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Abstract—Without feedback, the backoff from capacity due
to non-asymptotic blocklength can be quite substantial for
blocklengths and error probabilities of interest in many practical
applications. In this paper, novel achievability bounds ae used
to demonstrate that in the non-asymptotic regime, the maxiral
achievable rate improves dramatically thanks to variablelength
coding with feedback. For example, for the binary symmetric
channel with capacity 1/2 the blocklength required to achieve
90% of the capacity is smaller than200, compared to at least3100
for the best fixed-blocklength, non-feedback code. Virtudy all
the advantages of noiseless feedback are shown to be achigea
with decision-feedback only. It is demonstrated that the no-
asymptotic behavior of the fundamental limit depends crucally
on the particular model chosen for the “end-of-packet” contol
signal.

Index Terms—Shannon theory, channel capacity, feedback,
decision feedback, non-asymptotic analysis, memoryleskannels,
achievability bounds.

I. INTRODUCTION

For a given channel, the fundamental limit of tradition

breaking contribution, Burnashev [3] demonstrated thateth
ror exponent improves in this setting and admits a partibula
simple expression:

Cy
= (2

forallrates) < R < C, whereC' is the capacity of the channel
and(; is the maximal relative entropy between output distri-
butions. Moreover, zero-error capacity may improve fromoze
to the Shannon capacity (as in the case of the binary erasure
channel (BEC)) if variable-length is allowed. Furthermore
since existing communication systems with feedback (such
as ARQ) have variable-length, in the analysis of fundanienta
limits for channels with feedback, it is much more relevard a
interesting to allow codes whose length is allowed to depend
on the channel behavior.
We mention a few extensions of Burnashev’s work [3],

4] relevant to this paper. Yamamoto and Itoh proposed a
imple and conceptually important two-phase coding scheme

E(R) (C—-R),

coding with fixed blocklength and no feedback is given by the,ining the optimal error exponent [5]. Using the notion
function M*(n, €) which is equal to the maximal cardinality ¢ Goppa’s empirical mutual information (EMI) several au-

of the code with blocklengtm and probability of errore.

thors have constructed universal coding schemes attaining

For several channels, including discrete memoryless @1anfyies arbitrarily close to capacity with small probabiliaf
(DMCs), the additive white Gaussian noise (AWGN) channgl, [6], [7], exponentially decaying probability of errs]

and some channels with memory the behavior of this functigf,q even attaining the optimal Burnashev exponent [9], [10]

at fixed ¢ and moderate: is tightly characterized by the

expansion [1], [12]

log M*(n,€) = nC' —VnVQ (e) + O(logn), (1)

simultaneously for a collection of channels.

The error exponent analysis focuses on fixed rate, rather
than fixed probability as in (1). Another aspect that was not
previously addressed in the literature is the followingptac-

whereC andV are the channel capacity and dispersion, fesgice, control information (such as initiation and termioa)
In the context of fixed blocklength communication, Shannde not under the purview of the physical layer. However,

showed [2] that noiseless feedback does not increase

the information theory literature typically assumes thit a

capacity of memoryless channels but can increase the zdr®e feed-forward control information is carried througte th
error capacity. For a class of symmetric DMCs, Dobrushsame noisy channel as the information payload. This is most
demonstrated [11] that the sphere-packing bound holds evenably illustrated by Burnashev's model in which the error

in the presence of noiseless feedback. Similarly, it can

bxponent is, in fact, limited by the reliability with whicine

shown [15] that for such channels the expansion (1) stilliBoltermination information is conveyed to the receiver thioug
with feedback as long as blocklength is not allowed to depetite DMC while at the same time assuming that the feedback

on feedback.

link has infinite reliability to carry not just a termination

Nevertheless, it is known that feedback can be very usefiymbol but the whole sequence of channel outputs. To separat
provided that we allow variable-length codes. In his greunghysical-channel issues from upper-layer issues, anddavoi
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1As usual,Q(z) = [° e\/zy_ﬂ dy.

mismodelling of control signaling, it is important to rezi

Enthat Initiation/Termination symbols are in fact carriedathgh

ayers and protocols whose reliabilities need not be smbda

those experienced by the payload. To capture this, we peopos
a simple modification of the (forward) channel model through
the introduction of a “use-once” termination symbol whose



transmission disables further communication. manner. This is the setup investigated by Burnashev [3]eNot
The organization of the paper is as follows. Section that sincer is computed at the decoder, it is not necessary
presents a formal statement of the problem. Section Il arta- specify the values of,, (Y™) for n # 7. In this way the

lyzes the maximal achievable rate with and without a termindecoder is a mag : B>~ — {1,..., M} measurable with
tion symbol. Section IV focuses on zero-error communicatiorespect tog, .
Complete proofs of all the results can be found in [15]. Definition 2: An (¢, M, e) variable-length feedback code

with termination (VLFT) is defined similarly to a VLF code

with the exception that condition 4) in the Definition 1 is
In this paper we consider the following channel codingeplaced by

scenario. A non-anticipatory channel consists of a painpiit 4’) A non-negative integer-valued random variabl@ stop-

and output alphabetgl and 5 together with a collection of ping time of the filtrationG,, = o{W,U,Y1,...,Y,},

conditional probability kernelg Py, v:yi-1}72,. Such chan- which satisfiesE [7] < ¢.

nel is called (stationary) memoryless if

Il. STATEMENT OF THE PROBLEM

The fundamental limit of channel coding with feedback and
Py xivit = Pyx, = Pyyx,» Viz1 (3) termination is given by the following quantity:
and if A and B are finite, it is known as a DMC. N
Definition 1: An (¢, M, ¢) variable-length feedback (VLF) My (€, €) = max{M : 3((, M, €)-VLFT codg:.  (9)
code, where’ is a positive realM is a positive integer and In a VLFT code, “termination” is used to indicate the fact
0 <e <1, is defined by: that the practical realization of such a coding scheme requi
1) A spaceld with? /| < 3 and a probability distribution @ method of sending a reliable end-of-packet signal by means
Py on it, defining a random variablé which is revealed other than using thed — B channel (e.g., by cutting off a
to both transmitter and receiver before the start @Rrrier). As we discussed in the introduction, timing (utihg
transmission; i.el/ acts as common randomness useig@rmination) is usually handled by a different layer in the
to initialize the encoder and the decoder before the st@fiotocol. The following are examples of VLFT codes:

of transmission. 1) VLF codes are a special case in which the stopping

2) A sequence of encodefs : U x {1,...,M}xB"! — time 7 is determined autonomously by the decoder; due

A, n > 1, defining channel inputs to availability of the feedbacks is also known to the
Xn = fo(UW, Y1), (4) encoder so that transmission can be cut off at
whereW ¢ {1,..., M} is the equiprobable message. 2) \(jlvehzféon feedback codese a special case of VLF codes

3) A sequence of decodegs, : U x B" — {1,...,M} el
providing the best estimate & at timen. Fa(U,WY"0) = fu(U W) (10)

4) A non-negative integer-valued random variable a Such codes require very limited communcation over
stopping time of the filtratiorg,, = o{U,Y1,...,Yn}, feedback: only a single signal to stop the transmission
which satisfies once the decoder is ready to decode.

E[r] < ¢. (5) 3) variable-length codes (without feedback),\dr codes
The final decisioriV’ is computed at the time instant defined in [14, Problem 2.1.25] and [13] are required to

W— o (UY" 6 satisfy two additional requirements:is a function of
_ =9-(U,Y7), ©6) (W,U) and (10) holds. The fundamental limit and the
and must satisfy e-capacity of variable-length codes are given by

PIW #£W] < e. (7) . ,
The fundamental limit of channel coding with feedback is Myt = maX{IM +3(6, M, €)-VL code} (11)
given by the following quantity: IC.] = Eli{go ZlogM;(E,e). (12)
M3 (€, €) = max{ M : 3((, M’_e)'VLF COd?}' - ) 4) fixed-to-variable codes, ¢tV codesdefined in [13] are
Those codes that do not require the availability &f also required to satisfy (10), while the stopping tin is
i.e. the ones withi/| = 1, are calleddeterministiccodes.
Although from a practical viewpoint there is hardly any T=inf{n >1:g,(U,Y") =W}, (13)

motivation to allow for non-deterministic codes, they slifyp
the analysis and expressions just like randomized tests1 do i
hypothesis testing. Also similar to the latter, the diffege in
performance between the deterministic and non-detertitinis 5)
codes is negligible for any practically interesting and /.

In a VLF code the decision about stopping transmission is
taken solely upon observation of channel outputs in a causal

3As explained in [13], this model encompasses fountain cadeshich
2This bound on the cardinality does not incur any loss of oglitym as the decoder can get a highly reliable estimate- autonomously without the
shown in [15, Appendix A]. need for a termination symbol.

and therefore, such codes are zero-error VLFT codes.
Of course, not all zero-error VLFT codes are FV codes,
since in general condition (10) does not necessarily hold.
automatic repeat requesARQ codes analyzed in [1,
Section IV.E] are yet a more restricted class of deter-
ministic FV codes, where a single fixed-blocklength,



non-feedback code is used repeatedly until the decodariable-length coding with feedback completely elimesat
produces a correct estimate. that penalty. Thus, the capacity is attainable at a muchlemal
The main goal of this paper is to analyze the behaviéaverage) blocklength. Furthermore, the achievabilioywgr)
of log M*(g ¢) and log M;({,¢) and compare them with bound in (18) is obtained via decision feedback codes (1) th
the behavior of the fundamental limit without feedbackuse feedback only to let the encoder know that the decoder

log M*(n, €). Regarding the behavior dbg M (¢, ¢) Burna- has made its final decision. As (18) demonstrates, such a
shev’s result (2) can be restated as sparing use of feedback does not lead to any significant loss

B in rate even non-asymptotically. Naturally, such a stnateg
1OgM;(g7 exp{—El}) = (C (1 — _) +o(0), (14) is eminently practical in many applications, unlike those
' Ci strategies that require full, noiseless, instantaneoedbfack.
for any 0 < E < C;. Although (14) does not imply any In the particular case of the BSC, a lower bound (18) with a
statement about the expansionlog M (¢, €) for a fixede, it weakerlogn term has been claimed in [8].
still demonstrates that in the regime of very small probigbil Theorem 3:Fix a real numbery > 0, a chan-
of error, the parametef; emerges as an important quantity.nel {meliylm}fil and an arbitrary processX =
(X1,Xs,...,X,,...) taking values ind. Define a probability
space with finite-dimensional distributions given by
The first result shows that under variable-length coding
allowing a non-vanishing error probability boosts thee- Pyuynxn(a”, ", ¢") = (20)
capacity by a factor o ig even in the absence of feedback. i
Theorem 1:For anyfgn-anticipatory channel with capacity Pxn(a H Y, |x7yi! (a,]p7,a771) , (21)
C that satisfies the strong converse for fixed-blocklength
codes (without feedback), thecapacity under variable-lengthi.e. X and X are independent copies of the same process and

IIl. M AIN RESULTS

coding without feedback, cf. (12), is Y is the output of the channel wheX is its input. For the
joint distribution (21) define a sequence of informationsign

[Ce] = €(0,1). (15) functionsA™ x B — R
In general, it is known [13, Theorem 16] that the VL i(a™;b") = log dPY"’lx"(bnmn)’ (22)

capacity, [C] = lim._ [C.], is equal to the conventional dPyn(b")
fixed-blocklength capacity without feedbadk, for any non- and a pair of hitting times:
anticipatory channel (not necessarily satisfying thergiroon-
verse). On the other hand, the capacity of FV codes for state- T = inf{n>0:i(X"Y") >}, (23)
dependent non-ergodic channels can be larger ¢hdh3]. = inf{n >0:i(X";Y"™) >~}. (24)
Our main result is the following:
Theorem 2:For an arbitrary DMC with capacit§' we have

ll

Then for anyM there exists arf¢, M, ¢) VLF code with

forany0 <e< 1 ¢ < El (25)
log Mj (Le) = o +O(logt), (16) ¢ s (M-DP[F=<7]. (26)
o Furthermore, for any\/ there exists a deterministi¢’, M, ¢)
log M (le) = 7— +O(logl). (17) VLF code withe satisfying (26) and
More precisely, we have (" <esssupE [7|X]. (27)

c —log £+ O(1) < log M} (£,¢) < tc +0(1) (18) Wors_ening the bou_nd to (27) is advantageous, e.g., for sym-
1—e€ —€ metric channels, since we ha[r|X] = E[r] and thus
log M3 (£, €) < log M (£,¢) < ¢C +logt +o(1). the second part of Theorem 3 guarantees the existence of
: - a deterministic code without any sacrifice in performance.
(19) Theorem 3 is a natural extension of the DT bound [1, Theorem
A consequence of Theorem 2 is that for DMCs, feedbadk(], since (26) corresponds to the second term in [1, (70)],
(even in the setup of VLFT codes) does not increasectheWhereas the first term in [1, (70)] is missing because the

capacity, namely, information density corresponding to the true message-even
1 tually crosses any leve} with probability one. Interestingly,
élim 7 log M (¢,e) = [C], pairing a fixed stopping rule with a random-coding argument

has been already discovered from a different perspectitbei
where[C] is defined in (12) and given by Theorem 1. context of universal variable-length codes [6]-[10], stiog
However, while in the absence of feedback and within th@les based on a sequentially computed EMI were shown to
paradigm of fixed-length coding, the backoff frartapacity be optimal in several different asymptotic senses. Alttioug
(equal to capacity for DMCs) is governed by the term (1), invaluable for universal coding, EMI-based decoders arel ha



The dashed line in Fig. 1 is the approximate fundamental
osr limit for fixed blocklength codes without feedback given by
the equation (1) witfO(logn) substituted by% logn; see [1,
Theorem 53].

IV. ZERO-ERROR COMMUNICATION

The general achievability bound, Theorem 3, applies only to
e > 0. What can be said abodt= 0? Burnashev [3] showed
that whenevel; = oo, as/ — oo we have for some > 0

log M§(¢,0) > Cl — a\/tlog L+ O(log ) . (34)
For this reason, for such channels zero-error VLF capasity i
equal to the conventional capacity. However, the penaltyndo
V/llog{ is rather loose, as the following result demonstrates.
— Gonverse Theorem 5:For a BEC(J) with capacityC' we have

—— Achievability|

- - - No feedback log, ]\/[}F (£,0) =4C+O(1). (35)

04r
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o B A g bockengn 0 %01 Regarding any channel with’; < oo (e.g. the BSC), the

Fig. 1. Comparison of upper and lower bounds for the BSCjouithn ~ following negative result holds:
variable-length and feedback; probability of ereo= 1073, Theorem 6:For any DMC withC; < co we have

log M7 (£,0) =0 (36)

0

to evaluate non-asymptotically as their analysis relies on

inherently asymptotic methods, such as type-counting16j. for all £ > 0.
While the codes with encoders utilizing full noiseless teeck ~ The shortcoming of VLF coding found in Theorem 6 is
can achieve the Burnashev exponent (2), it was noted in @jercome in the paradigm of VLFT coding. Our main tool is

and [10] that the lower error exponent the following achievability bound.
F\(R)=C—R 28) Theorem 7:Fix an arbitrary Chan”e.{Pleiyfj]}iﬂ and
. hievab| I O with decision feedback a processX = (X1, Xo,..., Xp,...) with values inA. Then
Is achievable at a rategt < with decision feedback ¢ every positive integeil/ there exists ar{¢, M,0) VLFT
codes (10). This property follows from Theorem 3 (see [15] ode with
Theorem 4:Consider an arbitrary DMC with capacity. )
Then any(¢, M, ¢) VLF code with0 < ¢ < 1 satisfie$ (< ZIE[min {1, (M=1)P[i(X™Y™) <i(X™Y™)[X"Y"]}],
n=0
log M < Cé%h(e) , (29) 37)

—c€ n Yn un . . .
whereas eacl, M, ¢) VLFT code with0 < ¢ < 1 satisfies where X, X ’.Y andi(;-) are defmed in (.21.) gnd (22).
0+ Toe(f + 1) + h | Moreover, this is an FV code which is deterministic and uses
log M < +log(f+1) + h(e) +loge (30) feedback only to compute the stopping time, i.e. (10) holds.

)

1-e . . Theorem 8:For an arbitrary DMC we have

where h(z) = —zlogx — (1 — x)log(1l — ) is the binary | . B
entropy function. og M (£,0) = £C' + O(log{). (38)

Not only do Theorems 3 and 4 lead to a proof of Thed/ore specifically we have
rem 2, but also provide tight non-asymptotic bounds on the log M7 (¢,0) < {C+logl+0O(1), (39)
communication rate. A numerical comparisogn for the BSC log MX(£,0) > (C+O(1). (40)
W.'th crossover probability — 0-11 ande = 107" s given in Furthermore, the encoder achieving (40) uses feedback to
.F'g' 1, where the upper bognd IS _(29) and the_ lower bour(]: Iculate the stopping time only, i.e. it is an FV code.
is Theorem 3 (evaluated with various depen(J!|ngnon nthe Theorem 8 suggests that VLFT codes may achieve capacity
average blocklength). Note t_hat fazSC(0) the i(X™y™) even at very short blocklengths. To illustrate this nurradiyc
bgcomes a .rglndom walk tak|-ng stlpg 20 andlog(2 — 29) we first notice that Theorem 7 particularized to the BSC
with probabilitiess and1 -0, i.e., with i.i.d. input processX and an equiprobable marginal

i(X™Y™) = nlog(2 — 20) + log - ig Z 7 (31) distribution yields the following resuit
k=1

Corollary 9: For the BSC with crossover probabilityand
for every positive integel/ there exists ar{¢, M,0) VLFT

whereZ;, are independent Bernoulli[Z, = 1] =1 —-P[Z; = PR
code satisfying

0] = 6. After simplifications (26) becomes:

e < (M-1)E[f(7)], B2 /< ii (’Z) §'(1—8)""" min {1, M kzt:_o (Z) 2—”} :

where n=0 t=0
(41)

A .
f(n) =E[{r < n}exp{—i(XT;Y7)}]. (33)
5This expression is to be compared with the (almost) optiralieedback
4The inequality (29) is contained essentially in Lemmas 1 2rud [3]. achievability bound for the BSC, [1, Theorem 34].
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variation of information density around its mean, which is
tightly characterized by the central limit theorem. In the

ost - variable-length setup with feedback the main idea is that of
/f\ Wald-like stopping once the information density of some mes
e mmmmmmmTeTTTTTTTTTIIITIIITI | sage is large enough. Therefore, there is virtually no ststit
o4r 7 variation and this explains the absence of any referencib®to

central limit theorem and the fact that dispersion is zero.

We have also analyzed a modification of the coding problem
by introducing a termination symbol (VLFT codes), which
is practically motivated in many situations in which coitro
o2r 1 signals are sent over a highly reliable upper layer. Not ¢y
leads to the possibility of communicating with zero-ertmrt
also dramatically improves the transient behavior, see Eig
— which is analytically expressed by the absence of not only
—— Achievabilly the v/¢ term but also of theog/ term in the bound (40).

-~ -ARQ . . . .
e e e e s s e 1o Urthermore, in F!g. 2 we see that fountain codes can achieve

Avg. blocklength 90% of the capacity of the BSC at average blocklengtR0
Fig. 2. Zero-error communication over the BSC(0.11) witheemination gnd with zero probability of error. Practically, of couregro-

symbol. The lower bound is (41); the upper-bound is (30). error” should be understood as the reliability being esatint

A Comparison of (41) and the upper bound (30) is given ﬁlﬂe probablllty with which the termination Symb0| is Comyc
Fig. 2. We see that despite the requirement of zero probabilfletected.
of error, VLFT codes attain the capacity of the BSC at
blocklengths as short as 30. Additionally, we have depicted v Povanskiv. H. V. P 4 S, Verda. “Ch ! codinger in th

: ) . Polyanskiy, H. V. Poor and S. Verd(, “Channel codirger in the
the_ (appr_ommate)_ performance of the best non feec_lbaCk CAH finite blocklength regime1IEEE Trans. Inform. Theoryvol. 56, no. 5,
paired with the simple ARQ strategy, see [1, Section IV.E]. pp. 2307-2359, May 2010.
Note that the ARQ strategy indeed gives a valid zero-errist (I:'f E. Sf}falhnnon,\;Tlhg Zﬁro grror cgpfgcité of a f:ézy chahnBE Trans.
: . nform. Theory Vol. 2, No. 3, pp. 8-19, Sept. .
VLF_T code. The comparison Or,] Fig. 2 suggests that ev ] M. V. Burnashev, “Data transmission over a discrete clehnwith
having access to the best possible block codes the ARQ s feedback. Random transmission timeProblems of Information Trans-
considerably suboptimal. It is interesting to note in tlegard, mssiog,vol-lﬁ, nO-é pp. 19-|3%1_ 1976. R |
) : . V. Burnashev, “Sequential discrimination of hyp with contro
that a Y_amamotto Itoh [5] strategy also pairs th_e _beSt blogﬂ of observations,Math. USSR, lzvestiapl. 15, no. 3, pp. 419-440, 1980.
code with a noisy version of ARQ (therefore, it is a VLF5] H. Yamamoto and K. Itoh, “Asymptotic performance of a rifizdi

achievability bound). Consequently, we expect a similgp ga Schalkwijk-Barron scheme for channels with noiseless lfael,” IEEE
in performance Trans. Inform. Theoryvol. 25, no. 6, pp. 729-733, Nov. 1979.
P ) [6] N. Shulman, “Communication over an unknown channel vienmon
broadcasting,” Ph.D. dissertation, Tel-Aviv Univ., Teli¥ Israel, 2003.
V. DiscussioN [7] S. C. Draper, B. J. Frey, and F. R. Kschischang, “Efficienatiable
We have demonstrated that by allowing variable length, 'Ie?gth ihanf}eh' COdir(‘lgs If%élrf:_knownf'\/'u%imj 2002‘5 (')EEE Int. Symp.
. : . nformation Theory ;)Chicago, IL, , June .
even a modicum of feedba_lck is enough to considerably spz&dA. Tchamkerten and E. Telatar, “A feedback strategy foraby sym-
up convergence to capacity. For example, we constructed ametric channels,Proc. 2002 IEEE Int. Symp. Information Theory (ISIT)
feedback code that achieve8”% of the capacity of the BSC _ Lausanne, Switzerland, July 2002.

. . . 9] A. Tchamkerten and E. Telatar, “Optimal feedback schemeer un-
at b|0Ck|ength2OO’ see Fig. 1. In contrast, to obtain th known channels,Proc. 2004 IEEE Int. Symp. Information Theory (ISIT)

same performance without feedback requires a blocklength chicago, IL, USA, June 2004.

of at least3100. Practically, this opens the possibility of[10] A. Tchamkerten and E. Telatar, “Variable length codavgr an unknown
channel,”IEEE Trans. Inform. Theorwol. 52, no. 5, pp. 2126-2145, May
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