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Abstract—In this paper we establish a new inequality tying
together the coding rate, the probability of error and the
relative entropy between the channel and the auxiliary output
distribution. This inequality is then used to show the strong
converse, and to prove that the output distribution of a code
must be close, in relative entropy, to the capacity achieving output
distribution (for DMC and AWGN). One of the key tools in our
analysis is the concentration of measure (isoperimetry).

Index Terms—Shannon theory, strong converse, information
measures, empirical output statistics, concentration of measure,
general channels, discrete memoryless channels, additive white
Gaussian noise.

I. INTRODUCTION

The problem of constructing capacity achieving channel
codes has been one of the main focuses of information and
coding theories. In this paper we demonstrate some of the
properties that such codes must necessarily posses. Such
characterization facilitates the search for the good codes;
leads to strong converses; may prove useful for establishing
converse bounds in multi-user communication problems where
frequently the code used at one terminal creates interference
for others [1]; helps in the context of secure communication,
where output statistics of the code is required to resemble
the white noise; and also becomes crucial in the problem of
asynchronous communication where the output statistics of the
code imposes the limits on the quality of synchronization [2],
[3].

Specifically, this paper focuses on the properties of the
output distribution induced by a capacity achieving code. In
this regard, [4] showed that capacity achieving codes with
vanishing probability of error, satisfy [4, Theorem 2]:

1 .
~D(Py+||Pya) =0, (1)

where Py~ denotes the output distribution of the code and Py
the unique capacity achieving output distribution. As will be
explained below, bounding the relative entropy D(Pyn || Ps+)
leads to precision guarantees for the approximation of expec-
tations

/f(y”)dPYn ~ /f(y")dP;?n-

In this paper we extend (1) to the case of non-vanishing
probability of error. The motivation comes from the fact
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that the analysis of fundamental limits in the regime of
fixed probability of error proves to be quite fruitful for non-
asymptotic characterization of attainable performance over a
given channel [5]. It turns out that extension of (1) only holds
under the maximal probability of error criterion and inher-
ently relies on the phenomenon of concentration of measure
(isoperimetry).

The organization of the paper is as follows. Section II
contains the main definitions and notation. In Section III a key
inequality is derived upon which all of the results of the rest of
the paper are based. Section IV presents a sufficient condition
for the strong converse which simultaneously captures most
of the cases considered in the literature. Sections V and VI
prove (1) for a class of discrete memoryless channels (DMCs)
and the additive white Gaussian noise (AWGN) channel.
Section VII discusses a number of useful implications of
the convergence (1). Finally, Section VIII demonstrates a
technique for extending some of the results to channels for
which no estimate (1) is known.

II. NOTATION

A random transformation Py x : X — } is a Markov
kernel acting between a pair of measurable spaces. An
(M, €)avg code for the random transformation Py x is a

pair of random transformations f : {1,...,M} — X and
g:Y —{1,..., M} such that
P[W # W] <e, 2

where the underlying probability space is
. p .
whox Xy Ly 3)

with W equiprobable on {1,...,M}. An (M, €),q: code
is defined similarly except that (2) is replaced with a more
stringent maximal probability of error criterion:

max P[W £ W|W =j] <e. )

1<j<M

A code is called deterministic, denoted (M, e€)get, if the
encoder f is a functional (non-random) mapping.
For each random transformation Py x we define:

o maximal mutual information:

C=supl(X;Y), (5)
Px

which we assume to be finite.
« a set of capacity achieving input distributions, caid’s:

I ={Px:I(X;Y)=C}. (6)



Under the assumption C < oo, the set is non-empty [4].
« capacity achieving output distribution, caod:

Py() = /B Py x (1) P} (dx) ™

where Py € IL
The important fact is that despite non-uniqueness of caid,
caod is in fact unique [4]. Moreover, we have the following
estimates [4]

D(Py | x||Py|Px) C (8)
D(Py||Py) C—-I(X;Y), )

where Px is an arbitrary input distribution. In particular (9)
shows that Py; dominates all possible output distributions:

VPx (10)
Vo€ X. (11)

A channel is a sequence of random transformations,
{Pyn|xn,n = 1,...} indexed by the parameter n, referred
to as the blocklength. In this paper we assume that C,,
the maximal unnormalized mutual informations associated to
Py-n|xn, are finite for all n =1,..., and

<
<

Py < P;

Pyix—. < Py,

Cp — o0, n— oo.

A channel (used without feedback) is called memoryless if

Pynxn_gn = H Py x—z,;
i=1
where Py | x is a single-letter kernel. For a memoryless channel
with no input constraints C, = nC, where C' = C; is the
capacity of the channel. An (M, ¢€) code for the n-th random
transformation is called an (n, M, e) code. A sequence of
(n, M, €) codes is called capacity achieving if

log My, = Cp + 0(Cy) . (13)

We also need to introduce the performance of an optimal
binary hypothesis test, which was one of the main tools in our
previous treatment [5]. Consider a W-valued random variable
W which can take probability measures P or (). A randomized
test between those two distributions is defined by a random
transformation Py, : W — {0, 1} where 0 indicates that the
test chooses (). The best performance achievable among those
randomized tests is given by!

Ba(P,Q) = min Y Q(w)Pzw (1jw),
weW

where the minimum is over all probability distributions Py
satisfying

12)

(14)

weW

5)

The minimum in (14) is guaranteed to be achieved by the
Neyman-Pearson lemma. Thus, S, (P, Q) gives the minimum
probability of error under hypothesis () if the probability of
error under hypothesis P is not larger than 1 — a.

'We sometimes write summations over alphabets for simplicity of exposi-
tion; in fact, the definition holds for arbitrary measurable spaces.

III. KEY INEQUALITY

Theorem I: Consider a random transformation Py |y, a
distribution Px induced by an (M, €)mau.der code and an
auxiliary output distribution ()y. Assume that for all z € X
we have

d(x) 2 D(Py x—s||Qy) < o0 (16)

and

sup Py |x— |log dpg'ﬁ(y) >dx) + Al <8, (A7)
@ Qy

for some pair of constants A > 0 and 0 < ¢’ < 1 — e. Then

we have

1—e—-9

—

D(Pyx||Qy|Px) > log M — A +log (18)

Proof: Fix arbitrary ¢ and choose an (M’ €) subcode by
including only codewords belonging to the set

A B {zd(x) <t). (19)
Note that
M' = MP[d(X) <t]. (20)
By the meta-converse [5, Theorem 31] we have
1
. - B < 1L
mlél%fh Bi—e(Py|x=zQy) < U (21)

On the other hand, using the standard lower bound on (3 [5,
(102)]

B1—e(Py|x=z,Qy)
Py x—s
L (1 —e— PY|X:x [ Y|X=

> 7(96)} ) (22)

v (@) Qv
where v(z) = exp{d(z) + A}. According to (17) we have
Py|x
Pyix= [ > 7(:6)] <9, (23)
Qy
which applied to (22) implies
1
Bi—e(Py|x—,Qy) > —— (1—€—=10) . (24)
1 ( Y|X Y) 'Y(I) ( )
Plugging this back into (21) we get
1
— > exp{-A—supdx)}(1-e=08) (25
M’ rEA,L
> exp{-A—-t}(1—-€e—19) (26)
But then from (20) we have for all ¢
Pld(X) <] < ﬁ exp{t+A—log M}. (27)
e—
In other words,
Pld(X) > 1] > 1 — ﬁ exp{t+ A —log M}. (28)
e —
Integrating (28) over ¢ we obtain
E[d(X)]
tm
> /(1 — Ly ep{t+A-logM})dt  (29)

0



where ¢, is found by solving

1
- —— expltm+A—logM} =0, (30)
1—e—4¢
which yields
tm =logM(1—€e—0")—A. (31)
Continuing from (29) we have
tm
E[d(X)] > / (L —exp{t—tn})dt  (32)
’ 0
=ty — / exp{x}dx (33)
—tm
0
> by — / exp{z}dx (34)
= t,, —loge (35)
= logM(1—€e—¢)—A—loge. (36)
|

One way to estimate the upper deviations in (17) is using
Chebyshev’s inequality. As an example, we obtain

Corollary 2: If in the conditions of Theorem 1 we re-
place (17) with?
APy |x—g

dQy
for some constant S,,, > 0, then we have

sup Var [log (Y)‘X = :v] < Sm 37)

25m
D(Py|x||Qy|Px) = log M — 0 (38)

— €

41 1—¢

og ——— .
& 2e

IV. APPLICATION: GENERAL CHANNELS

Our first application of Theorem 1 is in proving a general
strong converse. Recall that a channel, e.g. [6, Definition 1],
is a sequence of random transformations Pyn|x» @ X™ —
Y". Let C,, be the associated sequence of maximal mutual
informations. Then a sequence of output distributions Qyn is
said to be quasi-caod if

sup D(Pyn xn||Qyn|Pxn) <Cp+o0(Cpn),
xn

(39)

where the supremum is over all distributions on X™. Note
that under the assumption of measurability of singletons in
X", (39) is equivalent to

Seu‘;gn D(PY"\X":m”QY") < Cn + O(Cn) . (40)

By taking Pxn to be a capacity achieving input distribution,
the o(C,,) term in (39) (and thus in (40)) is shown to be
non-negative; it is zero precisely for those n for which
@y~ is the caod. For completeness, we notice that requiring
D(P§.||Qyn) = o(Cyn) and D(Qyn||Py.) = o(Cy) is not
sufficient for Qy~ to be quasi-caod?.

20f course, variance in (37) is computed with Y distributed according to
Py x—q-

3For a counter-example, consider the sequence of n-ary symmetric channels
with a fixed crossover probability § (so that C, = (1 —§) logn + o(logn)).
Then set Qyn equiprobable on n — 1 elements and equal to n% on the
remaining one.

The motivation for introducing quasi-caods is the following.
For memoryless channels without input constraints, one can
easily see that the caod Py, for blocklength n is simply an
n-th power of a single-letter caod Fy::

Py, = (Py)". 41)
At the same time, in the presence of input constraints finding
the n-letter caod maybe problematic. For example, for the
AWGN channel with SNR P and blocklength n the input space
is
X" ={a" €R":> a7 <nP}. (42)
Thus finding the caod involves solving a maximization prob-
lem for the mutual information over the input distributions
supported on the ball, whose solution may not be straightfor-
ward. It is easy to show, however, that for the present channel
Cr, = nC + o(n). Thus the product-Gaussian distribution

Qy» =N(0,(1+ P)I,) (43)

is readily seen to be a quasi-caod. )3, can be found by the
following method: every input distribution over the ball is an
element of a wider family of distributions satisfying

(44)

Maximization of the mutual information over this wider family
is easy and the corresponding output distribution is the product
Gaussian (43).

Definition 1: Consider a channel {Pynxn,n = 1,...}
with a sequence of maximal mutual informations C,. A
sequence of codes {F,,n = 1,...} for the channel is called
strongly information stable if there exist sequences of numbers

A, = o(C,) and 6, — 0 and a quasi-caod sequence
{Qyn~,n=1,...} such that
dP n ’Vl—m
sup Pynjxney |10g —— X2 > nd,, (x) + Ap| < 6,
rE€Fn dQYn
(45)
where
Al
dy(x) = ED(Panxn:mHQyn). (46)

The channel is called strongly information stable if (45) holds
with supremum extended to the whole of X™.

Note that Definition 1 places no constraint on how reliable
the code is, nor on its rate. Note also that a channel is
Dobrushin information stable if for a sequence of caod’s
{P$n,n=1,...} one has for some C' > 0

1. dPynxn

—log ————(Y"| X"
o8 (VX = O

(47)
in probability, where X™ is distributed according to a capacity
achieving input distribution. Thus, our definition is stronger in
requiring concentration for each X as opposed to taking the
average with respect to a capacity achieving distribution.



Theorem 3 (Strong converse): If channel {Pyn|Xn,n =
1,...} is strongly information stable then for any 0 < € < 1
and any sequence of (n, My, €)qvy codes we have

log My, < Cp + 0(Cy) . (48)

Remark: Typically C,, = nC + o(n), in which case the
right-hand side of (48) becomes

log M,, <nC + o(n). (49)

Proof: Since the probability of error € is in the average
sense, we can assume without loss of generality that the
encoder is deterministic. Then standard expurgation shows
that for any ¢ > ¢ there is a sequence of (n, M, € )maz,det
subcodes with

M), > cM,,, (50)

for a certain constant 0 < ¢ < 1. Then by Theorem 1 and (40)
we have

€— 0,

log M), <Cp, +0(Cn) + Ay, —log% , (51)

where (A,,d,) are from (45). Together (50) and (51)
prove (48). |

The sufficient conditions of Theorem 3 are quite general
and capture many of the cases considered previously in the
literature, including most memoryless and ergodic channels.
One exception is the scalar fading channel [7] with memo-
ryless fading process, where unfortunately the multiplicative
random factor disables the estimate (45). In that case, however,
one can show that every code must necessarily have a large,
information stable subcode to which in turn Theorem 1 can
be applied precisely as in the preceding proof.

Theorem 4: Consider a sequence of (n,M,, €)max det
codes which is both capacity-achieving and information stable.
Then

I(X™Y")=Ch+0(Cy) < D(Pyn||Qyn) =0(Cp),
(52)
where Pxn» and Pyn are the input and output distributions
induced by the n-th code, and Qy~ is the quasi-caod sequence
from Definition 1.
Remark: For memoryless channels C,, = nC + o(n) and
Qyn» = (P§)" and thus (52) can be restated as

1 1

Proof: The direction = is trivial from the definition of
quasi-caod and the identity

I(X™Y™) = D(Pyn|xn||Qyn|Pxn) — D(Pyn|[Qyn).
(54)
For the direction < we have from (13), Definition 1 and
Theorem 1

D(PYn‘Xn ||Qyn |PXn) Z C’ﬂ + O(Cn) .
Then the conclusion follows from (54) and the fact that by
definition I(X";Y™) < C,. [ |
We remark that Theorems 3 and 4 can also be derived from

a simple extension of the Wolfowitz converse [8], see also [5,
Theorem 9], to an arbitrary output distribution Qy .

V. APPLICATION: DMC

Theorem 5: Consider a DMC Py |x with capacity C' > 0.

Then for any sequence of (n, M,,, €)maz,det codes achieving
capacity, i.e. )

lim —log M, =C,

n—,oo M

(55)

we have

1 .
~D(Py||Pf) =0, (56)

where Py~ is the output distribution induced by the code and
P5, = (Py)™ is the multi-letter caod, which is an n-th power
of the single-letter caod Py-. The claim need not hold if the
maximal probability of error is replaced with the average of
if the encoder is allowed to be random.

Remark: If Py is equiprobable on ) (such as for some
symmetric channels), (56) is equivalent to

H(Y™) =nH(Y*) +o(n). (57)

In any case (56) always implies (57) as (104) applied to
fly) =log % shows. Note also that traditional combinato-
rial methods, e.g. [9], are not helpful in dealing with quantities
like H(Y™), D(Pyn||Psn) or Pyn-expectations of functions
which are not of the form of cumulative average.

Proof: Here we only present a proof under an additional
assumption that the transition matrix does not contain zeros:
Py x(-]-) > 0. Fix y™ € Y™, 1 < j <n and denote

yn(b)7 = (y17"'7yj—17b7yj+17'"7yn)- (58)
Then,
|log Py~ (y") — log Py« (y" ();)]

Py v (y5ly;)
= |log——2 "~ (59)

Py, v, (bly;)

Py‘X(b|a)

< 1 60
= R By (V) (60)
2 4 <. ©61)

Therefore, the discrete gradient (see definition of D(f) in [10,
Section 4]) of the function log Py« (y™) on Y™ is bounded
by nla1|? and thus by the discrete Poincaré inequality [10,
Theorem 4.1f] we have

Var [log Py» (Y™)|X™ = 2"] < nla;|?. (62)

Therefore, for some 0 < as < oo and all 2™ € X" we have

PYn‘Xn (Yn|.Xn)
PYn (Yn)

< 2Var [log Pyn x (Y X™)| X" = 2"
+ 2 Var [log Py~ (Y")| X" = 2"]

< 2nay + 2nja1|?,

Var |log

X" = x"]

(63)
(64)
where (64) follows from the fact that log Py |y~ is a sum of

independent random variables and (62). Applying Corollary 2
with S,,, = 2naz + 2n|a1|? and Qy = Py~ we obtain:



We can now complete the proof:

D(Py+|P)
= D(Pyn‘X71||P)tn|PXn) - D(Pyn|Xn||Pyn|PX7z) (66)

< nC = D(Pynjxn||[Pyn|Pxn) (67)
< nC —log M,, + O(y/n) (68)
<o(n), (69)

where (67) is because Py, is the caod and (8), (68) follows
from (65) and (69) is because the considered sequence of codes
is capacity achieving (55). Clearly, (69) is equivalent to (56).

Next we show that (56) cannot hold if the maximal probabil-
ity of error is replaced with the average. To that end, consider
a sequence of (n, M/, € )maz, det codes with €, — 0 and

n»-n

1 log M) — C. (70)
n

For all n such that ¢/, < 1

5 this code cannot have re-
peated codewords and we can additionally assume (perhaps
by reducing M/ by one) that there is no codeword equal to
(zo,...,x0) € X", where z( is some fixed letter in X such
that

D(Py|x=z,||Py) >0 (71)

(existence of such z relies on the assumption C' > 0). Denote
the output distribution induced by this code by Py...

Next, extend this code by adding 5= M, codewords which
all coincide and are equal to (xq,...,x9) € X™. Then the
average probability of error of the extended code is easily
seen to be not larger than e. Denote the output distribution
induced by the extended code by Py~ and define a binary

random variable

S = 1{Xn: (1‘0,...,1‘0)} (72)
with distribution
€e—e,
Ps(1) =1— Ps(0) = o (73)
We have then
D(Pyw||Pyn)
= D(Pyn|5||P;§n|P5) — D(PS‘Yn”PS'Pyn) (74)
> D(Pyn|s||P;§n|P5) —aq (75)

= nD(Py|x—q,||Py)Ps(1) + D(Py.||Pyn)Ps(0) — a1
(76)

=nD(Py|x—q,||Py)Ps(1) +o(n), (77

where (74) is by the usual chain-rule for the relative en-
tropy, (75) follows since S is binary and therefore for all
sufficiently large n and any binary distribution ()5 we have

1 1
D(Qs||Ps) < max{logm,logm} (78)
< 2max{log1,log11 } (79)
€ — €
2 4 <oo; (80)

(76) is by noticing that Pyn|s—¢ = P, and (77) is by [4,
Theorem 2]. It is clear that (71) and (77) show the impossi-
bility of (56).

Similarly, one shows that (56) cannot hold if the assumption
of the deterministic encoder is dropped. Indeed, then we can
again take the very same (n, M/ e)) code and make its
encoder randomized so that with probability T it outputs
(zo,...,m0) € X™ and otherwise it outputs the original
codeword. The same analysis shows that (77) holds again and

thus (56) fails. |

Note that the counter-examples constructed above also
demonstrate that in Theorem 1 the assumptions of maximal
probability of error and deterministic encoders are not super-
fluous.

VI. APPLICATION: AWGN

Recall that the AWGN(P) channel is a sequence of
random transformations Pynx» : X" — R", where A™ is
defined in (42) and

Pynixn_p = N(z,1,). (81)

Theorem 6: Consider a sequence of (n, My, €)max.det
codes achieving the capacity of the AW G N (P) channel. Then
we have

%D(PynHN(O, (1+P)I,)—0, (82)

where Py~ is the output distribution induced by the code.
The claim need not hold if the maximal probability of error
is replaced with the average of if the encoder is allowed to be
random.

Remark: As explained in Section II, (0, (1 + P)L,) is a
quasi-caod sequence. Note also that Theorem 6 cannot hold
if the power-constraint is understood in the average-over-the-
codebook sense; see [6, Section 4.3.3].

Proof: Denote by lower-case pyn|xn—, and py~ densities
of Pynxn—, and Pyn. Then an elementary computation
shows

Viogpyn(y) = (y —E[X"|Y" =y])loge.  (83)
For convenience denote
X" =E[X"Y"] (84)
and notice that since || X™|| < v/nP we have also
| x| < vaP. (85)




Then

E [V logpy-(Y™)[I* | X"]

log?e
“ 2
- E “Y”—X" ‘X”} (86)
r R 2
< 9E ||Y”|\2‘X"} 49 [HX" X”] (87)
< 9E '||Y"|\2‘X"} +2nP (88)
= 9F [|x" + 27| ’X"} +onP (89)
< 4| XM + 4n +2nP (90)
< (6P +4)n, 1)

where (87) is by a simple Cauchy-Schwartz estimate for any
a,beR"”
lla+b]1” < 2llall* +2]1b]1* (92)

(88) is by (85), in (89) we introduced Z™ ~ N (0, 1,,) which is
independent of X, (90) is by (92) and (91) is by the power-
constraint for X".

According to (81), conditioned on X" random vector Y"
is Gaussian. Thus, from Poincaré inequality for the Gaussian
measure, e.g. [11, (2.16)], we have

Var[log py« (Y") | X"] < E[||Vlogpy»||* | X"]  (93)
and together with (91) this yields the required estimate
Var[log py»(Y") | X"] < ain (94)

for some a; > 0. The argument then proceeds step by step
as in the proof of Theorem 5 with (94) taking the place
of (62) and invoking the following (quasi-caod) property of
Py, for (67):
max
| ||| <VnP
where C' = §log(1 4+ P) and Py, = N(0, (1 + P)IL,).
Counter-examples are constructed similarly to those in The-
orem 5 with g = 0. [ |
Remark: Proofs of Theorems 5 and 6 can be shown to imply
that the entropy density log ﬁ(yn) concentrates up to \/n
around the entropy H (Y"). Such questions are also interesting
in other contexts and for other types of distributions, see [12].

D(Pyn|xn=yg||Pyn) =nC, 95)

VII. CONVERGENCE IN RELATIVE ENTROPY

We have shown, (56) and (82), that the distributions Pyn»
induced by capacity-achieving codes become close to the caod,
Py, in the sense of (1). In this section we discuss some
implications of such a convergence.

First, by convexity from (1) we have

_ 1
D(Fu||Py) < —D(Py=||Pyw) = 0, (96)
where P, is the empirical output distribution
a1l
P,=—-) Py. 97
- ; Y. (97)

More generally, we have [4, (41)]
k

D(PW||Pyy) < ————D(Pyx||Pgn) — 0 98
(PONP) € g DByl [B) 20, ©8)
where P,(Lk) is a k-th order empirical output distribution
n—k+1
99)

_ 1
k E
P’rg, '= ni —k —H Pnj+k71 '
=1

Knowing that a sequence of distributions P, converges in

relative entropy to a distribution P, i.e.
D(P,||P) =0 (100)

implies convergence properties for the expectations of func-
tions:

1) By the Csiszar-Pinsker inequality
||Pn—P||Tv—>0, (101)

or, equivalently, for all bounded functions f we have

/fdPn—>/fdP.

2) In fact, (102) holds for a wider class of functions,
namely those that satisfy Cramer condition under P, i.e.

/etfdP<oo

(102)

(103)

for all ¢ in some neighborhood of 0; see [13, Lemma

3.1].
Together (102) and (96) show that for a wide class of
functions f : ) — R empirical averages over distributions
induced by good codes converge to the average over the caod:

1 n
E |— Y; dPy . 104
o ; fYH| — / fdpy (104)
From (98) a similar conclusion holds for k-th order empirical
averages.

For notational convenience we introduce a random variable
Y™™ which has distribution P55, so that

B(F(y) = [

Regarding general functions of Y™ we have the following:
Lemma 7: Suppose that F': Y™ — R is such that for some
¢ > 0 we have

F(y™)dPy. . (105)

n

log E [exp{tF(Y*")}] < tE[F(Y*")] + ct? (106)
for all t € R with Y*" ~ Py.,.. Then
E[F(Y™)] —-E[F(Y*™)]] < 2y/eD(Pyn||Pg.) . (107)

Proof: The key tool for obtaining estimates on expec-
tations of functions from the estimates of relative entropy is
the Donsker-Varadhan inequality [14, Lemma 2.1]: For any
probability measures P and @ with D(P||Q) < oo and a



measurable function g such that [ exp{g}dQ < oo we have
that [ gdP exists (but perhaps is —co) and moreover

/ gdP —log / explg}dQ < D(P|Q).

Since by (106) the moment generating function of F' under
Py, exists, from (108) applied to tF" we get

tE[F(Y™)] — logE [exp{t F(Y"")}] < D(Py«||Py.).
(109)

(108)

From (106) we have then
ct? —tR[F(Y™)] +tE[F(Y*™)] + D(Pyn||Py.) >0 (110)

for all ¢. Thus discriminant of this quadratic polynomial (in t)
must be non-positive which is precisely (107). [ ]

Estimates of the form (106) are known as the Gaussian
concentration of measure and are available for various classes
of functions F' and measures Fy...; see [11] for a survey4. As
an example, we have

Corollary 8: For any 0 < € < 1 there exist two constants
ai,az > 0 such that for any (n, M, €)maz,det code for the
AWGN (P) channel and for any function F' : R” — R with
Lipschitz constant not exceeding 1 we have

E[F(Y™)] —E[F(Y™)]] < a1y/nC — log My + a2v/,
(111)
where we remind that Y*" ~ N(0, (1 + P)I,,) and C =
%log(l + P) is the capacity.
Proof: In the proof of Theorem 6 we obtained an upper
bound

D(Py+||Pf) < nC —log My, + asv/n. (112)

Then, since Py, = N(0,(1 + P)I,) is Gaussian, any 1-
Lipschitz function satisfies (107); see [15, Proposition 2.1],
for example. Then Lemma 7 completes the proof. [ |

Note that in the proof of the corollary concentration of
measure was used twice: once for Py« x» in the form of
Poincaré inequality (proof of Theorem 6) and once in the form
of (106) (proof of Lemma 7).

As a closing remark, we notice that convergence of output
distributions can often be propagated to statements about the
input distributions. For example, this is obvious for the case
of the AWGN, since convolution with a Gaussian kernel is an
injective map of measures (e.g., by a simple Fourier argument),
and a DMC with a non-singular (more generally, injective)
matrix Py y. For other DMCs, the following argument com-
plements that of [4, Theorem 4]. By Theorem 4 and 5 we
know that

1
—I(X™Y") = C.
n
By concavity of mutual information, we must necessarily have
I(X;Y)—C,

“E.g., consider F(y") = % >-7—1 f(yi) and Py, — a product distribu-
tion; then (106) follows from a similar single-letter estimate for f, which is
typically trivial (e.g., if f is bounded). The resulting estimate in this case can

also be obtained by directly applying Lemma 7 to (96).

yvhere PX = % Z?:l Px,. By f:ompactness of the. simplex. of
input distributions and continuity of the mutual information
on that simplex the distance to the (compact) set of capacity
achieving distributions II must vanish:

d(Pg,II) = 0.

VIII. EXTENSION TO OTHER CHANNELS

As discussed above, statements of the form (1) are quite
strong and imply all sorts of weaker results, such as con-
vergence of empirical distributions and estimates for the
expectations of functions. In this section we demonstrate a
technique showing how to prove such corollary results directly
from Theorem 1.

To illustrate the technique we start with a weaker (Fano-
like) estimate. Fix a random transformation Pyx with the
caod Py and a function F': Y — R such that

Zp =1ogE [exp{F(Y")}] < o0, (113)

where as before Y* ~ Py.. Denote by Q) an F-tilting of
Py

QY = Pj exp{F — Zr}. (114)

Consider an (M, €)40y code for Py |x. Following the meta-
converse principle [5, Section IIL.E], we consider a pair of
measures on the probability space (3): one induced by the code
and another induced by replacing the kernel Py x : X — Y
with QF : X — Y (the latter is oblivious to the input). Then
applying data-processing for relative entropy to the random
variable 1{IW # W} we obtain

d(1 - €||) < D(Pyx||Q")|Px), (115)

where d(z|ly) = zlog I + (1 —z)log t—z is a binary relative
entropy and Px is the input distribution induced by the code.
Expanding both sides we get

(I —¢)logM + h(e)

< d(1—ell3p) (116)
< D(Py x||Q")|Px) (117)
= D(Py|x||Py|Px) —E[F(Y)] +logE [exp{F(Y*g]lg)

SC—E[F(Y)] +logE [exp{F(Y")}], (119)

where (119) follows by (8). If Py, x corresponds to a block-
length n random transformation of a memoryless channel we
have C = nC. As aresult, we directly obtain both the Donsker-
Varadhan inequality and the estimate for D(Py||P5):

E[F(Y)]—logE [exp{F(Y*)}] < nC—(1—¢)log M —h(e).
(120)
Since F' was arbitrary, as in Lemma 7 one concludes that
E[F(Y)] ~ E[F(Y*)] provided that the right-hand side
of (120) is small. Unfortunately, even for the code with
log M ~ nC' this is not the case unless ¢ — 0.
We can fix this problem by invoking Theorem 1 at the
expense of restricting to (M, €)maz,det codes and reducing the
class of functions for which (120) is valid. As an example of



such an argument we provide an alternative prove of Corol-
lary 8, which also illuminates relation to the concentration of
measure.
Alternative proof of Corollary 8: Since F' is 1-Lipschitz
by Poincaré inequality for the Gaussian measure we have
Var[F(Y™)|X"] <1 (121)
and thus from the definition of Q(*) in (114) we have

dPYn‘Xn
dQF)
Pynixn (YT[XT)

Var [log X "}

<2V ik X"| + Var[F(Y™)| X"
= 2V T Ry arlF ()X
(122)
=0(n). (123)
Then we have
log M,
< D(Pyux[|Q")| Pxn) + O(Vn) (124)
= D(Pyn|xn||Pyn|Pxn) —E[F(Y™)]
+ log E [exp{ F(Y*")}] + O(v/n) (125)

<nC —E[F(Y")] +logE [exp{ F(Y™")}] + O(v/n),
(126)

where (124) is by Corollary 2 with S, estimated
from (123), (125) is by the definition of Q(F) in (114) with
Y™ ~ Py,; and (126) is by (95). From (126) the proof
proceeds as in Lemma 7. [ |

The upshot of this section is that even if (1) does not hold
(or is not known to hold), one frequently can derive explicit
non-asymptotic bounds on the expectations of functions, such
as (111), provided that the function satisfies concentration of
measure under both Py» x» and the caod, Py-,,. In view of the
progress in log-Sobolev inequalities and optimal transportation
(which are the main tools used to prove the concentration
of measure) the approach of this section looks especially
promising.
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