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Abstract—Without feedback, the backoff from capacity due
to non-asymptotic blocklength can be quite substantial for
blocklengths and error probabilities of interest in many practical
applications. In this paper, novel achievability bounds are used
to demonstrate that in the non-asymptotic regime, the maximal
achievable rate improves dramatically thanks to variable-length
coding with feedback. For example, for the binary symmetric
channel with capacity 1/2 the blocklength required to achieve
90% of the capacity is smaller than200, compared to at least3100
for the best fixed-blocklength, non-feedback code. Virtually all
the advantages of noiseless feedback are shown to be achievable
with decision-feedback only. It is demonstrated that the non-
asymptotic behavior of the fundamental limit depends crucially
on the particular model chosen for the “end-of-packet” control
signal.

Index Terms—Shannon theory, channel capacity, feedback,
decision feedback, non-asymptotic analysis, memoryless channels,
achievability bounds.

I. I NTRODUCTION

For a given channel, the fundamental limit of traditional
coding with fixed blocklength and no feedback is given by the
function M∗(n, ǫ) which is equal to the maximal cardinality
of the code with blocklengthn and probability of errorǫ.
For several channels, including discrete memoryless channels
(DMCs), the additive white Gaussian noise (AWGN) channel
and some channels with memory the behavior of this function
at fixed ǫ and moderaten is tightly characterized by the
expansion [1], [12]

log M∗(n, ǫ) = nC −
√

nV Q−1(ǫ) + O(log n) , (1)

whereC andV are the channel capacity and dispersion, resp1.
In the context of fixed blocklength communication, Shannon

showed [2] that noiseless feedback does not increase the
capacity of memoryless channels but can increase the zero-
error capacity. For a class of symmetric DMCs, Dobrushin
demonstrated [11] that the sphere-packing bound holds even
in the presence of noiseless feedback. Similarly, it can be
shown [15] that for such channels the expansion (1) still holds
with feedback as long as blocklength is not allowed to depend
on feedback.

Nevertheless, it is known that feedback can be very useful
provided that we allow variable-length codes. In his ground-
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breaking contribution, Burnashev [3] demonstrated that the er-
ror exponent improves in this setting and admits a particularly
simple expression:

E(R) =
C1

C
(C − R) , (2)

for all rates0 < R < C, whereC is the capacity of the channel
andC1 is the maximal relative entropy between output distri-
butions. Moreover, zero-error capacity may improve from zero
to the Shannon capacity (as in the case of the binary erasure
channel (BEC)) if variable-length is allowed. Furthermore,
since existing communication systems with feedback (such
as ARQ) have variable-length, in the analysis of fundamental
limits for channels with feedback, it is much more relevant and
interesting to allow codes whose length is allowed to depend
on the channel behavior.

We mention a few extensions of Burnashev’s work [3],
[4] relevant to this paper. Yamamoto and Itoh proposed a
simple and conceptually important two-phase coding scheme,
attaining the optimal error exponent [5]. Using the notion
of Goppa’s empirical mutual information (EMI) several au-
thors have constructed universal coding schemes attaining
rates arbitrarily close to capacity with small probabilityof
error [6], [7], exponentially decaying probability of error [8]
and even attaining the optimal Burnashev exponent [9], [10]
simultaneously for a collection of channels.

The error exponent analysis focuses on fixed rate, rather
than fixed probability as in (1). Another aspect that was not
previously addressed in the literature is the following. Inprac-
tice, control information (such as initiation and termination)
is not under the purview of the physical layer. However,
the information theory literature typically assumes that all
the feed-forward control information is carried through the
same noisy channel as the information payload. This is most
notably illustrated by Burnashev’s model in which the error
exponent is, in fact, limited by the reliability with which the
termination information is conveyed to the receiver through
the DMC while at the same time assuming that the feedback
link has infinite reliability to carry not just a termination
symbol but the whole sequence of channel outputs. To separate
physical-channel issues from upper-layer issues, and avoid
mismodelling of control signaling, it is important to realize
that Initiation/Termination symbols are in fact carried through
layers and protocols whose reliabilities need not be similar to
those experienced by the payload. To capture this, we propose
a simple modification of the (forward) channel model through
the introduction of a “use-once” termination symbol whose



transmission disables further communication.
The organization of the paper is as follows. Section II

presents a formal statement of the problem. Section III ana-
lyzes the maximal achievable rate with and without a termina-
tion symbol. Section IV focuses on zero-error communication.
Complete proofs of all the results can be found in [15].

II. STATEMENT OF THE PROBLEM

In this paper we consider the following channel coding
scenario. A non-anticipatory channel consists of a pair of input
and output alphabetsA andB together with a collection of
conditional probability kernels{PYi|Xi

1
Y

i−1

1

}∞i=1
. Such chan-

nel is called (stationary) memoryless if

PYi|Xi
1
Y

i−1

1

= PYi|Xi
= PY1|X1

, ∀i ≥ 1 (3)

and if A andB are finite, it is known as a DMC.
Definition 1: An (ℓ, M, ǫ) variable-length feedback (VLF)

code, whereℓ is a positive real,M is a positive integer and
0 ≤ ǫ ≤ 1, is defined by:

1) A spaceU with2 |U| ≤ 3 and a probability distribution
PU on it, defining a random variableU which is revealed
to both transmitter and receiver before the start of
transmission; i.e.U acts as common randomness used
to initialize the encoder and the decoder before the start
of transmission.

2) A sequence of encodersfn : U×{1, . . . , M}×Bn−1 →
A, n ≥ 1, defining channel inputs

Xn = fn(U, W, Y n−1) , (4)

whereW ∈ {1, . . . , M} is the equiprobable message.
3) A sequence of decodersgn : U × Bn → {1, . . . , M}

providing the best estimate ofW at timen.
4) A non-negative integer-valued random variableτ , a

stopping time of the filtrationGn = σ{U, Y1, . . . , Yn},
which satisfies

E [τ ] ≤ ℓ . (5)

The final decisionŴ is computed at the time instantτ :

Ŵ = gτ (U, Y τ ) , (6)

and must satisfy

P[Ŵ 6= W ] ≤ ǫ . (7)

The fundamental limit of channel coding with feedback is
given by the following quantity:

M∗
f (ℓ, ǫ) = max{M : ∃(ℓ, M, ǫ)-VLF code} . (8)

Those codes that do not require the availability ofU ,
i.e. the ones with|U| = 1, are calleddeterministiccodes.
Although from a practical viewpoint there is hardly any
motivation to allow for non-deterministic codes, they simplify
the analysis and expressions just like randomized tests do in
hypothesis testing. Also similar to the latter, the difference in
performance between the deterministic and non-deterministic
codes is negligible for any practically interestingM andℓ.

In a VLF code the decision about stopping transmission is
taken solely upon observation of channel outputs in a causal

2This bound on the cardinality does not incur any loss of optimality as
shown in [15, Appendix A].

manner. This is the setup investigated by Burnashev [3]. Note
that sinceτ is computed at the decoder, it is not necessary
to specify the values ofgn(Y n) for n 6= τ . In this way the
decoder is a mapg : B∞ → {1, . . . , M} measurable with
respect toGτ .

Definition 2: An (ℓ, M, ǫ) variable-length feedback code
with termination (VLFT) is defined similarly to a VLF code
with the exception that condition 4) in the Definition 1 is
replaced by

4’) A non-negative integer-valued random variableτ , a stop-
ping time of the filtrationGn = σ{W, U, Y1, . . . , Yn},
which satisfiesE [τ ] ≤ ℓ.

The fundamental limit of channel coding with feedback and
termination is given by the following quantity:

M∗
t
(ℓ, ǫ) = max{M : ∃(ℓ, M, ǫ)-VLFT code} . (9)

In a VLFT code, “termination” is used to indicate the fact
that the practical realization of such a coding scheme requires
a method of sending a reliable end-of-packet signal by means
other than using theA → B channel (e.g., by cutting off a
carrier). As we discussed in the introduction, timing (including
termination) is usually handled by a different layer in the
protocol. The following are examples of VLFT codes:

1) VLF codes are a special case in which the stopping
time τ is determined autonomously by the decoder; due
to availability of the feedback,τ is also known to the
encoder so that transmission can be cut off atτ .

2) decision feedback codesare a special case of VLF codes
where

fn(U, W, Y n−1) = fn(U, W ) . (10)

Such codes require very limited communcation over
feedback: only a single signal to stop the transmission
once the decoder is ready to decode.

3) variable-length codes (without feedback), orVL codes,
defined in [14, Problem 2.1.25] and [13] are required to
satisfy two additional requirements:τ is a function of
(W, U) and (10) holds. The fundamental limit and the
ǫ-capacity of variable-length codes are given by

M∗
v (ℓ, ǫ) = max{M : ∃(ℓ, M, ǫ)-VL code} ,(11)

[[Cǫ]] = lim
ℓ→∞

1

ℓ
log M∗

v (ℓ, ǫ) . (12)

4) fixed-to-variable codes, orFV codes, defined in [13] are
also required to satisfy (10), while the stopping time is3

τ = inf{n ≥ 1 : gn(U, Y n) = W} , (13)

and therefore, such codes are zero-error VLFT codes.
Of course, not all zero-error VLFT codes are FV codes,
since in general condition (10) does not necessarily hold.

5) automatic repeat request (ARQ) codes analyzed in [1,
Section IV.E] are yet a more restricted class of deter-
ministic FV codes, where a single fixed-blocklength,

3As explained in [13], this model encompasses fountain codesin which
the decoder can get a highly reliable estimate ofτ autonomously without the
need for a termination symbol.



non-feedback code is used repeatedly until the decoder
produces a correct estimate.

The main goal of this paper is to analyze the behavior
of log M∗

f (ℓ, ǫ) and log M∗
t
(ℓ, ǫ) and compare them with

the behavior of the fundamental limit without feedback,
log M∗(n, ǫ). Regarding the behavior oflog M∗

f (ℓ, ǫ) Burna-
shev’s result (2) can be restated as

log M∗
f (ℓ, exp{−Eℓ}) = ℓC

(

1 − E

C1

)

+ o(ℓ) , (14)

for any 0 < E < C1. Although (14) does not imply any
statement about the expansion oflog M∗

f (ℓ, ǫ) for a fixedǫ, it
still demonstrates that in the regime of very small probability
of error, the parameterC1 emerges as an important quantity.

III. M AIN RESULTS

The first result shows that under variable-length coding
allowing a non-vanishing error probabilityǫ boosts theǫ-
capacity by a factor of 1

1−ǫ
even in the absence of feedback.

Theorem 1:For any non-anticipatory channel with capacity
C that satisfies the strong converse for fixed-blocklength
codes (without feedback), theǫ-capacity under variable-length
coding without feedback, cf. (12), is

[[Cǫ]] =
C

1 − ǫ
, ǫ ∈ (0, 1) . (15)

In general, it is known [13, Theorem 16] that the VL
capacity, [[C]] = limǫ→0 [[Cǫ]], is equal to the conventional
fixed-blocklength capacity without feedback,C, for any non-
anticipatory channel (not necessarily satisfying the strong con-
verse). On the other hand, the capacity of FV codes for state-
dependent non-ergodic channels can be larger thanC [13].

Our main result is the following:
Theorem 2:For an arbitrary DMC with capacityC we have

for any 0 < ǫ < 1

log M∗
f (ℓ, ǫ) =

ℓC

1 − ǫ
+ O(log ℓ) , (16)

log M∗
t
(ℓ, ǫ) =

ℓC

1 − ǫ
+ O(log ℓ) . (17)

More precisely, we have

ℓC

1 − ǫ
− log ℓ + O(1) ≤ log M∗

f (ℓ, ǫ) ≤ ℓC

1 − ǫ
+ O(1) (18)

log M∗
f (ℓ, ǫ) ≤ log M∗

t
(ℓ, ǫ) ≤ ℓC + log ℓ

1 − ǫ
+ O(1) .

(19)

A consequence of Theorem 2 is that for DMCs, feedback
(even in the setup of VLFT codes) does not increase theǫ-
capacity, namely,

lim
ℓ→∞

1

ℓ
log M∗

t (ℓ, ǫ) = [[Cǫ]] ,

where[[Cǫ]] is defined in (12) and given by Theorem 1.
However, while in the absence of feedback and within the

paradigm of fixed-length coding, the backoff fromǫ-capacity
(equal to capacity for DMCs) is governed by the1√

n
term (1),

variable-length coding with feedback completely eliminates
that penalty. Thus, the capacity is attainable at a much smaller
(average) blocklength. Furthermore, the achievability (lower)
bound in (18) is obtained via decision feedback codes (10) that
use feedback only to let the encoder know that the decoder
has made its final decision. As (18) demonstrates, such a
sparing use of feedback does not lead to any significant loss
in rate even non-asymptotically. Naturally, such a strategy
is eminently practical in many applications, unlike those
strategies that require full, noiseless, instantaneous feedback.
In the particular case of the BSC, a lower bound (18) with a
weakerlog n term has been claimed in [8].

Theorem 3:Fix a real number γ > 0, a chan-
nel {PYi|Xi

1
Y

i−1

1

}∞i=1
and an arbitrary processX =

(X1, X2, . . . , Xn, . . .) taking values inA. Define a probability
space with finite-dimensional distributions given by

PXnY nX̄n(an, bn, cn) = (20)

PXn(an)PX̄n(cn)
n

∏

j=1

P
Yj |Xj

1
Y

j−1

1

(aj |bj , aj−1) , (21)

i.e. X andX̄ are independent copies of the same process and
Y is the output of the channel whenX is its input. For the
joint distribution (21) define a sequence of information density
functionsAn × Bn → R̄

i(an; bn) = log
dPY n|Xn(bn|an)

dPY n(bn)
, (22)

and a pair of hitting times:

τ = inf{n ≥ 0 : i(Xn; Y n) ≥ γ} , (23)

τ̄ = inf{n ≥ 0 : i(X̄n; Y n) ≥ γ} . (24)

Then for anyM there exists an(ℓ, M, ǫ) VLF code with

ℓ ≤ E [τ ] (25)

ǫ ≤ (M−1)P[τ̄ ≤ τ ] . (26)

Furthermore, for anyM there exists a deterministic(ℓ′, M, ǫ)
VLF code with ǫ satisfying (26) and

ℓ′ ≤ esssup E [τ |X ] . (27)

Worsening the bound to (27) is advantageous, e.g., for sym-
metric channels, since we haveE [τ |X ] = E [τ ] and thus
the second part of Theorem 3 guarantees the existence of
a deterministic code without any sacrifice in performance.
Theorem 3 is a natural extension of the DT bound [1, Theorem
17], since (26) corresponds to the second term in [1, (70)],
whereas the first term in [1, (70)] is missing because the
information density corresponding to the true message even-
tually crosses any levelγ with probability one. Interestingly,
pairing a fixed stopping rule with a random-coding argument
has been already discovered from a different perspective: in the
context of universal variable-length codes [6]–[10], stopping
rules based on a sequentially computed EMI were shown to
be optimal in several different asymptotic senses. Although
invaluable for universal coding, EMI-based decoders are hard
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Fig. 1. Comparison of upper and lower bounds for the BSC(0.11) with
variable-length and feedback; probability of errorǫ = 10−3 .

to evaluate non-asymptotically as their analysis relies on
inherently asymptotic methods, such as type-counting, cf.[10].
While the codes with encoders utilizing full noiseless feedback
can achieve the Burnashev exponent (2), it was noted in [8]
and [10] that the lower error exponent

E1(R) = C − R (28)

is achievable at all ratesR < C with decision feedback
codes (10). This property follows from Theorem 3 (see [15]).

Theorem 4:Consider an arbitrary DMC with capacityC.
Then any(ℓ, M, ǫ) VLF code with0 ≤ ǫ < 1 satisfies4

log M ≤ Cℓ + h(ǫ)

1 − ǫ
, (29)

whereas each(ℓ, M, ǫ) VLFT code with0 ≤ ǫ < 1 satisfies

log M ≤ Cℓ + log(ℓ + 1) + h(ǫ) + log e

1 − ǫ
, (30)

where h(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy function.

Not only do Theorems 3 and 4 lead to a proof of Theo-
rem 2, but also provide tight non-asymptotic bounds on the
communication rate. A numerical comparison for the BSC
with crossover probabilityδ = 0.11 andǫ = 10−3 is given in
Fig. 1, where the upper bound is (29) and the lower bound
is Theorem 3 (evaluated with variousγ depending on the
average blocklength). Note that forBSC(δ) the i(Xn; Y n)
becomes a random walk taking stepslog 2δ and log(2 − 2δ)
with probabilitiesδ and1 − δ, i.e.,

i(Xn; Y n) = n log(2 − 2δ) + log
δ

1 − δ

n
∑

k=1

Zk , (31)

whereZk are independent BernoulliP[Zk = 1] = 1−P[Zk =
0] = δ. After simplifications (26) becomes:

ǫ ≤ (M−1)E [f(τ)] , (32)

where

f(n)
△
= E [1{τ ≤ n} exp{−i(Xτ ; Y τ )}] . (33)

4The inequality (29) is contained essentially in Lemmas 1 and2 of [3].

The dashed line in Fig. 1 is the approximate fundamental
limit for fixed blocklength codes without feedback given by
the equation (1) withO(log n) substituted by1

2
log n; see [1,

Theorem 53].

IV. Z ERO-ERROR COMMUNICATION

The general achievability bound, Theorem 3, applies only to
ǫ > 0. What can be said aboutǫ = 0? Burnashev [3] showed
that wheneverC1 = ∞, asℓ → ∞ we have for somea > 0

log M∗
f (ℓ, 0) ≥ Cℓ − a

√

ℓ log ℓ + O(log ℓ) . (34)

For this reason, for such channels zero-error VLF capacity is
equal to the conventional capacity. However, the penalty bound√

ℓ log ℓ is rather loose, as the following result demonstrates.
Theorem 5:For aBEC(δ) with capacityC we have

log
2
M∗

f (ℓ, 0) = ℓC + O(1) . (35)
Regarding any channel withC1 < ∞ (e.g. the BSC), the

following negative result holds:
Theorem 6:For any DMC withC1 < ∞ we have

log M∗
f (ℓ, 0) = 0 (36)

for all ℓ ≥ 0.
The shortcoming of VLF coding found in Theorem 6 is

overcome in the paradigm of VLFT coding. Our main tool is
the following achievability bound.

Theorem 7:Fix an arbitrary channel{PYi|Xi
1
Y

i−1

1

}∞i=1
and

a processX = (X1, X2, . . . , Xn, . . .) with values inA. Then
for every positive integerM there exists an(ℓ, M, 0) VLFT
code with

ℓ ≤
∞
∑

n=0

E [min
{

1, (M−1)P[i(Xn; Y n) ≤ i(X̄n; Y n)|XnY n]
}

] ,

(37)
whereXn, X̄n, Y n and i(·; ·) are defined in (21) and (22).
Moreover, this is an FV code which is deterministic and uses
feedback only to compute the stopping time, i.e. (10) holds.

Theorem 8:For an arbitrary DMC we have

log M∗
t
(ℓ, 0) = ℓC + O(log ℓ) . (38)

More specifically we have

log M∗
t
(ℓ, 0) ≤ ℓC + log ℓ + O(1) , (39)

log M∗
t
(ℓ, 0) ≥ ℓC + O(1) . (40)

Furthermore, the encoder achieving (40) uses feedback to
calculate the stopping time only, i.e. it is an FV code.

Theorem 8 suggests that VLFT codes may achieve capacity
even at very short blocklengths. To illustrate this numerically
we first notice that Theorem 7 particularized to the BSC
with i.i.d. input processX and an equiprobable marginal
distribution yields the following result5.

Corollary 9: For the BSC with crossover probabilityδ and
for every positive integerM there exists an(ℓ, M, 0) VLFT
code satisfying

ℓ ≤
∞
∑

n=0

n
∑

t=0

(

n

t

)

δt(1 − δ)n−t min

{

1, M

t
∑

k=0

(

n

k

)

2−n

}

.

(41)

5This expression is to be compared with the (almost) optimal non-feedback
achievability bound for the BSC, [1, Theorem 34].
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Fig. 2. Zero-error communication over the BSC(0.11) with a termination
symbol. The lower bound is (41); the upper-bound is (30).

A comparison of (41) and the upper bound (30) is given in
Fig. 2. We see that despite the requirement of zero probability
of error, VLFT codes attain the capacity of the BSC at
blocklengths as short as 30. Additionally, we have depicted
the (approximate) performance of the best non-feedback code
paired with the simple ARQ strategy, see [1, Section IV.E].
Note that the ARQ strategy indeed gives a valid zero-error
VLFT code. The comparison on Fig. 2 suggests that even
having access to the best possible block codes the ARQ is
considerably suboptimal. It is interesting to note in this regard,
that a Yamamoto-Itoh [5] strategy also pairs the best block
code with a noisy version of ARQ (therefore, it is a VLF
achievability bound). Consequently, we expect a similar gap
in performance.

V. D ISCUSSION

We have demonstrated that by allowing variable length,
even a modicum of feedback is enough to considerably speed
up convergence to capacity. For example, we constructed a
feedback code that achieves90% of the capacity of the BSC
at blocklength200; see Fig. 1. In contrast, to obtain the
same performance without feedback requires a blocklength
of at least 3100. Practically, this opens the possibility of
utilizing the full capacity of the link without the complexity
required to implement coding of very long packets. Indeed, a
major ingredient of the achievability bounds in this paper,the
idea of terminating early on favorable noise realizations,can
be used to show that any point on the achievability curve of
Fig. 1 is realized by pairing some linear block code with the
stopping rule (23). In other words, known linear codes can be
decoded with significantly less (average) delay if used in the
variable-length setting.

Theoretically, the benefit of feedback is manifested by the
absence of the

√
ℓ term in the expansions (16) and (17),

whereas this term is crucial to determine the non-asymptotic
performance without feedback. Intuitively, without feedback
the main effect governing the

√
n behavior was the stochastic

variation of information density around its mean, which is
tightly characterized by the central limit theorem. In the
variable-length setup with feedback the main idea is that of
Wald-like stopping once the information density of some mes-
sage is large enough. Therefore, there is virtually no stochastic
variation and this explains the absence of any references tothe
central limit theorem and the fact that dispersion is zero.

We have also analyzed a modification of the coding problem
by introducing a termination symbol (VLFT codes), which
is practically motivated in many situations in which control
signals are sent over a highly reliable upper layer. Not onlythis
leads to the possibility of communicating with zero-error,but
also dramatically improves the transient behavior, see Fig. 2,
which is analytically expressed by the absence of not only
the

√
ℓ term but also of thelog ℓ term in the bound (40).

Furthermore, in Fig. 2 we see that fountain codes can achieve
90% of the capacity of the BSC at average blocklength< 20
and with zero probability of error. Practically, of course,“zero-
error” should be understood as the reliability being essentially
the probability with which the termination symbol is correctly
detected.
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channel,”Proc. IEEE Int. Symp. Information Theory (ISIT),Seoul, Korea,
July 2009;IEEE Trans. Inform. Theory, 2010.
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