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Abstract

The data-processing inequality, that is, I(U;Y) < I(U; X) for a Markov chain U - X — Y,
has been the method of choice for proving impossibility (converse) results in information theory
and many other disciplines. Various channel-dependent improvements (called strong data-
processing inequalities, or SDPIs) of this inequality have been proposed both classically and
more recently. In this note we first survey known results relating various notions of contraction
for a single channel. Then we consider the basic extension: given SDPI for each constituent
channel in a Bayesian network, how to produce an end-to-end SDPI?

Our approach is based on the (extract of the) Evans-Schulman method, which is demonstrated
for three different kinds of SDPIs, namely, the usual Ahlswede-Gécs type contraction coefficients
(mutual information), Dobrushin’s contraction coefficients (total variation), and finally the
F-curve (the best possible non-linear SDPI for a given channel). Resulting bounds on the
contraction coefficients are interpreted as probability of site percolation. As an example, we
demonstrate how to obtain SDPI for an n-letter memoryless channel with feedback given an
SDPI for n = 1.

Finally, we discuss a simple observation on the equivalence of a linear SDPI and comparison
to an erasure channel (in the sense of “less noisy” order). This leads to a simple proof of a
curious inequality of Samorodnitsky (2015), and sheds light on how information spreads in the
subsets of inputs of a memoryless channel.
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1 Introduction

Multiplication of a componentwise non-negative vector by a stochastic matrix results in a vector that
is “more uniform”. This observation appears in several classical works [Mar06,Doe37,Bir57] differing
in their particular way of making quantitative estimates. For example, Birkhoff’s work [Bir57]
initiated a study (sometimes known as geometric ergodicity) of contraction of the projective distance
dp(z,y) = log max; % — log min; % between vectors in R’}. Here, instead, we will be interested in
contraction of statistical distances and information measures involving probability distributions,
which we define next.

Fix a transition probability kernel (channel) Pyx : X — ) acting between two measurable
spaces. We denote by Py |x o P the distribution on Y induced by the push-forward of the distribution
P, which is the distribution of the output Y when the input X is distributed according to P, and
by P x Py|x the joint distribution Pyy if Px = P. We also denote by Pzy o Py x the serial
composition of channels.!

We define three quantities that will play key role in our discussion: the total variation, the
Kullback-Leibler (KL) divergence and the mutual information

drv(P.Q) 2 sup |PIE] - QIE) = ; [ 14P - aq] (1)
DPIQ) 2 [1og 5 dP, )
I(A; B) £ D(Pag||PaPp). (3)

The purpose of this paper is to give exposition to the phenomenon that upon passing through
a non-degenerate noisy channel distributions become strictly closer and this leads to a loss of
information. Namely we have three effects:

1. Total-variation (or Dobrushin) contraction:
drv(Py|x o P, Pyx 0 Q) < drv(P,Q).

2. Divergence contraction:
D(PY|X o P||PY|X Q) < D(P|Q)

3. Information loss: For any Markov chain? U — X — Y we

I(U;Y) < I(U; X).

These strict inequalities are collectively referred to as strong data-processing inequalities (SDPIs).
The goal of this paper is to show intricate interdependencies between these effects, as well as
introducing tools for quantifying how strict these SDPIs are.

'More formally, we should have written Py |x : P(X) — P()) as a map between spaces of probability measures
P(-) on respective bases. The rationale for our notation Py|x : X — ) is that we view Markov kernels as randomized
functions. Then, a single distribution P on X is a randomized function acting from a space of a single point, i.e.
P :[1] —» X, and that in turn explains our notation Py |x o P for denoting the induced marginal distribution.

2The notation A — B — C simply means that A I C|B.



Organization In Section 2 we overview the case of a single channel. Notably, most of the results
in the literature are proved for finite alphabets, i.e., |X||Y] < oo, with a few exceptions such as
[CKZ98, PW16b]. We provide in Appendix A a self-contained proof of some of these results for
general alphabets.

From then on we focus on the question: Given a multi-terminal network with a single source and
multiple sinks, and given SDPIs for each of the channels comprising the network, how do we obtain
an SDPI for the composite channel from source to sinks? It turns out that this question has been
addressed implicitly in the work of Evans and Schulman [ES99] on redundancy required in circuits
of noisy gates. Rudiments also appeared in Dawson [Daw75] as well as Boyen and Koller [BK98].

In Section 3 we present the essence of the Evans-Schulman method and derive upper bounds on
the mutual information contraction coefficient nky, for Bayesian networks (directed graphical models).
We also interpret the resulting bounds as probabilities of disrupting end-to-end connectivity under
independent removals of graph vertices (site percolation). Then in Section 4 we derive analogous
estimates for Dobrushin’s coefficient nry that governs the contraction of the total variation on
networks. While the results exactly parallel those for mutual information, the proof relies on new
arguments using coupling. Finally, Section 5 extends the technique to bounding the Fj-curves (the
non-linear SDPIs). Section 6 concludes with an alternative point of view on mutual information
contraction, namely that of comparison to an erasure channel. As an example we give a short
proof of a result of Samorodnitsky [Sam15] about distribution of information in subsets of channel
outputs.

Notation Elements of the Cartesian product X™ are denoted z™ = (x1,...,xy) to emphasize their
dimension. Given a transition probability kernel from Py x : X — ) we denote P{}| x = Pyn| xn the
kernel acting from X" — Y™ componentwise independently:

Py xn (y"]z™) £ H Py x (y;lz;)-
j=1

To demonstrate the general bounds we consider the running example of Py |x being an n-letter
binary symmetric channel (BSC), given by

Y=X+2Z2 XY €eF}, Z~Bern(5)" (4)

and denoted by BSC(§)". Throughout this paper § £ 1 — §.

2 SDPI for a single channel

2.1 Contraction coefficients for f-divergence and mutual information

Let f: (0,00) — R be a convex function that is strictly convex at 1 and f(1) = 0. Let D;(P||Q) =
Eq [f(%)] denote the f-divergence of P and @ with P < @, cf. [Csi67].> For example, the total
variation (1) and the KL divergence (2) correspond to f(z) = 3|z —1| and f(z) = z log z respectively;
taking f(z) = (z — 1)? we obtain the x2-divergence: \%(P|Q) = f(%)ZdQ -1

3More generally, D;(P||Q) £ E,, [f (jgéj’;)}, where p is a dominating probability measure of P and @), e.g.,

1= (P + Q)/2, with the understanding that f(0) = f(0+), 0f(5) = 0 and 0f(%) = lim, oz f(2) for a > 0.



For any () that is not a point mass, define:

Df(PY|X o P||PY|X °Q)

Pyix,Q) 2 ; 5
Q)= e DI(PIQ) )
nf(Pyix) £ Slclgp nr(Q) - (6)

It is easy to show that the supremum is over a non-empty set whenever () is not a point mass
(see Appendix A). For notational simplicity when the channel is clear from context we abbreviate
nf(Py|x) as ny. For contraction coefficients of total variation, x? and KL divergence, we write
nTv, Ny and 7Ky, respectively, which play prominent roles in this exposition.

One of the main tools for studying ergodicity property of Markov chains as well as Gibbs
measures, Nty (Py|x) is known as the Dobrushin’s coefficient of the kernel Py|x. Dobrushin [Dob56]
showed that the supremum in the definition of Ty can be restricted to point masses, namely,

77TV(PY|X) = Sup dTV(PY|X:a:7 PY\X:x’)? (7)
z,x’

thus providing a simple criterion for strong ergodicity of Markov processes. Later [CKZ98, Proposi-
tion 11.4.10(i)] (see also [CIRT93, Theorem 4.1] for finite alphabets) demonstrated that all other
contraction coefficients are upper bounded by the Dobrushin’s coefficient, with inequality being
typically strict (cf. the BSC example below):

Theorem 1 ([CKZ98, Proposition 11.4.10]). For every f-divergence, we have

nt(Pyix) < nrv(Pyix)- (8)

For the opposite direction, lower bounds on 7y typically involves 7,2, the contraction coefficient
of the y2-divergence. It is well-known, e.g. Sarmanov [Sar58], that ny2(Py|x, Px) is the squared
second largest eigenvalue of the conditional expectation operator, which in turn equals the mazimal
correlation coefficient of the joint distribution Pxy:

S(X,Y)éS}lpp(f(X),g(Y)): 77X2(PY\X7PX)7 (9)
g

where p(-,-) denotes the correlation coefficient and the supremum is over real-valued functions f, g
such that f(X) and ¢g(Y') are square integrable.

The relationship between 7k, and 7,2 on finite alphabets has been systematically studied by
Ahlswede and Gécs [AG76]. In particular, [AGT76] proved

2 (Pyx, Px) < nxL(Pyx, Px), (10)

and noticed that the inequality is frequently strict.* Furthermore, for finite alphabets, the following
equivalence is demonstrated in [AGT76]:

UXQ(PX,PY‘X) <1l <~ UKL(PX,PY\X) <1 (11)
<= graph {(z,y) : Px(z) >0, Pyx(y|z) > 0} is connected. (12)

As a criterion for ny(Py|x, Px) < 1, this is an improvement of (8) only for channels with v (Py|x) =
1. The lower bound (10) can in fact be considerably generalized:

“See [AG76, Theorem 9] and [AGKN13] for examples.



Theorem 2. Let f be twice continuously differentiable on (0,00) with f”(1) > 0. Then for any Px
that is not a point mass,

e (Pyix, Px) < nf(Pyx, Px), (13)
and
e (Pyix) < np(Pyix) - (14)

See Appendix A.1 for a proof of (13) for the general case, which yields (14) by taking suprema
over Px on both sides. Note that (14) (resp. (13)) have been proved in [CKZ98, Proposition I1.6.15]
for the general alphabet (resp. in [Ragl4, Theorem 3.3] for finite alphabets).

Moreover, (14) in fact holds with equality for all nonlinear and operator convex f, e.g., for KL
divergence and for squared Hellinger distance; see [CRS94, Theorem 1] and [CKZ98, Proposition
11.6.13 and Corollary 11.6.16]. Therefore, we have:

Theorem 3.
e (Pyix) = nxL(Pyx) - (15)

See Appendix A.1 for a self-contained proof. This result was first obtained in [AG76] using
different methods for discrete space. Rather naturally, we also have [CKZ98, Proposition 11.4.12]:

nf(Pyix)=1 <= nrv(Pyx) =1

for any non-linear f.
As an illustrating example, for BSC(¢) defined in (4), we have cf. [AGT76]

N =k = (1 —26)* < nrv = |1 —24]. (16)

Appendix B present general results on the contraction coefficients for binary-input arbitrary-output
channels, which can be bounded using Hellinger distance within a factor of two.

We next discuss the the fixed-input contraction coefficient nkr,(Py|x, Q). Unfortunately, there is
no simple reduction to the x2-case as in (15). Besides the lower bound (10), there is a variety of upper
bounds relating nkr, and 7,2. We quote [MZ15, Theorem 11], who show for finite input-alphabet

case:
1

min, Q(x)
Another bound (which also holds for all n; with operator-convex f) is in [Ragl4, Theorem 3.6]:

nkL(Py|x, Q) < e (Py|x, Q) -

nkL(Pyx, Q) < max <WX2(PY|X,Q),OS%PlnLCB(PwX,Q)) ,
<p<

where npc, denotes contraction coefficient of an f-divergence LC3(P[|Q) = BB [ g;;%g with
B €(0,1) and 3 =1 — B (see also Appendix B).

We also note in passing that SDPIs are intimately related to hypercontractivity and maximal
correlation, as discovered by Ahlswede and Gacs [AG76] and recently improved by Anantharam et
al. [AGKN13] and Nair [Nail4]. Indeed, the main result of [AG76] characterizes nkr(Py|x, Px) as
the maximal ratio of hyper-contractivity of the conditional expectation operator E[-| X].

The fixed-input contraction coefficient nky, (@) is closely related to the (modified) log-Sobolev
inequalities. Indeed, if 7y, (Q) < 1 where @ is the invariant measure for the Markov kernel Py x, ie.,
Py|x o Q = Q, then any initial distribution P such that D(P|Q) < co converges to () exponentially
fast since

D(Py x o P||Q) < ke, (Pyix, Q) D(P||Q),

6



where the exponent 7k, (Py|x, @) can in turn be estimated from log-Sobolev inequalities, e.g. [Led99].
When @ is not invariant, it was shown [DMLMO03] that

1 —a(Q) <nkL(Pyix, Q) <1-Ca(Q)

holds for some universal constant C', where a(Q) is a modified log-Sobolev (also known as 1-log-
Sobolev) constant:

2
E|f2(X) log &5
lnf

)
a(Q) fll=1 E[f2(X)log f2(X)]’

ol xx' =@ x (Px)y o Py|x)

For further connections between iy, and log-Sobolev inequalities on finite alphabets see [Ragl3,
Ragl4].

There exist several other characterizations of nkr,, such as the following one in terms of the
contraction of mutual information (cf. [CK81, Exercise I11.3.12, p. 350] for finite alphabet):

I(U;Y)
U, X)’

nkL(Py|x) = sup (17)

where the supremum is over all Markov chains U — X — Y with fixed Py|x (or equivalently, over
all joint distributions Px) such that I(U; X) < co. This result is an immediate consequence of
the following input-dependent version (see Appendix A.3 for a proof in the general case; the finite
alphabet case has been shown in [AGKN13])

Theorem 4. For any Px that is not a point mass,

nKL(PY|X7PX) :SUP%7 (18)

where the supremum is taken over all Markov chains U — X — Y with fived Pxy = Px o Py|x
such that 0 < I(U; X) < oo.

Another characterization of 7k, in view of (15) and (9), is

nkL(Pyx) = sup p*(f(X),g(Y)),

where the supremum is over all Py and real-valued square-integrable f(X) and g(Y).

2.2 Non-linear SDPI

How to quantify the information loss if nkr, = 1 for the channel of interest? In fact this situation
can arise in very basic settings, such as the additive-noise Gaussian channel under the moment
constraint on the input distributions (cf. [PW16b, Theorem 9, Section 4.5]), where the mutual
information does not contract linearly as in (17), but can still contract non-linearly. In such cases,
establishing a strong-data processing inequality can be done by following the joint-range idea of
Harremoés and Vajda [HV11]. Namely, we aim to find (or bound) the best possible data-processing
function Fr defined as follows.

Definition 1 (Fj-curve). Fix Py |x and define

F[(t,Py‘X) = ISDup {I(U, Y)Z I(U,X) < t, PUXY = PU)(Py|X} . (19)
UXx

7



Equivalently, the supremum is taken over all joint distributions Py xy with a given conditional Py|x
and satisfying U — X — Y. The upper concave envelope of F7 is denoted by FF:

Fr(t, Py|x) 2inf{f(t): V' >0 Fi(t', Pyix) < f(t'), f-concave} .
Equivalently, we have

Ff(t, Pyx) = sup {I({U;Y|V): I(U; X|V) <t,Pyuxy = PvuxPy|x} , (20)

Pyvux

where I(A; B|C) = I(A,C; B) — I(C; B) is the conditional mutual information, and averaging over
V serves the role of concavification (so that V' can be taken binary). Whenever it does not lead to
confusion we will write Fy|y(t) instead of Fi(t, Py|x).

The operational significance of the Fr-curve is that it gives the optimal input-independent strong
data processing inequality:
I(U;Y) < Fi(I(U; X)),

which generalizes (17) since F}(0) = nxr(Py|x) and t — 1F(t) is decreasing (see, e.g., [CPW15,
Section I]). See [CPW15] for bounds and expressions for BSC and Gaussian channels.

Frequently it is more convenient to work with the concavified version F} as it allows for some
natural extension of the results about contraction coefficients. Proposition 18 shows that F7 may
not be concave.

2.3 Some applications: classical and new

The main example of a strong data-processing inequality (SDPI) was discovered by Ahlswede and
Gécs [AGT6]. They have shown, using the characterization (11), that whenever Py|x is a discrete
memoryless channel that does not admit zero-error communication, we have nkr(Py|x) <n <1
and

I(W;Y) <nl(W; X) (21)

for all Markov chains W — X — Y.
SDPIs have been popular for establishing lower (impossibility) bounds in various setups, in both
classical and more recent works. We mention only a few of these applications:

e By Dobrushin for showing non-existence of multiple phases in Ising models at high tempera-
tures [Dob70];

e By Erkip and Cover in portfolio theory [EC98];
e By Evans and Schulman in analysis of noise-resistant circuits [ES99];

e By Evans, Kenyon, Peres and Schulman in the analysis of inference on trees and percola-
tion [EKPS00];

e By Courtade in distributed data-compression [Coul2];
e By Duchi, Wainwright and Jordan in statistical limitations of differential privacy [DJW13];

e By the authors to quantify optimal communication and optimal control in line networks
[PW16b];

e By Liu, Cuff and Verdu in key generation [LCV15];



e By Xu and Raginsky in distributed estimation [XR15].

All of the applications above use SDPI (21) to prove negative (impossibility) statements. A
notable exception is the work of Boyen and Koller [BK98]|, who considered the basic problem of
computing the posterior-belief vector of a hidden Markov model: that is, given a Markov chain {X}
observed over a memoryless channel Py|y, one aims to recompute PXj|Yzoo as each new observation
Y; arrives. The problem arises when X is of large dimension and then for practicality one is
constrained to approximate (quantize) the posterior. However, due to the recursive nature of belief
computations, the cumulative effect of these approximations may become overwhelming. Boyen and
Koller [BK98] proposed to use the SDPI similar to (21) with n < 1 for the Markov chain {X} and
show that this cumulative effect stays bounded since 7™ < oco. Similar considerations also enable
one to provide provable guarantees for simulation of inter-dependent stochastic processes.

3 Contraction of mutual information in networks

We start by defining a Bayesian network (also known as a directed graphical model). Let G be a
finite directed acyclic graph with set of vertices {Y, : v € V} denoting random variables taking
values in a fixed finite alphabet.” We assume that each vertex Y, is associated with a conditional
distribution Pyv|ypa(v) where pa(v) denotes parents of v, with the exception of one special “source”
node X that has no inbound edges (there may be other nodes without inbound edges, but those
have to have their marginals specified). Notice that if V' C V is an arbitrary set of nodes we can
progressively chain together all the random transformations and unequivocally compute Py x (here
and below we use V and Yy = {Y, : v € V} interchangeably). We assume that vertices in V are
topologically sorted so that v; > v9 implies there is no path from v to ve. Associated to each node

we also define
o = ML (P, |, 00)) -

See the excellent book of Lauritzen [Lau96] for a thorough introduction to a graphical model
language of specifying conditional independencies.
The following result can be distilled from [ES99]:

Theorem 5. Let W €V and V C V such that W > V. Then

kL (Pywix) < nw - kL (Pypaow)x) + (1 = nw) - mkL(Pyx) - (22)

Furthermore, let perc(V) denote the probability that there is a path from X to VO in the graph if
each node v is removed independently with probability 1 — n, (site percolation). Then, we have for
every V.CV

nkL(Pyix) < perc(V). (23)

In particular, if n, <1 for allv €V then nk(Py|x) < 1.

Proof. Consider an arbitrary random variable U such that

U—X—(V,IW).

At the expense of technical details, the alphabet can be replaced with any countably-generated (e.g. Polish)
measurable space. For clarity of presentation we focus here on finite alphabets.

5More formally, perc(V) equals probability that there exists a sequence of nodes v1, . .., v, with v1 = X, v, € V.
satisfying two conditions: 1) for each i € [n — 1] the pair (v;,vi+1) is a directed edge in G; and 2) each v; is not
removed.



Let A =pa(WW)\ V. Without loss of generality we may assume A does not contain X: indeed, if A
includes X then we can introduce an artificial node X’ such that X’ = X and include X’ into A
instead of X. Relevant conditional independencies are encoded in the following graph:

U——X —V

AN

A— W
From the characterization (17) it is sufficient to show
HU;V, W) < (1 =nw)I(U; V) +nw I(U;V, A). (24)

Denote B = V\pa(W) and C' =V Npa(W). Then pa(W) = (4,C) and V = (B, C). To verify (24)
notice that by assumption we have

U—-X—(V,A) - W.
Therefore conditioned on V' we have the Markov chain
U—-X—-A->W \4

and the channel A — W is a restriction of the original Py, to a subset of the inputs. Indeed,
Pyiayv = Pwipaw),B = Pwpa(w) by the assumption of the graphical model. Thus, for every
realization v = (b, ¢) of V', we have Py|a—q,v—y = Pw|a=a,c=c and therefore

IU;WIV =) <n(Pwia,c=c) IU; AV = v) < n(Pwjac)I(U; AV = v), (25)

where the last inequality uses the following property of the contraction coefficient which easily
follows from either (6) or (17):

sup n(Pwa,c=c) < N(Pwja,c)- (26)

Averaging both sides of (25) over v ~ Py and using the definition nw = n(Pw|pacw)) = 1(Pwa,c)s
we have
HU;W|V) <nqwlI(U;A|V). (27)

Adding I(U; V) to both sides yields (24).

We now move to proving the percolation bound (23). First, notice that if a vertex W satisfies
W >V, then letting {37 : X — V'} be the event that there exists a directed path from X to (any
element of) the set V' under the site percolation model, we notice that {W removed} is independent
from {37 : X —» V}and {37 : X — V Upa(W)}. Thus we have

perc(VU{W}) 2P371: X = VU{W}

PErm: X - VU{W} W removed] + P37 : X — VU{W}, W kept]
=PE7r: X — V,W removed] + P37 : X — V Upa(W), W kept]
=PEn: X = V|1 —nw)+nwP3E37: X =V Upa(W)]

= (1 — nw)perc(V) + nwperc(V Upa(WWV)).

That is, the set-function perc(-) satisfies the recursion given by the right-hand side of (22). Now
notice that (23) holds trivially for V' = {X}, since both sides are equal to 1. Then, by induction on
the maximal element of V' and applying (22) we get that (23) holds for all V. O

10



Theorem 5 allows us to estimate contraction coefficients in arbitrary (finite) networks by peeling
off last nodes one by one. Next we derive a few corollaries:

Corollary 6. Consider a fived (single-letter) channel Py|x and assume that it is used repeatedly
and with perfect feedback to send information from W to (Y1,...,Y,). That is, we have for some
encoder functions f;

Pynpy (y"*|w) = HPY\X yjl fi(w, 7 1),
7j=1

which corresponds to the graphical model:

1774 Y; Yy Ys- -
\/
Then \—/

KL (Pynw) <1 — (1 —nxn(Pyx))" < n-nxu(Pyx)

Proof. Apply Theorem 5 n times. O

Let us call a path 7 = (X, -+ ,v) with v € V to be shortcut-free from X to V', denoted X S—f> V,
if there does not exist another path 7’ from X to any node in V such that 7’ is a subset of 7. (In
particular v necessarily is the first node in V' that 7 visits.) Also for every path 7 = (X, v1,...,0p)

we define .
7r A 1:[

Corollary 7. For any subset V we have
mkL(Prix) < Y 0" (28)
XV

In particular, we have the estimate of Evans-Schulman [ES99]:

mkr(Prix) < > 0" (29)
T X—=V

Proof. Both results are simple consequence of union-bounding the right-hand side of (23). But for
completeness, we give an explicit proof. First, notice the following two self-evident observations:

1. If A and B are disjoint sets of nodes, then

o= D> T+ D> (30)

mx3auB X4 A, avoid B X3 B, avoid A

2. Let m: X — V and m; be 7w without the last node, then

ox3Ev o = o x L pa)\ v (31)

11



Now represent V = (V/, W) with W > V', denote P = pa(W) \ V and assume (by induction)
that

mkL(Prix) < Y 0 (32)
7TX~)V

mkL(Propx) < Y. 0", (33)
mx v py

By (30) and (31) we have

o= 0+ >, (34)

mxHy x Ly X AW, avoid V'
iy iy
D S D (35)
e Xﬁ)V’ ﬂ:XS—f>P, avoid V'’

Then by Theorem 5 and induction hypotheses (32)-(33) we get

mu(Prix) <mw >, T+ 0—nw) > " (36)
mxd v py mx Ly
= DA DR D DR (37)
Tr:XS—f>P, avoid V'’ 7r:X2r>V’7 pass P ﬂ:XQ;V/
g D D D (38)
X P, avoid V' .

where in (37) we applied (30) and split the summation over 7 : X Ly into paths that avoid and
pass nodes in P. Comparing (35) and (38) the conclusion follows. O

Both estimates (28) and (29) are compared to that of Theorem 5 in Table 1 in various graphical
models.

Evaluation for the BSC We consider the contraction coefficient for the n-letter binary symmetric
channel BSC(§)™ defined in (4). By (16), for n = 1 we have nkr, = (1 — 2§)2. Then by Corollary 6
we have for arbitrary n:
nrr, < 1—(46(1—0))". (39)
A simple lower bound for nkp, can be obtained by considering (17) and taking U ~ Bern(1/2)
and U — X being an n-letter repetition code, namely, X = (U,...,U). Let” ¢ = P[|Z| > n/2] be
the probability of error for the maximal likelihood decoding of U based on Y, which satisfies the
Chernoff bound € < (46(1 — §))™/2. We have from Jensen’s inequality

I(U;Y)=HU) - HU|Y) > 1—h(e) = 1 — (46(1 — §)) 2 +OUoen)

where we used the fact that the binary entropy h(z) = —zlogz— (1 —x)log(l—z) = —zlog z+O(x?)
as ¢ — 0. Consequently, we get

nkL > 1 — (46(1 — §))2+0Uen) (40)

"For elements of F%, | - | is the Hamming weight.
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Estimate (28) via | Original Evans-Schulman

Name Graph Theorem 5 shortcut-free paths estimate (29)
Markov chainl | X =Y =B =Y, n n n+n
A
Markov chain 2 / i n? n? n* +n?
X—B——Y
Yy
Parallel channels / 2n —n? 2n 2n
X—Y
Parallel channels "
—n? 2 3
with feedback / l 20 = " 1
X—Y

Table 1: Comparing bounds on the contraction coefficient nKL(Py‘ x ). For simplicity, we assume
that the nki, coefficients of all constituent kernels are bounded from above by 7.

Comparing (39) and (40) we see that nk1, — 1 exponentially fast. To get the exact exponent we
need to replace (39) by the following improvement:

nkL < nry < 1 — (46(1 — §)) 2 T0Uesn)

where the first inequality is from (8) and the second is from (48) below. Thus, all in all we have for
BSC(0)™ as n — o0
L, Ty = 1 — (46(1 — §)) 2 HOUesm), (41)

4 Dobrushin’s coefficients in networks

The proof of Theorem 5 relies on the characterization (17) of ki, via mutual information, which
satisfies the chain rule. Neither of these two properties is enjoyed by the total variation. Nevertheless,
the following is an exact counterpart of Theorem 5 for total variation.

Theorem 8. Under the same assumption of Theorem 5,
nrv(Pywix) < (1 —nw)nry (Pyix) + mwnrv(Peaw),vix) » (42)

where nw = nrv(Pwpaw))- Furthermore, let perc(V') denote the probability that there is a path
from X to V in the graph if each node v is removed independently with probability 1 — n, (site
percolation). Then, we have for every V .C V

nrv(Pyx) < perc(V). (43)

In particular, if n, <1 for allv €V, then nrv(Pyx) < 1.

13



Proof. Fix x, % and denote by P (resp. @) the distribution conditioned on X = z (resp. 2’). Denote
Z = pa(WW). The goal is to show

drv(Pyw, Qvw) < (1 —nw)drv(Pyv, Qv) + nwdrv(Pzv,Qzv) . (44)

which, by the arbitrariness of z, 2’ and in view of the characterization of n in (7), yields the desired
(42). By Lemma 22 in Appendix C, there exists a coupling of Pzy and @ zy, denoted by mzy 2y,
such that

(2, V) # (Z',V")] = drv(Pzv,Qzv),
w[V # V'] = drv(Py,Qv)

simultaneously (that is, this coupling is jointly optimal for the total variation of the joint distributions
and one pair of marginals).

Conditioned on Z = z and Z’ = 2’ and independently of VV’, let WW’ be distributed according
to a maximal coupling of the conditional laws Py ;—. and Py z—. (recall that Quwz = Pz =
Py pagw) by definition). This defines a joint distribution 7zy w2y /w, under which we have the
Markov chain VV' — ZZ" — WW’'. Then

TW # WZVZ'V'] = 7[W # W' 22" = drv(Pw paw)=2, Pwipaw)=z) < mwliz2z-
Therefore we have

aW £ WV =V'| = Ejx[W £ W'|ZZ||V = V']
<nwrlZ # Z'\V =V].

Multiplying both sides by [V = V'] and then adding [V # V'], we obtain
(W, V) # (W, VO < (1 —nqw)n[V # V'] +nwr((Z,V) # (2, V)]
= (L = nw)drv(Pv,Qv) + nwdrv(Pzv,Qzv),

where the LHS is lower bounded by dry(Pwyv,Qwy) and the equality is due to the choice of 7.
This yields the desired (44), completing the proof of (42). The rest of the proof is done as in
Theorem 5. ]

As a consequence of Theorem 8, both Corollary 6 and 7 extend to total variation verbatim with
nkL replaced by nrv:

Corollary 9. In the setting of Corollary 6 we have
nev(Pynw) <1 — (1= nov(Pyix))" <n-nkn(Pyix) - (45)

Corollary 10. In the setting of Corollary 7 we have

nrv(Pyix) < Z Ny < Z NV »
7T'X~>V T X—=V

where for any path m = (X, v1,...,vn) we denoted Niy, = H nrv (P,
‘77

jIpa(v;))-
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Evaluation for the BSC Consider the n-letter BSC defined in (4), where ¥ = X + Z with
Z ~ Bern(9)" and |Z| ~ Binom(n,d). By Dobrushin’s characterization (7), we have

nTtv — max dTV(PY|X:$7 PY‘X:JJ/)
x,2' €Fy

= dpy(Bern(6)", Bern(1 — 6)")

= dpy(Binom(n, d), Binom(n, 1 — 4)) (46)
=1-2P[|Z| > n/2] = P[|Z| = n/2] (47)
=1— (48(1 — §))z tOUo&n) (48)

where (46) follows from the sufficiency of |Z| for testing the two distributions, (47) follows from
drv(P,Q) =1— [ PAQ and (48) follows from standard binomial tail estimates (see, e.g., [Ash65,
Lemma 4.7.2]). The above sharp estimate should be compared to the bound obtained by applying
Corollary 9:

nry < 1—(20)". (49)
Although (49) correctly predicts the exponential convergence of npry — 1 whenever § < %, the
exponent estimated is not optimal.

5 Bounding Fj-curves in networks

In this section our goal is to produce upper bound bounds on the Fj-curve of a Bayesian network
Fy|x in terms of those of the constituent channels. For any vertex v of the network, denote the

Fi-curve of the channel Pypa() by Fyjpa(v), abbreviated by F,, and the concavified version by Fy.
Theorem 11. In the setting of Theorem 5,
Fywix < Fyix + Fyy o (Fpaowy,vix — Fvix) s (50)
Fywix < Foix + Fiv o (B vix — Fyox) - (51)

Furthermore, the right-hand side of (51) is non-negative, concave, nondecreasing and upper bounded
by the identity mapping id.

Remark 1. The Fj-curve estimate in Theorem 11 implies that of contraction coefficients of
Theorem 5. To see this, note that since Fp, ) 1v|x < id, the following is a relaxation of (50):

id — Fywix > (id — Fi) o (id — Fy|x). (52)

Consequently, if each channel in the network satisfies an SDPI, then the end-to-end SDPI is also
satisfied. That is, if each vertex has a non-trivial F7-curve, i.e., F,, < id for all v € V, then the
channel X — V" also has a strict contractive property, i.e., Fy x <id.

Furthermore, since Fyj,(t) < nwt, noting the fact that F"/‘X(O) = nkL(Py|x) and taking the
derivative on both sides of (50) we see that the latter implies (22).

Proof. We first show that for any channel Py |x, its Fy|x-curve satisfies that ¢ +— t — Fyx () is

Fyx(t)

+— is nonincreasing. Thus,

nondecreasing. Indeed, it is known, cf. [CPW15, Section I], that t —
for t1 < t9 we have

t
to — Fy|x(t2) > ta — iFY|X(t1)
t
= f (t1 — Fyx(t1))

>t — Fyx(t),
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where the last step follows from the fact that Fy|x(t) < ¢. Similarly, for any concave function

¢ : Ry — Ry s.t. ¢(0) =0 we have (22) < (Dxl). Therefore, the argument above implies ¢ — t—®(¢)
is nondecreasing and, in particular, so is t — ¢t — FJj,(2).

Let Pyx be such that I(U; X) <t and I(U;W,V) = Fyw x(t). By the same argument that
leads to (27) we obtain

H(U; WV = wy) < Fy (I(U; AV = 1))
< By (I(U; AV = o)) -

Averaging over vy ~ Py and applying Jensen’s inequality we get
IU;W,V) < Fy(I(U; pa(W), V) = I(U; V) + I(U; V).
Therefore,

Fywx(t) < Fyy(I(Uspa(W), V) = I(U;V)) + I(U; V)

< Fyy (Fpaw),vix (t) — I(U; V) + I(U; V) (53)
= Fpaow),vix () — (id — Fyy) (Fpaw),vix (B) — I(U; V)

< Foaowy,vix (t) — (id — Fyp ) (Fpaqw),vix (1) — Fyix () (54)
= Fyx(t) + Fyy (Fpaow),vix () — FV|X( )

< Fyx () + By (Faaw),vix (8) — Fiyx (1)) (55)

where (53) and (54) follow from the facts that ¢ — Fyy(¢) and ¢t — ¢t — Fyy (t) are both nondecreasing,
and (55) follows from that a + Fj, (b — a) is nondecreasing in both a and b.

Finally, we need to show that the right-hand side of (55) is nondecreasing and concave (this
automatically implies that (55) is an upper-bound to the concavification F{j‘ ). To that end, denote

th= A1+ (1= Nto, fo= F‘§|X(t)\), gr = F;a(w),wx(t)\) and notice the chain

I+ Fygy — ) 2 Afr+ (1 = A) fo+ Fy (Mg — f1) + (1= X)(g0 — fo)) (56)
> MNfi+ Fyy (g — f1) + (1= N (fo + Fiy (90 — fo)) (57)

where (56) is from concavity of F; V|X’ oo,

and (57) is from concavity of Fyj, O

vix and monotonicity of (a,b) — a+ Fjj(b—a),

Corollary 12. In the setting of Corollary 6 we have
Fynw (t) < t = 4(8),
where 1) =, D = (K)o 4h and ¢ : Ry — Ry is a convex function such that
Fyx(t) <t —(1).

Proof. The case of n = 1 follows from the assumption on 1. The case of n > 1 is proved by induction,
with the induction step being an application of Theorem 11 with V =Y~ and W =Y,,. O

Generally, the bound of Corollary 12 cannot be improved in the vicinity of zero. As an example
where this is tight, consider a parallel erasure channel, whose Fj-curve for ¢ < log ¢ is computed in
Theorem 17 below.
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Evaluation for the BSC To ease the notation, all logarithms are with respect to base two in this

section. Let h(y) = ylog %+(1—y) log ﬁ denote the binary entropy function and A= : [0, 1] — [0, %]

its functional inverse. Let p* ¢ £ p(1 — q) + q(1 — p) for p,q € [0,1] denote binary convolution and
define
V() 2t — 14 h(6*h H(max(1 —t,0))) (58)

which is convex and increasing in ¢t on Ry. For n =1 it was shown in [CPW15, Section 2] that the
Fr-curve of BSC(6) is given by

Fy(t,BSC(8)) = FE(t,BSC(8)) =t — (1) .

Applying Corollary 12 we obtain the following bound on the Fj-curve of BSC of blocklength n
(even with feedback):

Proposition 13. Let Z1,.. .,Zni'rii/d'Bern(é) be independent of U. For any (encoder) functions

fi»g=1,...,n, define '
Xj=f[OYITY, V=X + 7.

Then

IU;Y™) < I(U; X™) = " (I(U; X)), (59)
where (M) =1, p*F+HD) = p(K) 0 4p and ¥ is defined in (58).
Remark 2. The estimate (59) was first shown by A. Samorodnitsky (private communication) under

extra technical constraints on the joint distribution of (X™, W) and in the absence of feedback. We
have then observed that Evans-Schulman type of technique yields (59) generally.

Since 9 (t) =40(1 — 6)t + o(t) as t — 0 we get
FE(t,BSC(6)™) < t — t(46(1 — §))"+o)

as n — oo for any fixed ¢t. A simple lower bound, for comparison purposes, can be inferred from (40)
after noticing that there we have I(U; X) = 1, and so

F£(1,BSC(6)") > 1 — (46(1 — §))z TOUoen)

This shows that the bound of Proposition 13 is order-optimal: F'(t) — ¢ exponentially fast. Exact
exponent is given by (41).

As another point of comparison, we note the following. Existence of capacity-achieving error-
correcting codes then easily implies

lim = F¢(nd, BSC(5)") = min(6, C)

n—oo N

where C' =1 — h(J) is the Shannon capacity of BSC(9). Since for t > 1 we have ¥ (t) =t — C one
can show that

lim lw(”) (nd) =10 —C|",

n—oo n

and therefore we conclude that in this sense the bound (59) is asymptotically tight.
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6 SDPI via comparison to erasure channels

So far our leading example has been the binary symmetric channel (4). We now consider another
important example:

Example 1. For any set X, the erasure channel on X with erasure probability ¢ is a random
transformation from X to X U {7}, where ? ¢ X defined as

0, e ="
1-6, e=x

Ppx(e|z) = {

For X = [q], we call it the g-ary erasure channel denoted by EC,4(d). In the binary case, we denote
the binary erasure channel by BEC(5) £ ECy(8). A simple calculation shows that for every Pyx we
have

I(U;E) = (1 - 8)I(U; X) (60)

and therefore for EC,(5) we have nkr,(Pgx) = 1 — ¢ and Fy(t) = min((1 — 6)t,log q).
Next we recall a standard information-theoretic ordering on channels, cf. [EGK11, Section 5.6]:

Definition 2. Given two channels with common input alphabet, Py x and Py x, we say that
Py x is less noisy than Py|x, denoted by Py |x <;,. Py x if for all joint distributions Pyx we have

I(U;Y) < I(U;Y'"). (61)
We also have an equivalent formulation in terms of divergence:

Proposition 14. Py|x <;n Py x if and only if for all Px,Qx we have

D(Qy||Py) < D(Qy||Py) (62)

where Py, Pyr,Qy,Qy are the output distributions induced by Px,Qx over Pyx and Py x,
respectively.

See Appendix A.4 for the proof.®
The following result shows that the contraction coefficient of KL divergence can be equivalently
formulated as being less noisy than the corresponding erasure channel:”

Proposition 15. For an arbitrary channel Py x we have
kL(Pyix) <n <= Pyix <in Pgix, (63)
where Ppx is the erasure channel on the same input alphabet and erasure probability 1 — 7.
Proof. The definition of nkr.(Py|x) guarantees for every Pyx
IU;Y) < (1= 6)I(U; X), (64)
where the right-hand side is precisely I(U; E) by (60). O

8Tt is tempting to put forward a fixed-Px version of the previous criterion (similar to Theorem 4). That would,
however, require some extra assumptions on Px. Indeed, knowing that I(W;Y) < I(W;Y") for all Pw,x with a given
fixed Px tells us nothing about how distributions Py |x—, and Py x=, compare outside the support of Px. (For
discrete channels and strictly positive Px, however, it is easy to argue that indeed (62) holds for all Qx if and only
if (61) holds for all Py x with a given marginal Px.)

9Note that another popular partial order for random transformations — that of stochastic degradation — may also
be related to contraction coefficients, see [Ragl4, Remark 3.2].
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It turns out that the notion of less-noisiness tensorizes:
Proposition 16. If Pyllxl <in. PYl’|X1 and Py2|X2 <in. Py2/|X2 then
Py, 1x, X Pyy|x, <in. Pyyix, % Pyyix,
In particular,
mkL(Pyix) <n = Pyix <in Ppx- (65)
where Ppx is the erasure channel on the same input alphabet and erasure probability 1 — 7.
Proof. Construct a relevant joint distribution U — X2 — (Y2, Y'?) and consider
I(U;11,Ys) = I(U; Y1) + 1(U; Yo Y1) . (66)
Now since U L Y5|Y1 we have by Py, x, <i.n. Pyjx,
I(U:YaVh) < I(U: YY)
and putting this back into (66) we get
I(U;Y1,Y2) < I(U3 Y1) + I(U; Y5 |Y1) = I(U; Y1, Y3) -
Repeating the same argument, but conditioning on Yy we get
I(U;Y1,Y2) < I(U;Y{,Ys),
as required. The last claim of the proposition follows from Proposition 15. O

Consequently, everything that has been said in this paper about nkr,(Py|x) can be restated in
terms of seeking to compare a given channel in the sense of the <;,, order to an erasure channel. It
seems natural, then, to consider erasure channel in somewhat greater details.

6.1 Fr-curve of erasure channels

Theorem 17. Consider the q-ary erasure channel of blocklength n and erasure probability §. Its
Fr-curve is bounded by

F7(t,EC4(6)") < E[min(Blogg,t)], B ~ Binom(n,1 —9). (67)
The bound is tight in the following cases:
1. att = klogq with integral k < n if and only if an (n,k,n —k + 1), MDS code exists'®
2. fort <logq andt> (n—1)loggq;
3. for allt whenn =1,2,3.

Remark 3. Introducing B’ ~ Binom(n—1,1—0) and using the identity E[B1{p<q}] = n(1-6)P[B’ <
a — 1], we can express the right-hand side of (67) in terms of binomial CDFs:

Elmin(B,z)] =z +P[B < |z] —1](1 = 6)(n — x) — 20P[B’ < |z]]

This implies that the upper bound (67) is piecewise-linear, increasing and concave.

1%We remind that a subset C of [¢]™ is called an (n, k,d), code if |C| = ¢* and Hamming distance between any two
points from C is at least d. A code is called maximum-distance separable (MDS) if d = n — k + 1. This is equivalent
to the property that projection of C onto any subset of k coordinates is bijective.
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Proof. Consider arbitrary U — X" — E™ with Pgn x» = ECy(5)". Let S be random subset of [n]
which includes each ¢ € [n] independently with probability 1 — 4. A direct computation, shows that

I(U;E™) = I(U; Xg,8) = Y_ P[S X,) (68)
oCln]
< Z o] min(|o|log ¢, t) = E[min(Blogq,t)]. (69)
oC[n]

From here (67) follows by taking supremum over Py xn.

Claims about tightness follow by constructing U = X" and taking X" to be the output of the
MDS code (so that H(X,) = min(|o|logg,t)) and invoking the concavity of Fr(t). One also notes
that [n, 1,n], (repetition code) and [n,n — 1,2] (single parity check code) show tightness at t = log g
and t = (n —1)loggq.

Finally, we prove that when ¢ = klog ¢ and the bound (67) is tight then a (possibly non-linear)
(n,k,n —k+ 1), MDS code must exist. First, notice that the right-hand side of (67) is a piecewise-
linear and concave function. Thus the bound being tight for F7(¢) (that is a concave-envelope of
Fr(t)) should also be tight as a bound for F7(¢). Consequently, there must exist U — X" — E"
such that the bound (69) is tight with ¢ = I(U; X™). This implies that we should have

I(U; X;) = min(cloggq,t) (70)

for all o C [n]. In particular, we have I(U; X;) = log ¢ and thus H(X;|U) = 0 and without loss of
generality we may assume that U = X™. Again from (70) we have that H(X") = H(X"*) = klogq.
This implies that X™ is a uniform distribution on a set of size ¢* and projection on any k coordinates is
injective. This is exactly the characterization of an MDS code (possibly non-linear) with parameters

(n,k,n—k+1),. O
We also formulate some interesting observations for binary erasure channels:

Proposition 18. For BEC(n,d) we have:
1. For n > 3 we have that F(t) is not concave. More ezactly, Fr(t) < Ff(t) fort € (1,2).

2. For arbitrary n and t <log2 ort > (n — 1)log2 we have F(t) = F§(t) = E[min(Blog 2, t)]
with B defined in in (67).

3. Fort=2,n=4 the bound (67) is not tight and Ff(t) < E[min(Blog2,1t)].

Proof. First note that in Definition 1 of F;(t) the supremum is a maximum and and U can be
restricted to alphabet of size |X| + 2. So in particular, Fy(t) = f if and only if there exists
IU;Y") = f, I(U; X") <t

Now consider ¢ € (1,2) and n = 3 and suppose (U, X") achieves the bound. For the bound to
be tight we must have I(U; X3) = t. For the bound to be tight we must have I(U; X;) = 1 for all i,
that is H(X;) =1, H(X;|U) = 0 and H(X"|U) = 0. Consequently, without loss of generality we
may take U = X". So for the bound to be tight we need to find a distribution s.t.

H(X3) = H(X1,X9) = H(X2,X3) = H(X1,X3)=t,H(X1) =H(X2) = HX3) =1. (71)

It is straightforward to verify that this set of entropies satisfies Shannon inequalities (i.e. submod-
ularity of entropy checks), so the main result of [ZY97] shows that there does exist a sequence
of triples X? (over large alphabets) which attains this point. We will show, however, that this
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is impossible for binary-valued random variables. First, notice that the set of achievable entropy
vectors by binary triplets is a closed subset of RZF (as a continuous image of a compact set). Thus,
it is sufficient to show that (71) itself is not achievable.
Second, note that for any pair A, B of binary random variables with uniform marginals we must
have
A=B+Z, B 1 Z ~ Bern(p).

Without loss of generality, assume that Xo = X; + Z where H(Z) = t — 1 > 0. Moreover,
H(X3|X1,X2) =0 implies that X3 = f(X;, X3) for some function f.

Given X; we have H(X3|X; = z) = H(X3|X2 =x) =t —1 > 0. So the function X; — f(X1,x)
should not be constant for either choice of € {0,1} and the same holds for Xy — f(z, X>).
Eliminating cases leaves us with f = X; + Xo or f = X1 + Xo 4+ 1. But then X3 = X1 + Xo =27
and H(X3) < 1, which is a contradiction.

Since by Theorem 17 we know that the bound (67) is tight for F;(¢) we conclude that

Fr(t) < Ff(t), Vte(1,2).

To show the second claim consider U = X™ and X; = --- = X,, ~ Bern(p) for ¢t < log2. For
t > (n—1)log?2 take X"~! to be iid Bern(3) and

Xp=Xi+ - +Xo1+7,

where Z ~ Bern(p). This yields I(U; X,) = H(X,) = |o|log2 for every subset o C [n] of size up to
n — 1. Consequently, the bound (67) must be tight.

Finally, third claim follows from Theorem 17 and the fact that there is no [4, 2, 3] binary code,
e.g. [MS77, Corollary 7, Chapter 11]. O

Putting together (65) and (67) we get the following upper bound on the concavified Fr-curve of
n-letter product channels in terms of the contraction coefficient of the single-letter channel.

Corollary 19. If nkL(Py|x) = 1, then
Fi(t, Py x) < E[min(Blogg, )], B ~ Binom(n,1 —9).

This gives an alternative proof of Corollary 6 for the case of no feedback.

6.2 Samorodnitsky’s SDPI

So far, we have been concerned with bounding the “output” mutual information in terms of a
certain “input” one. However, frequently, one is interested in bounding some “output” information
given knowledge of several input ones. For example, for the parallel channel we have shown that

I(W;Y™) < (1= (1 —nku(Pyx))")I(W; X™).

But it turns out that a stronger bound can be given if we have finer knowledge about the joint
distribution of W and X™.
The following bound can be distilled from [Sam15]:

Theorem 20 (Samorodnitsky). Consider the Bayesian network

U—-X"—>Y",
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where Pyn xn = [[i_| Py,x, is a memoryless channel with n; = nkL(Py,x,). Then we have
I(U;Y™) < I(U; Xs|9) = I(U; X5, ), (72)

where S 1L (U, X™, Y™) is a random subset of [n] generated by independently sampling each element
1 with probability n;. In particular, if n; = n for all i, then

I(U;Y™) < Y gl =) Plrw; x,) (73)

oC[n|

Proof. Just put together characterization (63), tensorization property Proposition 16 to get I(U;Y™) <
I(U; E™), where E™ is the output of the product of erasure channels with erasure probabilities 1 —n;.
Then the calculation (68) completes the proof. O

Remark 4. Let us say that “total” information I(U; X") is distributed among subsets of [n] as
given by the following numbers:

-1
a (T .
I, 2 <k> > I(U; X7).
re()
Then bound (73) says (replacing Binom(n,n) by its mean value nn):
IU;Y") < Iy

Informally: the only kind of information about U that has a chance to be inferred on the basis of
Y™ is one that is contained in subsets of X of size at most nn.

Remark 5. Another implication of the Theorem is a strengthening of the Mrs. Gerber’s Lemma.
Fix a single-letter channel Py |x and suppose that for some increasing conver function m(-) and all

random variables X we have
H(Y)>m(H(X)).

Then, in the setting of the Theorem we have

HY™) > m (;H(Xsw)) . (74)

Note that by Han’s inequality (74) is strictly better than the simple consequence of the chain rule:
H(Y™) > nm(H(X™)/n). For the case of Py|x = BSC(J) the bound (74) is a sharpening of the
Mrs. Gerber’s Lemma, and has been the focus of [Sam15], see also [Ord16]. To prove (74) let
X™ — E™ be EC(1 — ). Then, by Theorem 20 applied to U = X;, n =i — 1 we have

H(X,|)Y"™Y) > H(X;|E™TY.

Thus, from the chain rule and convexity of m(-) we obtain

- 1 .
H(Y™) =3 HY[Y™) > nm (n > HX|E 1)) :
7 7
and the proof is completed by computing H(E"™) in two ways:

nh(n) + H(Xs|S) = H(E")
=Y H(EJ|E™) Zh )+ nH(X;| B
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Remark 6. Using Proposition 14 we may also state a divergence version of the Theorem: In the
setting of Theorem 20 for any pair of distributions Px» and () x» we have

D(Pyn||Qyn) < D(Pxgsll@xgs|Ps) -

Similarly, we may extend the argument in the previous remark: If for a fixed Qx,Qy (not
necessarily related by Py|x) there exists an increasing concave function f such that for all Px and
Py = PY\X o PX we have

D(Fy|Qy) < f(D(Px||Qx))  VPx

then

D(Py|(Qy)") < nf (77 (Pxgsll [ @xIPs) ) :

€S
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A Contraction coefficients on general spaces

A.1 Proof of Theorem 2
We show that

X2 (Qy||Py)

Dy(Qy||Py)
Wf(PY\XaPX) sup m

Qx Di(Qx|Px) (75)

> N2 (Py|x, Px) = Sup

where both suprema are over all Qx such that the respective denominator is in (0,00). With
the assumption that Px is not a point mass, namely, there exists a measurable set E such that
Px(E) € (0,1), it is clear that such Qx always exists. For example, let Qx = %(PX + Px|xeE)>
where Py|xep() = PE()E(E)) Then § < dQX <31+ P (E)) and hence D¢(Qx||Px) < oo since f is
continuous. Furthermore, Qx # Px 1mphes that D¢(Qx||Px) # 0 [Csi67].

The proof follows that of [CTR'93, Theorem 5.4] using the local quadratic behavior of f-
divergence; however, in order to deal with general alphabets, additional approximation steps are
needed to ensure the likelihood ratio is bounded away from zero and infinity.

Fix Qx such that x?(Qx||Px) < oo. Let A = {x: dQX( ) < a} where a > 0 is sufficiently large

such that Qx (4) > 1/2. Let Qy = Qx|xea and Q} = Py|x o Q. Then 32r Y < 58 < 2a. Let
% =1Px +(1-1)Qk and Q) = Pyjx o Qx = 1Py + (1 - 1)Q}. Then we have
1 dQ% 11 _dey 1
- <% +-, = <%+ - 76
a = dPy T aSap =T, (76)

Note that x?(Q'|Px) = Q(XeA) Ep[(dPX) 1¢xeay] — 1. By dominated convergence theorem,
2 (Q%||Px) — x*(Qx||Px) as a — oco. On the other hand, since Q% — Qy pointwise, the weak

lower-semicontinuity of y?-divergence yields lim inf, o X*(Q% | Py) > X (QyHPy) Furthermore,
2 /

using the simple fact that x?(eP+ (1 —€)Q||P) = (1 —¢)2x?(Q|| P), we have ¥ ((QX”%,()) = 2((?25‘”%/())
Y
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Therefore, to prove (75), it suffices to show for each fixed a, for any § > 0, there exists Px such
Dy(Px|IPy) - X(QxIPx) _
that 5o = e@iEy) ~ O ) )

For 0 < e < 1, let Px = éPx + ¢Q%, which induces Py = Py|x o Px = €Py + ¢Qy.. Then
Dy(Px||Px) = Ep [f(1 + e(dQ—X —1))]. Recall from (76) that dQX € [2,1 +2q]. Since f” is
continuous and f”(1) = 1, by Taylor s theorem and dominated convergence theorem, we have

~ 2 &2 .
Dy (Pxl|Px) = Sx(Q% I Px)(1 + o(1)). Analogously, Dy(Py|[Py) = SxA(QUIPy)(1 + o(1)). This
completes the proof of 1y (Px) > 1,2(Px).

Remark 7. In the special case of KL divergence, we can circumvent the step of approximating

by bounded likelihood ratio: By [PW16a, Lemma 4.2], since Qv Py) < x*(Qx|Px) < oo, we

have D(Px||Px) = ¢ XQ(QXHPX)/Q +o0(€?) and D(Py||Py) = x?(Qy||Py)/2 + o(€?), as € — 0.
P Py || P

Therefore % llme_,() D((#HPE)) < NKL (Px) Therefore NKL (Px) > 77X2 (Px)

A.2 Proof of Theorem 3

We prove
TKL = 7yz2- (77)

First of all, nkr, > n,2 follows from Theorem 2. For the other direction we closely follow the
argument of [CRS94, Theorem 1]. Below we prove the following integral representation:

DQ|P) = /O T 2(QI P, (78)

A tQ+P
where P £ = +7—- Then

D(Qy | Py) = /0 C(Qy | Pt
< /O e - X2 (Qxl|PY)dt = 0,2 D(Qx | Px).

where we used Pl = Py x o Pt. It remains to check (78). Note that
Y | X

1 /Oo LN
—logx = ———
& y @+ +?)

Therefore ~ 40 — dp
D(Q||P) = E — dt
(Q1IP) /0 1+t @ [dPthdQ]
B dQ—dpP Q-dP| _ 1 (dQ-dP)? _
Note that tEg [dPHdQ} = —-Ep [dPthdQ} Therefore Eq [dPthdQ} = ) rag = L+

t)x%(Q||P?), completing the proof of (78).
It is instructive to remark how this result was established for finite alphabets originally in [AGT76].
Consider the map

Px = V,(Px,Qx) = D(Pyx o Px||Py|x o Qx) — rD(Px|[Qx).

A simple differentiation shows that Hessian of this map at Px is negative-definite if and only if
r > n,2(Py|x, Px) and negative semidefinite if and only if 7 > n,2(Py|x, Px) (note that this does
not depend on Qx). Thus, taking r = n,2(Py|x) the map Px — V;.(Px,Qx) is concave in Px for
all @x. Thus, its local extremum at Py = Qx is a global maximum and hence V,.(Px,Qx) < 0.
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A.3 Proof of Theorem 4
We shall assume that Px is not a point mass, namely, there exists a measurable set E such that
Px(FE) € (0,1). Define

_ D@yl Py)
) = G DQx P

where the supremum is over all @ x such that 0 < D(Qx||Px) < oo. It is clear that such @ x always
exists (e.g., Qx = Px|xcp and D(Qx||Px) = logﬁ(m € (0,00)). Let

I(U;Y)
I(U; X)

nr(Px) = sup

where the supremum is over all Markov chains U — X — Y with fixed Pxy such that 0 < I(U; X) <
o0. Such Markov chains always exist, e.g., U = 1{xcp and then I(U; X) = h(Px(FE)) € (0,1og2).
The goal of this appendix is to prove (18), namely

nkL(Px) =n1(Px) .
The inequality n;(Px) < nkL(Px) follows trivially:
I(U;Y) = D(Pyjy||Py|Py) < nku(Px)D(Pxul|Px|Pu) = nkL(Px)I(X;U).

For the other direction, fix Qx such that 0 < D(Qx||Px) < oc. First, consider the case where

% is bounded, namely, % < a for some a > 0 Qx-a.s. For any € < ﬁ, let U ~ Bern(e) and

define the probability measure Py = %. Let Pxjg—o = Px and Px =1 = Qx, which defines
a Markov chain U — X — Y such that X,Y is distributed as the desired Pxy. Note that

I(U;Y)  eD(Py||Py)+ eD(Qy||Py)

I(U;X)  eD(Px|Px) + eD(Qx|| Px)

where é=1— ¢ and Py = Pyx o Px. We claim that

D(Px||Px) = o(e), (79)
. . . . . . > = . . I(U;Y) €0
which, in view of the data processing inequality D(Px|Px) < D(Py|Py), implies X

?)((8227“11;?) as desired. To establish (79), define the function

l—ex l—ex
fla,e) & =0 log 5=, €¢>0
(r—1)loge, e=0.

1
) 2a

One easily notices that f is continuous on [0, a] x [0, 5-] and thus bounded. So we get, by bounded

convergence theorem,

LD(Px|P) = Er [ (§25.) | B

dPX’e —l]loge—

To drop the boundedness assumption on % we simply consider the conditional distribution

Qy = Qx|xeca where A = {z : %(:ﬂ) < a} and a > 0 is sufficiently large so that Qx(A) > 0.
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Clearly, as a — oo, we have Q'y — Qx and @} — Qy pointwise (i.e. Qy (E) — Qy (E) for every
measurable set E), where Q% = Py x o Q'x. Hence the lower-semicontinuity of divergence yields

liminf D(Q | Py) > D(Qy|[Py).

1
Qx(

; dox _ dQx
Furthermore, since Iy = A) dPx 14, we have

/ _ 1 1 dQx . [dQx
D(Qx|Px) = log o " QX(A)EQ [logdel {dPX < a}] . (80)

Since Qx(A) — 1, by dominated convergence (note: Eg[|log %H < 00) we have D(Q||Px) —
D(Qx||Px). Therefore,
. D@y |[Py)
lim inf
a=oo D(Qx || Px)

D(Qy||Py)
D(Qx|Px)’

>

completing the proof.

A.4 Proof of Proposition 14

First, notice the following simple result:
D(Q|MP + Q) =0(A\),A =0 <<= P<Q (81)

Indeed, if P £« @ then there is a set £ with p = P[E] > 0 = Q[E]. Denote the binary divergence
by d(p||q) £ D(Bern(p)|Bern(q)). Applying data-processing for divergence to X + 15(X), we get

D(Q[AP +AQ) > d(0]|Ap) = log 1— p

and the derivative at A — 0 is non-zero. If P < @, then let f = % and notice
log A < log(A+ Af) < A(f —1)loge.

Dividing by A and assuming A\ < % we get
1 _
Xlog()\—i-)\f) <Cif +Cs,
for some absolute constants C7, Cy. Thus, by the dominated convergence theorem we get

%D(Q||)\P+5\Q) = —/dQ <ilog(>\+>\f)> - /dQ(l - f)=0.

Another observation is that ~
lim D(P|AP + Q) = D(P||Q) (82)
—

regardless of the finiteness of the right-hand side (this is a property of all convex lower-semicontinuous
functions).
Now, we prove Proposition 14. One direction is easy: if D(Qy | Py) < D(Qy||Py+) then

I(W:Y) = D(Pyw || Py|Pw) < D(Pywl| Py |Pw) = I(W;Y").
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For the other direction, consider an arbitrary pair (Px,Qx). Let W = Bern(e) and Pxy—g = Px,
Pxjw=1 = Qx. Then, we get

I(W;Y) = éD(Py||éPy + eQy) + eD(Qy ||ePy + €Qy),

and similarly for I(W;Y”). Assume that D(Qy||Py+) < oo, for otherwise (62) holds trivially. Then
Qy’ < Pys and we get from (81) and (82) that

I(W3Y') = eD(Qy || Pyr) + o(e) . (83)
On the other hand, again from (82)
I(W3Y) > eD(QyllePy + €Qy) = eD(Qy||Py) + oe) . (84)

Since by assumption I(W;Y) < I(W;Y”) we conclude from comparing (83) to (84) that D(Qy || Py) <
D(Qy||Py’) < oo, completing the proof.

B Contraction coefficients for binary-input channels

In this appendix we provide a tight characterization of the KL contraction coefficient for binary-input
channel Py|x, where X € {0,1} and Y is arbitrary. Clearly, nkr.(Py|x) is a function of P = Py|x—o
and Q £ Py x—1, which we abbreviate as n({ P, @}). The behavior of this quantity closely resembles
that of divergence between distributions. Indeed, we expect n({P,Q}) to be bigger if P and Q are
more dissimilar and, furthermore, n({P,Q}) = 0 (resp. 1) if and only if P = @ (resp. P L Q). Next
we show that n({P,Q}) is essentially equivalent to Hellinger distance:

Theorem 21. Consider a binary input channel Py|x : {0,1} — Y with Py|x—q = P and Py|x—; =
Q. Then, its contraction coefficient nk1.(Py|x) = m2(Py|x) 2 n({P,Q}) satisfies

H%(P,Q) HY(P,Q)
2

<n({P,Q}) < H*(P.Q) — T (85)

where Hellinger distance is defined as H*(P,Q) =2 — 2 [ \/dPdQ.

Remark 8. An obvious upper bound is n({P,Q}) < dry(P,Q) by Theorem 1, which is worse
than Theorem 21 since drv is small than the square-root of the right-hand side of (85). In fact it
is straightforward to verify that the upper bound holds with equality when the output Y is also

binary-valued. In particular, Theorem 21 implies that n({P, @}) is always within a factor of two of
H(P,Q).

Proof. First notice the identities:

o — B)2
*(Bern(a)||Bern(8)) = %ﬁ

. o e [P
ClaP+aQIsP +3Q) = (=87 [ =50

where we denote @ = 1 — a. Therefore the (input-dependent) x2-contraction coefficient is given by

B (aP+aQ||ﬂP+ﬁQ
w2 (Bern(8), Pyjx) = zig 2(Bern(«)||Bern(8 66/ BP + 5@ Co(FlI),
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where LCg(P||@), clearly an f-divergence, is known as the Le Cam divergence (see, e.g., [Vaj09,
p. 889]). In view of Theorem 3, the input-independent KL-contraction coefficient coincides with
that of x? and hence

n{P,Q}) = sup LCs(P||Q).
Be(0,1)
Thus the desired bound (85) follows from the characterization of the joint range between pairs of
f-divergence [HV11], namely, H? versus LC 3, by taking the convex hull of their joint range restricted
to Bernoulli distributions. Instead of invoking this general result, next we prove (85) using elementary
arguments. Since LCy»(P[|Q) =1-2f dPdQ 1 _ [VdPdQ = $H?(P,Q), the left inequality of

dP+dQ
(85) follows 1mmed1ately To prove the right inequality, by Cauchy—SChwartz, note that we have

(1 - $HX(P,Q))* = ([ VAPAQ)? = ([ \/BAP + BdQ, [ 5m95)* < [ 5imt@es =1 - LCs(PI|Q),
for any 8 € (0,1). O

C Simultaneously maximal couplings

Lemma 22. Let X and Y be Polish spaces. Given any pair of Borel probability measures Pxy,Qxy
on X X ), there exists a coupling ™ of Pxy and Qxy, namely, a joint distribution of (X,Y, X', Y")
such that L(X,Y) = Pxy and L(X")Y'") = Qxy under 7, such that

{(X,Y) £ (X', Y")} = drv(Pxy, Qxy) and m{X # X'} = drv(Px, Qx). (86)

Remark 9. After submitting this manuscript, we were informed that this result is the main content
of [Gol79]. For interested reader we keep our original proof which is different from [Gol79] by relying
on Kantorovich’s dual representation and, thus, is non-constructive.

Remark 10. A triply-optimal coupling achieving in addition to (86) also 7[Y # Y'| = drv(Py, Qy)
need not exist. Indeed, consider the example where X, Y are {0, 1}-valued and

1 1

= 0 0 =

P — [ 2 Q — 2
XY <0 5) ) XY (% 0> .

In other words, X,Y ~ Bern(1/2) under both P and @; however, X =Y under Pand X =1-Y
under Q. Furthermore, since dypy(Px,Qx) = drv(Py,Qy) = 0, under any coupling mxy xry of
Pxy and Qxy that simultaneously couples Px to Qx and Py to QQy maximally, we have X = X’
and Y = Y’, which contradicts X =Y and X’ =1 —Y’. On the other hand, it is clear that a
doubly-optimal coupling (as claimed by Lemma 22) exists: just take X = X’ =Y ~ Bern(1/2) and
Y’ =1— X'. It is not hard to show that such a coupling also attains the minimum

Ir;inﬂ[(X,Y) #(X YN +nX X +7]Y £Y] =2

Proof. Define the cost function c(x,y,2’,y’) = V()2 ) T Yaztay = 2 azary + Liamat gty -

Since the indicator of any open set is lower semicontinuous, so is (x,y,2’,y") — c(z,y,2',y).

Applying Kantorovich’s duality theorem (see, e.g., [Vil03, Theorem 1.3]), we have

min E.c(X,Y, X" Y') = maxE X, Y)-E X,Y)]. 87
m€ll(Pxy,Qxy) ( ) £, plf( )] Q[g( )] (87)

where f € L1(P),g € L1(Q) and

f(l',y) - g(xlvy,) < C(:ana :Elvy/)‘ (88)
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Since the cost function is bounded, namely, ¢ takes values in [0, 2], applying [Vil03, Remark 1.3], we
conclude that it suffices to consider 0 < f,g < 2. Note that constraint (88) is equivalent to

flxy) —gla',y') < 2,Ve # 2,y #of
flz,y) —gle,y) < 1,¥2,Vy #yf
flz,y) —g(z,y) <0,Vz,Vy
where the first condition is redundant given the range of f,g. In summary, the maximum on the
right-hand side of (87) can be taken over all f, g satisfying the following constraints:
0<fg<2
fla,y) —g(z,y) < 1,Ve,y #yf
flz,y) —g(z,y) <0,Vz,y

Then
i [f(X.V)) < Bolg(X.¥) = [ max{ [ oot —awwi | 9
where the maximum on the right-hand side is over ¢, : YV — R satisfying
0<¢,9p<2
o(y) —v(y) < LVy # (90)

o(y) —¥(y) <0,Vy

The optimization problem in the bracket on the RHS of (89) can be solved using the following
lemma:

Lemma 23. Let p,q > 0. Let (z)y = max{xz,0}. Then

maX{/ypcb—qw:()Schch?,suquS1+infw}=/(p—Q)++</(p—Q)>+- (91)

)

Proof. First we show that it suffices to consider ¢ = 1. Given any feasible pair (¢,1), set
¢’ = max{¢,inf¢}. To check that (¢, ¢) is a feasible pair, note that clearly ¢’ takes values in [0, 2].
Furthermore, sup ¢’ < sup¢ < 1 +inf1 <1+ inf ¢/. Therefore the maximum on the left-hand side
of (91) is equal to

mgX{/(p—q)cb:OquS?,suWS 1+inf¢}-
Y
Let a = inf ¢. Then

ij{/(p—q)qb:OgngQ,supgbg1—i—infgb}: sup mgx{/(p—q)gb:aﬁqbﬁ?/\(l—i—a)}

0<a<2

= sup mgX{/(p—Q)¢:a§¢§1+a}

0<a<1

- 021;21{(1+a)/(P—Q)++G/(P—Q)—}
- A TARCRO LT
= /(P—Q)++</(p—Q)>+-
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Applying Lemma 23 to (89) for fixed x, we have

max Ep[f(X,Y)] - Eqlg(X,Y)]

f.9

= [ ([ ot = w0 + o) 0o )
/ /(p(%y) —q(z,y))+ +/ (p(x) — q(z))+ = drv(Pxy, Qxy) + drv(Px,Qx)
xJy X

Combining the above with (87), we have

min  7{(X,Y) # (X,Y')} + n{X # X'} = drv(Pxy, Qxy) + drv(Px, Qx).

TXYyXx'y!

Since 7T{(X, Y) # (X/,Y/)} > dTv(ny,Qxy) and 7T{X #* X/} > dry(Px,Qx) for any 7, the

minimizer of the sum on the left-hand side achieves equality simultaneously for both terms, proving

the theorem. 0
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