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Abstract

New lower and upper bounds on the reliability function of typewriter channels are given. Our lower bounds

improve upon the (multiletter) expurgated bound of Gallager, furnishing a new and simple counterexample to a

conjecture made in 1967 by Shannon, Gallager and Berlekamp on its tightness. The only other known counterexample

is due to Katsman, Tsfasman and Vlăduţ who used algebraic-geometric codes on a q-ary symmetric channels, q ≥ 49.

Here we prove, by introducing dependence between codewords of a random ensemble, that the conjecture is false even

for a typewriter channel with q = 4 inputs. In the process, we also demonstrate that Lovász’s proof of the capacity

of the pentagon was implicitly contained (but unnoticed!) in the works of Jelinek and Gallager on the expurgated

bound done at least ten years before Lovász. In the opposite direction, new upper bounds on the reliability function

are derived for channels with an odd number of inputs by using an adaptation of Delsarte’s linear programming

bound. First we derive a bound based on the minimum distance, which combines Lovász’s construction for bounding

the graph capacity with the McEliece-Rodemich-Rumsey-Welch construction for bounding the minimum distance of

codes in the Hamming space. Then, for the particular case of cross-over probability 1/2, we derive an improved

bound by also using the method of Kalai and Linial to study the spectrum distribution of codes.

I. INTRODUCTION

Consider the typewriter channel W whose input and output alphabets are Zq , and whose transition probabilities

are

W (y|x) =

1− ε y = x

ε y = x+ 1 mod q

(1)

where, without loss of generality we assume through the paper that 0 < ε ≤ 1/2. We also assume q ≥ 4, for

reasons which will be clear in what follows.

This paper deals with the study, for these particular channels, of the classic problem of bounding the reliability

function E(R), defined by ([2], [3])

E(R) = lim sup
n→∞

1

n
log

1

Pe(d2nRe, n)
,
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where Pe(M,n) is the smallest possible probability of error of codes with M codewords of length n. In particular,

since the definition of E(R) does not depend on whether one considers maximal or average probability of error over

codewords (see [2]), we will use one quantity or the other according to convenience. In this paper all logarithms

are to the base 2 and rates are thus measured in bits per channel use.

Bounding E(R) for the considered channels needs first a discussion of their capacity and zero-error capacity. For

any q, the capacity of the channel has the simple expression C = log(q) −H(ε), where H is the binary entropy

function. Furthermore, for q ≥ 4, those channels have a positive zero-error capacity C0 [4], which is defined as

the highest rate at which communication is possible with probability of error precisely equal to zero. For even q,

it is easily proved that C0 = log(q/2), while for odd q ≥ 5 determining C0 is a much harder problem. For q = 5

Shannon [4] gave the lower bound C0 ≥ log
√

5, which Lovász proved to be tight more than twenty years later [5].

For larger odd values of q, Shannon observed that standard information theoretic arguments imply C0 ≤ log(q/2),

while Lovász [5] gave a better upper bound of the form C0 ≤ log θ(Cq), where θ(G) is the Lovász theta function

of a graph G and Cq is the cycle of length q, for which

θ(Cq) =
cos(πq)

1 + cos(πq)
q. (2)

Good lower bounds on C0 for odd values of q are also difficult to derive. Specific results have been obtained for

example in [6], [7], [8], but there does not seem to be a sufficiently general result which singles out as the best for

all odd q.

The focus of this paper is on the discussion of known bounds on E(R) and on the derivation of new lower

and upper bounds. Specifically, the paper is structured as follows. In Section II we discuss the classical upper

and lower bounds on the reliability function E(R). Evaluation of the expurgated bound is non-trivial and requires

deducing some observations which seemingly have not appeared in the literature. In particular it is observed that

the zero-error capacity of the pentagon can be determined by a careful study of the expurgated bound, something

which could have been done at least ten years before Lovász’s paper settled the question. Then, in Section III we

present an improved lower bound for the case of even q, showing that it also is a precisely shifted version of the

expurgated bound for the BSC. The technique also applies in principle to odd values of q and we show in particular

the result obtained for q = 5. This result also provides an elementeary disproof of the conjecture suggested in [2]

that the expurgated bound might be asymptotically tight when computed on arbitrarily large blocks, a conjecture

which had been already disproved in [9] by means of algebraic geometric codes.

In Section IV we discuss upper bounds. Section IV-A shows an error-exponent bound by extracting a binary

subcode. Then in Section IV-B we present a new upper bound for the case of odd q based on the minimum distance

of codes. We use Delsarte’s linear programming method [10] combining the construction used by Lovász [5] for

bounding the graph capacity with the construction used by McEliece-Rodemich-Rumsey-Welch [11] for bounding

the minimum distance of codes in Hamming spaces. Finally, in Section IV-C we give an improved upper bound

for the case of odd q and ε = 1/2 following ideas of Litsyn [12], see also Barg-McGregor [13], which in turn are

based on estimates for the spectra of codes originated in Kalai-Linial [14].
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II. CLASSICAL BOUNDS AND SHANNON-GALLAGER-BERLEKAMP CONJECTURE

A. Background on random coding bounds

In [15] Gallager showed that for an arbitrary DMC W (y|x) there exists a blocklength-n code of rate R with

average probability of error bounded by

Pe ≤ exp {−nEr (R)} ,

where

Er(R) = max
0≤ρ≤1

E0(ρ)− ρR (3)

E0(ρ) = max
P

− log
∑
y

(∑
x

P (x)W (y|x)1/(1+ρ)

)1+ρ
 . (4)

For low rates Gallager also proved an improved (expurgated) bound given by:

Pe ≤ exp

{
−nEkex

(
R− log 4

n

)}
, (5)

for any n which is a multiple of k ≥ 1, where k is an arbitrary positive integer and

Ekex(R) = sup
ρ≥1

Ekx (ρ)− ρR (6)

Ekx (ρ) = −ρ
k

log min
P
Xk

Qk(ρ, PXk) (7)

Qk(ρ, PXk) =
∑
x1,x2

PXk(x1)PXk(x2)gk(x1,x2)
1
ρ (8)

gk(x1,x2) =
∑
y

√
W (y|x1)W (y|x2), (9)

and where W is the k-fold memoryless extension of W . This results in the following lower bound on the reliability

function:

E(R) ≥ E∞ex (R) (10)

E∞ex (R)
4
= sup
k∈Z+

Ekex(R) = lim
k→∞

Ekex(R) , (11)

where the equality in (11) follows from super-additivity of kEkex(R) and Fekete’s lemma.1 For a general channel

computing E∞ex is impossible due to maximization over all k-letter distributions, and hence most commonly this

bound is used in the weakened form by replacing E∞ex with E1
ex.2

For understanding our results it is important to elaborate on Gallager’s proof of (5). Consider an arbitrary

blocklength-n code with M codewords x1, . . . ,xM and maximum-likelihood decoder m̂ : Yn → {1, 2, . . . ,M}.

Define

Pi|j
4
= P[m̂(Y n) = i|Xn = xj ]

1Super-additivity follows from taking PXn+m = P
(1)
Xn × P

(2)
Xm , where P (i) are optimal inputs for lengths n and m, respectively.

2Note that the exponent Er in (3) does not change if we propose a similar k-letter extension: the optimal distribution PXk may always be

chosen to be a product of single-letter ones.
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to be the probability of detecting codeword i when j was sent. A standard upper bound on this probability [3,

(5.3.4)] is given by

Pi|j ≤ gn(xi,xj) , (12)

where gn was defined in (9). For the typewriter channel (1) we can express the pairwise bound (12) equivalently

as

Pi|j ≤ αd(xi,xj)
ε , (13)

where

αε
4
=
√
ε(1− ε) , (14)

we agree that α∞ε = 0, and d : Zq × Zq → {0, 1,∞} is a semidistance defined as

d(x1, x2)
4
=


0 x1 = x2

1 x1 − x2 = ±1

∞ x1 − x2 6= ±1

and extended additively to sequences in Znq

d(x1,x2)
4
=
∑
k

d(x1,k, x2,k).

The average probability of error of the code can then be bounded using the union bound as

Pe ≤
1

M

∑
i

∑
j 6=i

αd(xi,xj)
ε (15)

=

n∑
z=0

Azα
z
ε , (16)

where Az is the spectrum of the code

Az =
1

M
|{(i, j) : i 6= j , d(xi,xj) = z}| .

From expression (16) one may get existence results for good codes by (for example), selecting xi randomly

according to some i.i.d. distribution (PX)n and averaging (16). Gallager [15] observed that for low rates the

dominant term in the summation may correspond to z such that E [Az] � 1. By expurgating from the code all

pairs of codewords at distances z s.t. E [Az]� 1 he obtained the exponential improvement (5).

Remark 1 (Shannon-Gallager-Berlekamp conjecture): In [2] it was conjectured that the hard-to-evaluate quantity

E∞ex (R) equals the true reliability function for rates below the critical one.3 For symmetric channels it would

be implied by the (conjectured) tightness of the Gilbert-Varshamov bound. The conjecture was disproved by

Katsman, Tsfasman and Vlăduţ [9] using algebraic-geometric codes which also beat the Gilbert-Varshamov bound

(for alphabets with 49 or more symbols). To the best of our knowledge, no other disproof is known in the literature.

The bound we provide in the next Section proves in particular that E(R) > E∞ex (R) in some rate range for all

typewriter channels for which we could compute E∞ex (R) exactly (among which q = 4, 5), and hence it offers

3Quoting from [2]: “The authors would all tend to conjecture [...] As yet there is little concrete evidence for this conjecture.”
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a second disproof of the conjecture. The main innovation of our approach is that our ensemble of codewords

{x1, . . . ,xM} has carefully designed dependence between codewords. Otherwise, we do still rely on (16).

B. Evaluating classical bounds for the typewriter channel

To calculate the random-coding exponent Er(R) one needs to notice that due to the symmetry of the typewriter

channel (1) the optimal input distribution is uniform. In this way we get in parametric form over ρ ∈ [0, 1], cf. [15,

(46)-(50)]:

Er(R) =


log

(
q

1+2
√
ε(1−ε)

)
−R , R ≤ Rcrit

D(ερ‖ε), Rcrit ≤ R = Rρ ≤ C
(17)

ερ =
ε1/(1+ρ)

ε1/(1+ρ) + (1− ε)1/(1+ρ)
(18)

Rρ = log(q)− h2(ερ) (19)

Rcrit = log(q)− h2

( √
ε

√
ε+
√

1− ε

)
(20)

C = log(q)− h2(ε) (21)

hq(x)
4
= x log(q − 1)− x log x− (1− x) log(1− x) . (22)

One should notice that Er(R) coincides with the random coding exponent for the BSC just shifted by log(q/2) on

the R axis (extending of course the straight line portion at low rates down to R = 0).

A general upper-bound on E(R) is the so-called sphere-packing bound [2], which for the typewriter channel can

be computed in a similar parametric form over ρ ∈ [0,∞):

Esp(R) =

∞, R < log q
2

D(ερ‖ε) , log q
2 ≤ R = Rρ ≤ C

, (23)

where Rρ and ερ are as given by (18) and (19). Note that again, Esp(R) corresponds to the sphere packing bound

for the BSC shifted by a log(q/2) quantity on the rate axis.

We proceed to evaluating the expurgated bound. As we mentioned above, evaluating E∞ex (R) is generally non-

trivial due to the necessity of optimizing over multi-letter distributions. We need, therefore, to use the special

structure of the channel. For the BSC with parameter ε, for example, Jelinek [16] proved that Enex(R) does not

depend on n and takes the form

EBSC
ex (R) =

log 2
1+2αε

−R, R ≥ R∗ex(ε; 2)

−δGV (R; 2) log(2αε), R ≤ R∗ex(ε; 2) .

(24)

where

R∗ex(ε; 2) = log 2− h2

(
2αε

1 + 2αε

)
, (25)

and δGV (R; q) is the Gilbert-Varshamov bound for q-ary codes defined by the condition

R = log q − hq(δGV (R; q)) . (26)
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We next present our result on finding E∞ex (R) for typewriter channels.

Theorem 1: Let θ = q/2 if q is even and θ = q/(1 + cos(π/q)−1) if q is odd. Define ρ̄ = logαε
log q−θ

2θ

, then

Enx (ρ) = ρ log

(
q

1 + 2α
1/ρ
ε

)
if ρ ≤ ρ̄ (27)

Enx (ρ) = ρ log θ , if ρ > ρ̄ and q even (28)

Enx (ρ) ≤ ρ log θ , if ρ > ρ̄ and q odd (29)

Enx (ρ) = ρ log θ , if ρ > ρ̄, q = 5 and n even (30)

Remark 2: In short, for even q the expurgated bound “single-letterizes”, while for q = 5 the asymptotics is already

achieved at n = 2. Note that for q = 5 we do not compute Enx (ρ) for odd values of n, but due to super-additivity

of nEnx and nEnex we may compute the limit along the subsequence of even n. The θ we defined is precisely the

Lovász θ-function for the q-cycle (a graph with q vertices and q edges connected to form a polygon with q sides).

How can a θ-function appear in the study of the expurgated bound, when the latter predates the former by a decade?

See Remark 4 below.

Remark 3: Converting Theorem 1 to statements about Enex(R) is done via (6) and tedious algebra. Let ε̄ be the

smallest ε for which

log
q

1 + 2αε
+

2αε
1 + 2αε

logαε ≤ log θ (31)

If ε ∈ [ε̄, 1/2], for even q and any n ≥ 1

Enex(R) = E∞ex (R) =

∞ R < log(θ)

log q
1+2αε

−R R ≥ log(θ)

. (32)

Furthermore, for q = 5 the second equality holds and the first one holds for even n. If ε < ε̄ the expression above

holds for rates outside of the interval log θ ≤ R ≤ R∗ex(ε; q), where

R∗ex(ε; q) = log
q

1 + 2αε
+

2αε
1 + 2αε

logαε , ε < ε̄ , q ≥ 4 . (33)

Inside the interval log θ ≤ R ≤ R∗ex(ε; q) we have (again with the same specifications on q and n) the parametric

representation

R = log

(
q

1 + 2α
1/ρ
ε

)
+

2α
1/ρ
ε

ρ(1 + 2α
1/ρ
ε )

log(αε) (34)

Enex(R) = E∞ex (R) =
2α

1/ρ
ε

(1 + 2α
1/ρ
ε )

log
1

αε
, (35)

where ρ runs in the interval [1, ρ0], ρ0 being such that α1/ρ0
ε = αε̄. Note that for even q, since θ = q/2, ε̄ does not

depend on q (in particular, ε̄ ≈ 0.022); the functions Enex(R) all have the same shape and simply shift on the R

axis by 1 (bit) as q moves from one even value to the next. For all odd q, the above expressions provide an upper

bound on Enex(R) for all n (which, again, is tight for q = 5 and even n).
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Proof of Theorem 1: The idea is to use Jelinek’s criterion [16] for single-letter optimality. Consider first the

minimization of the quadratic form Qn(ρ, PXn) and note that the qn× qn matrix with elements gn(x1,x2)1/ρ, call

it g�1/ρ
n , is the n-fold Kronecker power of the q × q matrix

g
�1/ρ
1 =


1 α

1/ρ
ε 0 · · · 0 α

1/ρ
ε

α
1/ρ
ε 1 α

1/ρ
ε · · · 0 0

...
...

...
. . .

...
...

α
1/ρ
ε 0 · · · · · · α

1/ρ
ε 1

 . (36)

Note that if g�1/ρ
1 is a positive semidefinite matrix, so is g�1/ρ

n . In that case, the quadratic form defining Qn(ρ, PXn)

for any n is a convex function of PXn . Jelinek [16] showed that it is minimized by a product distribution PXn =

P × P · · · × P , where P is optimal for n = 1, and the achieved minimum is just the n-th power of the minimum

achieved for n = 1. Thus, if the matrix with elements g1(x1, x2)1/ρ is positive semidefinite, then Enx (ρ) = E1
x (ρ).

Furthermore, in this case the convexity of the quadratic form and the fact that g�1/ρ
1 is circulant imply that the

uniform distribution is optimal. Hence, by direct computation,

Enx (ρ) = ρ log

(
q

1 + 2α
1/ρ
ε

)
(37)

whenever g�1/ρ
1 is positive semidefinite. The eigenvalues of g�1/ρ

1 are λk = 1+2α
1/ρ
ε cos(2πk/q), k = 0, . . . , q−1,

and the matrix is positive semidefinite whenever ρ ≤ ρ̄, which proves (27).

We now proceed to studying the case ρ > ρ̄. First, note that Enx (ρ̄) = ρ̄ log θ. When ρ exceeds ρ̄ the matrix g�1/ρ
1

has negative eigenvalues and the previous method of evaluation of Enx (ρ) does not apply. Instead, we observe that

the minimum of Qn(ρ, PXn) is non-decreasing in ρ, and hence for ρ > ρ̄

Enx (ρ) ≤ − ρ
n

log min
PXn

Qn(ρ̄, PXn) (38)

=
ρ

ρ̄
Enx (ρ̄) (39)

= ρ log θ , (40)

where the last step is obtained using the definition of ρ̄ and equation (37). This establishes (29) and part of (28).

To show the equality in (28), we assume q is even and combine (40) with evaluation of the function Q1(ρ, P ) when

P is the uniform distribution over the set {0, 2, . . . , q− 2}. This results in Enx (ρ) ≥ E1
x (ρ) = ρ log(q/2) = ρ log θ.

Finally, for the q = 5 we pair (29) with evaluation of Q2(ρ, PX2) by setting PX2 to be the uniform distribution

on Shannon’s zero-error code {(0, 0), (1, 2), (2, 4), (3, 1), (4, 3)}. This is easily seen to achieve equality in (40).

Remark 4 (How Gallager missed discovering Lovász’s θ-function): Let us denote R(n)
x,∞ = sup{R : Enex(R) =∞},

R∗x,∞ = limnR
(n)
x,∞ = sup{R : E∞ex (R) =∞}. Also let C0,n be the largest rate of a zero-error code of blocklength

n and C0 be the zero-error capacity of the channel (which is also the Shannon capacity of a confusability graph).

By taking PXn to be uniform on the zero-error code, Gallager [15] observed already in 1965 that R(n)
x,∞ ≥ C0,n

and thus C0 ≤ R∗x,∞. Since Theorem 1 finds E∞ex and hence R∗x,∞, it also shows that the Shannon capacity of

the pentagon is
√

5. In particular, we point out that this result is obtained by only using tools which were already

available in the ’60s, at least ten years before Lovász’s paper [5] appeared (!). Similarly, Theorem 1 implies the
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upper bound C0 ≤ log(θ) for q-cycles, where θ is precisely the Lovász theta function. The reader might compare

the statement of Theorem 1 with the results in [17, Sec. V.C]; for example, it implies the bound in [17, page 8038,

last equation] and it shows that [17, eq. (27)] holds for a typewriter channel with even number of inputs even

though the matrix g�1/ρ
1 is not positive semidefinite for all ρ ≥ 1.

To complete the discussion, we mention that Gallager’s bound implies also C0,n ≥ R
(n)
x,∞ − log 4

n and thus

R∗x,∞ = C0. In fact, we also have R(n)
x,∞ = C0,n, as shown by Korn [18]. In combinatorics, this fact was discovered

slightly earlier by Motzkin and Strauss [19].

Remark 5: Slightly generalizing the reasoning of Gallager and Jelinek, leads the following bound on the Shannon

capacity of an arbitrary graph G:

C0(G) ≤ inf
M

sup
P

 ∑
i,j∈V (G)

PiMi,jPj

−1

,

where supremum is over all probability distributions on V (G) and infimum is over all positive-semidefinite matrices

M with unit diagonal and Mi,j = 0 whenever i 6= j and (i, j) 6∈ E(G). This bound, in turn, is known to be equivalent

to Lovász’s bound, see [20, Theorem 3].

III. NEW LOWER (ACHIEVABILITY) BOUND ON E(R)

In this section we provide new lower bounds on E(R) for some typewriter channels. Our new bounds are based

on the idea of building codes which are the union of cosets of good zero-error codes. In particular, we improve

Gallager’s expurgated bound in all those cases in which we can evaluate E∞ex (R) exactly, namely when q is even

or q = 5.

Theorem 2: Let q be even. Then, for R > log(q/2) we have the bound

E(R) ≥ EBSC
ex (R− log(q/2)) , (41)

where EBSC
ex (R) is the expurgated bound of the binary symmetric channel given in (24).

Proof: We upper bound the error probability for a code by using a standard union bound on the probability

of confusion among single pairs of codewords (16). The code is built using a Gilbert-Varshamov-like procedure,

though we exploit carefully the properties of the channel to add some structure to the random code (i.e. we introduce

dependence among codewords) and obtain better results than just picking random independent codewords.

A code C is composed of cosets of the zero-error code C0 = {0, 2, . . . , q − 2}n. In particular, let

C = C0 + C2 (42)

where C2 ⊆ {0, 1}n is a binary code and where the sum is the ordinary sum of vectors in Znq . It is easy to see that

if C2 is linear over Z2 then C is linear over Zq . This is because C0 is linear and the q-ary sum of two codewords in

C2 can be decomposed as the sum of a codeword in C0 and a codeword in C2. In this case then, for the spectrum

components in (16) we have the simpler expression

Az = |{i > 1 : w(xi) = z}| .
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where w(xi) = d(xi,0) is the weight of codeword xi and we assume x1 = 0. We can now relate the spectrum of

C under the metric d with the spectrum of C2 under the usual Hamming metric. We observe that any codeword of

C2 of Hamming weight z leads to 2z codewords of C of weight z and (q/2)
n − 2z codewords of infinite weight.

So, we can write

Az = 2zBz , (43)

where Bz is the number of codewords in C2 of Hamming weight z. Let now r be the rate of C2. It is known from

the Gilbert-Varshamov procedure (see for example [21] and [22, Sec. II.C]) that, as n → ∞, binary linear codes

of rate r exist whose spectra satisfy

Bδn =

0 if δ < δGV (r; 2)

en(r−log(2)+h2(δ)+o(1)) if δ ≥ δGV (r; 2)

. (44)

Such binary codes of rate r used in the role of C2 in (42) lead to codes C with rate R = log(q/2) + r whose error

exponent can be bounded to the first order by the leading term in the summation (16). Using (43) and (44) we find

1

n
logPe ≤ max

δ≥δGV (r;2)
[r − log(2) + h2(δ) + δ log(2αε)] + o(1) . (45)

The argument of the maximum is increasing for δ ≤ 2αε/(1 + 2αε) where it achieves the maximum value

r − log(2) + h2

(
2αε

1 + 2αε

)
+

2αε
1 + 2αε

log(2αε) (46)

which, using R = log(q/2) + r, simplifies to

R− log
q

1 + 2αε
. (47)

This is thus the maximum in (45) if 2αε/(1 + 2αε) ≥ δGV (r; 2) or, equivalently, if

R ≥ log q − h2

(
2αε

1 + 2αε

)
(48)

= log
q

2
+R∗ex(ε; 2). (49)

Otherwise, the maximum in (45) is achieved at δ = δGV (r; 2) and has value δGV (r) log 2αε.

So, we have the bound

E(R) ≥

log 2
1+2αε

− (R− log( q2 )), R ≥ log q
2 +R∗ex(ε; 2)

−δGV (R− log q
2 ; 2) log(2αε), log q

2 < R ≤ log q
2 +R∗ex(ε; 2) .

(50)

The expression on the right hand side is simply EBSC
ex (R− log(q/2)) as defined in equation (24).

A graphical comparison of our bound and the standard expurgated bound is visible in Figure 3 for q = 4 and

ε = 0.01. Note that the straight line portion of the bound coincides with a portion of the straight line in the standard

expurgated bound as in (32). However, the rate value R∗ex(ε; q) at which the standard expurgated bound Enex(R)

departs from the straight line is strictly smaller than the value R∗+(ε; q) = log q
2 +R∗ex(ε; 2) (q even) at which our

bound does for all 0 < ε < 1/2. A comparison of these two quantities for different ε is given in Figure 1. Finally,

Figure 2 shows a comparison of the lower bounds on E(R) at rates near log(q/2), for even q ≥ 4 and varying ε,

which shows that our bound is always strictly better than the standard expurgated bound.
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ε

0 ε̄ ≈ 0.022 1/4

log(q/2)

log(q)

R∗

+(ǫ; q) = log(q/2) +R∗

ex(ǫ; 2)
R∗

ex(ǫ; q)
log(q/2)

Fig. 1. A comparison of the rate values at which the expurgated bound and the new bound derived in Theorem 2 depart from the straight line

of slope -1, for even values of q ≥ 4. Note that for different such q’s the functions have the same shape and only shift vertically. In particular,

from equation (31) we find that ε̄ ≈ 0.022 for all even q ≥ 4.

Remark 6: It is a remarkable fact that our bound corresponds exactly to the expurgated bound of a binary

symmetric channel with cross-over probability ε shifted by log(q/2) on the R axis. On one hand, it is not very

surprising that a bound for binary codes shows up, given the construction we used in (42). On the other hand, it is

curious to observe that we obtain specifically the expression of the BSC because the coefficient 2z which relates Az

to Bz in (43) leads to the coefficient 2 inside the logarithm in (45), thus replacing the quantity
√
ε(1− ε) which

has to be used for the typewriter channel with the quantity 2
√
ε(1− ε) which appears in the expurgated bound of

the BSC.

Remark 7: We think it is reasonable to consider the bound given in Theorem 2 as the correct modification of the

expurgated bound for these particular channels. It is interesting to observe that the derived bound does not really

use constructions which are totally out of reach with the standard expurgated bound; the zero-error code used in

(42) is in fact also “found” by the standard expurgated bound as shown in Section II. However, this zero-error
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2
Lower bounds on E(R) for R → log(q/2), q even

Expurgated bound En
ex(log(q/2))

Our lower bound of Theorem 2, EBSC
ex (0)

Fig. 2. A comparison of lower bounds on the value E(R) for even q as R approaches the zero-error capacity log(q/2), as a function of the

channel parameter ε. Our lower bound of Theorem 2 is strictly better than the expurgated lower bound for all ε > 0. As ε→ 0 the two bounds

clearly diverge and their ratio tends to (1 + 2αε̄)/(4αε̄) ≈ 2.2017.

code shows up in the standard expurgated bound only at very low rates, specifically at R < log(q/2), while our

procedure shows that it is useful even at higher rates. It is rather natural to ask then how the expurgated bound

should be modified in general to exploit, at a given rate R, zero-error codes which would usually appear in that

bound only at lower rates.

Remark 8: In the same way as the bound in Theorem 2 is a log(q/2)-shifted version of the expurgated bound

for the BSC, it was already observed after equations (17) and (23) that the random coding bound and the sphere

packing bound are also log(q/2)-shifted versions of the ones for the BSC. In particular, we find that at rate log(q/2)

our lower bound has value precisely half the value of the sphere packing bound, as happens at R = 0 for the BSC.

However, while closing the gap at R = 0 for the BSC is essentially trivial, for the typewriter channel it seems to

be a harder problem. See Section II and Remark 9 in Section IV-C.

For odd values of q, deriving a corresponding lower bound on E(R) is difficult in general, since general good
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Rate [bits]

C0=1 R∗

ex(ǫ; q) R∗

+(ǫ; q) Rcrit=1.5591 C=1.9192

E
rr
or

ex
p
o
n
en
t
(b
a
se

2)

0

0.5

1

1.5

2

Typewriter channel, 4 inputs, ǫ=0.01

Upper bound: Sphere packing bound Esp(R)

Exact reliability

Upper bound: Theorem 4

Upper bound: straight-line improvement

Lower bound: Expurgated bound Eex(R)

Lower bound: Theorem 2

Fig. 3. Bounds on E(R) for a typewriter channel with 4 inputs, ε = 0.01.

zero-error codes are not known or, in any case, have a rather complicated structure. One particular exception is the

case q = 5, for which an asymptotically optimal zero-error code is known.

Theorem 3: For q = 5, in the range

log
√

5 ≤ R ≤ logR∗+(ε; 5) (51)

where

R∗+(ε; 5) = 5− 1

2
h5

(
1− 1

(1 + 2αε)2

)
(52)

we have the lower bound

E(R) ≥ −1

2
δGV (2R− log 5; 5) log(αε(1 + αε)) .

A comparison of this bound with the expurgated bound is shown in Figure 6. Note that at the upper extreme of

the interval considered in Theorem th:GV-lower-5, R = R∗+(ε; 5), the given bound touches the expurgated bound

of Theorem 1. A comparison of this quantity with R∗ex(ε; 5) is shown in Figure 4. Figure 5 shows a comparison of

the new bound with the expurgated bound as R approaches the zero-error capacity log
√

5.
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ε

0 ε̄ ≈ 0.044 1/4

log(
√

5)

log(5)
R∗

+(ǫ; 5)

R∗

ex(ǫ; q)

log(
√

5)

Fig. 4. A comparison of the rate values at which the expurgated bound and the new bound derived in Theorem 3 depart from the straight line

of slope -1 for q = 5.

Proof of Theorem 3: We start from equation (16), but restated for codes of even length n′ = 2n. In particular,

consider linear codes with a (n+ k)× 2n generator matrix of the form

G+ =

 In 2In

0 G


where In is the n × n identity matrix and G is a k × n matrix of rank k over Z5. Note that this corresponds to

taking 5k cosets of the n-fold cartesian power of Shannon’s zero-error code of length 2 [4]. Since we focus again

on linear codes, the Az’s in (16) still take the simple form Az = |{i > 1 : w(xi) = z}|.

We now proceed to the study of Az . We can decompose any information sequence u ∈ Zn+k
5 in two parts,

u = (u1,u2), with u1 ∈ Zn5 and u2 ∈ Zk5 . The associated codeword v = uG+ can be correspondingly decomposed

in two parts v = (v1,v2) with v1 = u1 and v2 = 2u1 + u2G. Call ν = u2G. We now relate the weight w(v) to
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Lower bounds on E(R) for R → log(

√
5), q = 5

Expurgated bound E∞
ex (log

√
5))

Our lower bound of Theorem 3

Fig. 5. A comparison of lower bounds on the value E(R) for q = 5 as R approaches the zero-error capacity log(
√

5), as a function of the

channel parameter ε. Our lower bound of Theorem 3 is strictly better than the expurgated lower bound for all ε > 0. As ε→ 0 the two bounds

clearly diverge and their ratio tends to (1 + 2αε̄)/(5αε̄) ≈ 1.3752.

the Hamming weight wH(ν) and to the form of u1. Note in particular that we can write

w(v) =

n∑
i=1

w((v1,i, v2,i))

and that

(v1,i, v2,i) = u1,i(1, 2) + (0, νi) .

Note first that w(v) = ∞ if u1,i = ±2 for some i. So, for the study of Az we need only consider the cases

u1,i ∈ {0,±1}. Consider first the case when νi = 0. If u1,i = 0 then w(v1,i) = w(v2,i) = 0 while if u1,i = ±1

then w(v2,i) is infinite. So, if νi = 0 one choice of u1,i gives no contribution to w(v) while all other choices

lead to w(v) =∞, and hence give no contribution to Az for any finite z. Consider then the case of a component

νi 6= 0. It is not too difficult to check that one choice of u1,i in {0,±1} gives w(v1,i) = w(v2,i) = 1, one gives
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Rate [bits]

C0 = log(5)/2 log(5/2) R∗

ex(ǫ; 5) R∗

+(ǫ; 5) Rcrit=1.8811 C=2.2411
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Typewriter channel, 5 inputs, ǫ=0.01

Upper bound: Sphere packing bound Esp(R)

Exact reliability

Upper bound: Theorem 4

Upper bound: straight-line improvement

Upper bound: Theorem 5

Lower bound: Expurgated bound Eex(R)

Lower bound: Theorem 3

Fig. 6. Bounds on E(R) for a typewriter channel with 5 inputs, ε = 0.01.

w(v1,i) = 1 and w(v2,i) = 0 or vice-versa, and the remaining one gives w(v2,i) =∞. So, if νi 6= 0 one choice of

u1,i contributes 1 to w(v), one choice of u1,i contributes 2, while all other choices lead to w(v) =∞, and hence

give no contribution to Az for any finite z.

So, for a fixed ν of Hamming weight d, and for a fixed t ∈ {1, 2, . . . , d}, there are
(
d
t

)
vectors u1 which give

codewords v of weight 2t+ (d− t) = d+ t. If Bd is the number of sequences u2 which lead to a ν of Hamming

weight d, then we have

Pe ≤
n∑
d=1

d∑
t=1

Bd

(
d

t

)
α(d+t)
ε . (53)

But Bd is now simply the Hamming spectrum component of the linear code with generator matrix G, and it is

known (see [9, Prop. 1]) that as we let n and k grow to infinity with ratio (k/n) log 5 → r, matrices G exist for

which

Bδn =

0 if δ < δGV (r; 5)

en(r−log 5+h2(δ)+δ log(4)+o(1)) if δ ≥ δGV (r; 5)

.

October 31, 2017 DRAFT



16

Defining δ = d/n, τ = t/d and r = (k/n) log(5), the probability of error is bounded to the first order in the

exponent by the largest term in the sum (53) as

1

2n
logPe ≤

1

2
· max
δ≥δGV (r;5),τ∈[0,1]

[r − log(5) + h2(δ) + 2δ log 2 + δh2(τ) + (δ + δ · τ) logαε] + o(1) .

The maximum over τ is obtained by maximizing h2(τ) + τ logαε, which is solved by τ = αε/(1 + αε) with

maximum value log(1 + αε), independently of δ. So, we are left with the maximization

max
δ≥δGV (r;5)

[r − log(5) + h2(δ) + δ log β] , β = 4αε(1 + αε) .

The argument is increasing for δ ≤ β/(1 + β), where it achieves the maximum value r− log(5) + log(1 + β), and

decreasing for larger values of δ. So, the maximizing δ is δ = β/(1 + β) if β/(1 + β) ≥ δGV (r; 5) and δGV (r; 5)

otherwise. Combining these facts, noticing that 1 + β = (1 + 2αε)
2, we find

1

2n
logPe ≤

1

2

(r − log(5) + 2 log(1 + 2αε)) + o(1), δGV (r; 5) ≤ β/(1 + β)

δGV (r; 5) log(αε(1 + αε)) + o(1), δGV (r; 5) > β/(1 + β) .

Considering that the block length is 2n and the rate of the global code is R = (log(5) + r)/2 with r ≥ 0, after

some simple algebraic manipulations we obtain

E(R) ≥

log 5
1+2αε

−R, R ≥ log 5− 1
2h5

(
1− 1

(1+2αε)2

)
− 1

2δGV (2R− log 5; 5) log(αε(1 + αε)), log
√

5 ≤ R < log 5− 1
2h5

(
1− 1

(1+2αε)2

)
.

The first part of the bound coincides with the standard straight line portion of the expurgated bound, while the

second part is the claimed new bound.

IV. NEW UPPER (CONVERSE) BOUNDS ON E(R)

We present three different new upper bounds below, each of which is the tightest known bound for certain values

of q,R, ε.

A. Bound via a reduction to binary codes

We have already evaluated the sphere-packing bound above (23). For channels with C0 = 0, the sphere packing

bound is known to be weak at low rates. In particular, it was proved by Berlekamp [23] [24] that the expurgated

bound is tight at R = 0+ for all channels with C0 = 0. For general channels with positive C0 no similar result is

known. In the case of typewriter channels, standard methods can be adapted to give the following result.

Theorem 4: For R > log(q/2) and any q ≥ 4 we have

E(R) ≤ δLP2(R− log(q/2)) log
1

αε
, (54)

where δLP2(·) is the second MRRW linear-programming bound [11] for the binary Hamming space given by

δLP2(R) = min 2
α(1− α)− β(1− β)

1 + 2
√
β(1− β)

,

where the minimum is over all 0 ≤ β ≤ α ≤ 1
2 satisfying log 2− h2(α) + h2(β) ≥ R.
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Proof: The key point is to observe that any code C of rate R > log(q/2) admits a subcode of rate at least

R − log(q/2) whose codewords are all pairwise confusable. This is can be proved in the following way4. For a

sequence v ∈ Znq let Cv be the set of codewords whose i-th component is in the set {vi, vi + 1} mod n, for all

i ∈ {1, 2 . . . , n}. Observe that all the codewords in Cv are pairwise confusable. Let then V = (V1, V2, . . . , Vn) be

an i.i.d. sequence of uniform random variables in Zq . The expected size of CV is |C|(2/q)n and if |C| = enR with

R > log(q/2) then for at least one v we have |Cv| ≥ en(R−log(q/2)). Fix this particular v and consider only the

sub-code Cv , whose probability of error cannot be larger than that of C. Since in any coordinate all codewords Cv
use only the same two (confusable) symbols, using Cv on the typewriter channel is equivalent to using a binary code

on a binary asymmetric erasure channel. Then from Cv we may select a full-rate “constant-composition” subcode

C′v , in the sense that its binary equivalent representation is a constant composition binary code. It is well known,

e.g. [25, Ex. 10.20c], that for such a subcode C′v the probability of error is lower-bounded by

Pe(C′v) ≥ α
dmin(C′v)+o(n)
ε ,

where dmin(C′v) is the minimal Hamming distance of C′v . (Note that here we also used the explicit expression for

the Bhattacharya distance as in (13).) From [11] it follows that

dmin(C′v) ≤ nδLP2(R− log(q/2)) + o(n) .

We observe that Theorem 4 implies

E(log(q/2) + δ) ≤ 1

2
log

1

αε
, ∀δ > 0 (55)

which improves the sphere packing bound Esp(log(q/2)) = − log(1/2αε) for ε < 1/2 −
√

3/4 ≈ 0.067. In this

case one can combine Theorem 4 with the straight line bound, which asserts that any line connecting a point at R1

on the curve of a low-rate upper bound on E(R) to a point on the curve of the sphere packing bound at a higher

rate R2 is also an upper bound on E(R) in the intermediate range of rate values R1 ≤ R ≤ R2.

It is worth discussing (55) in more detail for even values of q. In this case, in fact, the lower bound we derived

in Section III is a log(q/2)-shifted version of the expurgated bound for the BSC, and the same is true for the

sphere packing bound. Given the structure of the proof, one might then expect that our upper bound of Theorem

4 should match the lower bound of Theorem 2 as happens at R = 0 for the BSC. The comment in the previous

paragraph implies that this is not the case; it is actually easy to check that the bounds are off by log
√

2 at the

rates near log(q/2), and the reader might wonder what is happening. Implicit in the proofs of Theorems 2 and 4

(see also [26, Prop. 1] or [27, Prop. 5]) is the fact that, for even q, the largest possible minimum distance (with our

semimetric) of codes at rates near log(q/2) is known and it is precisely 1/2. So one might expect that the exact

value of E(log(q/2)+) should also be known. The main reason why this is not so is the possible presence of many

codeword pairs at minimum distance. Our procedure in Theorem 4 gives a upper bound on E(R) by lower bounding

the probability of error in a binary hypothesis test between two codewords at minimum distance. However, our

4In graph theoretic terms, this is proved by observing that the fractional clique covering number of the cycle of length q is q/2.
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lower bound on E(R) in Theorem 2 uses codes such that any codeword has 2d neighboring codewords at minimum

distance d. When plugged in the union bound, this leads to the mentioned gap between lower and upper bounds

on E(R). Note in particular that this effect is related to the coefficient 2z which relates Az to Bz in (43) already

mentioned at the end of the proof of Theorem 2. Since we have no insight on possible improvements of Theorem

2 while we do know of cases where Theorem 4 is even weaker than the sphere packing bound, we deduce that

Theorem 4 is weak because it fails to catch the possible presence of a high number of neighbors. We will see later

(see Remark 9 in Section IV-C) that a different procedure does allow one to prove the presence of an exponential

number of neighbors, though it turns out to be difficult to convert this into a good bound on the probability of error

for the asymmetric case of ε 6= 1/2, which is unfortunately the only interesting one for even values of q.

We finally comment on the optimal use of the straight line bound for odd q using known results in the literature.

The sphere packing bound and Theorem 4 are only useful at rates larger than log(q/2). However, for odd q, Lovász’s

bound on the zero-error capacity implies that E(R) is finite for all rates R > log θ(Cq), where θ(Cq) is the Lovász

theta function of equation (2). It is then possible to use the straight line bound in a rather simple way. Any code of

rate R > log θ(Cq) has a positive maximal probability of error, and this cannot be smaller than εn, since ε is the

smallest non-zero transition probability. Hence, the reliability function satisfies E(R) ≤ − log ε for R > log θ(Cq)

and application of the straight line bound gives the following result.

Theorem 5: For odd q, the segment connecting the point (log θ(Cq), log 1/ε) tangentially to the sphere packing

curve in the (R,E) plane is an upper bound on E(R).

B. Bound via minimum distance

In this Section we present a new upper bound on E(R) for typewriter channels based on the minimum distance

of codes. Our focus here is on the case where q is odd. Furthermore, although we state the bound for general ε,

it is developed with a main focus on the symmetric case ε = 1/2. In the next section we will derive an improved

version of the bound which only holds for ε = 1/2. We believe the case ε < 1/2 would be worth attention for the

extension of that bound rather than the optimization of the current one.

The main contribution of the bound presented here relies on combining bounds on the zero-error capacity with

bounds on minimum distance of codes, which allows us to derive a new upper bound on E(R) for rates larger

than Lovász’s upper bound on C0. More specifically, our bound derives from an instance of the Delsarte linear

programming bound [10] which combines the construction used by Lovász for bounding the graph capacity [5]

with the construction used in [11] to bound the minimum distance of codes in Hamming spaces (see [28] and [20]

for discussions on the connection between Delsarte’s and Lovász’s bounds).

Theorem 6: For odd q and any δ ∈ (0, 1) we have E(R) ≤ δ log 1
ε whenever

R ≥ log θ(Cq) +RLP1

(
q

θ(Cq)
, δ

)
, (56)

where

RLP1(q′, δ) = hq′

(
(q′ − 1)− (q′ − 2)δ − 2

√
(q′ − 1)δ(1− δ)

q′

)
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is the linear programming bound for codes in a q′-ary Hamming space [11], [29] (with q′ not necessarily integral)

and θ(Cq) = q/(1 + cos(π/q)−1) is the Lovász θ-function for the q-cycle Cq .

Proof: We lower bound the maximal probability of error over all codewords Pe,max, which in turn we bound

in terms of an upper bound on the minimum distance of codes for the distance measure introduced in the previous

section. Note in particular that we have

Pe,max ≥ max
i 6=j

1

2
· εd(xi,xj) .

Indeed, if there is no pair of confusable codewords, then the inequality is trivial. If instead codewords i and j are

confusable, then they share a common output sequence which can be reached with probability at least εd(xi,xj) by

both input i and j; upon receiving it, any (possibly randomized) decoder will decode in error with probability at

least 1/2 either when codeword i or codeword j is sent. So, we can bound the reliability as

E(R) ≤ min
i 6=j

1

n
d(xi,xj)(1 + o(1)) log(1/ε) . (57)

The rest of this section is devoted to bounding the minimum distance. In particular we prove that codes for which

min
i 6=j

1

n
d(xi,xj) ≥ δ

have rate R upper bounded as

R ≤ log θ(Cq) +RLP1

(
q

θ(Cq)
, δ

)
(1 + o(1)) . (58)

Note that Theorem 6 follows from equations (57)-(58).

Our bound is based on θ functions and Delsarte’s linear programming bound [10], but it is easier to describe it

in terms of Fourier transforms. For any f : Znq → C we define its Fourier transform as

f̂(ω) =
∑
x∈Znq

f(x)e
2πi
q <ω,x>, ω ∈ Znq

where the non-degenerate Zq-valued bilinear form is defined as usual

< x,y >
4
=

n∑
k=1

xkyk .

We also define the inner product as follows

(f, g)
4
= q−n

∑
x∈Znq

f̄(x)g(x) .

The starting point is a known rephrasing of linear programming bound. Let C be a code with minimum distance

at least d. Let f be such that f(x) ≤ 0 if d(x,0) = w(x) ≥ d, f̂ ≥ 0 and f̂(0) > 0. Then, consider the Plancherel

identity

qn(f ∗ 1C , 1C) = (f̂ · 1̂C , 1̂C) , (59)

where 1A is the indicator function of a set A. Upper bounding the left hand side by |C|f(0) and lower bounding

the right hand side by the zero-frequency term q−nf̂(0)|C|2, one gets

|C| ≤ min qn
f(0)

f̂(0)
. (60)
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The proof of our theorem is based on a choice of f which combines Lovász’ assignment used to obtain his bound on

the zero-error capacity with the one used in [11] to obtain bounds on the minimum distance of codes in Hamming

spaces.

Observe first that Lovász assignment can be written in one dimension (n = 1) as

g1(x) = 10(x) + ϕ1±1(x), x ∈ Zq ,

where ϕ = (2 cos(π/q))−1. Note that this function g1 actually corresponds to the first row of the matrix g
�1/ρ
1

defined in (36) computed for ρ = ρ̄, the largest value of ρ for which the matrix is positive semi-definite. In the

Fourier domain we thus have

ĝ1(ω) = 1 + 2ϕ cos(2πω/q), ω ∈ Zq ,

which satisfies ĝ1 ≥ 0 and, additionally, ĝ1(ω) = 0 for ω = ±c, with c = (q − 1)/2. Correspondingly, define the

n-dimensional assignment

g(x) =

n∏
j=1

g1(xj), ĝ(ω) =

n∏
j=1

ĝ1(ωj), x,ω ∈ Znq .

So, ĝ ≥ 0, with ĝ(ω) = 0 if ω contains any ±c entry. Since g(x) = 0 for x /∈ {0,±1}n, g satisfies all the

properties required for f in the case d =∞, and when used in place of f in (60) it gives Lovász’ bound

|C| ≤ qn g(0)

ĝ(0)

= (θ(Cq))
n

= qn
(

cos(π/q)

1 + cos(π/q)

)n
for codes of infinite minimum distance. Note that we also indirectly obtained this conclusion when bounding the

expurgated bound for odd values of q in Theorem 1, see Remark 4.

For the case of finite d ≤ n, we build a function f of the form f(x) = g(x)h(x), for an appropriate h(x). In

particular, since g(x) is non-negative and already takes care of setting f(x) to zero if x /∈ {0,±1}n, it suffices

to choose h such that h(x) ≤ 0 whenever x ∈ {0,±1}n contains at least d entries with value ±1. We restrict

attention to h such that ĥ ≥ 0, so that f̂ = q−nĝ ∗ ĥ ≥ 0. In particular, we consider functions h whose Fourier

transform is constant on each of the following “spheres” in Znq

Sc` = {ω : |{i : ωi = ±c}| = `, |{i : ωi = 0}| = n− `} , ` = 0, . . . , n ,

and zero outside. This choice is motivated by the fact, observed before, that ĝ1(±c) = 0. Restricting ĥ to be null

out of these spheres simplifies the problem considerably. We thus define

ĥ(ω) =

n∑
`=0

ĥ`1Sc` (ω) , h(x) = q−n
n∑
`=0

ĥ`1̂Sc` (x) , (61)

where ĥ` ≥ 0 and ĥ0 > 0 will be optimized later. Since ĝ(ω) = 0, ω ∈ S` , ` > 0, setting f(x) = g(x)h(x) gives

f̂(0) = q−n(ĝ ∗ ĥ)(0) = q−nĝ(0)ĥ0. So, the bound (60) becomes

|C| ≤
(
qn
g(0)

ĝ(0)

)(
qn
h(0)

ĥ0

)
.
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The first term above is precisely Lovász bound and corresponds to the term log θ(Cq) in the right hand side of

(58). We now show that the second term corresponds to the linear programming bound of an imaginary “Hamming

scheme” with a special non-integer alphabet size q′ = 1 + cos(π/q)−1, which is the second term in equation (58).

To do this, define analogously to Sc` the spheres

S1
u = {x : |{i : xi = ±1}| = u, |{i : xi = 0}| = n− u} .

Our constraint is that h(x) ≤ 0 if x ∈ S1
u, u ≥ d. Direct computation shows that for x ∈ S1

u,

1̂Sc` (x) =
∑̀
j=0

(
u

j

)(
n− u
`− j

)
(−1)j2`(cos(π/q))j , (x ∈ S1

u)

= (2 cos(π/q))`K`(u; q′), (q′ = 1 + cos(π/q)−1 ),

where K`(u; q′) is a Krawtchouck polynomial of degree ` and parameter q′ in the variable u. We can thus define

Λ(u) = h(x) ,x ∈ S1
u , λ` = q−n(2 cos(π/q))` · ĥ` , (62)

and write

qn
h(0)

ĥ0

=
Λ(0)

λ0
, (63)

where the conditions on h can be restated as

Λ(u) =

n∑
`=0

λ`K`(u; q′) , u = 0, . . . , n ,

λ` ≥ 0 , ` ≥ 0 ,

Λ(u) ≤ 0 , u ≥ d .

So, the minimization of (63) is reduced to the standard linear programming problem for the Hamming space, though

with a non-integer parameter q′. Since the construction of the polynomial used in [11] and [29] can be applied

verbatim for non-integer values of q′ (see also [30] for the position of the roots of K`(u; q′)), the claimed bound

follows.

C. Bound via code spectrum

In this section, for the case ε = 1/2, we improve the bound derived above, following ideas of Kalai-Linial [14]

and Litsyn [31]. The main idea is to show that either the minimum distance is smaller than what was proved in the

last section, or there are exponentially many codewords at the minimum distance, which allows us to derive tighter

lower bounds on the probability of error.

Theorem 7: Let ε = 1/2 and q be odd. We have the bound

E(R) ≤ max
δ,τ

[min (δ log 2, τ log 2−min(R− (log q − h3(τ)) , δ/2 log 2))] (64)

where the maximum is over δ ∈ [h−1
3 (log q − R), s], and τ ∈ [δ, s], and where s is such that R = log θ(Cq) +

RLP (q′, s), having set q′ = q/θ(Cq) = 1 + cos(π/q)−1.
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Rate [bits]

C0 = log(5)/2 C = Rcrit = log(5/2)
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en
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(b
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se

2)

0

0.1

0.2

0.3

0.4

0.5

Typewriter channel, 5 inputs, epsilon=0.5

Upper bound: sphere packing bound

Upper bound: Theorem 6

Upper bound: Theorem 7

Upper bound: straight-line improvement

Lower bound: expurgated bound Eex(R)

Lower bound: Theorem 3

Fig. 7. Bounds on E(R) for a typewriter channel with 5 inputs, ε = 1/2.

Proof: We first derive a lower bound on the spectrum of the code and then we use it to lower bound the

probability of error. We start again from the equality (59) but we now follow the procedure in [14]. As in the

previous section, let C be a given code of length n with rate R and minimum distance d = (δ+o(1))n. Let again f

be a function which is constant on spheres, that is f(x) = F (w(x)) such that f̂ ≥ 0 and f̂(0) > 0. Now, however,

we assume f(x) ≤ 0 if w(x) ≥ (s+o(1))n, for some s ≥ δ that we will optimize later. For notational convenience,

we treat δn and sn as integers neglecting the operations of rounding to integers, which has no practical impact on

the asymptotic analysis.

Set, for i > δn,

Ai =
1

|C|
|{(k, j) : d(xk,xj) = i}| (65)

Upper bounding the left hand side of (59) by the sum over positive terms only and lower bounding the right hand

size by the zero-frequency term q−nf̂(0)|C|2 we obtain

|C| ≤ qnf̂(0)
−1

(
F (0) +

sn∑
i=δn

AiF (i)

)
(66)

We choose f again of the form f = gh where g is the same as in the previous section and h has the properties
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expressed in equations (61), (62) and (63) but now (note the use of s in place of δ)

Λ(u) =

n∑
`=0

λ`K`(u; q′) , u = 0, . . . , n , (67)

λ` ≥ 0 , ` ≥ 0 , (68)

Λ(u) ≤ 0 , u ≥ (s+ o(1))n. (69)

Note that now the sequence λ` depends on s. We will suppress this dependency in the notation for simplicity, but

it will be important to keep it in mind.

Since g(x) = ϕi if w(x) = i, using

F (i) = ϕiΛ(i) (70)

f̂(0) = q−nĝ(0)ĥ0 (71)

= ĝ(0)λ0 (72)

we get

|C| ≤
(
qn
g(0)

ĝ(0)

)(
Λ(0)

λ0
+

sn∑
i=δn

Aiϕ
iΛ(i)

λ0

)
(73)

= (θ(Cq))
n

(
Λ(0)

λ0
+

sn∑
i=δn

Ai
ϕiΛ(i)

λ0

)
(74)

Taking logarithms and dividing by n,

R ≤ log θ(Cq) +
1

n
log

(
Λ(0)

λ0
+

sn∑
i=δn

Aiϕ
iΛ(i)

λ0

)
(75)

Considering only the dominating term in the parenthesis, we obtain

R ≤ log θ(Cq) + max

{
1

n
log

Λ(0)

λ0
,max

{
1

n
log

(
Ai
ϕiΛ(i)

λ0

)
, i = δn . . . sn

}}
(1 + o(1)) (76)

The conditions in (67) for Λ allow us to employ the MRRW assignment, which gives for the first term in the

outer maximum above our previous bound on the rate computed for s in place of δ

1

n
log

Λ(0)

λ0
= RLP (q′, s)(1 + o(1)) (77)

For the inner maximum, the term of index i = (τ + o(1))n gives a contribution

τ log(ϕ) + bτ +
1

n
log

(
Λ(τn)

λ0

)
+ o(1) (78)

where

bτ =
1

n
logAτn. (79)

The last term in equation (78) is asymptotic to (see [14, Prop. 3.2], of which the following is a q-ary extension)

2k(α(s), τ)− hq′(α(s)) (80)
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where α(s) = h−1
q′ (RLP (s)) and, for a, b ∈ (0, 1), k(a, b) is defined in terms of asymptotic values of the

Krawtchouck polynomials as

k(a, b) = lim
n→∞

1

n
log |Kbanc(bbnc; q′)| . (81)

So, if we choose s such that R > log θ(Cq) +RLP (q′, s), there must exists a τ in the range δ ≤ τ ≤ s such that

R ≤ log θ(Cq) + τ log(ϕ) + bτ + 2k(α(s), τ)− hq′(α(s)) . (82)

We can use the q′-ary extention of the bound in [14, Prop. 3.3]

2k(a, b) ≤ log(q′) + hq′(a)− hq′(b) , (83)

and noticing that θ(Cq) = q/q′ we obtain

R ≤ log q + bτ + τ log(ϕ)− hq′(τ) (84)

or, observing q′ − 1 = 2ϕ,

bτ ≥ R− log(q)− τ log(ϕ) + hq′(τ) (85)

= R− (log(q)− h3(τ)) . (86)

So we get to the conclusion that if s satisfies

R > log θ(Cq) +RLP (q′, s) (87)

then there is a τ in [δ, s] such that

bτ ≥ R− (log(q)− h3(τ)) , (88)

where δ is the minimum distance of the code. This bound is of course only of interest if the right hand side is

non-negative in the whole interval [δ, s], that is, if

δ ≥ h−1
3 (log(q)−R) . (89)

The conclusion that we get is that either

δ ≤ h−1
3 (log(q)−R)

or there is a τ in the interval δ ≤ τ ≤ s such that

bτ ≥ R− (log(q)− h3(τ)) . (90)

This is our bound on the spectrum of the code. We now proceed to derive from this result a lower bound on the

probability of error.

Note that there is at least one codeword with at least en(bτ+o(1)) neighbors at distance τn. We can now bound

the probability of error for that codeword. We assume all messages are equally likely. Without loss of generality

we can consider a randomized decoder which decides uniformly at random among messages compatible with the

output, since they all have the same likelihood. Now, assume a codeword x1 is sent which has a neighbor x2 at

distance τn. As we mentioned already, from the point of view of two confusable codewords, our channel is like a
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binary erasure channel and x1 will be indistinguishable from x2 if all differences are erased. The probability that

the τn differences are erased is 2−τn and this will lead to an error with probability at least 1/2. So, due to the

presence of x2 the probability of error when sending x1 is at least

Pe ≥ 2−n(τ+o(1)). (91)

We now need to lower bound the probability of error when sending x1 due to the presence of enbτ neighbors.

Consider a subset of M such neighbors x2,x3, . . .xM+1. Let Ai denote the event that the output sequence is

compatible with xi. Then we can lower bound the probability of error when sending x1 as

Pe ≥
1

2
P [∪i>1Ai] (92)

≥ 1

2

∑
i>1

P [Ai]
2∑

j>1 P [Ai ∩Aj ]
, (93)

where we have used de Caen’s inequality [32]. From the previous discussion we know that P [Ai] = 2−τn. For

bounding P [Ai ∩ Aj ], consider the two distinct neighbors xi and xj at distance τn from x1. Note first that if

d(xi,xj) = ∞ then there is no channel realization which can make x1 indistinguishable from both xi and xj ,

so that P [Ai ∩ Aj ] = 0. If, instead, d(xi,xj) is finite (but, remind, at least δn) then with respect to the three

sequences the channel is again like a binary erasure channel, and at least (τ + δ/2)n erasures are needed to make

x1 indistinguishable from both xi and xj . So, in this case P [Ai ∩Aj ] ≤ 2−(τ+δ/2)n. So, from (93) we get

Pe ≥
1

2
· M2−2τn

2−τn + (M − 1)2−(τ+δ/2)n
. (94)

This quantity is exponentially asymptotic to M · 2−n(τ+o(1)) whenever M ≤ 2nδ/2. So, if enbτ < 2nδ/2, we can

use M = enbτ and lower bound the probability of error by

Pe ≥ e−nτ log(2)+nbτ

≥ e−n(τ log(2)−R+(log q−h3(τ)))

while if enbτ ≥ 2nδ/2 we can take M = 2nδ/2 neighbors of x1 and bound Pe as

Pe ≥ e−n(τ log(2)−min(R−(log(q)−h3(τ)) ,δ/2 log(2))). (95)

In all, we showed that if R > log θ(Cq) +RLP (q′, s), then either δ ≤ h−1
3 (R− log(q)), in which case

Pe ≥ e−n(h−1
3 (R−log(q)) log(2)+o(1)) ,

or there is a τ ∈ [δ, s] such that (95) holds. Of course, we also always have the bound

Pe ≥ e−n(δ log(2)+o(1)).

Finally, since we do not know the value of δ, we can consider the most optimistic case and write

− 1

n
logPe ≤ max

δ,τ
[min (δ log 2, τ log(2)−min(R− (log(q)− h3(τ)) , δ/2 log(2)))] . (96)

where the maximum is over δ ∈ [h−1
3 (R− log(q)), s] and τ ∈ [δ, s], and s is such that R = log θ(Cq)+RLP (q′, s).

This completes the proof of the theorem.
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Remark 9: It is worth pointing out that the proof of the theorem could be extended to the case of even q, with the

only difference that q′ = 2, θ(Cq) = q/2 and ϕ = 1/2 in that case. However, for even q the assumption ε = 1/2

is not really interesting since C0 = C = log(q/2). What is instead interesting is that the bounds derived on the

spectrum would mainly differ from the bounds derived for the binary case in [14] for the presence of a coefficient

ϕi = 2−i in the i-th term of the summation in the right hand side of equation (75) (other than a shift of log(q/2)

on the R axis of course). This agrees with the relation in equation (43) which expresses the spectrum of our codes

for the even length cycle in terms of the spectrum of the used binary code. This should be compared to what

we said about Theorem 4, mentioning that it fails to spot the presence of a high number of neighbors even for

even values of q. The approach developed in this section suggests that it is indeed possible to prove the presence

of those neighbors but unfortunately this would only be useful for the case ε < 1/2, for which it is difficult to

convert efficiently the bound on the spectrum to a bound on the probability of error. We observe that this difficulty

arises from the asymmetry introduced by the condition ε < 1/2 which makes the channel not pairwise reversible

in the sense of [24]. In the case where C0 = 0, the tightness of the expurgated bound at R = 0 for such channels

was obtained using Berlekamp’s complicated procedure [23], [24]. Still, that method essentially works to achieve a

bound on the minimum distance between two sequences. So, we believe that a very interesting result worth pursuing

would be the extension of the bound presented in this section to the case of even q and ε < 1/2, which might need

the combination of Berlekamp’s technique with the Kalai-Linial method and would perhaps allow to close the gap

between upper and lower bounds at R = log(q/2) for even q (see Remark 8).
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