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This is a very short introduction to main concepts of the theory of optimal stopping,
value functions and dynamic programming principles.

1 Notes on optimal stopping: Three main principles

Consider the Markov process Xj, : @ — E with kernel T, function ¢ : E — R and the
problem:
s(z) =supE%g(X;), (1.1)

where sup is over all finite stopping moments 7 < oo!.
We say that g € L if g > —oco0 and T'g~ < oo. Say that g € A~ if
E*[supg™ (X,)] < c©.
n
Say that g € AT if
E*[supg®(X,)] < co.
n
Function f € L is excessive if
f=Tf.
1.1 Principle 1: converses via excessive majorants

Notice that for excessive v the process v(X,,) is a supermartingale.

Theorem 1 If X,, is a supermaringale and Y, is uniformly integrable martingale (uim)
S.t.
Xn 2 Y,

then X, — Xoo (a.s. and Ly) and for any (possibly infinite) stopping times S < T we have
EsXr < Xg.

!Shiryaev [1] seems to be very surprised by the fact that oftentimes (i.e. under some technical conditions)
one moment 7 achieves the maximum simultaneously for all z. But this is very natural: since Xo = = a.s.
we can construct the optimal moment 7° by looking at X, and then choosing the 7, that is optimal for
xTr = X().



(I have written down the proof in the printout of Cinlar’s lecture notes). Such supermartin-
gales will be called SLUIMs.
Note that if v(x) > g(x) then

v(Xyp) > 9(Xyp) > —sgpg‘(Xk)

and taking E,, on both sides:
v(Xpn) > Yo,

where Y,, = —E ,, sup;, ¢~ (X}) is uim.
Consider any excessive v(z) > g(z) then
E*g(X;) <E*v(X;) <wv(x).
Hence if g € A~ we have
s(z) < o(x) (1.2)

for any excessive majorant v of g.
It is stunning that for ¢ € A~ the bound (1.2) is tight as the next subsection shows.
In fact, we have proven even more: even if we have allowed infinite stopping moments

7 and defined g(X) 2 lim sup g(X,,) we still must have
supE “g(X7) < v(x) (1.3)
because E%v(X7) < v(z) is true even if 7 takes value +oc.

Since the bound is tight there is no need to consider the complication of possibly infinite
moments 7.

1.2 Principle 2: s(x) is itself excessive
Indeed, take an e-optimal moment 7 such that
s(z) <E%g(X;) + e

then we have
Ts(x) < e+E"EXg(Xrq1) = e+Eg(X,)00;.

Now notice that X; o 61 = X0, +1 and that the random variable 7/ = 706y 4+ 1 is in fact
a stopping moment. Therefore

Ts(z) <e+E%g(X,) < s(z) +e.
Since this is true for any € we must have
Ts(x) < s(x),

i.e. s(x) is an excessive majorant of g, according to (1.2) it is the least excessive majorant

(Lem.):
s(xz) =lem(g) .



1.3 Principle 3: achievability

The main idea on the achievability side is a simple observation that if the optimal moment

7" really exists then it must be
9(X7+) = s(X7+) .

Indeed, suppose that there is n such that P*[7* = n, g(X,,) < s(X,,) — €] > 0 then we could
improve the performance of 7* by introducing the moment

=7 14c + (' +n)la,

where A = {7* =n, g(X,) < s(X,) — €} and 7’ is anything achieving s(z) — €/2.
Therefore, if the optimal stopping moment 7* exist, then 79 < 7 where

7o =1inf{n > 0:g(X,) = s(X,)}. (1.4)

Therefore, the first thing to check on the achievability side is that (1.4) is finite. If so, then
the problem (1.1) is solved in the strongest possible sense. Namely, one fized moment Ty
achieves the sup for all x at the same time!

In general, such 7y is not finite and hence solution is not satisfactory (however, if g € A"
then this 7y is always optimal in the extended sense of (1.3)).

The natural next step is to consider:

Te = inf{n > 0: g(X,) > s(X,) — €}. (1.5)
Under condition g € A" these moments are always finite and hence are e-optimal uniformly
for z € E! This is also rather surprising.
1.4 How to actually find s(z)?

So we know that s(z) is the Le.m. of g(x). How do we find it?
Consider the properties of excessive functions f, g:

1. f,g > 0 then min(f, g) is excessive.

2. Tf is excessive.

fa 2 foo then foo is excessive.

-~ W

I N\ foos Tffr < oo and foo > —o0, then f., is excessive.
5. min(f, const) is excessive.
6. lem(g Ac) /' lem(g) when g / c. Properties 4,5 fix the problems when g ¢ A™.

7. For any h < f we have: f; = max(T'f,h) is excessive (and is in between h and f).
Proof: f1 < f hence Tfy <Tf <max(Tf,h).



Now, according to the last property we have that a lem(g) must satisfy
s(z) = max(g,T's) . (1.6)

This equation can be used to find s(x).

1.5 s(X,) is a local martingale (has Doob property on [0,7)).

Note that from Bellman’s equation (1.6) we see that on [0, 79|, see (1.4) we have: s(X,,) >
9(X,) and therefore s(X,,) = T's(X,,), or in other words:

Ens(Xnt1) =s(Xp),Vn<15.

This means that the process s(X,,) is a local martingale with localizing time 7.

The natural interpretation of s(X,,) is the expected return (or the “fair price” for the
option). Hence we see that in many cases the fair price of an option is actually a local
martingale (and a global supermartingale).

1.6 Bounded stopping moments
What if in (1.1) we restring 7 to the class T), s.t.

TeT, <<= Pyr<n|=1.
Then define

Sp(x) = sup E¥g(X;).
TETn

The solution for so(x) is just g(x). For si(z) it is obviously:
s1(x) = max(g(z), Tg(x)) .

In general we have
Sp, = max(g, Tsp—1) .

In fact, Shiryaev [1] shows that for g € A~ we have

Sn /s =lem(g).

In reality I think this is true for any g € L, but too lazy to check his proof.



2 Technicalities

2.1 Main non-trivial tricks

Lemma 2 If g € AT then the following are well-defined excessive functions:
A €T
o(x) = E¥supg(X,), (2.1)

¢ ()

E*supgt(X,). (2.2)

Lemma 3 Any excessive function v satisfying
v = max(g, Tv)
is a martingale on [0, 7], € > 0, where
7e = inf{n > 0: g(X,) > v(X,) — €}. (2.3)

Rigorously this means that

U, é U(XTe/\TL)

is a martingale.
Proof is obvious since on [0, 7] we have v(X,) > g(X,,) + € and therefore
v(X,) = To(X,) = EX (X)) = Epv(Xng) -
Unfortunatelly, this is not enough to conclude that
E*v(X;.) = v(zx)

because in general U, is not uim. However, the following lemma gives conditions for upper
and lower-bounds.

Lemma 4 If in Lemma 3 we have g € A~ then U, is a SLUIM; in particular:
E*v(X,,) <v(x). (2.4)

If in Lemma 3 we have g € AT and v < ¢ (e.g. if v is the L.e.m. of g in the class of
e.m.’s that contains ¢ ), then U, is submartingale upper-bounded by a wim; in particular:

E*v(X;.) > v(x). (2.5)
Allin all if g € AT N A~ and v = lem(g) then'
E*v(X;.) =v(x).

s it true that U, is uim? Le. is it true that v(X,) is Doob on [0, 7]?



The dominating uims are —E,, sup, g~ (X3) and E,, sup, g7 (Xy) correspondingly. Note
that to prove just (2.4) or (2.5) only Fatou’s lemma is enough since functions — sup;, g~ (Xx)
and supy, g1 (Xy) can be taken as the dominating integrables.

Lemma 5 If g € A" and any v (not nec. excessive) s.t. g < v < ¢ then
limsup g(X,,) = limsupv(X,).
In particular, P[r. < oo] =1 for e > 0 (as defined in (2.3)).

Proof: We have

JAN
Y, = supg(Xg), (2.7)
k>n
Y, =Yy = limsupg(Xy) as. (2.8)
k—o0

By Hunt’s Dominated Convergence Theorem (Y;, < sup,, g™ (X)) we have
E,Y, > E Y, =Y, as. andin Lq

Hence we have
limsup v(X,) < limsupE, Y, = limsup g(X,).

n—oo

The reverse inequality is obvious.

2.2 Casege A~

Theorem 6 If g € A~ then
s=lem(g).

It satisfies
s =max(g,T's).

It is a monotone limit of sy:

Sp S,

If g € A~ N AT then the moments 1. are finite and e-optimal; the moment o is the only
candidate for the optimal moment (i.e. if P*[19 = oo] > 0 then there can be no moment 7/
s.t. s(z) =E%g(X;)).

Finally, the sup in (1.1) can be taken over hitting time of Borel sets inf{n > 0: g(z,) €
A}



The heuristic argument above already proved s = lem(g) and we know l.e.m. should
satisfy s = max(g,T's). Finiteness of 7. follows from Lemma 5.
We only need to show how to achieve s(z) via hitting times. Consider

se(x) =lem(g Ne).

Obviously, s, s when ¢ — co. Since g A ¢ € AT we see that 7. is a finite hitting time;
it achieves
Emg(XTc,e) 2 Emg(XTc,e) Ac 2 SC(':U) — €.

2.3 Casege A"

This case is more delicate because now arbitrary e.m.’s can not be used to prove converse.
Le. if v > g and Tv < v then it is true that

E%g(Xr) <Ev(Xr),

but we can not in general conclude that E%v(X,) < v(x) (i.e. now v(X,,) is not SLUIM).!
So in the case g € A~ we restrict attention to the regular e.m.’s (r.e.m.).
First, restrict allowable 7’s to:

TeN, <+ E%% (X;) <.
(obviously, among all 7’s for which E*¢(X,;) WLOG we can restrict maximization in (1.1)
to N7).
An excessive function f is called regular if
VreN, : E*f(X;)<oo and (2.9)
Ef(X,) < f(x). (2.10)

Note: In general it is a much harder problem to check if a particular f is r.e.m. (checking
that it is an e.m. is easy). However, any SLUIM e.m. is automatically r.e.m.

Theorem 7 If g € AT then
s =lrem(g).

It satisfies
s =max(g,T's).

The moments 1. are finite and e-optimal; the moment 1o is the only candidate for the
optimal moment (i.e. if P*[rg = oo] > 0 then there can be no moment 7' s.t. s(x) =
E*g(X,)).

Finally, the sup in (1.1) can be taken over hitting time of Borel sets inf{n > 0: g(z,) €
A}

1Shiryaev7s counter-example: X, = X,,_1 - En, B, = 0,1 w.p. 1/2, Xo = 2. Then if ¢ = —z, we see
g & A™. Moreover, T'g < g and hence lem(g) = g. But s(xz) = 0, achieved by 7 = inf{n : X,, = 0}.



Proof: First, converse. Consider v(x) a r.e.m. of g. Then
E*g(X;) <E*v(X;) <wv(x).
Therefore,

s(z) < v—li‘l.lef.mv(x) '

Second, s(z) is a r.e.m. We know it is always excessive, but it is NOT trivial to see that
it is regular. Indeed, if we try to follow the same argument as before then we are led
to the inequality s(z) < ¢ + E“E~*"g(X,), 7,0 € N . I do not know how to show that

TH+ool0 e N

Instead, here is a direct proof (copy from Shiryaev [1] essentially), which constructs a

sequence of r.e.m.’s converging to s(x).
se(z) =lem(g V).

(each such s, exists since gV cisin A7).
Then sq(x) N\ s«(z) when ¢ — —oo. Since s.(X,,) is a SLUIM we have:

E%s.(X;) < se(x).
Now, each s.(z) is majorized by ¢ (x). Hence:

se(Xn) < o1 (X,) <supgt(Xy).

Then in (2.11) we can take lim,_,~ inside expectation (DCT!) and then we get
Vre N, E7s.(X;) <su(z).
That is s.(z) is a r.e.m. of g. It is also achievable. Indeed, define
Te = inf{n > 0: g(X,) > s.(X,) —€}.
Then Lemma 5 shows 7 is finite and Lemma 4 that

E®s.(Xr,) > s«(x).

The reverse inequality is also true: because 7. € N, s and s, is a r.e.m. Therefore:

E7g(Xy,) > s.(z) —c.

Which implies

(2.11)

(2.12)



Corollary 8 Ifg € A" and lim g(X,) = —c0 (a.s.) then 19 is a finite optimal moment:
s(z) =E*g(Xr).
Proof: by Lemma 5 we know that
limsup s(X,,) = limsup g(X,,) = —o0
and by Lemma 4 we know that
E*s(X.) > s(x) > —oc0.
If P[r9 = o0] > 0 then we would have s(x) = —oo a contradiction.

Lemma 9 If g € AT then among all excessive functions f between g and ¢:

g<f<¢
there is exactly one satisfying
[ =max(g, Tf). (2.13)
It is, of course, the l.r.e.m. of g:
fr=lrem(g).

Proof: Define operator G:
Ga = max(g,Ta) .

Then denote by f* a (monotone) limit of G™¢. It is a routine check (applying MCT with
dominating sup,, g* (X,,) etc) to see that f* satisfies (2.13).
We need to show that it is actually a lem of g. Take any e.m. v and notice that for
any stopping time 7 we have then
indeed, such f* is by Lemma has the property:
limsup f*(X,,) = limsup g(X,,),
and hence
Plre < o0 =1.
On the other hand,
Emg(XTe) 2 wa*(XTe) — €.
Now since f* < ¢ we also have that:
E*f1(Xr) 2 [ (x).
Therefore,
E*g(X7) 2 f*(z) —e.
Finally, for any r.e.m. v we have
v(z) 2 Eg(Xr,) > f*(z) —e

or after taking ¢ — 0:

v(z) > f*(z).



3 General case

In the general case, we can not say a lot about the solution of (1.1)
Theorem 10 If g € L then
s =lrem(g).

It satisfies
s = max(g,T's).

The supremum in (1.1) can be taken over hitting times of Borel sets.
Proof is easy:
sc = lrem(g A ¢)

Then s. s, and hence s, is a r.e.m. of g and satisfies s, = max(g,T's,). Again, since s,
is a r.e.m. we have
s < Sy.

On the other hand, defining finite hitting times 7. we can achieve s, as close as required:

S > Sy.
4 Cost constraints
Consider a generalization of (1.1):
T—1 '
s(z) =supE?® |a"g(X;) — Z ale(X5) |, (4.1)
T =0

where a € (0, 1].

This situation can be reduced to the previous case by defining a new markov process
X! = (n,Xo,...X,). Alternatively, we can redo all the steps above. In this case the
excessiveness is defined as

v(z) > aTv(x) — c(x).

The condition g € A~ becomes

n—1
E sup |a"g(X,) — Z ade(X;)| < oo
n .
7=0

The only useful additional theorem is this one:

Theorem 11 If g € A" and 372 adc(X;) = 400 (a.s.) then the moment Ty is optimal
and finite.

Proof: Corollary 8 applies.
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