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Peak-to-average power ratio of good codes for

Gaussian channel

Yury Polyanskiy and Yihong Wu

Abstract

Consider a problem of forward error-correction for the additive white Gaussian noise (AWGN) channel. For finite

blocklength codes the backoff from the channel capacity is inversely proportional to the square root of the blocklength.

In this paper it is shown that codes achieving this tradeoff must necessarily have peak-to-average power ratio (PAPR)

proportional to logarithm of the blocklength. This is extended to codes approaching capacity slower, and to PAPR

measured at the output of an OFDM modulator. As a by-product the convergence of (Smith’s) amplitude-constrained

AWGN capacity to Shannon’s classical formula is characterized in the regime of large amplitudes. This converse-type

result builds upon recent contributions in the study of empirical output distributions of good channel codes.

Index Terms

Shannon theory, channel coding, Gaussian channels, peak-to-average power ratio, converse

I. INTRODUCTION

In the additive white Gaussian noise (AWGN) communication channel a (Nyquist-sampled) waveform xn =

(x1, . . . , xn) ∈ R
n experiences an additive degradation:

Yj = xj + Zj , Zj ∼ N (0, 1) (1)

where Y n = (Y1, . . . , Yn) represent a (Nyquist-sampled) received signal. An (n,M, ǫ, P ) error-correcting code is

a pair of maps f : {1, . . . ,M} → R
n and g : Rn → {1, . . . ,M} such that

P[W 6= Ŵ ] ≤ ǫ ,

where W ∈ {1, . . . ,M} is a uniformly distributed message, and

Xn = f(W ) (2)

Ŵ = g(Y n) = g(f(W ) + Zn) , (3)
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are the (encoded) channel input and the decoder’s output, respectively. The channel input is required to satisfy the

power constraint

‖Xn‖2 ,





n
∑

j=1

|Xj |2




1
2

≤
√
nP . (4)

The non-asymptotic fundamental limit of information transmission over the AWGN channel is given by

M∗(n, ǫ, P ) , max{M : ∃(n,M, ǫ, P )-code} .

It is known that [1]1

logM∗(n, ǫ, P ) = nC(P )−
√

nV (P )Q−1(ǫ) +O(log n) , (6)

where the capacity C(P ) and the dispersion V (P ) are given by

C(P ) =
1

2
log(1 + P ) , (7)

V (P ) =
log e

2

P (P + 2)

(P + 1)2
. (8)

The peak-to-average power ratio (PAPR) of a codeword xn is defined as

PAPR(xn) ,
‖xn‖2∞
1
n‖xn‖22

,

where ‖xn‖∞ = maxj=1...n |xj |. This definition of PAPR corresponds to the case when the actual continuous time

waveform is produced from xn via pulse-shaping and heterodyning:

s(t) =

n
∑

j=1

xjg(t− j) · cos(fct) ,

where g(t) is a bounded pulse supported on [−1/2, 1/2] and fc is a carrier frequency. Alternatively, one could

employ an (ideal) DAC followed by a low-pass filter. Such implementation is subject to peak regrowth due to

filtering: the maximal amplitude of the signal may be attained in between Nyquist samples, and thus the PAPR

observed by the high-power amplifier may be even larger.

In this paper we address the following question: What are the PAPR requirements of codes that attain or come

reasonably close to attaining the performance of the best possible codes (6)? In other words, we need to assess the

penalty on logM∗ introduced by imposing, in addition to (4), an amplitude constraint:

‖Xn‖∞ ≤ An , (9)

where An is a certain sequence. If An is fixed, then even the capacity term in (6) changes according to a well-known

result of Smith [2]. Here, thus, we focus on the case of growing An.

1As usual, all logarithms log and exponents exp are taken to an arbitrary fixed base, which also specifies the information units. Q−1 is the

inverse of the standard Q-function:

Q(x) =

∫
∞

x

e−y
2

√

2π
dy . (5)
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Previously, we have shown, [3, Theorem 6] and [4], that very good codes for AWGN automatically satisfy

An = O(
√
log n). Namely, for any constant γ > 0 there exists γ′ > 0 such that any code with

logM ≥ nC −
√

nV (P )Q−1(ǫ)− γ log n (10)

has at least M
2 codewords with

‖xn‖∞ ≤ γ′√log n

In other words, very good codes cannot have PAPR worse than O(log n). On the other hand, for capacity-achieving

input Xn
∗ ∼ N (0, P ), classical results from extremal value theory shows that the peak amplitude behaves with high

probability according to ‖Xn
∗ ‖∞ =

√
2P log n + oP(1) [5]. Therefore it is reasonable to expect that good codes

must also have peak amplitude scaling as
√
2 log n. Indeed, in this paper we show that, even under much weaker

assumptions on coding performance than (10), the PAPR of at least half of the codewords must be Ω(log n).

Interestingly, the log n behavior of PAPR has been recently observed for various communication systems im-

plementing orthogonal frequency division multiplexing (OFDM) modulation. To describe these results we need to

introduce several notions. Given xn ∈ C
n the baseband OFDM (with n subcarriers) signal sb(t) is given by

sb(t) =
1√
n

n−1
∑

k=0

xke
2πi kt

n ,

whereas the transmitted signal is

s(t) = Re
(

e2πifctsb(t)
)

, 0 ≤ t < n (11)

where fc is the carrier frequency. For large fc, we have that PAPR of s(t) may be approximated as [6, Chapter 5]

OFDM-PAPR(xn) ,
maxt∈[0,n] |s(t)|2

1
n

∫ n

0
|s(t)|2dt ≈ maxt∈[0,n] |sb(t)|2

1
n

∑n−1
k=0 |xk|2

, PMEPR(xn) , (12)

where the quantity on the right is known as the peak-to-mean envelope power (PMEPR).

Note that values of sb(·) at integer times simply represent the discrete Fourier transform (DFT) of xn. Thus

PMEPR is always lower bounded by

PMEPR(xn) ≥ ‖Fxn‖2∞
1
n‖xn‖22

, (13)

where F is the n× n unitary DFT matrix

Fk,ℓ =
1√
n
e2πi

kℓ
n .

In view of (13), it is natural to also consider the case where the amplitude constraint (9) is replaced with

‖Uxn‖∞ ≤ An , (14)

where U is some fixed orthogonal (or unitary) matrix. Note that for large n there exist some (“atypical”) x ∈ C
n

such that the lower bound (13) is very non-tight [6, Chapter 4.1]. Thus, the constraint (14) with U = F is weaker

than constraining inputs to those with small OFDM-PAPR(xn). Nevertheless, it will be shown even with this

relaxation An is required to be of order log n.
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The question of constellations in C
n with good minimum distance properties and small OFDM-PAPR has been

addressed in [7]. In particular, it was shown in [7, Theorems 7 – 8] that the (Euclidean) Gilbert-Varshamov bound

is achievable with codes whose OFDM-PAPR is O(log n) – however, see Remark 2 below. Furthermore, a converse

result is established in [7, Theorem 5] which gives a lower bound on the PAPR of an arbitrary code in terms of

its rate, blocklength and the minimum distance. When xn ∼ Nc(0, P )n, the resulting distribution of OFDM-PAPR

was analyzed in [8]. For so distributed xn as well as xn chosen uniformly on the sphere, OFDM-PAPR tightly

concentrates around log n, cf. [6, Chapter 6]. Similarly, if the components of xn are independently and equiprobably

sampled from the M -QAM or M -PSK constellations OFDM-PAPR again sharply peaks around log n, cf. [9]. If xn

is an element of a BPSK modulated BCH code, then again OFDM-PAPR is around log n for most codewords [6],

[9].

Thus, it seems that most good constellations have a large OFDM-PAPR of order log n. Practically, this is a

significant detriment for the applications of OFDM. A lot of research effort has been focused on designing practical

schemes for PAPR reduction. Key methods include amplitude clipping and filtering [10], partial transmit sequence

[11], selected mapping [12], tone reservation and injection [13], active constellation extension [14], and others –

see comprehensive surveys [15], [16]. In summary, all these techniques take a base code and transform it so as to

decrease the PAPR at the output of the OFDM modulator. In all cases, transformation degrades performance of the

code (either probability of error, or rate). Therefore, a natural question is whether there exist (yet to be discovered)

techniques that reduce PAPR without sacrificing much of the performance.

This paper answers the question in the negative: the Θ(log n) PAPR is unavoidable unless a severe penalty in

rate is taken.

II. MAIN RESULTS

We start from a simple observation that achieving capacity (without stronger requirements like (10)) is possible

with arbitrarily slowly growing PAPR:

Proposition 1: Let An → ∞. Then for any ǫ ∈ (0, 1) there exists a sequence of (n,Mn, ǫ, P ) codes satisfying (9)

such that
1

n
logMn → C(P ), n → ∞ .

Proof: Indeed, as is well known, e.g. [17, Chapter 10], selecting Mn = exp{nC(P ) + o(n)} codewords with

i.i.d. Gaussian entries Xj ∼ N (0, P ) results (with high probability) in a codebook that has vanishing probability

of error under maximum likelihood decoding. Let us now additionally remove all codewords violating (9). This

results in a codebook with a random number M ′
n ≤ Mn of codewords. However, we have

E[M ′
n] = MnP[‖Xn‖∞ ≤ An] (15)

= Mn

(

1− 2Q

(

An√
P

))n

(16)

= Mn · exp{o(n)} = exp{nC(P ) + o(n)} . (17)
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The usual random coding argument then shows that there must exist a realization of the codebook that simultaneously

has small probability of error and number of codewords no smaller than 1
3 E[M

′
n].

Remark 1: Clearly, by applying U−1 first and using the invariance of the distribution of noise Zn to rotations

we can also prove that there exist capacity-achieving codes satisfying “post-rotation” amplitude constraint (14). A

more delicate question is whether there exist good codes with small PMEPR (which approximates OFDM-PAPR).

In that regard, [8] and [6, Chapter 5.3] show that if Xn ∼ CN (0, P In) we have

P[PMEPR(Xn) ≤ A2
n] ≈ e−

√
π
3 nAne

−A2
n
. (18)

Thus, repeating the expurgation argument in (17) we can show that there exists codes with arbitrarily slowly growing

OFDM-PAPR and achieving capacity. Furthermore, there exist codes achieving expansion in (6) to within O(
√
n)

terms with OFDM-PAPR of order log n.

Remark 2: 2 Not only capacity, but also the Gilbert-Varshamov (GV) bound on the sphere in R
n can be achieved

with arbitrarily slow growing PMEPR, that is, An = ω(1). Note that previously [7, Theorems 7 – 8] only showed

the attainability of the GV bound with An = Θ(
√
log n). Indeed, since the GV bound follows from a greedy

procedure, it is sufficient to show that for arbitrary An → ∞ we have

P[PMEPR(Xn) ≤ A2
n] = eo(n) , (19)

where Xn is uniformly distributed on a unit sphere S
n−1 ⊂ R

n. Furthermore, we may take Xn = Zn/‖Zn‖2 with

Zn ∼ N (0, In). Since ‖Zn‖2 exponentially concentrates around (1± ǫ)
√
n, statement (19) is equivalent to

P[PMEPR(Zn) ≤ const · nA2
n] = eo(n) , (20)

Notice that for Zn being uniform on the hypercube {−1,+1}n the estimate (20) was shown by Spencer [18, Section

5], and it implies achievability of the binary GV bound with ω(1) PMEPR – see [6, Section 5.4]. From [18, (5.4)]

there exist vectors Lj ∈ R
n, j = 1, . . . , 4n with norms ‖Lj‖2 =

√
n and such that (20) is equivalent to

P

[

max
j

|(Lj , Z
n)| ≤ const · √nAn

]

= eo(n) . (21)

Note that P[(Lj , Z
n) ≤ const ·√nAn] = 1−Q(A−1

n ) = eo(1). Finally, (21) follows from Šidák’s lemma (see, e.g.,

[19, (2.8)]):

P

[

max
j

|(Lj , Z
n)| ≤ const · √nAn

]

≥ (1−Q(A−1
n ))4n = eo(n).

From Proposition 1 it is evident that the question of minimal allowable PAPR is only meaningful for good codes,

i.e. ones that attain logM∗(n, ǫ, P ) to within, say, terms of order O(nα). The following lower bound is the main

result of this note:

Theorem 2: Consider an (n,M, ǫ, P )-code for the AWGN channel with ǫ < 1/2

logM ≥ nC(P )− γnα (22)

2This result was obtained in collaboration with Dr. Yuval Peres <peres@microsoft.com>.
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for some α ∈ [1/2, 1) and γ > 0. Define

δα,P = (1− α)(
√
1 + P − 1)2. (23)

Then for any δ < δα,P , there exists an N0 = N0(α, P, δ, γ, ǫ), such that if n ≥ N0, then for any n× n orthogonal

matrix U at least M
2 codewords satisfy

‖Uxn‖∞ ≥
√

2δ log n . (24)

Remark 3: The function α 7→ δα,P suggests there exists a tradeoff between the convergence speed and the peak

amplitude for a fixed average power budget P . Choosing U to be the identity matrix, Theorem 2 implies that any

sequence of codes with rate C(P )−O(n−(1−α)) needs to have PAPR at least

2δα,P
P

log n =
2(1− α)(

√
1 + P − 1)2

P
log n .

In particular for α = 1
2 , note that

δ 1
2
,P

P ≤ 1
2 for P > 0. On the other hand, Xn independently drawn from the

optimal input distribution N (0, P ) has PAPR 2 log n(1 + o(1)) with high probability regardless of P . It is unclear

what the optimal α-δ tradeoff is or whether it depends on the average power P .

Proof: We start with a few simple reductions of the problem. First, any code {c1, . . . , cM} ⊂ R
n can be

rotated to {U−1
c1, . . . , U

−1
cM} without affecting the probability of error. Hence, it is enough to show (24) with

U = In, the n × n identity matrix. Second, by taking some ǫ′ > ǫ and reducing the number of codewords from

M to M ′ = cǫM we may further assume that the resulting (n,M ′, ǫ′) subcode has small maximal probability of

error, i.e.

P[Ŵ 6= i|W = i] ≤ ǫ′ , i ∈ {1, . . . ,M} .

Note that by Markov’s inequality, cǫ ≥ 1 − ǫ
ǫ′ . Since ǫ < 1/2 we may have cǫ > 1/2 by choosing ǫ′ ∈ (2ǫ, 1).

Third, if a resulting code contains less than M
2 codewords satisfying (24), then by removing those codewords we

obtain an (n,M ′′, ǫ′, P ) code such that

logM ′ ≥ nC(P )− γnα − log

(

cǫ −
1

2

)

, nC(P )− γ′nα .

Thus, overall by replacing γ with γ′, M with M ′′ and ǫ with ǫ′ it is sufficient to prove: Any (n,M, ǫ, P ) code

with maximal probability of error ǫ satisfying (22) must have at least one codeword such that

‖xn‖∞ ≥
√

2δ log n , (25)

provided n ≥ N0 for some N0 ∈ N depending only on (α, ǫ, P, γ, δ). We proceed to showing the latter statement.

In [20, Theorem 7] (see also [21]) it was shown that for any (n,M, ǫ, P ) code with maximal probability of error

ǫ we have

D(PY n ||P ∗
Y n) ≤ nC(P )− logM + a

√
n ,
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where a > 0 is some constant depending only on (ǫ, P ), P ∗
Y n = N (0, 1+P )n and PY n is the distribution induced

at the output of the channel (1) by the uniform message W ∈ {1, . . . ,M}. In the conditions of the theorem we

have then

D(PY n ||P ∗
Y n) ≤ γnα + a

√
n ≤ γ′nα, (26)

where γ′ can be chosen to be γ + a.

Next we lower bound D(PY n ||P ∗
Y n) by solving the following I-projection problem:

un(A) = inf
PY n

D(PY n ||N (0, 1 + P )n) , (27)

where PY n ranges over the following convex set of distributions:

PY n = PXn ∗ N (0, 1)n , PXn [‖Xn‖∞ ≤ A] = 1.

Since the reference measure in (27) is of product type and D(PUn ||∏n
i=1 QUi

) ≥∑n
i=1 D(PUi

||QUi
), we have

un(A) = nu1(A) . (28)

To lower bound u1(A), we use the Pinsker inequality [22, p. 58]

D(P ||Q) ≥ 2 log eTV2(P,Q), (29)

where the total variation distance is defined by TV(P,Q) = supE |P (E) −Q(E)| with E ranging over all Borel

sets. Next we lower bound TV(PY1 ,N (0, 1 + P )) in a similar manner as in [23, Section VI-B]. To this end, let

Y ∗
1 ∼ N (0, 1 + P ). Fix r > 1√

1+P−1
. Since P [|X1| ≤ A] = 1, applying union bound yields

P

[

|Y1| > r
√
1 + PA

]

≤ P

[

|Z1| > A(r
√
1 + P − 1)

]

= 2Q(A(r
√
1 + P − 1)). (30)

On the other hand,

P

[

|Y ∗
1 | > r

√
1 + PA

]

= 2Q(rA). (31)

Assembling (30) and (31) gives

TV(PY1 ,N (0, 1 + P )) ≥ Q(rA)− 2Q(A(r
√
1 + P − 1)). (32)

Combining (29) and (32), we have

u1(A) ≥
(

Q(rA)−Q((r
√
1 + P − 1)A)

)2

8 log e . (33)

Suppose that An , ‖Xn‖∞ ≤ √
2δ log n. Let r = 1√

1+P−1
− τ with τ > 0. Note that for all x > 0,

xϕ(x)

1 + x2
≤ Q(x) ≤ ϕ(x)

x
(34)
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where ϕ(x) = 1√
2π

e−x2/2 is the standard normal density. Assembling (26), (27), (28) and (33), we have

γ′nα−1 ≥
(

Q(r
√

2δ log n)−Q((r
√
1 + P − 1)

√

2δ log n)
)2

8 log e

≥ c1
n−δr2

√
log n

. (35)

for all n ≥ N0, where c1 and N0 only depend on P and τ . Hence

δ ≥
1− α− c2 log logn

logn

r2
.

for some constant c2 only depends on P and τ . By the arbitrariness of τ , we complete the proof of (25).

Theorem 3: Any (n,M, ǫ, P ) code with maximal probability of error ǫ must contain a codeword xn such that

‖xn‖∞ ≥ A (36)

where A is determined as the solution to

(

Q(r∗A)−Q((r∗
√
1 + P − 1)A)

)2

8 log e = C − 1

n
logM +

√

6(3 + 4P )

n
log e+

1

n
log

2

1− ǫ
,

where

r∗ =

√

A2 + P log(P + 1) +A
√
P + 1

AP
. (37)

Remark 4 (Numerical evaluation): Consider SNR=20 dB (P = 100), ǫ = 10−3 and blocklength n = 104. Then,

any code achieving 95%, 99% and 99.9% of the capacity is required to have PAPR −1.2 dB (trivial bound), 1.99 dB

and 3.85 dB, respectively.

Proof: The proof in [20] actually shows

D(PY n ||P ∗
Y n) ≤ nC − logM +

√

6n(3 + 4P ) log e+ log
2

1− ǫ
.

Let An = ‖xn‖∞. Using D(PY n ||P ∗
Y n) ≥ nu1(An) and the lower bound on u1(A) in (33), we obtain the result

after noticing that the right-hand side of (33) is maximized by choosing r as in (37).

III. AMPLITUDE-CONSTRAINED AWGN CAPACITY

As an aside of the result in the previous section, we investigate the following question: How fast does the

amplitude-constrained AWGN capacity converges to the classical AWGN capacity when the amplitude constraint

grows? To this end, let us define

C(A,P ) = sup
E[X2]≤P

|X|≤A a.s.

I(X;X + Z) (38)

This quantity was first studied by Smith [2], who proved the following: For all A,P > 0, C(A,P ) < C(∞, P ) =

1
2 log(1 + P ). Moreover, the maximizer of (38), being clearly non-Gaussian, is in fact finitely supported. Little is

known about the cardinality or the peak amplitude of the optimal input. Algorithmic progress has been made in [24]

where an iterative procedure for computing the capacity-achieving input distribution for (38) based on cutting-plane

methods is proposed. On the other hand, the lower semi-continuity of mutual information immediately implies that

August 8, 2014 DRAFT
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C(A,P ) → 1
2 log(1 + P ) as A → ∞. A natural ensuing question is the speed of convergence. The next result

shows that the backoff to Gaussian capacity due to amplitude constraint vanishes at the same speed as the Gaussian

tail.

Theorem 4: For any P > 0 and A → ∞ we have

e
− A2

(
√

1+P−1)2
+O(lnA) ≤ 1

2
log(1 + P )− C(A,P ) ≤ e−

A2

2P +O(lnA). (39)

Remark 5: Non-asymptotically, for any A,P > 0, the lower (converse) bound in (39) is
(

(
√
1 + P − 1) log(1 + P )

A+A1

)2

ϕ2

(√
1 + P

A1

P
+

A

P

)

8 log e , (40)

and the upper (achievability) bound is

1

1− 2Q(θ)

{

Q(θ) log

(

1 +
A
√
P

1 + P
· ϕ(θ)
Q(θ)

)

+ h(2Q(θ))

}

(41)

where θ , A√
P

, A1 ,
√

A2 + P log(1 + P ), and h(·) denotes the binary entropy function.

Remark 6: Theorem 4 focuses on the fixed-P -large-A regime where the achievability is done by choosing a

truncated Gaussian distribution as the input. It is interesting to compare our results to the case where A and
√
P

grow proportionally. To this end, fix α > 1 and let A =
√
αP . It is proved in [25, Theorem 1] that as P → ∞,

1
2 log(1 + P ) − C(

√
αP ,

√
P ) → L(α), where L(α) can be determined explicitly [25, Eq. (21)]. Moreover, let

us denote the capacity-achieving input for (38) by X∗
A,P . Then as P → ∞, 1√

P
X∗√

αP,P
converges in distribution

to the uniform distribution (resp. a truncated Gaussian distribution) on [−√
α,

√
α] if α ≤ 3 (resp. α > 3). In

particular, L(3) = 1
2 log

πe
6 corresponds to the classical result of 1.53dB shaping loss [26]. The non-asymptotic

bounds in Remark 5 yields a suboptimal estimate to L(α) in the proportional-growth regime.

Proof: The lower bound follows from the proof of Theorem 2 by noting that for any X such that E[X] = 0,

E[X2] ≤ P and |X| ≤ A,

1

2
log(1 + P )− I(X;X + Z) ≥ 1

2
log(1 + E[X2])− I(X;X + Z)

= D(PX+Z || N (0, 1 + E[X2]))

≥ D(PX+Z || N (0, 1 + P )) (42)

≥ u1(A) (43)

≥
(

Q(r∗A)−Q((r∗
√
1 + P − 1)A)

)2

8 log e, (44)

where (42) follows from the fact that infs>0 D(PY || N (0, s)) = D(PY || N (0,E[Y 2])) for all zero-mean Y , while

(43) and (44) follow from (27) and (33) with r = r∗ as in (37), respectively. We can then further lower bound (44)

by 8 log eϕ2(b)(b− a)2, where

b ,
√
1 + P

A1

P
+

A

P
> a ,

√
1 + P

A

P
+

A1

P

The proof of (40) is completed upon noticing that

b− a =
(
√
1 + P − 1) log(1 + P )

A+A1
.
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To prove the upper bound, we use the following input distribution: Let X∗ ∼ N (0, P ). Let XA and X̄A be

distributed according to X∗ conditioned on the event |X∗| ≤ A and |X∗| > A, i.e., P [XA ∈ ·] = P[X∗∈·∩[−A,A]]
P[X∗∈[−A,A]] .

Then in view of (34) we have

E
[

X2
A

]

= P − 2θPϕ(θ)

1− 2Q(θ)
< P (45)

E[X̄2
A] = P +

θPϕ(θ)

Q(θ)
. (46)

Then

1

2
log(1 + P ) = I(X∗;X∗ + Z)

= I(X∗,1{|X∗|>A};X∗ + Z)

≤ I(XA;XA + Z)P [|X∗| ≤ A] + I(X̄A; X̄A + Z)P [|X∗| > A] +H(1{|X∗|>A}).

In view of (46), we have

(1− 2Q(θ))I(XA;XA + Z) ≥ 1

2
log(1 + P )−Q(θ) log

(

1 + P +A
√
P
ϕ(θ)

Q(θ)

)

− h(2Q(θ)),

completing the proof of (41).
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