
Notes onOptimal stopping of Markov pro
essesYury Polyanskiy(Þðèé Ïîëÿíñêèé)
This is a very short introduction to main concepts of the theory of optimal stopping,

value functions and dynamic programming principles.

1 Notes on optimal stopping: Three main principles

Consider the Markov process Xk : Ω → E with kernel T , function g : E → R̄ and the
problem:

s(x) = sup
τ

E
xg(Xτ ) , (1.1)

where sup is over all finite stopping moments τ < ∞1.
We say that g ∈ L if g > −∞ and Tg− < ∞. Say that g ∈ A− if

E
x[sup

n
g−(Xn)] < ∞ .

Say that g ∈ A+ if
E

x[sup
n

g+(Xn)] < ∞ .

Function f ∈ L is excessive if
f ≥ Tf .

1.1 Principle 1: converses via excessive majorants

Notice that for excessive v the process v(Xn) is a supermartingale.

Theorem 1 If Xn is a supermaringale and Yn is uniformly integrable martingale (uim)
s.t.

Xn ≥ Yn

then Xn → X∞ (a.s. and L1) and for any (possibly infinite) stopping times S ≤ T we have

E SXT ≤ XS .

1Shiryaev [1] seems to be very surprised by the fact that oftentimes (i.e. under some technical conditions)
one moment τ achieves the maximum simultaneously for all x. But this is very natural: since X0 = x a.s.
we can construct the optimal moment τ∗ by looking at X0 and then choosing the τx that is optimal for
x = X0.
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(I have written down the proof in the printout of Cinlar’s lecture notes). Such supermartin-
gales will be called SLUIMs.

Note that if v(x) ≥ g(x) then

v(Xn) ≥ g(Xn) ≥ − sup
k

g−(Xk)

and taking E n on both sides:
v(Xn) ≥ Yn ,

where Yn = −E n supk g
−(Xk) is uim.

Consider any excessive v(x) ≥ g(x) then

E
xg(Xτ ) ≤ E

xv(Xτ ) ≤ v(x) .

Hence if g ∈ A− we have
s(x) ≤ v(x) (1.2)

for any excessive majorant v of g.
It is stunning that for g ∈ A− the bound (1.2) is tight as the next subsection shows.
In fact, we have proven even more: even if we have allowed infinite stopping moments

τ̄ and defined g(X∞)
△
= lim sup g(Xn) we still must have

sup
τ̄

E
xg(Xτ̄ ) ≤ v(x) (1.3)

because E
xv(Xτ̄ ) ≤ v(x) is true even if τ̄ takes value +∞.

Since the bound is tight there is no need to consider the complication of possibly infinite
moments τ̄ .

1.2 Principle 2: s(x) is itself excessive

Indeed, take an ǫ-optimal moment τ such that

s(x) ≤ E
xg(Xτ ) + ǫ

then we have
Ts(x) ≤ ǫ+ E

x
E

X1g(Xτ+1) = ǫ+ E
xg(Xτ ) ◦ θ1 .

Now notice that Xτ ◦ θ1 = Xτ◦θ1+1 and that the random variable τ ′ = τ ◦ θ1 + 1 is in fact
a stopping moment. Therefore

Ts(x) ≤ ǫ+ E
xg(Xτ ′) ≤ s(x) + ǫ .

Since this is true for any ǫ we must have

Ts(x) ≤ s(x) ,

i.e. s(x) is an excessive majorant of g, according to (1.2) it is the least excessive majorant
(l.e.m.):

s(x) = lem(g) .
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1.3 Principle 3: achievability

The main idea on the achievability side is a simple observation that if the optimal moment
τ∗ really exists then it must be

g(Xτ∗) = s(Xτ∗) .

Indeed, suppose that there is n such that Px[τ∗ = n, g(Xn) ≤ s(Xn)− ǫ] > 0 then we could
improve the performance of τ∗ by introducing the moment

τ ′ = τ∗1Ac + (τ ′ + n)1A ,

where A = {τ∗ = n, g(Xn) ≤ s(Xn)− ǫ} and τ ′ is anything achieving s(x)− ǫ/2.
Therefore, if the optimal stopping moment τ∗ exist, then τ0 ≤ τ∗ where

τ0 = inf{n ≥ 0 : g(Xn) = s(Xn)} . (1.4)

Therefore, the first thing to check on the achievability side is that (1.4) is finite. If so, then
the problem (1.1) is solved in the strongest possible sense. Namely, one fixed moment τ0
achieves the sup for all x at the same time!

In general, such τ0 is not finite and hence solution is not satisfactory (however, if g ∈ A+

then this τ0 is always optimal in the extended sense of (1.3)).
The natural next step is to consider:

τǫ = inf{n ≥ 0 : g(Xn) ≥ s(Xn)− ǫ} . (1.5)

Under condition g ∈ A+ these moments are always finite and hence are ǫ-optimal uniformly
for x ∈ E! This is also rather surprising.

1.4 How to actually find s(x)?

So we know that s(x) is the l.e.m. of g(x). How do we find it?
Consider the properties of excessive functions f, g:

1. f, g ≥ 0 then min(f, g) is excessive.

2. Tf is excessive.

3. fn ր f∞ then f∞ is excessive.

4. fn ց f∞, Tf+

1
< ∞ and f∞ > −∞, then f∞ is excessive.

5. min(f, const) is excessive.

6. lem(g ∧ c) ր lem(g) when g ր c. Properties 4, 5 fix the problems when g 6∈ A+.

7. For any h ≤ f we have: f1 = max(Tf, h) is excessive (and is in between h and f).

Proof: f1 ≤ f hence Tf1 ≤ Tf ≤ max(Tf, h).
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Now, according to the last property we have that a lem(g) must satisfy

s(x) = max(g, Ts) . (1.6)

This equation can be used to find s(x).

1.5 s(Xn) is a local martingale (has Doob property on [0, τ0)).

Note that from Bellman’s equation (1.6) we see that on [0, τ0], see (1.4) we have: s(Xn) >
g(Xn) and therefore s(Xn) = Ts(Xn), or in other words:

E ns(Xn+1) = s(Xn) ,∀n ≤ τ0 .

This means that the process s(Xn) is a local martingale with localizing time τ0.
The natural interpretation of s(Xn) is the expected return (or the “fair price” for the

option). Hence we see that in many cases the fair price of an option is actually a local
martingale (and a global supermartingale).

1.6 Bounded stopping moments

What if in (1.1) we restring τ to the class Tn s.t.

τ ∈ Tn ⇐⇒ Px[τ ≤ n] = 1 .

Then define
sn(x) = sup

τ∈Tn

E
xg(Xτ ) .

The solution for s0(x) is just g(x). For s1(x) it is obviously:

s1(x) = max(g(x), T g(x)) .

In general we have
sn = max(g, Tsn−1) .

In fact, Shiryaev [1] shows that for g ∈ A− we have

sn ր s = lem(g) .

In reality I think this is true for any g ∈ L, but too lazy to check his proof.
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2 Technicalities

2.1 Main non-trivial tricks

Lemma 2 If g ∈ A+ then the following are well-defined excessive functions:

φ(x)
△
= E

x sup
n

g(Xn) , (2.1)

φ+(x)
△
= E

x sup
n

g+(Xn) . (2.2)

Lemma 3 Any excessive function v satisfying

v = max(g, Tv)

is a martingale on [0, τǫ], ǫ ≥ 0, where

τǫ = inf{n ≥ 0 : g(Xn) ≥ v(Xn)− ǫ} . (2.3)

Rigorously this means that

Un
△
= v(Xτǫ∧n)

is a martingale.

Proof is obvious since on [0, τǫ] we have v(Xn) > g(Xn) + ǫ and therefore

v(Xn) = Tv(Xn) = E
Xnv(X1) = E nv(Xn+1) .

Unfortunatelly, this is not enough to conclude that

E
xv(Xτǫ) = v(x)

because in general Un is not uim. However, the following lemma gives conditions for upper
and lower-bounds.

Lemma 4 If in Lemma 3 we have g ∈ A− then Un is a SLUIM; in particular:

E
xv(Xτǫ) ≤ v(x) . (2.4)

If in Lemma 3 we have g ∈ A+ and v ≤ φ+ (e.g. if v is the l.e.m. of g in the class of
e.m.’s that contains φ+), then Un is submartingale upper-bounded by a uim; in particular:

E
xv(Xτǫ) ≥ v(x) . (2.5)

All in all if g ∈ A+ ∩A− and v = lem(g) then1

E
xv(Xτǫ) = v(x) .

1Is it true that Un is uim? I.e. is it true that v(Xn) is Doob on [0, τǫ]?
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The dominating uims are −E n supk g
−(Xk) and E n supk g

+(Xk) correspondingly. Note
that to prove just (2.4) or (2.5) only Fatou’s lemma is enough since functions − supk g

−(Xk)
and supk g

+(Xk) can be taken as the dominating integrables.

Lemma 5 If g ∈ A+ and any v (not nec. excessive) s.t. g ≤ v ≤ φ then

lim sup g(Xn) = lim sup v(Xn) .

In particular, P[τǫ < ∞] = 1 for ǫ > 0 (as defined in (2.3)).

Proof: We have

v(Xn) ≤ φ(Xn) = E nYn , (2.6)

Yn
△
= sup

k≥n

g(Xk) , (2.7)

Yn → Y∞ = lim sup
k→∞

g(Xk) a.s. (2.8)

By Hunt’s Dominated Convergence Theorem (Yn ≤ supn g
+(Xk)) we have

E nYn → E∞Y∞ = Y∞ a.s. and in L1

Hence we have
lim sup v(Xn) ≤ lim supE nYn = lim sup

n→∞
g(Xn) .

The reverse inequality is obvious.

2.2 Case g ∈ A−

Theorem 6 If g ∈ A− then
s = lem(g) .

It satisfies
s = max(g, Ts) .

It is a monotone limit of sn:
sn ր s .

If g ∈ A− ∩ A+ then the moments τǫ are finite and ǫ-optimal; the moment τ0 is the only
candidate for the optimal moment (i.e. if Px[τ0 = ∞] > 0 then there can be no moment τ ′

s.t. s(x) = E
xg(Xτ )).

Finally, the sup in (1.1) can be taken over hitting time of Borel sets inf{n ≥ 0 : g(xn) ∈
A}.
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The heuristic argument above already proved s = lem(g) and we know l.e.m. should
satisfy s = max(g, Ts). Finiteness of τǫ follows from Lemma 5.

We only need to show how to achieve s(x) via hitting times. Consider

sc(x) = lem(g ∧ c) .

Obviously, sc ր s when c → ∞. Since g ∧ c ∈ A+ we see that τc,ǫ is a finite hitting time;
it achieves

E
xg(Xτc,ǫ) ≥ E

xg(Xτc,ǫ) ∧ c ≥ sc(x)− ǫ .

2.3 Case g ∈ A+

This case is more delicate because now arbitrary e.m.’s can not be used to prove converse.
I.e. if v ≥ g and Tv ≤ v then it is true that

E
xg(Xτ ) ≤ E

xv(Xτ ) ,

but we can not in general conclude that E xv(Xτ ) ≤ v(x) (i.e. now v(Xn) is not SLUIM).1

So in the case g 6∈ A− we restrict attention to the regular e.m.’s (r.e.m.).
First, restrict allowable τ ’s to:

τ ∈ N−
g ⇐⇒ E

xg−(Xτ ) < ∞ .

(obviously, among all τ ’s for which E
xg(Xτ ) WLOG we can restrict maximization in (1.1)

to N−
g ).
An excessive function f is called regular if

∀τ ∈ N−
g : E

xf−(Xτ ) < ∞ and (2.9)

E
xf(Xτ ) ≤ f(x) . (2.10)

Note: In general it is a much harder problem to check if a particular f is r.e.m. (checking
that it is an e.m. is easy). However, any SLUIM e.m. is automatically r.e.m.

Theorem 7 If g ∈ A+ then
s = lrem(g) .

It satisfies
s = max(g, Ts) .

The moments τǫ are finite and ǫ-optimal; the moment τ0 is the only candidate for the
optimal moment (i.e. if P

x[τ0 = ∞] > 0 then there can be no moment τ ′ s.t. s(x) =
E

xg(Xτ )).
Finally, the sup in (1.1) can be taken over hitting time of Borel sets inf{n ≥ 0 : g(xn) ∈

A}.

1Shiryaev’s counter-example: Xn = Xn−1 · En, En = 0, 1 w.p. 1/2, X0 = 2. Then if g = −x, we see
g 6∈ A−. Moreover, Tg ≤ g and hence lem(g) = g. But s(x) = 0, achieved by τ = inf{n : Xn = 0}.
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Proof: First, converse. Consider v(x) a r.e.m. of g. Then

E
xg(Xτ ) ≤ E

xv(Xτ ) ≤ v(x) .

Therefore,
s(x) ≤ inf

v-r.e.m
v(x) .

Second, s(x) is a r.e.m. We know it is always excessive, but it is NOT trivial to see that
it is regular. Indeed, if we try to follow the same argument as before then we are led
to the inequality s(x) ≤ ǫ + E

x
E

Xτ g(Xσ), τ, σ ∈ N−
g . I do not know how to show that

τ + σ ◦ θτ ∈ N−
g .

Instead, here is a direct proof (copy from Shiryaev [1] essentially), which constructs a
sequence of r.e.m.’s converging to s(x).

sc(x) = lem(g ∨ c) .

(each such sc exists since g ∨ c is in A−).
Then sc(x) ց s∗(x) when c → −∞. Since sc(Xn) is a SLUIM we have:

E
xsc(Xτ ) ≤ sc(x) . (2.11)

Now, each sc(x) is majorized by φ+(x). Hence:

sc(Xn) ≤ φ+(Xn) ≤ sup
n

g+(Xn) .

Then in (2.11) we can take limc→∞ inside expectation (DCT!) and then we get

∀τ ∈ N−
g : E

xs∗(Xτ ) ≤ s∗(x) .

That is s∗(x) is a r.e.m. of g. It is also achievable. Indeed, define

τǫ = inf{n ≥ 0 : g(Xn) ≥ s∗(Xn)− ǫ} . (2.12)

Then Lemma 5 shows τǫ is finite and Lemma 4 that

E
xs∗(Xτǫ) ≥ s∗(x) .

The reverse inequality is also true: because τǫ ∈ N−
g and s∗ is a r.e.m. Therefore:

E
xg(Xτǫ) ≥ s∗(x)− ǫ .

Which implies
s(x) = s∗(x) = lrem(g) .
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Corollary 8 If g ∈ A+ and lim g(Xn) = −∞ (a.s.) then τ0 is a finite optimal moment:

s(x) = E
xg(Xτ0) .

Proof: by Lemma 5 we know that

lim sup s(Xn) = lim sup g(Xn) = −∞

and by Lemma 4 we know that

E
xs(Xτ0) ≥ s(x) > −∞ .

If P[τ0 = ∞] > 0 then we would have s(x) = −∞ a contradiction.

Lemma 9 If g ∈ A+ then among all excessive functions f between g and φ:

g ≤ f ≤ φ

there is exactly one satisfying
f∗ = max(g, Tf∗) . (2.13)

It is, of course, the l.r.e.m. of g:
f∗ = lrem(g) .

Proof: Define operator G:
Ga = max(g, Ta) .

Then denote by f∗ a (monotone) limit of Gnφ. It is a routine check (applying MCT with
dominating supn g

+(Xn) etc) to see that f∗ satisfies (2.13).
We need to show that it is actually a lem of g. Take any e.m. v and notice that for

any stopping time τ we have then
indeed, such f∗ is by Lemma has the property:

lim sup f∗(Xn) = lim sup g(Xn) ,

and hence
P[τǫ < ∞] = 1 .

On the other hand,
E

xg(Xτǫ) ≥ E
xf∗(Xτǫ)− ǫ .

Now since f∗ ≤ φ+ we also have that:

E
xf∗(Xτǫ) ≥ f∗(x) .

Therefore,
E

xg(Xτǫ) ≥ f∗(x)− ǫ .

Finally, for any r.e.m. v we have

v(x) ≥ E
xg(Xτǫ) ≥ f∗(x)− ǫ

or after taking ǫ → 0:
v(x) ≥ f∗(x) .
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3 General case

In the general case, we can not say a lot about the solution of (1.1)

Theorem 10 If g ∈ L then
s = lrem(g) .

It satisfies
s = max(g, Ts) .

The supremum in (1.1) can be taken over hitting times of Borel sets.

Proof is easy:
sc = lrem(g ∧ c)

Then sc ր s∗ and hence s∗ is a r.e.m. of g and satisfies s∗ = max(g, Ts∗). Again, since s∗
is a r.e.m. we have

s ≤ s∗ .

On the other hand, defining finite hitting times τc,ǫ we can achieve s∗ as close as required:

s ≥ s∗ .

4 Cost constraints

Consider a generalization of (1.1):

s(x) = sup
τ

E
x



ατg(Xτ )−
τ−1
∑

j=0

αjc(Xj)



 , (4.1)

where α ∈ (0, 1].
This situation can be reduced to the previous case by defining a new markov process

X ′
n = (n,X0, . . . Xn). Alternatively, we can redo all the steps above. In this case the

excessiveness is defined as
v(x) ≥ αTv(x)− c(x) .

The condition g ∈ A− becomes

E sup
n



ατg(Xn)−
n−1
∑

j=0

αjc(Xj)





−

< ∞

The only useful additional theorem is this one:

Theorem 11 If g ∈ A+ and
∑∞

j=0
αjc(Xj) = +∞ (a.s.) then the moment τ0 is optimal

and finite.

Proof: Corollary 8 applies.
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