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November, 2010



c© Copyright 2010 by Yury Polyanskiy.
All rights reserved.



Abstract

Noise is an inalienable property of all communication systems appearing in nature. Such
noise acts against the very purpose of communication, that is delivery of a data to the des-
tination with minimal possible distortion. This creates a problem that has been addressed
by various disciplines over the past century. In particular, information theory studies the
question of the maximum possible rate achievable by an ideal system under certain as-
sumptions regarding the noise generation and structural design constraints. The study of
such questions, initiated by Claude Shannon in 1948, has typically been carried out in the
asymptotic limit of an infinite number of signaling degrees of freedom (blocklength). Such
a regime corresponds to the regime of laws of large numbers, or more generally ergodic
limits, in probability theory. However, with the ever increasing demand for ubiquitous ac-
cess to real time data, such as audio and video streaming for mobile devices, as well as the
advent of modern sparse graph codes, one is interested in describing fundamental limits
non-asymptotically, i.e. for blocklengths of the order of 1000. Study of these practically
motivated questions requires new tools and techniques, which are systematically developed
in this work. Knowledge of the behavior of the fundamental limits in the non-asymptotic
regime enables the analysis of many related questions, such as the energy efficiency, effects
of dynamically varying channel state, assessment of the suboptimality of modern codes,
benefits of feedback, etc. As a result it is discovered that in several instances classical
(asymptotics-based) conclusions do not hold under this more refined approach.
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Chapter 1

Introduction

1.1 The capacity

One of the brilliant achievements of Shannon’s ground-breaking work [2] is creation of the
abstract model of communication, converting many practical engineering questions into well-
posed mathematical problems. Many of the methods developed for studying such problems
have become known collectively as information theory (of channel coding). Shannon’s
model, as simple as it is, has withstood the test of time and critique. We now briefly
describe it.

A communication problem consists of the following ingredients:

1. An apriori unknown message, which is modeled as a random variable equiprobably
taking values in the set {1, . . . ,M}.

2. A channel, representing the abstraction of the noisy communication medium. The
channel takes an input symbol in some alphabet A, applies a random transformation
(“adds intrinsic noise”) and outputs a symbol in the alphabet B. The channel can be
used multiple times in which case the random transformation applied to each symbol
in the sequence is the same1 .

3. An encoder that maps messages into length n sequences of channel input symbols
(“codewords”). The length n is known as the blocklength and the encoder is then a
function f : {1, . . . ,M} → An.

4. A decoder that produces an estimate of the original message by observing an n-
sequence of channel outputs. The decoder is a function g : Bn → {1, . . . ,M}. The
pre-images g−1(j), j = 1, . . . ,M are known as the decoding sets.

An error happens if the decoder estimates the message incorrectly. Once the encoder and
decoder are fixed, we can compute the probability of error by averaging with respect to
the choice of the message and channel noise. The goal of the communication engineer is
to find good encoder-decoder pairs (“codes”) capable of communicating the message with

1Of course, different channel models are also considered, but here we restrict the presentation to stationary

memoryless channels.

1
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Message space {1, . . . ,M}
↓

Encoder

↓
n

︷ ︸︸ ︷

0 1 0 . . . 1 0 0

↓
Channel: flip each bit independently with probability δ

↓
0 0 1 . . . 1 0 1

↓
Decoder

↓
Message estimate {1, . . . ,M}

Figure 1.1: Block coding for the BSC, which acts by adding (mod 2) a binary noise with
i.i.d. Bernoulli(δ) entries.

some required probability of error ǫ and the smallest possible blocklength n. We see that
the most important parameters of the code are given by a tuple (n,M, ǫ) representing the
blocklength, number of messages and the probability of error.

For the sake of illustration, we consider a particular example of the channel, the binary
symmetric channel (BSC), which serves as a good model for many simple systems employing
binary phase-shift keying with coherent hard-decision demodulators (wireless line of sight,
or over the wire). The BSC has a binary {0, 1} input, which is perturbed by flipping the
bit with probability δ, known as the crossover probability, to produce a binary output. The
schematic representation of Shannon’s model of communication over the BSC is depicted
on Fig. 1.1.

In this case, the goal is to select M binary n-strings and disjoint decoding sets (“balls”)
in the space {0, 1}n around them such that when the original string is transmitted the
corresponding ball captures the perturbed output with probability of at least 1− ǫ. Notice
that to achieve a small probability of error ǫ, the encoder adds redundancy to the data:
the original log2M data bits are mapped into a larger number of bits n. The ratio between
log2 M

n is known as the rate

R =
log2M

n
(1.1)

measured in bits per channel use. The term “rate” signifies that different channel uses typ-
ically correspond to different time instants, and therefore the blocklength n is proportional
to the duration of communication.

A striking observation made by Shannon in [2] is that there exist sequences of (n,Mn, ǫn)
codes with increasing blocklength n achieving a positive asymptotic rate

R = lim
n→∞

1

n
log2Mn > 0 (1.2)
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and vanishing probability of error
ǫn → 0 . (1.3)

However, not all rates R are achievable with vanishing probability of error: there is a
maximal such rate, called the capacity C of the channel. For example, for the BSC with
crossover probability δ the capacity is given (in bits per channel use) as

C(δ) = 1 + δ log2 δ + (1− δ) log2(1− δ) . (1.4)

The intuitive explanation of this phenomenon hinges on the fact that for large n perturbation
of the codeword incurred by the channel is of a very restricted kind: each symbol in the
codeword is perturbed independently and therefore different perturbations are very unlikely
to “conspire” and produce a significant disturbance.

In order to state Shannon’s result rigorously, let us fix the blocklength n and some
probability of error 0 < ǫ < 1 and define the function

M∗(n, ǫ) = max{M : ∃(n,M, ǫ)-code} , (1.5)

which is the maximum number of messages that it is possible to transmit using blocklength
n and such that the original message can be recovered with probability at least 1 − ǫ.
The function M∗(n, ǫ) is the non-asymptotic fundamental limit for a given communication
channel. Going back to the BSC, M∗(n, ǫ) denotes the maximum number of “balls” that it
is possible to pack into a space of binary n-strings {0, 1}n, where each “ball” is required to
capture the probability 1− ǫ when its “center” is being transmitted.

Shannon’s result then states that

lim
ǫ→0

lim inf
n→∞

1

n
log2M

∗(n, ǫ) = C , (1.6)

where C is given by (1.4) for the BSC. In fact, Wolfowitz [3] showed that for any 0 < ǫ < 1
we have

lim sup
n→∞

1

n
log2M

∗(n, ǫ) ≤ C , (1.7)

a result known as a strong converse. Together (1.6) and (1.7) imply that for any fixed
probability of error 0 < ǫ < 1 and n→∞ the fundamental limit satisfies

log2M
∗(n, ǫ) = nC + o(n) . (1.8)

The practical interpretation of (1.8): it is possible to send “reliably” nC data bits us-
ing n channel uses. This interpretation may then serve as a basis for system design and
optimization.

1.2 Reliability function

The result (1.8) has one serious drawback: it does not suggest in any way how a fixed ǫ affects
the value of the fundamental limit log2M

∗(n, ǫ). One frequently taken approach is to assume
that the blocklength n is “large enough” to attain a situation where ǫ-dependent term o(n)
becomes much smaller (say, below 10%) than the leading term nC. Quite surprisingly,
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however, to the best of our knowledge no systematic analysis has ever been made to estimate
how large this “large enough” should be. Rigorously, we are interested in the smallest value
of n such that 1

n log2M
∗(n, ǫ) ≥ 0.9C, where ǫ is a required reliability level.

Another problem, not addressed by (1.8) is the following. Many modern applications
require communicating the real-time data, such as voice, video streams or stock prices.
The nature of such data puts a hard delay requirement on its delivery. For example, the
physiology of human hearing (and bit rates of popular voice compressors) requires that the
digitized speech be delivered in chunks no larger than 500-1000 bits in order to be perceived
without noticeable (and annoying) delay. The goal of information theory is to answer what
is the smallest n for which log2M

∗(n, ǫ) ≥ 500 (for some prescribed reliability level ǫ, of
course). The only recipe suggested by (1.8) is to estimate n ∼ 500

C , which does not take into
account ǫ (and is very inaccurate, as we will see).

Nevertheless, the question of the effect of probability of error ǫ on the fundamental limit
log2M

∗(n, ǫ) has been classically addressed but in a different manner. Instead of studying
the function M∗(n, ǫ) the idea is to study a related function:

ǫ∗(n,R) = inf{ǫ : ∃(n, 2nR, ǫ)-code} , (1.9)

which represents the smallest achievable probability of error among all codes mapping M
messages to n channel inputs. Its asymptotic behavior for a fixed rate is determined by the
function E(R), a reliability function, defined as2

lim inf
n→∞

− 1

n
log2 ǫ

∗(n,R) = E(R) . (1.11)

Obviously by (1.7), for any R > C we have E(R) = 0. So far, the value of E(R) was
established for most channels only for rates Rc < R < C, where Rc is called a critical rate
of the channel. Notably, the question is open even for the BSC. Besides some special chan-
nels [4, 5], the landscape in the problem of reliability function has been set by Gallager [6]
and Shannon, Gallager and Berlekamp [7] (see also [8] for some recent progress in the case
of the BSC). For the BSC with crossover probability δ, the reliability function E(R) is given
by

E(R) = s log2
s

δ
+ (1− s) log2

1− s
1− δ , (1.12)

where s is found as a solution to C(s) = R and C(·) is given by (1.4), provided that

C
( √

δ√
δ+

√
1−δ

)

< R < C(δ); see [9, Section 5.6].

The meaning of (1.11) is that by restricting the rate to be strictly below capacity,
R < C, it is possible to attain an exponentially decaying probability of error, with the
optimal exponent given by E(R). Although apriori fixing the rate (instead of ǫ) might
seem artificial, it was quite natural in the early years of communication. For example, Bell
Labs DS0/DS1 digital lines were operating at a fixed rate of 64 kbps, corresponding to

2This is equivalent to studying the limit

lim
n→∞

1

n
log2 M∗(n, 2−nE) (1.10)

for a fixed E > 0.
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a single phone line sampled at 8 kHz and 8-bit pulse-code modulated. With the advent
of packet-switching networks, variable-rate compressors and higher demand for raw data
throughput, however, the practice of allocating fixed rates is becoming increasingly rare.
Another concern regarding the error-exponent approach is that practically it makes very
little sense to believe in exponentially small estimates on probability of error in view of the
crudeness of the original memoryless channel models.

Despite this, the reliability function gives the first guideline regarding the tradeoff be-
tween the probability of error, communication rate and blocklength. For example, to get
an estimate on n required to achieve 90% of the capacity we can take

n ≈ − log2 ǫ

E(0.9C)
, (1.13)

which corresponds to approximating ǫ∗(n,R) ≈ 2−nE(R) and solving for n. Specifically, let
us take the BSC with crossover probability δ = 0.11 and capacity C ≈ 0.5 bit. If we want to
achieve ǫ = 10−3 and 90% of capacity, then the error-exponent approximation (1.13) yields

n ≈ 4730 . (1.14)

1.3 Bounds

How do we know whether the approximation (1.14) is an accurate one?
All approaches discussed so far were asymptotic, either giving the limit of 1

n log2M
∗(n, ǫ)

at fixed ǫ as in (1.8), or of 1
n log2 ǫ

∗(n,R) at fixed rate (1.11). As exciting as these results
are, in practice, however, we are interested in values of M∗(n, ǫ) or ǫ∗(n,R) for a finite n.
Can this be computed exactly?

In principle, computation of the M∗(n, ǫ) can be performed according to the definition,
since in the case of the BSC there are only finitely many codes for each blocklength and M .
The caveat is that for rate R there are

( 2n

2nR

)
different codes, and the direct computation

becomes prohibitive already for very small values of n. In general, computation of M∗(n, ǫ)
is an NP-hard problem [10]. So testing the accuracy of (1.14) directly is not possible.

If we cannot compute M∗(n, ǫ) exactly, maybe we can provide upper and lower bounds?
After all, proving asymptotic results like (1.8) or (1.11) involves finding upper and lower
bounds that match up asymptotically. Can we compute such bounds non-asymptotically?

This is indeed possible, and the bounds behind both (1.8) and (1.11) are computable [11–
14]. The problem is that in proving asymptotic results one seeks the bounds that are general
and easy to analyze asymptotically, such as Feinstein [15] or Gallager [6] lower (achievability)
bounds, or Wolfowitz [3], and Shannon, Gallager and Berlekamp’s sphere packing [7] upper
(converse) bounds. In these cases, however, generality comes at the expense of poor non-
asymptotic performance. In fact, more recent bounds, such as those developed by Csiszár
and Körner [16, 17], are not as tight non-asymptotically as the cited classical bounds; see
Section 2.2.1. Several authors have tried to modify the classical bounds in order to improve
the non-asymptotic behavior [18,19]. A notable exception from this picture is a case of the
additive white Gaussian noise (AWGN) channel, for which Shannon has derived individual
bounds [4] which are useful for both asymptotic analysis and numerical computation [20–23].
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The BSC and the binary erasure channel (BEC) have also enjoyed a similar special attention
in the literature [24,25].

In this thesis we take a different approach. Instead of tweaking the classical bounds
or proving specialized bounds for each and every channel, we start anew and derive novel
bounds from first principles with non-asymptotic tightness in mind. This is the content
of Chapter 2. The resulting general bounds provide a basis for finite blocklength analysis.
Interestingly some of the novel results turn out to be both analytically tractable, e.g. prove
the most general capacity formula [26], and at the same time specialize to the tightest
known bounds non-asymptotically (e.g., the dependence testing (DT) bound for the binary
erasure channel (BEC); see Section 3.3.1). In some cases our general bounds specialize to
the best known non-asymptotic bounds which were previously derived using channel-specific
methods (such as the sphere packing bound for the BSC which we derive as an application
of the meta-converse; see Section 3.2.1).

Specializing the bounds to the BSC we can tightly sandwich the value of log2M
∗(n, ǫ)

for the entire range of n. For example, for our running example of the BSC with δ = 0.11
we get

190 ≤ log2M
∗(500, 10−3) ≤ 193.3 . (1.15)

A better picture is obtained by considering Fig. 3.3 in Chapter 3, where the upper and lower
bounds on 1

n log2M
∗(n, ǫ) clearly illustrate the effect of convergence to capacity predicted

by (1.8).
Returning to the question of the minimal blocklength needed to achieve 90% of the

capacity, non-asymptotic bounds give us the following firm estimates:

2985 ≤ n ≤ 3106 . (1.16)

And we conclude therefore that the error-exponent approximation (1.14) is not accurate.

1.4 Normal approximation and beyond

How can we better predict the true value of log2M
∗(n, ǫ) without computing the bounds? In

the case of the BSC, once the bounds are derived, a simple analysis requiring only Stirling’s
formula reveals that the upper and lower bounds match up to the first three terms and we
obtain the following asymptotic expansion

log2M
∗(n, ǫ) = nC(δ)−

√

nV (δ)Q−1(ǫ) +
1

2
log n+O(1) , (1.17)

where as usual,

Q(x) =

∫ ∞

x

1√
2π
e−

y2

2 dy , (1.18)

and the coefficient V is referred to as the channel dispersion and for the BSC is given by

V (δ) = δ(1 − δ) log2
2

1− δ
δ

. (1.19)

Clearly (1.17) is a refinement of (1.8). Without the log n term, this expansion has been
obtained by Weiss [27] and rediscovered recently in [28].
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By dropping the O(1) term in (1.17) we obtain the following normal approximation for
the BSC:

log2M
∗(n, ǫ) ≈ nC(δ)−

√

nV (δ)Q−1(ǫ) +
1

2
log n , (1.20)

The quality of this approximation can be observed in Fig. 3.3. The surprising tightness
of this approximation suggests that the asymptotic expansions at fixed ǫ, such as (1.17),
might result in good approximations non-asymptotically. To the best of our knowledge, this
approach is pioneered in this work. In particular, for the minimal blocklength needed to
achieve 90% of the capacity of the BSC with δ = 0.11 we obtain

n ≈ 3150 (1.21)

which compares much better to the true value sandwiched by (1.16) than an error-exponent
approximation (1.14).

A natural question to ask now is: Does an expansion of the kind (1.17) hold true for
other memoryless channels (with a different V and perhaps a different logn term)?

A positive answer was conjectured by Dobrushin [29] for a class of discrete symmetric
channels , and later generalized by Strassen [1] to arbitrary discrete memoryless channels
(DMCs) who showed that for ǫ < 1/2 there exists a V such that for n→∞ we have

log2M
∗(n, ǫ) = nC −

√
nV Q−1(ǫ) +O(log n) . (1.22)

Now assuming that the approximation obtained by dropping the O(log n) term is compa-
rable in quality to a similar one obtained for the BSC, we can give a general answer to the
question we started with: In order to achieve a fraction η of the capacity at probability of
error ǫ one needs blocklength

n &

(
Q−1(ǫ)

1− η

)2
V

C2
, (1.23)

which requires knowing only two fundamental quantities associated with the channel: the
capacity C and the channel dispersion V .

Motivated by the BSC example, obtaining the refined asymptotic expansions such
as (1.17) occupies a bulk of Chapters 3 and 4. In particular, we elaborate on the O(log n)
term for the BSC and BEC, amend Strassen’s result in the case of ǫ > 1/2 (his treatment of
this regime contained an error) and provide some refined estimates on the O(log n) term; we
analyze a certain ergodic channel with memory as well as a channel which is a non-ergodic
mixture of the BSCs. We extend (1.22) to the AWGN channel and the parallel AWGN chan-
nel. In most cases we compare the normal approximation to the non-asymptotic bounds,
each time obtaining an excellent match. Regarding Gaussian channels we also consider a
special question of energy efficiency, asymptotically solved by Shannon [30] but virtually
untouched non-asymptotically.

Having access to a tight approximation of the behavior of log2M
∗(n, ǫ) for finite n,

we address applications to several engineering questions in Chapter 5 such as assessing the
efficiency of known codes and effects of channel dynamics on the communication rate, where
the analysis of the capacity term in (1.17) leads to drastically incorrect design decisions,
compared to the analysis taking into account both the capacity and the dispersion terms.
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Finally, in Chapter 6 we analyze the effect of feedback on memoryless channels. Shannon
showed that the availability of feedback cannot increase the capacity of such channels [31].
However, we demonstrate that the non-asymptotic behavior changes dramatically in the
presence of feedback. For example, instead of n ≈ 3100 needed to achieve 90% of the
capacity, as shown by (1.16), this value becomes 200 or even 20 depending on the model
taken for the packet termination signaling. At the same time, we show that such savings
are only possible when one considers average length: putting constraints on the excess delay
nullifies the advantages of feedback even non-asymptotically (except, perhaps, for very short
lengts).



Chapter 2

Bounds for general channels

The main tools required for non-asymptotic analysis of channel coding problems are intro-
duced in this chapter. After setting the notation (Section 2.1) previous results are reviewed
in Section 2.2. The problem of binary hypothesis testing, central to many of the methods in
this work, is discussed in Section 2.3. Next, three main achievability bounds are derived in
Sections 2.4, 2.5 and 2.6 for the average probability of error, maximal probability of error,
and cost-constrained settings, respectively. Finally, Section 2.7 develops a highly general
approach to proving impossibility results, a meta-converse, whose efficiency is demonstrated
by showing that all of the relevant classical converse bounds are simple specializations of
the meta-converse, and by obtaining some new results also. The material in this chapter
has been presented in part in [32] and [33].

2.1 Definitions and notation

In this thesis a measurable space A, or an alphabet, is a set A equipped with a σ-algebra σA

of its subsets. For all spaces of finite cardinality we always assume that σ-algebra consists
of all subsets. A measure is a non-negative σ-additive function σA → R+. A transition
probability kernel acting between two alphabets T : A→ B assigns to each x ∈ A a measure
T (·|x) on B, such that for any E ∈ σB the function T (E|x) is measurable with respect to
σA. Every measurable function f : A→ B can be identified with the transition probability
kernel Tf as follows:

Tf (E|x) = 1{f(x) ∈ E} , (2.1)

where 1{·} is an indicator of the event. For this reason transition probability kernels can
be understood as randomized functions (or maps). Similar to maps, transition probability
kernels T : A→ B and S : B→W can be composed to give a kernel S ◦ T : A→ W by

S ◦ T (E|x) △
=

∫

B

S(E|w)T (dw|x) , (2.2)

where integration is over the conditional measure T (·|x) on W.
A probability measure P is absolutely continuous with respect to Q, P ≪ Q in short,

if Q(E) = 0 implies P (E) = 0. For a pair of such measures we denote by dP
dQ a Radon-

Nikodym derivative of P with respect to Q. The (Kullback-Leibler) divergence D(P ||Q) is

9
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defined as

D(P ||Q)
△
=

∫

A

dP

dQ
log

dP

dQ
· dQ (2.3)

= E P

[

log
dP

dQ

]

, (2.4)

provided that P ≪ Q, and we take D(P ||Q) = +∞ otherwise. Similarly we define the
divergence variance as

V (P ||Q)
△
=

∫

A

dP

dQ
log2 dP

dQ
dQ−D2(P ||Q) (2.5)

= Var
P

[

log
dP

dQ

]

. (2.6)

The units of divergence (and other information measures) are specified by fixing a base of
the logarithm in (2.3) and (2.5), which throughout this work can be chosen arbitrarily, as
long as the exponent function, exp, is taken to the same base.

Definition 1 A random transformation is given by a triplet (A,B, PY |X) of input and out-
put alphabets A and B, and a transition probability kernel PY |X : A → B. A channel is a
sequence of random transformations (An,Bn, PY n|Xn), n = 1, . . . ,∞, where parameter n is
the blocklength.

This definition follows the approach taken in [26], so that in the applications we take
A and B to be n-fold Cartesian products of some alphabets A and B, and the transition
kernels of the channel to be a sequence of conditional probabilities {PY n|Xn : An → Bn}.
Thus, to focus ideas the elements of A and B (and the values of random variables X and
Y ) throughout subsequent sections can be viewed as vectors of fixed dimension equal to the
blocklength.

For a transition probability kernel T : {1, . . . ,M} → {1, . . . ,M} we define its minimal
diagonal element as

Pmin(T )
△
= min

j=1,...,M
T (j|j) , (2.7)

and its diagonal average as

Pavg(T )
△
=

1

M

M∑

j=1

T (j|j) . (2.8)

Definition 2 An M -code for the random transformation (A,B, PY |X) is defined by an (en-
coder) map f : {1, . . . ,M} → A and a transition probability kernel (decoder) g : B →
{1, . . . ,M}. The elements of the image of f are called codewords. For a code (f, g) we
define its maximal probability of error

ǫmax(f, g)
△
= 1− Pmin(g ◦ PY |X ◦ Tf ) (2.9)

= max
j=1,...,M

(
1− PY |X(g−1(j)|f(j))

)
, (2.10)
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where Tf was defined in (2.1). An M -code with ǫmax ≤ ǫ is said to be an (M, ǫ)-code
(maximal probability of error). Similarly, for a code (f, g) we define its average probability
of error

ǫavg(f, g)
△
= 1− Pavg(g ◦ PY |X ◦ Tf ) (2.11)

=
1

M

M∑

j=1

(
1− PY |X(g−1(j)|f(j))

)
. (2.12)

An M -code with ǫavg ≤ ǫ is said to be an (M, ǫ)-code (average probability of error).

Although not a main focus of our attention, we also define a randomized M -code1 to be
a pair (f, g) of transition probability kernels f : {1, . . . ,M} → A and g : B → {1, . . . ,M}.
The rest of the quantities are defined analogously to Definition 2. Note that for a randomized
code, the concept of the codeword is meaningless.

Definition 3 Given a pair of random transformations (A1,B1, PY1|X1
) and (A2,B2, PY2|X2

)
we define their product as a random transformation (A1 × A2,B1 × B2, PY 2|X2) with

PY 2|X2(·|x1, x2) = PY1|X1
(·|x1)× PY2|X2

(·|x2) , (2.13)

where the right-hand side is a product of probability measures.

As example of using Definition 3 we define the binary symmetric channel (BSC) with
crossover probability 0 ≤ δ ≤ 1 as follows. For n = 1 we take input and output alphabets
A = B = {0, 1} and the transition probability kernel:

PY |X(b|a) =

{

1− δ, a = b ,

δ, a 6= b .
(2.14)

For n > 1 we iterate n times the product construction of Definition 3 applied to random
transformation (2.14). The sequence of random transformations obtained in this way is
known as the BSC. A random transformation for blocklength n is denoted BSC(n, δ) for
convenience. Explicitly, BSC(n, δ) has input and output alphabets A = B = An = Bn =
{0, 1}n – a space of binary strings of length n – and the kernel PY n|Xn acts by adding a
binary noise Zn independent of the input Xn:

Y n = Xn + Zn , (2.15)

where Zn has independent, identically distributed (i.i.d.) components with Bernoulli dis-
tribution: P[Zi = 1] = 1− P[Zi = 0] = δ.

Channels whose constituent random transformations are obtained as n-fold products of
a single base random transformation are called memoryless channels. If the base random
transformation acts between finite input and output alphabet then the resulting sequence
is a discrete memoryless channel (DMC). Such sequences of channels parametrized by the
blocklength n arise frequently in practical models of communication.

1More precisely, an M -code with a randomized encoder.
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Definition 4 An (M, ǫ) code for the n-th random transformation of the channel is called
an (n,M, ǫ) code. We define the fundamental non-asymptotic limit for a channels as

M∗(n, ǫ) = max{M : ∃(n,M, ǫ)-code (maximal probability of error) , (2.16)

M∗
avg(n, ǫ) = max{M : ∃(n,M, ǫ)-code (average probability of error) . (2.17)

The non-asymptotic fundamental limit M∗(n, ǫ) gives rise to a number of asymptotic
quantities associated to a given channel.

Definition 5 The ǫ-capacity Cǫ (measured in information units per channel use) of a chan-
nel is defined as

Cǫ
△
= lim inf

n→∞
1

n
logM∗(n, ǫ) . (2.18)

Definition 6 The capacity C (measured in information units per channel use) of a channel
is defined as

C
△
= lim

ǫ→0
Cǫ . (2.19)

According to this definition the capacity is the maximal rate of communication which still
admits an asymptotically vanishing probability of error.

Definition 7 The channel dispersion V (measured in squared information units per channel
use) of a channel with capacity C is equal to2

V = lim
ǫ→0

lim sup
n→∞

1

n

(
nC − logM∗(n, ǫ)

Q−1(ǫ)

)2

(2.20)

= lim
ǫ→0

lim sup
n→∞

1

n

(nC − logM∗(n, ǫ))2

2 ln 1
ǫ

. (2.21)

The rationale for this definition is the following expansion, valid for a number of different
channels (the ǫ > 0 is fixed and n→∞):

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(log n) (2.22)

So Definition 7 extracts the coefficient V in this approximation, similar to how Definition 6
extracts the coefficient C. Expansions of the type (2.22) have been studied in [1, 3, 27–29]
with main contributions by Dobrushin [29] and Strassen [1]; see Section 3.1.2 for more
details.

The utility of defining the asymptotic quantities C and V for non-asymptotic analy-
sis is established in this thesis by showing that for many different channels the following
approximation:

logM∗(n, ǫ) ≈ nC −
√
nV Q−1(ǫ) (2.23)

gives an excellent estimate for the true value of logM∗(n, ǫ) in the regime of practically
interesting n and ǫ. In particular, the minimal blocklength required to achieve a given
fraction η of capacity with a given error probability ǫ can be estimated as

n &

(
Q−1(ǫ)

1− η

)2
V

C2
. (2.24)

2This form of the definition has been proposed by S. Verdú.
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Similar to how ǫ-capacity is a refinement of the capacity, the following definition is a
refinement of the definition of dispersion:

Definition 8 For a sequence of channels with ǫ-capacity Cǫ, the ǫ-dispersion is defined for
ǫ ∈ (0, 1) − {1

2} as

Vǫ = lim sup
n→∞

1

n

(
nCǫ − logM∗(n, ǫ)

Q−1(ǫ)

)2

. (2.25)

Note that for ǫ < 1
2 , approximating 1

n logM∗(n, ǫ) by Cǫ is optimistic and smaller dispersion
is preferable, while for ǫ > 1

2 , it is pessimistic and larger dispersion is more favorable. Since
Q−1(1

2 ) = 0, it is immaterial how to define V 1
2

as far as the normal approximation (2.23) is

concerned.
For a joint distribution PXY on A× B we are interested in the information density3

i(x, y) = log
dPXY

d(PX × PY )
(x, y) (2.26)

= log
dPY |X=x

dPY
(y) . (2.27)

More formally, we assume that for some measure µ on B we have PY |X=x ≪ µ for all x ∈ A

and PY ≪ µ; then define

f(x, y)
△
=
dPY |X=x

dµ
(y) , g(y)

△
=
PY

dµ
(y) . (2.28)

The information density can then be defined as4

i(x, y) =







−∞, f(x, y) = 0 ,

+∞, g(y) = 0 ,

log f(x,y)
g(y) , f(x, y) 6= 0, g(y) 6= 0 .

(2.29)

In this thesis we denote by PX , Q, PY |X=x, etc. distributions of a single variable,
whereas P is reserved for probability measure on the underlying probability spaces.

2.2 Previous work

2.2.1 Achievability results

Two main classical non-asymptotic achievability bounds are due to Feinstein [15] and Shan-
non [34]. We present the generalizations to the settings with input constraints due to
Thomasian [35] (see also [36] and [37, (2.34)]).

3We take (2.27) as the definition of i(x, y) in this thesis. The reason for this is that the quantity (2.26) is
only defined (PX × PY )-almost surely. Consequently, whenever PX(x) = 0, it is meaningless to talk about
the distribution of i(x, Y ), which is inconvenient for channels with continuous alphabets.

4Notice that it is irrelevant how to define i(x, y) for the case f(x, y) = g(y) = 0, since we are interested
in defining i(x, ·) only on the union of supports of PY |X=x and PY .
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Suppose that all codewords are required to belong to some set F ⊂ A. For example,
there might be a cost c(x) associated with using a particular input vector x, in which case
the set F might be chosen as

F = {x : c(x) ≤ P} . (2.30)

The achievability bounds are then given as follows:

Theorem 1 (Feinstein) For any distribution PX , and any γ > 0, there exists an (M, ǫ)
code (maximal probability of error) with codewords in the set F ⊂ X satisfying

M ≥ γ (ǫ− P [i(X;Y ) ≤ log γ]− PX [Fc]) , (2.31)

or equivalently,

ǫ ≤ P [i(X;Y ) ≤ log γ] +
γ

M
+ PX [Fc] . (2.32)

Theorem 2 (Shannon) For any distribution PX , and any γ > 0, there exists an (M, ǫ)
code (average probability of error) with codewords in the set F such that

ǫ ≤ P [i(X;Y ) ≤ log γ] +
γ

M − 1
+ PX [Fc] . (2.33)

Apart from the difference between M and M − 1, Feinstein’s bound implies Shannon’s
bound. Note that unconstrained versions are obtained by taking F = A in Theorems 1
and 2. Another general coding theorem result is the one due to Gallager [6].

Theorem 3 (Gallager, no cost) For any PX and λ ∈ [0, 1], there exists an (M, ǫ) code
(average probability of error) such that

ǫ ≤Mλ E

[(

E

[

exp
i(X, Ȳ )

1 + λ

∣
∣
∣
∣
Ȳ

])1+λ
]

(2.34)

where the pair (X, Ȳ ) are distributed as

PXȲ (a, b) = PX(a)
∑

a′∈A
PY |X(b|a′)PX(a′) . (2.35)

For a memoryless channel (2.34) turns, after optimization over λ, into

ǫ ≤ exp{−nEr(R)} , (2.36)

where R = log M
n is a coding rate and Er(R) is Gallager’s random coding exponent.

Theorem 3 admits generalization to a case with cost-constraints c(x), see [9]:

Theorem 4 (Gallager, with cost) Suppose PX is such that

∑

x∈A
c(x)PX (x) ≤ P , (2.37)

and consider some δ ∈ [0, P ] such that µ(δ) > 0 with µ(δ) defined as

µ(δ)
△
= PX [P − δ ≤ c(X) ≤ P ] . (2.38)
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Then for any λ ∈ [0, 1] and r ≥ 0 there exists an (M, ǫ) code (average probability of error)
with codewords satisfying c(x) ≤ P and such that

ǫ ≤Mλ

(
exp(rδ)

µ(δ)

)1+λ

E

[(

E

[

exp

{
i(X, Ȳ )

1 + λ
+ (c(X)− P )r

} ∣
∣
∣
∣
Ȳ

])1+λ
]

(2.39)

where the pair (X, Ȳ ) are distributed as

PXȲ (a, b) = PX(a)
∑

a′∈A
PY |X(b|a′)PX(a′) . (2.40)

There are also bounds specially developed for particular discrete and Gaussian channels,
which are going to be discussed in Sections 3.1 and 4.1.

We do not cite here any of the “joint typicality” or type-splitting achievability results.
This is because those bounds, contrary to our goal, are derived with implicit assumption of
tending n→∞ and thus do not yield tight bounds.

Let us motivate this omission quantitatively. For example, in [17] Csisz’ar and Körner
give an achievability bound (Theorem 1 there), which after optimization reduces to

ǫ ≤ exp{−n(Er(R+ δn)− δ′n)} , (2.41)

where R and Er(R) are the same as in (2.36). We already can see that this bound can
not be better than Gallager’s. Numerically, even if we neglect δ′n we can see that (2.41)
compared to Gallager’s bound incurs the loss of rate by at least

δn = (|A|2 + |A|) log n+ 1

n
+

1

n
. (2.42)

For the BSC with n = 1000, we find that δn ≈ 0.06. Now look at Fig. 3.1, where different
bounds are compared. If one subtracts 0.06 from Gallager’s bound it becomes obvious
that (2.41) is very far away from the contenders. The presence of δ′n deteriorates situation
even more, e.g. for n = 1000 we have exp{nδ′n} = 1024.

For these reasons in this thesis we do not consider the aforementioned achievability
bounds and also corresponding type-based converse bounds (e.g., Haroutounian’s [38]).

2.2.2 Converse results

Among the relevant converses we cite Fano’s inequality:

Theorem 5 Every (M, ǫ)-code (average probability of error) for a random transformation
PY |X satisfies

logM ≤ 1

1− ǫ sup
X
I(X;Y ) +

1

1− ǫh(ǫ) (2.43)

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

For the maximal probability of error, Fano’s inequality is significantly improved by the
bound due to Wolfowitz [3].
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Theorem 6 (Wolfowitz) Every (M, ǫ)-code (maximal probability of error) must satisfy

M ≤ inf
β>0

β

(

inf
x∈A

PY |X=x [i(x;Y ) < log β]− ǫ
)−1

(2.44)

provided that the right-hand side is not less than 1.

As shown in [39, Theorem 7.8.1], this bound leads to the strong converse theorem for
the discrete memoryless channel (DMC)

logM∗(n, ǫ) ≤ nC + o(n) ∀ǫ ∈ (0, 1) . (2.45)

Moreover, the bound (2.45) also holds in the presence of noiseless feedback [39].
The following corollary to Theorem 6 gives another converse bound which also leads to

(2.45):

Theorem 7 ([9, Theorem 5.8.5]) For an arbitrary discrete memoryless channel of ca-
pacity C and any (n, exp{nR}, ǫ) code with rate R > C, we have

ǫ ≥ 1− 4A

n(R− C)2
− exp

{

−n(R− C)

2

}

, (2.46)

where A > 0 is constant independent of n or R.

We notice that Theorem 7 is in general too coarse for analyzing the finite blocklength
behavior of fundamental limits.

The dual of the Shannon-Feinstein bounds in Theorems 1 and 2 (in the unconstrained
setting) is given in [26].

Theorem 8 (Verdú-Han) Every (M, ǫ)-code (average error probability) satisfies

ǫ ≥ sup
β>0

{

P [i(X;Y ) ≤ log β]− β

M

}

, (2.47)

where PXY = PXPY |X and PX is the distribution on A induced by the code.

A looser bound of [40] is obtained from (2.47) by replacing the optimization over the β
with a fixed choice β = M

2 . Although Theorem 8 leads to the most general formula for
the channel capacity [26], obtaining computable bounds on fundamental limits via (2.47)
is challenging due to the need of solving an optimization over the set of all n-dimensional
input distributions. Similar problems appear in computing a generally tighter bound given
in [41]:

Theorem 9 (Poor-Verdú) Every (M, ǫ)-code (average error probability) satisfies

ǫ ≥ sup
β>0

(

1− β

M

)

P [i(X;Y ) ≤ log β] , (2.48)

where PXY = PXPY |X and PX is the distribution on A induced by the code.
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A generalization of Theorem 6 was proposed in [42] by changing the reference probability
measure in the definition of i(X;Y ) from PY to an arbitrary QY ; see also [43,44]:

Theorem 10 Every (M, ǫ)-code (average error probability) satisfies

ǫ ≥ sup
β>0

{

inf
PX

sup
QY

P

[

log
dPXY

d(PX ×QY )
(X,Y ) ≤ log β

]

− β

M

}

. (2.49)

Finally, for the asymptotic analysis of error exponents, the following bound [7] is crucial
(see also [45] for the same bound explored in a different notation).

Theorem 11 (Shannon-Gallager-Berlekamp) Let PY |X : A 7→ B be a DMC. Then any
(n,M, ǫ) code (average probability of error) satisfies

ǫ ≥ exp{−n(Esp(R− o1) + o2)} , (2.50)

where

R =
logM

n
, (2.51)

Esp(R) = sup
ρ≥0

[E0(ρ)− ρR] , (2.52)

E0(ρ) = max
PX

E0(ρ, PX) , (2.53)

E0(ρ, PX ) = − log
∑

y∈B

[
∑

x∈A
PX(x)PY |X(y|x)1/(1+ρ)

]1+ρ

(2.54)

= − log

(

E

[

E

[

exp
i(X̄ ;Y )

1 + ρ

∣
∣
∣
∣
Y

]]1+ρ
)

, (2.55)

o1 =
log 4

n
+
|A| log n

n
, (2.56)

o2 =

√

8

n
log

e√
Pmin

+
log 8

n
, (2.57)

Pmin = min{PY |X(y|x) : PY |X(y|x) > 0} , (2.58)

where the maximization in (2.53) is over all probability distributions on A; and in (2.55),
X̄ and Y are independent:

PX̄Y (a, b) = PX(a)

(
∑

x∈A
PY |X(b|x)PX (x)

)

. (2.59)

Although Theorem 11 proved to be key for finding the reliability function at high rates,
its utility for the finite blocklength regime is questionable, mainly due to coarse estimates
o1 and o2. For these reasons, [18] and [19] have recently tightened those estimates and also
extended the bound to continuous-output channels.
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2.3 Binary hypothesis testing

Many of our results and methods depend on evaluating the optimal performance of the
binary hypothesis test. Consider a random variable W on W which can take one of the
two distributions P and Q. A randomized test between those two distributions is a random
transformation (a transition probability kernel) PZ|W : W→ {0, 1}, where 0 indicates that
the test chooses Q. The optimal performance among all such transformations is denoted
by5

βα(P,Q) = inf
PZ|W :
∑

w∈W
PZ|W (1|w)P (w) ≥ α

[
∑

w∈W

PZ|W (1|w)Q(w)

]

. (2.60)

Thus, βα(P,Q) gives the minimum probability of error under hypothesis Q if the probability
of success under hypothesis P is at least α.

Note that α 7→ βα is a non-decreasing, convex function of α ∈ [0, 1]. Indeed, for any
test PZ|Y we define

α =
∑

w∈W

PZ|W (1|y)P (w) , (2.61)

β =
∑

w∈W

PZ|W (1|y)Q(w) . (2.62)

Then the totality of points (α, β) for all PZ|W form a convex subset of [0, 1]2. Since βα is a
lower boundary of this set, it must be convex.

The infimum in (2.60) is guaranteed to be achieved by an optimum randomized test
according to the following lemma due to Neyman and Pearson (e.g., see [46]).

Lemma 12 (Neyman-Pearson) Consider a space W and probability measures P and Q.
Then for any α ∈ [0, 1] there exist γ > 0 and τ ∈ [0, 1) such that

βα(P,Q) = Q[Z∗
α = 1] , (2.63)

and where6 the conditional probability PZ∗|W is defined via

Z∗
α(W ) = 1

{
dP

dQ
> γ

}

+ Zτ1

{
dP

dQ
= γ

}

, (2.64)

where Zτ ∈ {0, 1} equals 1 with probability τ independent of W . The constants γ and τ are
uniquely determined by solving the equation

P [Z∗
α = 1] = α . (2.65)

Moreover, any other test Z satisfying P [Z = 1] ≥ α either differs from Z∗
α only on the set

{
dP
dQ = γ

}

or is strictly larger with respect to Q: Q[Z = 1] > βα(P,Q).

5Here and below we write summations over alphabets, whenever it does not cause confusion. However,
all of the general results in this chapter hold for non-discrete measures and uncountable alphabets.

6In the case in which P is not absolutely continuous with respect to Q, we can define dP
dQ

to be equal to
+∞ on the singular set and hence to be automatically included in every optimal test.
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In other words, βα is a piecewise linear function, joining the points







βα = Q

[
dP

dQ
≥ γ

]

,

α = P

[
dP

dQ
≥ γ

] (2.66)

iterated over all γ > 0.
The following bounds are easy to show ([47]):

βα(P,Q) ≥ 1

γ

(

α− P
[
dP

dQ
≥ γ

])

(2.67)

βα(P,Q) ≤ 1

γ0
P

[
dP

dQ
≥ γ0

]

(2.68)

≤ 1

γ0
, (2.69)

where γ > 0 is arbitrary and γ0 satisfies

P

[
dP

dQ
≥ γ0

]

≥ α . (2.70)

For completeness we give the proofs. For an arbitrary test PZ|W we have:

Q[Z = 1] ≥ Q
[

{Z = 1} ∩
{
dP

dQ
< γ

}]

(2.71)

≥ 1

γ
P

[

{Z = 1} ∩
{
dP

dQ
< γ

}]

(2.72)

≥ 1

γ

(

P [Z = 1]− P
[
dP

dQ
≥ γ

])

(2.73)

≥ 1

γ

(

α− P
[
dP

dQ
≥ γ

])

, (2.74)

from which (2.67) follows. To show (2.68), notice that if we denote

α0
△
= P

[
dP

dQ
≥ γ0

]

≥ α , (2.75)

then we have

βα(P,Q) ≤ βα0(P,Q) (2.76)

= Q

[
dP

dQ
≥ γ0

]

(2.77)

≤ 1

γ0
P

[
dP

dQ
≥ γ0

]

, (2.78)

where (2.76) follows from monotonicity of βα, (2.77) is a consequence of Neyman-Pearson
lemma, and (2.78) follows by a standard change of measure argument, see also [48]. This
completes the proof of (2.68).
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In general, the function α → βα(P,Q) provides a lot of information about the relation
between measures P andQ. For example βα(P,Q) = α if and only if P = Q; any expectation

E Q

[

f
(

dP
dQ

)]

can be computed via the formula:

∫

f

(
dP

dQ

)

dQ =

∫ 1

0
β′(α)f

(
1

β′(α)

)

dα , (2.79)

where β′(α) = dβα

dα exists almost everywhere by the Lebesgue theorem; see also [49, Theorem
11]. In particular (2.79) shows that every f -divergence [50] between P andQ can be obtained
from the knowledge of βα.

Below, the binary hypothesis testing of interest is W = B, P = PY |X=x and Q = QY ,
an auxiliary unconditional distribution. 7 In that case, for brevity and with a slight abuse
of notation we will denote

βα(x,QY ) = βα(PY |X=x, QY ) . (2.80)

Bounds (2.67) and (2.69) imply that βα behaves approximately as the exponent of (the
negative of) the α-th quantile of log dP

dQ under P . In this thesis we will mostly deal with

distributions that are n-fold products of a fixed distribution. In this case log dP
dQ is a sum of

i.i.d. random variables and the quantile behavior is governed by the central-limit theorem
(CLT), or, more precisely, by the Berry-Esseen Theorem, e.g. [51, Theorem 2, Chapter
XVI.5]:

Theorem 13 (Berry-Esseen) Let the Xk, k = 1, . . . , n be independent with

µk = E [Xk] , σ
2
k = Var[Xk] , and tk = E [|Xk − µk|3] . (2.81)

Denote V =
∑n

1 σ
2
k and T =

∑n
1 tk. Then

∣
∣
∣
∣
P

[∑n
1 (Xk − µk)√

V
≤ λ

]

−Q(−λ)

∣
∣
∣
∣
≤ 6

T

V 3/2
, (2.82)

where Q(x) is defined in (1.18).

Note that for i.i.d. Xk it is known that the factor of 6 in the right hand side can be replaced
by 1 or less; see [52]. In this thesis, the exact value of the constant does not affect the
results and so we take the conservative value of 6 even in the i.i.d. case.

Regarding the asymptotic behavior of the βα, the Berry-Esseen inequality implies the
following result, proved in Appendix A:

Lemma 14 Let A be a measurable space with measures {Pi} and {Qi}, with Pi ≪ Qi

defined on it for i = 1, . . . , n. Define two measures on An: P =
∏n

i=1 Pi and Q =
∏n

i=1Qi,

7As we show later, it is sometimes advantageous to allow QY that cannot be generated by any input
distribution.
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and

Dn =
1

n

n∑

i=1

D(Pi||Qi) , (2.83)

Vn =
1

n

n∑

i=1

V (Pi||Qi) =
1

n

n∑

i=1

∫ (

log
dPi

dQi

)2

dPi −D(Pi||Qi)
2 , (2.84)

Tn =
1

n

n∑

i=1

∫ ∣
∣
∣
∣
log

dPi

dQi
−D(Pi||Qi)

∣
∣
∣
∣

3

dPi , (2.85)

Bn = 6
Tn

V
3/2
n

. (2.86)

Assume that all quantities are finite and Vn > 0. Then, for any ∆ > 0

log βα(P,Q) ≥ −nDn −
√

nVnQ
−1

(

α− Bn + ∆√
n

)

− 1

2
log n+ log ∆ , (2.87)

log βα(P,Q) ≤ −nDn −
√

nVnQ
−1

(

α+
Bn√
n

)

− 1

2
log n+ log

(
2 log 2√
2πVn

+ 4Bn

)

. (2.88)

Each bound holds provided that the argument of Q−1 lies in (0, 1).

In particular, when Pi = P and Qi = Q, i = 1, . . . , n, V (P ||Q) > 0 and the third
moment of log dP

dQ is finite, we have

log βα (Pn, Qn) = −nD(P ||Q)−
√

nV (P ||Q)Q−1(α)− 1

2
log n+O(1) . (2.89)

If V (P ||Q) = 0 then we trivially have

log βα (Pn, Qn) = −nD(P ||Q) + log α . (2.90)

The lower bound (2.87) holds only for n sufficiently large, while sometimes we want a
firm bound, valid for all n, such as provided by the following result:

Lemma 15 In the notation of Lemma 14, we have

log βα(P,Q) ≥ −nDn −
√

2nVn

α
+ log

α

2
. (2.91)

A proof of this result is also found in Appendix A.

Each per-codeword cost constraint can be defined by specifying a subset F ⊂ A of
permissible inputs. For an arbitrary F ⊂ A, we define a related measure of performance for
the composite hypothesis test between QY and the collection {PY |X=x}x∈F:

κτ (F, QY ) = inf
PZ|Y :

infx∈F PZ|X(1|x) ≥ τ

∑

y∈B

QY (y)PZ|Y (1|y) . (2.92)



22

As long as QY is the output distribution induced by an input distribution QX , the
quantity (2.92) satisfies the bound

τQX [F] ≤ κτ (F, QY ) ≤ τ . (2.93)

The right-hand side bound is achieved by choosing the test Z that is equal to 1 with
probability τ regardless of Y . To see the left-hand bound, note that for any PZ|Y that
satisfies the condition in (2.92), we have

∑

y∈B

QY (y)PZ|Y (1|y)

=
∑

x∈A

∑

y∈B

QX(x)PY |X(y|x)PZ|Y (1|y) (2.94)

≥
∑

x∈F

QX(x)
∑

y∈B

PY |X(y|x)PZ|Y (1|y) (2.95)

≥
∑

x∈F

QX(x)






inf
x∈F

∑

y∈B

PY |X(y|x)PZ|Y (1|y)






(2.96)

≥ τQX [F] . (2.97)

A remark on notation: Typically we will take A and B as n-fold Cartesian products of
alphabets A and B. To emphasize dependence on n we will write βn

α(x,QY ) and κn
τ (F, QY ).

Since QY and F will usually be fixed we will simply write κn
τ . Also, in many cases βn

α(x,QY )
will be the same for all x ∈ F. In these cases we will write βn

α.

2.4 Achievability: average probability of error

All of the upper-bounds on the average probability of error considered in this thesis invoke
the original idea of Shannon [2], namely, generating the codebook randomly. Specifically,
the exact value of the probability of error is given by the following expression8 :

Theorem 16 Denote by ǫ(c1, . . . , cM ) the error probability achieved by the maximum like-
lihood decoder with codebook (c1, . . . , cM ). Let X1, . . . ,XM be independent with marginal
distribution PX . Then,

E [ǫ(X1, . . . ,XM )] = 1−
M−1∑

ℓ=0

(
M − 1

ℓ

)
1

ℓ+ 1
E

[

W ℓZM−1−ℓ
]

(2.98)

where

W = P
[
i(X̄ ;Y ) = i(X;Y )

∣
∣X,Y

]
(2.99)

Z = P
[
i(X̄ ;Y ) < i(X;Y )

∣
∣X,Y

]
(2.100)

with

PXY X̄(a, b, c) = PX(a)PY |X(b|a)PX (c) . (2.101)

8This result was obtained by S. Verdú.
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Proof: Since the M messages are equiprobable, upon receipt of the channel output y,
the maximum likelihood decoder chooses with equal probability among the members of the
set

arg max
i=1,...,M

i(ci; y) .

Therefore, if the codebook is (c1, . . . , cM ), and m = 1 is transmitted, the maximum likeli-
hood decoder will choose m̂ = 1 with probability 1

1+ℓ if

M∑

j=2

1{i(cj ; y) = i(c1; y)} = ℓ (2.102)

M∑

j=2

1{i(cj ; y) > i(c1; y)} = 0 , (2.103)

for ℓ = 0, . . .M−1. If (2.103) is not satisfied an error will surely occur. Since the codewords
are chosen independently with identical distributions, given that the codeword assigned to
message 1 is c1 and given that the channel output is y ∈ B, the joint distribution of the
remaining codewords is PX ×· · ·×PX . Consequently, the conditional probability of correct
decision is

M−1∑

ℓ=0

(
M − 1

ℓ

)
1

ℓ+ 1

(
P
[
i(X̄ ; y) = i(c1; y)

])ℓ (
P
[
i(X̄ ; y) < i(c1; y)

])M−1−ℓ
(2.104)

where X̄ has the same distribution as X, but is independent of any other random variable
arising in this analysis. Averaging (2.104) with respect to (c1, y) jointly distributed as
PXPY |X we obtain the summation in (2.98). Had we conditioned on a message other than
m = 1 we would have obtained the same result. Therefore, the error probability averaged
over messages and codebook is given by (2.98). �

Naturally, Theorem 16 leads to an achievability upper bound since there must exist an
(M,E [ǫ(X1, . . . ,XM )]) (average error probability) code. Although in some special cases
it is possible to compute the value appearing in the right-hand side of (2.98), in general
the required computational complexity is too high and we need to consider simpler upper
bounds. Such upper bounds are the focus of the subsequent sections.

2.4.1 Random coding union (RCU) bound

Our first bound is the following:

Theorem 17 (RCU) For an arbitrary PX there exists an (M, ǫ) code (average probability
of error) such that

ǫ ≤ E
[
min

{
1, (M−1)P

[
i(X̄, Y ) ≥ i(X,Y )

∣
∣X,Y

]}]
, (2.105)

where PXY X̄(a, b, c) = PX(a)PY |X(b|a)PX (c).
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Proof: Let us generate our codewordsX1, . . . XM as independent random variables with
common distribution PX . Let us denote by λj the (random) probability of error conditioned
on transmitting the j-th codeword:

λj
△
= P [error | X = Xj ] . (2.106)

Then, the average probability of error is given by

ǫ =
1

M

M∑

j=1

λj , (2.107)

and by symmetry we find that
E [ǫ] = E [λ1] . (2.108)

We need now to average λ1 over the random choice of codebook X1, . . . XM . The maximum
likelihood decoder will decode to the codeword with maximal i(Xj , Y ) given the received
value Y . Thus, we can upper-bound the probability of error as

E [λ1] ≤ P





M⋃

j=2

{i(Xj , Y ) ≥ i(X1, Y )}



 . (2.109)

(this is an inequality because some of the cases i(Xj , Y ) = i(X1, Y ) might have been resolved
to X1, whereas we have assumed the worst).

In (2.109) we have PX1Y X2... = PX1PY |X1
PX2PX3 · · · . Notice that we can first condition

on X1 and Y , and then take expectation over them:

ǫ ≤ E



P





M⋃

j=2

{i(Xj , Y ) ≥ i(X1, Y )}

∣
∣
∣
∣
∣
∣

X1, Y







 . (2.110)

In this way, the internal conditional probability is actually a probability of M − 1 indepen-
dent events. It is natural to apply the union bound then:

ǫ ≤ E



min






1,

M∑

j=2

P [i(Xj , Y ) ≥ i(X1, Y ) |X1, Y ]









 . (2.111)

Here we used min(x, 1) to exclude the values larger than 1. Note that all the probabilities
in the

∑M
j=2 are equal, and thus we can simply write

ǫ ≤ E
[
min

{
1, (M−1)P

[
i(X̄, Y ) ≥ i(X,Y )

∣
∣X,Y

]}]
. (2.112)

�

Essentially, the only ingredients of the proof are the random-coding and the union bound
(hence the name: RCU). The bound can be viewed as a generalization of Shannon’s AWGN
bound [4]. For symmetric channels the computational complexity of the RCU bound is
rather low, e.g. O(n2) for the BSC, and hence the bound is computable even for rather
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large blocklengths; see Sections 3.2 and 3.3 below. However, in general the bound (2.105)
has complexity O

(
n2(|A|−1)|B|) and thus frequently the direct application of Theorem 17 is

not possible. Below we give alternative bounds that are easier to compute and still tight
enough for many purposes.

There is also a way to simplify the bound (2.105) different from the path that we adopt
below. Namely, we can first use a Chernoff-type upper-bound:

P[i(X̄, Y ) ≥ i(X,Y ) |X = x, Y = y] ≤
∑

x̄

PX(x̄)

(
PY |X(y|x̄)
PY |X(y|x)

)λ

(2.113)

(for memoryless channels it is known that this upper-bound is exponentially tight for the
optimal choice of λ). This reduces the bound to

ǫ ≤ E

[

min

{

1, (M−1)
∑

x̄

PX(x̄)

(
PY |X(Y |x̄)
PY |X(Y |X)

)λ
}]

. (2.114)

The complexity here is just O(n(|A|−1)|B|).
Additionally we can use the simple inequality min{x, 1} ≤ xρ valid for ρ ∈ [0, 1]. After

plugging this into (2.114) we get

ǫ ≤ (M−1)ρE

[{
∑

x̄

PX(x̄)

(
PY |X(Y |x̄)

PY |X(Y |X)

)λ
}ρ]

. (2.115)

As shown by Gallager, the optimum choice of λ is 1/(1+ρ) in which case the bound simply
becomes Theorem 3:

ǫ ≤ (M−1)ρ
∑

y

{

PX(x)PY |X(y|x)1/(1+ρ)
}1+ρ

. (2.116)

2.4.2 Dependence testing (DT) bound

Theorem 18 (DT) For any distribution PX on A, there exists a code with M codewords
and average probability of error not exceeding

ǫ ≤ P

[

i(X,Y ) ≤ log
M−1

2

]

+
M−1

2
P

[

i(X, Ȳ ) > log
M−1

2

]

(2.117)

= E

[

exp

{

−
∣
∣
∣i(X,Y )− log

M−1

2

∣
∣
∣

+
}]

(2.118)

where PXY Ȳ (a, b, c) = PX(a)PY |X(b|a)PY (c).

The name “dependence testing (DT) bound” will be explained shortly, see Section 2.4.3.
Before proving the theorem, we formulate and prove a useful lemma.

Lemma 19 Consider a distribution PX on A, a distribution PY (y) =
∑

x∈A
PY |X(y|x)PX(x)

on B and a measurable function γ : A 7→ [0,∞]. Then there exists an (M, ǫ) code (average
probability of error) satisfying

ǫ ≤ P [i(X,Y ) ≤ log γ(X)] +
M−1

2
P [i(X, Ȳ ) > log γ(X)], (2.119)

where PXY Ȳ (a, b, c) = PX(a)PY |X(b|a)PY (c).
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Remark: We demonstrate how a very slightly weaker bound can be obtained from
Theorem 17. Note that in (2.105) when i(X,Y ) is small the term (M −1)P[· · · ] is probably
larger than 1 and thus it is natural to upper-bound min{x, 1} by 1. On the other hand, when
i(X,Y ) is very large it is probably smaller than 1 and thus it is reasonable to upper-bound
min{x, 1} by x:

ǫ ≤ E
[
1{i(X,Y ) ≤ γ}+ 1{i(X,Y ) > γ}(M − 1)P[i(X̄, Y ) ≥ i(X,Y ) |XY ]

]
≤(2.120)

P[i(X,Y ) ≤ γ] + (M − 1)P[i(X̄, Y ) > γ] . (2.121)

This bound is only 1-bit weaker than (2.119).
Proof of Lemma 19: The idea of the proof is to average the probability of error over

random codebooks generated using the distribution PX ; the decoder runsM likelihood ratio
binary hypothesis tests in parallel, the jth of which is between the true distribution PY |X=cj

and “average noise” PY .
Let {Zx}x∈A be a collection of deterministic functions over B defined as

Zx(y) = 1{i(x, y) > log γ(x)} . (2.122)

First we describe the operation of the decoder given the codebook {ci}Mi=1; the decoder
computes the values Zcj(y) for the received channel output y and returns the first index j
for which Z = 1 (or 0 if all of them returned 0). In this way, the average probability of
error is given as

ǫ(c1, . . . cM ) =
1

M

M∑

i=1

λi , (2.123)

where

λj = P



{Zcj (Y ) = 0}
⋃

i<j

{Zci(Y ) = 1}

∣
∣
∣
∣
∣
∣

X = cj



 , (2.124)

or, using the union bound and the definition of Zx(y),

λj ≤ P[i(cj , Y ) ≤ log γ(cj) |X = cj ] +
∑

i<j

P[i(ci, Y ) > log γ(ci) |X = cj ] . (2.125)

We will now average each expression (2.125) over codebooks {ci} that are generated as
(pairwise) independent random variables with distribution PX . Then, we obtain

E [λj] ≤ P[i(X,Y ) ≤ log γ(X)] + (j − 1)P[i(X, Ȳ ) > log γ(X)] . (2.126)

Then from (2.123) we find that the ensemble average of ǫ satisfies

E [ǫ(c1, . . . cM )] ≤ P[i(X,Y ) ≤ log γ(X)] +
M−1

2
P[i(X, Ȳ ) > log γ(X)] . (2.127)

�

Proof of Theorem 18: Notice that by taking an expectation conditioned onX in (2.119)
we obtain

PY |X=x[i(x, Y ) ≤ log γ(x)] +
M−1

2
PY [i(x, Y ) > γ(x)] , (2.128)
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which is a weighted sum of two types of errors. This thus corresponds to the average error
probability in a Bayesian hypothesis testing problem for which the optimal solution is the
likelihood ratio test with threshold γ(x) = (M − 1)/2.

We need only to show that (2.117) and (2.118) are equal9 . To this end consider an
expression

P

[
dP

dQ
≤ γ

]

+ γQ

[
dP

dQ
> γ

]

. (2.129)

Note that when evaluating the second term we can drop any region N such that Q(N) = 0
or P (N) = 0 (since γ ≥ 0). Thus, we can replace Q and P with different measures Q̃ and P̃

such that Q̃ ∼ P̃ and formula dQ̃

dP̃
=
(

dP̃
dQ̃

)−1
holds. Thus, the second term can be rewritten

as

γQ

[
dP

dQ
> γ

]

=

∫

γ

(
dP

dQ

)−1

1{ dP
dQ

>γ} dP . (2.130)

Summing with the first term in (2.129) we obtain

P

[
dP

dQ
≤ γ

]

+ γQ

[
dP

dQ
> γ

]

=

∫
[

1{ dP
dQ

≤γ} + γ

(
dP

dQ

)−1

1{ dP
dQ

>γ}

]

dP (2.131)

=

∫

min

{

γ

(
dP

dQ

)−1

, 1

}

dP . (2.132)

Now substituting e−i(X,Y ) for
(

dP
dQ

)−1
and M−1

2
for γ we have (2.118). �

2.4.3 Some properties of the DT bound

The right side of the DT bound (2.117) is equal to M+1

2
times the Bayesian minimal error

probability of a binary hypothesis test of dependence:

H1 : PXY with probability 2

M+1

H0 : PXPY with probability M−1

M+1

Therefore, Theorem 18 demonstrates that the dependence testing (DT) problem is related
to the problem of constructing channel codes.

One of the properties of the DT bound that makes it particularly useful in applications is
that unlike the existing bounds (2.31), (2.33), and (2.34), the bound in Theorem 18 requires
no optimization of auxiliary constants. Moreover, for the case of no input constraints
(F = A), Theorem 2 follows from Lemma 19 by taking γ(x) = β and upper-bounding M−1

2

by M . Similarly, a recent bound in [53] can also be seen as a weakened version of Lemma 19,
and is therefore provably weaker than Theorem 18 (originally published in [33]). Therefore,
the DT bound is strictly stronger than Shannon’s bound (2.33) and [53].

Regarding the asymptotic analysis, it can be easily seen from (2.118) that Theorem 18
can be used to prove the achievability part of the most general known channel capacity
formula [26].

9The compact form of the DT bound given by (2.118) was proposed by S. Verdú.
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For the analysis of the second term in the representation (2.117) frequently the following
result comes in handy.

Lemma 20 Let Z1, Z2, . . . , Zn be independent random variables, σ2 =
∑n

j=1 VarZj be non-

zero and T =
∑n

j=1 E
[
|Zj − EZj|3

]
<∞; then for any A

E



exp






−

n∑

j=1

Zj






1{

Pn
j=1 Zj>A}



 ≤ 2

(
log 2√

2π
+

12T

σ2

)
1

σ
exp{−A} . (2.133)

Proof: By Theorem 13 we have for any x and δ

P



x ≤
n∑

j=1

(Zj − EZj) < x+ δ



 (2.134)

≤
∫ (x+δ)/σ

x/σ

1√
2π
e−t2/2dt+

12T

σ3
(2.135)

≤
(

δ√
2π

+
12T

σ2

)
1

σ
. (2.136)

On the other hand,

E



exp






−

n∑

j=1

Zj






1{

Pn
j=1 Zj>A}



 (2.137)

≤
∞∑

l=0

exp{−A− lδ}P



A+ lδ ≤
n∑

j=1

Zj < A+ (l + 1)δ



 . (2.138)

Using (2.136) and δ = log 2 we get (2.133) since

∞∑

l=0

2−l = 2 . (2.139)

�

Notice that

lim
M→∞

∣
∣
∣i(X,Y )− log

M−1

2

∣
∣
∣

+
= 0 (2.140)

and the convergence is monotone in M . Therefore, from (2.118) we see that as M ranges
from 1 to ∞ the right-hand side of the DT bound in (2.118) grows monotonically from 0
to 1 (and is, thus, the cumulative distribution function, CDF, of some random variable).
This suggests to take a different look on the expression (2.118) by defining a particular
f -divergence [50] as follows:

Dγ(P ||Q) =

∫ [
dP

dQ
− γ
]+

dQ . (2.141)
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Then the DT bound (2.118) can be restated as:

1− ǫ ≥ DM−1
2

(PXY ||PXPY ) . (2.142)

Since processing does not increase f -divergence, the left-hand side of the bound (2.142)
can be further lower-bounded by applying a suitable mapping of the space A × B into a
simpler space. For example, in the case of the BSC (A = B = {0, 1}n) a convenient map is
A× B→ Z+ given by (x, y)→ |x− y|, where | · | is the Hamming weight.10

Some of the interesting properties of f -divergence D(·||·) are listed in the following:

Theorem 21 Assuming P ∼ Q we have

Dγ(P ||Q) =

∫ 1

0
P

[

log
dP

dQ
> log

γ

u

]

du . (2.143)

The function γ → Dγ is non-increasing from 1 to 0 on R+, and

lim
δ→0+

Dγ+δ −Dγ

δ
= −Q

[
dP

dQ
> γ

]

, (2.144)

lim
δ→0−

Dγ+δ −Dγ

δ
= −Q

[
dP

dQ
≥ γ

]

, (2.145)

and hence, Lebesgue-almost everywhere

dDγ

dγ
= −Q

[
dP

dQ
≥ γ

]

. (2.146)

The function γ → Dγ contains the same information about P and Q as the function α →
βα(P,Q), according to:

Dγ(P ||Q) = α(γ) − γβα(γ)(P,Q) , (2.147)

where α(γ) = P
[

dP
dQ ≥ γ

]

. Consequently, any other f -divergence can be expressed in terms

of Dγ. For example, for the divergence D(·||·) we have: If D(P ||Q) <∞ then11

D(P ||Q) = log e−
∫ ∞

0
log γ

dDγ

dγ
dγ . (2.148)

Finally, the following holds:

Dγ(P ||Q) ≤ 1− exp

{

−E P

[[

log
dP

dQ
− log γ

]+
]}

(2.149)

≤ 1

log e
E P

[[

log
dP

dQ
− log γ

]+
]

. (2.150)

10This is an instance of a general idea of channel simplification: A × B should be mapped to the orbit
space under the action of the automorphism group of the channel on A× B, see Section 6.5.

11Notice that −
dDγ

dγ
is a density of a probability measure on R+.
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Remark: Upper-bound (2.149) is especially useful when 1
n log dPn

dQn
is geometrically concen-

trating around 1
nD(Pn||Qn) as n→∞.

Proof: From the definition (2.141), we have the following equivalent expressions:

Dγ(P ||Q) = P

[
dP

dQ
≥ γ

]

− γQ
[
dP

dQ
≥ γ

]

(2.151)

= 1−
∫ [

min

{
dP

dQ
, γ

}]

dQ (2.152)

= 1−
∫
[

min

{

γ

(
dP

dQ

)−1

, 1

}]

dP (2.153)

whereas (2.143) follows from (2.153) by applying

E [min{X, 1}] =

∫ 1

0
P[X ≥ u]du , (2.154)

which is valid for any non-negative X. The non-increasing nature of Dγ follows trivially
from (2.141).

To get one-sided derivatives (2.144) and (2.145), we need to simply use representa-
tion (2.152) and notice that

1

δ
[min{x, γ + δ} −min{x, γ}] → 1{x > γ} , as δ ց 0 , (2.155)

1

δ
[min{x, γ + δ} −min{x, γ}] → 1{x ≥ γ} , as δ ր 0 , (2.156)

and both converge uniformly in x ∈ R.
Representation (2.147) follows from (2.151) and the Neyman-Pearson lemma (2.66).
To prove (2.148) notice that by definition of divergence we have

D(P ||Q) =

∫
dP

dQ
log

dP

dQ
dQ =

∫

R+

x log x dQ̃ , (2.157)

where Q′ is the distribution of dP
dQ under Q:

Q′ △
= Q ◦

(
dP

dQ

)−1

. (2.158)

Continuing from (2.157) we have:

−D(P ||Q) =

∫

R+

−x log x dQ′ (2.159)

= x log xQ

[
dP

dQ
> x

]∣
∣
∣
∣

∞

0

−
∫ ∞

0
(log x+ log e)Q

[
dP

dQ
> x

]

dx (2.160)

= x log xQ

[
dP

dQ
> x

]∣
∣
∣
∣

∞

0

+

∫ ∞

0
(log x+ log e)

dDx

dx
dx (2.161)

= x log xQ

[
dP

dQ
> x

]∣
∣
∣
∣

∞

0

− log e+

∫ ∞

0
log x · dDx

dx
dx (2.162)

= − log e+

∫ ∞

0
log x dDx (2.163)
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where (2.160) is integration by parts, (2.161) follows by applying (2.146), (2.162) holds since
∫∞
0 dDx = −1, and (2.163) follows because

lim
x→∞

Q

[
dP

dQ
> x

]

x log x = 0 . (2.164)

To prove (2.164) notice that

Q

[
dP

dQ
> x

]

· x log x = E Q

[

x log x · 1{ dP
dQ

>x}

]

(2.165)

≤ E Q

[
dP

dQ
log

dP

dQ
· 1{ dP

dQ
>x}

]

, (2.166)

and since D(P ||Q) <∞, (2.166) tends to zero as x→∞ by the dominated convergence.
To show (2.149), recall the following inequality due to Donsker and Varadhan [54]:

D(P ||Q) ≥ E P

[

f

(
dP

dQ

)]

− log E Q

[

exp

{

f

(
dP

dQ

)}]

, (2.167)

where f is an arbitrary function. Applying this with f(y) = min {log y, log γ} we get
by (2.152)

D(P ||Q) ≥ E P

[

min

{

log
dP

dQ
, log γ

}]

− log(1−Dγ(P ||Q)) , (2.168)

which after a simple algebra leads to (2.149) �

2.5 Achievability: maximal probability of error

The details of the proof of Theorem 18 reveal that we could have generated the random
codebook with only pairwise independent codewords. Thus, for some channels (e.g., discrete
channels with additive noise) we can generate the codebook by imposing a distribution on
the generating matrix of a linear code. Then Theorem 18 implies the existence of a linear
code with average probability of error upper-bounded by (2.118). But the maximal and
average probability of error coincide for a linear code decoded with a maximum likelihood
decoder, and hence for additive-noise discrete channels the bound in Theorem 18 also holds
in the sense of maximal probability of error (see Appendix C for further details on this
approach). The following bound on maximal error probability holds in general.

Theorem 22 For any input distribution PX and measurable γ : A→ [0,∞], there exists a
code with M codewords such that the j-th codeword’s probability of error satisfies

ǫj ≤ P[i(X,Y ) ≤ log γ(X)] + (j − 1) sup
x

P[i(x, Y ) > log γ(x)] , (2.169)

where the first probability is with respect to PXY and the second is with respect to PY . In
particular, the maximal probability of error satisfies

ǫ ≤ P[i(X,Y ) ≤ log γ(X)] + (M − 1) sup
x

P[i(x, Y ) > log γ(x)] . (2.170)
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Proof: First, we specify the operation of the decoder given the codebook {c1, . . . cM}.
The decoder simply computes i(cj , y) for the received channel output y and selects the first
codeword cj for which i(cj , y) > log γ(cj).

Now, let us show that we can indeed choose M codewords so that their respective
probabilities of decoding error ǫj’s satisfy (2.169). Suppose that the first codeword is equal
to some x ∈ A. Then the conditional probability of error under the specified decoding rule
is equal to

ǫ1(x) = P[i(x, Y ) ≤ log γ(x)|X = x] . (2.171)

Let us choose codeword x at random with distribution PX . Then, the average of ǫ1(x) is

E [ǫ1(X)] = P[i(X,Y ) ≤ log γ(X)] . (2.172)

Thus, there must exist at least one choice of x such that ǫ(x) is less than the right-hand
side of (2.172). Call this choice c1.

Now assume that n codewords {cj}nj=1 have been chosen and we are to show that the
n+ 1-st one can also be chosen so that (2.169) is satisfied. Denote

D =

n⋃

j=1

{y : i(cj , y) > log γ(cj)} ⊆ B . (2.173)

Suppose that the n+ 1-st codeword is equal to x. Then the conditional probability of error
is

ǫn+1(c1, . . . , cn, x) = 1− P[{i(x, Y ) > log γ(x)} \D|X = x] . (2.174)

If we generate the n + 1-st codeword randomly with probability distribution PX then the
average of ǫn+1 is

E [ǫn+1(c1, . . . , cn,X)] = P[{i(X,Y ) ≤ log γ(X)} ∪D] ≤ P[i(X,Y ) ≤ log γ(X)] + PY (D) .
(2.175)

From (2.173) and the union bound we obtain

PY (D) ≤ n sup
x∈A

PY [i(x, Y ) > γ(x)] . (2.176)

Finally, we have

E [ǫn+1(c1, . . . , cn,X)] ≤ P[i(X,Y ) ≤ log γ(X)] + n sup
x∈A

PY [i(x, Y ) > γ(x)] . (2.177)

Thus there must exist at least one value of X such that ǫn+1 satisfies (2.169). The theorem
is thus proved. �

Remark: The proof technique of this theorem might be called sequential random cod-
ing because we have applied the random coding idea sequentially, codeword by codeword,
instead of generating the whole codebook independently.

Some symmetric channels and choices of PX (most notably the BEC and the BSC under
equiprobable PX) satisfy the sufficient condition in the next result.
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Theorem 23 Fix an arbitrary input distribution PX . If the CDF P[i(x, Y ) ≤ α] does not
depend on x for any α when Y is distributed according to PY , then there exists an (M, ǫ)
code with maximal probability of error satisfying (for any x ∈ A)

ǫ ≤ E
[
exp

{
− [i(X,Y )− log(M−1)]+

}]
. (2.178)

Proof: Under the stated conditions, bound (2.170) yields

ǫ ≤ P[i(X,Y ) ≤ log γ(X)] + (M − 1)P[i(x, Y ) > log γ(x)] . (2.179)

Thus γ(x) can be optimized similarly to the proof of Theorem 18. �

2.6 Achievability: input constraints

Of course, by restricting the input space A all of the achievability bounds proved so far
yield bounds for the case with input constraints. However, such bounds are typically very
inconvenient to use, because the auxiliary input distribution then has to be selected so that
its support be on the constraint set F ⊂ A. For example, when A = An it is convenient
(analytically) to work with input distributions PX that are obtained as n-fold products of
single-letter distributions on A. For this reason, it is advisable to find bounds which take
input distributions on A but produce input-constrained codes with codewords inside F.

2.6.1 Generalization of the DT bound

Using Lemma 19 we can extend Theorem 18 to the case of input constraints as follows.

Theorem 24 For any distribution PX on A there exists a code with M codewords in the
set F with average probability of error satisfying

ǫ ≤ P
[

i(X,Y ) ≤ log
M−1

2

]

+
M−1

2
P
[

i(X, Ȳ ) > log
M−1

2

]

+ PX [Fc] . (2.180)

Proof: Set γ(x) to be M−1

2
for x ∈ F and +∞ for x ∈ F

c. Then by Lemma 19 we have

ǫ ≤ P

[{

i(X,Y ) ≤ log
M−1

2

}

∪
{

X ∈ F
c
}]

+
M−1

2
P

[

i(X, Ȳ ) > log
M−1

2
,X ∈ F

]

(2.181)

Trivial upper-bounding yields (2.180). So by Lemma 19 we established the existence of
the codebook and the decoder so that the average probability of error satisfies the re-
quired (2.180). However, in this codebook some of the codewords might fall outside the
set F. On the other hand, our decoding rule is based on comparing i(x, y) with the codeword-
dependent threshold γ(x). If the codeword does not belong to F then this threshold is +∞.
We conclude that all codewords in F

c have empty decoding sets. Thus, the average prob-
ability of error (under this suboptimal decoding) will not change if we remap all of these
codewords to arbitrary c0 ∈ F. This proves the theorem. �

Theorem 22 can be extended to the case of input constraints in the following way.

Theorem 25 For any input distribution PX and measurable γ : A→ [0,∞], there exists a
code with M codewords in the set F such that the maximal probability of error ǫ satisfies

ǫPX [F] ≤ P[i(X,Y ) ≤ log γ(X)] + (M − 1) sup
x∈F

P[i(x, Y ) > log γ(x)] . (2.182)
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Proof: The case of PX [F] = 0 is trivial. Assume otherwise. The proof is similar to the
proof of Theorem 22 with the only change being in how we upper-bound

E [ǫn+1(X)] = P[{i(X,Y ) ≤ log γ(X)} ∪D] . (2.183)

We proceed as follows

E [PX [F]ǫn+1(X)] = PX [F]P[{i(X,Y ) ≤ log γ(X)} ∪D] ≤ (2.184)

PX [F] (P[i(X,Y ) ≤ log γ(X)] + PY [D]) = (2.185)

E [1F(X) (P[i(X,Y ) ≤ log γ(X)] + PY [D])] . (2.186)

Now it is an elementary fact that if f and g are two non-negative functions, µ is a measure
satisfying µ(F ) > 0 and

∫

1F f dµ ≥
∫

g dµ (2.187)

then at least at some x∗ ∈ F we have g(x∗) ≤ f(x∗). In our case this means that there
must exist at least one value of X (call it cn+1) such that

PX [F]ǫn+1(cn+1) ≤ P[i(X,Y ) ≤ log γ(X)] + PY [D] . (2.188)

The rest of the proof follows that of Theorem 22 without change. �

Comparing this result with Theorem 24 we note that (2.182) is stronger than the bound

ǫ ≤ P[i(X,Y ) ≤ log γ(X)] + (M − 1) sup
x∈F

P[i(x, Y ) > log γ(x)] + PX [Fc] . (2.189)

An immediate corollary of Theorem 25 is the following:

Corollary 26 For any distribution PX and any γ > 0, there exists an (M, ǫ) code (maximal
probability of error) with codewords in the set F ⊂ A such that

M ≥ 1 + γ (ǫPX [F]− P [i(X;Y ) < log γ]) . (2.190)

Proof: Apply Theorem 25 and use

PY [i(x, Y ) ≥ log γ] ≤ 1

γ
. (2.191)

�

Note that (2.190) is always stronger than a classical version of the input-constrained Fe-
instein’s lemma (Theorem 1, see Section 2.2.1 for the history and references regarding the
input-constrained version of Feinstein’s lemma).

2.6.2 κβ bound

Theorem 27 (κβ bound) For any 0 < ǫ < 1, any 0 < τ < ǫ and any distribution QY on
B, there exists an (M, ǫ) code with codewords chosen from F ⊂ A, satisfying

M ≥ κτ (F, QY )

supx∈F β1−ǫ+τ (x,QY )
. (2.192)
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Note: It is possible12 that (2.192) will be of the form M ≥ α/0 with α > 0. In this case
the statement of the theorem should be understood as “(M, ǫ) codes with arbitrarily high
M exist”.

Proof: We first describe the operation of the decoder given a codebook {ci}Mi=1. Upon
reception of y ∈ B the decoder sequentially tests whether codeword ci was sent, where i
runs from 1 to M . The test for ci is performed as a binary hypothesis test discriminating
PY |X=ci

(hypothesis H0) against “average noise” QY (hypothesis H1). We would like to
select each such test as an optimal one within the constraint P (decideH0|H0) ≥ 1− ǫ+ τ .
To do this we define a collection of random variables Z(x), x ∈ F conditionally independent
given Y and with PZ(x)|Y chosen so that it achieves β1−ǫ+τ (x,QY ) in (2.60). In other words,

P [Z(x) = 1|X = x] ≥ 1− ǫ+ τ , (2.193)

Q[Z(x) = 1] = β1−ǫ+τ (x,QY ) , (2.194)

where we denoted

Q[Z(x) = 1]
△
=

∫

B

PZ(x)|Y (1|y)dQ(y) . (2.195)

The decoder applies the M independent random transformations PZ(c1)|Y , . . . , PZ(cM )|Y to
the channel output Y and outputs the first index j such that Z(cj) = 1, or 1 if all Z are
zero.

Having specified the decoder operation we proceed to generate the codebook {ci}Mi=1.
This will be done in a manner similar to the maximal coding idea of Feinstein.

At first step, choose any c1 ∈ F. Then, by (2.193) we know that the described decoder
will decode c1 with probability of at least 1 − ǫ+ τ which is better than 1− ǫ. So c1 does
not violate the maximum probability of error criterion. Next, suppose that j codewords
have already been selected, then choose the (j + 1)-st codeword. We can select some x ∈ F

as the new codeword cj+1 only provided that

P [Z(x) = 1, Z(c1) = · · · = Z(cj)|X = x] ≥ 1− ǫ . (2.196)

If we cannot find any such x then STOP; otherwise choose any x satisfying (2.196).
There are two cases. Either the process continues indefinitely, in which case there is

nothing to prove, or it stops after a finite number of steps M . In the latter case, we have
found an (M, ǫ) code and we need only to show that M satisfies the bound in (2.192).
Note that there is a large amount of freedom in the process: each random variable Z(ci)
is perhaps not uniquely defined by ci, the choice of cj+1 is not unique, etc. However, the
lower bound on M will be independent of all those choices13 .

Denote
VM = max{Z(cj), j = 1, . . . ,M} . (2.197)

12For an example of such a case, take A = B = [0, 1] with the Borel σ-algebra. Define PY |X=x(y) = δx(y),
i.e. a point measure at y = x, and take QY to be Lebesgue measure. Then, βα(x,QY ) = 0 for any x and α,
and κτ (QY ) = 1 for any τ > 0.

13Note that we could make the procedure completely deterministic using the axiom of choice and well-
ordering theorem to well-order all sets. Then, for example, at each step we can choose the first x (under
the established order on F) that satisfies (2.196). This allows as to talk about the code constructed by
Theorem 27.
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Then the process stopping after M steps implies that for every x ∈ F we have

P [Z(x) = 1, VM = 0|X = x] < 1− ǫ . (2.198)

But, by definition of Z(x) and (2.193) it follows that

1− ǫ+ τ ≤ P [Z(x) = 1|X = x] (2.199)

≤ P [Z(x) = 1, VM = 0|X = x] + P [VM = 1|X = x] (2.200)

< 1− ǫ+ P [VM = 1|X = x] . (2.201)

Thus, VM is a random variable taking values in {0, 1} and such that, for every x ∈ F

P [VM = 1|X = x] ≥ τ . (2.202)

But then, VM defines a composite hypothesis test and, by the definition (2.92) of κτ we
have

Q [VM = 1] ≥ κτ (F, QY ) . (2.203)

Now, on the other hand

Q [VM = 1] = Q

[
M⋃

1

{Z(cj) = 1}
]

(2.204)

≤
M∑

1

Q [Z(cj) = 1] (2.205)

=

M∑

1

β1−ǫ+τ (cj , QY ) (2.206)

≤ M sup
x∈F

β1−ǫ+τ (x,QY ) , (2.207)

where (2.206) follows by (2.194). Finally, (2.207) and (2.203) imply (2.192). �

Using (2.93) in Theorem 27 we obtain a weakened but useful bound:

M ≥ sup
0<τ<ǫ

sup
QX

τQX [F]

supx∈F β1−ǫ+τ (x,QY )
(2.208)

where the supremum is over all input distributions, and QY denotes the distribution induced
by QX on the output. An interesting connection of the (weakened form of the) κβ bound
and the DT bound comes from the following observation. By a judicious choice of γ(x)
in Lemma 19 we could have obtained the bound (2.208) for average probability error with
supremum in the denominator replaced by the average over QX .

In (2.60) and (2.92) we have defined βα and κτ using randomized tests. Then, in Theo-
rem 27 we have constructed the coding scheme with a randomized decoder. Correspondingly,
if we define βα and κτ using non-randomized tests, then the analog of Theorem 27 for a
non-randomized decoder can be proved. For further details see Appendix B.
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2.7 Converse bounds

In this section we develop a method for proving converse (“impossibility”) results. The
central idea can be summarized as follows: we take an arbitrary code for the channel PY |X ;
we prove that if used on a different channel QY |X this code must have large probability
of error with a guaranteed lower bound; we then show that there is a link between the
probability of error on the Q-channel and the probability of error on the P -channel; since
the former is lower-bounded, so is the latter. Quite interestingly, we show that all the
converse bounds mentioned in Section 2.2 as well as many new ones can be recovered as
applications of the meta-converse.

2.7.1 Meta-converse: average probability of error

Theorem 28 Consider two random transformations (A,B, PY |X) and (A,B, QY |X). Fix a
code (f, g) (possibly randomized encoder and decoder pair) and let ǫ and ǫ′ be its average
probability of error under the P -transformation and the Q-transformation, respectively. Also
denote by PX = QX the probability distribution induced by the encoder f on the input
alphabet A. Then we have

β1−ǫ(PXY , QXY ) ≤ 1− ǫ′ . (2.209)

Proof: Denote by W and Ŵ the random variable representing the input to the encoder
(i.e. the message) and the output of the decoder (i.e. the message estimate), respectively.
Then we have two joint distributions PWXY Ŵ and QWXY Ŵ defined as follows:

PWXY Ŵ (w, x, y, ŵ) =
1

M
f(x|w)PY |X(y|x)g(ŵ|w) , (2.210)

QWXY Ŵ (w, x, y, ŵ) =
1

M
f(x|w)PY |X(y|x)g(ŵ|w) , (2.211)

where 1
M represents the fact that W is equiprobable on {1, . . . ,M}. We define the following

random variable
Z = 1{W = Ŵ} . (2.212)

The crucial observation is that the conditional distribution of Z given (X,Y ) is the same
for both P and Q; namely, we have

PZ|XY = QZ|XY . (2.213)
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Indeed, we have

P[Z = 1|X,Y ] =

M∑

j=1

P[W = j, Ŵ = j|X,Y ] (2.214)

=
M∑

j=1

P[W = j|X,Y ]P[Ŵ = j|X,Y ] (2.215)

=

M∑

j=1

P[W = j|X]P[Ŵ = j|Y ] (2.216)

=
M∑

j=1

P[W = j|X]g(j|Y ) , (2.217)

where (2.214) is by definition of Z, (2.215) follows since under both P and Q we have a
Markov chain: W −X − Y − Ŵ and therefore, conditioned on (X,Y ) W and Ŵ are inde-
pendent; and (2.216) is also a consequence of the Markov chain condition. Finally, (2.216)
implies (2.213) since P[W = j|X] in each term of the sum depends only on the joint distri-
bution of X and W , while by construction we have that PW,X = QW,X .

Overall, PZ|XY defines a transition probability kernel A × B → {0, 1} and therefore
constitutes a binary hypothesis test between PXY and QXY satisfying

∑

x∈A

∑

y∈B

PZ|XY (1|xy)PXY (x, y) = 1− ǫ (2.218)

∑

x∈A

∑

y∈B

PZ|XY (1|xy)QXY (x, y) = 1− ǫ′ . (2.219)

Therefore, by the definition of βα in (2.60) we have

β1−ǫ(PXY , QXY ) ≤ 1− ǫ′ . (2.220)

�

Theorem 28 allows one to use any converse for channel QY |X to prove a converse for
channel PY |X . It has many interesting generalizations (for example, to list-decoding and
channels with feedback) and applications, whose study is outside the scope of the thesis.

Here we want to briefly explain an alternative (and a more illuminating) way to prove
the crucial step (2.213). Note that for any probability space, we can define a directed acyclic
graph (DAG) connecting its variables via transition probability kernels. Then following this
DAG we can reconstruct the joint distribution for all the random variables. For example,
in the proof of Theorem 28 the DAG was the following:

W
f

// X
PY |X ++
QY |X

33 Y
g

// Ŵ (2.221)

where the choice between PY |X or QY |X is made depending on the channel used. Conversely,
every DAG (with arrows marked by transition probability kernels14 ) generates a unique

14If a random variable does not have inbound arrows, it should be marked with a distribution, according
to which it is generated; if a random variable has several inbound arrows such as

A −→ C ←− B (2.222)
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probability space (joint distribution on the variables, corresponding to its vertices). We say
that two DAGs are equivalent if they generate the same probability space. An argument
based on Markov chain condition, proves that the following two DAGs are equivalent:

W
f−→ X

g−→ Y ∼ W
f ′
←− X g−→ Y , (2.223)

where in the right-hand DAG, the distribution PX is taken as f ◦ PW , and f ′(w|x) is just
the Bayes rule inversion of the kernel f(x|w):

f ′(w|x) =
f(x|w)PW (w)

∑

w′∈W
f(x|w′)PW (w′)

. (2.224)

The principal observation is that f ′ does not depend on g in (2.223). Therefore, applying
this to the DAG (2.221) and reintroducing Z as a function of (W,Ŵ ) we get the following
equivalent DAG:

X
f ′

//

�� ��

W

��@
@

@

@

@

@

@

@

Y
g

// Ŵ // Z

(2.225)

and the composite arrow (X,Y ) → Z does not depend on the particular arrow chosen
between X and Y . This is precisely the meaning of (2.213).

A simple application of Theorem 28 yields the following result.

Theorem 29 (Converse) Every (M, ǫ) code (average probability of error) with codewords
belonging to F satisfies

M ≤ sup
PX

inf
QY

1

β1−ǫ(PXY , PX ×QY )
, (2.226)

where PX ranges over all distributions on F, and QY ranges over all distributions on B.

Proof: Denote the distribution of the encoder output by P̄X and particularize Theo-
rem 28 by choosing QY |X = QY for an arbitrary QY , in which case we obtain ǫ′ = 1− 1

M .
Therefore, from (2.209) we obtain

1

M
≥ sup

QY

β1−ǫ(P̄XPY |X , P̄X ×QY ) (2.227)

≥ inf
PX

sup
QY

β1−ǫ(PXY , PX ×QY ). (2.228)

�

As we will see shortly in important special cases βα(x,QY ) is constant on F. In those
cases the following converse is particularly useful.

Theorem 30 Fix a probability measure QY on B. Suppose that βα(x,QY ) = βα(QY ) for
x ∈ F. Then every (M, ǫ)-code (average probability of error) satisfies

M ≤ 1

β1−ǫ(QY )
. (2.229)

then the kernel should be PC|AB , which acts from A×B to C.
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Proof: The result follows from Theorem 29 and the following auxiliary result. �

Lemma 31 Suppose that βα(PY |X=x, QY |X=x) = βα is independent of x ∈ F. Then, for
any PX supported on F we have

βα(PXPY |X , PXQY |X) = βα(PY |X=x, QY |X=x) . (2.230)

Proof: Take a collection of optimal tests Zx for each pair PY |X=x vs. QY |X=x, i.e.

PY |X=x[Zx = 1] ≥ 1− α , (2.231)

QY |X=x[Zx = 1] = β1−α . (2.232)

Then take ZX as a test for PXY vs. QXY . In this way we get

βα(PXPY |X , PXQY |X) ≤ βα(PY |X=x, QY |X=x) . (2.233)

Since βα is non-decreasing and convex, the reverse inequality follows from the next lemma.
�

Lemma 32 Suppose that there is an non-decreasing convex function f : [0, 1]→ [0, 1] such
that for all x ∈ F we have

βα(PY |X=x, QY |X=x) ≥ f(α) (2.234)

Then, for any PX supported on F we have

βα(PXPY |X , PXQY |X) ≥ f(α) . (2.235)

Proof: Consider an arbitrary test Z such that

PXY [Z = 1] =
∑

x∈A

PX(x)PY |X=x[Z = 1] ≥ α . (2.236)

Then observe that

∑

x∈A

PX(x)QY |X=x[Z = 1] ≥
∑

x∈A

PX(x)βPY |X=x[Z=1](PY |X=x, QY |X=x) (2.237)

≥
∑

x∈A

PX(x)f(PY |X=x[Z = 1]) (2.238)

≥ f(P [Z = 1]) (2.239)

≥ f(α) , (2.240)

where (2.238) follows from (2.235), (2.239) is by Jensen’s inequality, and (2.240) follows
because f is non-decreasing function of α. Therefore, taking infimum over all tests PZ|XY ,
from (2.240) we obtain that

βα(PXPY |X , PXQY |X) ≥ f(α) . (2.241)

�
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2.7.2 Meta-converse: maximal probability of error

To apply Theorem 28, one needs to prove a lower bound on βα(PXY , QXY ). However,
since the distribution PX depends on the code, obtaining a lower bound valid for all PX

is generally a hard problem. A much easier problem is computing βα(PY |X=x, QY |X=x).
Then Lemma 32 gives a lower-bound on βα(PXY , QXY ) (or even a precise value of βα,
if conditions of Lemma 31 are satisfied). However, for the maximal probability of error
formalism, there is no such problem: namely, the function βα(PY |X=x, QY |X=x) takes up
the role of βα(PXY , QXY ) in Theorem 28, as follows:

Theorem 33 Consider two random transformations (A,B, PY |X) and (A,B, QY |X). Fix a
code (f, g) (possibly with a randomized decoder) with codewords belonging to a constraint
set F ⊆ A. Let ǫ and ǫ′ be its maximal probability of error under the P -transformations and
the Q-transformations, respectively. Then,

inf
x∈F

β1−ǫ(PY |X=x, QY |X=x) ≤ 1− ǫ′ . (2.242)

Proof: Consider an (M, ǫ)-code with codewords {cj ∈ F}Mj=1 and a randomized decoding
rule PZ|Y : B 7→ {0, . . . ,M}. We have for some j∗

∑

b∈B

PZ|Y (j∗|b)QY |X(b|j∗) = 1− ǫ′ , (2.243)

and at the same time ∑

b∈B

PZ|Y (j∗|b)PY |X(b|j∗) ≥ 1− ǫ . (2.244)

Consider the hypothesis test between PY |X=j∗ and QY |X=j∗ that decides in favor of PY |X=j∗

only when the decoder output is j∗. By (2.244) the probability of correct decision under
PY |X=j∗ is at least 1− ǫ, and therefore

1− ǫ′ ≥ β1−ǫ(PY |X=j∗, QY |X=j∗) (2.245)

≥ inf
x∈F

β1−ǫ(PY |X=x, QY |X=x) . (2.246)

�

Theorem 34 (Converse) Every (M, ǫ) code (maximal probability of error) with codewords
belonging to F satisfies

M ≤ inf
QY

sup
x∈F

1

β1−ǫ(x,QY )
, (2.247)

where the infimum is over all distributions QY on B.

Proof: Repeat the argument of the proof of Theorem 29 replacing Theorem 28 by
Theorem 33. �
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2.7.3 Applications of the meta-converse

We illustrate how Theorems 28 and 33 can be used to prove classical converse results
(including all of the cited in Section 2.2):

• Fano’s inequality (Theorem 5): Particularize (2.227) to the case QY = PY , where PY

is the output distribution induced by the code and the channel PY |X . Note that any
hypothesis test is a (randomized) binary-output transformation and therefore, by the
data-processing inequality for divergence we have

d
(
1− ǫ

∣
∣
∣
∣β1−ǫ(PXY , PX × PY )

)
≤ D(PXY ||PX × PY ) , (2.248)

where the binary divergence function satisfies

d(a||b) = a log
a

b
+ (1− a) log

1− a
1− b (2.249)

≥ −h(a) + a log
1

b
. (2.250)

Using (2.249) in (2.248) we obtain

log
1

β1−ǫ(PXY , PX × PY )
≤ I(X;Y ) + h(ǫ)

1− ǫ . (2.251)

Fano’s inequality (2.43) follows from (2.251) and (2.227).

• Information spectrum converse (Theorem 8): Replace (2.251) with (2.67), which to-
gether with (2.227) yields

1

M
≥ β1−ǫ(PXY , PX × PY ) (2.252)

≥ sup
γ>0

1

γ
(P[i(X;Y ) < log γ]− ǫ) , (2.253)

where PY is a distribution on B induced a given (M, ǫ) code. The bound (2.253) is
equivalent to the converse bound (2.47). Similarly, by using a stronger bound in place
of (2.67) we can derive [41]. Furthermore, by keeping the freedom in choosing QY

in (2.227) we can prove a stronger version of the result.

• A stronger bound due to Poor and Verdú [41], Theorem 9, can also be obtained.
Indeed, since the distribution PX induced on A by a given (M, ǫ) code is discrete with
atoms of weight (at least) 1

M we must have

inf
A×B

d(PX × PY )

dPXY
≥ 1

M
. (2.254)

Therefore, using the following Lemma with θ = 1
M we obtain

β1−ǫ(PXY , PX × PY ) ≥ 1

γ

(

1− ǫ−
(

1− γ

M

)

P[i(X;Y ) ≥ γ]
)

(2.255)

=
1

M
+

1

γ

((

1− γ

M

)

P[i(X;Y ) ≥ γ]− ǫ
)

, (2.256)

which together with (2.252) implies Theorem 9.
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Lemma 35 For a pair (P,Q) of probability distributions on W and any γ ≥ 0 we
have

α ≤ γβα(P,Q) + (1− γθ)P
[
dP

dQ
≥ γ

]

, (2.257)

provided that

0 ≤ θ ≤ inf
x∈supp Q∩suppP

dQ

dP
. (2.258)

Proof: Follow the proof of (2.67) and replace the lower bound on

P

[

{Z = 1} ∩
{
dP

dQ
< γ

}]

(2.259)

with the one obtained from the simple identity:

dP

dQ
· 1
{
dP

dQ
< γ

}

≤ γ +

(
dP

dQ
− γ
)

t , (2.260)

where t = −γθ
1−γθ . �

• Wolfowitz’s strong converse (Theorem 6): apply Theorem 34 with some arbitrary QY .
Then from (2.67) we have:

inf
x∈A

βα(x,QY ) ≥ sup
γ>0

1

γ

(

α− sup
x∈A

PY |X=x

[
dPY |X=x

dQY
≥ γ

])

. (2.261)

Now, suppose that QY = PY , then by (2.27) we conclude that Theorem 34 implies
Theorem 6. Retaining the freedom of choice of QY in (2.261) we obtain Theorem 10.

• Shannon-Gallager-Berlekamp (Theorem 11): Applying Theorem 34, we may first split
the input space A into regions Fi such that βα(x,QY ) is constant within Fi. For
example, for symmetric channels and QY equal to the capacity achieving output
distribution, there is no need to split A since βα(x,QY ) is identical for all x ∈ A. For
a general DMC, we apply Theorem 28 with QY |X chosen as follows. The distribution
QY |X=xn depends only on the type of xn and is chosen optimally for each type (and
depending on the coding rate). Under the Q-transformation, the decoder can at most
distinguish codewords belonging to different types and therefore, we can estimate

1 − ǫ′ ≤ n|A|−1

M . Using this estimate in (2.209), the proof of Theorem 11 follows
along the same lines as the proof of [45, Theorem 19] by weakening (2.209) using
Chernoff-type estimates.

• Refinements to Theorem 11 in [18] and [19]: As we explained above, Theorem 11
is obtained from Theorem 34 by choosing QY |X judiciously and by performing a
large deviation analysis of βα. Reference [18] improved Theorem 11 by extending
the results to the case of infinite |B| and by tightening the Chernoff-type estimates
of [7]. A further improvement was found in [19] for the special case of input-symmetric
channels by directly lower-bounding the average probability of error and avoiding the
step of splitting a code into constant composition subcodes. Theorem 30 is tighter
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than the bound in [19] because for symmetric channels and relevant distributions QY

the value of βα(x,QY ) does not depend on x and therefore the average probability of
error is bounded directly.

• Low-rate converse bounds on the error-exponent can be also be obtained. For example,
when PY |X is the BSC(n, δ) then we take QY |X as the channel that produces exactly
⌈µn⌉ errors equiprobably out of

( n
µn

)
possibilities, where 0 < µ < 1 is some parameter.

Then, a simple analysis shows that

βα(PY |X=x, QY |X=x) =

[
α− 1 + pn

pn

]+

(2.262)

where

p =

(
n

µn

)

δµnδ̄n−µn ≈ exp{−nd(µ||δ)} . (2.263)

If the code has minimum distance νn then its maximal probability of error on the Q-
transformation (assuming the maximum likelihood decoding for the P -transformation)
satisfies (with exponential precision):

ǫ′ &







0 , µ < ν/2 ,

exp(−n
[

h(µ)− ν − (1− ν)h
(

µ−ν/2
1−ν

)]

) , ν/2 ≤ µ < 1/2 ,

1 . 1/2 ≤ µ
(2.264)

Then, by taking

µ = δ(1 − ν) +
ν

2
(2.265)

and applying Theorem 33 with (2.262) and (2.264), we obtain that the maximal
probability of error over the P -transformation satisfies:

ǫ & (4δ(1 − δ))νn/2 . (2.266)

Since by the Plotkin bound ν ≤ 1/2 for any code with positive rate R > 0 we obtain
that any (n, 2nR, ǫ) code with positive rate satisfies

ǫ & exp

(

−n1

2
d(1

2 ||δ)
)

, (2.267)

which is a well-known zero-rate bound for the BSC, see also [7].

Above we have shown that Fano’s inequality is a direct consequence of the meta-converse
and the data-processing inequality (2.248). Replacing divergence with another f -divergence,
we get other useful bounds. For example, let us take Hellinger divergence which for λ > 0,
λ 6= 1 is defined as [49]

Dλ(P ||Q)
△
=

1

λ− 1
E Q

[(
dP

dQ

)λ

− 1

]

(2.268)

=
1

λ− 1
E P

[(
dP

dQ

)λ−1

− 1

]

. (2.269)
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Then following the same argument as in the derivation of Fano’s inequality, we obtain:
Any (M, ǫ) code must satisfy for every λ > 0:

1

λ− 1

(

(1− ǫ)λMλ−1 + ǫλ
)

≤ 1

λ− 1
E [exp((λ− 1)i(X;Y ))] , (2.270)

and in particular for ρ > 0:

(1− ǫ)1+ρMρ ≤ E [exp(ρ · i(X;Y ))] . (2.271)

Note that as λ → 1 inequality (2.270) converges to Fano’s inequality (2.43).15 Inequal-
ity (2.271) demonstrates that the right-hand side of (2.271) for a reliable (small ǫ) code
should not be too different from Mρ.

Although we do not further use (2.270) and (2.271) in this work, these inequalities can
be shown to be a useful tool for proving lower bounds on the error-probability for a code
with a known weight distribution (in the spirit of [55]) and analyzing error-exponents of the
families of codes.

15Subtract 1
λ−1

from both sides of (2.270) before taking the limit.



Chapter 3

Discrete channels

In this chapter, the general methods of Chapter 2 are particularized to various discrete
channels with the aim of computing the channel dispersion, obtaining tight non-asymptotic
bounds and refined asymptotic expansions. Section 3.1 reviews some of the previous work
specific to discrete channels. In particular, classical bounds for the binary symmetric channel
(BSC) and the binary erasure channel (BEC), as well as Strassen’s asymptotic expansion
are discussed. Then, Sections 3.2 and 3.3 show new results regarding the BSC and the BEC,
respectively. In Section 3.4 we give a proof of (an amended version of) Strassen’s theorem for
the general discrete memoryless channel (DMC). The material in Sections 3.1-3.4 has been
presented in part in [32,33]. Compared to [32], we show the O(1) lower bound in Strassen’s
theorem for general DMC without additional assumptions, which follows from a stronger
version of the achievability bound, Theorem 47. The full proof of the achievability bound
for the exotic DMC, Theorem 51, and the refined results on the log n term, Section 3.4.5,
also appear here for the first time. A simple model involving dynamically changing state,
the Gilbert-Elliott channel, is addressed in Section 3.5. Finally, in Section 3.6 the idea of
a normal approximation for the composite channels is demonstrated on the example of a
non-ergodic mixture of two BSCs. Each section contains extensive numerical evaluations,
validating both the need for and the usefulness of the knowledge of channel dispersion. The
material in Sections 3.5-3.6 has been presented in part in [56,57].

3.1 Previous work

We have already discussed in Section 2.2 a number of previously known bounds. Here we
list additional results that have appeared in the information theory literature for special
discrete channels, considered in this chapter.

3.1.1 Bounds for special discrete channels

For a linear code over the BSC, Poltyrev [24] proved the following upper-bound on the
probability of error.

Theorem 36 (Poltyrev) The maximal probability of error Pe under maximum likelihood
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decoding of a linear code1 with weight distribution2 {Aw, w = 0, . . . n} over the BSC with
crossover probability δ satisfies

Pe ≤
n∑

ℓ=0

δℓ(1− δ)n−ℓ min

{(
n

ℓ

)

,

n∑

w=0

AwB(ℓ, w, n)

}

, (3.1)

where

B(ℓ, w, n) =
∑

w/2≤t≤min{ℓ,w}

(
w

t

)(
n− w
ℓ− t

)

. (3.2)

A [k, n] linear code is generated by a k × n binary matrix. We can average (3.1) over
an equiprobable ensemble of such matrices. Applying Jensen’s inequality to pass expec-
tation inside the minimum and noticing that E [Aw] = 2k−n

(n
w

)
we obtain the following

achievability bound.

Theorem 37 For a BSC with crossover probability δ there exists a [k, n] linear code such
that a maximum likelihood decoder has a maximal probability of error Pe satisfying

Pe ≤
n∑

ℓ=0

δℓ(1− δ)n−ℓ min

{(
n

ℓ

)

,

n∑

w=0

2k−n

(
n

w

)

B(ℓ, w, n)

}

, (3.3)

where B(ℓ, w, n) is given by (3.2).

A negligible improvement to (3.3) is possible if we average (3.1) over an ensemble of all
full-rank binary matrices instead. Another modification by expurgating low-weight code-
words [58] leads to a tightening of (3.3) when the rate is much lower than capacity.

For the BEC the results of [59, Theorem 9] can be used to compute the exact value of
the probability of error over an ensemble of all linear codes generated by full-rank k × n
binary matrices [60].

Theorem 38 (Ashikhmin) Given a BEC with erasure probability δ, the average proba-
bility of error over all binary k × n linear codes with full-rank generating matrices chosen
equiprobably is equal to

Pe =

n∑

i=0

(
n

i

)

δn−i(1− δ)i
min{k,i}
∑

r=max{0,k−n+i}

[
i
r

] [
n− i
k − r

] [
n
k

]−1

2r(n−i−k+r)
(

1− 2r−k
)

, (3.4)

where
[
a
r

]
△
=

r−1∏

j=0

2a − 2j

2r − 2j
(3.5)

is the number of r-dimensional subspaces of Fa
2.

1The same bound can be shown for a non-linear code by generalizing the notion of weight distribution.
In this case, however, the upper bound only holds for the average probability of error, not the maximal.

2We define A0 to be the number of 0-weight codewords in the codebook minus 1. In particular, for a
linear codebook with no repeated codewords A0 = 0.
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Numerical evaluation and some improvements for the finite blocklengths bounds and
various special channels have been made in [11, 18–20, 23, 61] among others. Of particular
interest for non-asymptotic analysis is the treatment of the BSC in [12], where the authors
numerically compute exact error probability averaged over the random ensemble of code-
books (for small blocklengths) and compare it with the sphere packing bound as well as
with the performance of some practical codes.

3.1.2 Asymptotic expansions

The importance of studying the asymptotics of the function M∗(n, ǫ) was realized already
in [2]. Shannon [2, Theorem 12] and Wolfowitz [3] originally showed that for the DMC
(and later for some other memoryless channels) the following expansion holds, regardless of
ǫ ∈ (0, 1):

logM∗(n, ǫ) = nC + o(n) , (3.6)

where C is the channel capacity. Later, Wolfowitz [39] improved the o(n) term to O(
√
n).

In parallel, Weiss [27] showed that for the BSC with crossover probability δ < 1
2 ,

log2M
∗(n, ǫ) ≤ n(1− h(δ)) −Q−1(ǫ)

√
n
√

δ − δ2 log2
1− δ
δ

+ o(
√
n) , (3.7)

where Q−1 denotes the functional inverse of the Q-function (1.18). For symmetric DMCs,
whose transition matrices are such that the rows are permutation of each other and so are
the columns, Dobrushin [29, (75)] claimed without proof that3

logM∗(n, ǫ) = nC −Q−1(ǫ)
√
nV +O(log n) , (3.8)

where C and V are the expectation and the variance of the information density i(X;Y )
under the equiprobable input distribution. Dobrushin credited Pinsker for raising the im-
portant question of obtaining more terms in the asymptotic expansion, compared to (3.6).

Strassen [1] showed that (3.8) holds for an arbitrary DMC, thus generalizing and strength-
ening all previous results. For the general DMC, C in (3.8) is the capacity and V is the
variance of the information density i(X,Y ) under a capacity achieving distribution PX

which also minimizes the variance V (if ǫ < 1/2) or maximizes it (if ǫ > 1/2). According
to Definition 7, in this thesis we call V the channel dispersion.

For the Gilbert-Elliott channel [62, 63], considered in Section 3.5, the capacity was
found by Mushkin and Bar-David [64]. The ǫ-capacity of a mixture of BSCs, considered in
Section 3.6, is well known (e.g., [26, 39]), except for the points of discontinuity of Cǫ. In
determining the Cǫ at these points recent progress was made by Kieffer in [65]. Otherwise,
to the best of our knowledge the finite-blocklength analysis of these channels (regarding
bounds and refined expansions of the form (3.8)) is attempted here for the first time.

3An incorrect log n term was also claimed.
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3.2 Binary symmetric channel (BSC)

This section illustrates the application of the bounds developed so far to the BSC with
crossover probability δ < 1/2. Recall that for the BSC the input and output alphabets are
binary, A = B = {0, 1}n, and the channel is defined as

PY n|Xn(yn|xn) = δ|y
n−xn|(1− δ)n−|yn−xn| , (3.9)

where |zn| denotes the Hamming weight of the binary vector zn. We will compute an
achievability bound under the maximal probability of error criterion and a converse under
the average one.

3.2.1 Bounds

Choosing PX in Theorems 17 and 18 to be equiprobable on the input alphabet we obtain:

Corollary 39 For the BSC with crossover probability δ, there exists an (n,M, ǫ) code (av-
erage probability of error) such that (RCU bound)

ǫ ≤
n∑

t=0

(
n

t

)

δt(1− δ)n−t min

{

1, (M−1)
t∑

s=0

(
n

s

)

2−n

}

, (3.10)

and (DT bound)

ǫ ≤
n∑

t=0

(
n

t

)

δt(1− δ)n−t min
{
1, (M−1)2−n−1(1− δ)t−nδ−t

}
. (3.11)

Whenever M = 2k for integer k, the statement holds for maximal probability of error as
well.

Proof: The proof follows once we notice that with the equiprobable input distribution
the information density is

i(xn; yn) = n log(2− 2δ) + t log
δ

1− δ (3.12)

where t is the Hamming weight of the difference between xn and yn. Thus, for example, for
the RCU bound (2.105), we get

P
[
i(X̄n;Y n) ≥ i(Xn;Y n)

∣
∣Xn = xn, Y n = yn

]
=

t∑

k=0

(
n

k

)

2−n , (3.13)

since X̄n is equiprobable and independent of Xn. Similarly, the DT bound (2.118) im-
plies (3.11) after substituting (3.12).

The statement about the maximal probability of error is explained in Appendix C. �

Note that RCU bound (3.10) has computational complexity O(n2), while the DT bound (3.11)
has complexity O(n) and therefore both are computable for blocklengths of practical inter-
est. As discussed in Section 2.4.2, the DT bound (3.11) can be interpreted as M+1

2
times
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the probability of error of an optimal binary hypothesis test between n fair coin flips (with
prior probability M−1

M+1
) and n bias-δ coin flips (with prior probability 2

M+1
).

Before numerical computation, we need to convert upper bounds on probability of error
to lower bounds on M∗(n, ǫ). Doing so is straightforward: if we have a bound

ǫ ≤ f(M) , (3.14)

where f(M) is some function of M (and n, k, δ), then we need to find the largest M = 2k

such that the right-hand side of (3.14), f(M), is still below the prescribed ǫ:

M∗(n, ǫ) ≥ max
{

2k : f(2k) ≤ ǫ
}

. (3.15)

For comparison, Feinstein’s lemma, with equiprobable PX , yields the following bound:

M∗(n, ǫ) ≥ sup
t>0

2nt (ǫ− P [Z ≥ n(a− t)/b]) , (3.16)

where Z ∼ B(n, δ).
Gallager’s random coding bound (2.34) also with equiprobable PX , ensures that4

log2M
∗(n, ǫ) ≥ nE−1

r

(
1

n
log2

1

ǫ

)

, (3.17)

where [9, Theorem 5.6.2, Corollary 2 and Example 1 in Section 5.6.]

Er(1− h(s)) =

{
d(s||δ) , s ∈ (δ, s∗] ,
h(s)− 2 log s1 , s > s∗ ,

(3.18)

and s∗ =
√

δ√
δ+

√
1−δ

, s1 =
√
δ +
√

1− δ.
Regarding Poltyrev’s bound, Theorem 37, it turns out that (3.3), derived using linear

codes and weight spectra, is in fact equal to (3.10) with M − 1 replaced by 2k. Indeed,
notice that

n∑

w=0

(
n

w

)
∑

w/2≤t≤min{ℓ,w}

(
w

t

)(
n− w
ℓ− t

)

=

(
n

ℓ

) ℓ∑

s=0

(
n

s

)

. (3.19)

This holds since on the left we have counted all the ways of choosing two binary n-vectors
X and Z such that wt(Z) = ℓ and Z overlaps at least a half of X. The last condition is
equivalent to requiring wt(X − Z) ≤ wt(Z). So we can choose Z in

(
n
ℓ

)
ways and X in

∑ℓ
s=0

(n
s

)
ways, which is the right-hand side of (3.19). Now applying (3.19) to (3.3) yields

(3.10) with M − 1 replaced by 2k.
We now turn our attention to the computation of the converse bound. Choosing QY n

equiprobable on {0, 1}n, Theorem 34 yields the classical sphere packing bound (cf. [9,
(5.8.19)] for an alternative expression).

4This bound holds for average probability of error. Fig. 3.1 shows the corresponding bound on maximal
error probability where we drop the half of the codewords with worse error probability. This results in an
additional term of -1 appended to the right-hand side of (3.17), while 1

ǫ
becomes 2

ǫ
therein.
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Theorem 40 For the BSC with crossover probability δ, the size of an (n,M, ǫ) code (av-
erage error probability) must satisfy

M ≤ 1

βn
1−ǫ

, (3.20)

where βn
α is defined as

βn
α = (1− λ)βL + λβL+1 (3.21)

βℓ =

ℓ∑

k=0

(
n

k

)

2−n , (3.22)

where 0 ≤ λ < 1 and the integer L are defined by

α = (1− λ)αL + λαL+1 (3.23)

αℓ =
ℓ−1∑

k=0

(
n

k

)

(1− δ)n−kδk . (3.24)

Proof: To streamline notation, we denote βn
α = βα(xn, QY n) since it does not depend

on xn, and QY n is fixed. Then, the Hamming weight |Y n| is a sufficient statistic for
discriminating between PY n|Xn=0 and QY n . Thus, the optimal randomized test is (assuming
δ ≤ 1/2)

PZ0|Y n(1|yn) =







0, |yn| > Ln
α ,

λn
α, |yn| = Ln

α ,

1, |yn| < Ln
α ,

(3.25)

where Ln
α ∈ Z+ and λn

α ∈ [0, 1) are uniquely determined by the condition
∑

yn∈B

PY n|Xn(yn|0)PZ0|Y n(1|yn) = α . (3.26)

Then we find that

βn
α = λn

α

(
n

Ln
α

)

2−n +

Ln
α−1
∑

k=0

(
n

k

)

2−n . (3.27)

Thus, by Theorem 30

M∗(n, ǫ) ≤ 1

βn
1−ǫ

. (3.28)

�

3.2.2 Asymptotic expansion

Theorem 41 For the BSC with crossover probability δ, such that δ 6∈ {0, 1
2 , 1}, the capacity

C and dispersion V are equal to

C(δ) = log 2− h(δ) , (3.29)

V (δ) = δ(1 − δ) log2 1− δ
δ

. (3.30)



52

Moreover, we have

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +

1

2
log n+O(1) , (3.31)

regardless of whether ǫ is maximal or average probability of error.

Proof: To prove the upper-bound we have

logM∗(n, ǫ) ≤ − log βn
1−ǫ (3.32)

≤ nC −
√
nV Q−1(ǫ) +

1

2
log n+O(1) , (3.33)

where (3.32) follows by the converse bound (3.20) and (3.33) holds due to Lemma 14.
In order to obtain the right log n term in the lower (achievability) bound we must use

the strongest bound, i.e. the RCU as given by (3.10), because no other bound achieves the
right log n term. First, denote

Sk
n

△
= 2−n

k∑

l=0

(
n

l

)

. (3.34)

Then (3.10) implies the existence of (n,M, ǫ) code (maximal probability of error) with

ǫ ≤
n∑

k=0

(
n

k

)

δk(1− δ)n−k min
{

1, MSk
n

}

. (3.35)

We are going to argue that (3.35) implies a lower-bound on M∗ with a matching log n term.
Without loss of generality, assume δ < 1/2; choose any r ∈ (δ, 1/2) and set

q =
r

1− r < 1 , and

K = nδ +
√

nδ(1− δ)Q−1

(

ǫ− B +G√
n

)

, (3.36)

where G is going to be defined below and B denotes as usual the Berry-Esseen constant for
a binomial (n, δ) distribution. Then from Berry-Esseen Theorem we obtain

∑

k>K

(
n

k

)

δk(1− δ)n−k ≤ ǫ− G√
n
. (3.37)

It is also clear that for all sufficiently large n we have K < rn.
Now, observe the following inequality, valid for k ∈ [1, n − 1] and j ∈ [−(n− k), k]:

(
n

k − j

)

≤
(
n

k

)(
k

n− k

)j

. (3.38)

Consider any M such that MSK
n ≤ 1, then

M
K∑

k=0

Sk
n = M

K∑

t=0

(K − t+ 1)

(
n

t

)

2−n = M
K∑

l=0

(l + 1)

(
n

K − l

)

2−n ≤

MSK
n

K∑

l=0

(l + 1)

(
K

n−K

)l

≤MSK
n

K∑

l=0

(l + 1)ql ≤MSK
n

∞∑

l=0

(l + 1)ql ≤ 1

(1− q)2 . (3.39)
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On the other hand we are going to prove

sup
k∈[0,n]

(
n

k

)

δk(1− δ)n−k ≤ G1√
n
. (3.40)

First, observe that 1√
n

is a precise estimate of the order and also that this effect is not

specific to a binomial distribution but is common to all distributions which are the sums of
independent random variables, see [66].

For the reason that a more general proof is given in [66] we will only outline the proof
of (3.40). Namely, below we neglect the possibility that δn is not an integer. Take k∗ = δn
and note that for any k = k∗ − j (j might be negative) we have by (3.38) that

(
n

k

)

δk(1− δ)n−k ≤
(
n

k∗

)(
δn

n− δn

)j

δk∗−j(1− δ)n−k∗+j (3.41)

≤
(
n

k∗

)

δk∗(1− δ)n−k∗ . (3.42)

Thus, the maximum in (3.40) is achieved at k∗. The rest is Stirling’s approximation:

√
2πnen lnn−n < n! < e1/12 ·

√
2πnen ln n−n . (3.43)

Now set

G =
G1

(1− q)2 (3.44)

and observe that if MSK
n ≤ 1 then by (3.39)

K∑

k=0

(
n

k

)

δk(1− δ)n−kMSk
n ≤

G√
n
. (3.45)

We can now see that (3.35) implies that

M∗(n, ǫ) ≥ 1

SK
n

. (3.46)

Indeed, pick M = 1
SK

n
. Then from (3.37) and (3.45) it follows that

n∑

k=0

(
n

k

)

δk(1− δ)n−k min
{

1, MSk
n

}

(3.47)

≤
K∑

k=0

(
n

k

)

δk(1− δ)n−k +
∑

k>K

(
n

k

)

δk(1− δ)n−k (3.48)

≤ G√
n

+ ǫ− G√
n

(3.49)

≤ ǫ . (3.50)
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Finally, we must upper-bound logSK
n up to O(1) terms. This is just an application of (3.38):

SK
n = 2−n

K∑

k=0

(
n

k

)

(3.51)

≤ 2−n

(
n

K

) ∞∑

l=0

(
K

n−K

)l

(3.52)

≤ 2−n

(
n

K

)
n−K
n− 2K

. (3.53)

For n sufficiently large n− 2K will become larger than n(1− 2r), thus for such n we have
n−K
n−2K ≤ 1

1−2r and hence

logSK
n ≤ −n log 2 + log

(
n

K

)

+O(1) . (3.54)

Using (3.43) we obtain the inequality

(
n

K

)

≤ e1/12

√
2π

√
n

K(n−K)
exp(nh(K/n)) . (3.55)

Plugging K from (3.36) and applying Taylor’s formula to h(p) implies

log SK
n ≤ n(h(δ)− log 2)+

√

nδ(1− δ) log
1− δ
δ

Q−1

(

ǫ− B +G√
n

)

− 1

2
log n+O(1) . (3.56)

Finally, applying Taylor’s formula to Q−1, we conclude

logSK
n ≤ n(h(δ) − log 2) +

√

nδ(1 − δ) log
1− δ
δ

Q−1(ǫ)− 1

2
log n+O(1) . (3.57)

Substituting this into (3.46) we obtain the required expansion. �

3.2.3 Numerical evaluation

The numerical evaluation of the RCU bound (3.10), the DT bound (3.11), Feinstein’s
bound (3.16), Gallager’s bound (3.17) and the converse bound (3.20) is shown in Figs. 3.1
and 3.2. As we anticipated analytically, the DT bound is always tighter than Feinstein’s
bound. For δ = 0.11 and ǫ = 0.001, we can see in Fig. 3.1 that for blocklengths greater
than n∗ ≈ 150, Theorem 18 gives better results than Gallager’s bound. In fact, for large
n the gap to the converse upper bound of the new lower bound is less than half that of
Gallager’s bound. Finally, the RCU bound (3.10) is uniformly better than all other bounds.
In fact for all n ≥ 20 the difference between (3.10) and the converse is within 3− 4 bits in
logM . This tendency remains for other choices of δ and ǫ. Although, as Fig. 3.2 shows, for
smaller ǫ and/or δ, Gallager’s bound (designed to analyze the regime of exponentially small
ǫ) performs better (i.e., the value of n∗ is greater). A similar relationship between the two
bounds holds, qualitatively, in the case of the AWGN channel, see Section 4.4.



55

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

Blocklength, n

R
at

e,
 b

it/
ch

.u
se

 

 

Capacity
Converse
RCU
DT
Gallager
Feinstein

Figure 3.1: Rate-blocklength tradeoff for the BSC with crossover probability δ = 0.11 and
maximal block error rate ǫ = 10−3: comparison of the bounds.

By Theorem 41, we have

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +

1

2
log n+O(1) , (3.58)

where C and V are the capacity and dispersion of the BSC. Interestingly, Gallager’s bound
only yields the bound nC+O(

√
n) with a suboptimal

√
n term; both Feinstein and the DT

bound (Theorem 18) yield the correct
√
n term, but Feinstein’s bound is worse in terms of

the log n term. Finally, only the RCU bound (Theorem 17) achieves the correct log n term.
So we can see that asymptotic analysis of the bounds correctly predicts their relative merit
observed in numerical computations on Fig. 3.1 and 3.2.

The primary use of Theorem 41 for non-asymptotic analysis is in obtaining the (refined)
normal approximation:

logM∗(n, ǫ) ≈ n(log 2− h(δ)) −
√

nδ(1 − δ)Q−1(ǫ) log
1− δ
δ

+
1

2
log n . (3.59)

In Figs. 3.3 and 3.4 we compare the normal approximation (3.59) and the best of the up-
per and lower bounds, computed above. We make two conclusions from the plot: 1) knowl-
edge of the log n term improves the precision of the general normal approximation (2.23);
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Figure 3.2: Rate-blocklength tradeoff for the BSC with crossover probability δ = 0.11 and
maximal block error rate ǫ = 10−6: comparison of the bounds.

2) although slightly pessimistic, expression (3.59) can serve as an excellent substitute for
complex computations of the bounds (3.10) and (3.20).

3.3 Binary erasure channel (BEC)

This section illustrates the theory developed so far as applied to the BEC. Recall that
BEC(n, δ) for blocklength n and erasure probability δ is defined as follows: the input
alphabet A = {0, 1}n, the output alphabet B = {0, e, 1}n, and the channel acts as

PY n|Xn(yn|xn) =







(
δ

1−δ

)#{yj=e}
(1− δ)n, if yn and xn agree on unerased positions ,

0, otherwise .

(3.60)

3.3.1 Bounds

Choosing PX in Theorems 17 and 18 to be equiprobable on the input alphabet we obtain:
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Figure 3.3: Rate-blocklength tradeoff for the BSC with crossover probability δ = 0.11 and
maximal block error rate ǫ = 10−3: normal approximation.

Corollary 42 For the BEC with erasure probability δ, there exists an (n,M, ǫ) code (aver-
age probability of error) such that (RCU bound)

ǫ ≤
n∑

t=0

(
n

t

)

δt(1− δ)n−t2−[n−t−log2(M−1)]+ . (3.61)

and (DT bound)

ǫ ≤
n∑

t=0

(
n

t

)

δt(1− δ)n−t2−[n−1−t−log2(M−1)]+ . (3.62)

Whenever M = 2k for integer k, the statement holds for maximal probability of error as
well.

Proof: The proof follows once we notice that with equiprobable input distribution it
follows that the information density equals

i(xn; yn) =

{

#{j : yj 6= e} · log 2 , if yn and xn agree on unerased positions ,

−∞, otherwise .
(3.63)
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Figure 3.4: Rate-blocklength tradeoff for the BSC with crossover probability δ = 0.11 and
maximal block error rate ǫ = 10−6: normal approximation.

Since the number of erasures is distributed binomially with parameters n and δ, results
follow from Theorems 17 and 18 at once.

The statement on the maximal probability of error is explained in Appendix C. �

A number of remarks are in order:

1. For the BEC, the DT bound (3.62) is obviously strictly stronger than the RCU
bound (3.61). Since the RCU bound is always stronger than Gallager’s bound, we see
that the DT bound in this case dominates both the RCU and Gallager’s bound, and
thus achieves the random-coding error-exponent.

2. With equiprobable PXn the generalization of the DT bound to the maximal probability
of error, Theorem 23, yields the following upper bound on maximal error probability,
see (2.178):

ǫ ≤ E

[

2−(Z−log(M−1))+
]

, (3.64)

where Z is binomial with parameters n and 1− δ, Z ∼ B(n, 1 − δ). Notice that this
expression coincides exactly with the RCU bound (3.61), except that (3.64) upper-
bounds maximal probability of error. Since Theorem 23 is stronger than Feinstein’s
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bound, we can immediately conclude that, for the BEC, the DT bound (3.62) applied
with M = 2k dominates the RCU, Feinstein and Gallager bounds for all blocklengths
and rates.

3. The average block erasure probability for a random ensemble of all [k, n] linear codes
is given in [25] as follows:

PRLC(2k) =

n∑

u=k

(
n

u

)

δn−u(1−δ)u
[

1−
k−1∏

a=0

(1− 2a−u)

]

+

k−1∑

u=0

(
n

t

)

δt(1−δ)n−t . (3.65)

If we denote the right-hand side of (3.61) by PRCU (M) and the right-hand side
of (3.62) by PDT (M) then it follows that

PDT (2k) ≤ PRLC(2k) ≤ PRCU (2k) . (3.66)

Indeed, the left-hand inequality in (3.66) follows by applying

[

1−
k−1∏

a=0

(1− 2a−u)

]

≥ 1− (1− 2k−1−u) (3.67)

to (3.65). The right-hand inequality in (3.66) follows from (3.65) by applying to it
the following inequality:

[

1−
k−1∏

a=0

(1− 2a−u)

]

≤ 1− (1− 2k−u) , (3.68)

which is a consequence of
∏

j(1− bjx) ≥ 1−∑j bjx (for bj ≥ 0 and x ≥ 0).

In this way, (3.66) demonstrates that the DT bound (3.62) results in a tighter bound
on probability of error compared to the bounds in [25]. However, the additional
advantage of PRLC and PRCU is that they upper-bound the block erasure probability,
and thus for those codes all errors are detected.

4. For a random ensemble of (non-linear) codebooks of size M and blocklength n, the
average block erasure probability can be easily computed in closed form:

PRC(M) =

n∑

u=0

(
n

u

)

δn−u(1− δ)u
[
1− (1− 2−u)M−1

]
. (3.69)

To compare PRLC(2k) and PRC(2k) we apply

1− (1− 2−t)M < 1−
∏

j

(1−Mj2
−t) , (3.70)

which holds as long as
∑
Mj = M , to (3.69) to obtain:

PRC(2k) < PRLC(2k) (3.71)

and, therefore, in this case random coding over all codebooks is strictly better than
random coding over linear codebooks only.
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Figure 3.5: Comparison of the DT-bound (3.62) and the combinatorial bound of
Ashikhmin (3.4) for the BEC with erasure probability δ = 0.5 and probability of block
error ǫ = 10−3.

5. Finally, a comparison with the BEC-specific bound of Ashikhmin (3.4) is given on
Fig. 3.5. The bounds are within one bit of each other, the winner depending on a
particular value of n. The zigzagging of the plot of (3.4) is a behavior common to
all bounds that are restricted to integer values of log2M . Again, computation-wise
the DT bound is much more preferable: the complexity of (3.4) is O(n3), compared
to O(n) for the DT bound (3.62). Analytical comparison of the bound (3.4) and the
DT bound is complicated, since the random ensembles are different (in particular, the
random ensemble in Ashikhmin’s bound does not contain codebooks with repeated
codewords).

The upper bound on code size given by Theorem 34 (with capacity achieving output
distribution) is improved by the following theorem, which is also stronger than a related
bound, sometimes called a singleton bound, such as in [5].

Similar to Section 3.2.1, upper bounds on probability of error can be converted to lower
bounds on logM∗(n, ǫ); see (3.15).

Theorem 43 For the BEC with erasure probability δ, the average error probability of an
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(n,M, ǫ) code satisfies

ǫ ≥
n∑

ℓ=⌊n−log2 M⌋+1

(
n

ℓ

)

δℓ(1− δ)n−ℓ

(

1− 2n−ℓ

M

)

, (3.72)

even if the encoder knows the location of the erasures non-causally5 .

Proof: The main idea is to apply the following, self-evident result: Suppose that X,Y
and {error} are, as usual, the input codeword, the channel output and the error event.
Denote by Z a random variable (possibly dependent on X and Y ). If there exists a function
λ(z) such that for any z ∈ Z

P[error|Z = z] ≥ λ(z) , (3.73)

then we have
ǫ ≥

∑

z∈Z

λ(z)P[Z = z] . (3.74)

We define Z to be the number of erasures in the output Y n. Then, Z takes values from

0 to n. The conditional channel P
(z)
Y |X is then simply a noiseless channel of n − z channel

uses (erasures essentially only decrease blocklength). Thus, the following bound holds for
the code with M codewords even if it knows the locations of the erasures non-causally:

P [error|Z = z] ≥
(

1− 2n−z

M

)+

. (3.75)

Indeed, when 2n−z > M the bound is obvious. Otherwise, there are M − 2n−z messages
whose conditional probability of error is 1.

Finally, we do not need to find a lower-bound measure µ because we can calculate
P [Z = z|X = x] exactly for any x:

P [Z = z|X = x] =

(
n

z

)

δz(1− δ)n−z . (3.76)

The application of (3.74) yields the result. �

3.3.2 Asymptotic expansion

Theorem 44 For the BEC with erasure probability δ, we have

logM∗(n, ǫ) = n(1− δ) log 2−
√

nδ(1 − δ)Q−1(ǫ) log 2 +O(1) , (3.77)

regardless of whether ǫ is maximal or average probability of error.

5The same result holds for a q-ary erasure channel with 2n−l−k replaced by qn−l−k; also such a q-ary
extension is achievable by q-ary maximum distance separable, MDS, codes.
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Figure 3.6: Rate-blocklength tradeoff for the BEC with erasure probability δ = 0.5 and
maximal block error rate ǫ = 10−3: comparison of the bounds.

Proof: Any (n,M, ǫ) code (average probability of error) must satisfy (3.72). Thus we
must simply find M so large that the left-hand side of (3.72) is larger than a given ǫ. We
can then conclude that M∗(n, ǫ) is upper-bounded by such M .

First, we observe that by (3.40)

n∑

ℓ=⌊n−log M⌋+1

(
n

ℓ

)

δℓ(1− δ)n−ℓ2n−ℓ−log M ≤ 2G1√
n
. (3.78)

Then, denote by B the usual Berry-Esseen constant for a binomial distribution and set

logM = n(1− δ)−
√

nδ(1 − δ)Q−1

(

ǫ+
B + 2G1√

n

)

. (3.79)

Then from the Berry-Esseen Theorem we obtain

∑

l≥n−log M

(
n

l

)

δl(1− δ)n−l ≥ ǫ+
2G1√
n
. (3.80)

Finally from (3.78) we conclude that

n∑

ℓ=⌊n−log M⌋+1

(
n

ℓ

)

δℓ(1− δ)n−ℓ
(

1− 2n−ℓ−log M
)

≥ ǫ (3.81)
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Figure 3.7: Rate-blocklength tradeoff for the BEC with erasure probability δ = 0.5 and
maximal block error rate ǫ = 10−6: comparison of the bounds.

and hence

logM∗(n, ǫ) ≤ n(1− δ)−
√

nδ(1− δ)Q−1

(

ǫ+
B + 2G1√

n

)

=

n(1− δ)−
√

nδ(1− δ)Q−1(ǫ) +O(1) , (3.82)

where the last step is by Taylor’s formula.
For the achievability part we use (3.64), which gives the bound on the maximal proba-

bility of error. We rewrite the left-hand side (3.64) as follows:

∑

k>log M

(
n

k

)

(1− δ)kδn−kM2−k +
∑

k≤log M

(
n

k

)

(1− δ)kδn−k . (3.83)

Again, by using (3.40) we note that the first term is less than 2G1√
n

; then by setting

logM = n(1− δ)−
√

nδ(1− δ)Q−1

(

ǫ− B + 2G1√
n

)

(3.84)
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Figure 3.8: Rate-blocklength tradeoff for the BEC with erasure probability δ = 0.5 and
maximal block error rate ǫ = 10−3: normal approximation.

we make the entire expression (3.83), by Berry-Esseen, smaller than ǫ. In this way, we have
established that

logM∗(n, ǫ) ≥ n(1− δ)−
√

nδ(1 − δ)Q−1

(

ǫ− B + 2G1√
n

)

. (3.85)

After applying Taylor’s formula to Q−1 we prove the theorem. �

3.3.3 Numerical comparison

The numerical evaluation of the RCU bound (3.61), the DT bound (3.62), Feinstein’s bound,
Gallager’s bound and the converse bound (3.72) is shown in Figs. 3.6 and 3.7. As discussed
previously, the DT bound uniformly beats all other bounds.

According to Theorem 44, as n→∞ the fundamental limit logM∗(n, ǫ) behaves as

log2M
∗(n, ǫ) = n(1− δ)−

√

nδ(1 − δ)Q−1(ǫ) +O(1) . (3.86)

Similarly to the BSC, for the BEC Gallager’s bound does not give a correct lower-order
term at all; Feinstein’s bound yields the correct

√
n term but a suboptimal logn term; both

the RCU (3.61) and the DT (3.62) bounds achieve an optimal logn term.
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Figure 3.9: Rate-blocklength tradeoff for the BEC with erasure probability δ = 0.5 and
maximal block error rate ǫ = 10−6: normal approximation.

The value of Theorem 44 for non-asymptotic analysis is in providing an estimate of the
fundamental limit at finite n (normal approximation):

log2M
∗(n, ǫ) ≈ n(1− δ) −

√

nδ(1− δ)Q−1(ǫ) . (3.87)

The comparison of this approximation with the sharp bounds discussed above is given in
Figs 3.8 and 3.9. Again, we notice a remarkable precision of the simple formula (3.87).

3.4 General discrete memoryless channel (DMC)

The DMC has finite input alphabet A, finite output alphabet B, and the conditional prob-
abilities are defined as

PY n|Xn(yn|xn) =
n∏

i=1

W (yi|xi) , (3.88)

where W (y|x) is a conditional probability mass function from A to B; for convenience we
denote

Wx
△
= W (·|x) . (3.89)
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The following functions describe the fundamental limits of the DMC:

M∗(n, ǫ) = max{M : ∃ (n,M, ǫ)-code (maximal probability of error)} , (3.90)

M∗
avg(n, ǫ) = max{M : ∃ (n,M, ǫ)-code (average probability of error)} . (3.91)

Note that the input probability distributions are elements of R|A| constrained to an
(|A| − 1)-dimensional simplex. We denote this simplex by P. In this way P is a compact
metric space. We also emphasize its subsets (“n-types”) indexed by n = 1, . . .:

Pn
△
= {P ∈ P : nP (x) ∈ Z+ ∀x ∈ A} . (3.92)

For each fixed P ∈ P define:

• output distribution PW as PW (y) =
∑

x P (x)W (y|x) .

• for an arbitrary Q ∈ P s.t. P ≪ Q recall from (2.5), that the divergence variance is
given by

V (P ||Q) =
∑

x

P (x)

[

log
P (x)

Q(x)

]2

−D(P ||Q)2 . (3.93)

• for an arbitrary QY on B define the conditional divergence variance as

V (W ||QY |P ) =
∑

x

P (x)V (Wx||QY ) . (3.94)

Note that V (W ||QY |P ) is defined only provided that Wx ≪ QY for P -almost all x.

• mutual information, I(P,W ) = E [i(X;Y )], or

I(P,W ) =
∑

x,y

P (x)W (y|x) log
W (y|x)
PW (y)

. (3.95)

It is known that I(P,W ) is continuous on P so that

C = max
P∈P

I(P,W ) (3.96)

is a well-defined, finite quantity.

• unconditional information variance U(P,W ) = Var(i(X;Y )), or

U(P,W ) =
∑

x,y

P (x)W (y|x)
[

log
W (y|x)
PW (y)

]2

− [I(P,W )]2 (3.97)

= V (P ×W ||P × PW ) . (3.98)

• conditional information variance V (P,W ) = E [Var(i(X;Y ) |X)], or

V (P,W ) =
∑

x

P (x)

{
∑

y

W (y|x)
[

log
W (y|x)
PW (y)

]2

− [D(Wx||PW )]2

}

(3.99)

= V (W ||PW |P ) (3.100)
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Since in general
∑

x

P (x)[D(Wx||PW )]2 6= [I(P,W )]2 (3.101)

values of U(P,W ) and V (P,W ) do not necessarily coincide. For example, take a

binary-input binary-output noiseless channel and P =
[
1
4 ,

3
4

]T
then V (P,W ) = 0

while U(P,W ) ≈ 0.47 bit2. We always have

V (P,W ) ≤ U(P,W ) , (3.102)

with the equality if and only if

D(Wx||PW ) = I(P,W ) for P -almost all x . (3.103)

• third absolute moment of the information density

T (P,W ) =
∑

x,y

P (x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
PW (y)

−D(Wx||PW )

∣
∣
∣
∣

3

. (3.104)

• third unconditional absolute moment of the information density

Tu(P,W ) =
∑

x,y

P (x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
PW (y)

− I(P,W )

∣
∣
∣
∣

3

. (3.105)

• a subset of capacity achieving distributions Π by

Π
△
= {P ∈ P : I(P,W ) = C} . (3.106)

Note that Π = I−1(C) is a compact subset of P.

• maximal and minimal conditional variances as

Vmax = max
P∈Π

V (P,W ) = max
P∈Π

U(P,W ) , (3.107)

Vmin = min
P∈Π

V (P,W ) = min
P∈Π

U(P,W ) . (3.108)

The reason for writing max and min instead of sup and inf, as well as the right-most
equalities in (3.107) and (3.108) is to be explained shortly (see Lemma 46). Note that
for the purpose of defining Vmax and Vmin both quantities V (P,W ) and U(P,W ) are
equivalent. We introduce both since one appears naturally in the achievability bound
and the other in the converse.

• Define the (unique) capacity achieving output distribution P ∗
Y by P ∗

Y = P ∗W , where
P ∗ is any capacity achieving input distribution.

• W is an exotic DMC if Vmax = 0 and there exists an input letter x0 such that: a) for
any capacity achieving P : P (x0) = 0, b) D(Wx0||P ∗

Y ) = C, and c) V (Wx0 ||P ∗
Y ) > 0.
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As usual, we take 0 log 0 = 0, 0 log2 0 = 0 and 0 ·D(Wx||PW ) = 0 (note that D(Wx||PW )
maybe infinite).

The purpose of this Section is to give a proof of the following result:6

Theorem 45 The ǫ-dispersion of the DMC W is

Vǫ =

{

Vmin , ǫ < 1/2 ,

Vmax , ǫ > 1/2 .
(3.109)

More specifically, as n→∞ we have

logM∗(n, ǫ) = nC −
√

nVǫQ
−1(ǫ) +O(log n) , (3.110)

logM∗
avg(n, ǫ) = nC −

√

nVǫQ
−1(ǫ) +O(log n) , (3.111)

unless the DMC is exotic and ǫ > 1/2. In any case, we have7

logM∗(n, ǫ) ≥ nC −
√

nVǫQ
−1(ǫ) +O(1) . (3.112)

For the exotic DMC and ǫ > 1/2 we have

logM∗(n, ǫ) = nC +O
(

n
1
3

)

, (3.113)

and the estimate of the order n
1
3 cannot be improved in general.

3.4.1 Comparison to Strassen [1]

Strassen [1] claims the validity of (3.110), (3.111) and (3.112) for all DMCs. For example,
in [1, (1.15)] Strassen states that for any DMC and n sufficiently large we have

logM∗(n, ǫ) ≤ nC −
√

nVǫ + |B| log n . (3.114)

This cannot be true for ǫ > 1/2 as (3.113) and the counter-example in Theorem 51 show. So
the converse part for ǫ > 1/2 in [1] is flawed. For the case of ǫ < 1/2 the result in Theorem 45
coincides with Strassen’s result. In the rest of the Section we use the bounds we derived in
Chapter 2 to give an alternative proof that clearly demonstrates that the expansions up to
o(
√
n) are significantly easier to obtain than O(log n) expansions (the difference being that

of using Lemma 49 instead of Lemma 48; see discussion below). In particular, with the
approach of restricting to constant composition subcodes, the O(log n) converse results are
impossible to obtain without precise analysis of the second-order derivatives (Hessian) of
the mutual information function (see the counter-example after Lemma 48). Note that the
sufficient condition given in [32, Theorem 49] is in fact unnecessary according to Strassen [1].
Also, Strassen does indeed allude to the average error probability analysis in the discussion
on p. 31, contrary to what is claimed in [32, p. 2332].

6Recall the Definition 8 for ǫ-dispersion.
7This estimate of the log n term cannot be improved without additional assumptions, because the BEC

has zero log n term; see Theorem 44.
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3.4.2 Achievability bound

We start by showing some properties of U(P,W ), V (P,W ) and T (P,W ):

Lemma 46 The functions U(P,W ), V (P,W ), T (P,W ) and Tu(P,W ) are continuous on
P. Functions U(P,W ) and V (P,W ) coincide on Π.

Note that Lemma 46 justifies taking min and max in (3.108) and (3.107), as well as the
right-most equalities therein.

Proof: First, note that U(P,W ), V (P,W ) and T (P,W ) are well-defined and finite.
Indeed, each one is a sum of finitely many terms. We must show that every term is well-
defined. This is true since, whenever W (y|x) = 0 or PW (y) = 0 or P (x) = 0, we have
P (x)W (y|x) = 0 and thus

P (x)W (y|x)
[

log
W (y|x)
PW (y)

]2

(3.115)

and

P (x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
PW (y)

−D(Wx||PW )

∣
∣
∣
∣

3

(3.116)

are both equal to zero by convention. On the other hand, if P (x) > 0 then Wx ≪ PW and
thus D(Wx||PW ) is a well-defined finite quantity.

Second, take a sequence Pn → P . Then we want to prove that each term in U(P,W ) is
continuous. In other words

Pn(x)W (y|x)
[

log
W (y|x)
PnW (y)

]2

→ P (x)W (y|x)
[

log
W (y|x)
PW (y)

]2

. (3.117)

If W (y|x) = 0 then this is obvious. If Pn(x) 6→ 0 then this is also true since the argument
of the logarithm is bounded away from 0 and +∞. So, we assume Pn(x)→ 0 and we must
show that then the complete quantity also tends to 0. For Pn(x) > 0 we notice that

log{Pn(x)W (y|x)} ≤ logPnW (y) ≤ 0 . (3.118)

Thus,

| logW (y|x)− logPnW (y)|2 ≤ 2(log2W (y|x) + log2{Pn(x)W (y|x)}) . (3.119)

But then,

0 ≤ Pn(x)W (y|x)
[

log
W (y|x)
PnW (y)

]2

≤ 2Pn(x)W (y|x)(log2W (y|x) + log2{Pn(x)W (y|x)}) .
(3.120)

This is also true for Pn(x) = 0 assuming the convention 0 log2 0. Now continuity follows
from the fact that x log2{αx} is continuous for x ∈ [0, 1] when defined as 0 for x = 0. Thus,
continuity of U(P,W ) is established.

To establish continuity of V (P,W ) we are left to prove that

∑

x

P (x)D(Wx||PW )2 (3.121)
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is continuous in P . Let us expand a single term here:

P (x)

[
∑

y

W (y|x) log
W (y|x)
PW (y)

]2

. (3.122)

First notice that if Pn(x) 6→ 0 then continuity of this term follows from the fact that the
argument of the logarithm is bounded away from 0 and +∞ for all y with W (y|x) > 0. So
we are left with the case Pn(x)→ 0. To that end let us prove the inequality for P (x) > 0:

D(Wx||PW ) ≤ 2H(Wx) + log
1

P (x)
. (3.123)

From here continuity follows as we can see that Pn(x)D(Wx||PnW )2 → 0 because x log x
and x log2 x are continuous at zero.

We now prove inequality (3.123). From (3.118) we see that

∣
∣
∣
∣
log

W (y|x)
PW (y)

∣
∣
∣
∣
≤ log

1

W (y|x) + log
1

P (x)W (y|x) = 2 log
1

W (y|x) + log
1

P (x)
. (3.124)

Then,

D(Wx||PW ) ≤
∑

x

W (y|x)
∣
∣
∣
∣
log

W (y|x)
PW (y)

∣
∣
∣
∣
≤ 2H(Wx) + log

1

P (x)
. (3.125)

Thus V (P,W ) is continuous in P .
To establish continuity of T (P,W ), we again consider a single term:

P (x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
PW (y)

−D(Wx||PW )

∣
∣
∣
∣

3

. (3.126)

If W (y|x) = 0 then this term is equal to zero regardless of P , and thus is continuous in P .
Assume W (y|x) > 0. Take Pn → P . If P (x) 6= 0 then PnW (y) is bounded away from 0 and

thus log W (y|x)
PnW (y) tends to log W (y|x)

PW (y) . Similarly, for any y′ such that W (y′|x) > 0 we have

that PnW (y′) is also bounded away from 0. Thus, D(Wx||PnW ) tends to D(Wx||PW ).
We now assume that Pn(x) → 0 and must prove that (3.126) tends to 0. Using the

inequality |a+ b|3 ≤ 4(|a|3 + |b|3), we obtain

Pn(x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
PnW (y)

−D(Wx||PnW )

∣
∣
∣
∣

3

≤ (3.127)

4Pn(x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
PnW (y)

∣
∣
∣
∣

3

+ 4Pn(x)W (y|x)D3(Wx||PnW ) . (3.128)

Application of (3.123) immediately proves that the second term in the last inequality tends
to zero. Continuity of the first term is established exactly like (3.117) with (3.119) replaced
by

| logW (y|x)− log PnW (y)|3 ≤ 4(− log3W (y|x)− log3{Pn(x)W (y|x)}) . (3.129)
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This proves continuity of T (P,W ). A completely similar proof shows continuity of Tu(P,W ).
Finally, V (P,W ) and U(P,W ) coincide on Π for the reason that, under any capacity-

achieving distribution it is known that

D(Wx||PW ) = E [i(X;Y ) |X = x] = C P -a.s. . (3.130)

Indeed, then

U(P,W )
△
= E

[
(i− E i)2

]
= E

[
(i− C)2

]
= E

[
(i− E [i |X])2

] △
= V (P,W ) . (3.131)

The last equality is by the definition of V (P,W ) as the average conditional variance. �

The fact that U(P,W ) and V (P,W ) coincide on Π is very important. Indeed, remember
the classical proof of capacity and the strong converse. First, we use Feinstein’s lemma to
prove that 1

n logM∗ & E [i(X;Y )]. Then, following Wolfowitz, Theorem 6, we establish
that in fact the upper bound on rate depends on E [i(X;Y ) |X]. However, thanks to the
fact (3.130) the conditional expectation is almost surely a constant.

The next result is needed (in particular) to show the achievability part of Strassen’s
theorem.

Theorem 47 For any P ∈ P, we have

logM∗
avg(n, ǫ) ≥ nI(P,W )−

√

nU(P,W )Q−1(ǫ) +O(1) , (3.132)

if U(P,W ) > 0 and
logM∗(n, ǫ) ≥ nI(P,W ) + log ǫ , (3.133)

if U(P,W ) = 0. If V (P,W ) > 0 then we have

logM∗(n, ǫ) ≥ nI(P,W )−
√

nU(P,W )Q−1(ǫ) +O(1) . (3.134)

Remark: Note that the only case when result (3.132) is not implied by (3.134) is V (P,W ) =
0 and U(P,W ) > 0.

Proof: To show (3.132) select P ∈ P. Let A = An, and choose the product measure Pn

as the distribution of Xn. Passing this distribution through W n induces a joint probability
distribution on (Xn, Y n), and the information density is the sum of independent identically
distributed Zk:

i(Xn;Y n) =

n∑

k=1

log
W (Yk|Xk)

PW (Yk)
=

n∑

k=1

Zk . (3.135)

The random variable Zk has the distribution of i(X;Y ) when (X,Y ) is distributed according
to P ×W . Accordingly, it has mean I(P,W ) and variance U(P,W ), and its third absolute
moment (being a continuous function of P , see Lemma 46) is uniformly bounded on P:

κ = sup
P∈P

Tu(P,W ) <∞ . (3.136)

Suppose that U(P,W ) = 0, and therefore i(Xn;Y n) = nI(P,W ). Then Theorem 23
asserts that there exists an (n,M, ǫ) code (maximal probability of error) for any M and

ǫ ≤ (M − 1) exp{−nI(P,W )} . (3.137)
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In particular, by taking M = ⌈exp{−nI(P,W )}ǫ⌉ we get (3.133).
Now, assume that U(P,W ) > 0 and denote

B
△
=

6κ

U(P,W )3/2
. (3.138)

To use the DT bound, Theorem 18, we need to prove that for some γ the following inequality
holds:

ǫ ≥ E
[
exp

{
− [i(Xn;Y n)− log γ]+

}]
(3.139)

= P[i(Xn;Y n) ≤ log γ] (3.140)

+ γE
[
exp {−i(Xn;Y n)} 1{i(Xn;Y n)>log γ}

]
. (3.141)

Denote for an arbitrary τ

log γ = nI(P,W )− τ
√

nU(P,W ) . (3.142)

According to Theorem 13, we have

|P [i(Xn;Y n) ≤ log γ]−Q(τ)| ≤ B√
n
. (3.143)

For sufficiently large n, let

τ = Q−1

(

ǫ−
(

2 log 2
√

2πU(P,W )
+ 5B

)

1√
n

)

. (3.144)

Then, from (3.143) we obtain

P [i(Xn;Y n) ≤ log γ] ≤ ǫ− 2

(

log 2
√

2πU(P,W )
+ 2B

)

1√
n
. (3.145)

To bound the second term (3.141) we use Lemma 20, to obtain

γ E
[
exp {−i(Xn;Y n)} 1{i(Xn;Y n)>log γ}

]
≤ 2

(

log 2
√

2πU(P,W )
+ 2B

)

1√
n
. (3.146)

Summing (3.145) and (3.146) we prove inequality (3.139). Hence, by Theorem 18 we get

logM∗
avg(n, ǫ) ≥ log γ (3.147)

= nI(P,W )− τ
√

nU(P,W ) (3.148)

= nI(P,W )−
√

nU(P,W )Q−1(ǫ) +O(1) , (3.149)

because according to (3.144) and the differentiability of Q−1 we have

τ = Q−1(ǫ) +O

(
1√
n

)

. (3.150)
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To prove (3.134) we apply Theorem 22 with γ(xn) chosen as follows8

γ(xn) =

{

γ′, Var[i(Xn;Y n)|Xn = xn] ≥ nV (P,W )
2 ,

+∞, otherwise ,
(3.151)

where similar to (3.142) and (3.144) we choose

log γ′ = nI(P,W )−
√

nU(P,W )Q−1

(

ǫ−
(

2 log 2
√

πV (P,W )
+ 7B′

)

1√
n

)

, (3.152)

where

B′ △
=

23/26κ

V (P,W )3/2
. (3.153)

Theorem 22 guarantees existence of the (n,M, ǫ′) code (maximal probability of error) with

ǫ′ ≤ P[i(Xn, Y n) ≤ log γ(Xn)] +M sup
xn

P[i(xn, Y n) > log γ(xn)] . (3.154)

The first term is upper-bounded as follows:

P[i(Xn, Y n) ≤ log γ(Xn)] (3.155)

≤ P[i(Xn, Y n) ≤ log γ′] + P[γ(Xn) =∞] (3.156)

≤ ǫ− 2

(

log 2
√

πV (P,W )
+ 3B′

)

1√
n

+ P[γ(Xn) =∞] (3.157)

≤ ǫ− 2

(

log 2
√

πV (P,W )
+ 3B′

)

1√
n

+ exp{−O(n)} (3.158)

≤ ǫ− 2

(

log 2
√

πV (P,W )
+ 2B′

)

, (3.159)

where (3.157) follows similar to (3.145) after noticing that B′ > B since V (P,W ) < U(P,W )
and (3.158) is by Chernoff bound applied to a sum of bounded i.i.d. random variables:

Var[i(Xn;Y n)|Xn] =

n∑

j=1

V (WXj ||PW ) , (3.160)

and (3.159) holds for all n sufficiently large.
For the second term in (3.154) we have by Lemma 20

M sup
xn

P[i(xn, Y n) > log γ(xn)] ≤ M

γ′
2

(

log 2
√

πV (P,W )
+ 2B′

)

1√
n
. (3.161)

8A similar idea of restricting the codewords to inputs with very small conditional variance appears in
Strassen’s [1] proof of the achievability part of his theorem.
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Thus summing (3.158) and (3.161) we obtain from (3.154) an (n,M, ǫ′) code with ǫ′ ≤ ǫ.
Therefore, for all n sufficiently large

logM∗(n, ǫ) ≥ log γ′ (3.162)

from which (3.134) follows after invoking Taylor’s expansion in (3.152). �

Note that by using the Feinstein bound (2.31) we would not be able to derive such
a strong estimate on log n term. This suboptimality in the logn term is an analytical
illustration of the fact that we have already observed in Sections 3.2.3 and 3.3.3: the
Feinstein bound is not tight enough for the refined analysis of logM∗(n, ǫ) for finite n.

3.4.3 Converse bound

The following results are concerned with the behavior of the maximum of nf(x) +
√
ng(x)

for large n. We need them for the proof of the converse bound.

Lemma 48 Let D be a compact metric space. Suppose f : D → R and g : D → R are
continuous, then we have

max
x∈D

[
nf(x) +

√
ng(x)

]
= nf∗ +

√
ng∗ + o(

√
n) , (3.163)

where

f∗ = max
x∈D

f(x) , (3.164)

g∗ = sup
{x: f(x)=f∗}

g(x) . (3.165)

Proof: Denote

F (x, n) = nf(x) +
√
ng(x) (3.166)

F ∗(n) = max
x∈D

F (x, n) . (3.167)

Then (3.163) is equivalent to a pair of statements:

lim
n→∞

1

n
F ∗(n) = f∗ (3.168)

lim
n→∞

F ∗(n)− nf∗√
n

= g∗ (3.169)

which we are going to prove.
First we note that because of the compactness of D both f and g are bounded. Now

F (x, n) ≤ nf∗+
√
ngmax =⇒ 1

n
F ∗(n) ≤ f∗+

1√
n
gmax =⇒ lim sup

1

n
F ∗(n) ≤ f∗ . (3.170)

On the other hand, if we take x∗ to be any x ∈ D maximizing f(x) then

F ∗(n) = max
x

F (x, n) ≥ F (x∗, n) = nf∗ +
√
ng(x∗) . (3.171)
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Thus

lim inf
1

n
F ∗(n) ≥ f∗ , (3.172)

and the first statement is proved.
Now define

D1 = {x ∈ D : f(x) = f∗} , (3.173)

which is also compact. Thus there exists a (possibly non-unique) maximum x∗∗ of g(x) on
D0:

x∗∗ = argmax
x∈D0

g(x) and g(x∗∗) = g∗ (3.174)

Now by definition
F ∗(n)− nf∗ ≥ F (x∗∗, n)− nf∗ =

√
ng∗ . (3.175)

Thus

lim inf
F ∗(n)− nf∗√

n
≥ g∗ . (3.176)

On the other hand, F (x, n) is continuous on D, so that

F ∗(n) = F (x∗n, n) . (3.177)

Then notice that

F ∗(n)− nf∗ = n(f(x∗n)− f∗) +
√
ng(x∗n) ≤ √ng(x∗n) , (3.178)

where the last inequality follows because f(x∗n) ≤ f∗. Now we see that

F ∗(n)− nf∗√
n

≤ g(x∗n) . (3.179)

On denoting

h(n)
△
=
F ∗(n)− nf∗√

n
, (3.180)

there exists a sequence {nk} such that

h(nk)→ lim suph(n) , as k →∞ . (3.181)

For that sequence we have
h(nk) ≤ g(x∗nk

) . (3.182)

Since the x∗nk
’s all lie in the compact D, there exists a convergent subsequence9 :

yl
△
= x∗nkl

→ x0 . (3.183)

We will now argue that f(x0) = f∗.

9This is the only place where we used the metric-space nature of D. Namely we need sequential compact-
ness to follow from compactness. Thus, in complete generality Lemma 48 holds for an arbitrary topological
space D that is compact and satisfies the first axiom of countability.
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As we have just shown,
1

nkl

F ∗(nkl
)→ f∗ , (3.184)

where
F ∗(nkl

) = F (yl, nkl
) = nkl

f(yl) +
√
nkl

g(yl) . (3.185)

Thus, since g(x) is bounded

lim
l→∞

1

nkl

F ∗(nkl
) = lim

l→∞
f(yl) = f(x0) , (3.186)

where the last step follows from the continuity of f . So indeed

f(x0) = f∗ ⇐⇒ x0 ∈ D0 =⇒ g(x0) ≤ g∗ . (3.187)

Now we recall that
h(nkl

) ≤ g(yl) , (3.188)

and by taking the limit as l→∞ we obtain

lim suph(n) = lim
l→∞

h(nkl
) ≤ lim

l→∞
g(yl) = g(x0) ≤ g∗ . (3.189)

So we have shown

lim
F ∗(n)− nf∗√

n
= g∗ . (3.190)

�

Remarks:

1. The message of this lemma is that, for continuous f and g,

max
x

[

nf(x) +
√
ng(x)

]

≈ nf(x∗∗) +
√
ng(x∗∗) (3.191)

where x∗∗ is found by first maximizing f(x) and then maximizing g(x) over the set of
maximizers of f(x).

2. Lemma 48 can be generalized to any finite set of “basis terms”, instead of {n,√n}.
In this case, the only requirement would be that uj+1(n) = o(uj(n)).

3. Lemma 48 is tight in the sense that term o(
√
n) can not be improved without further

assumptions. Indeed, take f(x) = −x2 and g(x) = x1/k for some k ∈ Z+ on [−1, 1].
Then simple calculation shows that

max
x∈[−1,1]

[
nf(x) +

√
ng(x)

]
= const · n

k−1
2k−1 (3.192)

and the power of n can be arbitrary close to
√
n.

If we assume more about f and g then a stronger result can be stated. The assumptions
below essentially mean that f is twice differentiable near f∗ with negative-definite Hessian
and g is differentiable. As the example (3.192) shows, without these additional assumptions
Lemma 48 is the best possible result.
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Lemma 49 In the notation of previous lemma, denote

D0
△
= {x : f(x) = f∗} , and Dδ

△
= {x : d(x,D0) ≤ δ} , (3.193)

where d(·, ·) is a metric. Suppose that for some δ > 0 and some constants f1 > 0 and f2 we
have

f(x)− f∗ ≤ −f1 d(x,D0)
2 , and (3.194)

|g(x) − g∗| ≤ f2 d(x,D0) . (3.195)

Then,
max
x∈D

[
nf(x) +

√
ng(x)

]
= nf∗ +

√
ng∗ +O(1) . (3.196)

Proof: Because of the boundedness of g(x), the points x∗n must all lie in Dδ for n
sufficiently large. So, for such n we have

max
x∈D

F (x, n) = max
x∈Dδ

F (x, n) (3.197)

(we use the notation from the above proof).
Continue as follows:

max
x∈Dδ

F (x, n) = nf∗ +
√
ng∗ +

[
n(f(x∗n)− f∗) +

√
n(g(x∗n)− g∗))

]
. (3.198)

We can now bound the term in brackets by using conditions in the lemma:

0 ≤
[
n(f(x∗n)− f∗) +

√
n(g(x∗n)− g∗))

]
≤ −f1

(√
nd(x∗n,D0)

)2
+ f2

(√
nd(x∗n,D0)

)
.

(3.199)

Now we see that we have a quadratic polynomial in variable y
△
=
√
nd(x∗n,D0). Since f1 > 0

it has a maximum equal to
f2
2

4f2
1
. Then,

0 ≤
[
n(f(x∗n)− f∗) +

√
n(g(x∗n)− g∗))

]
≤ f2

2

4f2
1

(3.200)

and we see that residual term is O(1). This establishes (3.196). �

To prove the converse bound we introduce the following definitions:

• For any P0 ∈ Pn denote a type of elements xn ∈ An by

T n
P0

△
= {xn : ∀a ∈ A :

n∑

i=1

1{xi=a} = P0(a)} . (3.201)

• For any n and P0 ∈ Pn define:

M∗
P0

(n, ǫ) = max{M : ∃(n,M, ǫ)-code with codewords ∈ T n
P0
} , (3.202)

where ǫ is the maximal probability of error



78

Now we are ready to prove the following theorem.

Theorem 50 Fix a channel W . If ǫ ∈ (0, 1/2] then there exist a number N0 ≥ 1 and a
constant F > 0 such that for all n ≥ N0 and P0 ∈ Pn we have

logM∗
P0

(n, ǫ) ≤ nC −
√

nVminQ
−1(ǫ) +

1

2
log n+ F . (3.203)

If ǫ ∈ (1/2, 1) then there exist a number N0 ≥ 1 and a constant F > 0 such that for all
n ≥ N0 and P0 ∈ Pn we have

logM∗
P0

(n, ǫ) ≤ nC −
√

nVmaxQ
−1(ǫ) +

1

2
log n+ F (3.204)

unless the channel is an exotic DMC in which case we have only

logM∗
P0

(n, ǫ) ≤ nC + Fn1/3 . (3.205)

Proof: We must consider four cases separately:

1. ǫ ≤ 1/2 and Vmin > 0.

2. ǫ ≤ 1/2 and Vmin = 0.

3. ǫ > 1/2 and Vmax > 0.

4. ǫ > 1/2 and Vmax = 0.

It is instructive to begin with some general remarks. For simplicity of notation we
denote elements of A = An and B = Bn by x and y without superscripts. The aim is to
use Theorem 34 with Fn = T n

P0
. To do so we need to select a distribution PY n on An and

compute infx∈T n
P0
βn

α(x, Pn
Y ). Notice that the theorem is concerned only with codebooks

over some fixed type. So, if PY n is a product distribution then βn
α(x, PY ) does not depend

on x ∈ T n
P0

and thus
βn

α(x, PY ) = βn
α(PY ) . (3.206)

For this reason we will simply write βn
α(PY ), and even βn

α, since the distribution PY will be
apparent. After these remarks, treatment of the regular case (Case 1) becomes a straight-
forward application of Theorem 34, while for Case 2 we need an original method proposed
by Strassen.

Case 1. Denote the closed δ-neighborhood of Π as

Πδ
△
= {P ∈ P : d(P,Π) ≤ δ} . (3.207)

Here d(·, ·) denotes Euclidean distance between vectors of R|A|.
We fix some δ > 0 to be determined. First, we find δ1 small enough so that everywhere

on Πδ1 we have V (P,W ) ≥ Vmin/2. This is possible by the continuity of V (P,W ).
Without loss of generality, we can assume that B does not have inaccessible outputs, i.e.

for every y0 ∈ B there is an x0 ∈ A such that W (y0|x0) > 0. Then, it is well known that
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for any P1, P2 ∈ Π the output distributions coincide, i.e. P1W = P2W = P ∗
Y , and also that

this unique P ∗
Y dominates all W (·|x). Since all outputs are accessible, this implies that

P ∗
Y (y) > 0, ∀y ∈ B . (3.208)

Now for each y, the function PW (y) is linear in the input distribution P , and thus there is
some δ2 > 0 such that in the closed δ2-neighborhood of Π we have PW (y) > 0 for all y ∈ B.
Set δ = min(δ1, δ2).

Fix n and P0 ∈ Pn. Choose the distribution PY on An as the n-fold product of P0W .
Also set α = 1− ǫ. Then by Theorem 34 and the argument above we have

logM∗
P0

(n, ǫ) ≤ − log βn
α(x, PY ) (3.209)

where x is any element of T n
P0

.
The idea for lower-bounding βn

α is to apply Lemma 14 if P0 ∈ Πδ and Lemma 15 other-
wise. In both cases, Pi = QY |X=xi

and Qi = P0W . Note that there are nP0(1) occurrences
of PY |X=1 among the Pi’s, nP0(2) occurrences of PY |X=2 etc. Thus, the quantities defined
in Lemma 14 become

Dn = I(P0,W ) , and Vn = V (P0,W ) . (3.210)

Suppose that P0 ∈ Pn \ Πδ; then, applying Lemma 15 we obtain

logM∗
P0

(n, ǫ) ≤ − log βn
α ≤ nI(P0,W ) +

√

2nV (P0,W )

1− ǫ + log
1− ǫ

2
. (3.211)

Denote,
C ′ = sup

P∈P\Πδ

I(P,W ) < C , MV = max
P∈P

V (P,W ) <∞ . (3.212)

Then, continuing the bound, we have

logM∗
P0

(n, ǫ) ≤ nC ′ +

√

2MV

1− ǫ
√
n+ log

1− ǫ
2

. (3.213)

Since C ′ < C we can see that, even with F = 0, there exists N1 such that for all n ≥ N1

the right-hand side of (3.213) is below the right-hand side of (3.203). So this proves the
theorem for P0 ∈ Pn \ Πδ.

Now, consider P0 ∈ Πδ. Remember, that Tn in Lemma 14 is in fact

Tn =
∑

x,y

P0(x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
P0W (y)

−D(Wx||P0W )

∣
∣
∣
∣

3

= T (P0,W ) . (3.214)

As shown in Lemma 46 function T (P0,W ) is continuous on P and thus has a finite upper-
bound:

Tn ≤MT <∞ . (3.215)

On the other hand, over Πδ we have V (P0,W ) ≥ Vmin/2 > 0. In summary, we can upper
bound Bn in Lemma 14 as

Bn
△
= 6

Tn

V
3/2
n

≤MB
△
=

6 · 23/2MT

V
3/2
min

. (3.216)
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Thus we are ready to apply Lemma 14, namely to use (2.87) with ∆ = MB − Bn + 1 ≥ 1
and to conclude that, for n sufficiently large,

logM∗
P0

(n, ǫ) ≤ nI(P0,W ) +
√

nV (P0,W )Q−1

(

α− MB + 1√
n

)

+
1

2
log n . (3.217)

For n large, depending on MB , we can expand Q−1 using Taylor’s formula. In this way, we
can conclude that there is a constant F1 such that

Q−1

(

α− MB + 1√
n

)

≤ Q−1(α) +
F1√
n
. (3.218)

Then for such n and a constant F2 (remember V (P0,W ) ≤MV ), we have

logM∗
P0

(n, ǫ) ≤ nI(P0,W ) +
√

nV (P1,W )Q−1(α) +
1

2
log n+ F2 . (3.219)

To conclude the proof we must maximize the right-hand side over P0 ∈ Πδ. Note that
this is exactly the case treated in Lemmas 48 and 49. We want to use the latter one and
need to check its conditions. From the definitions of I(P,W ) and V (P,W ) we can see that

on Πδ they are infinitely differentiable functions. This is because all terms log W (y|x)
PW (y) have

argument bounded away from 0 and +∞ by the choice of Πδ. Consequently, the conditions
of Lemma 49 on g are automatically satisfied. We must now check the conditions on f .

For this we can think of I(P,W ) as a function of P only, and we write ∇I(P ) and H(P )
for the gradient vector and Hessian matrix correspondingly.

To check conditions on f in Lemma 49 it is sufficient to prove that for any P ∗ ∈ Π:

1. kerH(P ∗) = kerW . By kerW we understand all |A|-vectors v such that
∑

x∈A v(x)W (y|x) =
0; and

2. the largest non-zero eigenvalue of H(P ∗) is negative and bounded away from zero
uniformly in the choice of P ∗ ∈ Π.

We first show why these two conditions are sufficient. It is known that Π consists of
all distributions P that satisfy two conditions: 1) PW = P ∗

Y ; and 2) P (x) > 0 only when
D(Wx||P ∗

Y ) = C. Now take some P ′ 6∈ Π and denote by P ∗ the projection of P ′ onto a
compact Π. Then write

P ′ = P ∗ + v = P ∗ + v0 + v⊥ , (3.220)

where v0 is projection of v = (P ′ − P ∗) onto kerW and v⊥ is orthogonal to kerW . Note
that d(P ′,Π) = ||v|| ≤ δ. By Taylor’s expansion we have

I(P ′) = I(P ∗) + (∇I(P ∗), v0 + v⊥) +
1

2
(H(P ∗)v⊥, v⊥) + o(||v||2) . (3.221)

Here we used the assumed fact that (H(P ∗)v0, v0) = 0. Since v0 ∈ kerW but P ∗ + αv0
is not in Π for any α > 0, we conclude that shifting along v0 must involve inputs with
D(Wx||P ∗

Y ) < C. But then I(P,W ) decays linearly along this direction, i.e. there is some
constant f3 > 0 such that

I(P ∗ + v0)− I(P ∗) = (∇I(P ∗), v0) ≤ −f3||v0|| ≤ −f3||v0||2 (3.222)



81

(the last inequality assumes δ ≤ 1). Then, substituting this into expansion for I(P ′) and
upper-bounding (∇I, v⊥) by zero we obtain

I(P ′)− I(P ∗) ≤ −f3||v0||2 −
1

2
λ||v⊥||2 + o(||v||2) , (3.223)

where λ is the absolute value of the maximal non-zero eigenvalue of H(P ∗). We will show
that λ is uniformly bounded away from zero for any P ∗ ∈ Π. So we see that indeed I(P,W )
decays not slower than quadratically in d(P,Π).

Now we need to prove the assumed facts about the Hessian H(P ). The differentiation
can be performed without complications since on Πδ we always have PW (y) > 0. After
some algebra we get

Hij
△
=

∂2I(P )

∂P (i)∂P (j)
= − log e ·

∑

y

W (y|i)W (y|j)
PW (y)

. (3.224)

Thus, for any vector v we have

(Hv, v) =
∑

viHijvj = −
∑

y

(
∑

i viW (y|i))2
PW (y)

≤ − ||vW ||
2

(PW )max
, (3.225)

where we have denoted formally vW =
∑

x∈A v(x)W (y|x), which is a vector of dimension
|B|. From (3.225) we can see that indeed (Hv, v) = 0 if and only if vW = 0. In addition,

the maximal non-zero eigenvalue of H(P ) is always smaller than λmin+(WW T )
(PW )max

for all P ∈ Π.

So Lemma 49 applies to (3.219), and thus

logM∗
P0

(n, ǫ) ≤ nC +
√

nVminQ
−1(α) +

1

2
log n+O(1) . (3.226)

This implies (3.203) if we note that Q−1(α) = −Q−1(ǫ).
Case 3. The proof for this case is analogous to that for Case 1, except that when

applying Lemma 49 we must choose g∗ =
√
Vmax because the sign of Q−1(α) is negative

this time. An additional difficulty is that it might be possible that Vmax > 0 but Vmin = 0.
In this case the bound (3.216) is no longer applicable. What needs to be done is to eliminate
types inside Πδ with small variance:

ΠV = {P ∈ Πδ : V (P,W ) < A} . (3.227)

Here A is chosen so that √

2A

1− ǫ < −
√

VmaxQ
−1(ǫ) . (3.228)

Since ǫ > 1/2 it is possible to find such an A. Then, for types in ΠV we can apply the firm
bound in Lemma 15. For remaining types in Πδ \ ΠV the reasoning argument of Case 1
works, after Vmin is replaced by A in (3.216).

Case 2. The idea is to apply Theorem 34, but this time we fix the output distribution
to be PY n = (P ∗

Y )n for all types P0 (before we chose PY n = (P0W )n different for each type
P0). It is well-known that

D(W ||P ∗
Y |P0) ≤ D(W ||P ∗

Y |P ∗) = C . (3.229)
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This fact is crucial for proving the bound.
Note that V (Wx||P ∗

Y ) is defined and finite since all Wx ≪ P ∗
Y . Denote a special subset

of nonzero-variance inputs as

A+
△
= {x ∈ A : V (Wx||P ∗

Y ) > 0} . (3.230)

And also for every P0 ∈ Pn denote m(P0) = nP0(A+) which is the number of nonzero-
variance letters in any x ∈ T n

P0
. Also note that there are minimal and maximal variances

VM ≥ Vm > 0 such that Vm ≤ V (Wx||P ∗
Y ) ≤ VM for all x ∈ A+.

Since PY n is a product distribution, it is true that

logM∗
P0

(n, ǫ) ≤ − log βn
α(x, PY n) (3.231)

for all x ∈ T n
P0

. We are going to apply Lemmas 14 and 15 and so need to compute Dn, Vn

and an upper-bound on Bn. We have

Dn = D(W ||P ∗
Y |P0) and Vn = V (W ||P ∗

Y |P0) . (3.232)

To upper-bound Bn we must lower-bound Vn and upper-bound Tn. Note that

V (W ||P ∗
Y |P0) ≥

m(P0)

n
Vm . (3.233)

For Tn, we can write

Tn
△
=
∑

x,y

P0(x)W (y|x)
∣
∣
∣
∣
log

W (y|x)
P ∗

Y (y)
−D(Wx||P ∗

Y )

∣
∣
∣
∣

3

=
∑

x

P0(x)T (x) . (3.234)

Here, the T (x)’s are all finite and T (x) = 0 iff x 6∈ A+. Thus, for x ∈ A+ there is one
maximal T ∗ = maxx∈A T (x), and we have

Tn ≤
m(P0)

n
T ∗ . (3.235)

Then, we see that

Bn
△
=

Tn

V
3/2
n

≤
√

n

m(P0)

T ∗

V
3/2
m

△
=

√
n

m(P0)
MB . (3.236)

So we apply Lemma 14 with

∆ =

√
n

m(P0)
(MB + 1)−Bn ≥

√
n

m(P0)
≥ 1 . (3.237)

Using (2.87) and lower-bounding log ∆ via the above bound yields

log βn
α ≥ −nD(W ||P ∗

Y |P0)−
√

nV (W ||P ∗
Y |P0)Q

−1

(

α− MB + 1
√

m(P0)

)

− 1

2
log n . (3.238)

Now, it is an elementary analytical fact that for any α ∈ (0, 1) it is possible to pick an
x0 < α and f > 0 such that

Q−1(α− x) ≤ Q−1(α) + fx ,∀x ∈ [0, x0] (3.239)
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(for α > 1/2 just take f to be a slope of Q−1(y) at y = α for α ≤ 1/2 simply join the point
(α,Q−1(α)) with any (δ,Q−1(δ)) for small δ and set x0 = α− δ). We now split types in Pn

into two classes, PA and PB :

P0 ∈ PA ⇐⇒ m(P0) ≥ m∗ , PB = Pn \ PA . (3.240)

Here m∗ is chosen so that MB+1√
m∗
≤ x0. Then, for all types in PA we have

Q−1

(

α− MB + 1
√

m(P0)

)

≤ Q−1(α) +
f ′

√

m(P0)
. (3.241)

Notice also that with this choice of x0 andm∗, the argument of Q−1 in (3.238) is positive and
the bound is applicable to all types in PA. Substituting (3.229) we have, for any P0 ∈ PA,

log βn
α ≥ −nC −

√

nV (W ||P ∗
Y |P0)Q

−1(α) − f ′
√

nV (W ||P ∗
Y |P0)

m(P0)
− 1

2
log n . (3.242)

Now notice that Q−1(α) ≥ 0 (this is the key difference with Case 4) and also that

V (W ||P ∗
Y |P0) ≤

m(P0)

n
VM . (3.243)

Finally, for P0 ∈ PA we have

logM∗
P0

(n, ǫ) ≤ nC + f ′
√

VM +
1

2
log n . (3.244)

Now for types in PB we have m(P0) < m∗ and thus,

nV (W ||P ∗
Y |P0) ≤ m∗VM . (3.245)

So Lemma 15 yields

logM∗
P0

(n, ǫ) ≤ nC +

√

2m∗VM

α
− log

α

2
. (3.246)

In summary, we see that in both cases, PA and PB , inequalities (3.244) and (3.246) im-
ply (3.203) for n ≥ 1.

Case 4. Fix a type P0 ∈ Pn and use PY n =
∏

(P0W ). Then, a similar argument to that
for Case 2 and Lemma 15 yield

logM∗
P0

(n, ǫ) ≤ nI(P0,W ) +

√

2nV (P0,W )

α
+ log

α

2
(3.247)

for all n ≥ 1. We need to maximize the right-hand side of this bound over P0 ∈ P. This
can be done similarly to Lemma 49. The problem here, however, is that V (P,W ) = 0
for P ∈ Π. Thus, even though V (P,W ) is differentiable in some neighborhood of Π, the
√

V (P,W ) is not. This is how a term of order n1/3 can appear. Indeed, suppose that there
is some direction h along which I(P +αh) decays quadratically, while V (P + αh) is linear.
I.e.,

I(P + αh) = C − f1α
2 + o(α2) , and V (P + αh) = f2αh+ o(α) . (3.248)
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Then it is not hard to see that

max
α

[nI(P + αh) +
√

nV (P + αh)] = nC + f3n
1/3 + o(n1/3) . (3.249)

Such a direction can only exist if all the conditions of the exotic DMC are satisfied. This
can be proved by computing gradients of I(P,W ) and V (P,W ). �

Some notes about the proof are of interest:

• As a by-product of Lemma 15 we can derive a certain converse bound for DMC.
Indeed, denote MV = maxP V (P,W ). Then

M∗(ǫ, n) ≤
∑

P0∈Pn

1

βα(T n
P0
, P0W )

, (3.250)

and

logM∗(ǫ, n) ≤ nC +

√

2nMV

1− ǫ + |A| log(n+ 1)− log
1− ǫ

2
, (3.251)

which are valid for all n and ǫ ∈ (0, 1). The latter bound does not even yield the
right sign of the

√
n term. However, it holds for all n ≥ 1 and also MV can be upper-

bounded so that it depends on |A| but not on W . The resulting bound is better than
Fano’s inequality.

• The method used in the proof of Case 2 is quite useful for symmetric channels. Indeed,
if we take the BSC with parameter δ, then P ∗

Y is equiprobable. As we have seen in
Section 3.2.1, βn

α(x, P ∗
Y n) is the same for all x ∈ An. So, we can lower-bound M∗(n, ǫ)

directly without resorting to a type-by-type analysis:

logM∗(n, ǫ) ≤ − log βn
α . (3.252)

Calculation of the parameters in Lemma 14 yields

Dn = C(δ) , Vn = v(δ) , and Tn = t(δ) , (3.253)

where C(δ), v(δ) and t(δ) are the capacity, dispersion and third moment, respectively,
defined as

C(δ) = log 2 + δ log δ + (1− δ) log(1 − δ) , (3.254)

v(δ) = δ(1 − δ) log2(δ−1 − 1) , (3.255)

t(δ) = δ(1 − δ)(δ2 + (1− δ)2)
∣
∣log3(δ−1 − 1)

∣
∣ . (3.256)

Substituting these expressions into Lemma 14 and using ∆ = 1 we have the following
firm bound for the BSC

logM∗(n, ǫ) ≤ nC(δ)−
√

nv(δ)Q−1

(

ǫ+
t(δ) + v(δ)3/2

√

v(δ)3n

)

+
1

2
log n . (3.257)

The only requirement for validity of this bound is that the argument of Q−1 be less
than 1. Note that we dropped the 6 in the definition of Bn, because the components
are identically distributed; see the remark after the Berry-Esseen Theorem 13. Even
though this bound gives the right asymptotic behavior of logM∗(n, ǫ), it is much
worse than the direct computation of βn

α that we did in Section 3.2.1. Still it is much
better than using Fano’s inequality.
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3.4.4 Asymptotic expansion

Proof of Theorem 45: Theorem 47 yields, by taking P ∈ P to be the distribution
that achieves capacity and Vǫ, the bound (3.112). Indeed, if Vǫ = 0 then the bound (3.133)
applies and if Vǫ > 0 then we have U(P,W ) = V (P,W ) > 0 and thus (3.134) yields the
needed result.

For the lower bound, assume that either DMC is not exotic or ǫ ≤ 1/2 and take n ≥ N0

for N0 from Theorem 50. Then any (n,M, ǫ) is composed of subcodes over types T n
P0

for
P0 ∈ Pn. If we remove all codewords except those in T n

P0
and leave the decoding regions

untouched, then we obtain an (n,M ′
P0
, ǫ) code over T n

P0
. But then Theorem 50 states that

logM ′
P0
≤ logM∗

P0
(n, ǫ) ≤ nC −

√

nVǫQ
−1(ǫ) +

1

2
log n+ F . (3.258)

Since M is a sum of M ′
P0

over all P0 ∈ Pn and the cardinality of Pn is no more than

(n+ 1)|A|−1, we conclude

logM∗(n, ǫ) ≤ nC −
√

nVǫQ
−1(ǫ) +

(

|A| − 1

2

)

log n+ F ′ . (3.259)

This completes the proof of (3.110).
To show (3.111) we use the traditional idea of dropping all codewords whose probability

of error is above τǫ. In this way, we have

M∗
avg(n, ǫ) ≤

1

1− 1/τ
M∗(n, τǫ) . (3.260)

Carefully following the proof of the converse we can conclude that the O(log n) term in the
upper bound (3.259) does not have any singularities in a neighborhood of any ǫ ∈ (0, 1). So
we can claim that, for τ sufficiently close to 1, the expansion

logM∗(n, τǫ) = nC −
√

nVǫQ
−1(τǫ) +O(log n) (3.261)

holds uniformly in τ . Now, setting τn = 1 + 1√
n
, we obtain

logM∗
avg(n, ǫ) ≤ nC −

√

nVǫQ
−1

(

ǫ+
1√
n

)

+O(log n) . (3.262)

Expanding Q−1 in (3.262) by Taylor’s formula and using the obvious lower bound M∗
avg ≥

M∗ we obtain (3.111).
Finally, for the case of an exotic DMC and ǫ > 1/2, bound (3.205) in Theorem 50

proves (3.113). Together, (3.110) and (3.113) cover all possible cases and by (2.25) prove
that Vǫ is indeed the ǫ-dispersion of the DMC.

Finally the claim that the order n
1
3 cannot be improved in general follows from the next

result. �
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Theorem 51 There exists an exotic DMC with

W ≈









1/3 0 0 1/3 0.04
0 1/3 0 1/3 0.04
0 0 1/3 1/3 0.04

1/3 1/3 1/3 0 0.38
1/3 1/3 1/3 0 0.50









(3.263)

Moreover, for every ǫ > 1/2 there exists a constant Fǫ > 0 such that

logM∗(n, ǫ) ≥ nC + Fǫn
1
3 , (3.264)

for all n sufficiently large, where C = log 5
3 is the capacity of DMC W .

Proof: First take

W ′ =









1/3 0 0 1/3 2/13
0 1/3 0 1/3 2/13
0 0 1/3 1/3 2/13

1/3 1/3 1/3 0 3/13
1/3 1/3 1/3 0 4/13









(3.265)

Now denote by x∗ the unique negative root of the equation

(x− 1)

(

log
137

2833
− 7 log(1− x)

)

+ (6 + 7x) log
6 + 7x

39
= −13 log 3 . (3.266)

Then, replace the last column of W ′ with the column

R = W ′[0 0 0 x∗ 1− x∗]T ≈ [0.04 0.04 0.04 0.38 0.50]T . (3.267)

The resulting channel matrix W is of full rank, since W ′ is such and operation (3.267)
preserves the rank. Therefore, the capacity achieving distribution is unique. A simple
observation shows that equiprobable P ∗

Y is achievable by taking

P ∗ = [1, 1, 1, 2, 0]T /5 . (3.268)

Finally, the conditional entropies H(Y |X = x) are all equal to log 3. This is the consequence
of the choice of x∗ in (3.266). It follows that P ∗ is the capacity achieving distribution
(unique). Moreover, we also have

V (P ∗,W ) = 0 . (3.269)

but at the same time
V (W5||P ∗

Y ) > 0 . (3.270)

So this is an exotic channel.
It remains to show (3.264). On the simplex P we have differentiable functions Px =

P (x), x = 1, . . . , 5 which satisfy
5∑

x=1

Px = 1 , (3.271)
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and therefore their differentials satisfy

5∑

x=1

dPx = 0 . (3.272)

Differentiating the I(P,W ) as a function of P yields10 :

dI(P,W ) =
∑

x∈A
D(Wx||PW )dPx . (3.273)

For P = P ∗ we obtain that dI = 0 and for the Hessian, according to (3.224) and since
P ∗

Y (y) = 1
5 , we get

H(P ∗) = −5 log e ·W TW , (3.274)

and therefore by Taylor’s formula:

I(P,W ) = C − 5 log e · ||(P − P ∗)W ||2 + o(||P − P ∗||2) . (3.275)

For U(P,W ) we have

dU(P,W ) =
∑

x∈A

(
V (Wx||PW ) +D2(Wx||PW )− 2 log e ·D(PX|Y ||P |Wx)

)
dPx , (3.276)

where we have denoted by PX|Y the following conditional distribution (note that it is a
function of P ):

PX|Y (a|b) △
=
P (a)W (b|a)
PW (b)

. (3.277)

Similarly, for V (P,W ) we have

dV (P,W ) =
∑

x∈A

(
V (Wx||PW ) + 2 log e ·

[
D(Wx||PW |Qx)−D(PX|Y ||P ||Wx)

])
dPx ,

(3.278)
where the distribution Qx on A is given by

Qx(a) =
∑

y∈B
PX|Y (a|y)W (y|x) . (3.279)

For the points where V (P,W ) = 0 expressions (3.276) and (3.278) simplify to:

dU(P,W ) =
∑

x∈A

(
V (Wx||PW ) +D2(Wx||PW )

)
dPx , (3.280)

dV (P,W ) =
∑

x∈A
V (Wx||PW )dPx . (3.281)

Finally, in the present case ofW given by (3.263) and P = P ∗ we also have D(Wx||PW ) = C
for all x ∈ A and V (Wx||PW ) = 0 for all x 6= 5. Therefore, we get (using (3.272) again):

dU(P ∗,W ) = V (W5||P ∗
Y )dP5 , (3.282)

10Henceforth we use (3.272) to simplify the expressions for the differentials; equivalently we write the
pullback of differentials from R|A| to P .
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and from Taylor’s formula we obtain then

U(P,W ) = V (W5||P ∗
Y )P (5) + o(||P − P ∗||) . (3.283)

Finally, we choose the following sequence of input distributions

Pn = P ∗ +
λ

n
1
3

[0, 0, 0,−1, 1]T , (3.284)

where λ > 0 is to be determined. From (3.275) and (3.283) we get for some constant F1 > 0

I(Pn,W ) = C − F1λn
− 2

3 + o
(

n−
2
3

)

, (3.285)

U(Pn,W ) = V (W5||P ∗
Y )λn−

1
3 + o

(

n−
1
3

)

. (3.286)

Next, from the definition (3.105) of Tu(P,W ) and (3.285) we get for some F2 > 0

Tu(Pn,W ) =
F2λ

n
1
3

+ o
(

n−
1
3

)

. (3.287)

Now we proceed as in the proof of Theorem 47 except that instead of (3.138) we define
B as a function of n:

B =
Tu(Pn,W )

[U(Pn,W )]
3
2

= F3

√
λn

1
6 + o

(

n
1
6

)

, (3.288)

where F3 = F2

[V (W5||P ∗
Y )]

3
2
> 0. Then following the proof of Theorem 47 we can show that for

all n such that

ǫ−
(

2 log 2√
2π

+ 5B

)
1√
n
> 0 , (3.289)

we have

logM∗
avg(n, ǫ) ≥ nI(Pn,W )−

√

nU(Pn,W )Q−1

(

ǫ−
(

2 log 2√
2π

+ 5B

)
1√
n

)

. (3.290)

Note that the argument of Q−1 according to (3.288) satisfies

ǫ−
(

2 log 2√
2π

+ 5B

)
1√
n

= ǫ− 5F3

√
λn−

1
3 + o

(

n−
1
3

)

. (3.291)

and, therefore, we have

Q−1

(

ǫ−
(

2 log 2√
2π

+ 5B

)
1√
n

)

= Q−1(ǫ) +O
(

n−
1
3

)

. (3.292)

Finally, continuing (3.290) we get

logM∗
avg(n, ǫ) ≥ nI(Pn,W )−

√

nU(Pn,W )
(

Q−1(ǫ) +O
(

n−
2
3

))

(3.293)

= nC −
(

F1λ+
√

V (W5||P ∗
Y )λQ−1(ǫ)

)

n
1
3 +O(1) , (3.294)
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where (3.293) follows from (3.292) and (3.294) from (3.285) and (3.286).
Now, observe that for ǫ > 1/2 we have Q−1(ǫ) < 0 and therefore for sufficiently small λ

the coefficient in front of n
1
3 becomes negative. Choosing such λ, we have therefore shown

that for some constant F ′ > 0 and all n sufficiently large we have

logM∗
avg(n, ǫ) ≥ nC + F ′n

1
3 . (3.295)

Finally, as explained in the proof of Theorem 47, changing M∗
avg(n, ǫ) to M∗(n, ǫ) results in

a O(log n) penalty factor, and therefore, for some constant 0 < Fǫ < F ′ and all n sufficiently
large (3.264) holds. �

As Theorem 51 demonstrates the conditions for exotic channels are quite hard to satisfy
(especially, making D(Wx||P ∗

Y ) = C but so that x does not participate in capacity achieving
distributions); hence the name exotic.

3.4.5 Refined results on the log n term

We define the following quantity

V r(P,W )
△
= Var[i(X;Y )|Y ] (3.296)

=
∑

x,y

P (x)W (y|x)
[

log2 W (y|x)
PW (y)

−
(
∑

x′

W (y|x′)P (x′)
PW (y)

log
W (y|x′)
PW (y)

)2 ]

. (3.297)

Some of its properties relevant for this section are given below:

Lemma 52 All of the following hold:

V r(P,W ) = 0 ⇐⇒ ∀x, y, y′ : W (y′|x) = W (y|x) or P (x)W (y′|x) = 0(3.298)

V r(P,W ) > 0 =⇒ U(P,W ) > 0 (3.299)

∀x, y : W (y|x) > 0 =⇒ V r(P,W ) > 0 or I(P,W ) = 0 . (3.300)

In words, (3.298) gives a neccesary and sufficient condition for V r(P,W ) = 0 which means
that restricted to columns with P (x) > 0 submatrix W has each row composed of two
elements only: zero and a (row-specific) constant; (3.299) and (3.300) give simpler necessary
and a sufficient conditions, respectively, for V r(P,W ) > 0.

Proof: Without loss of generality we may assume that all outputs y ∈ B are reachable
from at least one input. Then to show (3.298) notice that Var[i(X;Y )|Y ] = 0 holds if and

only if for all (x, y) with P (x)W (y|x) > 0 we have that log W (y|x)
PW (y) is a function of y only.

This is precisely the condition (3.298). Next, (3.299) follows trivially from

V r(P,W ) ≤ U(P,W ) , (3.301)

which in turn follows from the definition and

Var[A|B] ≤ Var[A] . (3.302)
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Finally, for (3.300) notice that if W (y|x) > 0 for all x, y and we had V r(P,W ) = 0 then
by (3.298) we should have W (y′|x) = W (y|x) for all x with P (x) > 0. But then we have
D(Wx||PW ) = 0 and thus I(P,W ) = 0. �

Next we show that the RCU bound, Theorem 17, implies a stronger achievability bound
that the one in Theorem 47 (for average probability of error formalism).

Theorem 53 For any input distribution P with V r(P,W ) > 0 we have

logM∗
avg(n, ǫ) ≥ nI(P,W )−

√

nU(P,W )Q−1(ǫ) +
1

2
log n+O(1) . (3.303)

The immediate corollary of this result is

Corollary 54 Suppose that there exists a distribution P achieving Vǫ in (3.109) with V r(P,W ) >
0 then we have

logM∗
avg(n, ǫ) ≥ nC −

√

nVǫQ
−1(ǫ) +

1

2
log n+O(1) . (3.304)

In particular, any channel with W (y|x) > 0 for all x, y satisfies (3.304) unless C = 0.

Proof of Theorem 53: We define random variables (Xn, Y n, X̄n) distributed as

PXnY nX̄n(xn, yn, x̄n) =

n∏

j=1

P (xj)W (yj |xj)P (x̄j) . (3.305)

Then according to the RCU bound, Theorem 17 there exists an (n,M, ǫ′) code with

ǫ′ ≤ E
[
min

{
1, MP

[
Īn ≥ In

∣
∣Xn, Y n

]}]
, (3.306)

where

Īn
△
=

n∑

k=1

i(X̄k, Yk) , (3.307)

In
△
=

n∑

k=1

i(Xk, Yk) , (3.308)

i(x, y)
△
=

{

log W (y|x)
PW (y) , W (y|x) > 0 ,

−∞ , W (y|x) = 0 ,
(3.309)

and thus In > −∞ almost surely. Introduce the following function

f(t, yn)
△
= P

[
Īn ≥ t

∣
∣Y n = yn

]
. (3.310)

Then since X̄n is independent of Xn we have

P
[
Īn ≥ In

∣
∣Xn, Y n

]
= f(In, Y

n) . (3.311)
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Notice that for any realization x̄n of X̄n such that Īn > −∞ we have

P[X̄n = x̄n|Y n] = P[X̄n = xn] (3.312)

= P[Xn = xn|Y n] exp

{

−
n∑

k=1

i(xk, Yk)

}

(3.313)

and thus summing over all x̄n such that Īn ≥ t we obtain

P
[
Īn ≥ t

∣
∣Y n

]
= E [exp{−In}1{In ≥ t} |Y n] . (3.314)

Now observe that conditioned on Y n random variable In is a sum of independent (non
identically distributed) random variables; its variance is given by

Var[In|Y n = yn] =

n∑

k=1

Syk
, (3.315)

Sy
△
= Var[i(X1, Y1)|Y1 = y] . (3.316)

Notice that
E [SY1 ] = V r(P,W ) > 0 . (3.317)

Denote by F the following event:

F
△
=

{
n∑

k=1

SYk
≥ 1

2
V r(P,W )

}

. (3.318)

Then, on the one hand by Chernoff bound we have for some K1 > 0

P[F c] ≤ exp{−K1n} , (3.319)

while on the other hand by Lemma 20 we have for some K2 > 0 on the event F :

E [exp{−In}1{In ≥ t} |Y n] ≤ K2√
n

exp{−t} (on F ) . (3.320)

Thus, we have

E [min {1,Mf(In, Y
n)}] (3.321)

≤ P[F c] + E

[

min

{

1,
MK2√
n

exp{−In}
}]

(3.322)

≤ exp{−K1n}+ E

[

min{1, MK2√
n

exp{−In}
]

(3.323)

≤ exp{−K1n}+ P

[

In ≤ log
MK2√
n

]

+
MK2√
n

E

[

1

{

In > log
MK2√
n

}

exp{−In}
]

(3.324)

≤ exp{−K1n}+ P

[

In ≤ log
MK2√
n

]

+
K3√
n

(3.325)

≤ exp{−K1n}+Q

(
nI(P,W )− log MK2√

n
√

nU(P,W )

)

+
K3 +K4√

n
, (3.326)
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where (3.322) is by (3.314) and (3.320), (3.323) is by (3.319), (3.324) simply expands the
min, (3.325) holds for a suitableK3 > 0 by Lemma 20 and (3.326) holds for a suitableK4 > 0
by Berry-Esseen inequality (Theorem 13) both of which are applicable since U(P,W ) > 0.
Equating the right-hand side of (3.326) to ǫ and solving for M , we obtain for all sufficiently
large n existence of an (n,M, ǫ) code with

logM = nI(P,W )−
√

nU(P,W )Q−1

(

ǫ− K3 +K4√
n

− exp{−K1n}
)

+
1

2
log n− logK2 (3.327)

= nI(P,W )−
√

nU(P,W )Q−1 (ǫ) +
1

2
log n+O(1) , (3.328)

where (3.328) is by Taylor’s expansion applied to Q−1(·). This proves (3.303). �

Remarks:

1. The estimate of 1
2 log n cannot be improved without further assumptions, as the ex-

ample of the BSC shows; see Theorem 41.

2. According to (3.299) the right-hand side of (3.304) can never be of the form nC +
1
2 log n+O(1).

3. As we mentioned in the discussion of the BSC, Section 3.2.3, other bounds from
Chapter 2 fail to achieve 1

2 log n term. In particular, using techniques from Chapter 2 it
is not possible via our techniques to give an extension of Theorem 53 and Corollary 54
to maximal probability of error formalism (unless in some special cases). The reason
we could give such result for the BSC is because of the appeal to random linear code
method, which requires strong assumptions on the cardinalities of |A|, |B| and the
structure of W .

4. According to (3.298) the situation V r(P,W ) = 0 requires rather special structure ofW
and thus Corollary 54 holds for almost all channels (BEC being a notable exception).

5. In the case when V r(P,W ) = 0, we have

i(x, y) = E [i(X1, Y1)|Y1 = y] = − logP [W (y|X1) > 0] , (3.329)

which implies that In is a function of Y n and In = Īn (unless Īn = −∞, but this case
is irrelevant: see (3.314)). Thus, the RCU bound in this case yields

ǫ′ ≤ E [min{1,M exp{−In}}] = P[In ≤ logM ] +O

(
1√
n

)

. (3.330)

Therefore, we can only achieve:

logM∗
avg(n, ǫ) ≥ nI(P,W )−

√

nU(P,W )Q−1(ǫ) +O(1) , (3.331)

which is not interesting, since it is implied by (3.112).
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6. To summarize, for the average probability of error Theorem 53 and Corollary 54 give
the strongest possible results that can be derived using any bounds from Chapter 2.

We give a matching converse bound on log n term under an assumption of symmetry.

Definition 9 A DMC W is called weakly input-symmetric if there exists an x0 ∈ A and a
random transformation Tx : B → B for each x ∈ A such that Tx ◦Wx0 = Wx and Tx ◦ P ∗

Y ,
where P ∗

Y is the capacity achieving output distribution.

Note that the composition Tx ◦PY with a distribution PY on B, according to (2.2), is given
by

(Tx ◦ PY )(y) =
∑

y′∈B
Tx(y|y′)PY (y′) . (3.332)

Thus, in other words, Tx is a stochastic matrix which upon multiplication by the column
Wx0 yields the column Wx.

Examples:

1. Recall that Gallager [9, p. 94] defines the channel to be symmetric if the space of out-
puts B can be partitioned into disjoint subsets B =

⋃d
j=1 Bj such that each restriction

of W to A×Bj has rows which are all permutations of each other and columns which
are permutations of each other. It is easy to see that Gallager-symmetric channels are
weakly input-symmetric.

2. However, not all weakly input-symmetric channels are Gallager-symmetric. Indeed,
consider the following channel

W =










1/7 4/7 1/7 1/7

4/7 1/7 0 4/7

0 0 4/7 2/7

2/7 2/7 2/7 0










. (3.333)

Since detW 6= 0, the capacity achieving input distribution is unique. Since H(Y |X =
x) is independent of x and PX = [1/4, 1/4, 3/8, 1/8] achieves uniform P ∗

Y it must be
the unique optimum. Clearly any permutation Tx fixes a uniform P ∗

Y and thus the
channel is weakly input-symmetric. At the same time it is not Gallager-symmetric
since no row is a permutation of another.

3. Allowing randomized (i.e. not induced by functional maps) kernels Tx in the Defini-
tion 9 is essential. Indeed, consider the channel

W =





1/2 1/2 1/2
1/2 0 1/4
0 1/2 1/4



 (3.334)

Clearly this channel is not Gallager-symmetric. To show it is weakly input-symmetric
notice that by interchanging first two inputs (columns 1,2) and last two outputs (rows
2,3) we do not change the matrix. Thus P ∗

Y (2) = P ∗
Y (3). Now take x0 = 1 (corresp.,
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first column), T2 to be induced by the permutation that maps 1, 2, 3 to 1, 3 and 2,
respectively. Finally, for T3 we take the following matrix

T3 =





1 0 0
0 1/2 1/2
0 1/2 1/2



 (3.335)

To check that T3 ◦W (·|1) = W (·|3) simply write





1 0 0
0 1/2 1/2
0 1/2 1/2









1/2
1/2
0



 =





1/2
1/4
1/4



 (3.336)

Finally, we have shown that P ∗
Y (2) = P ∗

Y (3) and thus T3 ◦P ∗
Y = P ∗

Y and T2 ◦P ∗
Y = P ∗

Y

as required.

4. At the same time not all channels are weakly input-symmetric. Indeed, composition
with a kernel yields a distribution dominated by the original: Tx ◦Wx0 ≤Wx0 (partial
order is that of majorization). Thus to obtain a non weakly input-symmetric channel
it is sufficient to take any channel without a column that dominates all others. A
simpler example is the Z-channel:

W =

(
1− δ 0
δ 1

)

, δ ∈ (0, 1) (3.337)

Indeed, clearly we cannot take input 1 as x0 (since then T2 would have to map both
outputs to the second output and thus T2◦P ∗

Y = [0 1] – a contradiction). By computing
P ∗

Y it can be shown that taking x0 = 2 there is no stochastic matrix T1 that fixes P ∗
Y

and maps [0, 1] to [1− δ, δ].

Some of the crucial properties of weakly input-symmetric channels are summarized be-
low:

Theorem 55 For any weakly input-symmetric DMC W all of the following hold:

1. The capacity C satisfies:
C = D(Wx0||P ∗

Y ) , (3.338)

2. The ǫ-dispersion Vǫ equals the dispersion V and satisfies

V = V (Wx0 ||P ∗
Y ) (3.339)

= V (Wx||P ∗
Y ) (∀x : D(Wx||P ∗

Y ) = C) . (3.340)

3. The following bound holds11

logM∗
avg(n, ǫ) ≤ − log β1−ǫ((Wx0)

n, (P ∗
Y )n) . (3.341)

11In Section 6.5 we will also show that (3.341) holds (for each n and ǫ) even in the presence of instanteneous
noiseless feedback. Consequently (3.342) (or (3.343)) is also valid even with feedback.



95

4. In particular, if V > 0 then as n→∞ we have

logM∗
avg(n, ǫ) ≤ nC −

√
nV Q−1(ǫ) +

1

2
log n+O(1) . (3.342)

If V = 0 then we have

logM∗
avg(n, ǫ) ≤ nC − log(1− ǫ) . (3.343)

Proof: To show (3.338) notice that a transformation Tx maps pair of distributions
(Wx0 , P

∗
Y ) to (Wx, P

∗
Y ) and therefore by the data processing for divergence we get

D(Wx||P ∗
Y ) ≤ D(Wx0 ||P ∗

Y ) , (3.344)

from which (3.338) follows via

C = max
x∈A

D(Wx||P ∗
Y ) . (3.345)

Similarly, for any distribution PXn on An we have

βα(PXnY n , PXn(P ∗
Y )n) ≥ βα((Wx0)

n, (P ∗
Y )n) . (3.346)

Indeed, for each xn define a random transformation Txn : Bn → Bn as follows:

Txn(zn|yn) =
n∏

k=1

Txk
(zk|yk) . (3.347)

Then Txn maps pair of distributions (W n
x0
, (PY ∗)n) to (PY n|Xn=xn , (P ∗

Y )n) and thus by the
data-processing for βα we obtain

βα(PY n|Xn=xn , (P ∗
Y )n) ≥ βα(W n

x0
, (PY ∗)n) . (3.348)

Therefore, (3.346) follows by Lemma 32 and convexity of βα in α. Consequently, (3.341)
then follows from Theorem 29 and (3.346), while (3.342) and (3.343) follow from (2.89)
and (2.90), respectively.

Finally, to show (3.339) notice that by Lemma (14) we have for any x ∈ A:

log βα((Wx)n, (P ∗
Y )n) = −nD(Wx||P ∗

Y )−
√

nV (Wx||P ∗
Y )Q−1(α) + o(

√
n) . (3.349)

But by (3.348) we must have

log βα((Wx)n, (P ∗
Y )n) ≥ log βα((Wx0)

n, (P ∗
Y )n) . (3.350)

Now assuming that x ∈ A is such that D(Wx||P ∗
Y ) = C and applying (3.349) to both sides

of (3.350) for α > 1/2 we obtain

V (Wx||P ∗
Y ) ≥ V (Wx0 ||P ∗

Y ) , (3.351)

whereas taking α < 1/2 we show

V (Wx||P ∗
Y ) ≤ V (Wx0 ||P ∗

Y ) , (3.352)

and consequently (3.339) follows. �
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Corollary 56 Consider a weakly input-symmetric channel W with V > 0. If there exists
a capacity achieving input distribution with V r(P,W ) > 0 then we have

logM∗
avg(n, ǫ) = nC −

√
nV Q−1(ǫ) +

1

2
log n+O(1) . (3.353)

In particular, by (3.300) any Gallager-symmetric channel without zeros in W and positive
capacity satisfies conditions of Corollary 56. Note that there exist weakly input-symmetric
channels with V > 0 but V r(P,W ) = 0 (for example, the BEC or the q-ary erasure channel).
For such channels, a converse bound different from Theorem 55 is likely to be needed in
order to pin down the log n term.

Corollary 57 Consider a weakly input-symmetric channel W with V = 0. Then we have

nC − log
1

ǫ
≤ logM∗(n, ǫ) ≤ logM∗

avg(n, ǫ) ≤ nC + log
1

1− ǫ (3.354)

Proof: Apply (3.133) and (3.343). �

Somewhat unexpectedly, this corollary shows that we can obtain an almost exact value for
logM∗(n, ǫ) for some non-trivial channels, such as

W =





1/2 1/2 0
1/2 0 1/2
0 1/2 1/2



 . (3.355)

3.4.6 Applications to other questions

In this section we discuss application of the methods developed in Chapter 2: the κβ bound
and the meta-converse – to some other questions of channel coding for the DMC.

As we have mentioned, the crucial fact for proving Theorem 45 was that V (P,W )
coincides with U(P,W ) for the capacity achieving distributions: the DT bound yields a
lower bound on

√
n term as

√

nU(P,W ), while Theorem 34 upper-bounds the
√
n term

by
√

nV (P,W ); since they coincide we are able to obtain the exact coefficient for the√
n term. The situation, however, is different if we want to obtain a lower-bound on

logM∗
P0

(n, ǫ) for the cardinality of the best constant-composition code, since in general
V (P0,W ) 6= U(P0,W ).

The problem is resolved by using the κβ bound, Theorem 27. Here we briefly sketch
how to apply Theorem 27. We choose Fn = T n

P0
for a fixed type P0 ∈ Pn. We also choose

PY (y) = P0W . Then, all the work reduces to lower-bounding κn
τ (A, PY ) and analyzing

βn
α(x, PY ). The analysis of the latter has already been done in the proof of Theorem 50;

specifically, we have shown

log βn
α(x, PY ) = −nI(P0,W ) +

√

nV (P0,W )Q−1(ǫ) +O(log n) (3.356)

for any x ∈ T n
P0

. For κn
τ the lower bound is obtained by applying (2.93):

κn
τ (T n

P0
, PY ) ≥ P0

[
T n

P0

]
. (3.357)
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Since the right-hand side is polynomial in n, see [16], this bound is sufficient for our purposes.
So, by κβ bound we conclude that at least

logM∗
P0

(n, ǫ) ≥ nI(P0,W )−
√

nV (P0,W )Q−1(ǫ) +O(log n) (3.358)

codewords from type T n
P0

. Together with Theorem 50, we have then

logM∗
P0

(n, ǫ) = nI(P0,W )−
√

nV (P0,W )Q−1(ǫ) +O(log n) . (3.359)

So we see that κβ bound gives the
√
n term with V (P0,W ) compared to a generally looser

U(P0,W ) for the DT bound. However, for the case when P0 is capacity achieving (and
U(P0,W ) = V (P0,W )), the DT bound is tighter due to a better logn term.

An argument entirely similar to (3.359) applies to other cases of channels with input
constraints, and shows that κβ bound emerges as a natural candidate for the dispersion
achievability bounds in such cases (see the treatment of Gaussian channels in Chapter 4
and Section 4.2 in particular).

Another application concerns the converse bound. Suppose that we are given informa-
tion regarding the number of codewords inside each type P0 ∈ Pn, that is we know the
value of PXn(TP0) for each P0 ∈ Pn, where PXn denotes the distribution on An induced by
the code.12 Can we upper-bound the average probability of error for such a code?

We aim to apply the meta-converse, Theorem 28, with the following Q-channel:

QY n|Xn=xn = (PxnW )n , (3.360)

where Pxn is the type of sequence xn. Notice that the output distribution depends only on
the type of the input. Therefore, we cannot distinguish more than |Pn| alternatives and we
have:

ǫ′ ≥ 1− |Pn|
M

. (3.361)

Then following the derivation of the Fano’s inequality (2.251) in Section 2.7.3, we obtain

logM

n
≤ 1

1− ǫ
∑

P0∈Pn

PXn(TP0)I(P0,W ) +
1

n

h(ǫ)

1− ǫ +
log |Pn|

n
. (3.362)

A standard bound on the cardinality |Pn|, see [16], states

|Pn| ≤ (n+ 1)|A|−1 . (3.363)

Therefore, from (3.362) we obtain the following:

logM

n
≤ 1

1− ǫ
∑

P0∈Pn

PXn(TP0)I(P0,W ) +
1

n

h(ǫ)

1− ǫ + (|A| − 1)
log(n+ 1)

n
. (3.364)

Inequality (3.364) bounds possible parameters of (n,M, ǫ) codes with a given type-distribution
of codewords. In particular, we see that the “capacity” for the codes with a given type-
distribution is limited by

C̃(W ) =
∑

P0∈Pn

PXn(TP0)I(P0,W ) ≤ C . (3.365)

12The motivation is clear: for linear codes over binary-input channels, PXn(TP0) is simply a weight
distribution of the code, which is frequently known from algebraic considerations.
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In other words, the code under consideration can have a small probability of error only for
those channels W : A → B that have C̃(W ) ≥ R, where R is the rate of the code. This
gives a rough estimate of what is possible with a given type-distribution.

Recall that in Section 2.7.3 we obtained stronger bounds (such as sphere packing) by
replacing a simple data-processing lower-bound on βα (that lead to Fano’s inequality) with
better bounds. Similarly, it is simple to obtain stronger versions of the bound (3.364).

3.5 Gilbert-Elliott channel (GEC)

In this section we discuss a binary symmetric channel, with crossover probability being
determined by a binary Markov chain. This channel with memory is known as the Gilbert-
Elliott channel (GEC); see [62,63].

This channel is particularly interesting because the dynamics of the crossover probability
can be viewed as a simplified model of a fading channel, where fading coefficients evolve
as a Markov process. It is known [67], that for coherent channels behaving ergodically,
channel capacity is independent of the fading dynamics since a sufficiently long codeword
sees a channel realization whose empirical statistics have no randomness. The natural
question arises: does the channel dispersion depend on channel dynamics? And if so, does
it correctly predict the dependence of fundamental limits on channel dynamics? In this
section we answer both questions affirmatively, thereby demonstrating how knowledge of
channel dispersion can qualitatively extend our understanding of the channel, and enable
the analysis of questions for which the capacity alone is insufficient.

3.5.1 Channel capacity

At blocklength n the channel GEC(n, τ, δ1, δ2, p1), depending on 0 ≤ τ, δ1, δ2, p1 ≤ 1 is
defined as follows. The input and output alphabets are A = B = {0, 1}n and the channel
acts on an input binary vector Xn by adding (modulo 2) the vector Zn:

Y n = Xn + Zn , (3.366)

where the distribution of Zn is specified as follows.
Let {Sj}∞j=1 be a homogeneous Markov process with states {1, 2} and transition proba-

bilities13

P[S2 = 1|S1 = 1] = P[S2 = 2|S1 = 2] = 1− τ , (3.367)

P[S2 = 2|S1 = 1] = P[S2 = 1|S1 = 2] = τ . (3.368)

Now for 0 ≤ δ1, δ2 ≤ 1 we define {Zj}∞j=1 as conditionally independent given {Sj}∞j=1 and

P[Zj = 0|Sj = s] = 1− δs , (3.369)

P[Zj = 1|Sj = s] = δs . (3.370)

13The results in this section can be readily generalized at the expense of more cumbersome expressions to
Gilbert-Elliott channels with asymmetric Markov chains.
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The description of the channel model is incomplete without specifying the distribution
of S1:

P[S1 = 1] = p1, (3.371)

P[S1 = 2] = p2 = 1− p1 . (3.372)

In this way the Gilbert-Elliott channel is completely specified by the parameters (τ, δ1, δ2, p1).
When τ > 0 the chain S1 is ergodic and for this reason we consider only the stationary

case p1 = 1/2. On the other hand, when τ = 0 the mode of operation changes drasti-
cally (channel becomes non-ergodic). This special case (and arbitrary p1) is considered in
Section 3.6.

In addition, there are two practically possible scenarios: 1) the state sequence Sn is
known perfectly at the receiver and 2) no state information. The capacity C1 of a Gilbert-
Elliott channel τ > 0 and state Sn known perfectly at the receiver depends only on the
stationary distribution PS1 and is given by

C1 = log 2− E [h(δS1)] (3.373)

= log 2− P[S1 = 1]h(δ1)− P[S1 = 2]h(δ2) , (3.374)

where h(x) = −x log x− (1−x) log(1−x) is the binary entropy function. In the symmetric-
chain special case considered in this section, both states are equally likely and

C1 = log 2− 1

2
h(δ1)−

1

2
h(δ2). (3.375)

When τ > 0 and state Sn is not known at the receiver, the capacity is given by [64]

C0 = log 2− E
[
h(P[Z0 = 1|Z−1

−∞])
]

(3.376)

= log 2− lim
n→∞

E
[
h(P[Z0 = 1|Z−1

−n])
]
. (3.377)

Throughout the section we use subscripts 1 and 0 for capacity and dispersion to denote
the cases when the state Sn is known and is not known, respectively.

3.5.2 Asymptotic expansion

Theorem 58 Suppose that the state sequence Sn is stationary, P[S1 = 1] = 1/2, and
ergodic, 0 < τ < 1. Then the dispersion of the Gilbert-Elliott channel with state Sn known
at the receiver is

V1 =
1

2
(V (δ1) + V (δ2)) +

1

4
(h(δ1)− h(δ2))2

(
1

τ
− 1

)

, (3.378)

where V (δ) is the dispersion of the BSC; see (3.30). Furthermore, provided that V1 > 0 and
regardless of whether 0 < ǫ < 1 is a maximal or average probability of error we have

logM∗(n, ǫ) = nC1 −
√

nV1Q
−1(ǫ) +O(log n) , (3.379)

where C1 is given in (3.375). Moreover, (3.379) holds even if the transmitter knows the full
state sequence Sn in advance (i.e., non-causally).
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Note that the condition V1 > 0 for (3.379) to hold excludes only some degenerate
cases for which we have: M∗(n, ǫ) = 2n (when both crossover probabilities are 0 or 1) or
M∗(n, ǫ) = ⌊ 1

1−ǫ⌋ (when δ1 = δ2 = 1/2).
To formulate the result for the case of no state information at the receiver, we define

the following stationary process:

Fj = − logP
Zj |Zj−1

−∞
(Zj |Zj−1

−∞) . (3.380)

Theorem 59 Suppose that 0 < τ < 1 and the state sequence Sn is started at the stationary
distribution. Then the dispersion of the Gilbert-Elliott channel with no state information is

V0 = Var [F0] + 2
∞∑

i=1

E [(Fi − E [Fi])(F0 − E [F0])] . (3.381)

Furthermore, provided that V0 > 0 and regardless of whether ǫ is a maximal or average
probability of error, we have

logM∗(n, ǫ) = nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) , (3.382)

where C0 is given by (3.376).

It can be shown that the process Fj has a spectral density SF (f), and that [68]

V0 = SF (0) , (3.383)

which provides a way of computing V0 by Monte Carlo simulation paired with a spectral es-
timator. Alternatively, since the terms in the series (3.381) decay as (1−2τ)j , it is sufficient
to compute only finitely many terms in (3.381) to achieve any prescribed approximation
accuracy. In this regard note that each term in (3.381) can in turn be computed with arbi-
trary precision by noting that P

Zj |Zj−1
−∞

[1|Zj−1
−∞ ] is a Markov process with a simple transition

kernel.
Regarding the computation of C0 it was shown in [64] that

log 2− E [h(P[Zj = 1|Zj−1])] ≤ C0 ≤ log 2− E [h(P[Zj = 1|Zj−1, S0])] , (3.384)

where the bounds are asymptotically tight as j → ∞. The computation of the bounds
in (3.384) is challenging because the distributions of P[Zj = 1|Zj−1

1 ] and P[Zj = 1|Zj−1
1 , S0]

consist of 2j atoms and therefore are impractical to store exactly. Rounding off the locations
of the atoms to fixed quantization levels inside interval [0, 1], as proposed in [64], leads in
general to unspecified precision. However, for the special case of δ1, δ2 ≤ 1/2 the function
h(·) is monotonically increasing in the range of values of its argument and it can be shown
that rounding down (up) the locations of the atoms shifts the locations of all the atoms
on subsequent iterations down (up). Therefore, if rounding is performed this way, the
quantized versions of the bounds in (3.384) are also guaranteed to sandwich C0.

Proofs of Theorems 58 and 59 are given in Appendix E, respectively. Here we only make
a few remarks:



101

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

Blocklength, n

R
a

te
 R

, 
b

it
/c

h
.u

s
e

Capacity

Achievability

Converse

Normal approximation

(a) State Sn known at the receiver

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.1

0.2

0.3

0.4

0.5

Blocklength, n

R
a

te
 R

, 
b

it
/c

h
.u

s
e

Capacity

Achievability

Converse

Normal approximation

(b) No state information

Figure 3.10: Rate-blocklength tradeoff at block error rate ǫ = 10−2 for the Gilbert-Elliott
channel with parameters δ1 = 1/2, δ2 = 0 and state transition probability τ = 0.1.

1. Proofs rely on the DT bound, Theorem 18, as their main achievability tool. In-
deed, among the available achievability bounds, Gallager’s random coding bound,
Theorem 3, does not yield the correct dispersion term even for memoryless channels;
Shannon’s (or Feinstein’s) bound, Theorem 2 is always weaker than the DT bound;
and the RCU bound, Theorem 17, is harder to specialize to the channels considered
in this section.

2. The converse bounds are given by the meta-converse, Theorem 28. It is interesting
to notice that it is the generality of Theorem 28 (namely the fact that it holds for
randomized encoders) that enables the extension to the case of state known at the
transmitter.

3. We were unable to pin down the pre-log coefficient in (3.379). It is likely that doing so
will require advances in the field of Berry-Esseen inequalities for the mixing processes.

3.5.3 Discussion and numerical comparisons

The natural application of expansions (2.22) is in approximating the maximal achievable
rate according to (2.23). Unlike the BSC case, Theorem 41, the coefficient of the log n term
(or “prelog”) for the GEC is unknown. However, due to the fact that 1

2 log n in (3.59) is
robust to variation in crossover probability, it is natural to conjecture that the unknown
prelog for GEC is also 1

2 . With this choice, we arrive to the following approximation which
will be used for numerical comparison:

1

n
logM∗(n, ǫ) ≈ C −

√

V

n
Q−1(ǫ) +

1

2n
log n , (3.385)
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Table 3.1: Capacity and dispersion for the Gilbert-Elliott channels in Fig. 3.10

State information Capacity Dispersion

known 0.5 bit 2.25 bit2

unknown 0.280 bit 2.173 bit2

Parameters: δ1 = 1/2, δ2 = 0, τ = 0.1.

with (C, V ) = (C1, V1), when the state is known at the receiver, and (C, V ) = (C0, V0),
when the state is unknown.

The approximation in (3.385) is obtained through new non-asymptotic upper and lower
bounds on the quantity 1

n logM∗(n, ǫ), which are given in Appendix E for both cases.
The asymptotic analysis of those bounds led to the approximation (3.385). It is natural
to compare those bounds with the analytical two-parameter approximation (3.385). Such
comparison is shown in Fig. 3.10. For the case of state known at the receiver, Fig. 3.10(a),
the achievability bound is (E.48) and the converse bound is (E.65). For the case of unknown
state, Fig. 3.10(b), the achievability bound is (E.102) and the converse is (E.118). The
achievability bounds are computed for the maximal probability of error criterion, whereas
the converse bounds are for the average probability of error. The values of capacity and
dispersion, needed to evaluate (3.385), are summarized in Table 3.1.

Two main conclusions can be drawn from Fig. 3.10. First, we see that our bounds are
tight enough to get an accurate estimate of 1

n logM∗(n, ǫ) even for moderate blocklengths
n. Second, knowing only two parameters, capacity and dispersion, leads to approxima-
tion (3.385), which is precise enough for addressing the finite-blocklength fundamental lim-
its even for rather short blocklengths. Both of these conclusions have already been observed
in Sections 3.2.3 and 3.3.3 for memoryless channels.

In general, as τ → 0 the state availability at the receiver does not affect either the
capacity or the dispersion too much as the following result demonstrates.

Theorem 60 Assuming 0 < δ1, δ2 ≤ 1/2 and τ → 0 we have

C0(τ) ≥ C1 −O(
√
−τ ln τ) , (3.386)

C0(τ) ≤ C1 −O(τ) , (3.387)

V0(τ) = V1(τ) +O

([− ln τ

τ

]3/4
)

(3.388)

= V1(τ) + o (1/τ) . (3.389)

The proof is provided in Appendix E. Theorem 60 is useful for two related reasons. First,
the evaluation of V0 based on the definition (3.381) is quite challenging14 , whereas the proof
of Theorem 60 develops upper and lower bounds on V1; see Lemma 123 in Appendix E.
Second, Theorem 60 shows that for small values of τ one can approximate the unknown value
of V0 with V1 given by (3.378) in closed form. Table 3.1 illustrates that such approximation
happens to be rather accurate even for moderate values of τ .

14Observe that even analyzing E [Fj ], the entropy rate of the hidden Markov process Zj , is nontrivial;
whereas V0 requires the knowledge of the spectrum of the process F for zero frequency.
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3.6 Non-ergodic mixture of BSCs

In this section we investigate the behavior of logM∗(n, ǫ) for the case when the channel is
a non-ergodic mixture of two memoryless channels. To keep the presentation simple, we
focus on the example of a pair of BSCs, but similar to Section 3.4 the results in this section
can be readily generalized to finite sums of arbitrary DMCs.

One way to motivate the interest in such channels is the following. Consider the Gilbert-
Elliott channel with very small τ (“slow fading”). If the range of blocklengths of interest
is much smaller than 1

τ , we cannot expect (3.379) or (3.382) to give a good approximation
of logM∗(n, ǫ). In fact, in this case, a model with τ = 0 is intuitively much more suitable.
Taking τ = 0 the GEC becomes a mixture of a pair of BSCs.

To define a non-ergodic BSC, we define a state random variable S, which is generated
before the start of the transmission according to:

P[S = 1] = 1− P[S = 2] = p1 . (3.390)

The input and output alphabets of the channel are binary, A = B = {0, 1}n, and the channel
is defined as

PY n|Xn(yn|xn) = δ
|yn−xn|
S (1− δS)n−|yn−xn| , (3.391)

where |zn| denotes the Hamming weight of the binary vector zn and 0 < δ1, δ2 < 1/2 are
crossover probabilities. The function M∗(n, ǫ) is defined as usual.

For non-ergodic channels, the role of capacity is replaced by a more general ǫ-capacity,
see (2.18), since the latter becomes a non-constant function of ǫ > 0 (typically). In the case
of the mixture of BSCs and regardless of the state knowledge at the transmitter or receiver,
the ǫ-capacity is given by (assuming h(δ1) > h(δ2))

Cǫ =

{

log 2− h(δ1) , ǫ < p1 ,

log 2− h(δ2) , ǫ > p1 .
(3.392)

Other than the case of small |δ2 − δ1|, solved in [65], the value of the ǫ-capacity at the
breakpoint ǫ = p1 is in general unknown (see also [26]).

3.6.1 Asymptotic expansion

Recall that the main idea behind the asymptotic expansion (2.22) is in approximating the
distribution of an information density by a Gaussian distribution. For non-ergodic channels,
it is natural to use an approximation via a mixture of Gaussian distributions. This motivates
the next definition15 .

Definition 10 For a pair of channels with capacities C1, C2 and channel dispersions V1, V2 >
0 we define a normal approximation Rna(n, ǫ) of their non-ergodic sum with respective prob-
abilities p1, p2 (p2 = 1− p1) as the solution to

p1Q

(

(C1 −R)

√
n

V1

)

+ p2Q

(

(C2 −R)

√
n

V2

)

= ǫ . (3.393)

15This way of defining Rna(n, ǫ) has been suggested by S. Verdú.
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Note that for any n ≥ 1 and 0 < ǫ < 1 the solution exists and is unique; see Fig. 3.11 for
an illustration. To understand better the behavior of Rna(n, ǫ) with n we assume C1 < C2

and then it can be shown easily that16

Rna(n, ǫ) =







C1 −
√

V1
n Q

−1
(

ǫ
p1

)

+O(1/n) , ǫ < p1

C2 −
√

V2
n Q

−1
(

ǫ−p1

1−p1

)

+O(1/n) , ǫ > p1 .
(3.394)

In fact, even more is true:

Lemma 61 Assume C1 < C2 and ǫ 6∈ {0, p1, 1}. Then the following holds:

Rna

(
n, ǫ+O(1/

√
n)
)

= Rna(n, ǫ) +O(1/n) . (3.395)

Proof: Denote

fn(R)
△
= p1Q

(

(C1 −R)

√
n

V1

)

+ p2Q

(

(C2 −R)

√
n

V2

)

(3.396)

Rn
△
= Rna(n, ǫ) = f−1

n (ǫ) . (3.397)

It is clear that fn(R) is a monotonically increasing function, and that our goal is to show
that

f−1
n (ǫ+O(1/

√
n)) = Rn +O(1/n) . (3.398)

Assume ǫ < p1; then for any 0 < δ < (C2 − C1) we have fn(C1 + δ) → p1 and
fn(C1 − δ)→ 0. Therefore,

Rn = C1 + o(1) . (3.399)

This implies, in particular, that for large enough n we have

0 ≤ p2Q

(

(C2 −Rn)

√
n

V2

)

≤ 1√
n
. (3.400)

Then, from the definition of Rn we conclude that

ǫ− 1√
n
≤ p1Q

(

(C2 −Rn)

√
n

V2

)

≤ ǫ . (3.401)

After applying Q−1 to this inequality we get

Q−1

(
ǫ

p1

)

≤ (C2 −Rn)

√
n

V2
≤ Q−1

(
ǫ− 1/

√
n

p1

)

. (3.402)

By Taylor’s formula we conclude

Rn = C1 −
√

V1

n
Q−1

(
ǫ

p1

)

+O(1/n) . (3.403)

16See the proof of Lemma 61 below.
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Figure 3.11: Illustration to the Definition 10: Rna(n, ǫ) is found as the unique point R at
which the weighted sum of two shaded areas equals ǫ.

Note that the same argument works for ǫ that depends on n, provided that ǫn < p1 for all
sufficiently large n. This is indeed the case when ǫn = ǫ + O(1/

√
n). Therefore, similarly

to (3.403), we can show

f−1
n (ǫ+O(1/

√
n)) = C1 −

√

V1

n
Q−1

(
ǫ+O(1/

√
n)

p1

)

+O(1/n) , (3.404)

= C1 −
√

V1

n
Q−1

(
ǫ

p1

)

+O(1/n) , (3.405)

= Rn +O(1/n) , (3.406)

where (3.405) follows by applying Taylor’s expansion and (3.406) follows from (3.403). The
case ǫ > p1 is treated similarly. �

We now state our main result in this section.

Theorem 62 Consider a non-ergodic BSC whose transition probability is 0 < δ1 < 1/2
with probability p1 and 0 < δ2 < 1/2 with probability 1 − p1. Take Cj = log 2 − h(δj),
Vj = V (δj) and define Rna(n, ǫ) as the solution to (3.393). Then for ǫ 6∈ {0, p1, 1} we have

logM∗(n, ǫ) = nRna(n, ǫ) +
1

2
log n+O(1) (3.407)

regardless of whether ǫ is a maximal or average probability of error, and regardless of whether
the state S is known at the transmitter, receiver or both.

Proof: First of all, notice that p1 = 0 and p1 = 1 are treated by Theorem 41. So,
everywhere below we assume 0 < p1 < 1.

Achievability: Since the proof of the achievability part closely follows the steps of the
proof of Theorem 41, we adopt the notation used therein. In particular, from (3.35), we
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have that for all n and M there exists an (n,M, pe) code with

pe ≤
n∑

k=0

(
n

k

)(

p1δ
k
1 (1− δ1)n−k + p2δ

k
2 (1− δ2)n−k

)

min
{

1,MSk
n

}

, (3.408)

where Sk
n is

Sk
n

△
= 2−n

k∑

l=0

(
n

l

)

. (3.409)

Fix ǫ 6∈ {0, p1, 1} and for each n select K as a solution to

p1Q

(

K − nδ1
√

nδ1(1− δ1)

)

+ p2Q

(

K − nδ2
√

nδ2(1− δ2)

)

= ǫ− G√
n
, (3.410)

where G > 0 is some constant. Application of the Berry-Esseen theorem shows that there
exists a choice of G such that for all sufficiently large n we have

P[W > K] ≤ ǫ , (3.411)

where

W =
n∑

j=1

1{Zj = 1} . (3.412)

The distribution of W is a mixture of two Bernoulli distributions:

P[W = w] =

(
n

w

)
(
p1δ

w
1 (1− δ1)n−w + p2δ

w
2 (1− δ2)n−w

)
. (3.413)

Repeating the steps (3.35)-(3.57) we can now prove that as n→∞ we have

logM∗(n, ǫ) ≥ − log SK
n (3.414)

≥ n log 2− nh
(
K

n

)

+
1

2
log n+O(1) , (3.415)

where h is the binary entropy function. Thus we only need to analyze the asymptotics of
h
(

K
n

)
. First, notice that the definition of K as the solution to (3.410) is entirely analogous

to the definition of nRna(n, ǫ). Assuming without loss of generality δ2 < δ1 (the case of
δ2 = δ1 is treated in Theorem 41), in parallel to (3.394) we have as n→∞

K =







nδ1 +
√

nδ1(1− δ1)Q−1
(

ǫ
p1

)

+O(1) , ǫ < p1

nδ2 +
√

nδ2(1− δ2)Q−1
(

ǫ−p1

p2

)

+O(1) . ǫ > p1 .
(3.416)

From Taylor’s expansion applied to h
(

K
n

)
as n→∞ we get

nh

(
K

n

)

=







nh(δ1) +
√

nV (δ1)Q
−1
(

ǫ
p1

)

+O(1) , ǫ < p1

nh(δ2) +
√

nV (δ2)Q
−1
(

ǫ−p1

p2

)

+O(1) , ǫ > p1 .
(3.417)



107

Comparing (3.417) with (3.394) we notice that for ǫ 6= p1 we have

n− nh
(
K

n

)

= nRna(n, ǫ) +O(1) . (3.418)

Finally, after substituting (3.418) in (3.415) we obtain the required lower-bound of the
expansion:

logM∗(n, ǫ) ≥ nRna(n, ǫ) +
1

2
log n+O(1) . (3.419)

Before proceeding to the converse part we also need to specify the non-asymptotic
bounds that have been used to numerically compute the achievability curves in Fig. 3.12
and 3.13. For this purpose we use Theorem 18 with equiprobable PXn . Without state
knowledge at the receiver we have

i(Xn;Y n) = gn(W ) , (3.420)

gn(w) = n log 2 + log
(
p1δ

w
1 (1− δ1)n−w + p2δ

w
2 (1− δ2)n−w

)
, (3.421)

where W is defined in (3.412). Theorem 18 guarantees that for every M there exists a code
with (average) probability of error pe satisfying

pe ≤ E

[

exp

{

−
[

gn(W )− log
M−1

2

]+
}]

. (3.422)

In addition, by application of the random linear code method, the same can be seen to be
true for maximal probability of error, provided that log2M is an integer (see Appendix C).
Therefore, the numerical computation of the achievability bounds in Fig. 3.12 and 3.13
amounts to finding the largest integer k such that right-hand side of (3.422) with M = 2k

is still smaller than a prescribed ǫ.
With state knowledge at the receiver we can assume that the output of the channel is

(Y n, S1) instead of Y n. Thus, i(Xn;Y n) needs to be replaced by i(Xn;Y n, S1) and then
expressions (3.420), (3.421) and (3.413) become

i(Xn;Y nS1) = gn(W,S1) , (3.423)

gn(w, s) = n log 2 + log
(
δw
s (1− δs)n−w

)
, (3.424)

P[W = w,S1 = s] = ps

(
n

w

)

δw
s (1− δs)n−w . (3.425)

Again, in parallel to (3.422) Theorem 18 constructs a code with M codewords and proba-
bility of error pe satisfying

pe ≤ E

[

exp

{

−
[

gn(W,S1)− log
M−1

2

]+
}]

. (3.426)

Converse: In the converse part we will assume that the transmitter has access to the
state realization S1 and then generates Xn based on both the input message and S1. Take
the best such code with M∗(n, ǫ) codewords and average probability of error no greater than
ǫ. We now propose to treat the pair (Xn, S1) as a combined input to the channel (but the
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S1 part is independent of the input message) and the pair (Y n, S1) as a combined output,
available to the decoder. Note that in this situation, the encoder induces a distribution
PXnS1 and is necessarily randomized, because the distribution of S1 is not controlled by the
input message and is given by

P[S1 = 1] = p1 . (3.427)

To apply Theorem 28 we select the auxiliary Q-channel as follows:

QY nS1|Xn(yn, s|xn) = P[S1 = s]2−n for all yn, s, xn . (3.428)

Then it is easy to see that under this channel, the output (Y n, S1) is independent of Xn.
Hence, we have

1− ǫ′ ≤ 1

M∗(n, ǫ)
. (3.429)

To compute β1−ǫ(PXnY nS1 , QXnY nS1) we need to find the likelihood ratio:

r(Xn;Y nS1)
△
= log

PXnY nS1(X
n, Y n, S1)

QXnY nS1(X
n, Y n, S1)

(3.430)

= log
PY n|XnS1

PXnS1

QY n|XnS1
QXnS1

(3.431)

= n log 2 + logPY n|XnS1
(Y n|XnS1) (3.432)

= n log 2(1 − δS1)−W log
1− δS1

δS1

, (3.433)

where (3.431) is because PXnS1 = QXnS1 (we omitted the obvious arguments for simplic-
ity), (3.432) is by (3.428) and in (3.433) random variable W is defined in (3.412) and its
distribution is given by (3.413).

Now, choose

Rn = Rna

(

n, ǫ+
p1B1 + p2B2 + 1√

n

)

, (3.434)

γn = nRn , (3.435)

where B1 and B2 are the Berry-Esseen constants for the sum of independent Bernoulli(δj)
random variables. Then, we have

P[r(Xn;Y nS1) ≤ γn|S1 = 1]

= P

[

n log 2(1− δ1)−W log
(1− δ1)
δ1

≤ γn

∣
∣
∣
∣
S1 = 1

]

(3.436)

≥ Q

(

−γn − nC1√
nV1

)

− B1√
n

(3.437)

= Q

(

(C1 −Rn)

√
n

V1

)

− B1√
n
, (3.438)

where (3.437) is by the Berry-Esseen theorem and (3.438) is just the definition of γn.
Analogously, we have

P[r(Xn;Y nS1) ≤ γn|S1 = 2] ≥ Q
(

(C2 −Rn)

√
n

V2

)

− B2√
n
. (3.439)
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Together (3.438) and (3.439) imply

P[r(Xn;Y nS) ≤ γn]

≥ p1Q

(

(C1 −Rn)

√
n

V1

)

+ p2Q

(

(C2 −Rn)

√
n

V2

)

− p1B1 + p2B2√
n

(3.440)

= ǫ+
1√
n
, (3.441)

where (3.441) follows from (3.434). Then by using the bound (2.67) we obtain

β1−ǫ(PXnY nS1, QXnY nS1) ≥
1√
n

exp{−γn} . (3.442)

Finally, by Theorem 28 and (3.429) we obtain

logM∗(n, ǫ) ≤ log
1

β1−ǫ
(3.443)

≤ γn +
1

2
log n (3.444)

= nRna

(

n, ǫ+
p1B1 + p2B2 + 1√

n

)

+
1

2
log n (3.445)

= nRna(n, ǫ) +
1

2
log n+O(1) , (3.446)

where (3.446) is by Lemma 61. �

As noted before, for ǫ = p1 even the capacity term is unknown. However, application of
Theorem 28 with QY |X = BSC(δmax) where δmax = max(δ1, δ2), yields the following upper
bound:

Cp1 ≤ 1− h(s∗) , (3.447)

where s∗ is found as the solution of

d(s∗||δ2) = d(s∗||δ1) . (3.448)

To get (3.447), take any rate R > 1 − h(δmax) and apply a well-known above-the-capacity
error estimate for the Q-channel [16]:

1− ǫ′ . exp (−nd(s||δmax)) , (3.449)

where s < δ1 satisfies R = 1− h(s). Then it is not hard to obtain that

β1−p1(PY |X , QY |X) ∼ exp (−nd(s∗||δmax)) . (3.450)

The upper bound (3.447) then follows from Theorem 28 immediately. Note that the same
upper-bound was derived in [65] (and there it was also shown to be tight in the special case
of |δ1− δ2| being small enough), but the proof we have outlined above is more general since
it also applies to the average probability of error criterion and various state-availability
scenarios.
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3.6.2 Discussion and numerical comparison

Comparing (3.407) and (3.394) we see that, on one hand, there is the usual 1√
n

type of

convergence to capacity. On the other hand, because the capacity in this case depends on ǫ,
the argument of Q−1 has also changed accordingly. Moreover, we see that for p1/2 < ǫ < p1

we have that capacity is equal to 1− h(δ1) but the maximal rate approaches it from above.
In other words, we see that in non-ergodic cases it is possible to communicate at rates above
the ǫ-capacity at finite blocklength.

In view of (3.407) it is natural to choose the following expression as the normal approx-
imation for the τ = 0 case:

Rna(n, ǫ) +
1

2n
log n . (3.451)

We compare converse and achievability bounds against the normal approximation (3.451)
in Fig. 3.12 and Fig. 3.13. On the latter we also demonstrate numerically the phenomenon
of the possibility of transmitting above capacity. The achievability bounds are computed
for the maximal probability of error criterion using (3.422) with i(Xn;Y n) given by ex-
pression (3.420) in the case of no state knowledge at the receiver; and using (3.426) with
i(Xn;Y nS1) given by the (3.423) in the case when S1 is available at the receiver. The
converse bounds are computed using (3.443), that is for the average probability of error
criterion, and with the assumption of state availability at both the transmitter and the
receiver. Note that the “jaggedness” of the curves is a property of the respective bounds,
and not of the computational precision.

On comparing the converse bound and the achievability bound in Fig. 3.13, we conclude
that the maximal rate, 1

n logM∗(n, ǫ) cannot be monotonically increasing with blocklength.
In fact, the bounds and approximation hint that it achieves a global maximum at around
n = 200. We have already observed that for certain ergodic channels and values of ǫ, the
supremum of 1

n logM∗(n, ǫ) need not be its asymptotic value. Although this conflicts with
the principal teaching of the error exponent asymptotic analysis (the lower the required
error probability, the higher the required blocklength), it does not contradict the fact that
for a memoryless channel and any positive integer ℓ

1

nℓ
logM∗(nℓ, 1− (1− ǫ)ℓ) ≥ 1

n
logM∗(n, ǫ) , (3.452)

since a system with blocklength nℓ can be constructed by ℓ independent encoder/decoders
with blocklength n.

The “typical sequence” approach fails to explain the behavior in Fig. 3.13, as it neglects
the possibility that the two BSCs may be affected by an atypical number of errors. Indeed,
typicality only holds asymptotically (and the maximal rate converges to the ǫ-capacity,
which is equal to the capacity of the bad channel). In the short-run the stochastic variability
of the channel is nonneglible, and in fact we see in Fig. 3.13 that atypically low numbers of
errors for the bad channel (even in conjunction with atypically high numbers of errors for
the good channel) allow a 20% decrease from the error probability (slightly more than 0.1)
that would ensue from transmitting at a rate strictly between the capacities of the bad and
good channels.
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Figure 3.12: Rate-blocklength tradeoff at block error rate ǫ = 0.03 for the non-ergodic BSC
whose transition probability is δ1 = 0.11 with probability p1 = 0.1 and δ2 = 0.05 with
probability p2 = 0.9.

Before closing this section, we also point out that Fano’s inequality is very uninformative
in the non-ergodic case. For example, for the setup of Fig. 3.12 we have

lim sup
n→∞

logM∗(n, ǫ)
n

≤ lim sup
n→∞

sup
Xn

1

n

I(XnS1;Y
nS1) + log 2

1− ǫ (3.453)

=
log 2− p1h(δ1)− p2h(δ2)

1− ǫ (3.454)

= 0.71 bit (3.455)

which is a very loose bound.
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Figure 3.13: Rate-blocklength tradeoff at block error rate ǫ = 0.08 for the non-ergodic BSC
whose transition probability is δ1 = 0.11 with probability p1 = 0.1 and δ2 = 0.05 with
probability p2 = 0.9.



Chapter 4

Gaussian channels

This chapter presents the main results regarding channels subject to Gaussian noise. Namely,
a previous work on such channels is overviewed in Section 4.1. Particularization of the gen-
eral bounds of Chapter 2 is undertaken in Section 4.2. Asymptotic analysis of these bounds
in Section 4.3 derives a closed-form expression for the channel dispersion of the AWGN
channel. Evaluation of both classical bounds and new bounds demonstrates (Section 4.4)
that for the AWGN channel, the value of the fundamental limit logM∗(n, ǫ) can be deter-
mined with good precision, and furthermore, the two-term approximation (2.23) involving
the capacity and dispersion turns out to be surprisingly tight even at rather small block-
lengths. Section 4.5 computes the channel dispersion for the parallel AWGN channel subject
to a joint power constraint. Finally, the question of minimal achievable energy per bit over
Gaussian channels, which has been previously addressed in the limit when then number of
information bits goes to infinity, is studied non-asymptotically in Section 4.6. A significant
improvement in energy efficiency is demonstrated in the presence of feedback. In addition, a
method of feedback communication with zero-error and finite energy per bit is constructed.
The material in this chapter has been presented in part in [32, 69–71]. The material of
Section 4.3.3 – an asymptotic expansion and the formula for the ǫ-capacity of the AWGN
under the average probability of error and average power constraint – appears here for the
first time.

4.1 Previous work

4.1.1 Bounds

By the AWGN channel AWGN(n, P ) we understand a triple: two alphabets and a collection
of conditional probability kernels PY n|Xn . For blocklength n, we take the alphabets A = Rn

and B = Rn as n-fold Cartesian products, their elements are denoted by xn and yn. The
channel acts by adding a white Gaussian noise:

PY n|Xn=xn = N (xn, In) , (4.1)

where In is the n× n identity covariance matrix. Finally, codewords are subject to one of
three different power constraints:

113
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1. The code satisfies an equal-power constraint, if for each codeword ci ∈ Xn, i =
1, . . . ,M we have

||ci||2 = nP . (4.2)

The fundamental limit for equal-power constrained codes is defined as

M∗
e (n, ǫ, P ) = max{M : ∃(n,M, ǫ)-code satisfying (4.2)} . (4.3)

2. The code satisfies a maximum (per-codeword) power constraint, if for each codeword
ci ∈ Xn we have

||ci||2 ≤ nP . (4.4)

The fundamental limit for maximum power constrained codes is defined as

M∗
m(n, ǫ, P ) = max{M : ∃(n,M, ǫ)-code satisfying (4.4)} . (4.5)

3. The code satisfies an average power constraint, if the codewords of the code {ci, i =
1, . . . ,M} satisfy

1

M

M∑

i=1

||ci||2 ≤ nP . (4.6)

The fundamental limit for average power constrained codes is defined as

M∗
a (n, ǫ, P ) = max{M : ∃(n,M, ǫ)-code satisfying (4.6)} . (4.7)

The capacity of the AWGN has been computed already in [2], where Shannon shows

lim
ǫ→0

lim
n→∞

1

n
logM∗(n, ǫ, P ) =

1

2
log(1 + P ) , (4.8)

regardless of the power constraint.
Ever since Shannon computed the capacity of the AWGN channel (4.8), there has been

some work devoted to the assessment of the penalty incurred by finite blocklength. Fore-
most, Shannon [4] provided the “cone-packing” bounds (both achievability and converse)
that were numerically studied by Slepian [20] (cf. also [23, 61]). Recently, with the advent
of sparse-graph codes, a number of works [11, 18, 19, 22] have studied the signal-to-noise
ration (SNR) penalty as a function of blocklength in order to improve the assessment of
the suboptimality of a given code with respect to the fundamental limit at that particular
blocklength rather than the asymptotic limit embodied in the channel capacity. The bounds
used for such analysis in all of the quoted work are given as follows [4]:

Theorem 63 (Shannon) Let

Yi = xi + Zi (4.9)

where Zi are i.i.d. standard normal random variables. Assume that each codeword satisfies

n∑

i=1

x2
i = nP . (4.10)
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Define for 0 ≤ θ ≤ π/2

qn(θ) = Q
(√

nP
)

+
n− 1√
π
e−nP/2

∫ π/2

θ
(sinφ)n−2 fn(

√
nP cosφ) dφ (4.11)

where

fn(x) =
1

Γ((n+ 1)/2)

∫ ∞

0
tn−1e−t2+

√
2tx dt . (4.12)

Then, any (n,M, ǫ) code for equal-power constraint (4.2) satisfies

qn(θ(M)) ≤ ǫ (4.13)

with θ(M) defined as

MΩn(θ(M)) = Ωn(π) (4.14)

with

Ωn(θ) =
2π(n−1)/2

Γ((n − 1)/2)

∫ θ

0
(sinφ)n−2 dφ , (4.15)

which is equal to the area of the unit sphere in Rn cut out by a cone with semiangle θ.
Furthermore, there exists an (n,M, ǫ) code satisfying equal-power constraint (4.2) with

ǫ ≤ qn(θ(M))− M

Ωn(π)

∫ θ(M)

0
Ωn(φ)q̇n(φ) dφ (4.16)

=
Γ(n/2)M√
πΓ((n− 1)/2)

∫ θ(M)

0
qn(φ)(sin φ)n−2 dφ . (4.17)

Computation of the bounds in Theorem 63 is challenging. Various methods [18–20] were
proposed in the literature to address this problem; see also [21,23,61] for numerical evalu-
ation.

Applying Theorem 4 to the AWGN channel with PXn = N (0, P In) and optimizing over
r and λ, one obtains the following (see [9], Theorem 7.4.4).

Theorem 64 (Gallager, AWGN) Consider the AWGN channel with noise power 1, and
signal power A. Then for block length n, every 0 ≤ R ≤ 1/2 log(1+P ) and every δ ∈ (0, nP ],
there exists an (exp(nR), n, ǫ) code (maximal probability of error) satisfying maximal power
constraint (4.4) with

ǫ ≤
(

2es(R)δ

µ(δ)

)2

e−nEr(R) , (4.18)
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where

Er(R) =
P

4β

[

(β + 1)− (β − 1)

√

1 +
4β

P (β − 1)

]

+ (4.19)

1

2
loge

{

β − P (β − 1)

2

[√

1 +
4β

P (β − 1)
− 1

]}

for R ∈ [Rc, C] , (4.20)

Er(R) = 1− β +
P

2
+

1

2
loge

(

β − P

2

)

+
1

2
loge β −R loge 2 , for R ∈ [0, Rc] , (4.21)

β = exp(max{2R, 2Rc}) , (4.22)

C =
1

2
log(1 + P ) , (4.23)

Rc =
1

2
log

(

1

2
+
P

4
+

1

2

√

1 +
P 2

4

)

, (4.24)

µ(δ) = P

[

n− δ

P
≤ χ2

n ≤ n
]

=

∫ n

n−δ/P

(y/2)n/2−1e−y/2

2Γ(n/2)
dy , (4.25)

s(R) =
ρP

2(1 + ρ)2β
, (4.26)

ρ =
P

2β

[

1 +

√

1 +
4β

P (β − 1)

]

− 1 . (4.27)

Other bounds on the reliability function have appeared recently, e.g. [72]. However, those
bounds provide an improvement only for rates well below capacity.

Regarding the asymptotic expansions, the following expansion

1

n
logM∗

m(n, ǫ) =
1

2
log(1 + P )−

√

P (P + 2)

2n(1 + P )2
Q−1(ǫ) log e+ o

(
1√
n

)

(4.28)

was conjectured by Baron et al. in [28] after analyzing error-exponent formulas of Shan-
non [4]. Similarly, analyzing the achievability bounds of Rice [73], [28] conjectures that the
following lower bound must hold:

1

n
logM∗

m(n, ǫ) ≥ 1

2
log(1 + P )−

√

P

2n(1 + P )
Q−1(ǫ) log e+ o

(
1√
n

)

. (4.29)

Clearly taking ǫ > 1/2 the bound (4.29) contradicts the conjecture in (4.28) and thus both
cannot be true. In this chapter we will prove a strengthening of (4.28) thus resolving the
inconsistency with (4.29).

Moreover, we mention that Shannon’s approach in [4] was based on the geometric ap-
proach that is hard to generalize to non-AWGN channels. We arrive at the same expansion
using a quite general approach. Comparing with the discrete channels, we recall that
Strassen [1] obtained (3.110) for the DMC by applying Feinstein’s Theorem 1, which, as
we demonstrate below, is not tight enough to obtain the expansion for the AWGN. In this
case, however, the method of the κβ bound, Theorem 27, succeeds.
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For the parallel AWGN, the extensive study of the reliability function in different regimes
has been given in [74], based on a number of previous publications (see the references
therein).

4.1.2 Energy per bit

So far, we have considered power-constrained communication. In many practical situations,
however, the communication engineer faces the problem of transmitting a certain message
with the smallest possible energy per bit. In such situations the key parameters of the code
are: the number of degrees of freedom n, the number of information bits k, the probability
of block error ǫ and the total energy budget E. Of course, it is not possible to construct
a code with arbitrary values of n, k, ǫ and E. Determining the boundary of the achievable
(n, k, ǫ, E) is one of the most widely studied problems in information theory.

The first asymptotic result dates back to [30], where Shannon demonstrates that in the

limit of ǫ → 0, k → ∞, n → ∞ and k
n → 0 the smallest achievable energy per bit Eb

△
= E

k
converges to (

Eb

N0

)

min
= loge 2 = −1.59 dB , (4.30)

where N0
2 is the noise power per degree of freedom. The limit does not change if ǫ is fixed,

if noiseless causal feedback is available at the encoder, or even if the modulation is suitably
restricted.

Alternatively, if one fixes ǫ > 0 and rate k
n = R then as k → ∞ and n → ∞ as a

consequence of (4.8) we have (e.g., [9]):

Eb

N0
→ 22R − 1

2R
. (4.31)

Thus in this case the minimum energy per bit becomes a function of R; this function being
sensitive to modulation and fading scenarios; see [75].

Non-asymptotically, in the regime of fixed rate R and ǫ, the bounds on the minimum Eb

follow immediately from Theorem 63 of Shannon [4]; such bounds were studied numerically
in [14,20,21,23,61]. An optimal scheduling algorithm to minimize energy per bit is proposed
in [76] for the purpose of transmitting a stream of buffered packets.

4.2 Computation of the bounds

Note that Theorem 63 yields a bound on M∗
e (n, ǫ), while practically we are more interested

in M∗
m(n, ǫ). Following the ideas of Shannon [4] we can compare fundamental limits for

different power constraints, as follows:

Lemma 65 For any 0 < P < P ′ the following inequalities hold (maximal probability of
error formalism):

M∗
e (n, ǫ, P ) ≤M∗

m(n, ǫ, P ) ≤M∗
e (n+ 1, ǫ, P ) (4.32)

M∗
m(n, ǫ, P ) ≤M∗

a (n, ǫ, P ) ≤ 1

1− P/P ′M
∗
m(n, ǫ, P ′) . (4.33)
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Moreover, in the average probability of error formalism (4.32) holds without change, while (4.33)
becomes

M∗
m(n, ǫ, P ) ≤M∗

a (n, ǫ, P ) ≤ 1

1− P/P ′M
∗
m

(

n,
ǫ

1− P/P ′ , P
′
)

, (4.34)

which holds provided that ǫ
1−P/P ′ ≤ 1.

Proof: The left-hand bounds are obvious. The right-hand bound in (4.32) follows
from the fact that we can always take the M∗

m-code and add an (n + 1)-th coordinate
to each codeword to equalize the total power to nP . The right-hand bound in (4.33) is
obtained as follows. Take an arbitrary (n,M, ǫ) code satisfying average power constraint.
By definition (4.6), we have

1

M

M∑

i=1

||ci||2 ≤ nP , (4.35)

which by Chebyshev inequality implies that the number of codewords with ||ci||2 > nP ′ is
at most

#{i : ||ci||2 > nP ′} ≤M P

P ′ , (4.36)

and hence the remaining codewords constitute a subcode satisfying maximal power con-
straint (4.4) with power P ′. This results in an inequality:

M

(

1− P

P ′

)

≤M∗
m(n, ǫ, P ′) . (4.37)

Since every code satisfies (4.37), so does the one achieving M∗
a (n, ǫ, P ).

Finally, to obtain (4.34) we proceed as in the proof of (4.33), but notice that the subcode
obtained by dropping codewords in (4.36) might have a probability of error that is larger
than ǫ. However, we have the following inequality:

ǫ1
#{i : ||ci||2 > nP ′}

M
+ ǫ2

#{i : ||ci||2 ≤ nP ′}
M

≤ ǫ , (4.38)

where ǫ1 and ǫ2 are the average probabilities of error for the subcode with codewords
satisfying ||ci||2 > nP ′ and its complement, respectively. However, since ǫ1 ≥ 0 and by the
bound (4.36) we obtain

ǫ2 ≤
ǫ

1− P/P ′ , (4.39)

and then (4.34) follows. �

By Lemma 65 it is enough to consider the fundamental limit M∗
e (n, ǫ, P ), or the equal-

power constraint. Since this is a per-codeword constraint, for each blocklength n there is a
set Fn of permissible inputs, namely, the power sphere:

Fn
△
= {xn : ||xn||2 = nP} ⊂ Rn . (4.40)

This is a natural setting for the κβ bound, Theorem 27 and the meta-converse, The-
orem 34. To apply these bound to the AWGN channel we need to complete three steps:
choose the auxiliary output distribution PY n on Rn, compute βα and compute κτ . These
steps are detailed below.
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4.2.1 Choosing the output distribution

First of all, since in the end we aim to apply the central limit theorem (or Berry-Esseen
inequality) it is necessary require that PY n be a product distribution:

PY n = PY × · · · × PY . (4.41)

On the other hand, because of the spherical symmetry of the problem, it is natural to
require that PY n be also spherically symmetric on Rn, i.e. for any unitary U : Rn → Rn we
must have:

PY n ◦ U−1 = PY n . (4.42)

From (4.42) we deduce that Y1 and −Y1 must be identically distributed. Thus the charac-
teristic function of Y1 must be positive, symmetric and upper-bounded by 1:

0 ≤ ψ(r)
△
= E

[
eirY1

]
≤ 1 . (4.43)

Additionally, from isotropy it follows that γY1 + βY2 must be distributed identically to Y1,
whenever γ2 + β2 = 1. Translated to ψ(r) this implies that

γ2 + β2 = 1 =⇒ ψ(r) = ψ(γr)ψ(βr) (4.44)

holds. In particular, suppose that for some r0, ψ(r0) = 0. Then on taking γ = β = 1√
2

we

find that ψ
(
2−k/2r0

)
= 0. But this is impossible since ψ(0) = 1 and ψ is continuous. Thus

ψ(r) > 0 for all r ∈ R.
Let us introduce f(r) = logψ(

√
r). Then, for any λ ∈ [0, 1] and all r ∈ R+, we have

from isotropy (4.44) that
f(r) = f(λr) + f((1− λ)r) . (4.45)

Or, equivalently,
f(x+ y) = f(x) + f(y) . (4.46)

This implies that for every rational q ∈ Q we have

f(qx) = qf(x) . (4.47)

In particular, taking x = 1 we find from the continuity of f(r) that1

f(r) = const · r . (4.48)

Thus the characteristic function of PY is ψ(r) = exp(−const · r2). This leaves the only
possibility: choose PY n to be Gaussian,

PY n = N (0, σ2
Y In) (4.49)

with σ2
Y to be chosen later.

1Note that, condition (4.46) alone, without continuity, does not imply that f(x) has the form (4.48).
Indeed, for a counter-example, notice that over the rationals Q, R is an infinite dimensional topological
vector space; of course, on such space there exist discontinuous linear functions. Therefore, Q-linearity (4.47)
and f(1) = 1 alone do not imply that f should be of the form (4.48).
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4.2.2 Computing β

Having defined necessary distributions we must now compute the function βn
α(x, PY ) defined

in (2.60). For each x ∈ Fn the value of βn
α(x, PY ) can be found directly from (2.66).

A key observation here is that, due to spherical symmetry, the particular choice of x ∈ Fn

does not affect the value of βα and thus to simplify the notation we write everywhere below:

βn
α(x, PY ) = βn

α , ∀x ∈ Fn . (4.50)

To simplify calculations, we choose x = x0 = (
√
P ,
√
P , . . .

√
P ).

The information density is given by

i(x0, y
n) = log

dPY n|Xn=x0

dPY n
(yn) =

n

2
log σ2

Y +
log e

2

n∑

i=1

[
y2

i

σ2
Y

− (yi −
√
P )2

]

. (4.51)

It is convenient to define independent standard Gaussian variables Zi ∼ N (0, 1). Then,
under PY n , the information density i(x0, Y

n) is distributed the same as

Gn = n log σY − n
P

2
log e+

1

2
log e

n∑

1

(

(1− σ2
Y )Z2

i + 2
√
PσY Zi

)

(4.52)

and under PY n|Xn=x0
it is distributed the same as

Hn = n log σY + n
P

2σ2
Y

log e+
1

2σ2
Y

log e
n∑

1

(

(1− σ2
Y )Z2

i + 2
√
PZi

)

. (4.53)

Note that distributions similar to that of Gn and Hn also appear in the application of the
Feinstein’s bound, Theorem 1, to the AWGN channel [13].

It is well known that asymptotically βn
α = exp{−D(PY n|Xn=x0

||PY n)+o(n)}. Note that
D(PY n|Xn=x0

||PY n) = E [Hn]. Consequently, to have the tightest bound in (2.247) we want
to choose2 σ2

Y so as to maximize E [Hn]. A simple exercise shows that

σ2
Y,opt = 1 + P . (4.54)

Perhaps unsurprisingly, our PY n distribution now coincides with the capacity achieving
output distribution for the AWGN channel. Notice, however, that we have not invoked a
maximization of mutual information argument.

With this choice of σ2
Y the equations for Gn and Hn become

Gn =
n

2
log(1 + P )− nP

2
log e− 1

2
log e

n∑

1

(

PZ2
i − 2

√

P 2 + PZi

)

(4.55)

and

Hn =
n

2
log(1 + P ) +

n

2

P

(1 + P )
log e− 1

2(1 + P )
log e

n∑

1

(

PZ2
i − 2

√
PZi

)

. (4.56)

Now by using the Neyman-Pearson lemma (2.66) we find that we have proved the following
result.

2A question that we have not studied is whether the bounds can benefit if σY is allowed to vary with n
rather than being fixed to an asymptotically optimal value (4.54).
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Theorem 66 For any 0 ≤ α ≤ 1 we have

βn
α = βn

α(x, PY ) = P[Gn ≥ γ] , (4.57)

where γ is chosen to satisfy
P[Hn ≥ γ] = α . (4.58)

Computation of the distributions of Gn and Hn is simplified by noting that both can be
reduced to the form C1+C2

∑
(Zi−δ)2, so that they both have non-central χ2 distributions.

However, for large n the value of P (Gn ≥ γ) must be of the order of exp(−nC). For such
a low quantile, traditional series expansions of the non-central χ2 distribution do not work
very well and a number of other techniques must be used to evaluate these probabilities,
including Chernoff bounding and using (2.67) and (2.69).

Theorem 67 For the AWGN channel with SNR P , for any n and ǫ we have

M∗
m(n− 1, ǫ, P ) ≤M∗

e (n, ǫ, P ) ≤ 1

P[Gn ≥ γn]
, (4.59)

regardless of whether ǫ is an average or maximal probability of error, where γn is chosen to
satisfy

P[Hn ≥ γn] = 1− ǫ , (4.60)

and the variables Gn and Hn are defined in (4.55) and (4.56).

Proof: Applying Theorem 34 and Lemma 65 we reduce the problem to that of βn
1−ǫ(x, PY n).

However, Theorem 66 gives a precise value and no further lower-bounding is necessary. �

Theorem 67 provides a basis for plotting a bound on logM∗
m(n, ǫ, P ) (see below).

4.2.3 Computing κ

According to the definition (2.92), we need to find the distribution P ∗
Z|Y which, for every

x ∈ Fn, satisfies ∫

B

P ∗
Z|Y (1|y)PY n|Xn=x(dy) ≥ τ (4.61)

and which has the smallest possible value of

∫

B

P ∗
Z|Y (1|y)PY n(dy) . (4.62)

In general this is a complex problem. In this case, however, the situation is greatly
simplified by the spherical symmetry. Intuitively, we feel that the optimum in the definition
of κn

τ should be spherically symmetric. Below we are going to establish this fact rigorously
and also suggest how to find symmetries in other (non-AWGN) problems of interest.

We start by noting that any distribution PZ|Y is completely determined by defining a
function f : B 7→ [0, 1], namely,

f(y) = PZ|Y (1|y) . (4.63)
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If we define the following class of functions on B

Fτ =

{

f :
fmeasurable , f(y) ∈ [0, 1] ,
∀x ∈ An :

∫

Bn fdPY n|Xn=x ≥ τ

}

, (4.64)

then

κn(τ) = inf
f∈Fτ

∫

Bn

fdPY n . (4.65)

Now we define another class, the sub-class of spherically symmetric functions:

Fsym
τ =

{
h ∈ Fτ : h(y) = hr

(
||y||2

)
for some hr

}
. (4.66)

We can then state the following.

Lemma 68 For every 0 ≤ τ ≤ 1 we have

κn
τ (Fn, PY ) = inf

h∈Fsym
τ

∫

hdPY . (4.67)

Proof: Since Fsym
τ ⊆ Fτ , the inequality

κn
τ ≤ inf

h∈Fsym
τ

∫

hdPY (4.68)

is obvious. It remains to show that

κn
τ ≥ inf

h∈Fsym
τ

∫

hdPY . (4.69)

We will show that for every f ∈ Fτ there is a function h ∈ Fsym
τ with

∫
f dPY =

∫
hdPY .

The claim (4.69) then follows trivially.
Define G to be the isometry group of a unit sphere Sn−1. Then G = O(n), the orthogonal

group. Define a function on G×G by

d(g, g′) = sup
y∈Sn−1

||g(y) − g′(y)|| . (4.70)

Since Sn−1 is compact, d(g, g′) is finite. Moreover, it defines a distance on G and makes G
a topological group. The group action H : G× Rn 7→ Rn defined as

H(g, y) = g(y) (4.71)

is continuous in the product topology on G × Rn. Also, G is a separable metric space.
Thus, as a topological space, it has a countable basis. Consequently, the Borel σ-algebra
on G× Rn coincides with the product of Borel σ-algebras on G and Rn:

B(G× Rn) = B(G)× B(Rn) . (4.72)

Finally, H(g, y) is continuous and hence is measurable with respect to B(G×Rn) and thus
is also a measurable mapping with respect to a product σ-algebra.
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It is also known that G is compact. On a compact topological group there exists a
unique (right Haar) probability measure µ compatible with the Borel σ-algebra B(G), and
such that

µ(Ag) = µ(A) , ∀g ∈ G,A ∈ B(G) . (4.73)

Now take any f ∈ Fτ and define an averaged function h(y) as

h(y)
△
=

∫

G
(f ◦H)(g, y)µ(dg) . (4.74)

Note that as shown above f ◦H is a positive measurable mapping G×B 7→ R+ with respect
to corresponding Borel σ-algebras. Then by Fubini’s theorem, the function h : B 7→ R+ is
also positive measurable. Moreover,

0 ≤ h(y) ≤
∫

G
1µ(dg) = 1 . (4.75)

Define for convenience
Qx

Y
△
= PY |X=x . (4.76)

Then

∫

B

h(y)Qx
Y (dy) =

∫

B

Qx
Y (dy)

∫

G
(f ◦H)(g, y)µ(dg) =

∫

G
µ(dg)

∫

B

(f ◦H)(g, y)Qx
Y (dy) . (4.77)

Change of the order is possible by Fubini’s theorem because f ◦H is a bounded function.
By the change of variable formula,

∫

G
µ(dg)

∫

B

(f ◦ g)(y)Qx
Y (dy) =

∫

G
µ(dg)

∫

B

f
(
Qx

Y ◦ g−1
)
(dy) . (4.78)

By the definition of Qx
Y we have, for every set E, Qx

Y (E) = Q0
Y (E − x) and the measure

Q0
Y is fixed under all isometries of Rn:

∀g ∈ G : Q0
Y (F ) = Q0

Y (g(F )) . (4.79)

But then

(
Qx

Y ◦ g−1
)
(E)

△
= Qx

Y

(
g−1(E)

)
= Q0

Y

(
g−1(E)− x

)
= Q0

Y

{

g−1(E − g(x))
}

= Q
g(x)
Y (E) .

(4.80)
This proves that

Qx
Y ◦ g−1 = Q

g(x)
Y . (4.81)

It is important that x ∈ Fn implies g(x) ∈ Fn. In general terms, without AWGN specifics,
the above argument shows that in the space of all measures on B the subset {Qx

Y , x ∈ Fn}
is invariant under the action of G.
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But f ∈ Fτ and thus
∫
f dQx

Y ≥ τ for every x ∈ Fn. So, from (4.78) and (4.81) we
conclude ∫

B

hdQx
Y ≥

∫

G
τ µ(dg) = τ . (4.82)

Together with (4.75) this establishes that

h ∈ Fτ . (4.83)

Now the PY measure is also fixed under any g ∈ G:

PY ◦ g−1 = PY . (4.84)

Then replacing Qx
Y with PY in (4.78) we obtain

∫

B

hdPY =

∫

G
µ(dg)

∫

B

f(y)
(
PY ◦ g−1

)
(dy) =

∫

B

f dPY . (4.85)

The only thing that we have not shown yet is that h ∈ Fsym
τ . But, this is a simple

consequence of the choice of µ. Indeed for any g′ ∈ G,

(h ◦ g′)(y) =

∫

G
(f ◦H)(g, g′(y))µ(dg) =

∫

G
(f ◦H)(gg′, y)µ(dg) =

∫

G
(f ◦H)(g′′, y)µ(dg′′) = h(y) . (4.86)

In the last equality we used a change of measure and invariance of µ under right translations.
Thus, h must be constant on the orbits of G and hence, depends only on the norm of y. To
summarize, we have shown that h belongs to Fsym

τ and

∫

hdPY =

∫

f dPY . (4.87)

The statement of the lemma then follows. �

Theorem 69 For any 0 ≤ τ ≤ 1 we have

κn
τ (Fn, PY ) = P0

{
p1(r)

p0(r)
≥ γ

}

, (4.88)

where p0 and p1 being are the probability density functions (PDF) of P0 and P1 to be defined,
and γ is chosen to satisfy:

P1

{
p1(r)

p0(r)
≥ γ

}

= τ . (4.89)

Proof: By Lemma 68 we obtain a value of κn
τ by optimizing over spherically symmetric

functions.
First, we will simplify the constraints on the functions in Fsym

τ . Define Qx
Y and G as

in the proof of Lemma 68. As we saw in that proof, each transformation g ∈ G carries
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one measure Qx
Y into another Qx′

Y . Also x′ = g(x) in this particular case, but this is not
important. What is important, however, is that if x ∈ Fn then x′ ∈ Fn. If we define

Q = {Qx
Y , x ∈ Fn} (4.90)

then, additionally, the action of G onQ is transitive. This enables us to hope that the system
of constraints on h ∈ Fsym

τ might be overdetermined. Indeed, suppose that h satisfies
∫

B

hdQ0 ≥ τ (4.91)

for some Q0 ∈ Q. Then for any measure Q ∈ Q there is a transformation g ∈ G such that

Q = Q0 ◦ g−1 . (4.92)

But then ∫

B

hdQ =

∫

B

h ◦ g dQ0 =

∫

B

hdQ0 . (4.93)

Here the last equality follows from the fact that all members of Fsym
τ are spherically sym-

metric functions and as such are fixed under G: h ◦ g = h.
That is, once a symmetric h satisfies

∫

B

hdPY |X=x0
≥ τ (4.94)

for one x0 ∈ Fn, it automatically satisfies the same inequality for all x ∈ Fn. So we are free
to check (4.94) at one arbitrary x0 and then conclude that h ∈ Fsym

τ . For convenience we
will choose x0 to be

x0 =
(√

P ,
√
P , . . . ,

√
P
)

. (4.95)

Since all functions in Fsym
τ are spherically symmetric we will work with their radial parts:

h(y) = hr

(
||y||2

)
. (4.96)

Note that PY induces a certain distribution on R = ||Y ||2, namely,

P0 ∼
n∑

1

(1 + P )Z2
i (4.97)

(as above the Zi’s denote i.i.d. standard Gaussian random variables). Similarly, PY |X=x0

induces a distribution on R = ||Y ||2, namely,

P1 ∼
n∑

1

(

Zi +
√
P
)2

. (4.98)

Finally, we see that κn
τ is

κn
τ = inf

{hr:
R

hrdP1≥τ}

∫

hr dP0 (4.99)
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– a randomized binary hypothesis testing problem with P1(decide P1) ≥ τ .
Finally, we are left to note that the existence of a unique optimal solution h∗r is guaran-

teed by the Neyman-Pearson lemma. To conclude the proof we must show that the solution
of (4.89) exists and thus that h∗r is an indicator function (i.e., there is no “randomization
on the boundary” of a likelihood ratio test). For that we need to show that for any γ the
set

Aγ =

{
p1(r)

p0(r)
= γ

}

(4.100)

satisfies P1 (Aγ) = 0.
To show this we will first show that each set {Aγ ∩ [0,K]} is finite. Then, the Lebesgue

measure of {Aγ ∩ [0,K]} is zero. And since P1 is absolutely continuous with respect to
Lebesgue measure we conclude from monotone convergence theorem that

P1 (Aγ) = lim
K→∞

P1 (Aγ ∪ [0,K]) = 0. (4.101)

Note that the distribution P0 is a scaled χ2-distribution with n degrees of freedom; thus
(e.g., (26.4.1) of [77]) the PDF of P0 is

p0(r) =
rn/2−1e−r/(2+2P )

(2 + 2P )n/2Γ(n/2)
. (4.102)

The distribution P1 is the non-central χ2-distribution with n degrees of freedom and non-
centrality parameter, λ, equal to nP . Then (see (26.4.25) in [77]) we can write the PDF of
P1 as

p1(r) =
1

2
e−(r+nP )/2

( r

nP

)n/4−1/2
In/2−1(

√
nPr) , (4.103)

where Ia(y) is a modified Bessel function of a first kind:

Ia(y) = (y/2)a
∞∑

j=0

(y2/4)j

j!Γ(a+ j + 1)
. (4.104)

Using these expressions we obtain

f(r)
△
=
p1(r)

p0(r)
= e−µr

∞∑

0

air
i . (4.105)

The coefficients ai are such that the series converges for any r < ∞. Thus, we can extend
f(r) to be an analytic function F (z) over the entire complex plane. Now fix a K ∈ (0,∞)
and denote

S = Aγ ∩ [0,K] = f−1{γ} ∩ [0,K] . (4.106)

By the continuity of f the set S is closed. Thus S is compact. Suppose that S is infinite;
then there is sequence rk ∈ S converging to some r∗ ∈ S. But then from the uniqueness
theorem of complex analysis, we conclude that F (z) = γ over the entire disk |z| ≤ K. Since
f(r) cannot be constant, we conclude that S is finite. This completes the proof. �

We have attempted to make the proofs of this section as general as possible so that
they can be applied to other situations as well. Indeed, as can be seen from the above
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argument, in general one needs to find a group G of transformations of B that permutes
elements of the family of measures {PY |X=x, x ∈ Fn} and that fixes PY . Then the optimum
in the definition of κn

τ can be sought as a function B 7→ [0, 1] that is constant on the orbits
of G (this was the class Fsym

τ ). Moreover, if it happens that action of G on {PY |X=x} is
transitive, then a set of conditions on h ∈ Fsym

τ can be replaced by just one:

∫

hdPY |X=x0
≥ τ (4.107)

for any x0, chosen to be the most convenient one. In this way, computing κn
τ is a matter of

solving a single randomized binary hypothesis testing problem.

4.3 Asymptotic expansions

The results of applying Theorems 27 and 34 summarized for the AWGN channel give

sup
τ∈(0,ǫ)

κn
τ

βn
1−ǫ+τ

≤M∗
m(n, ǫ, P ) ≤ 1

βn+1
1−ǫ

(4.108)

with βn
α and κn

τ given by Theorems 66 and 69. To analyze the asymptotic behavior of
logM∗

m(n, ǫ, P ) with n we need to analyze the asymptotics of βn
α and κn

τ . Since βn
α, by

Theorem 66, is found by solving a binary hypothesis testing problem between product
distributions, its asymptotics is given by Lemma 14. For κn

τ a different approach is needed.

4.3.1 Asymptotic analysis of κ

We first return the index n to definitions (4.97) and (4.98) and will write P
(n)
0 and P

(n)
1 .

Then, from (4.97) we see that each term in the sum for P
(n)
0 has the characteristic function

φ0(t) = E
[
exp

{
it(1 + P )Z2

}]
=

1
√

1− 2(1 + P )it
(4.109)

with
√
z : C→ C denoting the principal branch.

Analogously, for terms in P
(n)
1 we have

φ1(t) = E

[

exp

{

it
(

Z +
√
P
)2
}]

=
exp {iP t/(1 − 2it)}√

1− 2it
. (4.110)

Define two new distributions, which are shifted and scaled versions of P
(n)
0,1 :

Q
(n)
0 ∼ 1√

n

[
n∑

1

(1 + P )Z2
i − n(1 + P )

]

, (4.111)

Q
(n)
1 ∼ 1√

n

[
n∑

1

(

Zi +
√
P
)2
− n(1 + P )

]

. (4.112)
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Note that we shifted both by the same amount, namely their mean n(1 + P ). Since the
transformation applied is the same for both, we conclude that binary hypothesis testing

problem P
(n)
0 vs. P

(n)
1 is equivalent to Q

(n)
0 vs. Q

(n)
1 .

From the central limit theorem,

Q
(n)
0 → N (0, V0), V0 = Var

(
(1 + P )Z2

i

)
, and

Q
(n)
1 → N (0, V1), V1 = Var

([

Zi +
√
P
]2
)

.
(4.113)

The variances V0,1 are, of course, trivially computed as

V0 = 2(1 + P )2 and V1 = 2(1 + 2P ) . (4.114)

It is not hard to see that both |φ0(t)|4 and |φ1(t)|4 are integrable on (−∞,∞). But

then the local limit theorem applies and a) both Q
(n)
0,1 have densities qn

0,1(r), and b) those
densities converge uniformly on r ∈ R:

qn
0 (r) →→ gV0(r) , and (4.115)

qn
1 (r) →→ gV1(r) , (4.116)

where gσ2(r) denotes the PDF of the normal distribution with zero mean and variance σ2.
We summarize this result in the following lemma.

Lemma 70 In the statement of Theorem 69, P0, P1 can be replaced with Q
(n)
0 , Q

(n)
1 and

densities p0, p1 with qn
0 , q

n
1 defined by (4.111) and (4.112). Additionally, limits (4.113)-

(4.116) hold.

Lemma 71 Under the conditions of Theorem 69,

κn
τ → Q(−r∗τ )−Q(r∗τ ) , and

r∗τ =

√

V1

V0
Q−1

(
1− τ

2

)

.
(4.117)

Proof: Denote

Aγ =

{
qn
1 (r)

qn
0 (r)

≥ γ
}

(4.118)

and suppose that we have computed two limits

T0(γ) = lim
n
Q

(n)
0 (Aγ) , and (4.119)

T1(γ) = lim
n
Q

(n)
1 (Aγ) . (4.120)

Assume that both functions T0 and T1 are continuous and monotonically decreasing from
1 to 0 for γ ∈ [0,∞). Then, the inverse functions T−1

i : (0, 1] → [0,∞) are also continuous
and decreasing.

Choose ǫ > 0 and set γ to be
γ = T−1

1 (τ + ǫ) . (4.121)
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Then for all sufficiently large n we have Q
(n)
1 (Aγ) ≥ τ + ǫ/2, and thus for such n

κn
τ ≤ κn

τ+ǫ/2 ≤ Q
(n)
0 (Aγ) . (4.122)

Taking the limit as n→∞ we find

lim sup
n

κn
τ ≤ T0(γ) . (4.123)

In this last equation γ is a continuous function of ǫ. Then, on taking ǫ→ 0, we have

lim sup
n

κn
τ ≤ T0(T

−1
1 (τ)) . (4.124)

Using the same argument for τ − ǫ, we get the same lower bound on lim inf. Thus, finally,

lim
n
κn

τ = T0(T
−1
1 (τ)) . (4.125)

The rest of the proof is devoted to finding T0 and T1. In view of Lemma 70, the sequence

fn(r) =
qn
1 (r)

qn
0 (r)

, n = 1, 2, . . . (4.126)

converges uniformly on compacts to

f∞(r) =
gV1(r)

gV0(r)
=

√

V0

V1
e−µr2

(4.127)

where µ = (V −1
1 − V −1

0 )/2 is positive. We denote

Dγ = {r : f∞(r) ≥ γ} . (4.128)

Chose another ǫ > 0 and denote RK = [−K,K]. Then for sufficiently large n and all
r ∈ RK , we have

f∞(r)− ǫ ≤ fn(r) ≤ f∞(r) + ǫ . (4.129)

Consequently,
Dγ+ǫ ∩RK ⊂ {fn ≥ γ} ∩RK ⊂ Dγ−ǫ ∩RK . (4.130)

It follows that
Q

(n)
1 [fn ≥ γ] ≤ Q(n)

1 [Rc
K ] +Q

(n)
1 [Dγ−ǫ ∩RK ] . (4.131)

Now note that for K large enough Dγ−ǫ ⊂ RK . Using this and the central limit theorem
for Q1 we conclude

lim sup
n

Q
(n)
1 [fn ≥ γ] ≤ 2Q(K) + T1(γ − ǫ) . (4.132)

Here T1(γ) is defined as

T1(γ) = Q
(

−ργV
−1/2
1

)

−Q
(

ργV
−1/2
1

)

, (4.133)

ργ =

√
1

µ
ln

[√

V0

V1

1

γ

]

. (4.134)
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In (4.132) we are also free to take K →∞ and ǫ→ 0 due to continuity. We can also make

the same argument for Dγ+ǫ and lim inf Q
(n)
1 . Consequently,

lim
n
Q

(n)
1 [fn ≥ γ] = T1(γ) . (4.135)

Similarly, for Q0

lim
n
Q

(n)
0 [fn ≥ γ] = T0(γ) (4.136)

with T0(γ) defined as

T0(γ) = Q
(

−ργV
−1/2
0

)

−Q
(

ργV
−1/2
0

)

. (4.137)

This proves assumptions (4.119) and (4.120).
Finally, to obtain (4.117) from (4.125) one must merely use the identity Q(x)+Q(−x) =

1. �

In addition to precise asymptotic value, given by Lemma 70, we also will need a lower-
bound that is uniform in τ .

Lemma 72 For every P > 0 there are constants C1 > 0 and C2 > 0 such that for all
sufficiently large n and all τ ∈ [0, 1],

κn
τ ≥

1

C1

(
τ − e−C2n

)
. (4.138)

Proof: Remember that κn
τ is determined by a binary hypothesis testing problem be-

tween P
(n)
0 and P

(n)
1 , as defined by (4.97) and (4.98). We will omit indices (n) where it does

not cause confusion. Also in this proof all exp exponents are to the base e. The argument
consists of two steps.

Step 1. There is a δ > 0 such that for all n ≥ 1 the Radon-Nikodym derivative
dP

(n)
1

dP
(n)
0

(r)

is upper-bounded by a constant C1 on the set

r ∈ Rn
△
= [n(1 + P − δ), n(1 + P + δ)] . (4.139)

Step 2. Since the measures P
(n)
1 have mean n(1 + P ), by the Chernoff bound there is a

constant C2 such that
P

(n)
1 [ {Rn}c ] ≤ e−C2n . (4.140)

Now choose any set A such that P1(A) ≥ τ . Then

P1[A ∩Rn] ≥ P1(A)− P1 [ {Rn}c ] ≥ τ − e−C2n . (4.141)

But then

P0[A] ≥ P0[A ∩Rn] =

∫

R+

1A∩Rn dP0 =

=

∫

A∩Rn

dP0

dP1
dP1 ≥

1

C1

∫

A∩Rn

dP1 ≥
1

C1

(
τ − e−C2n

)
. (4.142)
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This establishes the required inequality. The rest is devoted to proving Step 1, namely,

fn(r)
△
=
dP1

dP0
≤ C1 on Rn ∀n . (4.143)

We have already discussed some properties of fn(r) in (4.105). Here, however, we will need
a precise expression for it, easily obtainable via (4.102) and (4.103):

fn(r) = (1 + P )n/2 exp

{

−nP
2
− r P

2P + 2

}

×

× (nPr)−n/4+1/2 2n/2Γ
(n

2

)

In/2−1

(√
nPr

)

, (4.144)

where In/2−1(x) is the modified Bessel function of the first kind.
We will consider only the case in which n is even. This is possible because in [78] it is

shown that
µ > ν ≥ 0 =⇒ Iµ(x) < Iν(x) , (4.145)

for all x > 0. Thus if n is odd then an upper bound is obtained by replacing In/2−1 with
In/2−3/2.

Now for integer index k = n/2− 1 the following bound is shown in [79]:

Ik(z) ≤
√
π

8
ez

1√
z

(

1 +
k2

z2

)−1/4

exp

{

−k sinh−1 k

z
+ z

(√

1 +
k2

z2
− 1

)}

. (4.146)

Note that we only need to establish the bound for r’s that are of the same order as n,
r = O(n). Thus we will change the variable

r = nt (4.147)

and seek an upper bound on fn(nt) for all t inside some interval containing (1 + P ).
Using (4.146) and the expression

ln Γ
(n

2

)

=
n− 1

2
ln
n

2
− n

2
+O(1), (4.148)

fn(r) in (4.144) can be upper-bounded, after some algebra, as

fn(nt) ≤ exp
{

−n
2
K(t, P ) +O(1)

}

. (4.149)

Here the O(1) term is uniform in t for all t on any finite interval not containing zero, and

K(t, P ) = − ln
{

1 +
√

1 + 4Pt
}

+
√

1 + 4Pt+ ln(1 +P )−P − Pt

P + 1
− 1 + ln 2 . (4.150)

A straightforward exercise shows that a maximum of K(t, P ) is attained at t∗ = 1 +P and

Kmax = K(t∗, P ) = 0 . (4.151)
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Thus
fn(nt) ≤ O(1) , t ∈ [a, b] , a > 0 . (4.152)

In particular (4.143) holds if we take, for example, a = (1 +P )− 1 and b = (1 +P ) + 1. �

In fact, the Radon-Nikodym derivative is bounded for all r, not only r ∈ Rn and, hence

κn
τ ≥

1

C1
τ (4.153)

instead of the weaker (4.138). But showing that this holds for all r complicates the proof
unnecessarily.

4.3.2 Expansion for the additive white Gaussian noise (AWGN) channel

The main result of this section is the following:

Theorem 73 For the AWGN channel with SNR P , 0 < ǫ < 1 and for equal-power,
maximal-power and average-power constraints, the capacity and dispersion are given by

C(P ) =
1

2
log(1 + P ) , (4.154)

V (P ) =
P

2

P + 2

(P + 1)2
log2 e , (4.155)

respectively. Moreover, for any power constraint we have (maximal probability of error)

logM∗(n, ǫ, P ) = nC −
√
nV Q−1(ǫ) +O(log n) . (4.156)

More precisely, for equal-power and maximal-power constraints, the O(log n) term in (4.156)
can be bounded by

O(1) ≤ logM∗
e,m(n, ǫ, P ) −

[

nC −
√
nV Q−1(ǫ)

]

≤ 1

2
log n+O(1) , (4.157)

and this holds in both maximal and average probability of error formalism. For average-
power constraint we have (only for maximal probability of error)

O(1) ≤ logM∗
a (n, ǫ, P )−

[

nC −
√
nV Q−1(ǫ)

]

≤ 3

2
log n+O(1) . (4.158)

The proof of Theorem 73 depends on a number of results of independent interest.

Theorem 74 (Converse) Consider the AWGN channel with SNR P and choose ǫ ∈ (0, 1).
Then there are Nc(P, ǫ) and gc(P, ǫ) such that, for all n > Nc(P, ǫ), we have

logM∗
e (n, ǫ, P ) ≤ nC(P )−

√

nV (P )Q−1(ǫ) +
1

2
log n+ gc(P, ǫ) (4.159)

regardless of whether ǫ is a maximal or average probability of error. Moreover, Nc(P, ǫ) and
gc(P, ǫ) are continuous functions of P and ǫ.
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Proof: Denote α = 1 − ǫ > 0. As we have shown in Section 4.2.2 for any x ∈ Fn the
distribution of i(x, Y ) is the same as that of Hn in (4.56). Thus, (2.67), for any γn > 0, we
have

inf
x∈Fn

βn
α(x) = βn

α(x) ≥ 1

γn
(α− P[Hn ≥ log γn]) . (4.160)

If we redefine γ′n = −(log γn − nC(P )), then

P[Hn ≥ γn] = P

[∑

hi ≤ γ′n
]

(4.161)

with

hi =
log e

2(1 + P )

(

PZ2
i − 2

√
PZi − P

)

(4.162)

and the Zi’s are i.i.d. standard normal. Note that E [hi] = 0 and define

V (P ) = Var(hi), T (P ) = E
[
|hi|3

]
, and B(P ) =

6T (P )

V (P )3/2
. (4.163)

Explicit expressions for T (P ) and B(P ) are not important. We mention only that all are
positive continuous functions of P > 0.

Set

Nc(P, ǫ) =

(
2B(P )

1− ǫ

)2

. (4.164)

Then for n > Nc(P, ǫ) we have

αn = α− 2B(P )√
n

> 0 . (4.165)

For such n set
γ′n = −

√

nV (P )Q−1(αn) . (4.166)

Then from the Berry-Esseen inequality, Theorem 13, we have

∣
∣
∣P

[∑

hi ≤ γ′n
]

− αn

∣
∣
∣ ≤ B(P )√

n
. (4.167)

Hence,

P

[∑

hi ≤ γ′n
]

≤ αn +
B(P )√

n
≤ α− B(P )√

n
. (4.168)

On substituting this bound into (4.160) we obtain

βn
α ≥ exp(γ′n − nC(P ))

B(P )√
n

. (4.169)

From Theorem 34 this then implies

logM∗
e (n, ǫ, P ) ≤ nC(P )− γ′n +

1

2
log n− logB(P ) . (4.170)
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From Taylor’s theorem, for some θ ∈
[

α− 2B(P )√
n
, α
]

, we have

γ′n = −
√

nV (P )Q−1(α) + 2B(P )
√

V (P )
dQ−1

dx
(θ) . (4.171)

Without loss of generality, we assume that
[

α− 2B(P )√
n
, α
]

⊂ (0, 1) for all n > Nc(P, ǫ)

(otherwise just increase Nc(P, ǫ) until this is true).

Since dQ−1

dx is a continuous function on (0, 1), we can lower bound dQ−1

dx (θ) by

g1(P, ǫ) = min
[α1,α]

dQ−1

dx
, (4.172)

where α1 = α − 2B(P )√
Nc(P,ǫ+1)

. Note that g1(P, ǫ) is a continuous function of P and ǫ. This

results in
γ′n ≥ −

√

nV (P )Q−1(α) + g1(P, ǫ)2B(P )
√

V (P ) . (4.173)

Substituting this bound into (4.170) and defining

gc(P, ǫ) = −2B(P )
√

V (P )g1(P, ǫ)− logB(P ) (4.174)

we arrive at
logM∗

e (n, ǫ, P ) ≤ nC(P ) +
√

nV (P )Q−1(α) + gc(P, ǫ) . (4.175)

Trivial computation of Var(hi) concludes the proof. �

Corollary 75 For the AWGN channel with SNR P and for each ǫ ∈ (0, 1), we have (max-
imal probability of error)

M∗
a (n, ǫ, P ) ≤ nC(P )−

√

nV (P )Q−1(ǫ) +
3

2
log n+O(1) . (4.176)

Proof: Set

N(ǫ, P ) = max
P1∈[P,2P ]

Nc(ǫ, P1) , (4.177)

g(ǫ, P ) = max
P1∈[P,2P ]

gc(ǫ, P1) . (4.178)

Now set Pn = (1 + 1/n)P and use (4.33) in Lemma 65. Then for all n > N(ǫ, P ) according
to Theorem 74 we have

logM∗
a (n, ǫ, P ) ≤ − log

(

1− P

Pn

)

+ logM∗
m(n, ǫ, Pn) ≤

≤ log(n+ 1) + logM∗
e (n + 1, ǫ, Pn) ≤

≤ (n+ 1)C(Pn)−
√

(n+ 1)V (Pn)Q−1(ǫ) +
3

2
log(n+ 1) + g(ǫ, P ) . (4.179)

After repeated use of Taylor’s theorem we can collect all O(1), O(1/n) and O(1/
√
n) terms

into O(log n), and the statement of Corollary 75 follows. �
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Theorem 76 (Achievability) For the AWGN channel with SNR P and for each ǫ ∈
(0, 1], we have (maximal probability of error)

logM∗
e (n, ǫ, P ) ≥ nC(P )−

√

nV (P )Q−1(ǫ) +O(1) . (4.180)

Proof: We will use all the notation of the proof of Theorem 74, but redefine

αn = α+
2B(P )√

n
. (4.181)

Note that for n sufficiently large3 αn < 1 and the definition of γ′n in (4.166) is meaningful.
From the Berry-Esseen inequality (4.167) we conclude that

P

[∑

hi ≤ γ′n
]

≥ αn −
B(P )√

n
≥ α+

B(P )√
n

. (4.182)

In other words, we have proven that, on setting

log γn = nC(P )− γ′n = nC(P ) +
√

nV (P )Q−1(αn) , (4.183)

we obtain

PY |X=x0
[i(x0, Y ) ≥ log γn] = P

[∑

hi ≤ γ′n
]

≥ α+
B(P )√
n

(4.184)

for sufficiently large n and any x0 ∈ Fn. Therefore, by setting

τn
△
=
B(P )√
n

. (4.185)

we have

log βn
1−ǫ+τn

≤ PY n [i(xn;Y n) ≥ log γn] (4.186)

= E
[
exp{−i(xn;Y n)}1{i(xn;Y n)≥log γn}

∣
∣Xn = xn

]
(4.187)

≤ − log γn −
1

2
log n+O(1) (4.188)

= −nC(P ) + γ′n −
1

2
log n+O(1) , (4.189)

where the (4.188) is by Lemma 20.
Finally, we use general Theorem 27 with τ = τn to obtain

logM∗
e (n, P, ǫ) ≥ log

κn
τn

βn
α+τn

. (4.190)

For the chosen τn Lemma 72 gives

log κn
τn
≥ −1

2
log n+O(1) . (4.191)

3The magnitude of n required for this to hold is practically unrealistic. Indeed, having αn < 1 requires
taking n > [2B(P )/ǫ]2 which makes n ∼ 1012 for ǫ ∼ 10−6. This implies that an expansion should be
informative only for values of n irrelevant for practice. It is therefore somewhat unexpected how tight in
reality the approximation (4.180) is; see Figs. 4.3 and 4.4 in Section 4.4. This observation suggests that
Berry-Esseen inequality is too conservative to explain the tightness of the normal approximations.
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This inequality, together with (4.189), yields

logM∗
e (n, P, ǫ) ≥ nC(P )− γ′n +O(1) . (4.192)

It is easy to see that Q−1(αn) = Q−1(α) +O(1/
√
n) and thus, for γ′n we have

γ′n =
√

nV (P )Q−1(ǫ) +O(1) . (4.193)

This concludes the proof. �

Obtaining this expansion with the term o(
√
n) is much easier (and amounts to the appli-

cation of Lemma 71 to (4.108)). Refining the remaining term to O(1) required application
of Lemma 72. This is needed because the key difference in obtaining the O(1) estimate is
to set τn = O(1/

√
n) instead of τ = O(1).

Proof of Theorem 73: Since (4.157) and (4.158) imply all other statements, it is
sufficient to prove the former. Lower bounds in (4.157) and (4.158) follow from Theorem 76.
Upper bound in (4.157) is a consequence of Theorem 74 and (4.32). Finally, the upper bound
in (4.158) is given by Corollary 75. �

As discussed in Section 4.1, the expression for channel dispersion of the AWGN was
conjectured by Baron et al. in [28], see (4.28), after analyzing asymptotic formulas of
Shannon [4]. The reasoning given in [28] relied on expressions (9) and (73) in [4]. However,
the latter are not directly applicable here because they are asymptotic, n→∞, equivalence
relations under a fixed rate R, whereas in Theorem 73 the rate is changing with n. Similarly,
an asymptotic expansion up to the o(

√
n) term is put forward in [80]. The proof given there

reduces the AWGN problem to that of the cost-constrained DMC by a method of fine
quantization of the input/output alphabets. However, the proof of the DMC case given
there implicitly assumes a fixed alphabet size and makes heuristic appeals to the central-
limit theorem.

4.3.3 A special case: average power constraint and average probability
of error

The only case not covered by Theorem 73 is the case of the average power constraint and
average probability of error. In this Section we demonstrate that this case is drastically
different from all the rest. The main result is the following:

Theorem 77 For the AWGN channel with SNR P and average probability of error 0 <
ǫ < 1 we have

logM∗
a (n, ǫ, P ) =

n

2
log

(

1 +
P

1− ǫ

)

+O
(

n
2
3

)

, (4.194)

as n → ∞. In other words, in the setup of average power constraint (4.6) and average
probability of error, the strong converse does not hold and the ǫ-capacity of the AWGN
channel is given by

Cǫ =
1

2
log

(

1 +
P

1− ǫ

)

. (4.195)
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Proof:
First, we show the upper (converse) bound. By Lemma 65 from (4.34) we have:

logM∗
a (n, ǫ, P ) ≤ log

1

1− P/P ′ + logM∗
m(n, ǫ′, P ′) , (4.196)

where ǫ′ = ǫ
1−P/P ′ we chose P ′ so that

ǫ′ = 1− n− 1
3 , (4.197)

P ′ =
P

1− ǫ +O
(

n−
1
3

)

, (4.198)

C(P ′) =
1

2
log

(

1 +
P

1− ǫ

)

+O
(

n−
1
3

)

, (4.199)

V (P ′) = V

(
P

1− ǫ

)

+O
(

n−
1
3

)

, (4.200)

where (4.199) and (4.200) are possibly by Taylor’s expansion applied to smooth functions
C(P ) and V (P ), as defined in (4.154) and (4.155), resp. Then, as in the proof of Theorem 67
we have

logM∗
m(n, ǫ′, P ′) ≤ − log βn

1−ǫ′ (4.201)

≤ nC(P ′) +

√

nV (P ′)
1− ǫ′ − log

1− ǫ′
2

(4.202)

= n

[

C

(
P

1− ǫ

)

+O
(

n−
1
3

)]

+ n
2
3

[√

V

(
P

1− ǫ

)

+O
(

n−
1
3

)
]

+O(log n) (4.203)

= nC

(
P

1− ǫ

)

+O
(

n
2
3

)

, (4.204)

where (4.202) follows by Lemma 15, and (4.203) holds by the Taylor’s expansion.
Next we show the lower (achievability) bound. Denote

M1
△
= M∗

m

(

n, 2n−
1
3 ,

P

1− ǫ
(

1− 2n−
1
3

))

, (4.205)

and assume that

logM1 ≥ nC
(

P

1− ǫ

)

+O
(

n
2
3

)

. (4.206)

Denote

M = M1
1− 2n−

1
3

1− ǫ . (4.207)

For sufficiently large n we know that M > M1. Then consider a code with M1 codewords
chosen from the maximal power constraint code achieving M∗

m in the definition (4.205), and
(M −M1) all-zero codewords. According to (4.207), the average probability of error of such
a code is upper-bounded by

2n−
1
3 · M1

M
+ 1 · M −M1

M
≤ ǫ (4.208)
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as required. At the same time, the average power is given by

P

1− ǫ
(

1− 2n−
1
3

)

· M1

M
+ 0

M −M1

M
≤ P . (4.209)

Therefore, we constructed an (n,M, ǫ) code satisfying average power constraint (4.6) for
the power P , which together with (4.206) and (4.207) implies

logM∗
a (n, ǫ, P ) ≥ nC

(
P

1− ǫ

)

+O
(

n
2
3

)

. (4.210)

We are left to prove (4.206). Choosing τn = n−
1
3 in (4.108) we get together with

Lemma 72
logM1 ≥ − log βn

1−n− 1
3

+O(log n) , (4.211)

where βn
α is given by Theorem 66. A simple upper-bound on βn

α sufficient for proving (4.206)
will follow from (2.69) if we can show that

P

[

Hn < nC

(
P

1− ǫ

)

− n 2
3

]

≤ n− 1
3 , (4.212)

where Hn is defined in Theorem 66. Since according to (4.56), Hn is the sum of i.i.d.
random variables, then [81, Theorem 3.7.1] implies that

P

[

Hn < nC

(
P

1− ǫ

)

− n 2
3

]

= O

(

e
− 1

2V ( P
1−ǫ )

n
1
3

)

, (4.213)

which in particular means (4.212) holds for all sufficiently large n. Thus, (4.206) has been
shown4 . �

4.4 Numerical comparison

In this section our goal is to compare achievability and converse bounds on logM∗
m(n, ǫ)

(maximal power constraint). As before, we plot the converse bounds for the average prob-
ability of error criterion and achievability bounds for the maximal. The results are found
on Figs. 4.1 and 4.2. Let us first explain how each bound was computed:

1. Converse bound is Theorem 67. Note that in [4] Shannon gives another converse
bound (4.13). However, in this case both bounds numerically coincide almost exactly,
while Theorem 67 is slightly easier to compute. For these reasons only the new one is
plotted.

4In fact this argument can be trivially changed to show that in (4.206) the residual term O
“

n
2
3

”

can be

replaced with O
“

n
1
2
+δ

”

for any δ > 0. Similarly, based on the κβ bound and [81, Theorem 3.7.1] we can

easily extend to the AWGN channel the results on the moderate deviations shown in [82] for the DMC; see
Section 5.6.
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Figure 4.1: Bounds for the AWGN channel, SNR = 0 dB, ǫ = 10−3.

2. Shannon bound is Theorem 63. As suggested by [20] we first integrate [4, (20)] by
parts and then calculate Q(θ) via [4, (17)]. In this way computation is reduced to
evaluation of the non-central t-distribution and numerical integration.

We also need to convert the codebook with a given average probability of error to
the codebook with a prescribed maximal probability of error; for the BSC and BEC
we used the random linear code method, which is not applicable to the case of the
AWGN channel. Instead, we applied the following well-known method: if there exists
an (M, τǫ)-code for average probability then there must exist a (τM, ǫ)-subcode for
maximal probability. Consequently, if MS(n, ǫ) is the maximal cardinality of the
codebook guaranteed by the Shannon bound, then instead we plot

Mmax
S (n, ǫ) = max

τ∈[0,1)
(1− τ)MS(n, τǫ) . (4.214)

3. Feinstein’s bound is the strengthening of Feinstein’s lemma as given by Corollary 26
with

Fn =
{
xn : ||xn||2 ≤ nP

}
(4.215)

and PXn = N (0, P In).
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Figure 4.2: Bounds for the AWGN channel, SNR = 20 dB, ǫ = 10−6.

4. Gallager’s bound is Theorem 64, where we optimize the choice of δ for each R, and
then select the largest R that still keeps the bound (4.18) below the required ǫ.

5. κβ bound is an application of Theorem 27 with βα and κτ given by Theorems 66
and 69. Lemma 71 is a significant help in computations. Experimentally, we have
observed that convergence in (4.117) is very fast. For example, for P = 1, n = 10 and
τ ∈ [10−6, 10−1],

|κn
τ − κ∞τ | ≤ 5 · 10−3κn(τ) . (4.216)

Note also that κn
τ affects the rate log M

n only as log κn
τ

n . So, numerically we can safely
replace κn

τ with its asymptotic value. In that way for every n we must solve only
one binary hypothesis testing problem: the one that yields βn

α. A small downward
jump can be seen occurring for n ≈ 400 on Fig. 4.2. That is not a property of the κβ
bound, rather this happens because the value of βn

α becomes so small that a precise
computation needs to be replaced by a numerically stable bound.

Note that Feinstein’s lemma generates codewords inside the power sphere, Gallager’s code-
book is in the thin layer around the power sphere, while Shannon’s codebook and that of
κβ bound are both precisely on the power sphere.

As we can see, Shannon’s bound is the clear winner on both Figs. 4.1 and 4.2. It comes
very close to the converse bound: for example, on Fig. 4.1 the gap between the bounds on
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logM is smaller than 6 bits, uniformly across the blocklengths depicted. This illustrates,
that the methods of information theory allow computation of the fundamental limits of the
AWGN channel within a few bits.

The κβ bound, although slightly looser than Shannon’s, has the advantage of being more
general (Shannon’s bound is purely AWGN specific and is based on geometric arguments),
easier to compute and, most importantly, easier to analyze asymptotically. Indeed, it is κβ
bound that was used in the proof of Theorem 73. As we can see on Figs. 4.1 and 4.2 it is
also quite competitive for finite n.

Regarding the classical bound of Feinstein, we can see that, as shown analytically,
the κβ bound is uniformly better than the Feinstein bound (even in the stronger form
given by Corollary 26). Comparison with Gallager’s bound demonstrates that for large
n, the κβ bound is always more advantageous. However, for small n Gallager’s bound
can yield better performance. Informally speaking, this happens because Gallager upper-
bounds the performance of the optimal (maximum-likelihood) decoder, while in the κβ
bound we analyze a suboptimal hypothesis-testing based decoder, but we do not use further
bounds. Numerical comparison demonstrates that for small n it is crucial to use a maximum-
likelihood decoder. The effect is more pronounced as we lower the target probability of error,
see Fig. 4.2. In general we observe that Gallager’s bound improves as the channel becomes
better and as ǫ gets smaller. On the other hand, the new κβ bound is more uniform over
both SNR and ǫ.

Let us compare the behavior of the bounds in terms of their asymptotic expansions. As
shown by Theorem 67, the converse bound on logM∗

m has the behavior

nC −
√
nV Q−1(ǫ) +

1

2
log n+O(1) , (4.217)

as n→∞. Gallager’s and Feinstein’s’ bounds achieve a correct linear (capacity) term, but
not the

√
n-term. Both the κβ and Shannon bounds yield a correct

√
n term. Unfortunately,

no bound achieves a 1
2 log n term (for maximal probability of error), and for this reason,

the true value of the constant in front of log n in Theorem 73 remains unknown.
According to Theorem 73, we expect the following normal approximation to be describe

the behavior of the fundamental limit logM∗
m(n, ǫ, P ) non-asymptotically:

logM∗
m(n, ǫ, P ) ≈ n

2
log(1 + P )−

√

n
P

2

P + 2

(P + 1)2
log eQ−1(ǫ) +

1

2
log n . (4.218)

Although, Theorem 73 does not provide an exact value of the coefficient in log n term, based
on the bounds given there and on empirical evidence we conjecture that the true coefficient
is indeed 1

2 . This is reflected in the approximation (4.218).
On Fig. 4.3 and Fig. 4.4 we compare this approximation with the converse and the

best achievability (Shannon’s) bounds on M∗
m(n, ǫ, P ). It is quite clear that the approxima-

tion (4.218) is indeed very tight.

4.4.1 A remark on the κβ bound

As we noted in Section 3.4, see the discussion after Theorem 47, the κβ bound is a natural
choice for the situations with cost constraints. The detailed application of the κβ bound
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Figure 4.3: Normal approximation for the AWGN channel, SNR = 0 dB, ǫ = 10−3.

in this chapter, suggests the following observation. According to (4.108), the behavior
of logM∗(n, ǫ) is determined by the exponents of βn

α and κn
τ . However, for memoryless

channels whenever we choose PY n = PY × · · · × PY , it is well-known that

βα(PY n|Xn=xn , PY n) ∼ e−nEβ(PY ) , (4.219)

where the exponent Eβ(PY ) = 1
nD(PY n|Xn=xn ||PY n).

In deriving expressions for the converse, we selected PY = P ∗
Y so as to minimize the

exponent
Eβ(P ∗

Y ) = Eβ,min (4.220)

and thereby obtain the tightest converse.
When considering achievability, however, it seems that our goal should be different and

we must have chosen PY to maximize Eβ to obtain a better bound. However, for different
choice of PY , with a higher Eβ, from the achievability Theorem 27 we immediately conclude
that κn

τ (Fn, PY ) should then decay exponentially κn
τ ∼ exp(−nEκ) with exponent such that

Eβ(PY )− Eκ(PY ) ≤ Eβ,min . (4.221)

Otherwise achievability would contradict the converse. What makes the κβ bound useful
is that, for the choice of PY = P ∗

Y , it happens that Eκ = 0. And then, of course, the
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Figure 4.4: Normal approximation for the AWGN channel, SNR = 20 dB, ǫ = 10−6.

converse and achievability bounds meet in the exponent, giving way to the capacity and
strong converse theorems:

Cǫ = C = Eβ,min . (4.222)

Thus, the quest for proving capacity (and the strong converse) is, in our language, a
quest for attaining Eκ = 0. Indeed, if we rewrite (4.221) as

Eκ(PY ) ≥ Eβ(PY )−Eβ,min (4.223)

then we can immediately see that whenever Eκ(PY ) = 0 it must be that Eβ(PY ) = Eβ,min.
It might happen that for the cases where we cannot directly minimize Eβ(PY ) this indirect
characterization will help.

4.5 Parallel AWGN channel

For the real-valued L-parallel AWGN channel we set A = RL×n, B = RL×n and PY |X is
defined by

Yi,j = Xi,j + σiZi,j , i = 1 . . . L, j = 1 . . . n , (4.224)
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where Zi,j are independent N (0, 1) random variables. Also, codewords c are subject to a
(maximal) power constraint:

||c||2 =

n∑

j=1

L∑

i=1

|ci,j |2 ≤ nP . (4.225)

As usual we define

M∗(n, ǫ, P ) = sup{M : ∃ an (n,M, ǫ, P ) − code satisfying (4.225)} . (4.226)

Theorem 78 For a parallel AWGN channel and ǫ ∈ (0, 1) we have

logM∗(n, ǫ, P ) = nCL(P )−
√

nVL(P )Q−1(ǫ) +O(log n) , (4.227)

regardless of whether ǫ is a maximal or average probability of error, where5

CL(P ) =

L∑

i=1

C

(
Wi

σ2
i

)

, and (4.229)

VL(P ) =
L∑

i=1

V

(
Wi

σ2
i

)

, (4.230)

where C and V are the capacity and dispersion of the AWGN channel, see (4.154) and (4.155),
and {Wj} are the usual waterfilling powers

Wi =
[
λ− σ2

i

]+
(4.231)

and λ is the solution of
L∑

i=1

Wi = P . (4.232)

4.5.1 Converse bound

Similarly to (4.32) in Lemma 65, by replacing n with n+ 1 if needed, we can assume that
each codewords x satisfies the power constraint (4.225) with equality, that is each x belongs
to the set:

F
′
n = {x ∈ RL×n : ||x||2 = nP} . (4.233)

To each codeword x ∈ F
′
n we associate a power allocation vector

v(x) ∈ RL : vj(x) =
1

n
||xj,·||2 =

1

n

n∑

i=1

x2
j,i . (4.234)

5Note the following expression for VL(P ):

VL(P ) = 2

„

log e

2

«2 L
X

j=1

"

1−

„

σ2
j

T

«2
#+

. (4.228)
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Therefore v maps F
′
n to the simplex

V(P )
△
= {v :

L∑

i=1

vi = P} ⊂ RL . (4.235)

To prove the converse, we apply Theorem 33 with the following Q-channel:

QY|X=x =
n∏

i=1

L∏

j=1

QYj,i|X=x , (4.236)

where
QYj,i|X=x = N

(
0, σ2

j + vj(x)
)
. (4.237)

We need to compute the asymptotics of the following quantity:

βn
α(x)

△
= βn

α(PY|X=x, QY|X=x) . (4.238)

By spherical symmetry βn
α(x) depends on x only through v(x). The Radon-Nikodym deriva-

tive between PY|X=x and QY|X=x is distributed under PY|X=x as

log
dPY|X=x

dQY|X=x

∼
n∑

i=1

L∑

j=1

C

(

vj(x)

σ2
j

)

+
log e

2

vj(x) + 2
√

vj(x)σjZj,i − vj(x)Z2
j,i

vj(x) + σ2
j

, (4.239)

where the Zj,i’s are i.i.d. standard Gaussian. Then, from Lemma 14 we conclude:

log βn
α(x) = −n

L∑

i=1

C

(
vi(x)

σ2
i

)

−

√
√
√
√n

L∑

i=1

V

(
vi(x)

σ2
i

)

Q−1(α) − 1

2
log n+O(1) . (4.240)

An important observation is that O(1) term is bounded uniformly in x ∈ F
′
n as n→∞. To

establish this technical result by (2.87) and (2.88) we need only to prove that Bn defined
there can be uniformly bounded over x ∈ F

′
n. But by (4.239), we have

Bn = 6
E [|J |3]

(E [J2])
3
2

, (4.241)

where

J =

L∑

j=1

C

(

vj

σ2
j

)

+
log e

2

vj + 2
√
vjσjZj − vjZ

2
j

vj + σ2
j

(4.242)

and the vector v = (v1, . . . , vL) ∈ V(P ). By denoting

σ2
min = min

j
σ2

j , (4.243)

σ2
max = max

j
σ2

j , (4.244)
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we have

|J | ≤
L∑

1

1

2
log

(

1 +
P

σ2
min

)

+
1

2

log e

σ2
min

(

P + 2
√
Pσmax|Zj |+ PZ2

j

)

, (4.245)

where we have used the fact that vj ≤ P . Now we see that the right-hand side of (4.245)
is independent of the choice of v. Thus there are constants ζ1 ≥ 0 and ζ2 ≥ 0 such that

E
[
|J |2

]
≤ ζ1 , (4.246)

E
[
|J |3

]
≤ ζ2 , (4.247)

for any choice of v ∈ V(P ). Similarly, since the variance of J is

E [J2] =

L∑

j=1

V

(

vj

σ2
j

)

, (4.248)

and since
∑
vj = P , we must have at least one vj >

P
L , and therefore,

E [J2] ≥ 2

(
log e

2

)2
(

P
L

)2
+ 2

(
P
L

)
σ2

min

(P + σ2
max)2

, (4.249)

where we observe again the right-hand side does not depend on v. By the Lyapunov

inequality,
(
E [|X|2]

)1/2 ≤ (E [|X|3])1/3, (4.249) implies a lower bound on E [|J |3] as well.
Thus, there exist constants ζ3 > 0 and ζ4 > 0 such that

E
[
|J |2

]
≥ ζ3 , (4.250)

E
[
|J |3

]
≥ ζ4 , (4.251)

for any choice of v ∈ V(P ). Hence, (4.246), (4.247), (4.250) and (4.251) applied to (4.241)
imply that

0 < inf
x∈F

′
n

Bn ≤ sup
x∈F

′
n

Bn <∞ . (4.252)

Thus, we have demonstrated that O(1) term in (4.240) is uniform in x ∈ F
′
n. In particular,

we have

inf
x∈F

′
n

log βn
α(x) = − sup

v∈V(P )
fn(v)− 1

2
log n+O(1) , (4.253)

where

fn(v)
△
= n

L∑

i=1

C

(
vi(x)

σ2
i

)

+

√
√
√
√n

L∑

i=1

V

(
vi(x)

σ2
i

)

Q−1(α) . (4.254)

Since the unique maximizer of
∑L

i=1C
(

vi(x)
σ2

i

)

is given by the waterfilling vj = Wj , Lemma 49

implies
sup

v∈V(P )
fn(v) = nCL(P ) +

√

nVL(P )Q−1(α) +O(1) , (4.255)
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where CL and VL are defined in (4.229) and (4.229), respectively. Therefore, from (4.253)
we have

inf
x∈F

′
n

log βn
α(x) = −nCL(P )−

√

nVL(P )Q−1(α)− 1

2
log n+O(1) . (4.256)

To complete the application of Theorem 33, we need to establish a converse bound for
the Q-channel. The following result serves this purpose:

Lemma 79 There exists a constant K3 > 0 such that for any code with M codewords the
maximal probability of error ǫ′ over a Q-channel satisfies

1− ǫ′ ≤ K3n
L/2

M
. (4.257)

Assuming Lemma 79, we have from Theorem 33:

inf
x∈F

′
n

βn
α(x) ≤ 1− ǫ′ (4.258)

≤ K3n
L/2

M
. (4.259)

Taking the logarithms of both sides and applying (4.256) we obtain

−nCL(P )−
√

nVL(P )Q−1(α) − 1

2
log n+O(1) ≤ − logM +

L

2
log n+O(1) , (4.260)

which after the rearrangement of terms completes the proof of the following:

Theorem 80 For the parallel AWGN channel and arbitrary 0 < ǫ < 1, we have (maximal
probability of error)

logM∗(n, ǫ, P ) ≤ nCL(P )−
√

nVL(P )Q−1(α) +
L+ 1

2
log n+O(1) . (4.261)

Proof of Lemma 79: According to (4.237) the output Y depends only on V = v(X)
and moreover U = v(Y) is a sufficient statistic of Y for X. Therefore, an equivalent channel
QU|V is defined as

Ui = (σ2
i + Vi)

1

n

n∑

j=1

Z2
i,j , i = 1, . . . , L , (4.262)

where Zi,j ∼ N (0, 1). Note that V is required to belong to a certain ball in RL, and that
up to probability of order O

(
e−const·n), U belongs to a slightly larger ball. Therefore, we

can assume that the output space has a bounded Lebesgue measure K4. Then at least for
one codeword v0 the decoding set D0 must have a Lebesgue measure smaller than K4

M :

Leb[D0] ≤
K4

M
. (4.263)

But QU|V=v is a product of L copies of a χ2-distribution and we can show that its density

is bounded everywhere by K5n
L/2. Hence, we have

1− ǫ′ ≤ QU|V=v0
[D0] ≤ K5n

L/2Leb[D0] ≤
K4K5n

L/2

M
. (4.264)

�
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4.5.2 Achievability bound

We plan to apply the κβ bound, Theorem 27, with the following constraint set:

Fn
△
= {x : vj(x) = Wj} , (4.265)

where vj(·) are the coordinates of the power allocation vector v(x) defined in (4.234) and
Wj are the waterfilling powers (4.231). We choose the following output distribution on B:

PY =
n∏

i=1

L∏

j=1

PYj,i , (4.266)

where
PYj,i = N

(
0, σ2

j +Wj

)
, (4.267)

Notice that PY = QY|X=x0
for some (and any) x0 with vj(x0) = Wj , where Q-channel was

defined in (4.236). This motivates the choice of PY and also yields by (4.240):

log βn
α(PY|X=x, PY) = −nCL(P )−

√

nVL(P )Q−1(α)− 1

2
log n+O(1) (4.268)

for all x ∈ Fn.
To analyze κτ (Fn, PY) notice that by the spherical symmetry of all measures in each

Yj,· sub-component, we can apply the same argument as in Section 4.3.1 to show that κn
τ is

determined by a test between two distributions on RL
+:

P0 ∼
(

||σ1Z1 +
√

W1e||2, . . . , ||σLZL +
√

WLe||2
)

(4.269)

P1 ∼
(
(σ2

1 +W1)||Z1||2, . . . , (σ2
1 +W1)||ZL||2

)
, (4.270)

where Zj , j = 1, . . . , L are Gaussian vectors with zero mean and covariance matrix equal to
the n × n identity, Zj ∼ N (0, In); in (4.269) e denotes a vector of all 1’s of dimension n.
Therefore, κn

τ can be found as

κn
τ = inf

PZ|Y :P0[Z=1]≥τ
P1[Z = 1] . (4.271)

Then similarly to Lemma 71 it can be shown that

κn
τ → κ∞τ > 0 , n→∞ , (4.272)

and similarly to Lemma 72 it can be shown that for some constants C1 > 0 and C2 > 0, for
all sufficiently large n and for all τ ∈ [0, 1] we have

κn
τ ≥

1

C1

(
τ − e−C2n

)
. (4.273)

Finally, by Theorem 27 we obtain:

logM∗(n, ǫ, P ) ≥ log κn
τ − log βn

1−ǫ+τ (R̄) . (4.274)
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Choosing τ = 1√
n

we get from (4.268) and (4.273):

logM∗(n, ǫ, P ) ≥ nCL(P )−
√

nVL(P )Q−1

(

ǫ− 1√
n

)

+O(1) (4.275)

= nCL(P )−
√

nVL(P )Q−1 (ǫ) +O(1) , (4.276)

where (4.276) follows by applying Taylor’s expansion to Q−1. Therefore, we have shown
the following result:

Theorem 81 For the parallel AWGN channel and arbitrary 0 < ǫ < 1, we have (maximal
probability of error)

logM∗(n, ǫ, P ) ≥ nCL(P )−
√

nVL(P )Q−1(α) +O(1) . (4.277)

4.5.3 Proof of the main theorem

Proof of Theorem 78: After applying Theorems 80 and 81, the only remaining claim
is to show that the converse bound

logM∗(n, ǫ, P ) ≤ nCL(P )−
√

nVL(P )Q−1(ǫ) +O(log n) (4.278)

holds for the average probability of error formalism. This is done completely as in the proof
of (3.111). �

Before concluding the section on the parallel AWGN, we mention that in the maximal
probability of error formalism, the expansion (4.227) still holds for the average power con-
straint. The method of deriving it is the same as in the AWGN case before: the residual
O(log n) term in the converse should be studied and shown to not have any singularities for
any P > 0 (cf. the proof of Theorem 74). Then, the upper bound for the average power
constraint follows along the same lines as the proof of Corollary 75 since the generalization
of (4.33) in Lemma 65 is straightforward.

4.5.4 Deviations from the optimal allocation in the low-power regime

Suppose that we only have a very small power budget P and want to assess the penalty
incurred by the power allocations different from the optimal (water-filling) solution. In this
section we show that in the low power regime there is virtually no penalty, provided that
the available (tiny) drop of power is distributed around the “bottom” of the noise spectrum.

Formally, suppose that σ1 = σ2 = . . . = σL and all other σj > σ1. Then, fix an arbitrary
vector αj , j = 1, . . . , L, . . ., with αj = 0 for j > L and

∑
αj = 1. Then it turns out that

the capacity under such power allocation is approximately independent of αj ’s, namely,

dC(P · α)

dP

∣
∣
∣
∣
P=0

=
log e

2σ2
1

, (4.279)

where

C(P)
△
=

∞∑

j=1

1

2
log

(

1 +
Pj

σ2
j

)

. (4.280)
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Consequently, from (4.279) we conclude that the power can be distributed arbitrarily as
far as the capacity is concerned. In other words, for very large blocklengths no penalty is
incurred by choosing α different from the α∗

j = 1
L1{j ≤ L}.

Using results of Theorem 78 we can argue that the same conclusion holds for the practical
blocklengths as well. Indeed, a straightforward computation shows that the second-order
term is also unaffected:

dV (P · α)

dP

∣
∣
∣
∣
P=0

=
log2 e

σ2
1

, (4.281)

where

V (P) =
∞∑

i=j

V1

(

Pj

σ2
j

)

, (4.282)

and V1(·) is the dispersion of the scalar AWGN channel (4.155). Since the right-hand side
of (4.281) does not depend on α we see that indeed the conclusion regarding allocation-
tolerance of the fundamental limits holds not only in the capacity-term but also in the
dispersion term.

4.6 Minimum energy per bit with and without feedback

In this section we investigate the minimum energy per bit Eb required to deliver a k-bit
message with probability of error ǫ ≥ 0 over an AWGN channel with noise level N0

2 per
degree of freedom.

The analysis is made for two different regimes. First, the regime of an apriori fixed rate
R = k

n and finite k is considered. Note that in the limit k → ∞, the minimum energy per
bit is given by (4.31). Non-asymptotically we use the bounds discussed in Section 4.4 to
get an estimate and a tight approximation via (4.218).

Second, we further generalize the problem by dropping the rate restriction. In other
words, we consider the minimal achievable energy per bit in the regime of infinite degrees
of freedom n = ∞, fixed ǫ ≥ 0 and finite k. Equivalently, we determine the maximal
number of bits of information that can be transmitted with a fixed (non-asymptotic) energy
budget and an error probability constraint, but without any limitation on the number of
degrees of freedom used. Note that asymptotically, k →∞, the answer in this case is given
by (4.30). Our treatment is different from [30] in that we do not take k → ∞, and from
the regime 1 (and from [14, 61]) in that we do not restrict the rate k

n . Even though the
asymptotic value (4.30) can be obtained from (4.31) (i.e. from the regime of restricted
rate) by taking R → 0, such an argument is not possible for finite k. This approach can
be viewed as a non-asymptotic extension of [83] in which we also explicitly allow infinitely
long codewords (which only serves to strengthen the applicability of our converse bound,
since our achievability constructions only use finite-length codewords).

Interestingly, for the second case we will demonstrate how feedback coding can dramat-
ically improve the energy efficiency.
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Figure 4.5: Normal approximation for the Eb/N0 gap for the AWGN channel, R = 1/2, ǫ =
10−4

4.6.1 Fixed rate

In this Section we consider the following setup. A k-bit message is to be communicated
with rate R > 0 (bits per degree of freedom) over an AWGN channel with n = k

R degrees

of freedom and noise level N0
2 per degree of freedom. We are interested in the minimum

energy per bit (as function of k) achievable via the best possible coding scheme. Since as
k →∞ the answer is given by (4.31), an interesting figure of merit is the excess energy per
bit, ∆Eb(k), over that predicted by channel capacity incurred by finiteness of k. ∆Eb as a
function of k for a given required bit rate and block error rate ǫ is given by

∆Eb(k,R) = 10 log10
P (n,R, ǫ)

exp(2R)− 1
, (4.283)

where P (n,R, ǫ) is the smallest SNR required to achieve block error ǫ at blocklength n = k
R

and rate R. The results of Section 4.4 suggest that a tight estimate of P (n,R, ǫ) can be
found from the normal approximation (4.218); namely, P (n,R, ǫ) is the solution to

C(P )−
√

V (P )

n
Q−1(ǫ) +

1

2n
log n = R , (4.284)



152

and C and V are as in Theorem 73.
Figure 4.5 gives a representative computation of (4.283)–(4.284) along with the corre-

sponding lower6 and upper bounds obtained from (4.59) and (4.214) respectively. We note
a good precision of the simple approximation (4.283), e.g., for k = 100 bits the gap to the
achievability bound is only 0.04 dB. A similar comparison (without the normal approxima-
tion, of course) for rate 2/3 is presented in [14, Fig. 8].

Note that for the rate 1/2 the asymptotic minimal energy per bit is equal to 0dB,
see (4.31), and hence the reference level for ∆Eb in the denominator of (4.284) is simply
equal to 1. In this way, on Fig. 4.5 the y-axis represents both the gap and the optimal Eb

N0

at the same time.

4.6.2 No rate constraint

To obtain the bona fide energy-information tradeoff we must drop the restriction of the
rate, which was made in Section 4.6.1. Indeed, adding additional assumptions increases the
required energy and therefore, does not help in computing the absolutely minimal energy
needed to convey k bits to the destination.

For clarity, we first introduce complete definitions for this special case. The AWGN
channel acts between input space A = R∞ and output space B = R∞ by addition:

y = x + z , (4.285)

where R∞ is the vector space of real valued sequences7 (x1, x2, . . . , xn, . . .), x ∈ A, y ∈ B

and z is a random vector with i.i.d. Gaussian components Zk ∼ N (0, N0/2) independent
of x.

Definition 11 An (E,M, ǫ) code is a list of codewords (c1, . . . , cM ) ∈ A
M , satisfying

||cj ||2 ≤ E , j = 1, . . . ,M , (4.286)

and a decoder g : B→ {1, . . . ,M} satisfying

P[g(y) 6= W ] ≤ ǫ , (4.287)

where y is the response to x = cW , and W is the message which is equiprobable on
{1, . . . ,M}. The fundamental energy-information tradeoff is given by

M∗(E, ǫ) = max{M : ∃(E,M, ǫ)-code} . (4.288)

Equivalently, we define the minimum energy per bit:

E∗
b(k, ǫ) =

1

k
inf{E : ∃(E, 2k, ǫ)-code} . (4.289)

6Another lower bound is given in [61, Fig. 3] which shows [4, (15)].
7In this section, boldface letters x, y etc. denote the infinite dimensional vectors with coordinates Xk,

Yk etc., correspondingly.
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Although, we are interested in (4.289), M∗(E, ǫ) is more suitable for expressing our results
and (4.289) is the solution to

k = logM∗(E∗
b(k, ǫ), ǫ) . (4.290)

Note that (4.285) also models an infinite-bandwidth continuous-time Gaussian channel
without feedback observed over an interval [0, T ], in which each component corresponds to
a different tone in an orthogonal frequency division representation. Then, E corresponds
to the allowed power P times T and N0

2 is the power spectral density of the white Gaussian
noise.

Definition 12 An (E,M, ǫ) code with feedback is a sequence of encoder functions {fk}∞k=1

determining the channel input as a function of the message W and the past channel outputs,

Xk = fk(W,Y
k−1
1 ) , (4.291)

satisfying
E [||x||2|W = j] ≤ E , j = 1, . . . ,M , (4.292)

and a decoder g : B→ {1, . . . ,M} satisfying (4.287). The fundamental energy-information
tradeoff with feedback is given by

M∗
f (E, ǫ) = max{M : ∃(E,M, ǫ)-code with feedback} (4.293)

and the minimum energy per bit by

E∗
f (k, ǫ) =

1

k
inf{E : ∃(E, 2k, ǫ)-code with feedback} . (4.294)

Similarly to the approach we have taken for studying logM∗(n, ǫ) as a function of n,
in this section we concentrate on obtaining upper and lower bounds on logM∗(E, ǫ) and
logM∗

f
(E, ǫ) and corresponding asymptotics for fixed ǫ and E →∞.

Theorem 82 For every M > 0 there exists an (E,M, ǫ) code for the channel (4.285) with

ǫ = E

[

min

{

MQ

(√

2E

N0
+ Z

)

, 1

}]

, (4.295)

and Z ∼ N (0, 1). Conversely, any (E,M, ǫ) code without feedback satisfies

1

M
≥ Q

(√

2E

N0
+Q−1(1− ǫ)

)

. (4.296)

Proof: To prove (4.295), notice that a codebook with M orthogonal codewords under
a maximum likelihood decoder has probability of error equal to

Pe = 1− 1√
πN0

∫ ∞

−∞

[

1−Q
(√

2

N0
z

)]M−1

e
− (z−

√
E)2

N0 dz . (4.297)
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A change of variables x =
√

2
N0
z and application of the bound 1−(1−y)M−1 ≤ min{My, 1}

weakens (4.297) to (4.295).
To prove (4.296) fix an arbitrary codebook (c1, . . . , cM ) and a decoder g : B→ {1, . . . ,M}.

We denote the measure P j = Py|x=cj
on B = R∞ as the infinite dimensional Gaussian dis-

tribution with mean cj and independent components with individual variances equal to N0
2 ;

i.e.,

P j =

∞∏

k=1

N
(

cj,k,
N0

2

)

, n = 1, 2, . . . (4.298)

where cj,k is the k-th coordinate of the vector cj . We also define an auxiliary measure

Φ =

∞∏

k=1

N
(

0,
N0

2

)

, n = 1, 2, . . . (4.299)

Assume for now that the following holds for each j and event F ∈ B∞:

P j(F ) ≥ α =⇒ Φ(F ) ≥ βα(E) , (4.300)

where the right-hand side of (4.296) is denoted by

βα(E) = Q

(√

2E

N0
+Q−1(α)

)

. (4.301)

From (4.300) we complete the proof of (4.296):

1

M
=

1

M

M∑

j=1

Φ(g−1(j)) (4.302)

≥ 1

M

M∑

j=1

βP j(g−1(j))(E) (4.303)

≥ β1−ǫ(E) , (4.304)

where (4.302) follows because g−1(j) partitions the space B, (4.303) follows from (4.300),
and (4.304) follows since the function α→ βα(E) is non-decreasing convex for any E and

1

M

M∑

j=1

P j(g−1(j)) ≥ 1− ǫ (4.305)

is equivalent to (4.287), which holds for every (E,M, ǫ) code.
To prove (4.300) we compute the Radon-Nikodym derivative

loge
dP j

dΦ
(y) =

∞∑

k=1

(
−1

2c
2
j,k + cj,kYk

)
, (4.306)

and hence loge
dP j

dΦ is distributed as

loge

dP j

dΦ
(y) ∼ N

( ||cj ||2
2

, N0
||cj ||2

2

)

(4.307)
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if y ∼ P j and as

loge
dP j

dΦ
(y) ∼ N

(

−||cj ||2
2

, N0
||cj ||2

2

)

(4.308)

if y ∼ Φ. Then, (4.300) follows by the Neyman-Pearson lemma since ||cj ||2 ≤ E for all
j ∈ {1, . . . ,M}. This method of proving a converse result is in the spirit of the meta-
converse, Theorem 28. �

Theorem 83 In the absence of feedback, the number of bits that can be transmitted with
energy E and error probability 0 < ǫ < 1 behaves as

logM∗(E, ǫ) =
E

N0
log e−

√

2E

N0
Q−1(ǫ) log e+

1

2
log

E

N0
+O(1) (4.309)

as E →∞.

Proof: To obtain (4.309) fix 0 < ǫ < 1 and denote

x∗ =

√

2E

N0
+Q−1

(

1− ǫ+

√

2N0

E

)

. (4.310)

We now choose M = 1
Q(x∗) and observe that we have

1√
2π

∫ ∞

−∞
min(MQ(x), 1)e

− 1
2

“

x−
q

2E
N0

”2

dx (4.311)

= 1−Q
(

x∗ −
√

2E

N0

)

+
M√
2π

∫ +∞

x∗
Q(x)e

− 1
2

“

x−
q

2E
N0

”2

dx (4.312)

= ǫ−
√

2N0

E
+

M√
2π

∫ +∞

x∗
Q(x)e

− 1
2

“

x−
q

2E
N0

”2

dx (4.313)

≤ ǫ−
√

2N0

E
+

M

2πx∗

∫ +∞

x∗
e
− 1

2

“

x−
q

2E
N0

”2
−x2

2 dx (4.314)

= ǫ−
√

2N0

E
+
e
− E

2N0Q
(√

2x∗ −
√

E
N0

)

2
√
πx∗Q(x∗)

(4.315)

= ǫ−
√

2N0

E
+

√

N0

E
(1 + o(1)) , (4.316)

as E →∞, where in (4.314) and (4.316) we used [84, (3.53)]

Q(x) ≤ e−
1
2x2

x
√

2π
(4.317)

and

logQ(x) = −x
2 log e

2
− log x− 1

2
log 2π + o(1) , x→∞ (4.318)
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respectively. Therefore, for E large enough (4.316) falls below ǫ and, consequently, by (4.295)
there exists an (M,E, ǫ) code for the chose M = 1

Q(x∗) . In other words, for such E we have
demonstrated

logM∗(E, ǫ) ≥ − logQ

(√

2E

N0
+Q−1

(

1− ǫ+

√

2N0

E

))

. (4.319)

Using the expansion (4.318) in (4.319) and (4.296), we obtain (4.309). �

As discussed above, Theorems 82 and 83 may be interpreted in the context of the infinite-
bandwidth continuous-time Gaussian channel with noise spectral density N0

2 . Indeed, denote
by M∗

c (T, ǫ) the maximum number of messages that is possible to communicate over such
a channel over the time interval [0, T ] with probability of error ǫ and power-constraint P .
According to Shannon [30] we have

lim
T→∞

1

T
logM∗

c (T, ǫ) =
P

N0
log e . (4.320)

Theorem 83 sharpens (4.320) to

logM∗
c (T, ǫ) =

PT

N0
log e−

√

2PT

N0
Q−1(ǫ) log e+

1

2
log

PT

N0
+O(1) (4.321)

as T →∞. Furthermore, Theorem 82 provides tight non-asymptotic bounds on logM∗
c (T, ǫ).

We now proceed to the case of feedback coding.

Theorem 84 Let 0 ≤ ǫ < 1. Any (E,M, ǫ) code with feedback for the channel (4.285) must
satisfy

d
(
1− ǫ|| 1

M

)
≤ E

N0
log e , (4.322)

where d(x||y) = x log x
y + (1− x) log 1−x

1−y is the binary relative entropy.

Note that in the special case ǫ = 0 (4.322) reduces to

logM ≤ E

N0
log e . (4.323)

Theorem 85 For any E > 0 and positive integer M there exists an (E,M, ǫ) code with
feedback for the channel (4.285) satisfying

ǫ ≤ inf {1− α+ (M − 1)β} , (4.324)

where the infimum is over all 0 < β < α ≤ 1 satisfying

d(α||β) =
E

N0
log e . (4.325)

Moreover, there exists an (E,M, ǫ) decision feedback code, which uses the feedback link only
once to send a “ready-to-decode” signal; its probability of error is bounded by (4.324) with
α = 1, namely,

ǫ ≤ (M − 1)e
− E

N0 . (4.326)
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Proofs of Theorems 84 and 85 may be found in Appendix D.
The asymptotic behavior with feedback is given by

Theorem 86 In the presence of feedback, the number of bits that can be transmitted with
energy E and error probability 0 < ǫ < 1 behaves as

logM∗
f (E, ǫ) =

E

N0

log e

1− ǫ +O

(

log
E

N0

)

(4.327)

as E →∞. More precisely, we have

E

N0

log e

1− ǫ − log
E

N0
+O(1) ≤ logM∗

f (E, ǫ) (4.328)

≤ E

N0

log e

1− ǫ +
h(ǫ)

1− ǫ , (4.329)

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

Proof: Bound (4.328) follows from (4.324) by taking

α = 1− ǫ+
N0

E
. (4.330)

Alternatively, (4.328) can be achieved by sending the all-zero codeword with probability

1− (1−ǫ)E
E−1 and otherwise using an (E−1

1−ǫ ,
1
E ,M) decision feedback code guaranteed to exist

by Theorem 85 and (4.326). Bound (4.329) follows from (4.322) and

d(α||β) ≥ α log
1

β
− h(α) . (4.331)

�

Note that as ǫ→ 0, the leading term in (4.327) coincides with the leading term in (4.309).
As we know, in the regime of arbitrarily reliable communication (and therefore k → ∞)
feedback does not help.

At first sight it may be plausible that infinite bandwidth may allow finite energy per bit
when zero-error is required. However, a simple consequence of [85] is that without feedback

logM∗(E, 0) = 0 (4.332)

for all E > 0. With noiseless feedback the situation changes.

Theorem 87 For any positive integer k and E > kN0 there exists an (E, 2k, 0)-code with
feedback. Equivalently, for all positive integers k we have

E∗
f (k, 0) ≤ N0 . (4.333)

Proof: An (E1,M1, 0) code and an (E2,M2, 0) code can be combined into an (E1 +
E2,M1M2, 0) code by using the first one on odd channel inputs and the second one on even.
This also shows that function E∗

f
(·, 0) is non-increasing. Therefore, to prove the theorem,

it is sufficient to prove that for any E > N0 there exists an (E, 2, 0) code with feedback. To
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Figure 4.6: Illustration of the zero-error feedback code of Theorem 87, conditioned on
W = +1.

this end, we construct the following binary communication scheme. Fix an arbitrary d > 0,
assume W = ±1 and consider the following code with feedback:

fn(W,Y n−1
1 ) =

{

Wd, i(W ;Y n−1) ≤ i(−W ;Y n−1) ,

0, otherwise
(4.334)

where we have defined information densities

i(w; yk
1 ) =

k∑

j=1

log
PYj |Xj

(yj|fj(w; yj−1
1 ))

P
Yj |Y j−1

1
(yj|yj−1

1 )
. (4.335)

Since the alternative in (4.334) depends on the difference of the information densities, it is
convenient to define

Sn = log
P[W = +1|Y n]

P[W = −1|Y n]
(4.336)

= i(+1;Y n
1 )− i(−1;Y n

1 ) . (4.337)

The main observation is that assuming W = +1 and regardless of the alternative in (4.334)
we have for each n > 1

Sn = Sn−1 + 1
2d

2 + dZn . (4.338)
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Fig. 4.6 represents the typical joint behavior of the channel input Xn and the process Sn

when the encoder is sending W = +1. From (4.338) we see that under W = +1, Sn is a
submartingale drifting towards +∞. Since the transmitter outputs Xn = +d only when
Sn < 0 and otherwise outputs Xn = 0, the positive drift of Sn implies that only finitely
many Xn’s will be different from zero with probability one. Another conclusion is that
the measures PY ∞|W=+1 and PY ∞|W=−1 are mutually singular and therefore W can be
recovered from Y∞ with zero error.

To finish the proof, we need to compute the average energy spent by our scheme. It is
easy to see that (again conditioning on W = +1)

||x||2 =

∞∑

j=1

||Xj ||2 =

∞∑

j=1

d21{Sj ≤ 0} . (4.339)

To simplify the computation of E [||x||2], we replace dZn in (4.338) with Wnd2 −W(n−1)d2 ,
where Wt is a standard Wiener process. In this way, we can write

Sn =

(
s

2
+
√

N0
2 Ws

)

|s=nd2 , (4.340)

i.e. Sn is just a sampling of Wt on a d2-spaced grid. According to (4.339), ||x||2 is a total
number of negative samples multiplied by a grid step. Since every realization of Wt is
continuous, as d → 0 the ||x||2 tends to the total time the Brownian motion t

2 +
q

N0
2
Wt

spends below zero:

lim
d→0
||X||2 = T =

∫ ∞

0
1

t
2
+

r

N0
2 Wt≤0

ffdt . (4.341)

Then, taking expectations we get that the average energy spent to transmit 1 bit is

E [T ] =

∫ ∞

0
P

[
t

2
+
√

N0
2 Wt ≤ 0

]

dt (4.342)

=
1√
2π

∫ ∞

0
e−

x2

2

∫ ∞

0
1n

x>
q

t
2N0

odxdt (4.343)

=
2N0√

2π

∫ ∞

0
x2e−

x2

2 dx = N0 . (4.344)

Hence, M∗
f
(E, 0) ≥ 2 for any E > N0, as required. �

The weaker result that M∗
f
(E, 0) ≥ 2 for sufficiently large E follows from [86, Lemma 4.2],

which analyzes a modification of an original method of Zigangirov [87]. In contrast, our
method is motivated by the Brownian motion analysis and antipodal signaling arising in the
achievability proof of Theorem 85. At the expense of a significantly more involved analysis,
the bound in Theorem 87 can be further improved by using multidimensional constellations.
It remains to be seen whether such a method could close the gap with the upper bound
in (4.323).

Before concluding this section, we discuss implications of the results shown. As the
number of information bits, k, goes to infinity, the minimum energy per bit required for
arbitrarily reliable communication is equal to −1.59 dB with or without feedback. However,
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Figure 4.7: Bounds on the minimum energy per bit as a function of the number of infor-
mation bits with and without feedback; block error rate ǫ = 10−3.

in the non-asymptotic regime, in which the block error probability is set to ǫ, the minimum
energy per bit may substantially reduced thanks to the availability of feedback. Comparing
Theorems 83 and 86, we observe a double benefit: feedback reduces the leading term in
the minimum energy by a factor of 1 − ǫ, and the penalty due to the second-order term
in (4.309) disappears. Moreover, Theorem 87 has demonstrated that thanks to availability
of an infinite number of degrees of freedom, feedback enables zero-error transmission of any
number of bits with finite energy per bit. This complements the famous result of Schalkwijk
and Kailath [88], that in the fixed rate setup one achieves significantly better reliabilities
over the AWGN with feedback.

Our bounds enable a quantitative analysis of the dependence of the required energy on
the number of information bits. In Fig. 4.7 we take ǫ = 10−3 and compare the bounds on
E∗

b
(k, ǫ) and E∗

f
(k, ǫ) given by Theorem 82 and Theorems 84, 85 and 87, respectively. The

non-feedback upper (4.295) and lower (4.296) bounds are tight enough to conclude that for
messages of size k ∼ 100 bits the minimum Eb

N0
is 0.20 dB, whereas the Shannon limit of

−1.59 dB is only approachable at k ∼ 105 − 106 bits. In contrast, with feedback the upper
bound, which is the best of (4.324) and (4.333), and the lower bound (4.322) demonstrate
the significant advantages of using feedback with practical values of k; e.g., with feedback,
−1.5 dB is achievable already at k ∼ 200.

Surprisingly, our results demonstrate that virtually all the benefits of feedback are re-
alized by codes that use the feedback link only to send a single “stop transmission” signal
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Figure 4.8: Comparison of the achievability bounds on the minimum energy per bit as a
function of the number of information bits with decision feedback and full feedback; block
error rate ǫ = 10−3.

(as opposed to requiring a full noiseless feedback available at the transmitter). Indeed, the
proof of Theorem 86 demonstrates that the asymptotic expansion (4.327) does not change
if we restrict attention to decision feedback codes. Moreover, in Fig. 4.8 we compare the
decision feedback achievability bound (4.326) against the bound (4.324) which requires full
feedback. It can be seen that numerically the difference between the two is insignificant
compared to the gain with respect to the non-feedback codes; see Fig. 4.7. In this way, the
results of Theorems 85 and 86 extend to noisy and/or finite capacity feedback links.

Finally, it is interesting to investigate the difference in minimum energy per bit between
the setup analyzed in this section and that of Section 4.6.1. In Fig. 4.9 we compare the
normal approximation curve taken from8 Fig. 4.5 against the non-feedback achievability-
converse bounds of Theorem 82, as computed in Fig. 4.7. This comparison explicitly demon-
strates how much energy per bit is lost non-asymptotically due to restricting the rate to 1/2.
As rate goes to zero, the rate-constrained curve approaches the ultimate fundamental limit
given by (the bounds of) Theorem 82. This is a non-asymptotic version of the argument
when one takes the limit of R→ 0 in (4.31) to obtain (4.30).

8Note that a slight discrepancy with Fig. 4.5 is explained by the change of ǫ compared to the setup of
Fig. 4.9.
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Chapter 5

Normal approximation

In previous chapters it was demonstrated how channel dispersion captures the behavior of
fundamental limits near capacity. This chapter considers various ramifications of this fact.
The question of attaining a given fraction of the capacity is discussed in Section 5.1. It is
demonstrated that the normal approximation (2.23) results in a significantly more precise
prediction of the coding blocklength than does error-exponent based analysis. In Section 5.2
a few practical families of codes are compared against the fundamental limits on the AWGN
channel and the BSC. The dispersion of a parallel DMC is considered in Section 5.3 and
in particular the performance loss due to coding separately on each constituent DMC is
quantified. Section 5.4 proves an order-optimal bound on the dispersion of the DMC in
terms of its alphabet sizes. The material in Sections 5.1-5.4 has been presented in part
in [32]; the discussion of classical binary codes over the BSC in Section 5.2 and the result
about the dispersion of parallel channels, Section 5.3, are new.

Based on the dispersion of the Gilbert-Elliott channel obtained before it is shown in
Section 5.5 that when the channel evolves dynamically, the capacity considerations alone
may lead to completely wrong design decisions. In such questions taking dispersion of
the channel into account becomes crucial. This material has appeared in [57]. Finally, in
Section 5.6 we apply our methods to characterize the optimal decay of the probability of
error when the rate converges to the capacity slower than 1√

n
. The investigation of such

questions has been recently initiated by Altug and Wagner [82] (for the case of the DMC).
Results in Section 5.6 are published here for the first time.

5.1 Comparison to the error-exponent approximation

As we discussed in the introduction, the main purpose of computing asymptotic quantities
(such as capacity and dispersion) is to obtain non-asymptotic approximations. Following
this rationale, in the previous chapters we have shown how knowledge of the capacity-
dispersion pair (and of a logn term, sometimes) yields an approximation (2.23), which com-
pares very favorably with the (bounds on the) true value; see Sections 3.2.3, 3.3.3, 3.5.3, 3.6.2
and 4.4.

Having a tight approximation to the value of the fundamental limit logM∗(n, ǫ) opens
many practical applications. For example, we may estimate the minimal blocklength n

163
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Table 5.1: Bounds on the minimal blocklength n needed to achieve R = 0.9C

Channel Converse RCU DT or κβ Error-exp. Norm. Ap.

BEC(0.5), ǫ = 10−3 n ≥ 899 n ≤ 1021 n ≤ 991 n ≈ 1380 n ≈ 955
BSC(0.11), ǫ = 10−3 n ≥ 2985 n ≤ 3106 n ≤ 3548 n ≈ 4730 n ≈ 3150

AWGN(0dB), ǫ = 10−3 n ≥ 2550 n ≤ 2814 n ≤ 3400 n ≈ 4120 n ≈ 2750
AWGN(20dB), ǫ = 10−6 n ≥ 147 n ≤ 188 n ≤ 296 n ≈ 220 n ≈ 190

needed to achieve a fraction η of capacity, see (2.24):

n &

(
Q−1(ǫ)

1− η

)2
V

C2
. (5.1)

Recall that the reliability function E(R) for the rate 0 < R < C is defined as (provided
that the limit exists):

E(R) = lim
n→∞

− 1

n
log ǫ∗(n, 2nR) , (5.2)

where
ǫ∗(n,M) = inf{ǫ : ∃(n,M, ǫ)-code} , (5.3)

i.e. a functional inverse of the fundamental limit ǫ → M∗(n, ǫ). For some memoryless
channels E(R) is known, at least in the region Rcr ≤ R < C, where Rcr is a so-called
critical rate of the channel.

The rationale of the definition of E(R) is in obtaining an error-exponent approximation:

ǫ∗(n,M) ≈ exp

(

−nE
(

logM

n

))

. (5.4)

Therefore, according to the (5.4) the minimal blocklength n needed to achieve a fraction
η of capacity with a given probability of error ǫ should be approximately:

n & − 1

E(ηC)
log ǫ . (5.5)

Which of approximations (5.1) and (5.5) is better? To answer this question in the
Table 5.1 we show the numerical results for the blocklength required by the converse, guar-
anteed by the achievability and predicted by error-exponents and normal approximation1

for achieving rate R = 0.9C.
Clearly we can see that the normal approximation is superior in this regime. Together

with the extensive comparisons (e.g., Fig. 3.3, 3.8, 4.3 and 4.4) Table 5.1 demonstrates that
the asymptotic analysis undertaken in this thesis, such as needed for the proof of (2.22),
is not just a mathematical curiosity, but rather a tool especially useful for a practically
important range n ∼ 103, ǫ ∼ 10−3.

As another observation, notice that according to (5.1) the quantity V
C2 is important for

determining the “coding horizon” of a channel. Interestingly, for all (families of) channels

1For the BSC and the AWGN channel we use the approximation formula (3.59) which has an additional
1
2

log n term. For the AWGN channel the DT bound is replaced by the κβ bound.
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considered in this thesis – including the AWGN channel and the BSC – the fraction V
C2

blows up when the noise level increases without bound. The meaning of this fact is clear:
to achieve a fraction of a low-capacity link it is necessary to code over a large blocklength.

To give a possible reason why error-exponent asymptotics is less important for finite
blocklength recall that obtaining the value of E(R) requires a pair of bounds, for example,
Gallager’s random-coding and Shannon-Gallager-Berlekamp sphere-packing:

exp(−nE(R− o1(1)) + o2(n)) ≤ ǫ∗(n, exp{nR}) ≤ 4 exp(−nE(R)) . (5.6)

For the BSC the expression for o1(1) and o2(n) can be taken from [9, (5.6.41),(5.8.21)].
Even neglecting the presence of o1(1) we see that ratio of the upper bound to the lower
bound is approximately

upper-bound on ǫ∗

lower-bound on ǫ∗
≈ 4
√

8n

δ
. (5.7)

That is, if we take moderate n ∼ 103 and δ = 0.11 we get that this fraction is ≈ 3 · 103.
Although the sub-exponential factor 4√

8n
is completely irrelevant for the asymptotics, for the

regime of ǫ ≈ 10−3 the effect of such a factor is huge. Consequently, near the capacity such
sub-exponential (and rate dependent!) factors do more harm to the approximation (5.4)
than sub-logarithmic factors do to (2.22).

5.2 Practical codes

It is interesting to compare performance of the codes actually used in practice against the
finite blocklength fundamental limits. One such comparison is given in Fig. 5.1 where the
lower curve depicts the performance of a certain family of multi-edge low-density parity-
check (ME-LDPC) codes decoded via a low-complexity belief-propagation decoder [89].
We notice that in the absence of the non-asymptotic finite-blocklength curves, one has
to compare the performance against the capacity alone. Such comparison leads to an
incorrect conclusion that a given family of codes becomes closer to optimal with increasing
blocklength. In reality we see that the relative gap to the finite blocklength fundamental
limit is approximately constant. In other words, the fraction log MLDPC(n,ǫ,P )

log M∗(n,ǫ,P ) seems to be
largely blocklength independent.

This observation leads us to a natural way of comparing two different codes over a given
channel. Over the AWGN channel the codes have traditionally been compared in terms of
Eb/N0. Such comparison, although justified for a low-rate codes, unfairly penalizes higher
rate codes. Instead, we define a normalized rate of a code with M codewords as (this can
be extended to discrete channels parametrized by a scalar in a natural way)

Rnorm(ǫ) =
logM

logM∗(n, ǫ, γmin(ǫ))
, (5.8)

where γmin(ǫ) is the smallest SNR at which the code still admits decoding with probability
of error below ǫ. Here and below ǫ is chosen to be a fixed number representing the required
reliability level. Since the true value of M∗ in (5.8) is in general unknown, instead of one
value for Rnorm we get an interval (by bounding M∗). However, as Fig. 5.1 demonstrates
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Figure 5.1: Normal approximation for the AWGN channel, SNR = 0 dB, ǫ = 10−3. The
LDPC curve demonstrates the performance achieved by a particular family of multi-edge
LDPC codes (designed by T. Richardson).

typically, instead of hard to compute bounds we may simply use the normal approxima-
tion (4.218) to get an approximation to (5.8) virtually no loss of precision for blocklength
as low as 100.

The evolution of the coding schemes from 1980s (Voyager) to 2009 in terms of the
normalized rate Rnorm(10−4) is presented on Fig. 5.2. ME-LDPC is the same family as in
Fig. 4.3 [89] and the rest of the data is taken from [61]. A comparison of certain turbo codes
to Feinstein’s bound and Shannon’s converse can also be found on Fig. 6 and 7 of [14].

Of course, the definition of Rnorm can be extended to any other single-parameter family
of channels (ordered by degradation [90]), such as BSCs or BECs.

For the BSC a sample of popular algebraic and state-of-the-art LDPC codes is compared
in terms of Rnorm(10−3) in Fig. 5.3. One difference from Fig. 5.2 is that to approximate
M∗ in the definition of Rnorm instead of the normal approximation (3.59) we have used
the value of the sphere packing bound, Theorem 40. This was necessary since on the BSC
many moderate-length algebraic codes approach Rnorm ≈ 1 and the precision of the normal
approximation becomes insufficient.

Another subtlety is that performance of algebraic codes was evaluated via Poltyrev
bound, Theorem 36, where the weight distribution was taken from [91–95]. Regarding how
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Figure 5.2: Normalized rates for various practical codes over AWGN, probability of block
error ǫ = 10−4.

tight Poltyrev bound might be (compared to the true probability of error under maximum
likelihood decoding) see [18, 55, 96]. All in all, however, taking the upper bound on ǫ (via
Poltyrev) and an upper bound on M∗(n, ǫ) (via sphere packing) in (5.8) we guarantee that
so obtained approximation to Rnorm is a provable lower bound for the true value. This
allows to appreciate performance of some of the algebraic codes in Fig. 5.3 even better.

Unsurprisingly, perfect binary codes, i.e. Hamming 1-error correcting and Golay, have
Rnorm = 1. Interestingly, however, that other points in Fig. 5.3 with large value of Rnorm

also correspond to high-rate codes (e.g., BCH(255, 239), BCH(255, 215), BCH(127, 113),
their extended versions, 4-th order Reed-Muller (64, 57), etc.). At the same time, the
points at the bottom part of the graph correspond to the low rate codes such as extended
BCH(64, 7) or first order Reed-Muller (64, 7). However tempting, we cannot yet conclude
that achieving fundamental limits at low-rates (equivalently, high noise levels) is harder,
since tightness of the sphere packing bound in that regime is unclear.

To conclude, for the BSC known algebraic codes approach fundamental limits very
closely both for low and high noise levels. This is in contrast with the situation for the
AWGN.
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Figure 5.3: Normalized rates for various practical codes over BSC, probability of block error
ǫ = 10−3.

5.3 Dispersion of parallel channels

In Section 4.5 we have observed that the capacity CL and the dispersion VL of the L-parallel
AWGN channel satisfies:

CL =
L∑

j=1

C

(

Wj

σ2
j

)

, (5.9)

VL =

L∑

j=1

V

(

Wj

σ2
j

)

, (5.10)

where C(·) and V (·) are capacity and dispersion for the scalar AWGN (as functions of the
SNR), and (W1, . . . ,WL) is a water-filling power allocation; see Theorem 78.

Notably, we see that the dispersion of the parallel AWGN is a sum of dispersions of
constituent AWGNs. In fact, it is easy to see that a similar conclusion holds also for the
parallel DMC (with no input constraints):
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Theorem 88 Consider two DMCs (A1,B1,W1) and (A2,B2,W2). Then capacity C and
ǫ-dispersion Vǫ of the parallel DMC (A1×A2,B1×B2,W1×W2), see Definition 3, is given
by

C = C1 + C2 , (5.11)

Vǫ = V1,ǫ + V2,ǫ , (5.12)

where (C1, V1,ǫ) and (C2, V2,ǫ) are the capacity and the ǫ-dispersion of the DMC W1 and
DMC W2, respectively.

Proof: Since (5.11) is self-evident, we concentrate on (5.12). We denote the input of
the parallel DMC by (X1,X2) and its output by (Y1, Y2), where Xj ∈ Aj, Yj ∈ Bj and

PY1Y2|X1X2
(b1, b2|a1a2)

△
= W1(b1|a1)W2(b2|a2) . (5.13)

According to Theorem 45 and following its notation, it is sufficient to prove that for a
capacity achieving PX1X2 we have

V1,min + V2,min ≤ V (PX1X2 ,W1 ×W2) ≤ V1,max + V2,max . (5.14)

Indeed, the lower bounds in (5.14) is achievable by taking PX1X2 = PX1PX2 where PXj is
a distribution achieving Vj,min and capacity of Wj, j = 1, 2. Similarly, the upper bound
in (5.14) is also achievable.

To prove (5.14) observe that since capacity achieving output distribution is unique, it
must be a product distribution PY1Y2 = PY1PY2 , where PYj is the unique capacity achieving
output distribution of Wj , j = 1, 2. Therefore, we have

C1 +C2 = I(PX1X2 ,W1 ×W2) (5.15)

= E

[

log
W1(Y1|X1)

PY1(Y1)

]

+ E

[

log
W2(Y2|X2)

PY2(Y2)

]

(5.16)

≤ C1 + E

[

log
W2(Y2|X2)

PY2(Y2)

]

(5.17)

= C1 +
∑

a1∈A1

PX1(a1)D(W2||PY2 |PX2|X1=a1
) (5.18)

≤ C1 +
∑

a1∈A1

PX1(a1)C2 , (5.19)

where (5.17) follows since C1 is the capacity of W1, (5.18) is a consequence of expanding the
conditional expectation E [·|X1] for the second term, (5.19) follows since for any distribution
P on A2 we have D(W2||PY2 |P0) ≤ C2.

Since inequality in (5.19) is in fact an equality, we must have PX1 to be capacity achieving
and

D(W1(·|a1)||PY1) = C1 , (5.20)

D(W2||PY2 |PX2|X1=a1
) = C2 , (5.21)
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for PX1-almost all a1 ∈ A1. By symmetry, PX2 is also capacity achieving.
Finally, for the divergence variance we have

V (PX1X2 ,W1 ×W2) =

= E

[(

log
W1(Y1|X1)

PY1(Y1)
+ log

W2(Y2|X2)

PY2(Y2)
−D(W1(·|X1)W2(·|X2)||PY1PY2)

)2
]

(5.22)

= E

[(

log
W1(Y1|X1)

PY1(Y1)
+ log

W2(Y2|X2)

PY2(Y2)
− C1 − C2

)2
]

(5.23)

= V (PX1 ,W1) + V (PX2 ,W2)

+ 2E

[(

log
W1(Y1|X1)

PY1(Y1)
− C1

)(

log
W2(Y2|X2)

PY2(Y2)
−C2

)]

(5.24)

= V (PX1 ,W1) + V (PX2 ,W2) , (5.25)

where (5.23) is by (5.20) and (5.21), (5.24) is by (3.99), and (5.25) follows from

E

[

log
W2(Y2|X2)

PY2(Y2)
−C2

∣
∣
∣
∣
Y1X1

]

= E

[

log
W2(Y2|X2)

PY2(Y2)
− C2

∣
∣
∣
∣
X1

]

(5.26)

= D(W2||PY2 |PX2|X1
)− C2 (5.27)

= 0 , (5.28)

Finally, by the definition of Vmin and Vmax in (3.108) and (3.107), respectively, we have

Vj,min ≤ V (PXj ,Wj) ≤ Vj,max , j = 1, 2 , (5.29)

and therefore, (5.25) implies (5.14). �

Together with the normal approximation (2.23), (5.10) (for the parallel AWGN channel)
and (5.12) (for the parallel DMC) immediately highlight the benefit obtained from joint
coding on parallel channels simultaneously. Indeed, suppose we were using independent
codes on each of the L channels with capacity-dispersion pairs (Cj, Vj), j = 1, . . . , L. Then
if we took each of the L best (n,Mj , ǫ)-codes we obtain an (n,

∏
Mj, 1− (1− ǫ)L)-code for

the parallel channel. Assuming that ǫ is small we have approximately

1− (1− ǫ)L ≈ Lǫ . (5.30)

Thus, the performance of the best possible independent coding scheme is

logM∗
ind(n,Lǫ) =

L∑

j=1

logM∗
j (n, ǫ) (5.31)

≈ n





L∑

j=1

Cj



−Q−1(ǫ)
√
n





L∑

j=1

√

Vj



 . (5.32)

Now if ǫ and L are both sufficiently small, then Q−1(ǫ) ≈ Q−1(Lǫ) and we can see that
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gaps to capacity are compared as

gap for independent coding ∼ 1√
n

L∑

j=1

√

Vj (5.33)

gap for joint coding ∼ 1√
n

√
√
√
√

L∑

j=1

Vj (5.34)

Therefore the loss in the maximum achievable rate due to using independent coding at
blocklength n and small ǫ is proportional to

1√
n





L∑

j=1

√

Vj −

√
√
√
√

L∑

j=1

Vj



 > 0 . (5.35)

5.4 Dispersion and alphabet size

Because of the importance of channel dispersion, we note the following upper-bound (see
also [9, Exercise 5.23]):

Theorem 89 For the DMC with min{|A|, |B|} > 2 we have

V ≤ 2 log2 min{|A|, |B|} − C2 . (5.36)

For the DMC with min{|A|, |B|} = 2 we have

V ≤ 1.2 log2 e− C2 . (5.37)

The estimate (5.36) is order-optimal for min{|A|, |B|} → ∞. Indeed, consider a channel
with additive noise A = B = Z/nZ:

Y = X + Z mod n , (5.38)

where P[Z = 0] = 1
2 and P [Z = 1] = · · · = P [Z = n − 1] = 1

2(n−1) . The capacity and
dispersion of such a channel are

Cn =
1

2
log n+O(1) , (5.39)

Vn =
1

4
log2 n+O(log n) . (5.40)

Thus, the estimate of Theorem 89

V = O(log2 min{|A|, |B|}) , min{|A|, |B|} → ∞ (5.41)

cannot be generally improved.
Comparing (5.36) with Theorem 88, we notice that product channels posses untypically

small dispersion.
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Since the typical blocklength needed to achieve capacity is governed by V/C2, it is
natural to ask whether for very small capacities the upper-bound in (5.36) can be improved
to prevent the blowing up of V

C2 . Such a bound is not possible over all W with fixed alphabet
sizes, since such a collection of DMCs always includes all of the BSCs for which we know
that V

C2 →∞ as C → 0.
Theorem 89 is a simple consequence of the following (see Section 3.4 for the notation):

Lemma 90 For functions V and U defined on P, the following inequality holds:

V (P,W ) ≤ U(P,W ) ≤ 2g(min{|A|, |B|}) − [I(P,W )]2 , (5.42)

where

g(n) =

{

0.6 log2 e , n = 2 ,

log2 n , n ≥ 3 .
(5.43)

Proof: consider the following chain of inequalities:

U(P,W ) + [I(P,W )]2
△
=

∑

x∈A

∑

y∈B
P (x)W (y|x)

[

log2W (y|x) + log2 PW (y) (5.44)

− 2 logW (y|x) · logPW (y)

]

(5.45)

≤
∑

x∈A

∑

y∈B
P (x)W (y|x)

[
log2W (y|x) + log2 PW (y)

]
(5.46)

=
∑

x∈A
P (x)




∑

y∈B
W (y|x) log2W (y|x)



 (5.47)

+




∑

y∈B
PW (y) log2 PW (y)



 (5.48)

≤
∑

x∈A
P (x)g(|B|) + g(|B|) (5.49)

= 2g(|B|) , (5.50)

where (5.46) is because 2 logW (y|x) · logPW (y) is always non-negative, and (5.49) follows
because each term in square-brackets can be upper-bounded using the following optimization
problem:

g(n)
△
= sup

aj≥0:
Pn

j=1 aj=1

n∑

j=1

aj log2 aj . (5.51)

Since the x log2 x has unbounded derivative at the origin, the solution of (5.51) is always
in the interior of [0, 1]n. Then it is straightforward to show that for n > e the solution is
actually aj = 1

n . For n = 2 it can be found directly that g(2) = 0.5629 < 0.6. Finally,
because of the symmetry, a similar argument can be made with |B| replaced by |A| and
hence in (5.42) we are free to choose the best bound. �
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5.5 Communication rate and channel state dynamics

So far we have dominantly discussed the value of the normal approximation (2.23) for
memoryless channels where the transition kernel PYj |Xj

remains fixed (static) throughout
transmission. Although valid in many cases, such static assumption frequently is not satis-
fied in practice where the wave propagation conditions change dynamically. One example
of such a model involving dynamics is a Gilbert-Elliott channel, analyzed in Section 3.52

In Section 3.5 we have demonstrated (theoretically and by numerical computations) that
the normal approximation

1

n
logM∗(n, ǫ) ≈ C −

√

V

n
Q−1(ǫ) +

1

2n
log n (5.52)

is very tight. The capacity and dispersion pair (C, V ) is equal to (C1, V1), see Theorem 58,
for the case when state sequence Sn is known at the receiver; and to (C0, V0), see Theo-
rem 59, for the case of no state knowledge.

Let us discuss two practical applications of (5.52). First, for the state-known case, the
capacity C1 is independent of the state transition probability τ . However, according to
Theorem 58, the channel dispersion V1 does indeed depend on τ . Therefore, according
to (5.53), the minimal blocklength needed to achieve a fraction of capacity behaves as

n &

(
Q−1(ǫ)

1− η

)2
V

C2
, (5.53)

or as O
(

1
τ

)
when τ → 0, since according to (3.378):

V1 = O

(
1

τ

)

. (5.54)

This has an intuitive explanation: to achieve the full capacity of a Gilbert-Elliott channel
we need to wait until the influence of the random initial state “washes away”. Since tran-
sitions occur on average every 1

τ channel uses, the blocklength should be O
(

1
τ

)
as τ → 0.

Comparing (3.30) and (3.378) we can ascribe a meaning to each of the two terms in (3.378):
the first one gives the dispersion due to the usual BSC noise, whereas the second one is due
to memory in the channel. In particular, knowledge of channel dispersion and (5.53) allows
us to interpret the quantity 1

τ as a natural “time constant” of the channel. According to
Theorem 60, similar conclusion holds for the case of no state knowledge, since (5.54) holds
for V0 as well.

Next, consider the case in which the state is not known at the decoder. As shown in [64],
when the state transition probability τ decreases to 0 the capacity C0(τ) increases to C1.
This is sometimes interpreted as implying that if the state is unknown at the receiver slower
dynamics are advantageous. Our refined analysis, however, shows that this is true only up
to a point.

Indeed, fix a rate R < C0(τ) and an ǫ > 0. In view of the tightness of (5.52), the
minimal blocklength, as a function of state transition probability τ needed to achieve rate

2For the remainder of this section we use the notation introduced in Section 3.5.
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Figure 5.4: Minimal blocklength needed to achieve R = 0.4 bit and ǫ = 0.01 as a function of
state transition probability τ . The channel is the Gilbert-Elliott with no state information
at the receiver, δ1 = 1/2, δ2 = 0.

R is approximately given by

N0(τ) ≈ V0(τ)

(
Q−1(ǫ)

C0(τ)−R

)2

. (5.55)

When the state transition probability τ decreases we can predict the current state better;
on the other hand, we also have to wait longer until the chain “forgets” the initial state.
The trade-off between these two effects is demonstrated in Fig. 5.4, where we plot N0(τ)
for the setup of Fig. 3.10(b).

The same effect can be demonstrated by analyzing the maximal achievable rate as a
function of τ . In view of the tightness of the approximation in (5.52) for large n we may
replace 1

n logM∗(n, ǫ) with (5.52). The result of such analysis for the setup in Fig. 3.10(b)
and n = 3 · 104 is shown as a solid line in Fig. 5.5, while a dashed line corresponds to
the capacity C0(τ). Note that at n = 30000 (5.52) is indistinguishable from the upper
and lower bounds. We can see that once the blocklength n is fixed, the fact that capacity
C0(τ) grows when τ decreases does not imply that we can actually transmit at a higher
rate. In fact we can see that once τ falls below some critical value, the maximal rate



175

10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ

R
at

e,
 R

10
−4

10
−3

10
−2

10
−1

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

τ

R
at

e,
 R

 

 

Capacity
Maximal rate at n=3⋅ 104

Figure 5.5: Comparison of the capacity and the maximal achievable rate 1
n logM∗(n, ǫ) at

blocklength n = 3 · 104 as a function of the state transition probability τ for the Gilbert-
Elliott channel with no state information at the receiver, δ1 = 1/2, δ2 = 0; probability of
block error is ǫ = 0.01.

drops steeply with decreasing τ . This situation exemplifies the drawbacks of neglecting the
second term in (2.22). Note that, according to Theorem 60 the value of N0(τ) for small
τ is approximated by replacing V0(τ) with V1(τ) in (5.55). Since the latter admits a very
simple expression (3.378), this method helps to quickly isolate the extremum of N0(τ), cf.
Fig. 5.4.

In summary, for the Gilbert-Elliott channel the capacity term in (5.52) fails to adequately
describe the effect of channel dynamics on the fundamental limits. At the same time the
refinement provided by the channel dispersion resolves this difficulty.

5.6 Moderate deviations

In [82] authors raised the question of the best possible behavior of the probability of error
when the coding rate approaches capacity slower than 1/

√
n. In [82] the question is answered

for a certain subset of the DMCs (which excludes, for example the BEC). We show how
a refinement of their result can be simply derived using methods developed in Chapter 2
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and Section 3.4. Our contribution is in deriving necessary and sufficient conditions for the
moderate deviation property to hold, thereby extending the subset of DMCs to the maximal
possible one. Additionally, we prove a similar result for the AWGN.

The moderate deviation property (MDP) is formulated as follows. Consider a sequence
of channels indexed by the blocklength n and define

ǫ∗(n,M) = inf{ǫ : ∃(n,M, ǫ)-code (maximal probability of error)} (5.56)

ǫ∗avg(n,M) = inf{ǫ : ∃(n,M, ǫ)-code (average probability of error)} . (5.57)

Definition 13 A sequence of channels with capacity C is said to satisfy MDP with constant
V if for any sequence of integers Mn such that

logMn = nC − nρn , (5.58)

where ρn > 0, ρn → 0 and nρ2
n →∞, we have

lim
n→∞

1

nρ2
n

log ǫ∗(n,Mn) = lim
n→∞

1

nρ2
n

log ǫ∗avg(n,Mn) = − 1

2V
. (5.59)

5.6.1 Discrete memoryless channels

Below in this section we use the notation of Section 3.4; in particular, recall the definitions
of A,B,W, I(P,W ), V (P,W ) and Vmin.

Apart from analyzing the limit of ǫ∗avg the result of [82] can be states as follows:

Theorem 91 (Altug-Wagner) Consider a DMC W . If W (y|x) > 0 for all x ∈ A, y ∈ B
and Vmin > 0 then DMC W satisfies MDP with the constant Vmin.

The main result of this section is:

Theorem 92 The DMC W satisfies MDP if and only if Vmin > 0, in which case Vmin is
the MDP constant of the DMC.

Note that Vmin is precisely the channel dispersion of the DMC, see Theorem 45.

Theorem 93 Consider a DMC W and a sequence ρn such that ρn > 0, ρn → 0 and
ρ2

nn→∞. If Vmin > 0 then there exists a sequence of (n, exp{nC−nρn}, ǫn) codes (maximal
probability of error) with

lim sup
1

nρ2
n

log ǫn ≤ −
1

2Vmin
. (5.60)

On the other hand, when Vmin = 0 there exists a sequence of (n, exp{nC − nρn}, ǫn) codes
(maximal probability of error) with

ǫn ≤ 2 exp{−nρn} , (5.61)

so that the channel cannot satisfy MDP.
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Proof: Denote by P the capacity achieving distribution that also achieves Vmin. Ac-
cording to the DT bound, Theorem 18, there exist an (n, 2 exp{nC−nρn}, ǫ′n) code (average
probability of error) such that

ǫ′n ≤ E
[
exp

{
− |i(Xn, Y n)− nC + nρn|+

}]
, (5.62)

where

i(xn, yn)
△
=

n∑

j=1

log
W (yj|xj)

PW (yj)
. (5.63)

And therefore, by a standard “purging” method, there also exists an (n, exp{nC−nρn}, ǫn)
code (maximal probability of error) with ǫn = 2ǫ′n, or

ǫn ≤ 2E
[
exp

{
− |i(Xn, Y n)− nC + nρn|+

}]
. (5.64)

If Vmin = 0 then i(Xn, Y n) = nC and (5.61) follows trivially.
Assume Vmin > 0, fix arbitrary λ < 1 and observe a chain of obvious inequalities:

exp
{
− |i(Xn, Y n)− nC + nρn|+

}
(5.65)

≤ 1{i(Xn, Y n) ≤ nC − λnρn} (5.66)

+ exp
{
− |i(Xn, Y n)− nC + nρn|+

}
1{i(Xn, Y n) > nC − λnρn} (5.67)

≤ 1{i(Xn, Y n) ≤ nC − λnρn}+ exp{−(1− λ)nρn} . (5.68)

By [81, Theorem 3.7.1] we have

lim sup
1

nρ2
n

log P[i(Xn, Y n) ≤ nC − λnρn] ≤ − λ2

2Vmin
. (5.69)

Therefore, by taking the expectation in (5.68) and by conditions on ρn the second term is
asymptotically dominated by the first and we obtain:

lim sup
1

nρ2
n

log E
[
exp

{
− |i(Xn, Y n)− nC + nρn|+

}]
≤ − λ2

2Vmin
. (5.70)

Since λ < 1 was arbitrary we can take λ→ 1 to obtain (5.60). �

The main analytic tool required in proving the converse bound in this section is a tight
non-asymptotic lower bound for the probability of a large deviation of a random variable
from its mean. This question has been addressed by many authors working in probability
and statistics, starting from Kolmogorov [97]. Currently, one of the most general such
results belongs to Rozovsky [98,99]. The following is a weakening of [98, Theorem 1] which
plays the same role as Berry-Esseen inequality in the previous analysis3 :

Theorem 94 (Rozovsky) There exist universal constants A1 > 0 and A2 > 0 with the
following property. Let Xk, k = 1, . . . , n be independent with finite third moments:

µk = E [Xk] , σ
2
k = Var[Xk] , and tk = E [|Xk − µk|3] . (5.71)

3Similar to well-known extensions of the Berry-Esseen inequality to the case of random variables without
a third absolute moment, Rozovsky does not require that E |Xk|

3 be bounded. However, we only will need
this weaker result.
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Denote V =
∑n

k=1 σ
2
k and T =

∑n
k=1 tk. Whenever x ≥ 1 we have

P

[
n∑

k=1

(Xk − µk) > x
√
V

]

≥ Q(x)e
− A1T

V 3/2
x3
(

1− A2T

V 3/2
x

)

. (5.72)

Theorem 95 Consider a DMC W and a sequence of (n,Mn, ǫn) codes (average probability
of error) with

logMn ≥ nC − nρn , (5.73)

where ρn > 0, ρn → 0 and ρ2
nn→∞. If Vmin > 0 then we have

lim inf
n→0

1

nρ2
n

log ǫn ≥ −
1

2Vmin
. (5.74)

Proof: Replacing the encoder with an optimal deterministic one, we only reduce the
average probability of error. Next, if we have an (n,Mn, ǫn) code (average probability of
error) with a deterministic encoder, then a standard argument shows that there exists an
(n, 1

2Mn, 2ǫn) subcode (maximal probability of error). Replacing Mn → 1
2Mn and ǫn → 2ǫn,

without loss of generality we may assume the code to have a deterministic encoder and a
maximal probability of error ǫn.

Now for each n denote by Pn ∈ Pn the n-type containing the largest number of code-
words. A standard type-counting argument shows that then there exists an (n,M ′

n, ǫn)
constant composition Pn subcode with

logM ′
n ≥ nC − nρn − |A| log(n+ 1) . (5.75)

By compactness of P, the simplex of distributions on A, the sequence Pn has an accumu-
lation point P ∗. Without loss of generality, we may assume Pn → P ∗.

Now for each n define the following probability distribution Qn
Y on Bn:

Qn
Y (yn) =

n∏

j=1

PnW (yj) . (5.76)

According to the Theorem 34 we have

β1−ǫn(PXnY n ||PXnQn
Y ) ≤ 1

M ′
n

, (5.77)

where here and below PXn is the distribution induced by the encoder on An.
Applying (2.67) we get that for any γ we have:

ǫn ≥ P

[

log
W (Y n|Xn)

Qn
Y (Y n)

< γ

]

− exp{γ − logM ′
n} . (5.78)

We now fix arbitrary λ > 1 and take γ = nC − λnρn to obtain:

ǫn ≥ P

[

log
W (Y n|Xn)

Qn
Y (Y n)

< nC − λnρn

]

− exp{−nρn(λ− 1) + |A| log(n+ 1)} . (5.79)
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Notice that since the code has constant composition Pn, the distribution of log W (Y n|Xn)
Qn

Y (Y n)

given Xn = xn is the same for all xn. Therefore, assuming such conditioning we have

log
W (Y n|Xn)

Qn
Y (Y n)

∼
n∑

j=1

Zj , (5.80)

where Zj are independent and

n∑

j=1

E [Zj ] = nI(Pn,W ) , (5.81)

n∑

j=1

Var[Zj ] = nV (Pn,W ) , (5.82)

n∑

j=1

E
[
|Zj − E [Zj]|3

]
= nT (Pn,W ) , (5.83)

where we used the notation introduced in Section 3.4. In terms of Zj the bound in (5.79)
asserts

ǫn ≥ P





n∑

j=1

Zj < nC − λnρn



− exp{−nρn(λ− 1) + |A| log(n+ 1)} . (5.84)

First, suppose that I(P ∗,W ) < C. Then a simple Chernoff-bound implies that the right-
hand side of (5.79) converges to 1 and (5.74) holds.

Next, assume I(P ∗,W ) = C. Since I(Pn,W ) < C we have from (5.84):

ǫn ≥ P





n∑

j=1

Zj − nI(Pn,W ) < −λnρn



− exp{−nρn(λ− 1) + |A| log(n + 1)} . (5.85)

Note that by continuity of V (P,W ) we have

V (Pn,W )→ V (P ∗,W ) ≥ Vmin > 0 , (5.86)

where V (P ∗,W ) ≥ Vmin since P ∗ is capacity-achieving. Therefore, by Theorem 94 we
obtain:

P





n∑

j=1

Zj − nI(Pn,W ) < −λnρn



 (5.87)

≥ Q

(

λ
√

V (Pn,W )

√

nρ2
n

)

e
−λ3A1T (Pn,W )

V 3(Pn,W )
nρ3

n

(

1− λA2T (Pn,W )

V 2(Pn,W )
ρn

)

, (5.88)
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since T (Pn,W ) is a continuous and bounded function, we see that the term in parentheses
is 1 + o(1) by conditions on ρn. Therefore,

lim inf
n→∞

1

nρ2
n

log P





n∑

j=1

Zj − nI(Pn,W ) < −λnρn



 (5.89)

≥ lim
n→∞

1

nρ2
n

logQ

(

λ
√

V (Pn,W )

√

nρ2
n

)

+ lim
n→∞

1

nρ2
n

(

−λ
3A1T (Pn,W )

V 3(Pn,W )
nρ3

n

)

(5.90)

= − λ2

2V (P∗,W )
(5.91)

≥ − λ2

2Vmin
. (5.92)

Finally, it is easy to see that the second term in (5.85) is asymptotically dominated by the
first term according to (5.92) and nρn ≫ nρ2

n. Thus, from (5.92) we conclude that

lim inf
n→∞

1

nρ2
n

log ǫn ≥ −
1

2Vmin
. (5.93)

�

Proof of Theorem 92: Apply Theorems 93 and 95. �

5.6.2 AWGN

Theorem 96 AWGN channel with SNR P satisfies the MDP with constant V (P ), which
is the channel dispersion of the AWGN given by (4.155).

Proof: Converse: Consider a sequence of (n,Mn, ǫn) codes (average probability of
error) with

Mn = exp{nC − nρn} , (5.94)

where ρn > 0, ρn → 0 and ρ2
nn → ∞. Following the method of [4] we can assume without

loss of generality that every codeword Cj ∈ Rn, j = 1, . . . ,Mn lies on a power-sphere:

||Cj ||2 = nP . (5.95)

We apply the meta-converse bound, Theorem 29 with QY n chosen as in Section 4.2.1:

QY n =

n∏

j=1

N (0, 1 + P ) , (5.96)

to obtain
β1−ǫn(PXnY n , PXnQY n) ≤ exp{−nC + nρn} , (5.97)

where PXn is the distribution induced by the encoder on Rn. As explained in Section 4.2.2,
we have the equality

β1−ǫn(PXnY n , PXnQY n) = β1−ǫn(PY n|Xn=x, QY n) , (5.98)
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where x = [
√
P , . . . ,

√
P ]T . Now applying (2.67) β1−ǫn(PY n|Xn=x, QY n) with γ = nC−λnρn,

where λ > 1 is arbitrary we obtain

ǫn ≥ P

[

1

2(1 + P )
log e

n∑

1

(

P (1− Z2
i ) + 2

√
PZi

)

< −λnρn

]

− exp{−nρn(λ− 1)} , (5.99)

where we have written the distribution of log
PY n|Xn=x

QY n
explicitly in terms of i.i.d. Zj ∼

N (0, 1); see (4.53). According to [81, Theorem 3.7.1], the first term dominates the second
and we have

lim inf
n→∞

1

nρ2
n

log ǫn ≥ −
λ2

2V (P )
, (5.100)

and taking λց 1 we obtain

lim inf
n→∞

1

nρ2
n

log ǫn ≥ −
1

2V (P )
. (5.101)

Achievability: Just like in Section 4.2 we apply the κβ bound with F chosen to be
the power sphere and QY n as in (5.96). Using the identity (5.98) and the lower bound on
κτ (F , QY n) given by Lemma 72 we show that for all 0 < ǫ < 1 and 0 < τ < ǫ there exists
an (n,M, ǫ) code (maximal probability of error) with

M ≥ 1

C1

τ − e−C2n

β1−ǫ+τ (PY n|Xn=x, QY n)
, (5.102)

where x = [
√
P , . . . ,

√
P ]n ∈ Rn is a vector on the the power sphere. We now take τ = ǫ

2
and apply the upper-bound on β from (2.69) to obtain the statement: For any γ there exists
and (n,M, ǫ) code (maximal probability of error) with

M ≥ ǫ− 2e−C2n

2C1
exp{γ} (5.103)

and

ǫ = 2P

[

log
dPY n|Xn=x

QY n
≤ γ

]

. (5.104)

Now take γn = nC − λnρn, where λ < 1 is arbitrary. By [81, Theorem 3.7.1] we obtain
a sequence of codes with

logMn ≥ nC − nρn (5.105)

for all n sufficiently large and

lim sup
n→∞

1

nρ2
n

log ǫn ≤ −
λ2

2V (P )
. (5.106)

In particular,

lim sup
n→∞

1

nρ2
n

log ǫ∗(n, exp{nC − nρn}) ≤
−λ2

2V (P )
, (5.107)

and since λ < 1 is arbitrary we can take λր 1 to finish the proof. �



Chapter 6

Communication with feedback

Without feedback, the backoff from capacity due to non-asymptotic blocklength can be
quite substantial for blocklengths and error probabilities of interest in many practical ap-
plications. In this chapter, novel achievability bounds are used to demonstrate that in
the non-asymptotic regime, the maximal achievable rate improves dramatically thanks to
variable-length coding with feedback. Section 6.1 reviews the previous work, including Bur-
nashev’s derivation of the closed-form expression for the error-exponent. In Section 6.2
various notions of codes with feedback are defined formally and related to each other. A di-
gression regarding a natural generalization of the concept of channel for situations with feed-
back, a synchronized channel, is undertaken in Section 6.3. Before considering more complex
feedback systems, automatic repeat request (ARQ) system is considered in Section 6.4. In
the paradigm of fixed-blocklength coding feedback is useless even non-asymptotically – a
result shown in Section 6.5. Variable-length codes without feedback already exhibit a novel
symptom: the ǫ-capacity becomes a function of ǫ (Section 6.6). Next, in the main part
of this chapter, Section 6.7, the the variable-length codes with feedback are constructed
and shown to extremely improve upon the best possible fixed-blocklength ones. Further-
more, virtually all the advantages of noiseless feedback are shown to be achievable with
decision-feedback only. For example, for the binary symmetric channel with capacity 1/2
the blocklength required to achieve 90% of the capacity (with decision feedback) is smaller
than 200, compared to at least 3100 for the best fixed-blocklength code (even with noiseless
feedback).

For a practically motivated variation of the problem, coding with a termination sym-
bol, the zero-error communication scheme is constructed and evaluated numerically and
asymptotically in Section 6.8. Regarding the delay constraint, it is shown in Section 6.9
that restricting the excess of the delay results in feedback being almost useless; that is
non-feedback, fixed-blocklength codes achieve virtually the same performance. Finally, Sec-
tion 6.10 summarizes our main findings. The material in this chapter has been presented
in part in [100,101].

182
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6.1 Previous work

For a given channel, the fundamental limit of traditional coding with fixed blocklength and
no feedback is given by the function M∗(n, ǫ). We have demonstrated in previous chapters
that for several channels the behavior of this function at fixed ǫ and moderate n is tightly
characterized by the

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(log n) , (6.1)

where C is the channel capacity, V is the channel dispersion.
In the context of fixed blocklength communication, Shannon showed [31] that noiseless

feedback does not increase the capacity of memoryless channels but can increase the zero-
error capacity. For a class of symmetric DMCs, Dobrushin demonstrated [102] that the
sphere-packing bound holds even in the presence of noiseless feedback. Similarly, it will be
shown in Section 6.5 that for such channels the expansion (6.1) still holds with feedback as
long as blocklength is not allowed to depend on feedback.

Nevertheless, it is known that feedback can be very useful provided that we allow
variable-length codes. In his ground-breaking contribution, Burnashev [103] demonstrated
that the error exponent improves in this setting and admits a particularly simple expression:

E(R) =
C1

C
(C −R) , (6.2)

for all rates 0 < R < C, where C is the capacity of the channel and C1 is the maximal
relative entropy between output distributions. Moreover, zero-error capacity may improve
from zero to the Shannon capacity (as in the case of the BEC) if variable-length is allowed.
Furthermore, since existing communication systems with feedback (such as ARQ) have
variable-length, in the analysis of fundamental limits for channels with feedback, it is much
more relevant and interesting to allow codes whose length is allowed to depend on the
channel behavior.

We mention a few extensions of Burnashev’s work [103,104] relevant to this chapter. Ya-
mamoto and Itoh proposed a simple and conceptually important two-phase coding scheme,
attaining the optimal error exponent [105]. Using the notion of Goppa’s [106] empiri-
cal mutual information (EMI) several authors have constructed universal coding schemes
attaining rates arbitrarily close to capacity with small probability of error [107, 108], ex-
ponentially decaying probability of error [109] and even attaining the optimal Burnashev
exponent [110, 111] simultaneously for a collection of channels. An extension to arbitrary
varying channels with full state information available at the decoder has been recently
proposed as well [112].

The error exponent analysis focused on fixed rate, rather than fixed probability of error
as in (6.1). Another aspect that was not previously addressed in the literature is the
following. In practice, control information, marking the beginning and the end of a packet,
is rarely handled by the physical layer code. This contrasts with Burnashev’s setting in
which control layer signaling is modeled on the same noisy channel as the physical layer
one. Moreover, as (6.2) shows the error exponent is, in fact, limited by the reliability
with which the termination information is conveyed to the receiver through the DMC. To
address this issue, we propose a simple modification of the (forward) channel model through
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the introduction of a “use-once” termination symbol whose transmission disables further
communication.

6.2 Channels and codes with feedback

In this chapter we consider a restricted (compared to Definition 1) class of channels. A
non-anticipatory channel consists of a pair of input and output alphabets A and B together
with a collection of conditional probability kernels {PYi|Xi

1Y i−1
1
}∞i=1. Such channel is called

(stationary) memoryless if

PYi|Xi
1Y i−1

1
= PYi|Xi

= PY1|X1
, ∀i ≥ 1 (6.3)

and if A and B are finite, it is known as a DMC.

Definition 14 An (ℓ,M, ǫ) variable-length feedback (VLF) code, where ℓ is a positive real,
M is a positive integer and 0 ≤ ǫ ≤ 1, is defined by:

1. A space U with1 |U| ≤ 3 and a probability distribution PU on it, defining a random
variable U which is revealed to both transmitter and receiver before the start of trans-
mission; i.e. U acts as common randomness used to initialize the encoder and the
decoder before the start of transmission.

2. A sequence of encoders fn : U × {1, . . . ,M} × Bn−1 → A, n ≥ 1, defining channel
inputs

Xn = fn(U,W, Y n−1) , (6.4)

where W ∈ {1, . . . ,M} is the equiprobable message.

3. A sequence of decoders gn : U ×Bn → {1, . . . ,M} providing the best estimate of W at
time n.

4. A non-negative integer-valued random variable τ , a stopping time of the filtration
Gn = σ{U, Y1, . . . , Yn}, which satisfies

E [τ ] ≤ ℓ . (6.5)

The final decision Ŵ is computed at the time instant τ :

Ŵ = gτ (U, Y
τ ) , (6.6)

and must satisfy

P[Ŵ 6= W ] ≤ ǫ . (6.7)

The fundamental limit of channel coding with feedback is given by the following quantity:

M∗
f (ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ)-VLF code} . (6.8)

1The bound on the cardinality of U is to be justified shortly; see Theorem 97 below.
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Those codes that do not require the availability of U , i.e. the ones with |U| = 1,
are called deterministic codes. Although from a practical viewpoint there is hardly any
motivation to allow for non-deterministic codes, they simplify the analysis and expressions
just like randomized tests do in hypothesis testing. Also similar to the latter, the difference
in performance between the deterministic and non-deterministic codes is negligible for any
practically interesting M and ℓ.

In a VLF code the decision about stopping transmission is taken solely upon observation
of channel outputs in a causal manner. This is the setup investigated by Burnashev [103].
Note that since τ is computed at the decoder, it is not necessary to specify the values of
gn(Y n) for n 6= τ . In this way the decoder is a map g : B∞ → {1, . . . ,M} measurable with
respect to Gτ .

Definition 15 An (ℓ,M, ǫ) variable-length feedback code with termination (VLFT), where
ℓ is a positive real, M is a positive integer and 0 ≤ ǫ ≤ 1, is defined similarly to VLF codes
with an exception that condition 4) in the Definition 14 is replaced by

4’) A non-negative integer-valued random variable τ , a stopping time of the filtration
Gn = σ{W,U, Y1, . . . , Yn}, which satisfies

E [τ ] ≤ ℓ . (6.9)

The fundamental limit of channel coding with feedback and termination is given by the
following quantity:

M∗
t
(ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ)-VLFT code} . (6.10)

In a VLFT code, “termination” is used to indicate the fact that the practical realization
of such a coding scheme requires a method of sending a reliable end-of-packet signal by
means other than using the A → B channel (e.g., by cutting off a carrier). As we discussed
in the introduction, timing (including termination) is usually handled by a different layer
in the protocol. The following are examples of VLFT codes:

1. VLF codes are a special case in which the stopping time τ is determined autonomously
by the decoder; due to availability of the feedback, τ is also known to the encoder so
that transmission can be cut off at τ .

2. decision feedback codes are a special case of VLF codes where encoder functions
{fn}∞n=1 satisfy:

fn(U,W, Y n−1) = fn(U,W ) . (6.11)

Such codes require very limited communication over feedback: only a single signal to
stop the transmission once the decoder is ready to decode.

3. variable-length codes (without feedback), or VL codes, defined in [16, Problem 2.1.25]
and [113], are VLFT codes required to satisfy two additional requirements: τ is a
function of (W,U) and the encoder is not allowed to use feedback, i.e. (6.11) holds.
The fundamental limit and the ǫ-capacity of variable-length codes are given by

M∗
v (ℓ, ǫ) = max{M : ∃(ℓ,M, ǫ)-VL code} , (6.12)

[[Cǫ]] = lim
ℓ→∞

1

ℓ
logM∗

v (ℓ, ǫ) . (6.13)
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4. An (n,M, ǫ) fixed-blocklength feedback code is an (n,M, ǫ) VLF code with τ = n. The
fundamental limit of fixed-blocklength feedback codes is given by

M∗
b (n, ǫ) = max{M : ∃(n,M, ǫ) fixed-length feedback code} . (6.14)

5. fixed-to-variable codes, or FV codes, defined in [113] are also required to satisfy (6.11),
while the stopping time is2

τ = inf{n ≥ 1 : gn(U, Y n) = W} , (6.15)

and therefore, such codes are zero-error VLFT codes. Of course, not all zero-error
VLFT codes are FV codes, since in general condition (6.11) does not necessarily hold.

6. automatic repeat request (ARQ) are yet a more restricted class of deterministic FV
codes, where a single fixed-blocklength, non-feedback code is used repeatedly until
the decoder produces a correct estimate.

The next result shows that restriction on the cardinality of U in the Definitions 14 and 15
does not entail loss of generality.

Theorem 97 Consider an (ℓ,M, ǫ) VLFT code possibly violating the cardinality require-
ment |U| ≤ 3. Then there exists an (ℓ,M, ǫ) VLFT code with |U| ≤ 3.

Proof: Denote by Gk the following subsets of R2:

Gk
△
= {(ℓ′, ǫ′) : ∃(ℓ′,M, ǫ′)-code with |U| ≤ k} , k = 1, 2, . . . , (6.16)

and
G∞

△
= {(ℓ′, ǫ′) : ∃(ℓ′,M, ǫ′)-code} . (6.17)

Notice that G∞ is a convex hull of G1 since by taking a general code and conditioning on U
we obtain a deterministic code. By Caratheodory’s theorem we then know that G3 = G∞.
Since by assumption (ℓ, ǫ) ∈ G∞ then (ℓ, ǫ) ∈ G3. �

The main goal of this chapter is to analyze the behavior of logM∗
f (ℓ, ǫ) and logM∗

t
(ℓ, ǫ)

and compare them with the behavior of the fundamental limit without feedback, logM∗(n, ǫ).
Regarding the behavior of logM∗

f (ℓ, ǫ) Burnashev’s result (6.2) can be restated as

logM∗
f (ℓ, exp{−Eℓ}) = ℓC

(

1− E

C1

)

+ o(ℓ) , (6.18)

for any 0 < E < C1. Although (6.18) does not imply any statement about the expansion of
logM∗

f (ℓ, ǫ) for a fixed ǫ, it still demonstrates that in the regime of very small probability
of error, the parameter C1 emerges as an important quantity.

2As explained in [113], this model encompasses fountain codes in which the decoder can get a highly
reliable estimate of τ autonomously without the need for a termination symbol.
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6.3 Synchronized channels

In the previous section we have defined the notion of feedback codes. For the sake of clarity,
however, we defined those only for a non-anticipatory channel. Although for the remainder
of this chapter only non-anticipatory channels are considered, for completeness we also
include a general treatment.

Notice that our definition of the channel, see Definition 1, is too general for studying the
questions involving the notions of time and causality. For this reason we have introduced
the concept of a non-anticipatory channel. This, however, can be done in a more abstract
way.

Consider a random transformation (A,B, PY |X) in the sense of Definition 1. We denote
σ-algebras on A and B by F and G, resp. Recall that a transition probability kernel PY|X
from (A,F) to (B,G) is required to satisfy two conditions:

1. for a fixed x ∈ A, PY|X=x(·) is a probability measure on (B,G), and

2. for a fixed E ∈ G the function x 7→ PY|X=x(E) is F-measurable.

Definition 16 A synchronized channel is a random transformation (A,B, PY|X) with filtra-
tions Fn and Gn on A and B, resp., and the requirement that PY |X be a transition probability
kernel from (A,Fn) to (B,Gn) for each n ≥ 0.

To draw a parallel with Section 6.2 and also for notational simplicity we may assume
that there have been pre-selected two sequences of functions on A and B, such that

Fn = σ{X1, . . . ,Xn} , and Gn = σ{Y1, . . . , Yn} . (6.19)

Consider examples of synchronized channels:

1. Any “single-letter” channel (A,B, PY |X) can be extended memorylessly to a synchro-
nized channel by the following construction. We take A = A∞ and Xj as the usual
projections onto j-th coordinate; similarly we construct B = B∞ and Yj. The kernel
PY|X is defined as an extension of the following sequence of finite dimensional kernels:

PY n|Xn=(x1,...xn) =

n∏

j=1

PY |X=x1
, (6.20)

where the product is the product of measures on B. A synchronized channel obtained
in this way starting from finite spaces A and B is called discrete memoryless (i.e., a
DMC).

2. Any non-anticipatory channel is defined by “single-letter” spaces A, B and a collection
of conditional distributions PYi|X1iY1i−1

; it defines a synchronized channel by a natural
extension of the product construction discussed previously.
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3. Any non-anticipatory channel, in particular any DMC, can be extended to a channel
with termination symbol by the following construction:

A′ = A ∪ {T} , (6.21)

B′ = B ∪ {T} , (6.22)

P ′
Yi|Xi

1Y i−1
1

(bi|ai
1b

i−1
1 ) =

{

PYi|Xi
1Y i−1

1
(bi|ai

1b
i−1
1 ) , a1 6= T, . . . , ai 6= T

1{bi = T} , otherwise .
(6.23)

Notice that the so-extended channel is also non-anticipatory.

These examples demonstrate that definition of a synchronized channel generalizes the
concept of non-anticipatory channel by dropping the requirement that all Xj ’s and Yj’s
in (6.19) take values in the same spaces A and B, respectively. The next definition shows
how the concept of a VLF code generalizes to synchronized channels.

Definition 17 An (ℓ,M, ǫ) code variable-length code with feedback (VLF code) for a syn-
chronized channel (A,B, PY |X ,Fn,Gn) is defined by:

1. A space U with |U| ≤ 3 and a probability distribution PU on it, defining a random
variable U . On the space B× U we define a filtration

G′n = σU × Gn . (6.24)

2. an encoder mapping f : {1, . . . ,M} × U × B→ A satisfying causality constraint

f−1Fn ⊂ HM × G′n−1 , (6.25)

where HM is a σ-algebra of all subsets of {1, . . . ,M};

3. a stopping time τ ≥ 0 of the filtration G′n, satisfying

E [τ ] ≤ ℓ , (6.26)

4. a decoder mapping g : U×B→ {1, . . . ,M} measurable with respect to G′τ and satisfying

P[g(U,Y) 6= W ] ≤ ǫ . (6.27)

To complete the definition we need to specify the probability space which is used for E and
P in (6.26) and (6.27). This space is taken to be

Ω = {1, . . . ,M} × U × A× B , (6.28)

with σ-algebra HM × σU × F × G. The projection Ω → {1, . . . ,M} is denoted by W ; the
projection Ω→ U is denoted U ; projections Xj and Yj, j = 1, . . . ,∞ are defined according
to (6.19). The probability distribution on Ω is defined recursively:

1. the distribution of (W,U) is taken to be:

PWU(w, u) =
1

M
PU (u) . (6.29)
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2. the measure on (W,U,X1) is defined as a push-forward along f : HM × σU → F1;

3. the measure on (W,U,X1, Y1) is defined by applying the kernel PY1|X1
;

4. once the measure on (W,U,Xn−1, Y n−1) has been defined we again use push-forward
along f : HM × σU × Gn−1 → Fn to extend the measure to (W,Y n−1,Xn) and then
we apply the kernel PY n|XnY n−1 to extend to (W,Xn, Y n).

5. the restriction of such measure to HM × σU × Fk × Gk, k < n coincides with the
measure defined on k-th step; therefore, this sequence of measures (by Kolmogorov’s
theorem) extends to a measure on HM × σU × F × G.

Similarly, we can define a VLFT code for the synchronized channel. Notice that VLFT
code for the non-anticipatory channel can be equivalently viewed as a VLF code for a
different non-anticipatory channel (6.23).

6.4 Automatic repeat request (ARQ)

In this section we consider a simple zero-error VLFT code, known as ARQ, in which a packet
(protected by a forward error correcting code) is retransmitted until the receiver acknowl-
edges successful decoding (which the receiver determines using a variety of known highly
reliable hashing methods). Typically, the size k of the information packets is determined
by the particular application, and both the blocklength n and the block error probability ǫ
are degrees of freedom. In this section we focus on the average data rate (error-free) that
ARQ is able to deliver to the destination. For a discussion focused more on energy efficiency
see [76].

Given an (n, 2k, ǫ) block code, and assuming that decoding errors are independent for
different retransmissions, the average number of channel uses is given by

E [τ ] =
n

1− ǫ . (6.30)

Therefore, to maximize the rate k
E [τ ] we have to solve the following optimization problem:

T (k) = max
n,ǫ

k

n
(1− ǫ) , (6.31)

where the maximization is over those (n, ǫ) such that

log2M
∗(n, ǫ) = k . (6.32)

As we have demonstrated in previous chapters, for many channels the normal approxima-
tion (2.23) is tight; therefore, equivalently we can maximize

T̃ (k) = max
n

k

n

[

1−Q
(
nC − k√
nV

)]

, (6.33)

where C and V are the channel capacity and channel dispersion, respectively. For the BSC
with δ = 0.11 we show the results of the optimization in (6.33) in Fig. 6.1, where the
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Figure 6.1: Optimal block error rate ǫ∗(k) maximizing average throughput under ARQ
feedback for the BSC with δ = 0.11. Solid curve is obtained by using normal approximation,
dashed curve is an asymptotic formula (6.34).

optimal block error rate, ǫ∗(k) is shown, and Fig. 6.2, where the optimal coding rate k
n∗(k)

is shown. Table 6.1 shows the results of the optimization for the channel examples we have
used throughout the chapter. Of particular note is that for 1000 information bits, and a
capacity-1/2 BSC, the optimal block error rate is as high as 0.0167. Similar observations
regarding the optimal block error rate have also been made in [114].

The tight approximation to the optimal error probability as a function of k in Figure 6.1
is the function

ǫ̃(k) =

(
kC

V
ln

kC

2πV

)−1/2
(

1− 1

ln kC
2πV

)

(6.34)

obtained by retaining only the dominant terms in the asymptotic solution as k →∞.

6.5 Fixed-blocklength codes with feedback

In the case of the BEC, the tightest converse bound, Theorem 43, has been proved in
Section 3.3 for fixed-blocklength codes already under assumption of availability of feedback.
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Figure 6.2: Optimal rate of a constituent block code, that maximizes the average throughput
under ARQ feedback for the BSC with δ = 0.11. Solid curve is obtained using normal
approximation.

Therefore, the proof of the asymptotic expansion, Theorem 44, automatically applies to the
feedback case and we have:

Theorem 98 For the BEC we have

logM∗
b (n, ǫ) = nC −

√
nV Q−1(ǫ) +O(1) , (6.35)

where C and V are the capacity and the dispersion of the BEC.

Therefore, we see that in this case the feedback is unable to improve the penalty
√
n-

term. In fact, much more is true. The numerical comparison of the converse and achievabil-
ity bounds for the BEC, see Section 3.3.3, has demonstrated that the converse bound (which
holds even for feedback codes) can be approached extremely closely by the non-feedback
block codes. Namely, it was shown that non-feedback codes exist that achieve values of
log2M within 2-3 bits of the converse bound for all blocklengths n & 10. Consequently, it
implies that the potential benefit of feedback is limited to enlarging log2M by those 2-3
bits at most.

The same conclusion holds for a wide class of weakly-input symmetric channels (includ-
ing the BSC), see Section 3.4.5 for relevant definitions.
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Table 6.1: Optimal block error rate for packet size k = 1000 bits
Channel Optimal ǫ∗(k) Optimal R/C Optimal throughput

BEC(0.5) 8.1 · 10−3 0.95 0.94
BSC(0.11) 16.7 · 10−3 0.91 0.90
AWGN, SNR = 0dB 15.5 · 10−3 0.92 0.90
AWGN, SNR = 20dB 6.2 · 10−3 0.96 0.95

Theorem 99 Consider a weakly input-symmetric DMC with capacity C and dispersion V .
Then M∗

b (n, ǫ) satisfies the non-feedback bound (3.341):

logM∗
b (n, ǫ) ≤ − log β1−ǫ((PY |X=x0

)n, (P ∗
Y )n) , (6.36)

where P ∗
Y and x0 are as defined in Definition 9. Consequently, we have

logM∗
b (n, ǫ) ≤ nC −

√
nV Q−1(ǫ) +

1

2
log n+O(1) , (6.37)

if V > 0 and
logM∗

b (n, ǫ) ≤ nC − log(1− ǫ) , (6.38)

if V = 0.

This result is not surprising, in view of the classical result of Dobrushin [102] that
for certain symmetric channels the sphere-packing bound on the error-exponent holds in
the presence of feedback (although, the class of weakly input symmetric channels is much
larger; see Section 3.4.5). To illuminate the non-asymptotic nature of the bound (6.36),
notice that for the BSC the βα in the right-hand side of (6.36) coincides with βn

α in the
sphere-packing converse, Theorem 40. Therefore, according to the results of Section 3.2.3
the bound (6.36) is achievable to within a 3-4 bits by non-feedback block codes (for a wide
range of n). Therefore, for the BSC and such n, feedback codes can improve the value of
logM compared to the non-feedback ones by at most 3-4 bits (!).

Proof: Fix an (n,M, ǫ) fixed-blocklength feedback code. Its encoder defines a transition
probability kernel PY n|W from the input space

DM
△
= {1, . . . ,M} (6.39)

to the output space Bn. We can view then the triplet (DM ,Bn, PY n|W ) as a random trans-
formation for which we have a usual (M, ǫ) code in the sense of Definition 2. For such a
code Theorem 29 shows

M ≤ 1

β1−ǫ(PWY n , PWQY n)
, (6.40)

where PW is the equiprobable distribution on DM and QY n is a product distribution

QY n
△
= (P ∗

Y )n . (6.41)

Therefore, the proof of (6.36) will be complete if we can show

βα(PWY n , PWQY n) ≥ βα((PY |X=x0
)n, QY n) (6.42)
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By Lemma 32 to show (6.42) it is enough to prove that for any j ∈ {1, . . . ,M} we have

βα(PY n|W=j, QY n) ≥ βα((PY |X=x0
)n, QY n) . (6.43)

Fix arbitrary j ∈ {1, . . . ,M} and x0 ∈ A. The sequence of encoder functions fk, k =
1, . . . , n defines the measure PY n|W=j as follows:

PY n|W=j(y
n) =

n∏

k=1

PY |X(yk|fk(j, y
k−1)) . (6.44)

Since the channel is weakly input-symmetric, to each x ∈ A there exists a transformation
Tx : B → B such that

PY |X=x = Tx ◦ PY |X=x0
, (6.45)

where the composition is understood as in (2.2) (see also (3.332)). We will now define a
transformation Tj : Bn → Bn as follows

Tj(z
n|yn) =

n∏

k=1

Tfk(j,yk−1)(zk|yk) . (6.46)

Then according to this construction and (6.44), on the one hand we have

Tj ◦ (PY |X=x0
)n = PY n|W=j , (6.47)

whereas on the other hand, since each Tx preserves P ∗
Y , we also have

Tj ◦QY n = (P ∗
Y )n . (6.48)

Then it follows that

βα(PY n|W=j, QY n) = βα(Tj ◦ (PY |X=x0
)n, Tj ◦QY n) (6.49)

≥ βα((PY |X=x0
)n, QY n) , (6.50)

where (6.49) follows by (6.47) and (6.48), and (6.50) follows by data-processing form βα

(i.e. simultaneous application of Tj to both measures cannot improve the value of βα). This
completes the proof of (6.36). Expansions (6.37) and (6.38) follow from (2.89) and (2.90),
respectively, after applying (3.339). �

6.6 Variable-length codes (without feedback)

The next result shows that under variable-length coding allowing a non-vanishing error
probability ǫ boosts the ǫ-capacity by a factor of 1

1−ǫ even in the absence of feedback:

Theorem 100 For any non-anticipatory channel with capacity C that satisfies the strong
converse for fixed-blocklength codes (without feedback), the ǫ-capacity under variable-length
coding without feedback, cf. (6.13), is

[[Cǫ]] =
C

1− ǫ , ǫ ∈ (0, 1) . (6.51)
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In general, it is known [113, Theorem 16] that the VL capacity, [[C]] = limǫ→0 [[Cǫ]], is equal
to the conventional fixed-blocklength capacity without feedback, C, for any non-anticipatory
channel (not necessarily satisfying the strong converse). On the other hand, the capacity
of FV codes for state-dependent non-ergodic channels can be larger than C [113].

Proof: Fix ǫ′ < ǫ and a large n. Then there exists a fixed-blocklength code without
feedback with blocklength n, probability of error ǫ′ and number of messages M satisfying:

logM ≥ nC + o(n) . (6.52)

Consider the following variable-length code (without feedback): with probability 1−ǫ
1−ǫ′ en-

coder sends a codeword of length n, otherwise it sends nothing. It is easy to see that the
probability of decoding error is upper-bounded by ǫ whereas the average transmission time
is equal to ℓ = 1−ǫ

1−ǫ′n, and therefore the average transmission rate is

R
△
=

logM

ℓ
≥ C 1− ǫ′

1− ǫ + o(1) . (6.53)

By taking the limit n→∞ we obtain

[[Cǫ]] ≥ C
1− ǫ′
1− ǫ . (6.54)

Since ǫ′ is arbitrary we can achieve any rate close to C
1−ǫ .

For the converse recall that a channel is said to satisfy strong converse if its fixed-
blocklength no feedback fundamental limit logM∗(n, ǫ) satisfies

logM∗(n, ǫ) = nC + o(n) , n→∞ , ∀ǫ ∈ (0, 1) . (6.55)

Now, consider an (ℓ,M, ǫ) variable-length code. Define the following quantities for each
n ≥ 0 and u ∈ U :

ǫ(n, u) = P[Ŵ 6= W |τ = n,U = u] , (6.56)

which satisfy, of course,
E [ǫ(τ, U)] ≤ ǫ . (6.57)

Fix u and notice that conditioned on U = u, τ is a function of W , and therefore MP[τ =
n|U = u] is an integer. Then the condition τ = n defines an (n,MP[τ = n|U = u], ǫ(n, u))
fixed blocklength subcode. Therefore, we have for each n ≥ 0:

P[τ = n|U = u]M ≤M∗(n, ǫ(n, u)) . (6.58)

We now fix arbitrary N ≥ 0 and ǫ′ > 0 and sum (6.58) for all n ≤ N such that ǫ(n, u) ≤ ǫ′:

MP[τ ≤ N, ǫ(τ, u) ≤ ǫ′|U = u] ≤
N∑

n=0

M∗(n, ǫ(n, u))1{ǫ(n, u) ≤ ǫ′} , (6.59)

≤
N∑

n=0

M∗(n, ǫ′) , (6.60)

≤ NM∗(N, ǫ′) , (6.61)
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where (6.60) follows since by definition M∗(n, ǫ) is a non-decreasing function of ǫ, and (6.61)
follows because for a non-anticipatory channel M∗(n, ǫ) is also a non-decreasing function of
n. By taking the expectation of (6.61) with respect to U we obtain

MP[τ ≤ N, ǫ(τ, U) ≤ ǫ′] ≤ NM∗(N, ǫ′) . (6.62)

On the other hand, by the Chebyshev inequality we have

P[τ ≤ N, ǫ(τ, U) ≤ ǫ′] ≥ 1− E [τ ]

N
− E [ǫ(τ, U)]

ǫ′
(6.63)

≥ 1− ℓ

N
− ǫ

ǫ′
. (6.64)

Finally, we choose ǫ′ > ǫ and take

N =
ℓ+ 1

1− ǫ/ǫ′ . (6.65)

Now from (6.62), (6.64) and (6.65) we obtain

logM ≤ logM∗
(

ℓ+ 1

1− ǫ/ǫ′ , ǫ
′
)

+ 2 log
ℓ+ 1

1− ǫ/ǫ′ (6.66)

= C
ℓ+ 1

1− ǫ/ǫ′ + o(ℓ) , (6.67)

where (6.67) follows from strong converse (6.55). Dividing both sides of (6.67) by ℓ we have
proven that the rate of any (ℓ,M, ǫ) variable-length code must satisfy:

logM

ℓ
≤ C

1− ǫ/ǫ′ + o(1) , (6.68)

or in other words, for any ǫ′ > ǫ we have

[[Cǫ]] ≤
C

1− ǫ/ǫ′ . (6.69)

Taking ǫ′ → 1 completes the proof. �

6.7 Variable-length codes with feedback

Our main result is the following:

Theorem 101 For an arbitrary DMC with capacity C we have for any 0 < ǫ < 1

logM∗
f (ℓ, ǫ) =

ℓC

1− ǫ +O(log ℓ) , (6.70)

logM∗
t
(ℓ, ǫ) =

ℓC

1− ǫ +O(log ℓ) . (6.71)

More precisely, we have

ℓC

1− ǫ − log ℓ+O(1) ≤ logM∗
f (ℓ, ǫ) ≤ ℓC

1− ǫ +O(1) , (6.72)

logM∗
f (ℓ, ǫ) ≤ logM∗

t
(ℓ, ǫ) ≤ ℓC + log ℓ

1− ǫ +O(1) . (6.73)
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A consequence of Theorem 101 is that for DMCs, feedback (even in the setup of VLFT
codes) does not increase the ǫ-capacity, namely,

lim
ℓ→∞

1

ℓ
logM∗

t (ℓ, ǫ) = [[Cǫ]] , (6.74)

where [[Cǫ]] is defined in (6.13) and given by Theorem 100.
However, while in the absence of feedback and within the paradigm of fixed-length

coding, the backoff from ǫ-capacity (equal to capacity for DMCs) is governed by the 1√
n

term (6.1), variable-length coding with feedback completely eliminates that penalty. Thus,
the capacity is attainable at a much smaller (average) blocklength. Furthermore, the achiev-
ability (lower) bound in (6.72) is obtained via decision feedback codes that use feedback only
to let the encoder know that the decoder has made its final decision; namely, the encoder
maps fn satisfy (6.11). As (6.72) demonstrates, such a sparing use of feedback does not
lead to any significant loss in rate even non-asymptotically. Naturally, such a strategy is
eminently practical in many applications, unlike those strategies that require full, noiseless,
instantaneous feedback. In the particular case of the BSC, a lower bound (6.72) with a
weaker log n term has been claimed in [109].

The proof of Theorem 101 is an application of a general achievability bound:

Theorem 102 Fix a real number γ > 0, a channel {PYi|Xi
1Y i−1

1
}∞i=1 and an arbitrary pro-

cess X = (X1,X2, . . . ,Xn, . . .) taking values in A. Define a probability space with finite-
dimensional distributions given by

PXnY nX̄n(an, bn, cn) = PXn(an)PX̄n(cn)

n∏

j=1

P
Yj |Xj

1Y j−1
1

(aj |bj , aj−1) , (6.75)

i.e. X and X̄ are independent copies of the same process and Y is the output of the channel
when X is its input. For the joint distribution (6.75) define a sequence of information
density functions An × Bn → R̄

i(an; bn) = log
dPY n|Xn(bn|an)

dPY n(bn)
, (6.76)

and a pair of hitting times:

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ γ} , (6.77)

τ̄ = inf{n ≥ 0 : i(X̄n;Y n) ≥ γ} . (6.78)

Then for any M there exists an (ℓ,M, ǫ) VLF code with

ℓ ≤ E [τ ] (6.79)

ǫ ≤ (M−1)P[τ̄ ≤ τ ] . (6.80)

Furthermore, for any M there exists a deterministic (ℓ′,M, ǫ) VLF code with ǫ satisfy-
ing (6.80) and

ℓ′ ≤ esssup E [τ |X] . (6.81)
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Remarks:

1. Loosening the bound to (6.81) is advantageous, since for symmetric channels we have
E [τ |X] = E [τ ] and thus the second part of Theorem 102 guarantees the existence of
a deterministic code without any sacrifice in performance.

2. Theorem 102 is a natural extension of the DT bound, Theorem 18, since (6.80) cor-
responds to the second term in (2.117), whereas the first term in (2.117) is missing
because the information density corresponding to the true message eventually crosses
any level γ with probability one.

3. Interestingly, pairing a fixed stopping rule with a random-coding argument has been
already discovered from a different perspective: in the context of universal variable-
length codes [107–111], stopping rules based on a sequentially computed EMI were
shown to be optimal in several different asymptotic senses. Although invaluable for
universal coding, EMI-based decoders are hard to evaluate non-asymptotically and
their analysis relies on inherently asymptotic methods, such as type-counting, cf. [111].

Proof: To define a code we need to specify (U, fn, gn, τ). First we define a random
variable U as follows:

U △
= A∞ × · · · × A∞

︸ ︷︷ ︸

M times

(6.82)

PU
△
= PX∞ × · · · × PX∞

︸ ︷︷ ︸

M times

, (6.83)

where PX∞ is the distribution of the process X. Note that even for |A| = 2, U will have the
cardinality of a continuum. However, in view of Theorem 97 this can always be reduced to
3.

The realization of U defines M infinite dimensional vectors Cj ∈ A∞, j = 1, . . . ,M .
Our encoder and decoder will depend on U implicitly through {Cj}. The coding scheme
consists of a sequence of encoders fn that map a message j to an infinite sequence of inputs
Cj ∈ A∞ without any regard to feedback:

fn(w) = (Cw)n , (6.84)

where (Cj)n is the n-th coordinate of the vector Cj. Obviously, such encoder satisfies (6.11).
At time instant n the decoder computes M information densities:

Sj,n
△
= i(Cj(n);Y n) , j = 1, . . . ,M, (6.85)

where Cj(n) is the restriction of Cj to the first n symbols. The decoder also defines M
stopping times:

τj
△
= inf{n ≥ 0 : Sj,n ≥ γ)} . (6.86)

The final decision is made by the decoder at the stopping time τ∗:

τ∗
△
= min

j=1,...M
τj . (6.87)
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I.e. τ∗ is the moment of the first γ-upcrossing among all Sj . The output of the encoder is

g(Y τ∗
) = max{j : τj = τ∗} . (6.88)

We are left with the problem of choosing Cj, j = 1, . . .M .
This will be done by generating Cj randomly, independently of each other and dis-

tributed according to a distribution PX∞ on A∞.
We give an interpretation for our decoding scheme in the special case of a memoryless

channel with PX∞ = P∞
X , i.e. Xk are independent and identically distributed with a

single-letter distribution PX . In this case, the decoder observes M random walks Sj one
of which has a positive drift I(X;Y ) (the true message) and (M − 1) have negative drifts
−D(PXPY ||PXY ), a quantity known as lautum information L(X;Y ), see [115]. The goal of
the decoder, of course, is to detect the one with positive drift.

The average length of transmission satisfies:

E [τ∗] ≤ 1

M

M∑

j=1

E [τj|W = j] (6.89)

= E [τ1|W = 1] (6.90)

= E [τ ] , (6.91)

where (6.90) is by symmetry and (6.91) is by the definition of τ in (6.77). Analogously, the
average probability of error satisfies

P[g(Y τ∗
) 6= W ] ≤ P[g(Y τ∗

) 6= 1|W = 1] (6.92)

≤ P[τ1 ≥ τ∗|W = 1] (6.93)

≤ P





M⋃

j=2

{τj ≤ τ1}

∣
∣
∣
∣
∣
∣

W = 1



 (6.94)

≤ (M−1)P[τ2 ≤ τ1|W = 1] , (6.95)

where (6.92) is by (6.88), (6.94) is by the definition (6.87), and (6.95) is by a union
bound and symmetry. Finally, notice that conditioned on W = 1 the joint distribution
of (S1,n, S2,n, τ1, τ2) is exactly the same as that of (i(Xn;Y n), i(X̄n;Y n), τ, τ̄ ) defined in the
formulation of the theorem and (6.77), thus we have proved (6.79) and (6.80).

To prove (6.81) simply notice that similarly to (6.91) we have almost surely:

E [τ∗|U ] ≤ esssup E [τ |X] , (6.96)

and thus the bound (6.81) is automatically satisfied for every realization U . On the other
hand, because of (6.95) there must exist a realization u0 of U such that

P[g(Y τ∗
) 6= W |U = u0] ≤ (M−1)P[τ̄ ≤ τ ] , (6.97)

which therefore defines a deterministic code with the sought-after performance (6.80) and (6.81).
�

The converse parts of Theorem 101 follow from the following result:
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Theorem 103 Consider an arbitrary DMC with capacity C. Then any (ℓ,M, ǫ) VLF code
with 0 ≤ ǫ < 1 satisfies

logM ≤ Cℓ+ h(ǫ)

1− ǫ , (6.98)

whereas each (ℓ,M, ǫ) VLFT code with 0 ≤ ǫ < 1 satisfies

logM ≤
Cℓ+ h(ǫ) + (ℓ+ 1)h

(
1

ℓ+1

)

1− ǫ (6.99)

≤ Cℓ+ log(ℓ+ 1) + h(ǫ) + log e

1− ǫ , (6.100)

where h(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

Proof: The inequality (6.98) is contained essentially in Lemmas 1 and 2 of [103]. Thus
we focus on (6.99) only briefly mentioning how to obtain (6.98). First we give an informal
argument. According to the Fano inequality

(1− ǫ) logM ≤ I(W ;Y τ , τ) + h(ǫ) (6.101)

= I(W ;Y τ ) + I(W ; τ |Y τ ) + h(ǫ) (6.102)

≤ I(W ;Y τ ) +H(τ) + h(ǫ) (6.103)

≤ I(W ;Y τ ) + (ℓ+ 1)h

(
1

ℓ+ 1

)

+ h(ǫ) (6.104)

≤ Cℓ+ (ℓ+ 1)h

(
1

ℓ+ 1

)

+ h(ǫ) , (6.105)

where in (6.104) we have upper-bounded H(τ) by solving a simple optimization problem
for an integer valued non-negative random variable τ :

max
τ :E [τ ]≤ℓ

H(τ) = (ℓ+ 1)h

(
1

ℓ+ 1

)

, (6.106)

and in (6.105) we used the result of Burnashev [103]:

I(W ;Y τ ) ≤ C E [τ ] ≤ Cℓ . (6.107)

Clearly (6.105) is equivalent to (6.99). The case of VLF codes is even simpler since τ is a
function of Y τ and thus I(W ;Y τ , τ) = I(W ;Y τ ).

Unfortunately, the random variables (Y τ , τ) and Y τ are not well-defined and thus a
different proof is required. Nevertheless, the main idea still pivots on the fact that because
of the restriction on expectation, τ cannot convey more than O(log ℓ) bits of information
about the message.

Initially, we will assume that the code is deterministic and |U | = 1. Consider a triplet
(fn, gn, τ) defining a given code. For a VLFT code, τ is a stopping moment of the filtration
σ{W,Y k}∞k=0. To get rid of dependence of τ on W we introduce an extended channel
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Figure 6.3: Illustration of the channel extension in the proof of Theorem 103.

(Â, B̂, PŶ |X̂) as follows:

Â = A ∪ {T} , (6.108)

B̂ = B ∪ {T} , (6.109)

PŶ |X̂(ŷ|x̂) =

{

PY |X(ŷ|x̂) , x̂ 6= T ,

1{ŷ = T} , x̂ = T .
(6.110)

In other words, the channel PŶ |X̂ has an additional input T conveyed noiselessly to the
output. If PY |X is a BSC with crossover probability δ then the extended channel has
transition diagram as represented on Fig. 6.3. We also assume that the original and extended
channels are defined on the same probability space where they are coupled in such a way
that whenever X̂ = X we have Ŷ = Y .

Next, we convert the given code (τ, fn, gn) to the code (τ̂ , f̂n, ĝn) for the extended channel
as follows:

f̂n(W, Ŷ n−1) =

{

fn(W, Ŷ n−1) , τ ≥ n ,
T , τ < n ,

(6.111)

τ̂ = τ + 1 = inf{n : Ŷn = T} , (6.112)

ĝn(Ŷ n) =

{

gn(Ŷ n) , τ̂ > n ,

gn(Ŷ τ̂−1) τ̂ ≤ n ,
. (6.113)

Note that by definition τ ≥ n can be decided by knowing W and Y n−1 only and hence
f̂n is indeed a function of (W, Ŷ n−1); also notice that Ŷ n−1 ∈ An−1 whenever τ ≥ n, and
therefore the expression fn(W, Ŷ n−1) is meaningful.

Since τ̂ is a stopping time of the filtration

Fn
△
= σ{Ŷ j}nj=1 (6.114)

the triplet (f̂n, ĝn, τ̂ ) forms an (ℓ+1,M, ǫ) VLF code for the extended channel (6.110). This
code satisfies an additional constraint: input symbol T is used only once and it terminates
the transmission. Now we prove that any such code must satisfy a certain upper bound on
its cardinality M . To do so, consider the space {1, . . . ,M} × Â∞ and two measures on it:
PWŶ ∞ and PW × PŶ ∞ , where PWŶ ∞ is the joint distribution of random variables W and

Ŷ∞ induced by the code (f̂n, ĝn, τ̂ ). Consider a measurable function

φ : {1, . . . ,M} × Â∞ → {0, 1} (6.115)
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defined as
φ = 1{ĝτ̂ (Y τ̂ ) = W} . (6.116)

Notice that under measure PWŶ ∞ we have

PWŶ ∞ [φ = 1] ≥ 1− ǫ , (6.117)

due to the requirement (6.7). On the other hand, since under PW ×PŶ ∞ ĝτ̂ is independent
of W , we have

PW × PŶ ∞ [φ = 1] =
1

M
. (6.118)

Therefore by the data-processing inequality we must have

D(PWŶ ∞ ||PWPŶ ∞) ≥ d(1 − ǫ|| 1
M ) , (6.119)

where d(x||y) = x log x
y + (1− x) log 1−x

1−y is the binary relative entropy. After trivial manip-
ulations in (6.119) we obtain

(1− ǫ) logM ≤ I(W ; Ŷ∞) + h(ǫ) . (6.120)

Although, (6.120) is just the Fano inequality, inclusion of the complete derivation illustrates
the similarity with the meta-converse approach in Theorem 28 (see also Section 2.7.3).
Another important observation is that for small ℓ, the bound can be tightened by replacing
the step of data-processing (6.119) with an exact non-asymptotic solution of the Wald’s
sequential hypothesis testing problem.

We proceed to upper bound I(W ; Ŷ∞)3 . To do so we define a sequence of random
variables:

Zk = log
PŶk |WŶ k−1(Ŷk|W, Ŷ k−1)

PŶk |Ŷ k−1(Ŷk|Ŷ k−1)
, (6.121)

which are relevant to I(W ; Ŷ∞) because by simple telescoping we have

I(W ; Ŷ ∞) =

∞∑

k=1

E [Zk] . (6.122)

For Zk we have the following property:

E [Zk|Fk−1] = I(W ; Ŷk|Fk−1) , (6.123)

where I(·; ·|F) denotes mutual information, conditioned on F (i.e. it is an F-measurable
random variable). Specifically, for discrete random variables A and B we have

I(A;B|F)
△
=
∑

a,b

P[A = a,B = b|F ] log
P[A = a,B = b|F ]

P[A = a|F ]P[B = b|F ]
, (6.124)

where summation is over the alphabets of A and B. Similarly we can define I(A;B|C,F)
and other information measures.

3Notice that Ŷ ∞ formalizes the idea of viewing (Y τ , τ ) as a random variable.
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We define yet another process adapted to filtration Fn, cf. (6.114),

Vn
△
= 1{τ̂ ≤ n} . (6.125)

With this notation we have:

I(W ; Ŷk|Fk−1) = I(W ; ŶkVk|Fk−1) (6.126)

= I(W ;Vk|Fk−1) + I(W ; Ŷk|Vk,Fk−1) (6.127)

≤ H(Vk|Fk−1) + I(W ; Ŷk|Vk,Fk−1) (6.128)

≤ H(Vk|Fk−1) + I(X̂k; Ŷk|Vk,Fk−1) , (6.129)

where (6.126) follows because Vk is a function of Ŷk, (6.127) is the usual chain rule and
(6.129) is obtained by applying the data-processing lemma to the Markov relation W −
X̂k − Ŷk − Vk, which holds almost surely when conditioned on Fk−1. We now upper-bound
the second term in (6.129) as follows

I(X̂k; Ŷk|Vk,Fk−1) ≤ 0 · P[Vk = 1|Fk−1] + P[Vk = 0|Fk−1]C , (6.130)

because when Vk = 1 we must have X̂k = Ŷk = T and the mutual information is zero, while
when Vk = 0 we are computing the mutual information acquired on the PŶ |X̂ channel over
a distribution PX̂k |Vk 6=0 which has a zero mass on the symbol T , and thus

sup
P

X̂
:P

X̂
(T )=0

I(X̂ ; Ŷ ) = C . (6.131)

Overall, from (6.123), (6.129) and (6.130) it follows:

E [Zk|Fk−1] ≤ H(Vk|Fk−1) + P[Vk = 0|Fk−1]C . (6.132)

Finally, we obtain

I(W ; Ŷ ∞) =

∞∑

k=1

E [E [Zk|Fk−1]] (6.133)

≤
∞∑

k=1

H(Vk|Ŷ k−1) + P[Vk = 0]C (6.134)

=

∞∑

k=1

H(Vk|Ŷ k−1) + C E [τ ] (6.135)

≤
∞∑

k=1

H(Vk|V k−1) + C E [τ ] (6.136)

= H(V1, V2, . . .) + C E [τ ] (6.137)

= H(τ̂) +C E [τ ] (6.138)

= H(τ) +C E [τ ] (6.139)
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where (6.133) follows from (6.122), (6.134) results from (6.132), (6.135) follows by taking
an expectation of the obvious identity

∞∑

k=1

1{Vk = 0} =
∞∑

k=1

1{τ̂ > k} = τ̂ − 1 , (6.140)

and recalling that τ̂ − 1 = τ , (6.136) follows because V k−1 is a function of Ŷ k−1, (6.137) is
obtained by the entropy chain rule, (6.139) follows since (V1, V2, . . . , Vn, . . .) is an invertible
function of τ̂ , and finally (6.139) follows since τ̂ = τ + 1.

Together (6.120), (6.139) and (6.106) prove (6.99) in the case of a deterministic code
with |U | = 1. For the case of |U | > 1 the above argument has shown that we have

(1− P[W 6= Ŵ |U ]) logM ≤ C E [τ |U ] +H(τ |σU) + h(P[W 6= Ŵ |U ]) , a.s., (6.141)

where Ŵ = gτ (Y τ ) is the output message estimate of the decoder. By taking the expectation
of both sides of (6.141) and applying the Jensen’s inequality to the binary entropy terms
we obtain

(1− P[W 6= Ŵ |U ]) logM ≤ C E [τ ] +H(τ |U) + h(ǫ) , (6.142)

and then (6.99) follows since by (6.106) we have

H(τ |U) ≤ H(τ) ≤ (ℓ+ 1)h

(
1

ℓ+ 1

)

. (6.143)

Notice that in the case of VLF codes, the first term in (6.135) disappears because Vk is
a function of Ŷ k−1 thus leading to the tighter bound (6.98). �

Proof of Theorem 101: The upper bounds in (6.70) and (6.71) follow from Theo-
rem 103. For the lower bound (6.70), suppose that for each ℓ′ there exists an

(
ℓ′,M, 1

ℓ′
)
-VLF

code with
logM = Cℓ′ − log ℓ′ − a0 , (6.144)

where a0 is some constant. To see that (6.144) implies the lower bound in (6.70) consider
the code which terminates without any channel uses, i.e. τ = 0, with probability ℓ′ǫ−1

ℓ′−1

and uses the
(
ℓ′,M, 1

ℓ′
)
-VLF code otherwise4 . Such a code has probability of error ǫ and

average length ℓ = ℓ′2(1−ǫ)
ℓ′−1 and, therefore, using (6.144) we have

logM∗(ℓ, ǫ) ≥ Cℓ′ − log ℓ′ − a0 (6.145)

=
ℓC

1− ǫ − log ℓ+O(1) , (6.146)

as required.
To prove (6.144), we apply Theorem 102 with the process {Xn}∞n=1 chosen to be inde-

pendent and identically distributed (i.i.d.) with a marginal distribution PX – a capacity
achieving distribution. To analyze (6.80) it is convenient to define a pair of random walks

Sn
△
= i(Xn;Y n) , (6.147)

S̄n
△
= i(X̄n;Y n) . (6.148)

4Note that due to availability of a decision feedback such a randomization can be realized on the decoder
side only, i.e. without requiring any common randomness, U . Thus if

`

ℓ′, M, 1
ℓ′

´

-VLF code exists with
|U | = 1 then the overall coding scheme constructed to achieve (6.70) also has |U | = 1.
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First notice that for any (measurable) function f we have

E [f(X̄n, Y n)] = E [f(Xn, Y n) exp{−Sn}] , (6.149)

because Sn = log dPXnY n

dPX̄nY n
. Therefore, we have

P[τ̄ ≤ τ ] ≤ P[τ̄ <∞] (6.150)

= E [exp{−Sτ}1{Sτ ≥ γ1} (6.151)

≤ exp{−γ} , (6.152)

where (6.150) is because τ <∞ almost surely, and (6.152) is by the definition of τ in (6.77).
Since the sequence Sn−nI(X;Y ) = Sn−nC is a martingale we obtain from Wald’s identity

C E [τ ] = E [Sτ ] (6.153)

≤ γ + a0 , (6.154)

where a0 is an upper-bound on S1. The existence of an
(
ℓ′,M, 1

ℓ′
)
-VLF code with M

satisfying (6.144) now follows by taking γ = Cℓ′−a0 and using (6.154) and (6.152) in (6.79)
and (6.80), respectively. �

We note in passing that while the codes with encoders utilizing full noiseless feedback
can achieve the Burnashev exponent (6.2), it was noted in [109, 111] that the lower error
exponent

E1(R) = C −R (6.155)

is achievable at all rates R < C with decision feedback codes (6.11). Indeed, this property
easily follows from (6.152) and (6.154).

A numerical comparison of the upper and lower bounds for the BSC with crossover
probability δ = 0.11 and ǫ = 10−3 is given in Fig. 6.4, where the upper bound is (6.98)
and the lower bound is Theorem 102 (evaluated with various γ depending on the average
blocklength). Note that for BSC(δ) the i(Xn;Y n) becomes a random walk taking steps
log 2δ and log(2− 2δ) with probabilities δ and 1− δ, i.e.,

i(Xn;Y n) = n log(2− 2δ) + log
δ

1− δ
n∑

k=1

Zk , (6.156)

where Zk are independent Bernoulli P[Zk = 1] = 1 − P[Zk = 0] = δ. The evaluation
of (6.80) is simplified by using (6.149) to get rid of the process i(X̄n;Y n), which in this
case is independent of (Xn, Y n):

ǫ ≤ (M−1)E [f(τ)] , (6.157)

where
f(n)

△
= E [1{τ ≤ n} exp{−i(Xτ ;Y τ )}] . (6.158)

The dashed line in Fig. 6.4 is the approximate fundamental limit for fixed blocklength
codes without feedback given by the equation (6.1) with O(log n) substituted by 1

2 log n;
see Theorem 41.
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and feedback; probability of error ǫ = 10−3.

Theorem 104 For a BEC(δ) and ǫ ∈ [0, 1) we have

log2M
∗
f (ℓ, ǫ) =

ℓC

1− ǫ +O(1) , (6.159)

where C = 1− δ bit. More precisely,

⌊
ℓC

1− ǫ

⌋

≤ log2M
∗
f (ℓ, ǫ) ≤ ℓC

1− ǫ +
h(ǫ)

1− ǫ . (6.160)

Proof: The upper bound in Theorem 101 holds even for ǫ = 0, so we need only to prove
a lower bound. First, we assume ǫ = 0 and take arbitrary k. Consider the strategy that
simply retransmits each of k bits until it gets through the channel unerased. More formally,
we define a stopping time as

τ0 = inf{n ≥ 1 : there are k unerased symbols in Y1, . . . Yn} . (6.161)

It is easy to see that

E [τ0] =
k

1− δ . (6.162)
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Hence for any ℓ we have shown

log2M
∗
f (ℓ, 0) ≥ ⌊ℓC⌋ . (6.163)

For ǫ > 0 we make use of the randomization to construct a transmission scheme that
stops at time 0 with probability ǫ and otherwise proceeds as above. We define a stopping
time

τǫ = τ01{U ≥ ǫ} , (6.164)

where U is uniform on [0, 1] and measurable with respect to G0. It is clear that using such
a strategy we obtain a probability of error upper-bounded by ǫ and

E [τǫ] =
k

1− δ (1− ǫ) . (6.165)

Hence we are able to achieve

log2M
∗
f (ℓ, ǫ) ≥

⌊
ℓC

1− ǫ

⌋

. (6.166)

�

The result of Theorem 104 suggests that to improve the expansion (6.70) to the order
O(1), it is likely that we need to go beyond encoders satisfying (6.11).

6.8 Zero-error communication

The general achievability bound, Theorem 102, applies only to ǫ > 0. What can be said
about ǫ = 0?

6.8.1 Without a termination symbol (VLF codes)

Recall that C1 in (6.2) is defined as

C1 = max
a1,a2∈A

D(PY |X=a1
||PY |X=a2

) . (6.167)

Burnashev [103] showed that if C1 =∞, then as ℓ→∞ we have for some a > 0

logM∗
f (ℓ, 0) ≥ Cℓ− a

√

ℓ log ℓ+O(log ℓ) . (6.168)

For this reason, for such channels zero-error VLF capacity is equal to the conventional ca-
pacity. However, the penalty bound

√
ℓ log ℓ is rather loose, as the following result demon-

strates.

Theorem 105 For a BEC(δ) with capacity C = 1− δ bit we have

log2M
∗
f (ℓ, 0) = ℓC +O(1) . (6.169)

Proof: Theorem 104 applied with ǫ = 0. �

Regarding any channel with C1 <∞ (e.g. the BSC), the following negative result holds:
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Theorem 106 For any DMC with C1 <∞ we have

logM∗
f (ℓ, 0) = 0 (6.170)

for all ℓ ≥ 0.

Proof: We show that when C1 < ∞ no (ℓ, 2, 0) VLF code exists. Indeed, assume that
(U, fn, gn, τ) is such a code. For zero-error codes, randomization does not help and hence,
without loss of generality we assume |U| = 1. Then, conditioning on W = 1 and W = 2
gives two measures P1 and P2 on B, which are mutually singular when considered on the
σ-algebra Gτ , where Gn = σ{Y1, . . . , Yn} is a filtration on B, with respect to which τ is a
stopping time. Define a process, adapted to the same filtration:

Rn = log
dP1

dP2

∣
∣
∣
∣
Gn

, (6.171)

where dP1
dP2

∣
∣
∣
Gn

denotes the Radon-Nikodym derivative between P1 and P2 considered as

measures on the space B with σ-algebra Gn. Then, by memorylessness we have

Rn −Rn−1 = log
PY |X(Yn|fn(1, Y n−1))

PY |X(Yn|fn(2, Y n−1))
. (6.172)

From (6.172) and C1 <∞ it follows that there exists a constant a1 > 0 such that

Rn −Rn−1 ≥ −a1 , (6.173)

and, consequently,
Rn ≥ −na1 . (6.174)

On the other hand, taking the conditional expectation of (6.172) with respect to P1 we
obtain from the definition of C1 in (6.167):

E [Rn|Gn−1] ≤ Rn−1 + C1 <∞ , (6.175)

where here and in the remainder of this proof the expectation E is taken with respect to
measure P1. Thus (6.175) implies that under P1 the process Rn−nC1 is a supermartingale.
By Doob’s stopping theorem for any integer k ≥ 0 we have then

E [Rmin{τ,k}] ≤ C1E [min{τ, k}] ≤ C1E [τ ] <∞ . (6.176)

At the same time from (6.174) we have

Rmin{τ,k} ≥ −a1 min{τ, k} ≥ −a1τ , (6.177)

and since E [τ ] <∞ we can apply Fatou’s lemma to (6.176) to obtain

E [Rτ ] = E [lim inf
k→∞

Rmin{τ,k}] ≤ C1E [τ ] <∞ . (6.178)

On the other hand,
D(P1|Gτ ||P2|Gτ ) = E [Rτ ] <∞ , (6.179)

thus implying that P1 and P2 cannot be mutually singular on Gτ – a contradiction. �
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6.8.2 With a termination symbol (VLFT codes)

The shortcoming of VLF coding found in Theorem 106 is overcome in the paradigm of
VLFT coding. Our main tool is the following achievability bound.

Theorem 107 Fix an arbitrary channel {PYi|Xi
1Y i−1

1
}∞i=1 and a process X = (X1,X2, . . . ,Xn, . . .)

with values in A. Then for every positive integer M there exists an (ℓ,M, 0) VLFT code
with

ℓ ≤
∞∑

n=0

E [min
{
1, (M−1)P[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
] , (6.180)

where Xn, X̄n, Y n and i(·; ·) are defined in (6.75) and (6.76). Moreover, this is an FV
code which is deterministic and uses feedback only to compute the stopping time, i.e. (6.11)
holds.

Proof: To construct a deterministic code we need to define a triplet (fn, gn, τ). Consider
a collection of M infinite A-strings {C1, . . . ,CM}. The sequence of the encoder functions
is defined as

fn(w) = (Cw)n , (6.181)

where (Cj)n is the n-th coordinate of the vector Cj. Recall that in the paradigm of VLFT
codes it is allowable for the stopping rule τ to depend on the true message W , so we may
define

τ = inf{n ≥ 0 : i(CW (n);Y n) > max
u 6=W

i(Cu(n);Y n)} , (6.182)

where as before Cj(n) ∈ An is a restriction of Cj to the first n coordinates. Defini-
tion (6.182) means that if the true message is j then the transmitter stops at the first time
instant n when i(Cj(n);Y n) is strictly larger than any other i(Cu(n);Y n), u 6= j). Finally,
the sequence of decoder functions is defined as

gn(yn) =

{

k, if ∀j 6= k : i(Ck(n); yn) > i(Cj(n); yn)

1, otherwise .
(6.183)

Upon receiving a stop signal, the decoder outputs the index of the unique message corre-
sponding to the maximal information density, thus we have

gτ (Y τ ) = W , (6.184)

and the constructed code is indeed a zero-error VLFT code for any selection of M strings
Cj, j = 1, . . . ,M . We need to provide an estimate only of the expected length of commu-
nication E [τ ].

The result is proved by applying a random coding argument with each Cj generated
independently with probability distribution PX∞ , corresponding to the fixed input process
X. Averaging over all realizations of {Cj , j = 1, . . . ,M} we obtain the following estimate:

P[τ > n] = P[τ > n|W = 1] (6.185)

≤ P





M⋃

j=2

{i(C1(n);Y n) ≤ i(Cj(n);Y n)}

∣
∣
∣
∣
∣
∣

W = 1



 , (6.186)



209

where (6.185) follows from symmetry and (6.186) simply states that if τ > n and W = 1
then at least one information density should not be smaller than i(C1(n);Y n). We can
proceed from (6.186) as in the RCU bound, Theorem 17:

P[τ > n] ≤ E [min
{
1, (M−1)P[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
] , (6.187)

where we have additionally noted that conditioned on W = 1 the joint distribution of
(C1(n),Cj(n), Y n) coincides with that of (Xn, X̄n, Y n) for every j 6= 1. Summing (6.187)
over all n from 0 to ∞ we obtain

E [τ ] =

∞∑

n=0

P[τ > n] ≤ E [min
{
1, (M−1)P[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
] . (6.188)

Thus, there must exist a realization of {Cj, j = 1, . . . ,M} achieving (6.180). �

Theorem 108 For an arbitrary DMC we have

logM∗
t
(ℓ, 0) = ℓC +O(log ℓ) . (6.189)

More specifically we have

logM∗
t
(ℓ, 0) ≤ ℓC + log ℓ+O(1) , (6.190)

logM∗
t
(ℓ, 0) ≥ ℓC +O(1) . (6.191)

Furthermore, the encoder achieving (6.191) uses feedback to calculate the stopping time only,
i.e. it is an FV code.

Proof: The upper bound (6.190) follows from (6.100). To prove a lower bound, we will
apply Theorem 107 with the process X selected as i.i.d. with a capacity-achieving marginal
distribution. We first weaken the bound (6.180) to a form that is easier to analyze:

E [min
{
1, (M−1)P[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
] (6.192)

≤ E [min
{
1,MP[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
] (6.193)

= E [min
{
1,MP[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
1{i(Xn;Y n) ≤ logM}]

+ E [min
{
1,MP[i(Xn;Y n) ≤ i(X̄n;Y n)|XnY n]

}
1{i(Xn;Y n) > logM}](6.194)

≤ P[i(Xn;Y n) ≤ logM ] +MP[i(X̄n;Y n) > logM ] (6.195)

= E
[
exp

{
−[i(Xn;Y n)− logM ]+

}]
, (6.196)

where (6.195) is obtained from (6.194) by upper-bounding min by 1 in the first term and
by MP[i(X̄n;Y n) > logM ] in the second term, and (6.196) is an application of (6.149).

In view of (6.196), Theorem 107 guarantees the existence of an (ℓ,M, 0) VLFT code
with5

ℓ ≤ E

[ ∞∑

n=0

exp
{
−[i(Xn;Y n)− logM ]+

}

]

. (6.197)

5i(X0; Y 0) = 0 by convention.
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We now define the filtration F as

Fn = σ{Xn, X̄n, Y n}, n = 0, 1, . . . (6.198)

Notice that i(Xn;Y n) is a random walk adapted to F with bounded jumps and positive
drift equal to the capacity C:

E [i(Xn;Y n)] = nC , (6.199)

whereas the process i(X̄n;Y n) is also a random walk with bounded jumps, but with a
negative drift equal to the lautum information [115]:

E [i(X̄n;Y n)] = −nD(PXPY ||PXY ) = −nL(X;Y ) . (6.200)

Define a stopping time of the filtration F as follows:

τ = inf{n ≥ 0 : i(Xn;Y n) ≥ logM} . (6.201)

With this definition we have

E

[ ∞∑

n=0

exp
{
−[i(Xn;Y n)− logM ]+

}

]

= E

[

τ +

∞∑

k=0

exp
{

−[i(Xk+τ ;Y k+τ )− logM ]+
}
]

.

(6.202)
Because i(Xτ ;Y τ ) ≥ logM we have

[i(Xk+τ ;Y k+τ )− logM ]+ = [i(Xk+τ ;Y k+τ )− i(Xτ ;Y τ ) + i(Xτ ;Y τ )− logM ]+(6.203)

≥ [i(Xk+τ ;Y k+τ )− i(Xτ ;Y τ )]+ . (6.204)

Application of (6.204) gives

E

[ ∞∑

k=0

exp
{

−[i(Xk+τ ;Y k+τ )− logM ]+
}
]

≤ E

[ ∞∑

k=0

exp
{

−[i(Xk+τ ;Y k+τ )− i(Xτ ;Y τ )]+
}
]

.

(6.205)
By the strong Markov property of the random walk, conditioned on Fτ the distribution of
the process i(Xk+τ ;Y k+τ )− i(Xτ ;Y τ ) is the same as that of the process i(Xk;Y k). Thus,
(6.202) and (6.205) imply

E

[ ∞∑

n=0

exp
{
−[i(Xn;Y n)− logM ]+

}

]

≤ E [τ ] + E

[ ∞∑

k=0

exp
{

−[i(Xk;Y k)]+
}
]

. (6.206)

To estimate the second term, notice that for some constants a1, a2 > 0 we have

E

[

exp
{

−[i(Xk;Y k)]+
}]

(6.207)

= P[i(Xk;Y k) ≤ 0] + E

[

exp
{

−i(Xk;Y k)
}

1{i(Xk ;Y k > 0}
]

(6.208)

= P[i(Xk;Y k) ≤ 0] + P[i(X̄k;Y k) > 0] (6.209)

≤ a2 exp{−a1k} , (6.210)
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where (6.209) is an application of (6.149), and (6.210) follows from Chernoff bound since
both i(Xk;Y k) and i(X̄k;Y k) are sums of k i.i.d. random variables with positive expectation
C and negative expectation L(X;Y ), respectively. Summing (6.210) over all non-negative
integers k we obtain that for some constant a3 > 0 we have

E

[ ∞∑

k=0

exp
{

−[i(Xk;Y k)]+
}
]

≤ a3 . (6.211)

Finally, by the boundedness of jumps of i(Xn;Y n) there is a constant a4 > 0 such that

i(Xτ ;Y τ )− logM ≤ a4 . (6.212)

Since i(Xn;Y n)−nC is a martingale with bounded increments we have from Doob’s stopping
theorem:

E [i(Xτ ;Y τ )] = C E [τ ] , (6.213)

but on the other hand from (6.212) we have

E [i(Xτ ;Y τ )] ≤ logM + a4 (6.214)

and thus

E [τ ] ≤ logM

C
+ a4 . (6.215)

Together (6.215), (6.211) imply via (6.206) and (6.197) the required lower bound (6.191).
�

Theorem 108 suggests that VLFT codes may achieve capacity even at very short block-
lengths. To illustrate this numerically we first notice that Theorem 107 particularized to
the BSC with i.i.d. input process X and an equiprobable marginal distribution yields the
following result:6

Corollary 109 For the BSC with crossover probability δ and for every positive integer M
there exists an (ℓ,M, 0) VLFT code satisfying

ℓ ≤
∞∑

n=0

n∑

t=0

(
n

t

)

δt(1− δ)n−t min

{

1, M
t∑

k=0

(
n

k

)

2−n

}

. (6.216)

A comparison of (6.216) and the upper bound (6.100) is given in Fig. 6.5. We see that
despite the requirement of zero probability of error, VLFT codes attain the capacity of
the BSC at blocklengths as short as 30. As in Theorem 104 the convergence to capacity
is very fast. Additionally, we have depicted the (approximate) performance of the best
non-feedback code paired with the simple ARQ strategy, see Section 6.4. The comparison
on Fig. 6.5 suggests that even having access to the best possible block codes the ARQ is
considerably suboptimal. It is interesting to note in this regard, that a Yamamoto-Itoh [105]
strategy also pairs the best block code with a noisy version of ARQ (therefore, it is a VLF
achievability bound). Consequently, we expect a similar gap in performance.

6This expression is to be compared with the (almost) optimal non-feedback achievability bound for the
BSC, see (3.10).
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Figure 6.5: Zero-error communication over the BSC(0.11) with a termination symbol. The
lower bound is (6.216); the upper-bound is (6.100).

Another property of VLFT codes is that the maximal achievable rate for very small
blocklengths may be noticeably above capacity. This can be seen as an artifact of the model
which provides for an error-free termination symbol. Ordinarily, the overhead required in
a higher layer to provide much higher reliability than the individual physical-layer symbols
would not make short blocklengths attractive.

This point is best demonstrated by computing the following specialized achievability
bound for the BEC, which improves the general Theorem 107 in this particular case.

Theorem 110 For the BEC with erasure probability δ and any positive integer M there
exists an (µ(M),M, 0) VLFT code, where function µ : Z+ → R+ is the solution to

µ(M) =
1

M
· 0 +

M − 1

M
· 1

+ (1− δ) · 1

M

[⌈
M − 1

2

⌉

µ

(⌈
M − 1

2

⌉)

+

⌊
M − 1

2

⌋

µ

(⌊
M − 1

2

⌋)]

+ δ · 1

M
(M − 1)µ(M − 1) , (6.217)

initialized by µ(1) = 0.
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Proof: If we need to transmit only one message, M = 1, then we can simply set τ = 0.
Therefore, we have

µ(1) = 0 . (6.218)

If we need to transmit an arbitrary M > 1 number of messages than we do the following.
First, all M messages are split into three groups. The first group consists of a single message
and the remaining M − 1 messages are split according to

M − 1 =

⌈
M − 1

2

⌉

+

⌊
M − 1

2

⌋

. (6.219)

Second, ifW is equal to the special message, then the encoder terminates the communication
by setting τ = 0. If W belongs to one of

⌈
M−1

2

⌉
messages the the encoder sets f1 = 0,

and f1 = 1, otherwise. Third, upon passing through the channel one of the possibilities
can happen: the digit was erased or was delivered correctly. In the case of correct delivery
we reiterate the algorithm with either M ′ =

⌈
M−1

2

⌉
or M ′ =

⌊
M−1

2

⌋
, depending on the

group W belonged to. In the case of erasure we reiterate with M ′ = M − 1 since the
special message was ruled out. A careful analysis of the probabilities of each case yields the
recursion (6.217). �

The first few values of the µ-function are

µ(1) = 0 , (6.220)

µ(2) = 1/2 , (6.221)

µ(3) =
1

3
(2 + δ) , (6.222)

µ(4) = 1 +
1

4
(δ + δ2) . (6.223)

Numerical comparison of the achievability bound7 of Theorem 110 against the converse
bound (6.100) is given on Fig. 6.6 for the case of δ = 0.5. We notice that indeed for small ℓ
(and, equivalently, M) the availability of the termination symbol allows the rate to exceed
the capacity slightly. Also, the horizontal capacity line coincides with the “traditional”
achievability bound for the BEC, as given by Theorem 104 with ǫ = 0, which does not
take advantage of the additional degree of freedom enabled in the VLFT paradigm (i.e., a
termination symbol).

6.9 Excess delay constraints

Quantifying the notion of delay for variable-length coding with feedback has proven to be
notoriously hard, see, for example, [116] for a related discussion. While for fixed-blocklength

7Since it is not possible to compute µ(2500) directly, the following idea was used. Fix some kmax and
compute µ(2k) for all k ≤ kmax via (6.217). For k > kmax we can use a strategy of simply retransmitting
each of the first k− kmax bits until it is delivered unerased, and then use the recursive strategy to transmit
the remaining kmax bits. This gives the bound

µ(2k) ≤
k − kmax

1− δ
+ µ

“

2kmax

”

. (6.224)

As kmax increases, the upper bound improves. Experimentation shows that there is no visible improvement
once kmax & 10.
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Figure 6.6: Zero-error communication over the BEC(0.5) with a termination symbol.

codes delay is naturally associated with the blocklength, in the variable-length setup, how-
ever, the usage of average blocklength E [τ ] as a proxy for delay is not appropriate in
real-time applications with hard delay constraints. On the contrary, the definition of rate
as log M

E [τ ] is very natural, since by the law of large numbers the ratio of bits to channel uses

will approach log M
E [τ ] for a repeated usage of the same code.

An advantage of feedback is the ability to terminate transmission early on favorable
noise realizations thereby reducing average blocklength. However, it remains to be seen
whether under a constraint on the probability of excess delay, variable-length coding offers
any advantage. Our testbed will be the BEC, as the channel for which feedback achievability
strategies are understood best.

The first formulation is to consider an arbitrary VLF code and define the error event
differently from (6.7). Namely, fix a delay d and define the probability of error as

ǫ = P[{Ŵ 6= W} ∪ {τ > d}] . (6.225)

The question is then: what is the maximum M compatible with a chosen d and ǫ? The
answer is obvious: since in such formulation the encoder has no incentive to terminate
before the delay d, we might as well fix blocklength to be d and force the decoder to take
the decision at time d. This, however, is no different from fixed-blocklength coding with
feedback, which we have considered in Section 6.5. In particular, we have demonstrated
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that for the BEC (and the BSC, and many other symmetric channels) the feedback does
not affect the

√
n term in the expansion (6.1).

The second formulation applies to zero-error VLFT codes for which we define ǫ-delay as

Dǫ = min{n : P[τ > n] ≤ ǫ} , ǫ ∈ [0, 1]. (6.226)

Thus a zero-error VLFT code with Dǫ ≤ d is a code which is guaranteed to deliver the
data error-free, and does so in less than d channel uses in all except ǫ-portion of the cases.
The question arises: for a fixed ǫ, what is the maximum M compatible with a given ǫ-delay
requirement d:

M∗
z (d, ǫ) = max{M : ∃ zero-error VLFT code with Dǫ ≤ d} ? (6.227)

The obvious achievability bound is to simply pair a fixed-blocklength non-feedback (n,M, ǫ)
with n = d code with an ARQ retransmission strategy to achieve zero error. We have thus

M∗
z (d, ǫ) ≥M∗(d, ǫ) = dC −

√
dV Q−1(ǫ) +O(log d) , (6.228)

where M∗(d, ǫ) denotes the performance of the best non-feedback, fixed-blocklength code
and is thus given by (6.1).

Can we improve the crucial
√
d-penalty term in (6.228)? The answer is negative, at

least for the BEC:

Theorem 111 For the BEC, we have

logM∗
z (d, ǫ) ≤ dC −

√
dV Q−1(ǫ) + log d+O(1) , (6.229)

where C and V are the capacity and the dispersion of the BEC.

Proof: Let Ej be the i.i.d. process corresponding to erasures: P[Ej = 0] = 1− P[Ej =
1] = δ, where δ is the erasure probability of the BEC. Then the total number of unerased
symbols by time n is given by

Nn =
n∑

j=1

Ej . (6.230)

Following the steps of the proof of the converse theorem for the BEC, Theorem 43, we can
see that by time n the total number of messages distinguishable at the receiver is upper-
bounded by

∑n
j=0 2Nj (summation corresponds to the fact that a VLFT code has the

freedom of sending a termination symbol at any time). Therefore, since the code achieves
zero-error we have

P[τ ≤ n] ≤ 1

M
E



min







n∑

j=0

2Nj ,M









 . (6.231)

Since Nt is a monotonically non-decreasing it follows that

n∑

j=0

2Nj ≤
Nn∑

t=0

2t + (n−Nn)2Nn (6.232)

≤ 2Nn(n+ 2−Nn) (6.233)

≤ (n+ 2)2Nn . (6.234)
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Although the bound (6.233) is useful for numerical evaluation, the bound (6.234) is more
convenient for the analysis. Indeed, we have from (6.231) and (6.234):

P[τ ≤ n] ≤ 1

M
E
[
min

{
(n+ 2)2Nn ,M

}]
(6.235)

=
n+ 2

M
E

[

min

{

2Nn ,
M

n+ 2

}]

. (6.236)

Recall now that for the non-feedback case, Theorem 43 can be restated as

1− ǫ ≤ 1

M
E
[
min

{
2Nn ,M

}]
. (6.237)

The analysis of the bound (6.237) in the proof of Theorem 44 (asymptotic expansion for
the BEC), has shown that (6.237) implies

logM ≤ nC −
√
nV Q−1(ǫ) +O(1) , (6.238)

as n → ∞, where C and V are the capacity and the dispersion of the BEC. Compar-
ing (6.237) and (6.236) we see that M is replaced by M

n+2 . Therefore, the same argument
as the one leading from (6.237) to (6.238) when applied to (6.236) must give

logM ≤ nC −
√
nV Q−1(ǫ) + log(n+ 2) +O(1) , (6.239)

which implies (6.229). �

6.10 Discussion of the results

We have demonstrated that by allowing variable length, even a modicum of feedback is
enough to considerably speed up convergence to capacity. For illustration purposes we can
see in Fig. 6.4 that we have constructed a decision feedback code, that achieves, for example,
90% of the capacity of the BSC with crossover probability δ = 0.11 and probability of error
ǫ = 10−3 at blocklength 200; see Fig. 6.4. In contrast, to obtain the same performance with
fixed-blocklength codes requires a blocklength of at least 3100 even if full noiseless feedback
is available at the transmitter. This practical benefit of VLF codes opens the possibility of
utilizing the full capacity of the link without the complexity required to implement coding
of very long data packets.

A major ingredient of the achievability bounds in this chapter is the idea of terminating
early on favorable noise realizations. Although, we have applied this idea to the codes
with codewords with unbounded durations, it is clear that without any significant effect on
probability of error we could also assume that the transmission forcibly terminates after a
time which is a few times the average blocklength ℓ. Consequently, it can be shown that
any point on the achievability curve of Fig. 6.4 can be realized by pairing some linear block
code with the stopping rule (6.87). In other words, even traditional fixed-blocklength linear
codes can be decoded with significantly less (average) delay if used in the variable-length
setting. It is important, thus, to investigate whether traditionally good codes (such as
LDPC codes) are also competitive in this setting.
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Theoretically, the benefit of feedback is manifested by the absence of the
√
ℓ term in the

expansions (6.70) and (6.71), whereas this term is crucial to determine the non-asymptotic
performance without feedback. Equivalently, we have demonstrated that for variable-length
codes with feedback the channel dispersion is zero. To intuitively explain this phenomenon,
we note that without feedback the main effect governing the

√
n behavior was the stochastic

variation of information density around its mean, which is tightly characterized by the
central limit theorem. In the variable-length setup with feedback the main idea is that of
Wald-like stopping once the information density of some message is large enough. Therefore,
there is virtually no stochastic variation (besides a negligible overshoot) and this explains
the absence of any references to the central limit theorem.

We have also analyzed a modification of the coding problem by introducing a termination
symbol (VLFT codes), which is practically motivated in many situations in which control
signals are sent over a highly reliable upper layer. We have shown that in this setup, in
addition to the absence of

√
ℓ term, the principal new effect is that the zero-error capacity

increases to the full Shannon capacity of the channel. Although availability of a “use-once”
termination symbol is immaterial asymptotically, the transient behavior is significantly
improved. Analytically, this effect is predicted by the absence of not only the

√
ℓ term

but also of the log ℓ term in the achievability bound (6.191). Furthermore, our codes
with termination have a particularly convenient structure: the encoder uses the feedback
link only to choose the time when to stop the transmission (by sending the termination
symbol), and otherwise simply sends a fixed message-dependent codeword. The codes with
such structure have been called fixed-to-variable (FV), or fountain, codes in [113]. Thus, in
short, we have demonstrated that fountain codes can achieve 90% of the capacity of the BSC
with crossover probability δ = 0.11 at average blocklength < 20 and with zero probability
of error. Practically, of course, “zero-error” should be understood as the reliability being
essentially the probability with which the termination symbol is correctly detected.

Finally, we have discussed some questions regarding communication of real-time data.
We have demonstrated that constraints on the excess delay nullify the advantage of feedback
(and variable-length), i.e. the improvement in performance of the best feedback code can
be marginal at best compared to non-feedback, fixed-blocklength codes. This, of course,
contrasts sharply with the results regarding the average length.



Appendix A

Asymptotic behavior of β

This appendix provides proofs of Lemmas 14 and 15.
Proof of Lemma 14: We will simply apply the Berry-Esseen Theorem 13 twice. We

start from the lower bound. Applying (2.67) we get

βα ≥
1

γn

(

α− P
[

log
dP

dQ
≥ log γn

])

(A.1)

for γn > 0. Now set

αn = α− Bn + ∆√
n

. (A.2)

This quantity is positive by requirement that the argument of Q−1 in (2.87) be positive.
Therefore, choose

log γn = nDn +
√

nVnQ
−1(αn) . (A.3)

Then since log dP
dQ is a sum of independent random variables, Berry-Esseen Theorem 13

applies and ∣
∣
∣
∣
P

[

log
dP

dQ
≥ log γn

]

− αn

∣
∣
∣
∣
≤ Bn√

n
. (A.4)

Consequently,

P

[

log
dP

dQ
≥ log γn

]

≤ α− ∆√
n
. (A.5)

Substituting this bound into (A.1) we obtain (2.87).
From Neyman-Pearson lemma and by the monotonicity of βα, cf. derivation of (2.68),

we have

βα ≤ Q
[

log
dP

dQ
≥ log γn

]

, (A.6)

whenever γn satisfies

P

[

log
dP

dQ
≥ log γn

]

≥ α . (A.7)

Again, set

αn = α+
Bn√
n
. (A.8)
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This αn < 1 by the requirement that the argument of Q−1 in (2.88) be below 1. Also choose

log γn = nD +
√
nV Q−1(αn) . (A.9)

From the Berry-Esseen bound, we have

∣
∣
∣
∣
P

[

log
dP

dQ
≥ log γn

]

− αn

∣
∣
∣
∣
≤ Bn√

n
. (A.10)

Consequently,

P

[

log
dP

dQ
≥ log γn

]

≥ α . (A.11)

Thus, this choice of γn indeed satisfies (A.7).
Finally, (2.88) follows from (A.6):

βα ≤ Q

[

log
dP

dQ
≥ log γn

]

(A.12)

= E P

[

exp

{

− log
dP

dQ

}

1

{

log
dP

dQ
≥ log γn

}]

(A.13)

≤ 1√
nγn

(
2 log 2√
2πVn

+ 4Bn

)
1√
n

(A.14)

where (A.14) is by Lemma 20. �

Proof of Lemma 15: Just as in the above argument, we start by writing

βα ≥
1

γn

(

α− P
[

log
dP

dQ
≥ log γn

])

. (A.15)

We notice that

nDn = E P

[

log
dP

dQ

]

, nVn = E P

[(

log
dP

dQ
− nDn

)2
]

. (A.16)

Thus, if we set

log γn = nDn +

√

2nVn

α
, (A.17)

then

P

[

log
dP

dQ
≥ log γn

]

= P

[

log
dP

dQ
− nDn ≥

√

2nVn

α

]

≤ (A.18)

≤ P
[(

log
dP

dQ
− nDn

)2

≥ 2nVn

α

]

≤ α

2
. (A.19)

The last step is by Chebyshev inequality. Putting this into (A.15) we obtain the required
result after taking the logarithm. �



Appendix B

κβ bound and deterministic
hypothesis tests

In this appendix we will formulate the analog of Theorem 27 that constructs a non-
randomized decoder.

Similarly to (2.60), a non-randomized test between distributions PY |X=x and QY is
defined by a critical set E ⊆ B, where y ∈ E indicates that the test chooses PY |X=x. The
best performance achievable among those randomized tests is given by

β̃α(x, PY ) = inf
E:PY |X=x(E)≥α

PY (E) . (B.1)

For βα we have a Neyman-Pearson lemma that guarantees that the optimal randomized
test does exist. We used this fact extensively in the proof of Theorem 27. So we must show
that infimum in (B.1) is in fact a minimum. We could not find this result in the literature
and give the proof below.

Recall that measurable spaces X and Y are called isomorphic if there is a bijective
measurable map f : X 7→ Y with measurable inverse f−1. The space X is standard if it
is isomorphic to a Borel subset D of real line (with the inherited σ-algebra). A motivating
result is that every Polish space (in particular complete separable metric space) with Borel
σ-algebra is standard. Another deep result is that every standard space is isomorphic to
either [0, 1], {0, 1

1 , . . . ,
1
n} or {0, 1

n , n ∈ N}. Thus in the definition above we can restrict D
to be a closed subset of [0, 1].

Theorem 112 Given a standard measurable space X, two finite measures P and Q on X,
and any α ∈ [0, Q(X)] there exists a measurable set E∗

α such that Q(E∗
α) ≥ α and

P (E∗
α) = inf

E: Q(E)≥α
P (E) . (B.2)

The proof of this theorem can be found at the end of this appendix.

Theorem 113 (Achievability) Suppose that B is a standard measurable space. Then for
any 0 < ǫ < 1, there exists an (M, ǫ) code with codewords chosen from F ⊂ A, satisfying

M ≥ sup
0<τ<ǫ

sup
QY

κτ (F, QY )

supx∈F β̃1−ǫ+τ (x,QY )
. (B.3)
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Proof: The proof of the Theorem 27 applies with the only change that random trans-
formations P ∗

Zx|Y are replaced by deterministic ones. More specifically,

P ∗
Zx|Y (·|y)→ 1{y ∈ B∗

x} , (B.4)

where B∗
x is the set that achieves infimum in the (B.1). Such B∗

x does exist by Theorem 112.
�

Theorem 113 gives an achievability bound by constructing a codebook and a non-
randomized decoder. The drawback is that it is not straightforward to calculate the non-
randomized β̃α because we do not have a Neyman-Pearson lemma for this case. A possible
workaround is to find the connection between βα and β̃α. Such a connection is established
in the next two lemmas.

Assume that we have two probability measures PY and QY on B. We define the perfor-
mance of the best deterministic and best randomized test, correspondingly, as

β̃α = inf
{E: QY (E)≥α}

PY (E) , (B.5)

βα = min
PZ|Y :
∑

y∈B
QY (y)PZ|Y (1|y) ≥ α

∑

y∈B

PY (y)PZ|Y (1|y) . (B.6)

Note that f(y) = PZ|Y (1|y) is a function of y such that f(y) ∈ [0, 1]. Thus, we can rewrite
the definition of βα as

βα = inf
{f :

R

fdQY ≥α}

∫

f dPY (B.7)

with f satisfying f(y) ∈ [0, 1].

Lemma 114 Consider PY and QY such that1 QY ≪ PY . Then the following holds:

βα ≤ β̃α ≤ βα + sup
y∈B

PY (y) . (B.8)

Proof: The left-hand inequality is obvious and we will concentrate on the right-hand
one. From the Neyman-Pearson lemma we know that, the inf in (B.7) is achieved by some
function f . Moreover, the optimal f takes only three values: 0, 1, τ , where τ ∈ (0, 1).
Denote

E1 = f−1{1} and E2 = f−1{τ} . (B.9)

Then

βα =

∫

f dPY = PY (E1) + τPY (E2) . (B.10)

If PY (E2) = 0 then QY (E2) = 0 (by absolute continuity). Consequently, we can then take
the non-randomized test to be E = E1. Indeed,

QY (E) = QY (E1) =

∫

f dQY ≥ α (B.11)

1This assumption can be dropped, in which case in the proof we must consider only tests f such that
f(N) = 1. Here N is the set such that PY (N) = 0 but QY (N) is the maximum possible value. Existence of
such a set is well-known. Then on Nc we have QY ≪ PY .
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and PY (E) = PY (E1) = βα.
Assume that PY (E2) > 0. Since B is standard we may assume that it is a subset of [0, 1]

with Borel σ-algebra. Define a non-decreasing right-continuous function

g(t) = PY (E2 ∩ [0, t]) . (B.12)

Note that g(t) grows from g(0) to PY (E2). Then define

λ = inf{t : g(t) > τPY (E2)} . (B.13)

Since the height of any jump in g(t) is bounded by supy PY (y), we can see that

τPY (E2) ≤ g(λ) ≤ τPY (E2) + sup
y
PY (y) . (B.14)

Now define a non-randomized test

E = E1 ∪ (E2 ∩ [0, λ]) . (B.15)

Then, we have

QY (E) = QY (E1) +QY (E2 ∩ [0, λ]) = QY (E1) + g(λ)
QY (E2)

PY (E2)
. (B.16)

Here we used another property of the optimal randomized test f , namely, that dQY
dPY

is con-
stant on E2. Then lower bounding g(λ) by (B.14) we conclude that E is a valid deterministic
test with QY (E) ≥ α. But by the upper bound in (B.14), we have

PY (E) = PY (E1) + g(λ) ≤ PY (E1) + τPY (E2) + sup
y
PY (y) . (B.17)

This establishes the lemma. �

Sometimes, it is more convenient to quantify the difference between β̃α and βα in terms
of QY . This is the content of the next lemma.

Lemma 115 In the conditions of previous lemma take E2 = f−1(0, 1) to be as defined in
the above proof. Then, if PY (E2) = 0 we have β̃α = βα. Otherwise, on E2, the derivative
dQY
dPY

is a constant γ > 0 (PY almost surely) and

βα ≤ β̃α ≤ βα +
1

γ
sup

y
QY (y) . (B.18)

Proof: The case in which PY (E2) = 0 was taken care of in the proof above. The fact
that dQY

dPY
is PY -a.s. constant is known from the Neyman-Pearson lemma. That constant

γ > 0 because if γ were equal to 0 then we could improve the test by setting f(y) = 0 on
E2. This would leave the integral with respect to QY the same but reduce the integral with
respect to PY by τPY (E2).

Finally, as in the proof above, there is a λ such that

τQY (E2) ≤ QY (E2 ∩ [0, λ]) ≤ τQY (E2) + sup
y
QY (y) . (B.19)
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Thus,

PY (E2 ∩ [0, λ]) = QY (E2 ∩ [0, λ])
1

γ
≤ τQY (E2)

1

γ
+

1

γ
sup

y
QY (y) = τPY (E2)+

1

γ
sup

y
QY (y) .

(B.20)
�

It is not too hard to see that, due to the last two lemmas, the asymptotic behavior
of β̃n

α and βn
α coincide. Thus, the achievability part of normal approximation Theorems 45

and 73 can be established with deterministic decoders. Moreover, the difference between β̃n
α

and βn
α is so insignificant, that all the numerical plots remain the same for the deterministic

encoders.
Proof of Theorem 112: We wish to show the existence of the minimizing set E∗

α in the
optimization problem:

βα = inf
E:Q(E)≥α

P (E) . (B.21)

We denote the underlying measurable space X, its σ-algebra F and assume that all sets
appearing below (and in optimization problem above) belong to F .

First, write the Lebesgue decomposition of P as

P (A) =

∫

A

dP

dQ
dQ+ P (A ∩N) , ∀A ∈ F (B.22)

and Q(N) = 0. Note that every test E can be improved by replacing it with E ∩ N c.
Indeed, such change does not affect its Q-measure while reducing its P -measure. Thus we
can restrict the optimization only to sets inside N c. Equivalently, we can assume from now
on that

P ≪ Q . (B.23)

Now write the decomposition of Q as

Q(A) =

∫

A

dQ

dP
dP +Q(A ∩M) , ∀A ∈ F (B.24)

and P (M) = 0. Adding M to any test E can not change its P -measure, while it increases
its Q-measure “for free”. Thus we can restrict our attention only to tests E ⊇ M and
replace α with α−Q(M). If α−Q(M) ≤ 0 then a solution is found: E∗

α = M . Otherwise,
α − Q(M) > 0 and we can ignore the singular part of Q. Equivalently, from now on we
assume

Q≪ P and P ≪ Q (i.e., P ∼ Q) . (B.25)

BecauseX is a standard space, singletons {x} are measurable and we can split every measure
into purely atomic and diffuse (non-atomic) parts:

P = Pa + Pd , Q = Qa +Qd . (B.26)

Denote the set of all atoms of P by

D = {x ∈ X : P (x) > 0} (B.27)
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which is at most countable since P is finite. Note that because of condition (B.25) atoms
of P and Q must coincide. In other words, measures Pa and Qa are restrictions of P and
Q to D:

Pa(A) = P (A ∩D) and Qa(A) = Q(A ∩D) . (B.28)

Measures Pd and Qd are restrictions to Dc and also

Pa ⊥ Pd, Qa ⊥ Qd , and Pa ∼ Qa , Pd ∼ Qd . (B.29)

Our general direction will now be as follows. We can see that each test P vs. Q is also
a test Pa vs Qa and Pd vs Qd. This idea allows us to separately treat cases of purely atomic
and purely diffuse measures. Indeed, if we will find optimal test for Pa vs Qa and Pd vs Qd

then their sum will be an optimal test for P vs Q with β’s and α’s added (because Pa ⊥ Pd

and Qa ⊥ Qd). Let us make this idea precise.
Denote

Aα = {E ∈ F : Q(E) ≥ α} . (B.30)

Then, set t0 = (α − Qa(X)) ∨ 0 and t1 = Qd(X). Every set E ∈ Aα has Qd(E) ∈ [t0, t1].
Conversely, for every t ∈ [t0, t1] there is at least one set E ∈ Aα such that Qd(E) = t. This
is because X is standard and Qd diffuse (this can be shown using the method in the proof
of Lemma 114). Define for any t ∈ [t0, t1]

Bt = {E ∈ Aα : Qd(E) = t} . (B.31)

As we have shown each Bt is non-empty and

Aα =
⋃

t∈[t0,t1]

Bt . (B.32)

But then
βα

△
= inf

E∈Aα

P (E) = inf
t∈[t0,t1]

g(t) , (B.33)

where
g(t) = inf

E∈Bt

P (E) . (B.34)

Note that the following two claims imply the statement of the theorem.

Claim A. The infimum in the definition of g(t) is achievable by some set E∗
t .

Claim B. g(t) is lower semi-continuous.

Indeed, then inft∈[t0,t1] g(t) must be achieved for some t∗ and we can take E∗
t∗ as the set E∗

α.
We now proceed to show those two claims. Define two new functions:

fd(r) = inf
F : Qd(F )≥r

Pd(F ) , (B.35)

fa(r) = inf
G: Qa(G)≥r

Pa(G) . (B.36)

Suppose, that we were able to show the following four facts:
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F1. For every r ∈ [0, Qd(X)] there is a set F ∗ ∈ F such that Pd(F
∗) = fd(r) and Qd(F

∗) =
r.

F2. Function r 7→ fd(r) is continuous on [0, Qd(x)].

F3. For every r ∈ [0, Qa(X)] there is a set G∗ ∈ F such that Pa(G
∗) = fa(r).

F4. Function r 7→ fa(r) is left-continuous on [0, Qa(X)].

Note that because Qd and Pd live on Dc, and Qa and Pa live on D we can safely assume
that

F ∗ ⊆ Dc , G∗ ⊆ D , and F ∗ ∩G∗ = ∅ . (B.37)

Claim A follows from F1 and F3. Indeed, fix t ∈ [t0, t1] and take F ∗ corresponding to r = t
in F1. Then we have Qd(F

∗) = t. Also take G∗ corresponding to r = α− t in F3. Then we
have Qa(G

∗) ≥ α− t. Thanks to conditions (B.37) we have

P (F ∗ ∪G∗) = fd(t) + fa(α− t) , (B.38)

Q(F ∗ ∪G∗) ≥ α . (B.39)

Thus F ∗ ∪G∗ ∈ Bt, and that means that

g(t) ≤ fd(t) + fa(α− t) . (B.40)

On the other hand, definition of Bt can be rewritten as

Bt = {E ∈ F : Qd(E) = t, Qa(E) ≥ α− t} . (B.41)

Thus,

g(t) = inf
Bt

[Pd(E)+Pa(E)] ≥ inf
Bt

Pd(E)+inf
Bt

Pa(E) = inf
E: Qd(E)=t

Pd(E)+ inf
E: Qa(E)≥α−t

Pa(E) ≥

≥ inf
E: Qd(E)≥t

Pd(E) + fa(α− t) = fd(t) + fa(α− t) . (B.42)

Together with (B.40) this gives

g(t) = fd(t) + fa(α− t) . (B.43)

And we have shown that value fd(t) + fa(α− t) is achieved by F ∗ ∪G∗.
Claim B follows from (B.43) and F2 and F4. Indeed, take tn → t∞. Then fd(tn) →

fd(t∞) by F2. The function fa(x) is non-decreasing and left-continuous by F4. Denote
xn = α− tn → x∞ = α− t∞. We must show

lim inf
n→∞

fa(xn) ≥ fa(x∞) . (B.44)

in order to establish lower semi-continuity of g(t).
Define yn = infk≥n xk. Then xn ≥ yn and, by the non-decreasing property of fa, we

have
fa(xn) ≥ fa(yn) . (B.45)



226

On the other hand, yn ր x∞ and by left-continuity fa(yn) ր fa(x∞). Taking the lim inf
in (B.45) gives (B.44).

So, Claims A and B were shown to be implied by F1-F4. We are now left to prove
F1-F4. Note that facts F1 and F2 are statements about non-randomized tests between
two diffuse measures. The Neyman-Pearson lemma yields a randomized test and we know
(see proof of Lemma 114) that in the case of diffuse measures (and standard space) it is
possible to construct a non-randomized test of the same performance. The ROC curve for
the randomized test is continuous and coincides in this case with the ROC curve fd of the
non-randomized test. Thus facts F1 and F2 are apparent.

Proof of facts F3 and F4 is given as a lemma below. Concluding the proof of this
theorem we want to emphasize that essentially all work is relegated to that lemma since in
this proof we have just shown that only atoms can give problems. �

Lemma 116 Let P and Q be two finite measures on the space X = Z+ of positive integers,
and choose the σ-algebra to be F = 2Z+ . Define

β(r) = inf
E: Q(E)≥r

P (E) . (B.46)

Then for each r ∈ [0, Q(X)] there is a set E∗ achieving the infimum in the above, and the
function β(r) is left-continuous.

Proof: We are going to turn F into a metric space by defining a distance between
sets:

d(A,B) = Q(A △ B) . (B.47)

This quantity satisfies all the properties of a metric except that d(A,B) = 0 may not imply
that A = B. The standard workaround for this difficulty is to define an equivalence relation,

A ∼ B : Q(A △ B) = 0 , (B.48)

and consider a quotient space F̃ = F/∼ of classes of equivalence. However, in this particular
case we can simply drop all elements x ∈ X that satisfy Q(x) = 0. In other words, we can
restrict the space X to positive atoms of Q. The corrected X might now be finite. In any
case every non-empty set A has positive Q-measure and the only case when Q(A △ B) = 0
is if A = B. So, F is a metric space. Note that this automatically makes P ≪ Q.

Now, notice that functional Q : F 7→ R+ is continuous in this metric simply because
Q(E) = d(E, ∅) and a metric is always continuous. What is more pleasing is that P (E) is
also continuous. To see this, simply write

P (A) =

∫

A

dP

dQ
dQ . (B.49)

Then since P is finite, dP
dQ is an integrable function. Thus it is also uniformly integrable. In

other words any shrinking An makes P (An) converge to zero. Formally,

Q(An)→ 0 =⇒ P (An)→ 0 . (B.50)
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Now take any En → E. Then

P (E)− P (E △ En) ≤ P (En) ≤ P (E) + P (E △ En) . (B.51)

Denote An = E △ En. Then Q(An) → 0 and thus P (An) → 0 and P (E) is continuous
by (B.51).

The metric space F is complete. Indeed, take any Cauchy sequence En and notice that
condition Q(En △ Em)→ 0 for n,m→∞ is equivalent to

E [|1En − 1Em |]→ 0 . (B.52)

Or, in other words, a sequence of random variables 1En is Cauchy in the L1 sense for measure
Q. But then, it has a measurable limit, denote it h:

1En

L1→ h . (B.53)

Then, using well-known implications, 1En → h(x) in measure and thus, there is a subse-
quence of 1En that converges to h almost surely. Denote this subsequence by 1Fk

, Fk = Enk
.

Then, since
1Fk
→ h Q-a.s. (B.54)

we can conclude that the limit h(x) = lim 1Fk
(x) is equal to zero or one almost surely.

Taking E∞ = {x : h(x) = 1} we conclude that E [|1En − 1E∞ |] → 0. Thus, En → E∞ in
the Q-metric.

Note that nothing we have done so far used the fact that X is a discrete space. Indeed,
if we worked with equivalence classes and postulated P ≪ Q in the statement we could
still have that P (E) and Q(E) are continuous in the Q-metric and the space is complete.
However, what F misses in the general case is total boundedness. But for X discrete we
can show this.

So finally, F is totally bounded. Indeed, first assume that atoms of Q are sorted in
decreasing order, that is Q(1) ≥ Q(2) ≥ Q(3) ≥ · · · . This is possible because Q is finite.
Then choose some ǫ > 0 and select the set

Gǫ = {1, 2, . . . , Nǫ} , (B.55)

where Nǫ chosen such that ∑

n>Nǫ

Q(n) ≤ ǫ . (B.56)

Now, generate all subsets of Gǫ

Cǫ = 2Gǫ , |Cǫ| = 2Nǫ . (B.57)

Then, for any element E ∈ F we can choose a set C ∈ Cǫ such that

Q(E △ C) ≤ ǫ . (B.58)
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Simply take C = E ∩Gǫ. Thus, we have shown that for every ǫ > 0 there is a finite ǫ-cover
of the space F . Thus by definition F is totally bounded. Finally, we have established that
F is a compact metric space2 .

To conclude the proof we are left to note that constraint Q(E) ≥ α can be restated as

E ∈ Q−1[α,+∞) . (B.60)

Here Q is a continuous function. Thus a pre-image of a closed [α,+∞) is closed. Con-
sequently, Q−1[α,+∞) is compact and in (B.46) we are minimizing a continuous function
P (E) over a compact set. A famous result guarantees the existence of a minimizing set E∗.

Now we will show that β(r) is left-continuous. Fix some r0 > 0. First of all, because
β(r) is non-decreasing

β(r0) ≥ β(r0−) . (B.61)

Second, take a sequence rn ր r0. For every rn there is a set E∗
n with P (E∗

n) = β(rn)
and Q(E∗

n) ≥ rn. Now, since the entire F is compact there is a convergent subsequence
E∗

nk
→ E∗. Then, since Q and P are both continuous, we can see that

Q(E∗) = lim
k→∞

Q(E∗
nk

) ≥ lim
k→∞

rnk
= r0 . (B.62)

Thus E∗ satisfies condition Q(E∗) ≥ r0. But on the other hand

P (E∗) = lim
k→∞

P (E∗
nk

) = β(r0−) . (B.63)

Thus β(r0) ≤ β(r0−). Together with (B.61) this concludes the proof of the lemma. �

Another approach for the latter lemma could be the following. Note that each set is
a mapping X 7→ {0, 1}. Thus sets are elements of {0, 1}X . By Tychonoff’s theorem any
product of compact spaces (and {0, 1} is compact) is itself compact. Thus {0, 1}X is compact
(and Hausdorff) in the product topology. Then P (E) and Q(E) are continuous functionals
{0, 1}X 7→ R+ because of bounded convergence theorem (product topology means pointwise
convergence). This approach fails in the general case (when X is non-discrete) for a subtle
reason: F is not a closed subset of {0, 1}X . In fact the closure of F would be the entire
{0, 1}X which is a power set 2X . Thus F can not be compact in this topology.

2For completeness we give a counter example for the general case. Take X = [0, 1] with F a Borel
σ-algebra and Q a Lebesgue measure. Then define a collection of sets

Fk =

k
[

j=1

[(2j − 2)2−k, (2j − 1)2−k] . (B.59)

It is easy to see that Q(Fk △ Fm) = 1/2 whenever k 6= m. But if F with this metric were totally bounded
then it would be compact and then Fk would contain a convergent subsequence. This is impossible because
that subsequence is not Cauchy.



Appendix C

Bounds via linear codes

The goal of this appendix is to illustrate how Theorems 17 and 18, which give an upper
bound on average probability of error, can also be used to derive an upper bound on
maximal probability of error. To that end, we first notice that in both proofs we relied only
on pairwise independence between randomly chosen codewords. So, the average probability
of error for any other ensemble of codebooks with this property and whose marginals are
identical and equal to PX will still satisfy bounds of Theorems 17 and 18. In particular,
for the BSC and the BEC we can generate an ensemble with equiprobable PX by using
a linear code with entries in its generating matrix chosen equiprobably on {0, 1}. Then,
Theorems 17 and 18 guarantee the existence of the codebook, whose probability of error
under maximum likelihood (ML) decoding is small. Note that this is only possible if M = 2k

for some integer k. A question arises: for these structured codebooks are there randomized
ML decoders whose maximal probability of error coincides with the average? This question
is answered by the following result.

Theorem 117 Suppose that A is a group and suppose that there is a collection of measur-
able mappings Tx : B 7→ B for each x ∈ A such that

PY |X=x′◦x = PY |X=x′ ◦ (Tx)−1 , ∀x′ ∈ A . (C.1)

Then any code C that is a subgroup of A has a maximum likelihood decoder whose maximal
probability of error coincides with the average probability of error.

Note that condition (C.1) can be reformulated as

E [g(Y ) |X = x′ ◦ x] = E [g(Tx(Y )) |X = x′] (C.2)

for all bounded measurable g : B 7→ B and all x′ ∈ A.
Proof: Define PX to be a measure induced by the codebook C:

PX(E) =
1

M
|E ∩ C| . (C.3)

Note that in this case PY induced by this PX dominates all of PY |X=x for x ∈ C:

PY |X=x ≪ PY , ∀x ∈ C . (C.4)

229
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Thus, we can introduce densities

fY |X(y|x) △
=
dPY |X=x

dPY
. (C.5)

Observe that for any bounded measurable g we have

E [g(Y )] = E [g(Tx(Y ))] , ∀x ∈ C . (C.6)

Indeed,

E [g(Tx(Y ))] =
∑

x′∈C

1

M
E [g(Tx(Y ) |X = x′] (C.7)

=
∑

x′∈C

1

M
E [g(Y ) |X = x′ ◦ x] (C.8)

= E [g(Y )] , (C.9)

where (C.8) follows from (C.2). Also for any x, x′ ∈ C we have

fY |X(y|x′) = fY |X(Tx(y)|x′ ◦ x) PY -a.s. . (C.10)

Indeed, denote
E1 = {y : fY |X(y|x′) < fY |X(Tx(y)|x′ ◦ x)} (C.11)

and assume that PY (E1) = PY (T−1
x E1) > 0. Then, on one hand

PY |X [T−1
x E1 |x′] =

∫

B

PY (dy)1{Tx(y)∈E1}fY |X(y|x′) (C.12)

<

∫

PY (dy)1{Tx(y)∈E1}fY |X(Tx(y)|x′ ◦ x) (C.13)

=

∫

PY (dy)1{y∈E1}fY |X(y|x′ ◦ x) (C.14)

= PY |X [E1|x′ ◦ x] , (C.15)

where (C.14) follows from (C.6). But (C.15) contradicts (C.1) and hence PY (E1) = 0
and (C.10) is proved.

We proceed to define a decoder by the following rule: upon reception of y compute
fY |X(y|x) for each x ∈ C; choose equiprobably among all the codewords that achieve the
maximal fY |X(y|x). Obviously, such decoder is maximum likelihood. We now analyze the
conditional probability of error given that the true codeword is x. Define two collections of
functions of y, parametrized by x ∈ C:

Ax(y) = min

{

1,
∑

x′∈C
1{fY |X(y|x′) > fY |X(y|x)}

}

(C.16)

Nx(y) =
∑

x′∈C
1{fY |X(y|x′) = fY |X(y|x)} . (C.17)
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It is easy to see that

ǫx
△
= P[error |X = x] (C.18)

= E

[

Ax(Y ) + 1{Ax(Y ) = 0}Nx(Y )− 1

Nx(Y )

∣
∣
∣
∣
X = x

]

. (C.19)

If we denote the unit element of X by x0, then by (C.10) it is clear that

Ax ◦ Tx = Ax0 (C.20)

Nx ◦ Tx = Nx0 . (C.21)

But then, by (C.19) we have

ǫx = E

[

Ax(Y ) + 1{Ax(Y ) = 0}Nx(Y )− 1

Nx(Y )

∣
∣
∣
∣
X = x0 ◦ x

]

(C.22)

= E

[

Ax(Tx(Y )) + 1{Ax(Tx(Y )) = 0}Nx(Tx(Y ))− 1

Nx(Tx(Y ))

∣
∣
∣
∣
X = x0

]

(C.23)

= E

[

Ax0(Y ) + 1{Ax0(Y ) = 0}Nx0(Y )− 1

Nx0(Y )

∣
∣
∣
∣
X = x0

]

(C.24)

= ǫx0 , (C.25)

where (C.22) follows because x0 is a unit of A, (C.23) is by (C.2), and (C.24) is by (C.20)
and (C.21). �

The construction of Tx required in Theorem 117 is feasible for a large class of channels.
For example, for an L-ary phase-shift-keying (PSK) modulated complex AWGN channel

with soft decisions, we can assume that the input alphabet is {ej 2πk
L , k = 0, L− 1}; then

Tx(y) = yx (C.26)

satisfies the requirements because PY |X(y|x′) depends only on |y−x′| and |yx−x′x| = |y−x′|.
We give a general result for constructing Tx.

Theorem 118 Suppose that B is a monoid, A ⊂ B is a group (in particular A consists of
only invertible elements of B) and the channel is

Y = N ◦X (C.27)

with N ∈ B being independent of X ∈ A. If each Tx(y) = y ◦ x is measurable, then this
family satisfies the conditions of Theorem 117.

Proof: Indeed, for any E ⊂ B we have

T−1
x E = E ◦ x−1 . (C.28)

Then, on the one hand
PY |X=x′◦x[E] = PN [E ◦ (x′ ◦ x)−1] , (C.29)
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but on the other hand,

PY |X=x′[T−1
x E] = PY |X=x′ [E ◦ x−1] (C.30)

= PN [E ◦ x−1 ◦ x′−1] . (C.31)

�

It is easy to see that if we take A = Z2 and A = An then the BSC (even if the noise
has memory) satisfies the conditions of Theorem 118. For the BEC we take A = {−1, 1}
and B = {−1, 0, 1}, and the usual multiplication of reals converts B to a monoid; taking
the usual product – A = An and B = Bn – we see that the BEC (even with memory) also
satisfies the conditions of Theorem 118. Similar generalizations are possible for any additive
noise channel with erasures.



Appendix D

Energy efficient codes with
feedback

Proof of Theorem 84: Consider an arbitrary (E,M, ǫ) code with feedback, namely a
sequence of encoder functions {fn}∞n=1 and a decoder map g : B→ {1, . . . ,M}. The “meta-
converse” part of the proof proceeds step by step as in the non-feedback case (4.298)-(4.305),
with the exception that measures P j = Py|W=j on B are defined as

P j =
∞∏

k=1

N (fk(j, Y
k−1
1 ), 1

2N0) (D.1)

and βα is replaced by β̃α, which is a unique solution β̃ < α of

β̃α : d(α||β̃) =
E

N0
log e . (D.2)

We need only to show that (4.300) holds with these modifications, i.e. for any α ∈ [0, 1]

inf
F⊂B:P j(F )≥α

Φ(F ) ≥ β̃α . (D.3)

Once W = j is fixed, channel inputs Xk become functions on the space B defined as
Xk = fk(j, Y

k−1
1 ). To find the critical set F achieving the infimum in the hypothesis testing

problem (D.3) we compute the Radon-Nikodym derivative:

R
△
= loge

dP j

dΦ
=

∞∑

k=1

XkYk − 1
2X

2
k . (D.4)

In general, the infimum in (D.3) depends on the choice of functions Xk. However, to prove
a lower bound we may optimize over the choice of Xk in addition to optimizing over the
choice of the critical region F . The key simplification comes from identifying the noise
random variables Zk with increments of the Wiener process.

Formally, define a standard Wiener process Wt with the filtration {Ft}t∈[0,∞) and two
Brownian motions:

Bt =
t

2
+
√

N0
2 Wt , (D.5)

B̄t = − t
2

+
√

N0
2 Wt . (D.6)
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Then we can see that under P j we have Yk = Xk + Zk and hence we can assume

XkYk − 1
2X

2
k = Bτk

−Bτk−1
, (D.7)

where we have denoted the random instants

τk =

k∑

m=1

X2
m . (D.8)

Then the distribution of R, under P j is

R ∼ Bτ , (D.9)

where the random variable τ is defined as

τ =

∞∑

k=1

X2
k . (D.10)

Similarly, under Φ we have
R ∼ B̄τ . (D.11)

Note that without loss of generality Xk 6= 0 since having Xk = 0 does not help in
discriminating P j vs. Φ. Then each Yk can be recovered fromXkYk− 1

2X
2
k sinceXk is known.

Consequently, each Xk is a function of only the past observations (B0, Bτ1 , . . . , Bτk−1
). This

implies that each τk, and thus τ , is a stopping time of the filtration Ft satisfying (under
P j)

E P j [τ ] ≤ E (D.12)

by the energy constraint. In other words, as far as the problem (D.3) is concerned, the
choice of a sequence of functions Xk = fk(Y

k−1
1 ) satisfying an average power constraint

amounts to specifying an increasing collection of stopping times τk of a Brownian motion
Bt such that the limit τ satisfies (D.12).

To summarize, the encoder maps {fn}∞n=1 and the minimizing set F in (D.3) define
a sequential hypothesis test, namely a stopping time τ and a decision region F ∈ Fτ ,
for discriminating between a Brownian motion with a positive drift Bt (under P ) and a
Brownian motion with a negative drift B̄t (under Φ). According to Shiryaev [117, Section
4.2], among all (τ, F ) satisfying (D.12) and having P (F ) ≥ α there exists an optimal one
achieving1

Φ(F ) = β̃α , (D.13)

where β̃α is defined in (D.2). Any other test (τ, F ) has a larger value of Φ(F ), which
proves (D.3). �

1If instead of (4.292) we impose the maximum energy constraint: ||x||2 ≤ E (a.s.), then τ ≤ E and hence
instead of F ∈ Fτ we would have F ∈ FE , thus obtaining a usual, fixed-sample-size, binary hypothesis test.
It is not hard to see that then β̃α should be replaced with βα from (4.301). Consequently, such an energy
constraint renders feedback useless because the non-feedback converse (4.322) then holds. This parallels the
result of Wyner [118] on block coding for the AWGN channel with fixed rate.
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Proof of Theorem 85: Fix a list of elements (c1, . . . , cM ) ∈ A
M to be chosen later;

||cj ||2 need not be finite. Upon receiving channel outputs Y1, . . . , Yn the decoder computes
the likelihood Sj,n for each codeword j = 1, . . . ,M , cf. (4.306) and (D.4):

Sj,n =
n∑

k=1

Cj,kYk − 1
2C

2
j,k , j = 1, . . . ,M . (D.14)

Fix two scalars γ0 < 0 < γ1 and define M stopping times

τj = inf{n > 0 : Sj,n 6∈ (γ0, γ1)} . (D.15)

The decoder output Ŵ is the index j of the process Sj,n that is the first to upcross γ1

without having downcrossed γ0 previously. The encoder conserves energy by transmitting
only up until time τj (when the true message W = j):

Xn
△
= fn(j, Y n−1

1 ) = Cj,n1{τW ≥ n} . (D.16)

To complete the construction of the encoder-decoder pair we need to choose (c1, . . . , cM ).
This is done by a random-coding argument. Fix d > 0 and generate each cj independently
with equiprobable antipodal coordinates:

P[Cj,k = +d] = P[Cj,k = −d] =
1

2
, j = 1, . . .,M. (D.17)

We now upper-bound the probability of error Pe averaged over the choice of the codebook.
By symmetry it is sufficient to analyze the probability P[Ŵ 6= 1|W = 1]. We then have

P[Ŵ 6= 1|W = 1] ≤ P[S1,τ1 ≤ γ0|W = 1] +

M∑

j=2

P[Sj,τj ≥ γ1, τj ≤ τ1|W = 1] , (D.18)

because there are only two error mechanisms: S1 downcrosses γ0 before upcrossing γ1, or
some other Sj upcrosses γ1 before S1. Notice that in computing probabilities P[S1,τ1 ≤
γ0|W = 1] and P[S2,τ2 ≥ γ1, τ2 ≤ τ1|W = 1] on the right-hand side of (D.18) we are
interested only in time instants 0 ≤ n ≤ τ1. For all such moments Xn = Cj,n. Therefore,
below for simplicity of notation we will assume that Xn = Cj,n for all n (whereas in reality
Xn = 0 for all n > τ1, which is relevant only for calculating the total energy spent).

We define Bt and B̄t as in (D.5) and (D.6); then conditioned on W = 1 the process S1

can be rewritten as
S1,n = Bnd2 , (D.19)

because according to (D.18) we are interested only in 0 ≤ n ≤ τ1 and thus Xk = Cj,k. The
stopping time τ1 then becomes

d2τ1 = inf{t > 0 : Bt 6∈ (γ0, γ1) , t = nd2, n ∈ Z} . (D.20)

If we now define

τ = inf{t > 0 : Bt 6∈ (γ0, γ1)} , (D.21)

τ̄ = inf{t > 0 : B̄t 6∈ (γ0, γ1)} , (D.22)
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then the path-continuity of Bt implies that

d2τ1 ց τ as d→ 0 . (D.23)

Similarly, still under the condition W = 1 we can rewrite

S2,n = d2
n∑

k=1

Lk + B̄nd2 , (D.24)

where Lk are i.i.d., independent of B̄t and

P[Lk = +1] = P[Lk = −1] =
1

2
. (D.25)

Extending (D.23), we will show below that as d→ 0 we have

P[S1,τ1 ≤ γ0|W = 1] → 1− α(γ0, γ1) , (D.26)

P[S2,τ2 ≥ γ1, τ2 <∞|W = 1] → β(γ0, γ1) , (D.27)

where α(γ0, γ1) and β(γ0, γ1) are

α(γ0, γ1) = P[Bτ = γ1] , (D.28)

β(γ0, γ1) = P[B̄τ̄ = γ1, τ̄ <∞] , (D.29)

i.e. the probabilities of exiting the interval (γ0, γ1) through the upper-boundary by Bt and
B̄t, respectively2 . Thus, the interval (γ0, γ1) determines the boundaries of the sequential
probability ratio test. As shown by Shiryaev [117, Section 4.2], α and β satisfy

d(α(γ0, γ1)||β(γ0, γ1)) =
log e

N0
E [τ ] . (D.30)

Assuming (D.26) and (D.27) as d → 0 the probability of error is upper-bounded
by (D.18):

P[Ŵ 6= 1|W = 1] ≤ 1− α(γ0, γ1) + (M − 1)β(γ0, γ1) . (D.31)

At the same time, the average energy spent by our scheme is

lim
d→0

E [||x||2] = lim
d→0

E [d2τ1] = E [τ ] , (D.32)

because of (D.23).
Finally, comparing (4.325) and (D.30) it follows that optimizing (D.31) over all γ0 < 0 <

γ1 satisfying E [τ ] = E we obtain (4.324). To prove (4.326) simply notice that when α = 1
we have γ0 = −∞, and hence the decision is taken by the decoder the first time any Sj

upcrosses γ1. Therefore, in the encoder rule (D.16) the time τj, whose computation requires
the full knowledge of Yk, can be replaced with the time of decoder decision, which requires
sending only a single signal. Obviously, this modification will not change the probability

2The condition τ̄ <∞ is required for handling the special case γ0 = −∞.
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of error and will conserve energy even more (since under γ0 = −∞, τj cannot occur before
the decision time).

We now prove (D.26) and (D.27). By (D.19) and (D.23) we have

S1,τ1 = Bd2τ1 → Bτ , (D.33)

because of the continuity of Bt. From (D.33) we obtain (D.26) after noticing that again
due to continuity

P[Bτ ≤ γ0] = 1− P[Bτ ≥ γ1] = 1− P[Bτ = γ1] . (D.34)

The proof of (D.27) requires a slightly more intricate argument for which it is conve-
nient to introduce a probability space denoted by (Ω,H,P) which is the completion of the
probability space generated by {B̄t}∞t=0 and {Lk}∞k=1 defined in (D.6) and (D.25), respec-
tively. For each 0 < d ≤ 1 we define the following random variables, where their explicit
dependence on d is omitted for brevity

Dt = d2
∑

k≤⌊t/d2⌋
Lk , (D.35)

Σt = Dt + B̄
d2

j

t
d2

k , (D.36)

τ2 = inf{t > 0 : Σt 6∈ (γ0, γ1)} , (D.37)

τ̄ = inf{t > 0 : Bt 6∈ (γ0, γ1)} . (D.38)

In comparison with the random variables appearing in (D.27) Σnd2 and τ2 take the role of
S2,n and d2τ2, respectively; and also P henceforth is already normalized by the conditioning
on W = 1. Thus in the new notation we need to prove

lim
d→0

P[Στ2 ≥ γ1, τ2 <∞] = P[B̄τ̄ = γ1, τ̄ <∞] . (D.39)

We define the following subsets of Ω:

E0 = {ω ∈ Ω : ∃T <∞ ∀t > T : sup
0<d≤1

Σt < 0} , (D.40)

E1 = {τ̄ =∞} ∪ {τ̄ <∞,∀ǫ > 0 ∃t1, t2 ∈ (0, ǫ) s.t. B̄τ̄+t1 > B̄τ̄ , B̄τ̄+t2 < B̄τ̄} ,(D.41)

E2 = {ω ∈ Ω : lim
d→0

Dt = 0 uniformly on compacts} , (D.42)

E = E0 ∩ E1 ∩ E2 . (D.43)

According to Lemma 119 the sets in (D.40)-(D.43) belong to H and have probability 1.
The next step is to show

{B̄τ̄ = γ1, τ̄ <∞} ∩E ⊂ lim inf
d→0

{Στ2 ≥ γ1, τ2 <∞} ∩ E . (D.44)

To that end select an arbitrary element ω ∈ {B̄τ̄ = γ1, τ̄ < ∞} ∩ E. Since B̄t is
continuous it must attain its minimum b0 on [0; τ̄ ]; of course, b0 > γ0. Again, due to
continuity of B̄t at t = τ̄ there must exist an ǫ1 > 0 such that

b′0
△
= min

0≤t≤τ̄+ǫ1
B̄t > γ0 . (D.45)
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On the other hand, because ω ∈ E1 we have

b1
△
= max

0≤t≤τ̄+ǫ1
B̄t > γ1 . (D.46)

Moreover, since ω ∈ E2 we have Dt → 0 uniformly on [0; τ̄ + ǫ1]; therefore, there exists a
d1 > 0 such that for all d ≤ d1 we have

sup
t∈[0;τ̄+ǫ1]

|Dt| ≤ ǫ2 , (D.47)

where

ǫ2 =
1

3
min(b1 − γ1, b

′
0 − γ0) > 0 . (D.48)

If we denote by t1 the point at which Bt1 = b1, then by continuity of Bt at t1 there exists
a δ > 0 such that

∀t ∈ (t1 − δ; t1 + δ) : Bt > b1 − ǫ2 . (D.49)

Then for every d <
√
δ we have

max
t∈[0,τ̄+ǫ1]

B̄
d2

j

t
d2

k > b1 − ǫ2 . (D.50)

Finally, for every d ≤ min(
√
δ, d1) we have

sup
t∈[0,τ̄+ǫ1]

Σt ≥ b1 − 2ǫ2 > γ1 (D.51)

and
inf

t∈[0,τ̄+ǫ1]
Σt ≥ b′0 − ǫ2 > γ0 (D.52)

by (D.45), (D.46) (D.48) and (D.50). Then of course, (D.51) and (D.52) prove that τ2 ≤
τ̄ + ǫ1 and {Στ2 ≥ γ1} holds for all d ≤ min(

√
δ, d1). Equivalently,

ω ∈ lim inf
d→0

{Στ2 ≥ γ1, τ2 <∞} , (D.53)

proving (D.44).
Next, we show

lim sup
d→0

{Στ2 ≥ γ1, τ2 <∞} ∩E ⊂ {B̄τ̄ = γ1, τ̄ <∞} ∩ E . (D.54)

Indeed, take ω ∈ lim supd→0{Στ2 ≥ γ1, τ2 <∞}∩E, that is a point in the sample space
for which there exists a subsequence dl → 0 such that Στ2 ≥ γ1 for every l. Since ω ∈ E0

we know that for all d we have τ2(ω) ≤ T <∞. First, we show

b1
△
= max

0≤t≤T
B̄t ≥ γ1 . (D.55)

Indeed, assuming otherwise and repeating with minor changes the argument leading from (D.46)
to (D.51), we can show that in this case

sup
t∈[0,T ]

Σt < γ1 (D.56)
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for all sufficiently small d. This contradicts the choice of ω.
We denote

t1 = inf{t > 0 : B̄t = b1} . (D.57)

Then (D.55) and continuity of B̄t imply

τ̄ ≤ t1 <∞ . (D.58)

We are only left to show that B̄τ̄ = γ0 is impossible. If it were so, then τ̄ < t1 < T .
Moreover because ω ∈ E2 there must exist an ǫ1 > 0 (similar to (D.45) and (D.46)) such
that

b′0
△
= min

0≤t≤τ̄+ǫ1
B̄t < γ0 , (D.59)

and
b′1

△
= max

0≤t≤τ̄+ǫ1
B̄t < γ1 . (D.60)

Thus, by repeating the argument behind (D.51) and (D.52) we can show that for all suffi-
ciently small d we have

sup
t∈[0,τ̄+ǫ1]

Σt < γ1 , (D.61)

and
inf

t∈[0,τ̄+ǫ1]
Σt < γ0 , (D.62)

which contradicts the assumption that ω ∈ lim supd→0{Στ2 ≥ γ1, τ2 <∞}.
Together (D.44) and (D.54) prove that

{B̄τ̄ = γ1, τ̄ <∞} ∩ E ⊂ lim inf
d→0

{Στ2 ≥ γ1, τ2 <∞} ∩ E ⊂

lim sup
d→0

{Στ2 ≥ γ1, τ2 <∞} ∩E ⊂ {B̄τ̄ = γ1, τ̄ <∞} ∩ E , (D.63)

which implies that all three sets are equal. By Lemma 119 and completeness of H both
sets lim infd→0{Στ2 ≥ γ1, τ2 < ∞} and lim supd→0{Στ2 ≥ γ1, τ2 < ∞} are measurable and
computing their probabilities is meaningful. Finally, we have

lim
d→0

P[Στ2 ≥ γ1, τ2 <∞] = lim
d→0

P[{Στ2 ≥ γ1, τ2 <∞} ∩E] (D.64)

= P[B̄τ̄ = γ1, τ̄ <∞] , (D.65)

where (D.64) is by Lemma 119 and (D.65) by (D.63) and bounded convergence theorem.
�

Lemma 119 Set E defined in (D.43) is H-measurable and

P[E] = 1 . (D.66)

Proof: By completeness of H it is sufficient to prove that all sets E0, E1 and E2 contain
a measurable subset of probability 1. To prove

P[E0] = 1 , (D.67)
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notice that

sup
0<d≤1

Dt = t sup
N≥t

1

N

N∑

k=1

Lk , (D.68)

and therefore, by the Chernoff bound,

P

[

sup
0<d≤1

Dt >
t

4

]

≤
∑

N≥t

O
(
e−a1N

)
(D.69)

= O
(
e−a1t

)
, (D.70)

for some constant a1 > 0. Hence, for an arbitrary t we have an estimate

P[B̄t + sup
0<d≤1

Dt ≥ −1] ≤ P

[

B̄t ≥ −1− t

4

]

+ P

[

sup
0<d≤1

Dt >
t

4

]

(D.71)

≤ O
(
e−a1t

)
, (D.72)

where (D.72) is because B̄t ∼ N
(
− t

2 ,
tN0
2

)
and (D.70).

Next, denote

δj =
1√
j
, (D.73)

tn =

n∑

j=1

δj , (D.74)

Mj = max
tj≤t≤tj−1

Wt −Wtj , (D.75)

where Wt = t/2 +
√

2
N0
B̄t is the standard Wiener process; cf. (D.6).

Since tn ∼ 2
√
n and the series

∑∞
n=1 e

−a1
√

n converges, we can apply the Borel-Cantelli
lemma via (D.72) to show that

F1 =

{

{Btn + sup
0<d≤1

Dtn ≥ −1} –infinitely often

}

(D.76)

has measure zero. Similarly, since Mj ∼ |Wδj
| we have

∞∑

j=1

P[Mj > (2N0)
−1] =

∞∑

j=1

2Q

(

1

2N0

√
δj

)

≤ a3

∞∑

j=1

e−a2
√

n <∞ , (D.77)

for some positive constants a2, a3. And therefore,

F2 =
{
Mj > (2N0)

−1 –infinitely often
}

(D.78)

also has measure zero. Finally we show that

F c
1 ∩ F c

2 ⊂ E0 . (D.79)
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Indeed, for all t ∈ [tj ; tj + δj) we have

B̄t +Dt ≤ B̄tj +Dtj +

√

N0

2
Mj + 2δj , (D.80)

because, from the definition of Dt,

|Ds1 −Ds2 | ≤ 2|s1 − s2| , (D.81)

for all d > 0. From (D.80) for any ω ∈ F c
1 ∩ F c

2 we have for all sufficiently large t

sup
0<d≤1

B̄t +Dt ≤ −1 +
1

2
+ 2δj , (D.82)

where j denotes the index of the unique interval t ∈ [tj ; tj+1). Therefore, for all sufficiently
large t we have shown

sup
0<d≤1

Σt ≤ sup
0<d≤1

B̄t +Dt < 0 , (D.83)

completing the proof of (D.79) and, hence, of (D.67).
To show P[E1] = 1 notice that by the strong Markov property of Brownian motion for

any finite stopping time σ according to Blumenthal’s zero-one law [119] for

Fσ = {∀ǫ > 0 ∃t1, t2 ∈ (0, ǫ) s.t. B̄σ+t1 > B̄σ, B̄σ+t2 < B̄σ} (D.84)

we have
P[Fσ] = 1 . (D.85)

Since σn = min(τ̄ , n) are finite stopping times and σn ր τ̄ , we have

E1 ⊃
∞⋂

n=1

Fσn . (D.86)

Therefore, P[E1] = 1 since P[Fσn ] = 1 for all n ≥ 1.
To show

P[E2] = 1 (D.87)

it is sufficient to show for every integer K > 0

P[ lim
d→0

Dt = 0 uniformly on[0;K]] = 1 (D.88)

and take intersection of such sets over all K ∈ Z+. To prove (D.88) notice that

P[lim sup
d→0

sup
0≤t≤K

|Dt| ≥ ǫ] = P

[

lim sup
d→0

d2 max
0≤n≤ K

d2

∣
∣
∣
∣
∣

n∑

k=0

Lk

∣
∣
∣
∣
∣
≥ ǫ
]

(D.89)

= P

[

lim sup
m→∞

K

m
max

0≤n≤m

∣
∣
∣
∣
∣

n∑

k=1

Lk

∣
∣
∣
∣
∣
≥ ǫ
]

(D.90)

≤ P

[

1

n

n∑

k=1

Lk ≥
ǫ

K
–i.o.

]

+ P

[

1

n

n∑

k=1

Lk ≤ −
ǫ

K
–i.o.

]

,(D.91)
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where “i.o.” stands for infinitely often. By the strong law of large numbers both probabilities
in (D.91) are zero and we obtain

lim sup
d→0

sup
0≤t≤K

|Dt| = 0 a.s. , (D.92)

which is equivalent to (D.88). �



Appendix E

Gilbert-Elliott channel: proofs

In this appendix we prove Theorems 58, 59 and 60 stated in Section 3.5.
Proof of Theorem 58: Achievability: We choose PXn – equiprobable. To model the

availability of the state information at the receiver, we assume that the output of the channel
is (Y n, Sn). Thus we need to write down the expression for i(Xn;Y nSn). To do that we
define an operation on R× {0, 1}:

a{b} =

{

1− a , b = 0 ,

a , b = 1
. (E.1)

Then we obtain

i(Xn;Y nSn) = log
PY n|XnSn(Y n|Xn, Sn)

PY n|Sn(Y n|Sn)
(E.2)

= n log 2 +
n∑

j=1

log δ
{Zj}
Sj

, (E.3)

where (E.2) follows since PSn|Xn(sn|xn) = PSn(sn) by independence of Xn and Sn, (E.3) is
because under equiprobableXn we have that PY n|Sn is also equiprobable, while PYj |XjSj

(Yj |Xj , Sj)

is equal to δ
{Zj}
Sj

with Zj defined in (3.369). Using (E.3) we find

E [i(Xn;Y nSn)] = nC1 . (E.4)

The next step is to compute Var[i(Xn;Y nSn)]. For convenience we write

ha =
1

2
[h(δ1) + h(δ2)] (E.5)

and

Θj = log δ
{Zj}
Sj

. (E.6)
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Therefore

σ2
n

△
= Var[i(Xn;Y nSn)] (E.7)

= E









n∑

j=1

Θj





2

− n2h2
a (E.8)

=

n∑

j=1

E
[
Θ2

j

]
+ 2

∑

i<j

E [ΘiΘj]− n2h2
a (E.9)

= nE [Θ2
1] + 2

n∑

k=1

(n− k)E [Θ1Θ1+k]− n2h2
a (E.10)

= n(E [Θ2
1]− h2

a)

+2

n∑

k=1

(n− k)E
[
h (δS1)h

(
δS1+k

)
− h2

a

]
, (E.11)

where (E.10) follows by stationarity and (E.11) by conditioning on Sn and regrouping terms.
Before proceeding further we define an α-mixing coefficient of the process (Sj , Zj) as

α(n) = sup |P[A,B]− P[A]P[B]| , (E.12)

where the supremum is over A ∈ σ{S0
−∞, Z

0
−∞} and B ∈ σ{S∞

n , Z∞
n }; by σ{· · · } we denote

a σ-algebra generated by a collection of random variables. Because Sj is such a simple
Markov process it is easy to show that for any a, b ∈ {1, 2} we have

1

2
− 1

2
|1− 2τ |n ≤ P[Sn = a|S0 = b] ≤ 1

2
+

1

2
|1− 2τ |n , (E.13)

and, hence,
α(n) ≤ |1− 2τ |n . (E.14)

By Lemma 1.2 of [68] for any pair of bounded random variables U and V measurable
with respect to σ{Sj, j ≤ m} and σ{Sj , j ≥ m+ n}, respectively, we have

|E [UV ]− E [U ]E [V ]| ≤ 16α(n) · ess sup |U | · ess sup |V | . (E.15)

Then we can conclude that since |h (δS1) | ≤ log 2 we have for some constant B3
∣
∣
∣
∣
∣

n∑

k=1

kE
[
h (δS1)h

(
δS1+k

)
− h2

a

]

∣
∣
∣
∣
∣

≤
n∑

k=1

kE
[∣
∣h (δS1)h

(
δS1+k

)
− h2

a

∣
∣
]

(E.16)

≤
n∑

k=1

16kα(k) log2 2 (E.17)

≤ B3

∞∑

k=1

k(1− 2τ)k (E.18)

= O(1) , (E.19)
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where (E.17) is by (E.15) and (E.18) is by (E.30). On the other hand,

n

∣
∣
∣
∣
∣

∞∑

k=n+1

E
[
h (δS1)h

(
δS1+k

)
− h2

a

]

∣
∣
∣
∣
∣

(E.20)

≤ 16n

∞∑

k=n+1

α(k) log2 2 (E.21)

≤ 16Kn

∞∑

k=n+1

(1− 2τ)k log2 2 (E.22)

= O(1) . (E.23)

Therefore, we have proved that

n∑

k=1

(n− k)E
[
h (δS1)h

(
δS1+k

)
− h2

a

]
(E.24)

= n

n∑

k=1

E
[
h (δS1)h

(
δS1+k

)
− h2

a

]
+O(1) (E.25)

= n

∞∑

k=1

E
[
h (δS1)h

(
δS1+k

)
− h2

a

]
+O(1) , (E.26)

A straightforward calculation reveals that

∞∑

k=1

E
[
h (δS1)h

(
δS1+k

)
− h2

a

]
(E.27)

=
1

4
(h (δ1)− h (δ2))

2

[
1

2τ
− 1

]

. (E.28)

Therefore, using (E.26) and (E.28) in (E.11), we obtain after some algebra that

σ2
n = Var[i(Xn;Y nSn)] = nV1 +O(1) . (E.29)

By (E.3) we see that i(Xn;Y nSn) is a sum over an α-mixing process. For such sums
the following theorem of Tikhomirov [120] serves the same purpose in this section as the
Berry-Esseen inequality does in Sections 3.2.2, 3.3.2 and 3.4.4.

Theorem 120 Suppose that a stationary zero-mean process X1,X2, . . . is α-mixing and for
some positive K,β and γ we have

α(k) ≤ Ke−βk , (E.30)

E
[
|X1|4+γ

]
< ∞ (E.31)

σ2
n → ∞ , (E.32)

where

σ2
n = E





(
n∑

1

Xj

)2


 . (E.33)
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Then, there is a constant B, depending on K,β and γ, such that

sup
x∈R

∣
∣
∣
∣
∣
P

[
n∑

1

Xj ≥ x
√

σ2
n

]

−Q(x)

∣
∣
∣
∣
∣
≤ B log n√

n
. (E.34)

Application of Theorem 120 to i(Xn;Y nSn) proves that

∣
∣
∣P

[

i(Xn;Y nSn) ≥ nC1 +
√

σ2
nx
]

−Q(x)
∣
∣
∣ ≤ B log n√

n
. (E.35)

But then for arbitrary λ there exists some constant B2 > B such that we have
∣
∣
∣P

[

i(Xn;Y nSn) ≥ nC1 +
√

nV1λ
]

−Q(λ)
∣
∣
∣ (E.36)

=

∣
∣
∣
∣
∣
P

[

i(Xn;Y nSn) ≥ nC1 +
√

σ2
n

√

nV1

σ2
n

λ

]

−Q(λ)

∣
∣
∣
∣
∣

(E.37)

≤ B log n√
n

+

∣
∣
∣
∣
∣
Q(λ)−Q

(

λ

√

nV1

σ2
n

)∣
∣
∣
∣
∣

(E.38)

=
B log n√

n
+ |Q(λ)−Q (λ+O(1/n))| (E.39)

≤ B log n√
n

+O(1/n) (E.40)

≤ B2 log n√
n

, (E.41)

where (E.38) is by (E.35), (E.39) is by (E.29) and (E.40) is by Taylor’s theorem.
Now, we state the following extension of Lemma 20, to be proved later:

Lemma 121 Let X1,X2, . . . be a process satisfying the conditions of Theorem 120; then
for any constant A

E



exp






−

n∑

j=1

Xj






· 1







n∑

j=1

Xj > A









 ≤ 2

(

log 2
√

2πσ2
n

+
2B log n√

n

)

exp{−A} , (E.42)

where B is the constant in (E.34).

Observe that there exists some B1 > 0 such that

2

(

log 2
√

2πσ2
n

+
2B log n√

n

)

= 2

(

log 2
√

2π(nV +O(1))
+

2B log n√
n

)

(E.43)

≤ B1 log n√
n

, (E.44)

where σ2
n is defined in (E.7) and (E.43) follows from (E.29). Therefore, from (E.44) we

conclude that there exists a constant B1 such that for any A

E [exp{−i(Xn;Y nSn) +A} · 1{i(Xn;Y nSn) ≥ A}] ≤ B1 log n√
n

, (E.45)
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Finally, we set

log
M−1

2
= nC −

√
nV Q−1(ǫn) , (E.46)

where

ǫn = ǫ− (B1 +B2) log n√
n

. (E.47)

Then, by Theorem 18 we know that there exists a code with M codewords and average
probability of error pe bounded by

pe ≤ E

[

exp

{

−
[

i(Xn;Y nSn)− log
M−1

2

]+
}]

(E.48)

≤ P

[

i(Xn;Y nSn) ≤ log
M−1

2

]

+
B1√
n

(E.49)

≤ ǫn +
(B1 +B2) log n√

n
(E.50)

≤ ǫ , (E.51)

where (E.49) is by (E.45) with A = log M−1

2
, (E.50) is by (E.41) and (E.46), and (E.51) is

by (E.47). Therefore, invoking Taylor’s expansion of Q−1 in (E.46) we have

logM∗(n, ǫ) ≥ logM ≥ nC −
√
nV Q−1(ǫ) +O(log n) . (E.52)

This proves the achievability bound with the average probability of error criterion.
However, as explained in Appendix C, Theorem 18 by using a random linear code method

can be strengthened to guarantee a codebook with a prescribed maximal probability of error.
In this way, the above argument actually applies to both average and maximal error criteria
after replacing logM by ⌊logM⌋, which is asymptotically immaterial.

Converse: In the converse part we will assume that the transmitter has access to the full
state sequence Sn and then generates Xn based on both the input message and Sn. Take
the best such code with M∗(n, ǫ) codewords and average probability of error no greater
than ǫ. We now propose to treat the pair (Xn, Sn) as a combined input to the channel (but
the Sn part is independent of the message) and the pair (Y n, Sn) as a combined output,
available to the decoder. Note that in this situation, the encoder induces a distribution
PXnSn and is necessarily randomized because the distribution of Sn is not controlled by the
input message and is given by the output of the Markov chain.

To apply Theorem 28 we choose the auxiliary channel which passes Sn unchanged and
generates Y n equiprobably:

QY n|XnSn(yn, sn|xn) = 2−n for all xn, yn, sn . (E.53)

Note that by the constraint on the encoder, Sn is independent of the message W . Moreover,
under Q-channel the Y n is also independent of W and we clearly have

ǫ′ ≥ 1− 1

M∗ . (E.54)

Therefore by Theorem 28 we obtain

β1−ǫ (PXnY nSn , QXnY nSn) ≤ 1

M∗ . (E.55)
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To lower bound β1−ǫ (PXnY nSn , QXnY nSn) via (2.67) we notice that

log
PXnY nSn(xn, yn, sn)

QXnY nSn(xn, yn, sn)
= log

PY n|XnSn(yn|xn, sn)PXnSn(xn, sn)

QY n|XnSn(yn|xn, sn)QXnSn(xn, sn)
(E.56)

= log
PY n|XnSn(yn|xn, sn)

QY n|XnSn(yn|xn, sn)
(E.57)

= i(xn; ynsn) , (E.58)

where (E.57) is because PXnSn = QXnSn and (E.58) is simply by noting that PY n|Sn in the
definition (E.2) of i(Xn;Y nSn) is also equiprobable and, hence, is equal to QY n|XnSn . Now
set

log γ = nC −
√
nV Q−1(ǫn) , (E.59)

where this time

ǫn = ǫ+
B2 log n√

n
+

1√
n
. (E.60)

By (2.67) we have for α = 1− ǫ that

β1−ǫ ≥
1

γ

(

1− ǫ− P

[

log
PXnY nSn(Xn, Y n, Sn)

QXnY nSn(Xn, Y n, Sn)
≥ log γ

])

(E.61)

=
1

γ
(1− ǫ− P [i(Xn;Y nSn) ≥ log γ]) (E.62)

≥ 1

γ

(

1− ǫ− (1− ǫn)− B2 log n√
n

)

(E.63)

=
1√
nγ

, (E.64)

where (E.62) is by (E.58), (E.63) is by (E.41) and (E.64) is by (E.60).
Finally,

logM∗(n, ǫ) ≤ log
1

β1−ǫ
(E.65)

≤ log γ +
1

2
log n (E.66)

= nC −
√
nV Q−1(ǫn) +

1

2
log n (E.67)

= nC −
√
nV Q−1(ǫ) +O(log n) , (E.68)

where (E.65) is just (E.55), (E.66) is by (E.64), (E.67) is by (E.59) and (E.68) is by Taylor’s
formula applied to Q−1 using (E.60) for ǫn.

�
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Proof of Lemma 121: By Theorem 120 for any z we have that

P



z ≤
n∑

j=1

Xj < z + log 2





≤
∫ (z+log 2)/σn

z/σn

1√
2π
e−t2/2dt +

2B log n√
n

. (E.69)

≤ log 2

σn

√
2π

+
2B log n√

n
. (E.70)

On the other hand,

E



exp






−

n∑

j=1

Xj






· 1







n∑

j=1

Xj > A











≤
∞∑

l=0

exp{−A− l log 2}P



A+ l log 2 ≤
n∑

j=1

Xj < A+ (l + 1) log 2



 . (E.71)

Using (E.70) we get (E.42) after noting that

∞∑

l=0

2−l = 2 . (E.72)

�

We proceed to the case of no state knowledge and prove Theorems 59 and 60. For
convenience, we begin by summarizing the definitions and some of the well-known properties
of the processes used in the remainder of this appendix.

Rj = P[Sj+1 = 1|Zj
1 ] , (E.73)

Qj = P[Zj+1 = 1|Zj
1 ] = δ1Rj + δ2(1−Rj) , (E.74)

R∗
j = P[Sj+1 = 1|Zj

1 , S0] , (E.75)

Gj = − log P
Zj |Zj−1

1
(Zj |Zj−1

1 ) = − logQ
{Zj}
j−1 , (E.76)

Ψj = P[Sj+1 = 1|Zj
−∞] , (E.77)

Uj = P[Zj+1 = 1|Zj
−∞] = δ1Ψj + δ2(1−Ψj) , (E.78)

Fj = − log P
Zj |Zj−1

−∞
(Zj |Zj−1

−∞) = − logU
{Zj}
j−1 , (E.79)

Θj = logPZj |Sj
(Zj |Sj) = log δ

{Zj}
Sj

, (E.80)

Ξj = Fj + Θj . (E.81)

With this notation, the entropy rate of the process Zj is given by

H = lim
n→∞

1

n
H(Zn) (E.82)

= E [F0] (E.83)

= E [h(U0)] . (E.84)
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Define two functions T0,1 : [0, 1] 7→ [τ, 1− τ ]:

T0(x) =
x(1− τ)(1 − δ1) + (1− x)τ(1− δ2)

x(1− δ1) + (1− x)(1− δ2)
, (E.85)

T1(x) =
x(1− τ)δ1 + (1− x)τδ2

xδ1 + (1− x)δ2
. (E.86)

Applying Bayes’ formula to the conditional probabilities in (E.73), (E.75) and (E.77) yields1

Rj+1 = TZj+1(Rj) , j ≥ 0 , a.s. (E.87)

R∗
j+1 = TZj+1(R

∗
j ) , j ≥ −1 , a.s. (E.88)

Ψj+1 = TZj+1(Ψj) , j ∈ Z , a.s. (E.89)

where we start Rj and R∗
j as follows:

R0 = 1/2 , (E.90)

R∗
0 = (1− τ)1{S0 = 1}+ τ1{S0 = 2} . (E.91)

In particular, Rj, R
∗
j , Qj,Ψj and Uj are Markov processes.

Because of (E.89) we have

min(τ, 1 − τ) ≤ Ψj ≤ max(τ, 1− τ) . (E.92)

For any pair of points 0 < x, y < 1 denote their projective distance (as defined in [121])
by

dP (x, y) =

∣
∣
∣
∣
ln

x

1− x − ln
y

1− y

∣
∣
∣
∣
. (E.93)

As shown in [121] operators T0 and T1 are contracting in this distance (see also Section V.A
of [122]):

dP (Ta(x), Ta(y)) ≤ |1− 2τ |dP (x, y) . (E.94)

Since the derivative of ln x
1−x is lower-bounded by 4 we also have

|x− y| ≤ 1

4
dP (x, y) , (E.95)

which implies for all a ∈ {0, 1} that

|Ta(x)− Ta(y)| ≤
1

4
|1− 2τ |dP (x, y) . (E.96)

Applying (E.96) to (E.87)-(E.89) and in the view of (E.90) and (E.92) we obtain

|Rj −Ψj| ≤
1

4

∣
∣
∣
∣
ln

τ

1− τ

∣
∣
∣
∣
|1− 2τ |j−1 j ≥ 1 , (E.97)

|Qj − Uj| ≤
|δ1 − δ2|

4

∣
∣
∣
∣
ln

τ

1− τ

∣
∣
∣
∣
|1− 2τ |j−1 j ≥ 1 . (E.98)

1Since all conditional expectations are defined only up to almost sure equivalence, the qualifier “a.s.” will
be omitted below when dealing with such quantities.
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Proof of Theorem 59: Achievability: In this proof we demonstrate how a central-limit
theorem (CLT) result for the information density implies the o(

√
n) expansion. Otherwise,

the proof is a repetition of the proof of Theorem 58. In particular, with equiprobable PXn ,
the expression for the information density i(Xn;Y n) becomes

i(Xn;Y n) = n log 2 + logPZn(Zn) , (E.99)

= n log 2 +

n∑

j=1

Gj . (E.100)

One of the main differences with the proof of Theorem 58 is that the process Gj need not be
α-mixing. In fact, for a range of values of δ1, δ2 and τ it can be shown that all (Zj , Gj), j =
1 . . . n can be reconstructed by knowing Gn. Consequently, α-mixing coefficients of Gj are
all equal to 1/4, hence Gj is not α-mixing and Theorem 120 is not applicable. At the same
time Gj is mixing and ergodic (and Markov) because the underlying time-shift operator is
Bernoulli.

Nevertheless, Theorem 2.6 in [68] provides a CLT extension of the classic Shannon-
MacMillan-Breiman theorem. Namely it proves that the process 1√

n
logPZn(Zn) is asymp-

totically normal with variance V0. Or, in other words, for any λ ∈ R we can write

P

[

i(Xn;Y n) > nC0 +
√

nV0λ
]

→ Q(λ) . (E.101)

Conditions of Theorem 2.6 in [68] are fulfilled because of (E.14) and (E.98). Note that
Appendix I.A of [122] also establishes (E.101) but with an additional assumption δ1, δ2 > 0.

By Theorem 18 we know that there exists a code with M codewords and average prob-
ability of error pe bounded as

pe ≤ E

[

exp

{

−
[

i(Xn;Y n)− log
M−1

2

]+
}]

(E.102)

≤ E
[
exp

{
− [i(Xn;Y n)− logM ]+

}]
(E.103)

where (E.103) is by monotonicity of exp{−[i(Xn;Y n)−a]+} with respect to a. Furthermore,
notice that for any random variable U and a, b ∈ R we have2

E
[
exp

{
− [U − a]+

}]
≤ P[U ≤ b] + exp{a− b} . (E.104)

Fix some ǫ′ > 0 and set

log γn = nC0 −
√

nV0Q
−1(ǫ− ǫ′) . (E.105)

Then continuing from (E.103) we obtain

pe ≤ P[i(Xn;Y n) ≤ log γn] + exp{logM − log γn} (E.106)

= ǫ− ǫ′ + o(1) +
M

γn
, (E.107)

2This upper-bound reduces (E.102) to the usual Feinstein Lemma.
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where (E.106) follows by applying (E.104) and (E.107) is by (E.101). If we set logM =
log γn− log n then the right-hand side of (E.107) for sufficiently large n falls below ǫ. Hence
we conclude that for n large enough we have

logM∗(n, ǫ) ≥ log γn − log n (E.108)

≥ nC0 −
√

nV0Q
−1(ǫ− ǫ′)− log n , (E.109)

but since ǫ′ is arbitrary,

logM∗(n, ǫ) ≥ nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) . (E.110)

Converse: To apply Theorem 28 we choose the auxiliary channel QY n|Xn which simply
outputs an equiprobable Y n independent of the input Xn:

QY n|Xn(yn|xn) = 2−n . (E.111)

Similarly to the proof of Theorem 58 we get

β1−ǫ (PXnY n , QXnY n) ≤ 1

M∗ , (E.112)

and also

log
PXnY n(Xn, Y n)

QXnY n(Xn, Y n)
= n log 2 + logPZn(Zn) (E.113)

= i(Xn;Y n) . (E.114)

We choose ǫ′ > 0 and set

log γn = nC0 −
√

nV0Q
−1(ǫ+ ǫ′) . (E.115)

By (2.67) we have, for α = 1− ǫ,

β1−ǫ ≥
1

γn
(1− ǫ− P [i(Xn;Y n) ≥ log γn]) (E.116)

=
1

γn
(ǫ′ + o(1)) , (E.117)

where (E.117) is from (E.101). Finally, from (E.112) we obtain

logM∗(n, ǫ) ≤ log
1

β1−ǫ
(E.118)

= log γn − log(ǫ′ + o(1)) (E.119)

= nC0 −
√

nV0Q
−1(ǫ+ ǫ′) +O(1) (E.120)

= nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) . (E.121)

�

Proof of Theorem 60: Without loss of generality, we assume everywhere throughout
the remainder of the appendix

0 < δ2 ≤ δ1 ≤ 1/2 . (E.122)
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The bound (3.386) follows from Lemma 122: (3.387) follows from (E.126) after observing
that when δ2 > 0 the right-hand side of (E.126) is O(τ) when τ → 0. Finally, by (E.127)
we have

B0 = O
(√
−τ ln τ

)

(E.123)

which implies that

B1

B0
= O

(

− ln3/4 τ

τ1/4

)

. (E.124)

Substituting these into the definition of ∆ in Lemma 123, see (E.149), we obtain

∆ = O





√

− ln3 τ

τ



 (E.125)

as τ → 0. Then (3.388) follows from Lemma 123 and (3.378). �

Lemma 122 For any 0 < τ < 1 the difference C1 − C0 is lower bounded as

C1 − C0 ≥ h(δ1τmax + δ2τmin)− τmaxh(δ1)− τminh(δ2) , (E.126)

where τmax = max(τ, 1− τ) and τmin = min(τ,1− τ). Furthermore, when τ → 0 we have

C1 − C0 ≤ O
(√
−τ ln τ

)

. (E.127)

Proof: First, notice that

C1 − C0 = H−H(Z1|S1) = E [Ξ1] , (E.128)

where H and Ξj were defined in (E.82) and (E.81), respectively. On the other hand we can
see that

E [Ξ1|Z0
−∞] = f(Ψ0) , (E.129)

where f is a non-negative, concave function on [0, 1], which attains 0 at the endpoints;
explicitly,

f(x) = h(δ1x+ δ2(1− x))− xh(δ1)− (1− x)h(δ2) . (E.130)

Since we know that Ψ0 almost surely belongs to the interval between τ and 1− τ we obtain
after trivial algebra

f(x) ≥ min
t∈[τmin,τmax]

f(t) = f(τmax) , ∀x ∈ [τmin, τmax] . (E.131)

Taking expectation in (E.129) and using (E.131) we prove (E.126).
On the other hand,

C1 − C0 = H−H(Z1|S1) (E.132)

= E [h(δ1Ψ0 + δ2(1−Ψ0))− h(δ11{S1 = 1}+ δ21{S1 = 2})] . (E.133)
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Because δ2 > 0 we have

B = max
x∈[0,1]

∣
∣
∣
∣

d

dx
h(δ1x+ δ2(1− x))

∣
∣
∣
∣
<∞ . (E.134)

So we have

E [Ξ1] ≤ BE [|Ψ0 − 1{S1 = 1}|] (E.135)

≤ B
√

E [(Ψ0 − 1{S1 = 1})2] , (E.136)

where (E.136) follows from the Lyapunov inequality. Notice that for any estimator Â of
1{S1 = 1} based on Z0

−∞ we have

E [(Ψ0 − 1{S1 = 1})2] ≤ E [(Â− 1{S1 = 1})2] , (E.137)

because Ψ0 = E [1{S1 = 1}|Z0
−∞] is a minimal mean square error estimate.

We now take the following estimator:

Ân = 1







0∑

j=−n+1

Zj ≥ nδa






, (E.138)

where n is to be specified later and δa = δ1+δ2
2 . We then have the following upper bound

on its mean square error:

E [(Ân − 1{S1 = 1})2] = P[1{S1 = 1} 6= Ân] (E.139)

≤ P[Ân 6= 1{S1 = 1}, S1 = · · · = S−n+1]

+ 1− P[S1 = · · · = S−n+1] (E.140)

=
1

2
(1− τ)n (P[B(n, δ1) < nδa] + P[B(n, δ2) ≥ nδa])
+ 1− (1− τ)n , (E.141)

where B(n, δ) denotes the binomially distributed random variable. Using Chernoff bounds
we can find that for some E1 we have

P[B(n, δ1) < nδa] + P[B(n, δ2) ≥ nδa] ≤ 2e−nE1 . (E.142)

Then we have
E [(Ân − 1{S1 = 1})2] ≤ 1− (1− τ)n(1− e−nE1) . (E.143)

If we denote
β = − ln(1− τ) . (E.144)

and choose

n =

⌈

− 1

E1
ln

β

E1

⌉

, (E.145)

we obtain that

E [(Ân − 1{S1 = 1})2] ≤ 1− (1− τ) · e−
β

E1
ln β

E1

(

1− β

E1

)

. (E.146)
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When τ → 0 we have β = τ + o(τ) and then it is not hard to show that

E [(Ân − 1{S1 = 1})2] ≤ τ

E1
ln

τ

E1
+ o(τ ln τ) . (E.147)

From (E.136), (E.137), and (E.147) we obtain (E.127). �

Lemma 123 For any 0 < τ < 1 we have

|V0 − V1| ≤ 2
√

V1∆ + ∆ , (E.148)

where ∆ satisfies

∆ ≤ B0 +
B0

2(1 −
√

|1− 2τ |)
ln
eB1

B0
, (E.149)

B0 =
d2(δ1||δ2)
d(δ1||δ2)

|C0 − C1| , (E.150)

B1 =

√

B0

|1− 2τ |

(

d(δ1||δ2)
∣
∣
∣
∣
ln

τ

1− τ

∣
∣
∣
∣
+
h(δ1)− h(δ2)

2|1− 2τ |

)

, (E.151)

d2(a||b) = a log2 a

b
+ (1− a) log2 1− a

1− b (E.152)

and d(a||b) = a log a
b + (1− a) log 1−a

1−b is the binary divergence.

Proof: First denote

∆ = lim
n→∞

1

n
Var





n∑

j=1

Ξj



 , (E.153)

where Ξj was defined in (E.81); the finiteness of ∆ is to be proved below.
By (E.81) we have

Fj = −Θj + Ξj . (E.154)

In the course of the proof of Theorem 58 we have shown that

E [Θj] = C1 − log 2 , (E.155)

Var





n∑

j=1

Θj



 = nV1 +O(1) . (E.156)

Essentially, Ξj is a correction term, compared to the case of state known at the receiver,
which we expect to vanish as τ → 0. By definition of V0 we have

V0 = lim
n→∞

1

n
Var





n∑

j=1

Fj



 (E.157)

= lim
n→∞

Var



− 1√
n

n∑

j=1

Θj +
1√
n

n∑

j=1

Ξj



 . (E.158)
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Now (E.148) follows from (E.153), (E.156) and by an application of the Cauchy-Schwarz
inequality to (E.158).

We are left to prove (E.149). First, notice that

∆ = Var[Ξ0] + 2
∞∑

j=1

cov(Ξ0,Ξj) . (E.159)

The first term is bounded by Lemma 124

Var[Ξj ] ≤ E [Ξ2
j ] ≤ B0 . (E.160)

Next, set

N =

⌈

2 ln B0
B1

ln |1− 2τ |

⌉

. (E.161)

We have then
∞∑

j=1

cov[Ξ0,Ξj] ≤ (N − 1)B0 +B1

∑

j≥N

|1− 2τ |j/2 (E.162)

≤
ln B0

B1

ln
√

|1− 2τ |
B0 +

B0

1−
√

|1− 2τ |
(E.163)

≤ B0

1−
√

|1− 2τ |
ln
eB1

B0
, (E.164)

where in (E.162) for j < N we used Cauchy-Schwarz inequality and (E.160), for j ≥ N we
used Lemma 125; (E.163) follows by definition of N and (E.164) follows by lnx ≤ x − 1.
Finally, (E.149) follows now by applying (E.160) and (E.164) to (E.159). �

Lemma 124 Under the conditions of Lemma 123, we have

Var[Ξj ] ≤ E [Ξ2
j ] ≤ B0 . (E.165)

Proof: First notice that

E [Ξ1|Z0
−∞] = Ψ0d(δ1||δ1Ψ0 + δ2(1−Ψ0))

+(1−Ψ0)d(δ2||δ1Ψ0 + δ2(1−Ψ0)) , (E.166)

E [Ξ2
1|Z0

−∞] = Ψ0d2(δ1||δ1Ψ0 + δ2(1−Ψ0))

+(1−Ψ0)d2(δ2||δ1Ψ0 + δ2(1−Ψ0)) . (E.167)

Below we adopt the following notation

x̄ = 1− x . (E.168)

Applying Lemma 126 twice (with a = δ1 , b = δ1x+ δ2x̄ and with a = δ2 , b = δ1x+ δ2x̄) we
obtain

xd2(δ1||δ1x+ δ2x̄) + x̄d2(δ2||δ1x+ δ2x̄)

≤ d2(δ1||δ2)
d(δ1||δ2)

(xd(δ1||δ1x+ δ2x̄) + x̄d(δ2||δ1x+ δ2x̄)) . (E.169)
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If we substitute x = Ψ0 here, then by comparing (E.166) and (E.167) we obtain that

E [Ξ2
1|Z0

−∞] ≤ d2(δ1||δ2)
d(δ1||δ2)

E [Ξ1|Z0
−∞] . (E.170)

Averaging this we obtain3

E [Ξ2
1] ≤

d2(δ1||δ2)
d(δ1||δ2)

(C1 − C0) . (E.172)

�

Lemma 125 Under the conditions of Lemma 123, we have

cov[Ξ0,Ξj] ≤ B1|1− 2τ |j/2 . (E.173)

Proof: From the definition of Ξj we have that

E [Ξj|S0
−∞, Z

j−1
−∞ ] = f(Ψj−1, R

∗
j−1) , (E.174)

where

f(x, y) = yd(δ1||δ1x+ δ2(1− x)) + (1− y)d(δ2||δ1x+ δ2(1− x)) . (E.175)

Notice the following relationship:

d

dλ
H(λ̄Q+ λP ) = D(P ||λ̄Q+ λP )−D(Q||λ̄Q+ λP ) +H(P )−H(Q) . (E.176)

This has two consequences. First it shows that the function

D(P ||λ̄Q+ λP )−D(Q||λ̄Q+ λP ) (E.177)

is monotonically decreasing with λ (since it is a derivative of a concave function). Sec-
ond, we have the following general relation for the excess of the entropy above its affine
approximation:

d

dλ

∣
∣
∣
∣
λ=0

[H((1 − λ)Q+ λP )− (1− λ)H(Q)− λH(P )] = D(P ||Q) , (E.178)

d

dλ

∣
∣
∣
∣
λ=1

[H((1 − λ)Q+ λP )− (1− λ)H(Q)− λH(P )] = −D(Q||P ) . (E.179)

Also it is clear that for all other λ’s the derivative is in between these two extreme values.

3Note that it can also be shown that

E [Ξ2
1] ≥

d2(δ2||δ1)

d(δ2||δ1)
(C1 − C0) , (E.171)

and therefore (E.172) cannot be improved significantly.
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Applying this to the binary case we have

max
x,y∈[0,1]

∣
∣
∣
∣

df(x, y)

dy

∣
∣
∣
∣

= max
x∈[0,1]

|d(δ1||δ1x+ δ2(1− x))− d(δ2||δ1x+ δ2(1− x))| (E.180)

= max(d(δ1||δ2), d(δ2||δ1)) (E.181)

= d(δ1||δ2) , (E.182)

where (E.181) follows because the function in the right side of (E.180) is decreasing and (E.182)
is because we are restricted to δ2 ≤ δ1 ≤ 1

2 . On the other hand, we see that

f(x, x) = h(δ1x+ δ2(1− x))− xh(δ1)− (1− x)h(δ2) ≥ 0 . (E.183)

Comparing with (E.178) and (E.179), we have

max
x∈[0,1]

∣
∣
∣
∣

df(x, x)

dx

∣
∣
∣
∣

= max(d(δ1||δ2), d(δ2||δ1)) (E.184)

= d(δ1||δ2) . (E.185)

By the properties of f we have

∣
∣f(Ψj−1, R

∗
j−1)− f(Ψj−1,Ψj−1)

∣
∣ ≤ d(δ1||δ2)|R∗

j−1 −Ψj−1| (E.186)

≤ B2|1− 2τ |j−1 , (E.187)

where for convenience we denote

B2 =
1

2
d(δ1||δ2)

∣
∣
∣
∣
ln

τ

1− τ

∣
∣
∣
∣
. (E.188)

Indeed, (E.186) is by (E.182) and (E.187) follows by observing that

Ψj−1 = TZj−1 ◦ · · · ◦ TZ1(Ψ0) , (E.189)

R∗
j−1 = TZj−1 ◦ · · · ◦ TZ1(R

∗
0) (E.190)

and applying (E.96). Consequently, we have shown

∣
∣
∣E [Ξj|S0

−∞, Z
j−1
−∞]− f(Ψj−1,Ψj−1)

∣
∣
∣ ≤ B2|1− 2τ |j−1 , (E.191)

or, after a trivial generalization,

∣
∣
∣E [Ξj|Sk

−∞, Z
j−1
−∞ ]− f(Ψj−1,Ψj−1)

∣
∣
∣ ≤ B2|1− 2τ |j−1−k . (E.192)

Notice that by comparing (E.183) with (E.166) we have

E [f(Ψj−1,Ψj−1)] = E [Ξj] . (E.193)

Next we show that

∣
∣E [Ξj|S0

−∞, Z
0
−∞]− E [Ξj]

∣
∣ ≤ |1− 2τ | j−1

2 [2B2 +B3] , (E.194)
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where

B3 =
h(δ1)− h(δ2)

2|1− 2τ | . (E.195)

Denote
t(Ψk, Sk)

△
= E [f(Ψj−1,Ψj−1)|Sk

−∞Z
k
−∞] . (E.196)

Then because of (E.185) and since Ψk affects only the initial condition for Ψj−1 when
written as (E.189), we have for arbitrary x0 ∈ [τ, 1− τ ],

|t(Ψk, Sk)− t(x0, Sk)| ≤ B2|1− 2τ |j−k−1 . (E.197)

On the other hand, as an average of f(x, x) the function t(x0, s) satisfies

0 ≤ t(x0, Sk) ≤ max
x∈[0,1]

f(x, x) ≤ h(δ1)− h(δ2) . (E.198)

From here and (E.13) we have

∣
∣E [t(x0, Sk)|S0

−∞Z
0
−∞]− E [t(x0, Sk)]

∣
∣ ≤ h(δ1)− h(δ2)

2
|1− 2τ |k , (E.199)

or, together with (E.197),

∣
∣E [t(Ψk, Sk)|S0

−∞Z
0
−∞]− E [t(x0, Sk)]

∣
∣ ≤ h(δ1)− h(δ2)

2
|1− 2τ |k +B2|1− 2τ |j−k−1 .

(E.200)
This argument remains valid if we replace x0 with a random variable Ψ̃k, which depends
on Sk but conditioned on Sk is independent of (S0

−∞, Z
0
−∞). Having made this replacement

and assuming PΨ̃k|Sk
= PΨk|Sk

we obtain

∣
∣E [t(Ψk, Sk)|S0

−∞Z
0
−∞]− E [t(Ψk, Sk)]

∣
∣ ≤ h(δ1)− h(δ2)

2
|1− 2τ |k +B2|1− 2τ |j−k−1 .

(E.201)
Summing together (E.192), (E.193), (E.196), (E.197) and (E.201) we obtain that for arbi-
trary 0 ≤ k ≤ j − 1 we have

∣
∣E [Ξj|S0

−∞Z
0
−∞]− E [Ξj ]

∣
∣ ≤ h(δ1)− h(δ2)

2
|1− 2τ |k + 2B2|1− 2τ |j−k−1 . (E.202)

Setting here k = ⌊j − 1/2⌋ we obtain (E.194).
Finally, we have

cov[Ξ0,Ξj ] = E [Ξ0Ξj]− E 2[Ξ0] (E.203)

= E
[
Ξ0E [Ξj|S0

−∞, Z
0
−∞]

]
− E 2[Ξ0] (E.204)

≤ E [Ξ0E [Ξj]] + E

[

|Ξ0|(2B2 +B3)|1− 2τ | j−1
2

]

− E 2[Ξ0] (E.205)

= E [|Ξ0|](2B2 +B3)|1 − 2τ | j−1
2 (E.206)

≤
√

E [Ξ2
0](2B2 +B3)|1− 2τ | j−1

2 (E.207)

=
√

B0(2B2 +B3)|1− 2τ | j−1
2 , (E.208)

where (E.205) is by (E.194), (E.207) is a Lyapunov’s inequality and (E.208) is Lemma 124.
�
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Lemma 126 Assume that δ1 ≥ δ2 > 0 and δ2 ≤ a, b ≤ δ1; then

d(a||b)
d2(a||b)

≥ d(δ1||δ2)
d2(δ1||δ2)

. (E.209)

Proof: While inequality (E.209) can be easily checked numerically, its rigorous proof is
somewhat lengthy. Since the base of the logarithm cancels in (E.209), we replace log by ln
below. Observe that the lemma is trivially implied by the following two statements:

∀δ ∈ [0, 1/2] :
d(a||δ)
d2(a||δ)

is a non-increasing function of a ∈ [0, 1/2] ; (E.210)

and
d(δ1||b)
d2(δ1||b)

is a non-decreasing function of b ∈ [0, δ1] . (E.211)

To prove (E.210) we show that the derivative of d2(a||δ)
d(a||δ) is non-negative. This is equivalent

to showing that {

fa(δ) ≤ 0 , if a ≤ δ ,
fa(δ) ≥ 0 , if a ≥ δ ,

(E.212)

where

fa(δ) = 2d(a||δ) + ln
a

δ
· ln 1− a

1− δ . (E.213)

It is easy to check that
fa(a) = 0 , f ′a(a) = 0 . (E.214)

So it is sufficient to prove that

fa(δ) =

{

convex , 0 ≤ δ ≤ a ,
concave , a ≤ δ ≤ 1/2 .

(E.215)

Indeed, if (E.215) holds then an affine function g(δ) = 0δ + 0 will be a lower bound for
fa(δ) on [0, a] and an upper bound on [a, 1/2], which is exactly (E.212). To prove (E.215)
we analyze the second derivative of fa:

f ′′a (δ) =
2a

δ2
+

2ā

δ̄2
− 1

δ2
ln
δ̄

ā
− 2

δδ̄
− 1

δ̄2
ln
δ

a
. (E.216)

In the case δ ≥ a an application of the bound lnx ≤ x− 1 yields

f ′′a (δ) ≤ 2a

δ2
+

2ā

δ̄2
− 1

δ2

(
δ̄

ā
− 1

)

− 2

δδ̄
− 1

δ̄2

(
δ

a
− 1

)

(E.217)

≤ 0 . (E.218)

Similarly, in the case δ ≤ a an application of the bound lnx ≥ 1− 1
x yields

f ′′a (δ) ≥ 2a

δ2
+

2ā

δ̄2
− 1

δ2

(

1− ā

δ

)

− 2

δδ̄
− 1

δ̄2

(

1− a

δ

)

(E.219)

≥ 0 . (E.220)
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This proves (E.215) and, therefore, (E.210).

To prove (E.211) we take the derivative of d(δ1||b)
d2(δ1||b) with respect to b; requiring it to be

non-negative is equivalent to

2(1− 2b)

(

δ ln
δ

b

)(

δ̄ ln
δ̄

b̄

)

+ (δb̄ + δ̄b)

(

δ ln2 δ

b
− δ̄ ln2 δ̄

b̄

)

≥ 0 . (E.221)

It is convenient to introduce x = b/δ ∈ [0, 1] and then we define

fδ(x) = 2(1 − 2δx)δδ̄ lnx · ln 1− δx
δ̄

+ δ(1 + x(1− 2δ))

(

δ ln2 x− δ̄ ln2 1− δx
δ̄

)

, (E.222)

for which we must show
fδ(x) ≥ 0 . (E.223)

If we think of A = lnx and B = ln 1−δx
δ̄

as independent variables, then (E.221) is equivalent
to solving

2γAB + αA2 − βB2 ≥ 0 , (E.224)

which after some manipulation (and observation that we naturally have a requirement
A < 0 < B) reduces to

A

B
≤ −γ

α
− 1

α

√

γ2 + αβ . (E.225)

After substituting the values for A,B,α, β and γ we get that (E.221) will be shown if we
can show for all 0 < x < 1 that

ln 1
x

ln 1−δx
δ̄

≥ 1− 2δx

1 + x(1− 2δ)

δ̄

δ
+

((
1− 2δx

1− 2δx+ x

)2( δ̄

δ

)2

+
δ̄

δ

)1/2

. (E.226)

To show (E.226) we are allowed to upper-bound lnx and ln 1−δx
δ̄

. We use the following

upper bounds for lnx and ln 1−δx
δ̄

, correspondingly:

lnx ≤ (x− 1)− (x− 1)2/2 + (x− 1)3/3− (x− 1)4/4 + (x− 1)5/5 , (E.227)

ln y ≤ (y − 1)− (y − 1)2/2 + (y − 1)3/3 , (E.228)

particularized to y = 1− δx
δ̄

; both bounds follow from the fact that the derivative of lnx of
the corresponding order is always negative. Applying (E.227) and (E.228) to the left side
of (E.226) and after some tedious algebra, we find that (E.226) is implied by the

δ2(1− x)3
(1− δ)5 Pδ(1− x) ≥ 0 , (E.229)

where

Pδ(x) = −(4δ2 − 1)(1 − δ)2/12
+ (1− δ)(4 − 5δ + 4δ2 − 24δ3 + 24δ4)x/24

+ (8− 20δ + 15δ2 + 20δ3 − 100δ4 + 72δ5)x2/60

− (1− δ)3(11− 28δ + 12δ2)x3/20

+ (1− δ)3(1− 2δ)2x4/5 . (E.230)
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Assume that Pδ(x0) < 0 for some x0. For all 0 < δ ≤ 1/2 we can easily check that
Pδ(0) > 0 and Pδ(1) > 0. Therefore, there must be a root x1 of Pδ in (0, x0) and a root x2

in (x0, 1) by continuity. It is also easily checked that P ′
δ(0) > 0 for all δ. But then we must

have at least one root of P ′
δ in [0, x1) and at least one root of P ′

δ in (x2, 1].
Now, P ′

δ(x) is a cubic polynomial such that P ′
δ(0) > 0. So it must have at least one root

on the negative real axis and two roots on [0, 1]. But since P ′′
δ (0) > 0, it must be that P ′′

δ (x)
also has two roots on [0, 1]. But P ′′

δ (x) is a quadratic polynomial, so its roots are algebraic
functions of δ, for which we can easily check that one of them is always larger than 1. So,
P ′

δ(x) has at most one root on [0, 1]. And therefore we arrive at a contradiction and Pδ ≥ 0
on [0, 1], which proves (E.229). �
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