is inevitable is variable-length joint source-channel

coding without or with feedback. For the latter, Polyanskiy et al. [10] showed that allowing a

nonzero error probability boosts the ǫ-capacity of the channel, while matching the transmission

length to channel conditions accelerates the rate of approach to that asymptotic limit. The use

of nonzero error compressors is also of interest in hashing [11].

The purpose of Section II is to give non-asymptotic bounds on the fundamental limit (3), and

to apply those bounds to analyze the speed of approach to the limit in (9), which also holds

without the prefix condition. Specifically, we show that (cf. (4)–(5))

L⋆
S(ǫ) = H(S, ǫ) +O (log2H(S)) (10)

= E [〈ıS(S)〉ǫ] +O (log2H(S)) (11)

where

H(S, ǫ)
△
= min

PZ|S :

P[S 6=Z]≤ǫ

I(S;Z) (12)

is Erokhin’s function [12], and the ǫ-cutoff random transformation acting on a real-valued random

variable X is defined as

〈X〉ǫ ,





X X < η

η X = η (w. p. 1− α)

0 X = η (w. p. α)

0 otherwise

(13)
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where η ∈ R and α ∈ [0, 1) are determined from

P [X > η] + αP [X = η] = ǫ. (14)

While η and α satisfying (14) are not unique in general, any such pair defines the same 〈X〉ǫ
up to almost-sure equivalence.

The code that achieves (10) essentially discards “rich” source realizations with ıS(S) > η and

encodes the rest losslessly assigning them in the order of decreasing probabilities to the elements

of {0, 1}⋆ ordered lexicographically.

For memoryless sources with Si ∼ S we show that the speed of approach to the limit in (9)

is given by the following result.

L⋆
Sk(ǫ)

H(Sk, ǫ)

E
[〈
ıSk(Sk)

〉
ǫ

]





= (1− ǫ)kH(S)−
√
kV (S)

2π
e−

(Q−1(ǫ))2

2 +O (log k) (15)

To gain some insight into the form of (15), note that if the source is memoryless, the

information in Sk is a sum of i.i.d. random variables, and by the central limit theorem

ıSk(Sk) =
k∑

i=1

ıS(Si) (16)

d≈ N (kH(S), kV (S)) (17)

while for Gaussian X

E [〈X〉ǫ] = (1− ǫ)E [X ]−
√

Var [X ]

2π
e−

(Q−1(ǫ))2

2 (18)

Our result in (15) underlines that not only does ǫ > 0 allow for a (1−ǫ) reduction in asymptotic

rate (as found in [8]), but, in contrast to [13]–[16], larger source dispersion is beneficial. This

curious property is further discussed in Section II-E.

In Section III, we generalize the setting to allow a general distortion measure in lieu of the

Hamming distortion in (1). More precisely, we replace (1) by the excess probability constraint

P [d (S, Z) > d] ≤ ǫ. In this setting, refined asymptotics of minimum achievable lengths of

variable-length lossy prefix codes almost surely operating at distortion d was studied in [17]

(pointwise convergence) and in [18], [19] (convergence in mean). Our main result in the lossy
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case is that (15) generalizes simply by replacing H(S) and V (S) by the corresponding rate-

distortion and rate-dispersion functions, replacing Erokhin’s function by

RS(d, ǫ) , min
PZ|S :

P[d(S,Z)>d]≤ǫ

I(S;Z), (19)

and replacing the ǫ-cutoff of information by that of d-tilted information [15], 〈S(S, d)〉ǫ. More-

over, we show that the (d, ǫ)-entropy of Sk [20] admits the same asymptotic expansion. If only

deterministic encoding and decoding operations are allowed, the basic bounds (4), (5) generalize

simply by replacing the entropy by the (d, ǫ)-entropy of S. In both the almost-lossless and the

lossy case we show that the optimal code is “almost deterministic” in the sense that randomization

is performed on at most one codeword of the codebook. Enforcing deterministic encoding and

decoding operations ensues a penalty of at most 0.531 bits on average achievable length.

II. ALMOST LOSSLESS VARIABLE LENGTH COMPRESSION

A. Optimal code

In the zero-error case the optimum variable-length compressor without prefix constraints f⋆S

is known explicitly (e.g. [4], [21])2: a deterministic mapping that assigns the elements in M
(labeled without loss of generality as the positive integers) ordered in decreasing probabilities

to {0, 1}⋆ ordered lexicographically. The decoder is just the inverse of this injective mapping.

This code is optimal in the strong stochastic sense that the cumulative distribution function of

the length of any other code cannot lie above that achieved with f⋆S. The length function of the

optimum code is [4]:

ℓ(f⋆S(m)) = ⌊log2m⌋. (20)

Note that the ordering PS(1) ≥ PS(2) ≥ . . . implies

⌊log2m⌋ ≤ ıS(m). (21)

In order to generalize this code to the nonzero-error setting, we take advantage of the fact that

in our setting, error detection is not required at the decoder. This allows us to retain the same

decoder as in the zero-error case. As far as the encoder is concerned, to save on length on a

2The construction in [21] omits the empty string.
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given set of realizations which we are willing to fail to recover correctly, it is optimal to assign

them all to ∅. Moreover, since we have the freedom to choose the set that we want to recover

correctly (subject to a constraint on its probability ≥ 1− ǫ) it is optimal to include all the most

likely realizations (whose encodings according to f⋆S are shortest). If we are fortunate enough

that ǫ is such that
∑M

m=1 PS(m) = 1 − ǫ for some M , then the optimal code is f(m) = f⋆S(m),

if m = 1, . . . ,M and f(m) = ∅, if m > M .3

Formally, for a given encoder PW |S, the optimal decoder is always deterministic and we denote

it by g. Consider w0 ∈ {0, 1}⋆ \∅ and source realization m with PW |S=m(w0) > 0. If g(w0) 6=
m, the average length can be decreased, without affecting the probability of error, by setting

PW |S=m(w0) = 0 and adjusting PW |S=m(∅) accordingly. This argument implies that the optimal

encoder has at most one source realization m mapping to each w0 6= ∅. Next, let m0 = g(∅)

and by a similar argument conclude that PW |S=m0
(∅) = 1. But then, interchanging m0 and 1

leads to the same or better probability of error and shorter average length, which implies that the

optimal encoder maps 1 to ∅. Continuing in the same manner for m0 = g(0), g(1), . . . , g(f⋆S(M)),

we conclude that the optimal code maps f(m) = f⋆S(m), m = 1, . . . ,M . Finally, assigning the

remaining source outcomes whose total mass is ǫ to ∅ shortens the average length without

affecting the error probability, so f(m) = ∅, m > M is optimal.

We proceed to describe an optimum construction that holds without the foregoing fortuitous

choice of ǫ. Let M be the smallest integer such that
∑M

m=1 PS(m) ≥ 1 − ǫ, let η = ⌊log2M⌋,

and let f(m) = f⋆S(m), if ⌊log2m⌋ < η and f(m) = ∅, if ⌊log2m⌋ > η, and assign the outcomes

with ⌊log2m⌋ = η to ∅ with probability α and to the lossless encoding f⋆S(m) with probability

1− α, which is chosen so that4

ǫ = α
∑

m∈M:

⌊log2 m⌋=η

PS(m) +
∑

m∈M:

⌊log2 m⌋>η

PS(m) (22)

= E [ε⋆(S)] (23)

3Jelinek [22, Sec 3.4] provided an asymptotic analysis of a scheme in which a vanishing portion of the least likely source

outcomes is mapped to the same codeword, while the rest of the source outcomes are encoded losslessly.

4It does not matter how the encoder implements randomization on the boundary as long as conditioned on ⌊log2 S⌋ = η, the

probability that S is mapped to ∅ is α. In the deterministic code with the fortuitous choice of ǫ described above, α is the ratio

of the probabilities of the sets {m ∈ M : m > M, ⌊log2 m⌋ = η} to {m ∈ M : ⌊log2 m⌋ = η}.
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where

ε⋆(m) =





0 ℓ(f⋆S(m)) < η

α ℓ(f⋆S(m)) = η

1 ℓ(f⋆S(m)) > η

(24)

We have shown that the output of the optimal encoder has structure5

W (m) =




f ⋆
S(m) 〈ℓ(f⋆S(m))〉ǫ > 0

∅ otherwise

(25)

and that the minimum average length is given by

L⋆
S(ǫ) = E [〈ℓ(f⋆S(S))〉ǫ] (26)

= L⋆
S(0)− max

ε(·):E [ε(S)]≤ǫ
E [ε(S)ℓ(f⋆S(S))] (27)

= L⋆
S(0)− E [ε⋆(S)ℓ(f⋆S(S))] (28)

where the optimization is over ε : Z+ 7→ [0, 1], and the optimal error profile ε⋆(·) that achieves

(27) is given by (24).

An immediate consequence is that in the region of large error probability ǫ > 1 − PS(1),

M = 1, all outcomes are mapped to ∅, and therefore, L⋆
S,det(ǫ) = 0. At the other extreme, if

ǫ = 0, then M = |M| and [3]

L⋆
S(0) = E[ℓ(f⋆S(S))] =

∞∑

i=1

P[S ≥ 2i] (29)

Denote by LS,det(ǫ) the minimum average length comparable with error probability ǫ if

randomized codes are not allowed. It satisfies the bounds

L⋆
S(ǫ) ≤ LS,det(ǫ) (30)

≤ L⋆
S(ǫ) + φ(min

{
ǫ, e−1

}
), (31)

where

φ(x) , x log2
1

x
. (32)

5If error detection is required and ǫ ≥ PS(1), then f
⋆
S(m) in the right side of (25) is replaced by f

⋆
S(m + 1). Similarly, if

error detection is required and PS(j) > ǫ ≥ PS(j + 1), f⋆S(m) in the right side of (25) is replaced by f
⋆
S(m + 1) as long as

m ≥ j, and ∅ in the right side of (25) is replaced by f
⋆
S(j).

March 20, 2015 DRAFT



8

Note that 0 ≤ φ(x) ≤ e−1 log2 e ≈ 0.531 bits on x ∈ [0, 1], where the maximum is achieved at

x = e−1.

To show (31), observe that the optimal encoder needs to randomize at most one element of

M. Indeed, let m0 ∈ M be the minimum of m0 satisfying

P [S > m0|⌊log2 S⌋ = η] ≤ α (33)

and map all {m > m0 : ⌊log2m⌋ = η} to ∅, all {m < m0 : ⌊log2m⌋ = η} to f⋆S(m), and map m0

to ∅ with probability α− , (α− P [S > m0|⌊log2 S⌋ = η]) P[⌊log2 S⌋=η]
PS(m0)

, and to f⋆S(m0) otherwise.

Clearly this construction achieves both (23) and (26). Using (21), it follows that

L⋆
S,det(ǫ) = L⋆

S(ǫ) + α−PS(m0)ℓ(f
⋆
S(m0)) (34)

≤ L⋆
S(ǫ) + α−PS(m0) log2

1

PS(m0)
(35)

To obtain (31), notice that α−PS(m0) ≤ ǫ, and if PS(m0) > ǫ we bound

α−PS(m0) log2
1

PS(m0)
≤ ǫ log2

1

ǫ
. (36)

Otherwise, since the function φ(p) is monotonically increasing on p ≤ e−1 and decreasing on

p > e−1, maximizing it over [0, ǫ] we obtain (31).

Variants of the variational characterization (27) will be important throughout the paper. In

general, for X ∈ R

E [〈X〉ǫ] = min
ε(·):E [ε(X)]≤ǫ

E [(1− ε(X))X ] (37)

where the optimization is over ε : R 7→ [0, 1].

B. Erokhin’s function

As made evident in (10), Erokhin’s function [12] plays an important role in characterizing

the nonasymptotic limit of variable-length lossless data compression allowing nonzero error

probability. In this subsection, we point out some of its properties.

Erokhin’s function is defined in (12), but in fact, the constraint in (12) is achieved with

equality:

H(S, ǫ) = min
PZ|S :

P[S 6=Z]=ǫ

I(S;Z) (38)
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Indeed, given P[S 6= Z] ≤ ǫ we may define Z ′ such that S → Z → Z ′ and P[S 6= Z ′] = ǫ (for

example, by probabilistically mapping non-zero values of Z to Z ′ = 0).

Furthermore, Erokhin’s function can be parametrically represented as follows [12].

H(S, ǫ) =

M∑

m=1

PS(m) log2
1

PS(m)
− (1− ǫ) log2

1

1− ǫ
− (M − 1)η log2

1

η
(39)

with the integer M and η > 0 determined by ǫ through

M∑

m=1

PS(m) = 1− ǫ+ (M − 1)η (40)

In particular, H(S, 0) = H(S), and if S is equiprobable on an alphabet of M letters, then

H(S, ǫ) = log2M − ǫ log2(M − 1)− h(ǫ) , (41)

As the following result shows, Erokhin’s function is bounded in terms of the expectation of

the ǫ-cutoff of information, 〈ıS(S)〉ǫ, which is easier to compute and analyze than the exact

parametric solution in (39).

Theorem 1 (Bounds to H(S, ǫ)). If 0 ≤ ǫ < 1− PS(1), Erokhin’s function satisfies

E [〈ıS(S)〉ǫ]− ǫ log2(L
⋆
S(0) + ǫ)− 2 h(ǫ)− ǫ log2

e

ǫ
≤ H(S, ǫ) (42)

≤ E [〈ıS(S)〉ǫ] (43)

If ǫ > 1− PS(1), then H(S, ǫ) = 0.

Proof. The bound in (42) follows from (71) and (45) below. Showing (43) involves defining a

suboptimal choice (in (12)) of

Z =




S 〈ıS(S)〉ǫ > 0

S̄ 〈ıS(S)〉ǫ = 0
(44)

where PSS̄ = PSPS, and noting that I(S;Z) ≤ D(PZ|S‖PS|PS) = E [〈ıS(S)〉ǫ], where D(·‖ · |·)
denotes conditional relative entropy.

Figure 1 plots the bounds to H(Sk, ǫ) in Theorem 1 for biased coin flips.
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Fig. 1. Bounds to Erokhin’s function for a memoryless binary source with bias p = 0.11.

C. Non-asymptotic bounds

Expression (26) is not always convenient to work with. The next result tightly bounds L⋆(ǫ)

in terms of the ǫ-cutoff of information, 〈ıS(S)〉ǫ, a random variable which is easier to deal with.

Theorem 2 (Bounds to L⋆
S(ǫ)). If 0 ≤ ǫ < 1 − PS(1), then the minimum achievable average

length satisfies

E [〈ıS(S)〉ǫ] + L⋆
S(0)−H(S) ≤ L⋆

S(ǫ) (45)

≤ E [〈ıS(S)〉ǫ] (46)

If ǫ > 1− PS(1), then L⋆
S(ǫ) = 0.
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Proof. Due to (37), we have the variational characterization:

E [〈ıS(S)〉ǫ] = H(S)− max
ε(·):E [ε(S)]≤ǫ

E [ε(S)ıS(S)] (47)

where ε(·) takes values in [0, 1]. We obtain (45)–(46) comparing (27) and (47) via (21).

Example. If S is equiprobable on an alphabet of cardinality M , then

〈ıS(S)〉ǫ =




log2M w. p. 1− ǫ

0 otherwise

(48)

The next result, in which the role of entropy is taken over by Erokhin’s function, generalizes

the bounds in (4) and (5) to ǫ > 0.

Theorem 3 (Relation between L⋆
S(ǫ) and H(S, ǫ)). If 0 ≤ ǫ < 1 − PS(1), then the minimum

achievable average length satisfies

H(S, ǫ)− log2(H(S, ǫ) + 1)− log2 e ≤ L⋆
S(ǫ) (49)

≤ H(S, ǫ) + ǫ log2(H(S) + ǫ) + ǫ log2
e

ǫ
+ 2 h(ǫ) (50)

where H(S, ǫ) is defined in (12), and h(x) = x log2
1
x
+ (1 − x) log2

1
1−x

is the binary entropy

function.

Note that we recover (4) and (5) by particularizing Theorem 3 to ǫ = 0.

Proof. We first show the converse bound (49). The entropy of the output string W ∈ {0, 1}⋆ of

an arbitrary compressor S → W → Ŝ with P

[
S 6= Ŝ

]
≤ ǫ satisfies

H(W ) ≥ I(S;W ) = I(S; Ŝ) ≥ H(S, ǫ) (51)

where the rightmost inequality holds in view of (12). Noting that the identity mapping W 7→
W 7→ W is a lossless variable-length code, we lower-bound its average length as

H(W )− log2(H(W ) + 1)− log2 e ≤ L⋆
W (0) (52)

≤ E[ℓ(W )] (53)

where (52) follows from (4). The function of H(W ) in the left side of (52) is monotonically

increasing if H(W ) > log2
e
2
= 0.44 bits and it is positive if H(W ) > 3.66 bits. Therefore, it is
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safe to further weaken the bound in (52) by invoking (51). This concludes the proof of (49). By

applying [2, Theorem 1] to W , we can get a sharper lower bound (which is always positive)

ψ−1(H(S, ǫ)) ≤ L⋆
S(ǫ) (54)

where ψ−1 is the inverse of the monotonic function on the positive real line:

ψ(x) = x+ (1 + x) log2(1 + x)− x log2 x. (55)

To show the achievability bound (50), fix PZ|S satisfying the constraint in (38). Denote for

brevity

Λ , ℓ(f⋆S(S)) (56)

E , 1{S 6= Z} (57)

ε(i)
△
= P[S 6= Z|Λ = i] (58)

We proceed to lower bound the mutual information between S and Z:

I(S;Z) = I(S;Z,Λ)− I(S; Λ|Z) (59)

= H(S)−H(Λ|Z)−H(S|Z,Λ) (60)

= H(S)− I(Λ;E|Z)−H(Λ|Z,E)−H(S|Z,Λ) (61)

≥ L⋆
S(ǫ) +H(S)− L⋆

S(0)− ǫ log2(L
⋆
S(0) + ǫ)− ǫ log2

e

ǫ
− 2 h(ǫ) (62)

where (62) follows from I(Λ;E|Z) ≤ h(ǫ) and the following chains (63)-(64) and (66)-(70).

H(S|Z,Λ) ≤ E [ε(Λ)Λ + h(ε(Λ))] (63)

≤ L⋆
S(0)− L⋆

S(ǫ) + h(ǫ) (64)

where (63) is by Fano’s inequality: conditioned on Λ = i, S can have at most 2i values, so

H(S|Z,Λ = i) ≤ i ε(i) + h(ε(i)) (65)

and (64) follows from (27), (38) and the concavity of h(·).
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The third term in (61) is upper bounded as follows.

H(Λ|Z,E) = ǫH(Λ|Z,E = 1) (66)

≤ ǫH(Λ|S 6= Z) (67)

≤ ǫ (log2(1 + E [Λ|S 6= Z]) + log2 e) (68)

≤ ǫ

(
log2

(
1 +

E [Λ]

ǫ

)
+ log2 e

)
(69)

= ǫ log2
e

ǫ
+ ǫ(log2(L

⋆
S(0)) + ǫ) , (70)

where (66) follows since H(Λ|Z,E = 0) = 0, (67) is because conditioning decreases en-

tropy, (68) follows by maximizing entropy under the mean constraint (achieved by the geometric

distribution), (69) follows by upper-bounding

P[S 6= Z]E [Λ|S 6= Z] ≤ E [Λ]

and (70) applies (29).

Finally, since the right side of (62) does not depend on Z, we may minimize the left side

over PZ|S satisfying the constraint in (38) to obtain

L⋆
S(ǫ) ≤ H(S, ǫ) + L⋆

S(0)−H(S) + ǫ log2(L
⋆
S(0) + ǫ) + 2 h(ǫ) + ǫ log2

e

ǫ
(71)

which leads to (50) via Wyner’s bound (5).

Remark 1. The following stronger version of (4) is shown in [4, Lemma 3]:

H(S) ≤ L⋆
S(0) + log2(L

⋆
S(0) + 1) + log2 e (72)

which, via the same reasoning as in (51)–(53), leads to the following strengthening of (49):

H(S, ǫ) ≤ L⋆
S(ǫ) + log2(L

⋆
S(ǫ) + 1) + log2 e (73)

Together, Theorems 1, 2, and 3 imply that as long as the quantities L⋆
S(ǫ), H(S, ǫ) and

E [〈ıS(S)〉ǫ] are not too small, they are close to each other.

In principle, it may seem surprising that L⋆
S(ǫ) is connected to H(S, ǫ) in the way dictated by

Theorem 3, which implies that whenever the unnormalized quantity H(S, ǫ) is large it must be
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close to the minimum average length. After all, the objectives of minimizing the input/output

dependence and minimizing the description length of Ŝ appear to be disparate, and in fact (25)

and the conditional distribution achieving (12) are quite different: although in both cases S and

its approximation coincide on the most likely outcomes, the number of retained outcomes is

different, and to lessen dependence, errors in the optimizing conditional in (12) do not favor

m = 1 or any particular outcome of S.

D. Asymptotics for memoryless sources

Theorem 4. Assume that:

• PSk = PS × . . .× PS.

• The third absolute moment of ıS(S) is finite.

For any 0 ≤ ǫ ≤ 1 and k → ∞ we have

L⋆
Sk(ǫ)

H(Sk, ǫ)

E
[〈
ıSk(Sk)

〉
ǫ

]





= (1− ǫ)kH(S)−
√
kV (S)

2π
e−

(Q−1(ǫ))2

2 + θ(k) (74)

where the remainder term satisfies

− log2 k +O (log2 log2 k) ≤ θ(k) ≤ O (1) (75)

Proof. If the source is memoryless, the information in Sk is a sum of i.i.d. random variables

as indicated in (16), and Theorem 4 follows by applying Lemma 1 below to the bounds in

Theorem 2.

Lemma 1. Let X1, X2, . . . be a sequence of independent random variables with a common

distribution PX and a finite third absolute moment. Then for any 0 ≤ ǫ ≤ 1 and k → ∞ we

have

E

[〈
k∑

i=1

Xi

〉

ǫ

]
= (1− ǫ)kE [X]−

√
kVar [X]

2π
e−

(Q−1(ǫ))2

2 +O (1) (76)

Proof. Appendix A.
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Remark 2. Applying (6) to (45), for finite alphabet sources the lower bound on L⋆
Sk(ǫ) is improved

to

θ(k) ≥ −1

2
log2 k +O (1) (77)

For H(Sk, ǫ), the lower bound is in fact θ(k) ≥ −ǫ log2 k + O (1), while for E
[〈
ıSk(Sk)

〉
ǫ

]
,

θ(k) = O (1).

Remark 3. If the source alphabet is finite, we can sketch an alternative proof of Theorem 4 using

the method of types. By concavity and symmetry, it is easy to see that the optimal coupling that

achieves H(Sk, ǫ) satisfies the following property: the error profile

ǫ(sk)
△
= P[Zk 6= Sk|Sk = sk] (78)

is constant on each k-type (see [23, Chapter 2] for types). Denote the type of sk as P̂sk and its

size as M(sk). We then have the following chain:

I(Sk;Zk) = I(Sk, P̂Sk ;Zk) (79)

= I(Sk;Zk|P̂Sk) +O(log k) (80)

≥ E
[
(1− ǫ(Sk)) logM(Sk)

]
+O(log k) (81)

where (80) follows since there are only polynomially many types and (81) follows from (41).

Next, (81) is to be minimized over all ǫ(Sk) satisfying E [ǫ(Sk)] ≤ ǫ. The solution (of this linear

optimization) is easy: ǫ(sk) is 1 for all types with M(sk) exceeding a certain threshold, and 0

otherwise. In other words, we get

H(Sk, ǫ) = (1− ǫ)E [logM(Sk)|M(Sk) ≤ γ] +O(log k) , (82)

where γ is chosen so that P[M(Sk) > γ] = ǫ. Using the relation between type size and its

entropy, we have

M(sk) = H(P̂sk) +O(log k) (83)

and from the central-limit theorem, cf. [13], [24], we get

H(P̂Sk)
d
= kH(S) +

√
V (S)

k
U +O(log k) U ∼ N (0, 1) . (84)

Thus, putting together (82), (83), (84) and after some algebra (74) follows.
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E. Discussion

Theorem 4 exhibits an unusual phenomenon in which the dispersion term improves the

achievable average rate. As illustrated in Fig. 2, a nonzero error probability ǫ decreases the

average achievable rate as the source outcomes falling into the shaded area are assigned length 0.

The total reduction in average length is composed of the reduction in asymptotically achievable

average length due to nonzero ǫ and the reduction due to finite blocklength. The asymptotic

average length is reduced because the center of probabilistic mass Fig. 2 shifts to the left when

the ǫ-tail of the distribution is chopped off. Moreover, for a fixed ǫ the wider the distribution

the bigger is this shift, thus shorter blocklengths and larger dispersions help to achieve a lower

average rate.

ǫ

1
L
⋆

S
(ǫ)

1
L
⋆

S
(0)k

k
k

k

Fig. 2. The benefit of nonzero ǫ and dispersion. The bell-shaped curve depicts an idealized form of the pmf of 1
k
ℓ
(

f⋆(Sk)
)

.

For a source of biased coin flips, Fig. 4 depicts the exact average rate of the optimal code as

well as the approximation in (74). Both curves are monotonically increasing in k.

The dispersion term in (74) vanishes quickly with ǫ. More precisely, as ǫ → 0, we have

(Appendix B)

1√
2π
e−

(Q−1(ǫ))
2

2 = ǫ

√
2 log2

1

ǫ
+ o (ǫ) (85)

Therefore, a refined analysis of higher order terms in the expansion (74) is desirable in order

to obtain an approximation that is accurate even at short blocklengths. Inspired by [25], in Fig. 4
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Fig. 3. Average rate achievable for variable-rate almost lossless encoding of a memoryless binary source with bias p = 0.11

and two values of ǫ. For ǫ < 10−4, the resulting curves are almost indistinguishable from the ǫ = 10−4 curve.

we adopt the following value for the remainder in (74):

θ(k) = (1− ǫ)

(
log2 k

2
− 1

2
log2(4e

3π) +
p

1− 2p
+ log2

1

1− 2p

+
1

2(1− 2p)
log2

1− p

p

)
(86)

where p is the coin bias, which proves to yield a remarkably good approximation, accurate for

blocklengths as short as 20.
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Fig. 4. Bounds to the average rate achievable for variable-rate almost lossless encoding of a memoryless binary source with

bias p = 0.11 and ǫ = 0.1. The lower bound in (49) is virtually indistinguishable from a weakening of (45) using (4).

III. LOSSY VARIABLE-LENGTH COMPRESSION

A. The setup

In the basic setup of lossy compression, we are given a source alphabet M, a reproduction

alphabet M̂, a distortion measure d : M×M̂ 7→ [0,+∞] to assess the fidelity of reproduction,

and a probability distribution of the object S to be compressed.

Definition 2 ((L, d, ǫ) code). A variable-length (L, d, ǫ) lossy code for {S, d} is a pair of random

March 20, 2015 DRAFT



19

transformations PW |S : M 7→ {0, 1}⋆ and PZ|W : {0, 1}⋆ 7→ M̂ such that

P [d (S, Z) > d] ≤ ǫ (87)

E [ℓ(W )] ≤ L (88)

The goal of this section is to characterize the minimum achievable average length compatible

with the given tolerable error ǫ:

L⋆
S(d, ǫ) , {min L : ∃ an (L, d, ǫ) code} (89)

Section III-B discusses the properties of the optimal code. Section III-C reviews some back-

ground facts from rate-distortion theory. Section III-D presents single-shot results, and Section

III-E focuses on the asymptotics.

B. Optimal code

Unlike the lossless setup in Section II, the optimal encoding and decoding mappings do not

admit, in general, explicit descriptions. We can however point out several properties of the

optimal code.

We first focus on the case ǫ = 0. The optimal (d, 0) code satisfies the following properties.

1) The optimal encoder f⋆ and decoder g⋆ are deterministic mappings.

2) The output W ⋆ = f⋆(S) of the optimal encoder satisfies PW ⋆(∅) ≥ PW ⋆(0) ≥ PW ⋆(1) ≥
PW ⋆(00) ≥ . . .

3) For each w ∈ {0, 1}⋆

f⋆
−1(w) = Bg⋆(w)\ ∪v≺w Bg⋆(v) (90)

where ≺ is lexicographic ordering, and

Bz , {s : d(s, z) ≤ d} (91)

Let z1, z2, . . . be a d-covering of M. First, we will show that the foregoing claims hold for

decoders whose image is constrained to the given d-covering z1, z2, . . .. Then, we will conclude

that since the claims hold for all d-coverings, they hold for the one that results in the minimum

average length as well.
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To show 1), let (PW |S, PZ|W ) be a (d, 0) code. The optimal encoder is deterministic because

if there exist s ∈ M and w ≺ v ∈ {0, 1}⋆ such that PW |S=s(w) > 0 and PW |S=s(v) > 0 we may

decrease the average length by setting PW |S=s(w) = 1. The optimal decoder is deterministic

because if for some w ∈ {0, 1}⋆ there exist z′, z′′ ∈ {z1, z2, . . .} such that PZ|W=w(z
′) > 0 and

PZ|W=w(z
′′) > 0, then nothing changes by setting PZ|W=w(z

′) = 1.

To show 2), observe that if there exist w ≺ v ∈ {0, 1}⋆ such that PW (w) < PW (v), then the

average length is shortened by swapping w and v.

To show 3), notice that the average length decreases as PW (∅) increases, and the latter is

maximized by setting f−1(∅) = Bg(∅). Further, PW (0) is maximized without affecting PW (∅)

by setting f−1(0) = Bg(0)\Bg(∅) and so forth.

We now consider the case ǫ > 0. The optimal (d, ǫ) code satisfies the following properties.

1) The optimal decoder g⋆ is deterministic, and the optimal encoder PW ⋆|S satisfies PW ⋆|S=s(w) =

1− PW ⋆|S=s(∅) for all s ∈ M and all w ∈ {0, 1}⋆\∅.

2) The output of the optimal encoder satisfies PW ⋆(∅) ≥ PW ⋆(0) ≥ PW ⋆(1) ≥ PW ⋆(00) ≥ . . .

3) There exist η ∈ R
+ such that P [ℓ(W ⋆) > η] = 0 and 0 ≤ α < 1 such that for each

w ∈ {0, 1}⋆\∅

PW ⋆|S=s(w) =




1, s ∈ Bg⋆(w)\ ∪v≺w Bg⋆(v) & ℓ(w) < η

1− α, s ∈ Bg⋆(w)\ ∪v≺w Bg⋆(v) & ℓ(w) = η
(92)

and

PW ⋆|S=s(∅) =




1, s /∈ ∪wBg⋆(w)

α, s ∈ ∪wBg⋆(w) & ℓ(w) = η
(93)

Property 3) implies in particular that ℓ(f⋆(s)) = 0 as long as d(s, g⋆(f⋆(s))) > d.

We say that F ⊆ M̂ is a (d, ǫ)-covering of M if P [minz∈F d(S, z) > d] ≤ ǫ. Note that a

finite (d, ǫ)-covering always exists as long as a d-covering exists [20]: indeed, given a d-covering

z1, z2, . . ., let M satisfy
∑

m>M P [S ∈ Bzm\ ∪i<m Bzi ] ≤ ǫ and just drop all zm : m > η to

obtain a finite (d, ǫ)-covering. Let z1, z2, . . . , zM be a (d, ǫ)-covering of M. Observing that an

infinite (d, ǫ)-covering z1, z2, . . . can only result in a longer average length, we will first show

that the foregoing claims hold for decoders whose image is constrained to a given (d, ǫ)-covering
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z1, z2, . . . , zM . Then, we will conclude that since the claims hold for all finite (d, ǫ)-coverings,

they hold for the one that results in the minimum average length as well.

To show 1), notice that for a given encoder PW |S, the optimal decoder is always deterministic.

Indeed, if for some w ∈ {0, 1}⋆ there exist z′, z′′ ∈ {z1, z2, . . . , zM} such that PZ|W=w(z
′) > 0,

PZ|W=w(z
′′) > 0 and PS|W=w(Bz′) ≥ PS|W=w(Bz′′) then the excess distortion can only be

reduced by setting PZ|W=w(z
′) = 1, without affecting the average length. Denote that determin-

istic decoder by g. As for the encoder, consider w ∈ {0, 1}⋆ \∅ and source realization s with

PW |S=s(w) > 0. If d(s, g(w)) > d, the average length can be decreased, without increasing

the excess distortion probability, by setting PW |S=s(w) = 0 and adjusting PW |S=s(∅) = 1

accordingly. This argument implies that the optimal encoder satisfies PS|W=w(Bg(w)) = 1 for

each w 6= ∅. Now, if there exist s and w ≺ v ∈ {0, 1}⋆\∅ such that PW |S=s(w) > 0 and

PW |S=s(v) > 0, we may decrease the average length with no impact on the probability of excess

distortion by setting PW |S=s(w) = 1.

To show 2), notice that if there exist w ≺ v ∈ {0, 1}⋆\∅ such that PW (w) < PW (v), then the

average length is shortened by swapping w and v. If there exist w ∈ {0, 1}⋆\∅ with PW (w) >

PW (∅) then the average length is shortened by swapping w and ∅ and setting PW |S=s(w) = 0

while adjusting PW |S=s(∅) = 1 accordingly for each s /∈ Bg(w).

To show 3), we argue as in the case ǫ = 0 that setting

PW |S=s(w) = 1, s ∈ Bg(w)\ ∪v≺w Bg(v) (94)

PW |S=s(∅) = 1, s /∈ ∪wBg(w) (95)

yields the minimum average length among all (d, ǫ′) codes with codebook z1, z2, . . . satisfying

1) and 2) where ǫ′ , P [minm d(S, zm) > d]. If ǫ′ = ǫ, there is nothing else to prove. If ǫ′ < ǫ,

let η ∈ R
+ and 0 < α < 1 solve

P [ℓ(W ) > η] + αP [ℓ(W ) = η] = ǫ− ǫ′ (96)

and observe that dropping all w : ℓ(w) > η reduces the average length while keeping the excess

distortion probability below ǫ. Now, letting PW |S=s(w) = 1− α for each s ∈ Bg(w)\ ∪v≺w Bg(v)

and each w : ℓ(w) = η and adjusting PW |S=s(∅) accordingly further reduces the average length

while making the excess distortion probability exactly ǫ.
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Property 3) implies that randomization is not essential as almost the same average length

can be achieved with deterministic encoding and decoding operations. Precisely, denoting by

L⋆
S,det(d, ǫ) the minimum average length achievable with deterministic codes, we have

L⋆
S(d, ǫ) ≤ L⋆

S,det(d, ǫ) (97)

≤ L⋆
S(d, ǫ) + φ(min{ǫ, e−1}) (98)

where (98) is obtained in the same way as (31), and 0 ≤ φ(·) ≤ 0.531 is defined in (32).

C. A bit of rate-distortion theory

The minimal mutual information function

RS(d) , inf
PZ|S :

E[d(S,Z)]≤d

I(S;Z) (99)

characterizes the minimum asymptotically achievable rate in both fixed-length compression under

the average or excess distortion constraint and variable-length lossy compression under the almost

sure distortion constraint [26], [27].

We assume throughout that the following basic assumptions are met.

(A) RS(d) is finite for some d, i.e. dmin <∞, where

dmin , inf {d : RS(d) <∞} (100)

(B) The distortion measure is such that there exists a finite set E ⊂ M̂ such that

E

[
min
z∈E

d(S, z)

]
<∞ (101)

The following characterization of RS(d) due to Csiszár [28] will be instrumental.

Theorem 5 (Characterization of RS(d) [28, Theorem 2.3]). For each d > dmin it holds that

RS(d) = max
J(s), λ

{E [J(S)]− λd} (102)

where the maximization is over J(s) ≥ 0 and λ ≥ 0 satisfying the constraint

E [exp {J(S)− λd(S, z)}] ≤ 1 ∀z ∈ M̂ (103)
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Let (JS(s), λS) attain the maximum in the right side of (102). If there exists a transition

probability kernel PZ⋆|S that actually achieves the infimum in the right side of (99), then [28]

JS(s) = ıS;Z⋆(s; z) + λSd(s, z) (104)

= − log2 E [exp (−λSd(s, Z⋆))] (105)

where (104) holds for PZ⋆-a.e. z, the expectation in (105) is with respect to the unconditional

distribution of Z⋆, and the usual information density is denoted by

ıS;Z(s; z) , log2
dPZ|S=s

dPZ
(z) (106)

Note from (105) that by the concavity of logarithm

0 ≤ JS(s) ≤ E [d(s, Z⋆)] (107)

The random variable that plays the key role in characterizing the nonasymptotic fundamental

limit of lossy data compression is the d-tilted information in s ∈ M [15]:

S(s, d) , JS(s)− λSd (108)

It follows from (102) that

RS(d) = E [S(S, d)] (109)

Much like information in s ∈ M which quantifies the number of bits necessary to represent s

losslessly, d-tilted information in s quantifies the number of bits necessary to represent s within

distortion d, in a sense that goes beyond average as in (109) [15], [17]. Particularizing (103),

we observe that the d-tilted information satisfies

E [exp(S(S, d) + λSd− λSd(S, z))] ≤ 1 (110)

Using Markov’s inequality and (105), it is easy to see that the d-tilted information is linked

to the probability that Z⋆ falls within distortion d from s ∈ M:

S(s, d) ≤ log2
1

PZ⋆(Bd(s))
(111)

where

Bd(s) ,
{
z ∈ M̂ : d(s, z) ≤ d

}
(112)

Moreover, under regularity conditions the reverse inequality in (111) can be closely approached [17,

Proposition 3].
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D. Nonasymptotic bounds

We begin with a simple generalization of basic bounds (4) and (5) to an arbitrary distortion

measure and nonzero ǫ, in which the role of entropy is assumed by the (ǫ, δ)-entropy of the

source S, defined as [20]:

Hǫ,δ(S) , min
f : M7→M̂ :

P[d(S,f(S))>ǫ]≤δ

H(f(S)). (113)

Theorem 6 (Bounds to L⋆
S,det(d, ǫ)). The minimal average length achievable with deterministic

codes under an excess-distortion constraint satisfies

Hd,ǫ(S)− log2(Hd,ǫ(S) + 1)− log2 e ≤ L⋆
S,det(d, ǫ) (114)

≤ Hd,ǫ(S) (115)

Proof. The converse bound in (114) follows by applying (4) and minimizing over all possible

output entropies. The achievability bound in (115) is implied by Wyner’s bound (5) recalling

(Section III-B) that the codewords of the optimal code are ordered in decreasing probabilities.

Note that L⋆(d, ǫ) is also bounded in terms of Hd,ǫ(S), in view of Theorem 6 and (98).

Particularizing Theorem 6 to ǫ = 0 and using L⋆
S(d, 0) = L⋆

S,det(d, 0) (as shown in Section

III-B), we see that the minimum average length of d-semifaithful codes is bounded by

Hd(S)− log2(Hd(S) + 1)− log2 e ≤ L⋆
S(d, 0) (116)

≤ Hd(S) , (117)

where Hǫ(S) is the ǫ-entropy of the source S [20]:

Hǫ(S) , min
f : M7→M̂ :

d(S,f(S))≤ǫ a.s.

H(f(S)), (118)

which is bounded as follows:

RS(d, 0) ≤ Hd(S) (119)

≤ RS(d, 0) + log2 (RS(d, 0) + 1) + C, (120)

where C is a universal constant, and (120) holds whenever d is a metric by [29, Theorem 2].
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Theorem 6 applies to the almost-lossless setting of Section II, in which case the (ǫ, δ)-entropy

particularizes to ǫ = 0 and Hamming distortion as

H0,δ(S) = min
f : M7→M̂ :
P[S 6=f(S)]≤δ

H(f(S)). (121)

The (ǫ, δ)-entropy is difficult to compute and analyze directly. We proceed to give bounds on

L⋆
S(d, ǫ) and Hd,ǫ(S) that will essentially show that all the functions L⋆

S(d, ǫ), Hd,ǫ(S), RS(d, ǫ)

(defined in (19)), are within O (log2RS(d)) bits from the easy-to-analyze function E [〈S(S, d)〉ǫ].
We will show that the same is true for the function

R
+
S (d, ǫ) , inf

PZ

E [〈− log2 PZ(Bd(S))〉ǫ] , (122)

where Bd(s) is the distortion d-ball around s (formally defined in (112)) and the infimum is

over all distributions on M̂,

The next result provides nonasymptotic bounds to the minimum achievable average length

when randomized encoding and decoding operations are allowed.

Theorem 7 (Bounds to L⋆
S(d, ǫ)). The minimal average length achievable under an excess-

distortion constraint satisfies

RS(d, ǫ)− log2 (RS(d, ǫ) + 1)− log2 e ≤ L⋆
S(d, ǫ) (123)

≤ R
+
S (d, ǫ) (124)

where RS(d, ǫ) is the minimal information quantity defined in (19), and R
+
S (d, ǫ) is defined in

(122).

Proof. The converse bound in (123) is shown in the same way as (114). To show the achievability

bound in (124), consider the (d, ǫ) code that, given an infinite list of codewords z1, z2, . . ., outputs

the first d-close match to s as long as s is not too atypical. Specifically, the encoder outputs the

lexicographic binary encoding (including the empty string) of

W ,




min {m : d(S, zm) ≤ d} 〈− log2 PZ(Bd(S))〉ǫ > 0

1 otherwise

(125)
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The encoded length averaged over both the source and all codebooks with codewords Z1, Z2, . . .

drawn i.i.d. from PZ is upper bounded by

E [⌊log2W ⌋] ≤ E [log2W 1 {〈− log2 PZ(Bd(S))〉ǫ > 0}] (126)

= E [1 {〈− log2 PZ(Bd(S))〉ǫ > 0}E [log2W |S]] (127)

≤ E [1 {〈− log2 PZ(Bd(S))〉ǫ > 0} log2 E [W |S]] (128)

= E [〈− log2 PZ(Bd(S))〉ǫ] (129)

where

• (128) is by Jensen’s inequality;

• (129) holds because conditioned on S = s and averaged over codebooks, W has geometric

distribution with success probability PZ(Bd(s)).

It follows that there is at least one codebook that yields the encoded length not exceeding the

expectation in (129).

Remark 4. Both (114) and (123) can be strengthened as in Remark 1.

Theorem 8 (Bounds to RS(d, ǫ) and to Hd,ǫ(S) ). For all d > dmin we have

E [〈S(S, d)〉ǫ]− log2 (RS(d)− R
′
S(d)d+ 1)− log2 e− h(ǫ) ≤ RS(d, ǫ) (130)

≤ R
+
S (d, ǫ) (131)

and for all d ≥ dmin we have

R
+
S (d, ǫ)− φ(max

{
1− ǫ, e−1

}
) ≤ Hd,ǫ(S) (132)

≤ R
+
S (d, ǫ) + log2

(
R

+
S (d, ǫ) + 1 + φ

(
min

{
ǫ, e−1

}))

+ 1 + φ
(
min

{
ǫ, e−1

})
(133)

where 0 ≤ φ(·) ≤ e−1 log2 e is defined in (32).

Proof. Appendix C.

Trivially, RS(d, ǫ) ≤ Hd,ǫ(S).
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Remark 5. In the almost-lossless setting (Hamming distortion and d = 0), the following bounds

hold (Appendix D).

E [〈ıS(S)〉ǫ]− φ
(
max

{
1− ǫ, e−1

})
≤ H0,ǫ(S) (134)

≤ E [〈ıS(S)〉ǫ] + φ
(
min

{
ǫ, e−1

})
(135)

Remark 6. Particularizing (132) to the case ǫ = 0, we recover the lower bound on ǫ-entropy in

[20, Lemma 9]:

inf
PZ

E [− log2 PZ(Bd(S))] ≤ Hd(S) (136)

Remark 7. As follows from Lemma 3 in Appendix C, in the special case where

S(S, d) = RS(d) a.s. (137)

which in particular includes the equiprobable source under a permutation distortion measure (e.g.

symbol error rate) [30], the lower bound in (130) can be tightened as

RS(d, ǫ) ≥ (1− ǫ)RS(d)− h(ǫ) (138)

Remark 8. Applying (37) to the random variable S(S, d), we have the variational characteriza-

tion:

E [〈S(S, d)〉ǫ] = RS(d)− max
ε : M7→[0,1]
E [ε(S)]≤ǫ

E [ε(S)S(S, d)] (139)

from where it follows, via (111), that

E [〈S(S, d)〉ǫ] ≤ E [〈− log2 PZ⋆(Bd(S))〉ǫ] (140)

≤ E [〈S(S, d)〉ǫ] + E [− log2 PZ⋆(Bd(S))]− RS(d) (141)

where PZ⋆ is the output distribution that achieves RS(d).

E. Asymptotic analysis

In this section we assume that the following conditions are satisfied.

(i) The source {Si} is stationary and memoryless, PSk = PS × . . .× PS.

(ii) The distortion measure is separable, d(sk, zk) = 1
k

∑k
i=1 d(si, zi).
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(iii) The distortion level satisfies dmin < d < dmax, where dmin is defined in (100), and dmax =

inf
z∈M̂ E [d(S, z)], where the expectation is with respect to the unconditional distribution

of S.

(iv) E [d12(S,Z⋆)] <∞ where the expectation is with respect to PS ×PZ⋆ , and Z⋆ achieves the

rate-distortion function RS(d).

If conditions (i)–(iii) are satisfied, then λSk = kλS and PZk⋆|Sk = PZ⋆|S × . . . × PZ⋆|S, where

PZ⋆|S achieves RS(d). Moreover, even if RS(d) is not achieved by any conditional distribution

Sk(sk, d) =
k∑

i=1

S(si, d) (142)

Finiteness of the twelfth moment of d(S,Z⋆) in restriction (iv) is required for the achievability

part of the asymptotic expansion in Theorem 9.

Theorem 9. Under assumptions (i)–(iv), for any 0 ≤ ǫ ≤ 1

L⋆
Sk(d, ǫ)

RSk(d, ǫ)

R
+
Sk(d, ǫ)

Hd,ǫ(S
k)

E
[〈
Sk(Sk, d)

〉
ǫ

]





= (1− ǫ)kR(d)−
√
kV(d)
2π

e−
(Q−1(ǫ))2

2 + θ(k) (143)

where

V(d) = Var [S(S, d)] (144)

is the rate-dispersion function, and the remainder term in the expansion satisfies

− 2 log2 k +O (1) ≤ θ(k) ≤ 3

2
log2 k +O (1) (145)

Proof. Due to (107), the assumption (iv) implies that the twelfth (and thus the third) moment of

S(S, d) is finite, and the expansion for E
[〈
Sk(Sk, d)

〉
ǫ

]
follows from (142) and Lemma 1. The

converse direction is now immediate from Theorems 7 and 8. The achievability direction follows

by an application of Lemma 2 below to weaken the upper bounds in Theorems 7 and 8.
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Lemma 2. Let 0 ≤ ǫ ≤ 1. Under assumptions (i)–(iv)

E
[〈
− log2 PZk⋆(Bd(S

k))
〉
ǫ

]
= (1− ǫ)kR(d)−

√
kV(d)
2π

e−
(Q−1(ǫ))2

2 + θ(k) (146)

where

O (1) ≤ θ(k) ≤ 1

2
log2 k +O (1) (147)

Proof. Appendix E.

APPENDIX A

PROOF OF LEMMA 1

The following non-uniform strengthening of the Berry-Esseén inequality is instrumental in the

proof of Lemma 1.

Theorem 10 (Bikelis (1966), e.g. [31]). Fix a positive integer k. Let Xi, i = 1, . . . , k be

independent, E [Xi] = 0, E [|Xi|3] <∞. Then, for any real t
∣∣∣∣∣P

[
k∑

i=1

Xi > t
√
kVk

]
−Q(t)

∣∣∣∣∣ ≤
Bk√

k(1 + |t|3)
, (148)

where

Vk =
1

k

k∑

i=1

E
[
|Xi|2

]
(149)

Tk =
1

k

k∑

i=1

E
[
|Xi|3

]
(150)

Bk =
c0Tk

V
3/2
k

(151)

and c0 is a positive constant.

Denote for brevity

Yk ,
k∑

i=1

Xi (152)

If Var [X] = 0

E [〈Yk〉ǫ] = (1− ǫ)kE [X] , (153)

and (76) holds.
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If Var [X] > 0 notice that

(1− ǫ)kE [X]− E [〈Yk〉ǫ] = E [(Yk − kE [X]) 1 {Yk > η}] + α (η − kE [X])P [Yk = η] (154)

=

∫ ∞

η

P [Yk > t] dt+ ǫ (η − kE [X]) , (155)

where η and α are those in (14), and to write (155) we used

E [Yk1 {Yk > η}] =
∫ ∞

η

P [Yk > t] dt+ ηP [Yk > η] . (156)

We proceed to evaluate the right side of (155). Using Theorem 10, we observe that η that satisfies

(14) has the form

η = kE [X] +
√
kVar [X]Q−1 (ǫ) + bk (157)

where bk = O (1). Using (157), we may write
∫ ∞

η

P [Yk > t] dt

=

∫ ∞

0

P [Yk > η + t] dt (158)

=

∫ ∞

bk

P

[
Yk > kE [X] +

√
kVar [X]Q−1 (ǫ) + t

]
dt (159)

=

∫ ∞

0

P

[
Yk > kE [X] +

√
kVar [X]Q−1 (ǫ) + t

]
dt+O (1) (160)

=
√
kVar [X]

∫ ∞

0

P

[
Yk > kE [X] +

√
kVar [X](Q−1 (ǫ) + r)

]
dr +O (1) (161)

=
√
kVar [X]

∫ ∞

0

Q
(
Q−1 (ǫ) + r

)
dr +O (1) (162)

=
√
kVar [X]

∫ ∞

Q−1(ǫ)

Q (r) dr +O (1) (163)

=
√
kVar [X]

[∫ ∞

Q−1(ǫ)

1√
2π
xe−

x2

2 dx− ǫQ−1 (ǫ)

]
+O (1) (164)

=
√
kVar [X]

(
1√
2π
e−

(Q−1(ǫ))2

2 − ǫQ−1 (ǫ)

)
+O (1) (165)

where (162) follows by applying Theorem 10 to the integrand in the left side and observing that
∫ ∞

0

dr

1 + (Q−1 (ǫ) + r)3
<∞ (166)

Applying (157) and (165) to (155), we conclude that

(1− ǫ)kE [X]− E [〈Yk〉ǫ] =
√
kVar [X]√

2π
e−

(Q−1(ǫ))2

2 +O (1) , (167)

which is exactly (76).
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APPENDIX B

PROOF OF (85)

Denote for brevity

f(ǫ) =
1√
2π
e−

(Q−1(ǫ))
2

2 (168)

Direct computation yields

f(ǫ) = − 1

(Q−1)′ (ǫ)
(169)

f ′(ǫ) = Q−1 (ǫ) (170)

f ′′(ǫ) = − 1

f(ǫ)
(171)

Furthermore, using the bounds

x√
2π(1 + x2)

e−
x2

2 < Q(x) <
1√
2πx

e−
x2

2 , x > 0 (172)

we infer that as ǫ→ 0

Q−1 (ǫ) =

√
2 loge

1

ǫ
+O

(
loge loge

1

ǫ

)
(173)

Finally

lim
ǫ→0

f(ǫ)− ǫ
√

2 loge
1
ǫ

ǫ
= lim

ǫ→0

f(ǫ)− ǫf ′(ǫ)

ǫ
(174)

= lim
ǫ→0

f ′′(ǫ)ǫ (175)

= lim
ǫ→0

−ǫ
f(ǫ)

(176)

= lim
ǫ→0

1

Q−1 (ǫ)
(177)

= 0 (178)

where

• (174) is due to (170) and (173);

• (175) is by the l’Hôpital rule;

• (176) applies (171);

• (177) is by the l’Hôpital rule and (170).
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APPENDIX C

PROOF OF THEOREM 8

Given PS , d, denote for measurable F ⊆ M

RS|F(d, ǫ) , min
PZ|S :

P[d(S,Z)>d|S∈F ]≤ǫ

I(S;Z|S ∈ F) (179)

In the proof of the converse bound in (130), the following result is instrumental.

Lemma 3. Suppose PS , d, d > dmin and F ⊆ M are such that for all s ∈ F

S(S, d) ≥ r a.s. (180)

for some real r. Then

RS|F(d, ǫ) ≥ |(1− ǫ)r + (1− ǫ) log2 P [S ∈ F ]− h(ǫ)|+ (181)

Proof. Denote

pS(z) , P [d(S, z) ≤ d|S ∈ F ] (182)

p , sup
z∈M̂

pS(z) (183)

If ǫ > 1− p, RS(d, ǫ) = 0, so in the sequel we focus on the nontrivial case

ǫ ≤ 1− p (184)

To lower-bound the left side of (181), we weaken the supremum in (102) by selecting a

suitable pair (J(s), λ) satisfying the constraint in (103). Specifically, we choose

exp(−λ) = ǫp

(1− ǫ)(1− p)
(185)

exp(J(s)) = exp(J) ,
1− ǫ

p
, s ∈ F (186)

To verify that the condition (103) is satisfied, we substitute the choice in (185) and (186) into

the left side of (103) to obtain

ǫ
1− pS(z)

1− p
+ (1− ǫ)

pS(z)

p
≤ (1− p)

[
1− pS(z)

1− p
− pS(z)

p

]
+
pS(z)

p
(187)

= 1 (188)
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where (187) is due to (184) and the observation that the expression in square brackets in the

right side of (187) is nonnegative. Plugging (185) and (186) into (102), we conclude that

RS|F(d, ǫ) ≥ J − λǫ (189)

= d(ǫ‖1− p)− h(ǫ) (190)

≥ (1− ǫ) log2
1

p
− h(ǫ) (191)

≥ (1− ǫ)r + (1− ǫ) log2 P [S ∈ F ]− h(ǫ) (192)

where (192) is due to

pS(z) ≤ E [exp(λSd− λSd(S, z))|S ∈ F ] (193)

≤ E [exp(S(S, d) + λSd− λSd(S, z)− r)|S ∈ F ] (194)

≤ exp(−r)
P [S ∈ F ]

E [exp(S(S, d) + λSd− λSd(S, z))] (195)

≤ exp(−r)
P [S ∈ F ]

(196)

where λS , −RS(d), and

• (193) is Markov’s inequality;

• (194) applies (180);

• (196) is equivalent to (110).

Proof of Theorem 8. We start with the converse bound in (130). Note first that, similar to (38),

the constraint in (19) is achieved with equality. Denoting the random variable

F , ⌊S(S, d)⌋+ 1 (197)

and the sets

Fj , {s ∈ M : F = j} , (198)

we may write

I(S;Z) = I(S, F ;Z) (199)

= I(S;Z|F ) + I(F ;Z) (200)
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so

RS(d, ǫ) ≥ min
PZ|S :

P[d(S,Z)>d]≤ǫ

I(S;Z|F ) (201)

= min
ε(·) : E[ε(F )]≤ǫ

∞∑

j=−∞

PF (j)RS|Fj
(d, ǫ(j)) (202)

We apply Lemma 3 to lower bound each term of the sum by

RS|Fj
(d, ǫ(j)) ≥ |(1− ǫ(j))j + (1− ǫ) log2 PF (j)− h(ǫ(j))|+ (203)

to obtain

RS(d, ǫ) ≥ min
ε(·) : E[ε(F )]≤ǫ

{E [(1− ǫ(F ))S(S, d)]− E [h(ǫ(F ))]} −H(F ) (204)

= min
ε(·) : E[ε(F )]≤ǫ

{E [(1− ǫ(F ))S(S, d)]} −H(F )− h(ǫ) (205)

≥ E [〈S(S, d)〉ǫ]−H(F )− h(ǫ) (206)

≥ E [〈S(S, d)〉ǫ]− log2 (E [JS(S)] + 1)− log2 e− h(ǫ) (207)

where (204) uses (111), (205) is by concavity of h(·), (206) is due to (139), and (207) holds

because F + λSd ≥ JS(S) ≥ 0, and the entropy of a random variable on Z+ with a given mean

is maximized by that of the geometric distribution.

To show the upper bound in (131), fix an arbitrary distribution PZ̄ and define the conditional

probability distribution PZ|S through6

dPZ|S=s(z)

dPZ̄(z)
=





1{d(s,z)≤d}
PZ̄(Bd(s))

〈− log2 PZ̄(Bd(s))〉ǫ > 0

1 otherwise

(208)

By the definition of PZ|S

P [d(S, Z) > d] ≤ ǫ (209)

Upper-bounding the minimum in (19) with the choice of PZ|S in (208), we obtain the following

6Note that in general PS → PZ|S 9 PZ̄ .
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nonasymptotic bound:

RS(d, ǫ) ≤ I(S;Z) (210)

= D
(
PZ|S‖PZ̄|PS

)
−D(PZ‖PZ̄) (211)

≤ D
(
PZ|S‖PZ̄|PS

)
(212)

= E [〈− log2 PZ̄(Bd(S))〉ǫ] (213)

which leads to (131) after minimizing the right side over all PZ̄ .

To show the lower bound on (ǫ, δ)-entropy in (132), fix f satisfying the constraint in (113),

denote

Z , f(S) (214)

ε(s) , 1 {d(s, f(s)) > d} (215)

and write

H(Z) ≥ H(Z|ε(S)) (216)

≥ Pε(S)(0)H(Z|ε(S) = 0) (217)

= E
[
ıZ,ε(S)=0(Z)(1− ε(S))

]
+ Pε(S)(0) log2 Pε(S)(0) (218)

≥ E [〈− log2 PZ(Bd(S))〉ǫ]− φ(min{ǫ, e−1}) (219)

where the second term is bounded by maximizing p log2
1
p

over [1 − ǫ, 1], and the first term is

bounded via the following chain.

E
[
ıZ,ε(S)=0(Z)(1− ε(S))

]
≥ E [− log2 PZ(Bd(S))(1− ε(S))] (220)

≥ min
ε(·) : E[ε(S)]≤ǫ

E [− log2 PZ(Bd(S))(1− ε(S))] (221)

= E [〈− log2 PZ(Bd(S))〉ǫ] (222)

where (220) holds because due to {s ∈ M : f(s) = z, ǫ(s) = 0} ⊆ Bd(s) we have for all s ∈ M

P [Z = f(s), ε(S) = 0] ≤ PZ(Bd(s)) (223)

and (222) is due to (37).

To show the upper bound on (ǫ, δ)-entropy in (133), fix PZ such

PZ(Bd(s)) > 0 (224)
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for PS-a.s. s ∈ M, let Z∞ ∼ PZ × PZ × . . ., and define W as

W ,




min {m : d(S, Zm) ≤ d} 〈− log2 PZ(Bd(S))〉ǫ′ > 0

1 otherwise

(225)

where ǫ′ is the maximum of ǫ′ ≤ ǫ such that the randomization on the boundary of 〈− log2 PZ(Bd(S))〉ǫ′
can be implemented without the actual randomization (see Section II-A for an explanation of

this phenomenon).

If z1, z2, . . . is a realization of Z∞, f(s) = zw is a deterministic mapping that satisfies the

constraint in (113), so, since w 7→ zw is injective, we have

Hd,ǫ(S) ≤ H(W |Z∞ = z∞) (226)

We proceed to show that H(W |Z∞) is upper bounded by the right side of (133). Via the

random coding argument this will imply that there exists at least one codebook z∞ such that

H(W |Z∞ = z∞) is also upper bounded by the right side of (133), and the proof will be complete.

Let

G , ⌊log2W ⌋ 〈− log2 PZ(Bd(S))〉ǫ′ > 0 (227)

and consider the chain

H(W |Z∞) ≤ H(W ) (228)

= H(W |G) + I(W ;G) (229)

≤ E [G] +H(G) (230)

≤ E [G] + log2 (1 + E [G]) + log2 e (231)

where

• (228) holds because conditioning decreases entropy;

• (230) holds because conditioned on G = i, W can have at most i values;

• (231) holds because the entropy of a positive integer-valued random variable with a given

mean is maximized by the geometric distribution.

Finally, it was shown in (129) that

E [G] = E [〈− log2 PZ(Bd(S))〉ǫ′] (232)

≤ E [〈− log2 PZ(Bd(S))〉ǫ] + φ(min{ǫ, e−1}) (233)
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where φ(·) is the no-randomization penalty as explained in the proof of (31).

APPENDIX D

PROOF OF THE BOUNDS (134) AND (135) ON H0,ǫ(S) (HAMMING DISTORTION)

The upper bound in (135) is obtained by a suboptimal choice (in (121)) of f(s) = s for all

s ≤ m0, where m0 is that in (33), and f(s) = m0 + 1 otherwise.

To show the lower bound in (134), fix f satisfying the constraint in (121), put

ε(S) , 1 {S 6= f(S)} (234)

and write

H(f(S)) ≥ H(f(S)|ε(S) = 0)Pε(S)(0) (235)

= E

[
log2

1

Pf(S)|ε(S)=0(S)
|ε(S) = 0

]
Pε(S)(0) (236)

≥ H (S|ε(S) = 0)Pε(S)(0) (237)

= E [ıS(S)1 {ε(S) = 0}] + Pε(S)(0) log2 Pε(S)(0) (238)

≥ E [〈ıS(S)〉ǫ]− φ
(
max

{
1− ǫ, e−1

})
(239)

where

• (235) is because conditioning decreases entropy;

• (236) is due to

min
PY

E [ıY (X)] = H(X) (240)

• in (239), the first term is bounded using (37), and the second term is bounded by maximizing

p log2
1
p

over [1− ǫ, 1].

APPENDIX E

PROOF OF LEMMA 2

The following refinement of the lossy AEP is essentially contained in [19].
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Lemma 4. Under restrictions (i)–(iv), there exist constants C1, C2 such that eventually, almost

surely

log2
1

PZk⋆(Bd(Sk))
≤

k∑

i=1

S(Si, d) +
1

2
log2 k − kλS(d− d̄(Sk)) + kC1(d− d̄(Sk))2 + C2

(241)

where

d̄(sk) ,
1

k

k∑

i=1

E [d(si,Z
⋆)|S = si] (242)

Proof. It follows from [19, (4.6), (5.5)] that the probability of violating (241) is O
(

1
k2

)
. Since

∑∞
k=1

1
k2

is summable, by the Borel-Cantelli lemma (241) holds w. p. 1 for k large enough.

Noting that d̄(sk) is a normalized sum of independent random variables with mean d, we

conclude using Lemma 4 that for k large enough

E

[
log2

1

PZk⋆(Bd(Sk))

]
≤ kR(d) +

1

2
log2 k +O (1) (243)

Lemma 2 is now immediate from (140) and (141) and the expansion for E
[〈
Sk(Sk, d)

〉
ǫ

]
in

(143).
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