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Abstract: Consider the semigroup of random walk on a complete graph, which we
call the Potts semigroup. Diaconis and Saloff-Coste (Ann Appl Probab 6(3):695–750,
1996) computed the maximum ratio between the relative entropy and the Dirichlet form,
obtaining the constant α2 in the 2-log-Sobolev inequality (2-LSI). In this paper, we
obtain the best possible non-linear inequality relating entropy and the Dirichlet form
(i.e., p-NLSI, p ≥ 1). As an example, we show α1 = 1 + 1+o(1)

log q . Furthermore, p-
NLSIs allow us to conclude that for q ≥ 3, distributions that are not a product of
identical distributions can have slower speed of convergence to equilibrium, unlike the
case q = 2. By integrating the 1-NLSI we obtain new strong data processing inequalities
(SDPI), which in turn allows us to improve results ofMossel and Peres (AnnAppl Probab
13(3):817–844, 2003) on reconstruction thresholds for Potts models on trees. A special
case is the problemof reconstructing color of the root of aq-colored tree given knowledge
of colors of all the leaves. We show that to have a non-trivial reconstruction probability
the branching number of the tree should be at least

log q

log q − log(q − 1)
= (1 − o(1))q log q.

This recovers previous results (of Sly in Commun Math Phys 288(3):943–961, 2009
and Bhatnagar et al. in SIAM J Discrete Math 25(2):809–826, 2011) in (slightly) more
generality, but more importantly avoids the need for any coloring-specific arguments.
Similarly, we improve the state-of-the-art on theweak recovery threshold for the stochas-
tic block model with q balanced groups, for all q ≥ 3. To further show the power of our
method, we prove optimal non-reconstruction results for a broadcasting on trees model
with Gaussian kernels, closing a gap left open by Eldan et al. (Combin Probab Comput
31(6):1048–1069, 2022). These improvements advocate information-theoretic methods
as a useful complement to the conventional techniques originating from the statistical
physics.
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1. Introduction

Log-Sobolev inequalities Log-Sobolev inequalities (LSIs) are a class of inequalities
bounding the rate of convergence of a Markov semigroup to its stationary distribution.
They upper bound certain relative entropy (KL divergence) functions via a multiple of
the Dirichlet form.

Let us introduce some standard notions. Let X be a finite alphabet and K : X → X
be a Markov kernel. For x, y ∈ X , let K (x, y) denote the transition probability from
x to y. Let L = K − I . We consider the semigroup (Tt )t≥0, where Tt = exp(t L). Let
π be a stationary measure for the semigroup. For f, g : X → R, the Dirichlet form is
defined by

E( f, g) := −Eπ [(L f )g] = −
∑

x,y∈X
L(x, y) f (y)g(x)π(x). (1)

For non-zero f : X → R≥0, the relative entropy is defined by

Entπ ( f ) := Eπ

[
f log

f

Eπ [ f ]
]

= Eπ [ f ]D(π( f )‖π) (2)
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where π( f ) is the distribution defined as π( f )(x) = f (x)π(x)
Eπ [ f ] , and D(μ‖ν) is the

Kullback–Leibler divergence1

D(μ‖ν) :=
∫

log

(
dμ

dν

)
dμ. (3)

For p > 1, we say the semigroup (Tt )t≥0 admits p-log-Sobolev inequality (p-LSI),
if for some constant αp, for all non-zero non-negative real functions f on X , we have

Entπ ( f ) ≤ 1

αp
E
(
f

1
p , f 1−

1
p

)
. (4)

For p = 1, we define 1-LSI as

Entπ ( f ) ≤ 1

α1
E( f, log f ). (5)

The case p = 2 is the standard log-Sobolev inequality, originally studied in Gross [22].
The case p = 1 is studied also under the name “modified log-Sobolev inequality” (e.g.
[8,21]).

The relationship between 1-LSI and semigroup convergence can be seen from the
following identity

d

dt
|t=0 Entπ (Tt f ) = −E( f, log f ). (6)

Therefore

Entπ (Tt f ) ≤ exp(−α1t)Entπ ( f ) (7)

which corresponds to a property of Tt to exponentially fast relax to equilibrium (in the
sense of relative entropy).

Polyanskiy andSamorodnitsky [43] introducednon-linear p-log-Sobolev inequalities
(p-NLSI), a finer description of the relationship between relative entropy and Dirichlet
forms. They used these inequalities to derive improved hypercontractivity inequalities
and the sharp uncertainty principle on the boolean hypercube. For p ≥ 1, we say the
semigroup satisfies p-NLSI if for some non-negative function2 �p : R≥0 → R≥0, for
all non-zero f : X → R≥0, we have

Entπ ( f )

Eπ [ f ] ≤ �p

⎛

⎜⎝
E
(
f

1
p , f 1−

1
p

)

Eπ [ f ]

⎞

⎟⎠ , (8)

where for p = 1, E
(
f

1
p , f 1−

1
p

)
should be replaced with E( f, log f ).

Non-linear p-log-Sobolev inequalities imply the ordinary p-log-Sobolev inequalities
for

αp = inf
x>0

x

�p(x)
. (9)

1 Throughout this paper, log means natural logarithm.
2 [43] requires the function �p to be concave. We do not make this assumption initially, however to extend

these inequalities to product semigroups concavification will be necessary – see Sect. 3.
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When �p is concave, this can be further simplified to αp = (�′
p(0))

−1.
Mossel et al. [38] proved that for reversible (π, K ),

p2(p′ − 1)

(p′)2(p − 1)
αp ≤ αp′ ≤ αp (10)

for 1 < p′ ≤ p ≤ 2. We discuss some general facts about dependence of αp and �p on
p in Appendix D.

Potts semigroup We focus on the simplest Markov semigroup, corresponding to the
random walk on a complete graph. The Markov kernel is K (x, y) = 1

q−11{x 	= y},
where q = |X |. In the following, we always assume X = [q]. We call it the Potts
semigroup, because every operator Tt in the semigroup is a ferromagnetic Potts channel.
Its stationary distributionπ is uniform onX and its Dirichlet form is rescaled covariance:

E( f, g) = q

q − 1
Covπ ( f, g). (11)

The Potts channel PCλ : [q] → [q] for λ ∈
[
− 1

q−1 , 1
]
is defined by

PCλ(x, y) =
{

λ + 1−λ
q , if x = y,

1−λ
q , if x 	= y.

(12)

We parametrize them by λ because it is the second largest eigenvalue of PCλ. We say
the channel is ferromagnetic if λ > 0; antiferromagnetic if λ < 0. One can see that Tt
in the Potts semigroup is exactly PC

exp
(
− q

q−1 t
).

Diaconis and Saloff-Coste [14] computed the 2-log-Sobolev constant

α2 = q − 2

(q − 1) log(q − 1)
. (13)

They observed that the infimum of the ratio E( f, f )
Entπ ( f 2)

is achieved at a two-valued function
f , i.e., f takes exactly two values. In fact, the infimum is achieved at a function f where
f (1) = q − 1 and f (i) = 1 for i 	= 1. For p 	= 2, it seems hard to give a closed-form
expression for αp. Goel [21] proved that

q

q − 1
≤ α1 ≤

(
1 +

4

log(q − 1)

)
q

q − 1
, (14)

where the upper bound is by using a two-valued function f , where f (1) = q + 1 and
f (i) = 1 for i 	= 1. Bobkov and Tetali [8] also discussed bounds on α1 and α2, proving
that

α1 ≥ q

q − 1
+

2√
q − 1

. (15)

These computations lead to the guess that for all p, the best possible p-LSI constant αp
for the Potts semigroup is achieved at a two-valued function. In Sect. 2, we prove that
this is true, and in fact true for p-NLSIs for the Potts semigroup: For fixed Entπ ( f )

Eπ [ f ] , the
unique function (up to scalar multiplication) of the form f (1) ≥ f (2) = · · · = f (q)



Non-linear Log-Sobolev Inequalities 773

minimizes
E
(
f
1
p , f

1− 1
p

)

Eπ [ f ] . As a result we get the sharpest p-NLSIs for the Potts semigroup
for all p ≥ 1.

We define a useful function ψ : [0, 1] → R as follows.

ψ(x) := log q + x log x + (1 − x) log
1 − x

q − 1
. (16)

Note that ψ(x) is the KL divergence between
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
and π = Unif([q]).

Simple computation shows thatψ is non-negative, convex,ψ
(
1
q

)
= 0, strictly decreas-

ing on
[
0, 1

q

]
, strictly increasing on

[
1
q , 1
]
, and takes value in [0, log q].

For p > 1, define ξp : [0, 1] → R as

ξp(x)= q

q − 1

(
1− 1

q

(
x

1
p +(q − 1)

(
1−x

q − 1

) 1
p
)(

x1−
1
p + (q − 1)

(
1 − x

q − 1

)1− 1
p
))

.

(17)

Define ξ1 : [0, 1] → R as

ξ1(x) = 1

q − 1

(
− log x − (q − 1) log

1 − x

q − 1
+ q

(
x log x + (1 − x) log

1 − x

q − 1

))
.

(18)

Let fx : [q] → R≥0 be the two-valued function defined as fx (1) = qx , f (i) = q(1−x)
q−1

for 2 ≤ i ≤ q. Then we have ψ(x) = Entπ ( fx ), ξp(x) = E
(
f

1
p
x , f

1− 1
p

x

)
for p > 1,

and ξ1(x) = E( fx , log fx ).
For p ≥ 1, define bp : [0, log q] → R as3

bp(ψ(x)) = ξp(x) (19)

for x ∈
[
1
q , 1
]
, where ψ is defined in (16). In other words, bp maps Entπ ( fx ) to

E
(
f

1
p
x , f

1− 1
p

x

)
(or E( fx , log fx ) when p = 1) for x ∈

[
1
q , 1
]
.

Theorem 1 (p-NLSI for Potts semigroup). Fix p ≥ 1. The Potts semigroup satisfies p-
NLSI with �p = b−1

p , where bp is defined in (19). Furthermore, this is the best possible
p-NLSI.

In other words, for any c ∈ [0, log q], among all functions f : [q] → R≥0 with
Eπ [ f ] = 1, Entπ ( f ) = c, there is a unique (up to permuting the alphabet) minimizer

of E
(
f

1
p , f 1−

1
p

)
(E( f, log f ) for p = 1), and it is of form

(
qx, q(1−x)

q−1 , · · · ,
q(1−x)
q−1

)

with x ∈
[
1
q , 1
]
.

3 In the case q = 2, bp differs from [43] by a constant factor due to a different parametrization of the
semigroup.
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In particular, we have

αp = inf
x∈
(
1
q ,1
]
ξp(x)

ψ(x)
. (20)

By tensorizing p-NLSIs, we can derive facts about distributions that converge the
slowest under the product semigroup (T⊗n

t )t≥0.

Corollary 2 (Extremal distributions for the product semigroup, informal). Consider the
product semigroup (T⊗n

t )t≥0 with invariant distribution π⊗n.

(i) For q = 2 and any c ∈ [0, log q], among all distributions with entropy cn, the
slowest speed of convergence to equilibrium is achieved at a product of identical
distributions.

(ii) For q ≥ 3, there exists c ∈ [0, log q] such that for n large enough, among all
distributions with entropy cn, the slowest speed of convergence to equilibrium is not
achieved at any distribution that is a product of identical distributions.

See Prop. 27 for a formal statement. This shows a curious difference between the
binary case and the non-binary case.

Furthermore, as a corollary of our 1-NLSI, we derive the second order behavior of
α1 as q goes to ∞.

Proposition 3. For q ≥ 3, we have

q

q − 1

(
1 +

1

log q

)
≤ α1 ≤ q

q − 1

(
1 +

1 + o(1)

log q

)
. (21)

Strongdata processing inequalitiesThe data processing inequality4 states that I (U ; Y )

≤ I (U ; X) for any Markov chain U → X → Y , i.e., we cannot gain information by
going through a channel. It is natural to think that when the channel X → Y is noisy, we
should strictly lose information, i.e., I (U ; Y ) < I (U ; X). In fact, we have I (U ; Y ) ≤
ηI (U ; X), where the constant η depends only on the channel PY |X (and possibly also
on the distribution of X ), but not on the distribution of U . Such inequalities are called
strong data processing inequalities (SDPIs).We distinguish between the inequalities that
depend on the distribution PX and that are independent of it. For a Markov kernel W
and a distribution ν we define

ηKL(W ) = sup
μ,ν:0<D(μ‖ν)<∞

D(μW‖νW )

D(μ‖ν)
, (22)

ηKL(ν,W ) = sup
μ:0<D(μ‖ν)<∞

D(μW‖νW )

D(μ‖ν)
. (23)

We call ηKL(W ) the input-unrestricted contraction coefficient and ηKL(ν,W ) the input-
restricted contraction coefficient. It can be shown, e.g. [12,44,46], that we also have
alternative characterizations: ηKL(W ) is the smallest constant such that for any Markov
chain U → X → Y with PY |X = W , we have

I (U ; Y ) ≤ ηKL(W )I (U ; X), (24)

4 We recall that for a pair of random variables X, Y the mutual information between X and Y is defined as
I (X; Y ) = D(PX,Y ‖PX PY ).
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and ηKL(ν,W ) is the smallest constant such that for any Markov chain U → X → Y
with PY |X = W and PX = ν, we have

I (U ; Y ) ≤ ηKL(ν,W )I (U ; X). (25)

Even more generally, some channels can be shown to satisfy (for any Markov chain
U → X → Y with PY |X as before, arbitrary U , fixed or arbitrary PX )

I (U ; Y ) ≤ s(I (U ; X)) , (26)

for some non-linear function s. See Raginsky [46] for more background on SDPIs and
their relationship with LSIs.

From (7) and Prop. 3 we obtain

ηKL(π,PCλ) ≤ λ
q−1
q α1 = λ

1+ 1+o(1)
log q (27)

for λ ∈ [0, 1] as q → ∞. It turns out that 1-NLSI can be seen as an infinitesimal version
of the non-linear SDPIs (see [43, Theorem 2]). Thus, we can prove the best possible
non-linear SDPI for the Potts channels.

Theorem 4 (Non-linear SDPI for Potts channel). Fix λ ∈
[
− 1

q−1 , 1
]
. Define sλ :

[0, log q] → R as

sλ(ψ(x)) = ψ

(
λx +

1 − λ

q

)
, (28)

for x ∈
[
1
q , 1
]
, where ψ is defined in (16). Let psλ be the concave envelope of sλ. For any

Markov chain U → X → Y where X has uniform distribution and X → Y is the Potts
channel PCλ, we have

I (U ; Y ) ≤ psλ(I (U ; X)). (29)

In particular, we have

ηKL(π,PCλ) = sup
x∈
(
1
q ,1
]

ψ
(
λx + 1−λ

q

)

ψ(x)
. (30)

Furthermore, this is the best possible non-linear SDPI for Potts channels, in the
sense that for any c ∈ [0, log q], there exists a Markov chain U → X → Y where
PX = Unif([q]), PY |X = PCλ, and I (U ; X) = c, such that I (U ; Y ) = psλ(c).

In the above theorem, concavification is necessary because one needs concavity when
translating from the divergence form to the mutual information form – see Sect. 2.3.

To compare the input-restricted ηKL with input-unrestricted one, in Appendix A we
compute the exact value of ηKL(PCλ), and in Appendix B we prove that

ηKL(π,PCλ) < ηKL(PCλ) (31)

for q ≥ 3 and λ ∈
[
− 1

q−1 , 0
)

∪ (0, 1). See Sect. 2.4 for discussions on tightness of the

bound (27).
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In Sect. 3 we extend p-NLSIs and SDPIs to product spaces/channels. In these results,
the functions qbp (convexification of bp) and psλ (concavification of sλ) appear naturally.
When q = 2, bp is already convex, and sλ is concave, leading to many good properties
for the hypercube and for binary symmetric channels (e.g. Mrs. Gerber’s Lemma [51]).
However, as shown in Prop. 26, these properties do not hold anymore for q ≥ 3, implying
a different structure of extremal distributions that are the slowest to relax to equilibrium
as t → ∞ in T⊗n

t (see Corollary 2 or Prop. 27).
We have seen in Theorem 1 and Theorem 4 that for the Potts semigroup, the sharpest

p-NLSIs and non-linear SDPIs are achieved at two-valued functions or distributions.
This might be the simplest case of a general phenomenon. Namely, it seems plausible
that for the semigroup of random walk on a highly symmetric graph G = (V, E), the
sharpest p-NLSIs and non-linear SDPIs are achieved at a function f of form f (v) =
f0 (minu∈S dist(u, v)) for some subset S of V and function f0 : Z≥0 → R≥0, where
dist denotes graph distance. We leave this for further research.

ApplicationsOne of the implications of NLSIs is improved hypercontractivity inequali-
ties for functions in [q]n supported on subsets of cardinalityq(1−ε)n – thiswas established
generally (for any semigroup) in [43]. Here, we show how NLSIs can be used to close
the gap (between functional-analytic proofs and explicit combinatorics of [29]) in the
edge-isoperimetric inequality for the [q]n – see Sect. 3.3.

Similarly, SDPIs have numerous applications. Originally introduced to study cer-
tain multi-user data-compression questions in information theory, they have since been
adopted in many different scenarios. For example, Evans and Schulman [19] used SD-
PIs to investigate fundamental limits of fault tolerant computing. Polyanskiy and Wu
[44,45] further developed the idea and related the amount of information transmitted
in a directed or undirected graphical model to the percolation probability (existence
of an open path) on the same network. Other notable applications include distributed
estimation [9,52] and communication complexity [24].

More directly related to our paper is the work of Evans et al. [18] which applied the
SDPI (for Potts channels with q = 2) to determine the reconstruction threshold for the
Ising model on a tree. We describe a more general class of such questions, which we
call the broadcasting on trees (BOT) model.

Consider a tree with a marked root. Each vertex of the tree has a random label in [q],
generated as follows: the root label is generated according to some known distribution,
and for each vertex, its label is generated from its parent’s label, through some channel
M . We say reconstruction is possible if given labels of all nodes far away enough from
the root, we can guess the root label better than guessing from the initial distribution.
Equivalently, reconstruction is possible if the mutual information between the root label
and the labels of all nodes distance k away from the root goes to a non-zero limit, as k
goes to ∞. We say reconstruction is impossible otherwise.

Reconstruction problems on trees have been studied for a long time. Kesten and
Stigum [27] proved the so-called Kesten–Stigum bound, a reconstruction result based
on the second eigenvalue of the channel. Physicists study the problem from a spin glass
theoretic perspective (e.g., Mézard and Montanari [35]). Based on careful analysis of
the evolution of magnetization, several authors have obtained very tight reconstruction
thresholds for various models (e.g., Sly [49,50], Bhatnagar et al. [5], Liu and Ning [30],
Mossel et al. [41]).

In this paper, we attack this problem using SDPIs. The method of [18] showed that
reconstruction is impossible if br(T )ηKL(M) < 1, where br(T ) denotes the branching
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number5 of T . Here we improve their result by considering the input-restricted ηKL.
We note that the idea of using input-restricted contraction coefficients (but not ηKL) has
appeared in [20] – see Remark 35 below.

Theorem 5 (Non-reconstruction for BOT). Consider the broadcasting model on a tree
T with channel M. Let ν be a stationary distribution of M (i.e., νM = ν) with full
support. Let M∗ denote the reverse channel, defined by ν j M∗( j, i) = νi M(i, j) for all
i, j ∈ [q]. If

ηKL(ν, M∗) br(T ) < 1, (32)

then reconstruction is impossible. Here br(T ) denotes the branching number of T (Def-
inition 30), and ηKL denotes the KL contraction coefficient.

Our method is very simple, is non-asymptotic, works for the branching number, and
is often quite tight. Previous results often impose additional restrictions on the tree (e.g.,
regular tree, or Galton–Watson with Poisson offspring distribution), and some only work
when the expected degree is large enough. We discuss in more detail in Sect. 4.

Applying Theorem 5 to the Potts model, we achieve improved non-reconstruction
results for Potts models on a tree.

Theorem 6 (Non-reconstruction for Potts models). Consider the Potts model on a tree
T . If

ηKL(π,PCλ) br(T ) < 1, (33)

then reconstruction is impossible. Here ηKL(π,PCλ) is given by (30) and br(T ) denotes
the branching number of T (Definition 30).

Theorem 6 strictly improves over the explicit bound of Mossel and Peres [39]. In the
special case where the channel is the coloring channel (λ = − 1

q−1 ), Theorem 6 recovers
the reconstruction threshold up to the first order, which was previously obtained by Sly
[49] and Bhatnagar et al. [6] using more complicated methods. (We note, however, that a
major focus of those works was to obtain the lower-order terms.) More detailed analysis
is done in Sect. 5.

Last but not least, we consider the problem of weak recovery for the stochastic block
model with q communities (q-SBM). In q-SBM, n vertices each receives a uniformly
random label in [q], and then a random graph is constructed, such that (1) for two vertices
with the same label, there exists an edge with probability a

n ; (2) for two vertices with
different labels, there exists an edge with probability b

n . The model is said to have weak
recovery, if given the random graph, we can partition the vertices into q parts, such that

the partition is correct (up to relabeling the parts) for at least
(
1
q + ε

)
n vertices, for

some absolute constant ε > 0.
For q = 2, the weak recovery threshold is known: If (a − b)2 > 2(a + b), weak

recovery is possible (Massoulié [34], Mossel et al. [37]); if (a − b)2 ≤ 2(a + b), weak
recovery is impossible (Mossel et al. [36]). Forq = 3, 4,Mossel et al. [41] determined the
weak recovery thresholdwhen the expected degree is large enough. For the disassortative
regime (a < b), Coja-Oghlan et al. [13] gave a formula for the weak recovery threshold.

5 The branching number of a tree roughly measures the growth rate of the tree. For regular trees or Galton–
Watson trees, the branching number is almost surely equal to the expected offspring of a vertex. See Defini-
tion 30 for a formal definition.
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In the assortative regime (a > b), the previous best impossibility result for general q is
by Banks et al. [3], which says weak recovery is impossible whenever

(a − b)2

a + (q − 1)b
<

2q log(q − 1)

q − 1
. (34)

By a standard reduction from the Potts model, we achieve improved impossibility
results for weak recovery for the q-stochastic block model.

Theorem 7 (Impossibility of weak recovery for SBM). Weak recovery for the q-SBM
is impossible when

ηKL(π,PCλ)d < 1, (35)

where d = a+(q−1)b
q , λ = a−b

a+(q−1)b , and ηKL is given by (30).

For q = 2, we have ηKL(π,PCλ) = λ2 (see Section 5.1), so Theorem 7 implies that

weak recovery for the 2-SBM is impossible if dλ2 = (a−b)2

2(a+b) < 1. This matches the
weak recovery threshold for the 2-SBM established by Massoulié [34] and Mossel et al.
[37]. For general q, using Prop. 42, Theorem 7 implies that weak recovery is impossible
when

(a − b)2 < b · 2q(q − 1) log(q − 1)

q − 2
+ q(a − b), a > b (36)

or

(a − b)2 < a · 2q(q − 1) log(q − 1)

q − 2

+ (b − a) · q log q

(q − 1)(log q − log(q − 1))
, a < b. (37)

We discuss in more detail, and show that this improves over previous results, in Sect. 6.
We also note that this framework can be used to deduce SDPI-based impossibility of
weak recovery results for asymmetric SBMs – see Remark 39.
Organization In Sect. 2 we prove the sharpest p-NLSIs for the Potts semigroup (The-
orem 1), and compute the input-restricted KL divergence contraction coefficients of all
Potts channels (Theorem 4).

In Sect. 3we discuss tensorization of p-NLSIs for the Potts semigroup, and non-linear
SDPI for Potts channels.

In Sect. 4 we prove a non-reconstruction result for a general class of broadcast models
on trees, based on strong data processing inequalities (Theorem 5).

In Sect. 5 we apply Theorem 5 to the Potts model on a tree (Theorem 6).We show that
this improves previous non-reconstruction results. For a special case, the randomcoloring
model on a tree, we obtain non-reconstruction results for arbitrary trees, generalizing
previous results which work only for restricted classes of trees.

In Sect. 6, by a standard reduction from the Potts model, we prove impossibility
results for weak recovery of the stochastic block model (Theorem 7). This results in
improvements for the best known bounds for the q-SBM.
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2. Non-linear p-Log-Sobolev Inequalities for the Potts Semigroup

In this section, we prove p-NLSIs for the Potts semigroup for p ≥ 1. Because the form
of the p-LSIs are slightly different for p 	= 1 and p = 1, we prove them separately.

Recall our setting. The alphabet is X = [q] for some positive integer q ≥ 2. The
Potts semigroup is Tt = exp(Lt) with generator

L(x, y) =
{−1 if x = y,

1
q−1 , if x 	= y. (38)

The stationary distribution is π = Unif([q]). The Dirichlet form is

E( f, g) = −Eπ [(L f )g] = − 1

q(q − 1)

(
∑

x

f (x)

)(
∑

y

g(y)

)
+

1

q − 1

∑

x

f (x)g(x).

(39)

Relative entropy is

Entπ ( f ) = Eπ

[
f log

f

Eπ [ f ]
]

. (40)

The non-linear p-log-Sobolev inequality says

Entπ ( f )

Eπ [ f ] ≤ �p

⎛

⎜⎝
E
(
f

1
p , f 1−

1
p

)

Eπ [ f ]

⎞

⎟⎠ (41)

for some function �p, where for p = 1, RHS is replaced with �p

(E( f,log f )
Eπ [ f ]

)
. Because

both sides of the inequality are fixed under scalar multiplication, we can wlog restrict f
to be a distribution μ. Then the relative entropy is

Entπ (μ) = 1

q
D(μ‖π) = 1

q
(log q − H(μ)). (42)

2.1. Non-linear p-log-Sobolev inequality for p > 1 We prove Theorem 1 for p > 1.
Before proving the theorem we show the following.

Proposition 8. Fix r ∈ (0, 1) and c ∈ [0, log q]. Among all distributions μ = (p1, . . . ,

pq) with H(μ) = c, the distribution of form μ =
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
with x ∈

[
1
q , 1
]

achieves maximum
∑

i p
r
i . Furthermore, up to permutation of the alphabet this is the

unique maximum-achieving distribution.

Proof. The result for c ∈ {0, log q} is obvious. In the following, assume that c ∈
(0, log q). Write F(μ) :=∑i p

r
i . The set {μ : H(μ) = c} is compact, so the maximum

value of F(μ) is achieved at some point μ = (p1, . . . , pq).
We prove in several steps. In Step 0, we prove that if pi = 0 for some i , then there

can be at most two different values of pi ’s. In Step 1, we prove that if pi > 0 for all
i , then there can be at most two different values of pi ’s. In Step 2, we prove that one
of the two different values must have multiplicity one, thus finishing the proof of the
proposition.
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Step 0.

Claim 9. Fix a, b > 0 and r ∈ (0, 1). Among all solutions u, v, w ∈ [0, 1] with u +
v + w = a and −u log u − v log v − w logw = b, the maximum of ur + vr + wr is not
achieved at a point where 0 = u < v < w.

Proof. Suppose the maximum is achieved at such a point (u0, v0, w0) where 0 = u0 <

v0 < w0. Extend it to a curve (u, v = v(u), w = w(u)) on u ∈ [0, ε) for some ε > 0,
such that u < v < w for all u, satisfying

u + v + w = a, (43)

−u log u − v log v − w logw = b, (44)

and

v(0) = v0, w(0) = w0. (45)

We prove that

f (u) := ur + vr + wr (46)

decreases as u approaches 0+, for small enough u.
By taking derivative of (43) and (44), one can compute that

v′(u) = logw − log u

log v − logw
, w′(u) = log u − log v

log v − logw
. (47)

Therefore

f ′(u) = r
(
ur−1 + vr−1v′(u) + wr−1w′(u)

)

= r

(
ur−1 + vr−1 logw − log u

log v − logw
+ wr−1 log u − log v

log v − logw

)
. (48)

Because 0 < v0 < w0, the term ur−1 dominates the sum, and f ′(u) > 0 for small
enough u > 0. Therefore the maximum of f is not achieved at u = 0. ��
By Claim 9, if pi = 0 for some i , then there can be at most two different values of pi ’s.

Step 1.

Claim 10. If u, v, w ∈ (0, 1) are all different, then

det

⎛

⎝
1 log u ur−1

1 log v vr−1

1 logw wr−1

⎞

⎠ 	= 0. (49)

Proof of Claim. Suppose det = 0. Then for somea, b ∈ R, the equation xr−1+a log x =
b has at least three distinct solutions x ∈ (0, 1). However

∂

∂x

(
xr−1 + a log x

)
= (r − 1)xr−2 +

a

x
(50)

is smooth on (0, 1), and takes zero at most once. So xr−1 + a log x takes each value at
most once on (0, 1). Contradiction. ��
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By Lagrange multipliers, the three vectors

∇F(μ) =
(
rpr−1

i

)

i∈[q] , (51)

∇H(μ) = (−1 − log pi )i∈[q], (52)

∇
∑

i∈[q]
pi = 1 (53)

should be linear dependent. By Step 0 and Claim 10, there can be at most two different
values of pi ’s.

So we can assume that p1 = · · · = pm = x , pm+1 = · · · = pq = 1−mx
q−m for some

m ∈ [q − 1], x ∈
(
1
q , 1m

]
.

Step 2. For μ of the above form, we have

−H(μ) = mx log x + (1 − mx) log
1 − mx

q − m
, (54)

F(μ) = mxr + (q − m)

(
1 − mx

q − m

)r
. (55)

We smoothly continue both functions so that m can take any real value in [1, q − 1].

Claim 11. For m ∈ (1, q − 1] and x ∈
(
1
q , 1m

)
, we have

− ∂

∂x
H(μ) > 0 (56)

and

∂

∂x
H(μ)

∂

∂m
F(μ) − ∂

∂m
H(μ)

∂

∂x
F(μ) > 0. (57)

Proof. We have

− ∂

∂x
H(μ) = m

(
log x − log

1 − mx

q − m

)
> 0, (58)

− ∂

∂m
H(μ) = 1 − qx

q − m
+ x

(
log x − log

1 − mx

q − m

)
, (59)

∂

∂x
F(μ) = rm

(
xr−1 −

(
1 − mx

q − m

)r−1
)

, (60)

∂

∂m
F(μ) = xr +

(
r
1 − qx

1 − mx
− 1

)(
1 − mx

q − m

)r
. (61)
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Let a = qx−1
1−mx . Then

G(μ) := ∂

∂x
H(μ)

∂

∂m
F(μ) − ∂

∂m
H(μ)

∂

∂x
F(μ)

= (r − 1)m

(
xr −

(
1 − mx

q − m

)r)(
log x − log

1 − mx

q − m

)

− rm
1 − qx

q − m

(
xr−1 −

(
1 − mx

q − m

)r−1
)

= x−rm
(
(r − 1)

(
1 − (a + 1)−r ) log(a + 1) − r

a

a + 1

(
1 − (a + 1)1−r

))
.

(62)

The result then follows from Claim 12. ��
Claim 12. For all r ∈ (0, 1) and a > 0 we have

(r − 1)
(
1 − (a + 1)−r ) log(a + 1) − r

a

a + 1

(
1 − (a + 1)1−r

)
> 0. (63)

Proof. Let

f (a) := (r − 1)
(
1 − (a + 1)−r ) log(a + 1) − r

a

a + 1

(
1 − (a + 1)1−r

)
. (64)

Because lima→0+ f (a) = 0, it suffices to prove that f ′(a) > 0.

f ′(a) = (a + 1)−r−1(1 − r − (a(1 − r) + 1)
(
(a + 1)r−1 − r

)
− (1 − r)r log(a + 1))

=: (a + 1)−r−1g(a). (65)

Because lima→0+ g(a) = 0, it suffices to prove that g′(a) > 0.

g′(a) = ar(1 − r)
(
1 − (a + 1)r−1

)

a + 1
> 0. (66)

��
Now let us return to the proof of Prop. 8. The set of (m, x) where m ∈ [1, q − 1],
x ∈

(
1
q , 1m

]
, and H(μ) = c can be parametrized as a curve (m, x = x(m)) for

m ∈ [1,mc] for some constant mc. Along the curve, F(μ) is continuous, and by Claim
11, is decreasing in m. Therefore F(μ) is maximized at m = 1. This finishes the proof.
��
Proof of Theorem 1 for p > 1. For a distribution μ = (p1, . . . , pq), we have

E
(
μ

1
p , μ

1− 1
p

)
= 1

q − 1

(
1 − 1

q

(
∑

i

p
1
p
i

)(
∑

i

p
1− 1

p
i

))
. (67)
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By Prop. 8, for fixed value of Entπ (μ), the unique distribution of the form
(
x, 1−x

q−1 , . . . ,

1−x
q−1

)
with x ∈

[
1
q , 1
]
minimizes E

(
μ

1
p , μ

1− 1
p

)
. Therefore for any non-zero non-

negative f , we have

bp

(
Entπ ( f )

Eπ [ f ]
)

≤
E
(
f

1
p , f 1−

1
p

)

Eπ [ f ] . (68)

So p-NLSI holds with�p = b−1
p . The statement about optimality is immediate from

the above discussions. ��
2.2. Non-linear 1-log-Sobolev inequality We prove Theorem 1 for p = 1. Before
proving the theorem we show the following.

Proposition 13. Fix 0 ≤ c ≤ log q. Among all distributions μ = (p1, . . . , pq) with

H(μ) = c, the distribution of form μ =
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
with x ∈

[
1
q , 1
]
achieves

maximum
∑

i log pi . Furthermore, up to permutation of the alphabet this is the unique
minimum-achieving distribution.

Proof. The result for c ∈ {0, log q} is obvious. In the following, assume that 0 < c <

log q. Write F(μ) :=∑i log pi . The set {μ : H(μ) = c} is compact, so the maximum
value of F(μ) is achieved at some point μ = (p1, . . . , pq).

We prove in several steps. In Step 0, we prove that pi > 0 for all i . In Step 1, we
prove that there can be at most two different values of pi ’s. In Step 2, we prove that one
of the two different values must have multiplicity one, thus finishing the proof of the
proposition.

Step 0. If pi = 0 for some i , then F(μ) = −∞. So mini∈[q] pi > 0.

Step 1.

Claim 14. If u, v, w ∈ (0, 1) are all different, then

det

⎛

⎝
1 log u 1

u
1 log v 1

v

1 logw 1
w

⎞

⎠ 	= 0. (69)

Proof of Claim. Suppose det = 0. Then for some a, b ∈ R, the equation 1
x +a log x = b

has at least three distinct solutions x ∈ (0, 1). However, ∂
∂x

( 1
x + a log x

) = − 1
x2

+ a
x is

smooth on (0, 1), and takes zero at most once. So 1
x + a log x takes each value at most

once on (0, 1). Contradiction. ��
By Lagrange multipliers, the three vectors

∇F(μ) =
(

1

pi

)

i∈[q]
, (70)

∇H(μ) = (−1 − log pi )i∈[q], (71)

∇
∑

i∈[q]
pi = 1 (72)
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should be linear dependent. By Claim 14, there can be at most two different values of
pi ’s.

So we can assume that p1 = · · · = pm = x , pm+1 = · · · = pq = 1−mx
q−m for some

m ∈ [q − 1], x ∈
(
1
q , 1m

)
.

Step 2. For μ of the above form, we have

−H(μ) = mx log x + (1 − mx) log
1 − mx

q − m
, (73)

F(μ) = m log x + (q − m) log
1 − mx

q − m
. (74)

We smoothly continue both functions so that m can take any real value in [1, q − 1].
Claim 15. For m ∈ (1, q − 1] and x ∈

(
1
q , 1m

)
, we have

− ∂

∂x
H(μ) > 0 (75)

and

∂

∂x
H(μ)

∂

∂m
F(μ) − ∂

∂m
H(μ)

∂

∂x
F(μ) > 0. (76)

Proof of Claim. Let f (x) = log x − log 1−mx
q−m . Then we have

− ∂

∂x
H(μ) = m f (x) > 0, (77)

− ∂

∂m
H(μ) = 1 − qx

q − m
+ x f (x), (78)

∂

∂x
F(μ) = m(1 − qx)

x(1 − mx)
, (79)

∂

∂m
F(μ) = 1 − qx

1 − mx
+ f (x). (80)

So

G(μ) := ∂

∂x
H(μ)

∂

∂m
F(μ) − ∂

∂m
H(μ)

∂

∂x
F(μ)

= m

(
(1 − qx)2

x(q − m)(1 − mx)
− f (x)2

)
. (81)

Let a = qx−1
1−mx . Then G(μ) = m

(
a2
1+a − log2(a + 1)

)
. Because a > 0, we have G(μ) >

0 by Lemma 16. ��
The set of (m, x)wherem ∈ [1, q−1], x ∈

(
1
q , 1m

]
, and H(μ) = c can be parametrized

as a curve (m, x = x(m)) form ∈ [1,mc] for some constant mc. Along the curve, F(μ)

is continuous, and by Claim 15, is decreasing in m. Therefore F(μ) is maximized at
m = 1. This finishes the proof. ��
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Lemma 16. For a ∈ R>−1, we have
a2
1+a ≥ log2(a+1). Equality holds only when a = 0.

Proof. We start from thewell-known fact that a ≥ log(a+1) for a ∈ R>−1 (and equality
holds only when a = 0). Let f (a) = a(a + 2) − (2a + 2) log(a + 1). We have f (0) = 0
and f ′(a) = 2(a− log(a +1)) ≥ 0 for a ∈ R>−1 (and equality holds only when a = 0).
So f is negative on (−1, 1) and positive on (1,∞).

Let g(a) = a2
1+a − log2(a + 1). Clearly g(0) = 0. Because g′(a) = f (a)

(a+1)2
, g is

decreasing on (−1, 1] and increasing on [1,∞). So g(a) ≥ 0 for all a ∈ R>−1, and
equality holds only when a = 0. ��
Proof of Theorem 1 for p = 1. For a distribution μ = (p1, . . . , pq), we have

E(μ, logμ) = 1

q − 1

∑

i∈[q]
pi log pi − 1

q(q − 1)

∑

i∈[q]
log pi . (82)

ByProp. 13, for fixed value of Entπ (μ), the unique distribution of the form
(
x, 1−x

q−1 , . . . ,

1−x
q−1

)
with x ∈

[
1
q , 1
]
minimizes E(μ, logμ). Therefore for any non-zero non-negative

f , we have

b1

(
Entπ ( f )

Eπ [ f ]
)

≤ E( f, log f )

Eπ [ f ] . (83)

So 1-NLSI holds for �1 = b−1
1 . The statement about optimality is immediate from

the above discussions. ��
2.3. Input-restricted non-linear SDPI for Potts channels In this section, we prove
Theorem 4.

Recall that the subset of Potts channelswithλ ≥ 0 (i.e., ferromagnetic Potts channels)
forms thePotts semigroup,with Tt = PC

exp
(
− q

q−1 t
). For semigroups, the optimal 1-NLSI

is an “infinitesimal version” of the input-restricted non-linear SDPI. Consequently, by
integrating the former we can get the latter. This can be formalized as follows.

Proposition 17. Let λ ∈ [0, 1]. Fix 0 ≤ c ≤ log q. Among all distributions μ with

H(μ) = c, the distribution of form μ =
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
with x ∈

[
1
q , 1
]
achieves

minimum H(μPCλ). Furthermore, when λ 	∈ {0, 1}, up to permutation of the alphabet
this is the unique minimum-achieving distribution.

Proof. The result for λ ∈ {0, 1} or c ∈ {0, log q} is obvious. In the following assume
that 0 < λ < 1 and 0 < c < log q.

Let μ and ν be two distributions with H(μ) = H(ν) = c, where μ is of form(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
for some x ∈

[
1
q , 1
]
, and ν is not of this form (up to permuting the

alphabet). Define μt = μTt and νt = νTt , where (Tt )t≥0 is the Potts semigroup.
We prove that H(μt ) < H(νt ) for t ∈ (0,∞). Suppose this does not hold. Let

u = inf{t > 0 : H(μt ) ≥ H(νt )}. Then we have H(νu) = H(μu) by continuity of
semigroup. By Prop. 13, we have

∂

∂t
|t=u H(νt ) = E(νu, log νu) > E(μu, logμu) = ∂

∂t
|t=u H(μt ). (84)
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If u = 0, then for some ε > 0, H(νt ) > H(μt ) for t ∈ (0, ε). If u > 0, then for
some ε > 0, H(νt ) < H(μt ) for t ∈ (u − ε, u). Both cases lead to contradiction with
definition of u. So H(μt ) < H(νt ) for t ∈ (0,∞). This completes the proof. ��

Surprisingly, the result also extends beyond the semigroup to all of the Potts channels.
Namely, we have the following.

Proposition 18. Let λ ∈
[
− 1

q−1 , 1
]
. Fix 0 ≤ c ≤ log q. Among all distributions μ with

H(μ) = c, the distribution of form μ =
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)
with x ∈

[
1
q , 1
]
achieves

minimum H(μPCλ). Furthermore, when λ 	∈ {0, 1}, up to permutation of the alphabet
this is the unique minimum-achieving distribution.

The only difference between Prop. 18 and Prop. 17 is thatwe allownegativeλ in Prop. 18.

Proof. The result for λ ∈ {0, 1} or c ∈ {0, log q} is obvious. In the following assume
that λ 	∈ {0, 1} and c 	∈ {0, log q}. The set {μ : H(μ) = c} is compact, so the minimum
value of H(μPCλ) is achieved at some point μ = (p1, . . . , pq).

We prove in several steps. In Step 0, we prove that if pi = 0 for some i , then there
can be at most two different values of pi ’s. In Step 1, we prove that if pi > 0 for all
i , then there can be at most two different values of pi ’s. In Step 2, we prove that one
of the two different values must have multiplicity one, thus finishing the proof of the
proposition.

Step 0.

Claim 19. Fix a, b, d > 0 and c ∈ R>−d\{0}. Among all solutions u, v, w ∈ [0, 1]with
u + v + w = a and −u log u − v log v − w logw = b, the maximum of

(cu + d) log(cu + d) + (cv + d) log(cv + d) + (cw + d) log(cw + d) (85)

is not achieved at a point where 0 = u < v < w.

Proof. Suppose the maximum is achieved at such a point (u0, v0, w0) where 0 = u0 <

v0 < w0. Extend it to a curve (u, v = v(u), w = w(u)) on u ∈ [0, ε) for some ε > 0,
such that u < v < w for all u, satisfying

u + v + w = a, (86)

−u log u − v log v − w logw = b, (87)

and v(0) = v0, w(0) = w0.
We prove that

f (u) := (cu + d) log(cu + d) + (cv + d) log(cv + d) + (cw + d) log(cw + d) (88)

decreases as u approaches 0+ for small enough u.
By taking derivative of (86) and (87), one can compute that

v′(u) = logw − log u

log v − logw
, w′(u) = log u − log v

log v − logw
. (89)



Non-linear Log-Sobolev Inequalities 787

Therefore

f ′(u) = c
(
log(cu + d) + log(cv + d)v′(u) + log(cw + d)w′(u)

)

= c

(
log(cu + d) + log(cv + d)

logw − log u

log v − logw
+ log(cw + d)

log u − log v

log v − logw

)
.

(90)

Because 0 < v0 < w0, terms involving log u dominates the sum. The dominating term
is

−c log u
log(cv + d) − log(cw + d)

log v − logw
> 0. (91)

Therefore the maximum of f is not achieved at u = 0. ��
By Claim 19, if pi = 0 for some i , then there can be at most two different values of pi ’s.

Step 1.

Claim 20. If u, v, w ∈ (0, 1) are all different, then

det

⎛

⎜⎝
1 log u log(λu + 1−λ

q )

1 log v log(λv + 1−λ
q )

1 logw log(λw + 1−λ
q )

⎞

⎟⎠ 	= 0. (92)

Proof of Claim. Suppose det = 0. Then for some a, b ∈ R, the equation

log

(
λx +

1 − λ

q

)
+ a log x = b (93)

has at least three distinct solutions x ∈ (0, 1). However,

∂

∂x

(
log

(
λx +

1 − λ

q

)
+ a log x

)
= λ

λx + 1−λ
q

+
a

x
(94)

is smooth on (0, 1), and takes zero at most once. So

log

(
λx +

1 − λ

q

)
+ a log x (95)

takes each value at most twice on (0, 1). Contradiction. ��
By Lagrange multipliers, the three vectors

∇H(μPCλ) =
(

−λ log

(
λpi +

1 − λ

q

)
− λ

)

i∈[q]
, (96)

∇H(μ) = (−1 − log pi )i∈[q], (97)

∇
∑

i∈[q]
pi = 1 (98)

should be linear dependent. By Claim 20, there can be at most two different values of
pi ’s.
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So we can assume that p1 = · · · = pm = x , pm+1 = · · · = pq = 1−mx
q−m for some

m ∈ [q − 1], x ∈
(
1
q , 1m

]
.

Step 2. For μ of the above form, we have

−H(μ) = mx log x + (1 − mx) log
1 − mx

q − m
, (99)

−H(μPCλ) = m

(
λx +

1 − λ

q

)
log

(
λx +

1 − λ

q

)

+ (q − m)

(
λ
1 − mx

q − m
+
1 − λ

q

)
log

(
λ
1 − mx

q − m
+
1 − λ

q

)
. (100)

We smoothly continue both functions so that m can take any real value in [1, q − 1].
Claim 21. For m ∈ (1, q − 1] and x ∈

(
1
q , 1m

)
, we have

− ∂

∂x
H(μ) > 0 (101)

and

∂

∂m
H(μ)

∂

∂x
H(μPCλ) − ∂

∂x
H(μ)

∂

∂m
H(μPCλ) > 0. (102)

Proof of Claim. Let

f (x) = log x − log
1 − mx

q − m
. (103)

Then

− ∂

∂x
H(μ) = m f (x) > 0, (104)

− ∂

∂m
H(μ) = 1 − qx

q − m
+ x f (x), (105)

− ∂

∂x
H(μPCλ) = λm f

(
λx +

1 − λ

q

)
, (106)

− ∂

∂m
H(μPCλ) = λ

1 − qx

q − m
+

(
λx +

1 − λ

q

)
f

(
λx +

1 − λ

q

)
, (107)

and

G(μ) := ∂

∂m
H(μ)

∂

∂x
H(μPCλ) − ∂

∂x
H(μ)

∂

∂m
H(μPCλ)

= λm
1 − qx

q − m

(
f

(
λx +

1 − λ

q

)
− f (x)

)
− m f (x) f

(
λx +

1 − λ

q

)
1 − λ

q
.

(108)

∂

∂λ

G(μ)

mλ f (x) f
(
λx + 1−λ

q

) = 1

qλ2
+
1 − qx

q − m

∂
∂λ

f
(
λx + 1−λ

q

)

f
(
λx + 1−λ

q

)2 . (109)

Note that
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1.
G(μ)

mλ f (x) f
(
λx + 1−λ

q

) (110)

is continuous for λ ∈
[
− 1

q−1 , 1
]
, and takes value 0 at λ = 1;

2. mλ f (x) f
(
λx + 1−λ

q

)
≥ 0 for λ ∈

[
− 1

q−1 , 1
]
.

So we only need to prove that

∂

∂λ

G(μ)

mλ f (x) f
(
λx + 1−λ

q

) ≤ 0, (111)

i.e.,

f

(
λx +

1 − λ

q

)2
≤ qλ2(qx − 1)

q − m

∂

∂λ
f

(
λx +

1 − λ

q

)
. (112)

Let y = λx + 1−λ
q . Then the above inequality can be rewritten as

f (y)2 ≤ qλ2(qx − 1)

q − m

∂y

∂λ

∂ f (y)

∂y
= (qy − 1)2

(q − m)y(1 − my)
. (113)

This is true by Lemma 16, applied to a = qy−1
1−my . Equality holds only when y = 1

q ,
which cannot happen for λ 	= 0. ��

The set of (m, x) where m ∈ [1, q − 1], x ∈
(
1
q , 1m

]
, and H(μ) = c can be

parametrized as a curve (m, x = x(m)) for m ∈ [1,mc] for some constant mc. Along
the curve, H(μPCλ) is continuous, and by Claim 21, is increasing in m. Therefore
H(μPCλ) is minimized at m = 1. This finishes the proof. ��
Proof of Theorem 4. Consider a Markov chain U → X → Y where X has uniform
distribution, and the channel X → Y is PCλ. Because PX and PY are both uniform, for
any u, we have

D(PX |U=u‖PX ) = log q − H(PX |U=u), (114)

D(PY |U=u‖PY ) = log q − H(PY |U=u). (115)

So by Prop. 18 we get

D(PY |U=u‖PY ) ≤ sλ(D(PX |U=u‖PX )). (116)

Because psλ is the concave envelope of sλ, taking expectation over U we get

I (U ; Y ) = D(PY |U‖PY |PU ) ≤ psλ(D(PX |U‖PX |PU )) = psλ(I (U ; X)). (117)

Now we prove optimality. Let c ∈ [0, log q]. Choose a, b ∈ [0, log q] and u ∈ [0, 1]
such that c = (1 − u)a + ub and psλ(c) = (1 − u)sλ(a) + usλ(b). Choose ρ, τ ∈ [0, 1]
such that Cap(PCρ) = a and Cap(PCτ ) = b, where Cap denotes channel capacity.
Define random variable U = (V, Z) such that Z ∼ Ber(u), conditioned on Z = 0,
V ∼ PCρ(X), and conditioned on Z = 1, V ∼ PCτ (X). One can check that

I (U ; X) = (1 − u)a + ub = c, (118)

I (U ; Y ) = (1 − u)sλ(a) + usλ(b) = psλ(c). (119)

This finishes the proof. ��
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2.4. Behavior for q → ∞ When should one use p-NLSI instead of p-LSI? To get
some insights, we consider the case of q → ∞. First, we prove Prop. 3 that α1 =
1 + 1+o(1)

log q .

Proof of Prop. 3. Lower bound.ByTheorem1,we need to show that for all x ∈
(
1
q , 1
]
,

we have

q

q − 1

(
1 +

1

log q

)
≤ ξ1(x)

ψ(x)
. (120)

Noting that

ξ1(x) = q

q − 1

(
1

q

(
− log x − (q − 1) log

1 − x

q − 1

)
− log q + ψ(x)

)
, (121)

it suffices to prove that

f (x) := log q

q

(
− log x − (q − 1) log

1 − x

q − 1

)
− log2 q − ψ(x) ≥ 0. (122)

We have f
(
1
q

)
= 0. So it suffices to prove that f ′(x) ≥ 0 for x ∈

[
1
q , 1
]
.

f ′(x) = log q

q

(
−1

x
+
q − 1

1 − x

)
−
(
log x − log

1 − x

q − 1

)
. (123)

We smoothly continue this function to
{
(q, x) ∈ R

2 : q ≥ 3, x ∈
[
1
q , 1
]}

and prove that

it is non-negative in this region.

∂

∂q
f ′(x) = 1 − log q

q2

(
−1

x
+
q − 1

1 − x

)
+
log q

q

1

1 − x
− 1

q − 1

= (q − 1) log q + q(qx2 − x − 1) + 1

q2(q − 1)x(1 − x)
. (124)

The numerator is a quadratic function in x , and for fixed q, it is minimized at x = 1
q ,

leading to

∂

∂q
f ′(x) ≥ (q − 1) log q − q + 1

q2(q − 1)x(1 − x)
= log q − 1

q2x(1 − x)
≥ 0. (125)

So we only need to prove f ′(x) ≥ 0 for minimum q, i.e., q = max{3, 1
x }. When q = 1

x ,
on can verify that f ′(x) = 0. So the only remaining case is q = 3. For q = 3, we prove
that f is convex in x , i.e., f ′′(x) ≥ 0 for x ∈ [0, 1].

f ′′(x) = log q

q

(
1

x2
+

q − 1

(1 − x)2

)
−
(
1

x
+

1

1 − x

)

= log q((1 − x)2 + (q − 1)x2) − qx(1 − x)

qx2(1 − x)2

= (q log q + q)x2 − (q + 2 log q)x + log q

qx2(1 − x)2
. (126)
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The numerator is a quadratic function in x , and its discriminant is

(q + 2 log q)2 − 4(q log q + q) log q = q2 − 4(q − 1) log2 q. (127)

When q = 3, the above value is < 0. So f ′′(x) ≥ 0 for q = 3 and x ∈ [0, 1]. This
finishes the proof of the lower bound.

Upper bound. For the upper bound, we need find x ∈
(
1
q , 1
]
such that f (x)

ψ(x) = o(1).

Because the upper bound to prove is asymptotic, we assume that q is large enough. Take
x = 2

log q . Then we have

ψ(x) = log q +
2

log q
log

2

log q
+

(
1 − 2

log q

)
log

1 − 2
log q

q − 1

= log q −
(
1 − 2

log q

)
log(q − 1) + o(1)

= 2 + o(1) (128)

and

f (x) = log q

q

(
− log

2

log q
− (q − 1) log

1 − 2
log q

q − 1

)
− log2 q − ψ(x)

= log q

q
(q − 1)

(
log(q − 1) − log

(
1 − 2

log q

))
− log2 q − 2 + o(1)

= log q ·
(
1 + O

(
1

q

))
·
(
log q + O

(
1

q

)
+

2

log q
+ O

(
1

log2 q

))

− log2 q − 2 + o(1)

= o(1).

So f (x)
ψ(x) = o(1). ��

Remark 22. Numerical computation suggests f (x)
ψ(x) is minimized at a point x = 2+o(1)

log q .
This guides our proof of the upper bound in Prop. 3, but we have not attempted to prove
this fact.

To understand the case p > 1, let us denote convexification of bp as qbp. Then NLSI
lower bound, assuming Eπ [ f ] = 1, gives

E
(
f

1
p , f 1−

1
p

)
≥ qbp(Entπ ( f )). (129)

We see that this improves upon αp ·Entπ ( f ) themore the larger the entropy. In particular,
the maximum improvement happens when Entπ ( f ) = log q. That is we have for p > 1

αp ≤
qbp(x)

x
≤ 1

log q
. (130)

Together with (10) and (13), we get αp = �
(

1
log q

)
as q → ∞. Numerical computation

suggests that αp = 1+o(1)
log q .



792 Y. Gu, Y. Polyanskiy

At the same time, the improvement givenby the 1-NLSI (over 1-LSI) ismuch stronger,
since b1(log q) = ∞. To summarize, the p-NLSI should be preferred for p = 1 or for
cases where q is small and entropy is large (i.e. functions are highly spiky).

Next, we consider SDPIs and ηKL. First, we show that for a fixed λ ≥ 0 we have

ηKL(π,PCλ) = λ − �

(
1

log q

)
. (131)

Indeed, the upper bound is given by (27). For the lower bound we have

ηKL(π,PCλ)

≥ ηmin :=
ψ
(
λ + 1−λ

q

)

ψ(1)

=
log q +

(
λ + 1−λ

q

)
log
(
λ + 1−λ

q

)
+
(
1 −

(
λ + 1−λ

q

))
log

1−
(
λ+ 1−λ

q

)

q−1

log q

= λ +
λ log λ + (1 − λ) log(1 − λ) + o(1)

log q
. (132)

On the other hand,

ηKL(π,PCλ) ≤ ηKL(PCλ) ≤ ηTV(PCλ) = λ, (133)

where ηTV is the contraction coefficient for the total variation distance (Dobrushin co-
efficient, see [12,44,46]).

Notice also that for psλ we have generally ηmin ≤ psλ(x)
x ≤ ηKL(π,PCλ). Therefore we

have shown that

lim
q→∞

psλ(x)

x
= lim

q→∞ ηKL(π,PCλ) = lim
q→∞ ηKL(PCλ) = ηTV(PCλ) = λ. (134)

The estimates of information quantities using the more sophisticated tools get improve-

ment over simplistic coupling of at most multiplicative order
(
1 + �

(
1

log q

))
.

Note, however, if λ changes with q (e.g. λ = − 1
q−1 ), then the improvement over ηTV

can be as large as a multiplicative factor of (1 + o(1)) log q, as shown in Prop. 33.

3. Product Spaces

In this section we study extensions of p-NLSIs and SDPIs to the product semigroup
(T⊗n

t )t≥0 on the product space [q]n (and product channels PC⊗n
λ ). The general property

of tensorization of p-NLSI was established in [43, Theorem 1], and thus we only need
to concavify the function �p in (8). Similarly, we can show that (non-linear) strong data
processing inequalities tensorize if one concavifies function s(·) in (26). Note that both
cases, concavification is necessary – see Prop. 23 and Corollary 25.

After showing these extensions to product spaces, we proceed to discussing implica-
tions of p-NLSI on speed of convergence to equilibrium in terms of Entπ⊗n (νT⊗n

t ) and
on edge-isoperimetric inequalities.
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3.1. Tensorization

Proposition 23. Fix p ≥ 1. Recall bp defined in (19). Let qbp be the convex envelope of
bp. Then p-NLSI holds for the product semigroup (T⊗n

t )t≥0 with

�n,p(x) = nqb−1
p

( x
n

)
. (135)

Furthermore, for every c ∈ [0, log q], there exists a function f : [q]n → R≥0 with

Entπ⊗n ( f )
Eπ⊗n [ f ] = (c + o(1))n such that

E
(
f
1
p , f

1− 1
p

)

Eπ⊗n [ f ] =
(
qbp(c) + o(1)

)
n (where for p = 1,

E
(
f

1
p , f 1−

1
p

)
should be replaced with E( f, log f )).

Proof. The p-NLSI follows from Theorem 1 and [43, Theorem 1].
For the second part, choose a, b ∈ [0, log q] and u ∈ [0, 1] such that c = (1−u)a+ub

and qbp(c) = (1−u)bp(a)+ubp(b). Such a, b, u exist because qbp is the convex envelope
of bp.

Let fa : [q] → R≥0 (resp. fb) be theunique functionof form
(
qx, q(1−x)

q−1 , . . . ,
q(1−x)
q−1

)

with x ∈
[
1
q , 1
]
satisfying Entπ ( f )

Eπ [ f ] = a (resp. Entπ ( f )
Eπ [ f ] = b). Note that Eπ [ fa] =

Eπ [ fb] = 1. Let f : [q]n → R≥0 be defined as

f (x) =
⎛

⎝
∏

1≤i≤�(1−u)n�
fa(xi )

⎞

⎠

⎛

⎝
∏

1≤i≤�un�
fb(xi )

⎞

⎠ . (136)

Then Eπ⊗n [ f ] = 1 and

Entπ⊗n ( f ) = �(1 − u)n�Entπ ( fa) + �un�Entπ ( fb) = (c + o(1))n, (137)

E
(
f

1
p , f 1−

1
p

)
= �(1 − u)n�E

(
f

1
p
a , f

1− 1
p

a

)
+ �un�E

(
f

1
p
b , f

1− 1
p

b

)

=
(
qbp(c) + o(1)

)
n, if p > 1, (138)

E( f, log f ) = �(1 − u)n�E( fa, log fa) + �un�E( fb, log fb)

=
(
qbp(c) + o(1)

)
n, if p = 1. (139)

This finishes the proof. ��
We show below in Prop. 26 that qbp 	= bp.

For non-linear SDPI, we first prove a general tensorization result.

Proposition 24. Fix a probability kernel PY |X : X → Y and a distribution PX on X .
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(i) Suppose for some non-decreasing function s : R≥0 → R≥0 we have

D(QY ‖PY ) ≤ s(D(QX‖PX )) (140)

for all distribution QX on X with 0 < D(QX‖PX ) < ∞. Then for all distribution
QXn on X n with 0 < D(QXn‖P⊗n

X ) < ∞, we have

D(QYn‖P⊗n
Y ) ≤ nps

(
1

n
D(QXn‖P⊗n

X )

)
, (141)

where ps is the concave envelope of s, and QYn = P⊗n
Y |X ◦ QXn .

(ii) Suppose for some non-decreasing concave function ps : [0, log |X |] → R≥0 we have

I (U ; Y ) ≤ ps(I (U ; X)) (142)

for all Markov chains U → X → Y where the distribution of X is PX . Then for all
Markov chains U → Xn → Yn where the distribution of X is P⊗n

X , we have

I (U ; Yn) ≤ nps

(
1

n
I (U ; Xn)

)
. (143)

We have separate statements for non-linear SDPI defined via KL divergence and via
mutual information, because they are not equivalent in general. It is not hard to show
that if KL divergence type non-linear SDPI (140) holds for some function s, then mutual
information type non-linear SDPI (142) holds for ps. However, it is not clear what is
the best possible KL divergence type non-linear SDPI one can get starting from mutual
information type non-linear SDPI. (Note the domain of function s would become larger
during the translation.)

Proof of Prop. 24. Proof of (i). Perform induction on n. The base case n = 1 is trivial.
Now consider n ≥ 2. We have

D(QYn‖P⊗n
Y )

= D
(
QYn−1‖P⊗(n−1)

Y

)
+ D(QYn |Yn−1‖PY |QYn−1)

≤ D
(
QYn−1‖P⊗(n−1)

Y

)
+ D(QYn |Xn−1‖PY |QXn−1)

≤ (n − 1)ps

(
1

n − 1
D
(
QXn−1‖P⊗(n−1)

X

))
+ s
(
D(QXn |Xn−1‖PX |QXn−1)

)

≤ nps

(
1

n
D
(
QXn−1‖P⊗(n−1)

X

)
+
1

n
D(QXn |Xn−1‖PX |QXn−1)

)

= nps

(
1

n
D
(
QXn‖P⊗n

X

))
.

The first step is by chain rule. The second step is byMarkov chain Yn−1 → Xn−1 → Yn
and convexity of KL divergence. For the third step, we bound the first summand using
induction hypothesis, and bound the second summand using (140) (note that QYn |Xn−1 =
PY |X ◦ QXn |Xn−1 ). The fourth step is because ps is the concave envelope of s. The fifth
step is by chain rule.
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Proof of (ii). Perform induction on n. The base case n = 1 is trivial. Now consider
n ≥ 2. We have

I (U ; Yn) = I (U ; Yn−1) + I (U ; Yn|Yn−1)

= I (U ; Yn−1) + I (U,Yn−1; Yn)
≤ I (U ; Yn−1) + I (U, Xn−1; Yn)
= I (U ; Yn−1) + I (U ; Yn|Xn−1)

≤ (n − 1)ps

(
1

n − 1
I (U ; Xn−1)

)
+ ps
(
I (U ; Xn|Xn−1)

)

≤ nps

(
1

n
I (U ; Xn−1) +

1

n
I (U ; Xn|Xn−1)

)

= nps

(
1

n
I (U ; Xn)

)
.

The first step is by chain rule. The second step is by chain rule, and that Yn is independent
with Yn−1. The third step is by data processing inequality. The fourth step is by chain
rule, and that Yn is independent with Xn−1. For the fifth step, we bound the first summand
using induction hypothesis, and bound the second summand using (142). The sixth step
is because ps is concave. The seventh step is by chain rule. ��
Corollary 25. Recall function sλ defined in Theorem 4. Let QXn be a distribution on
[q]n and QYn = PC⊗n

λ ◦QXn . Then we have

1

n
H(Yn) ≥ log q − psλ

(
log q − 1

n
H(Xn)

)
. (144)

Furthermore, for every c ∈ [0, log q], there exists a distribution Xn with H(Xn) =
(c + o(1))n such that 1

n H(Yn) = log q − psλ(log q − c) + o(1).

Proof. (144) follows from Prop. 24 and that

D(QXn‖π⊗n) = n log q − H(QXn ). (145)

For the second part, choose a, b ∈ [0, log q] and u ∈ [0, 1] such that c = (1−u)a+ub
and psλ(log q − c) = (1 − u)sλ(log q − a) + usλ(log q − b). Such a, b, u exist because
psλ is the concave envelope of sλ.

Let QA (resp. QB) be the unique distribution on [q] of form
(
x, 1−x

q−1 , . . . ,
1−x
q−1

)

with x ∈
[
1
q , 1
]
and entropy a (resp. entropy b). Now let QXn be the distribution

QA ×· · ·×QA ×QB ×· · ·×QB , where QA appears �(1−u)n� times and QB appears
�un� times. It is easy to see that this distribution satisfies the required properties. ��
3.2. Linear piece In Prop. 23 and Theorem 4, we make use of convexification of bp
and concavification of sλ. When q = 2, we have qbp = bp ([43, Theorem 4 and 6]) and
psλ = sλ (known as the Mrs. Gerber’s Lemma [51]). However, for q ≥ 3, the situation is
vastly different.

Proposition 26. Recall function bp : [0, log q] → R defined in Theorem 1 and sλ :
[0, log q] → R defined in Theorem 4.
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Fig. 1. bp and qbp for q = 15, p = 2. αp is achieved at x∗ ≈ 2.289. qbp is linear for x ≤ x∗ and is equal to
bp for x ≥ x∗

(i) For all q ≥ 3 and p ≥ 1, bp is not convex near 0.

(ii) For all q ≥ 3, λ ∈
[
− 1

q−1 , 0
)

∪ (0, 1), sλ not concave near 0.

The proof is deferred to Appendix C. Prop. 26 implies that there is a linear piece near
origin in the graph of qbp, p�p and psλ. See Fig. 1 for an example.

This implies a curious new property distinguishing the Potts semigroup with q ≥ 3
from its binary cousin and from the Ornstein–Uhlenbeck semigroup. Both of the latter
have their p-NLSI and SDPI strictly non-linear, which translates into the following
fact: among all initial densities f with a given entropy Entπ ( f ) a product of identical
distributions simultaneously maximizes Entπ⊗n (T⊗n

t f ) for all t . This nice extremal
property of product distributions is no longer true for Potts semigroups with q ≥ 3, due
to the fact that bp is not convex and sλ is not concave.

Proposition 27 (Extremal distributions for the product semigroup). Consider the prod-
uct semigroup (T⊗n

t )t≥0 on [q]n with invariant distribution π⊗n.

(i) If q = 2, then for any p ≥ 1, n ≥ 1 and c ∈ [0, log 2], among all non-zero functions

f : [q]n → R≥0 with
Entπ⊗n ( f )
Eπ⊗n [ f ] = cn, the minimum of

E
(
f
1
p , f

1− 1
p

)

Eπ⊗n [ f ] (E( f,log f )
Eπ⊗n [ f ] for

p = 1) is achieved at a function of form f (x) = ∏
i∈[n] g(xi ) for some non-zero

function g : [q] → R≥0 with
Entπ (g)
Eπ [g] = c.

(ii) If q ≥ 3, then for any p ≥ 1, there exists c ∈ [0, log q] such that for n large

enough, among all non-zero functions f : [q]n → R≥0 with
Entπ⊗n ( f )
Eπ⊗n [ f ] = cn, the
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minimum of
E
(
f
1
p , f

1− 1
p

)

Eπ⊗n [ f ] (E( f,log f )
Eπ⊗n [ f ] for p = 1) is not achieved at any functions of

form f (x) =∏i∈[n] g(xi ), where g is a non-zero function from [q] to R≥0.

Consider the product channel PC⊗n
λ : [q]n → [q]n with invariant distribution π⊗n.

(iii) If q = 2, then for any n ≥ 1, c ∈ [0, log 2], and λ ∈ [−1, 1], among all distributions
ν on [q]n with D(ν‖π⊗n) = cn, the maximum of D(ν PC⊗n

λ ‖π⊗n) is achieved at
ν = μ⊗n for some distribution μ on [q] with D(μ‖π) = c.

(iv) If q ≥ 3, then for any λ ∈
[
− 1

q−1 , 0
)

∪ (0, 1), there exists c ∈ [0, log q] such that

for n large enough, among all distributions ν on [q]n with D(ν‖π⊗n) = cn, the
maximum of D(ν PC⊗n

λ ‖π⊗n) is not achieved at any distributions of form ν = μ⊗n,
where μ is a distribution on [q].

Proof. Proof of (i). For any non-zero function f : [q]n → R≥0 with
Entπ⊗n ( f )
Eπ⊗n [ f ] = cn

we have

E
(
f

1
p , f 1−

1
p

)

Eπ⊗n [ f ] ≥ nbp(c) = nqbp(c), (146)

where the first step is by Theorem 1 and the second step is by qbp = bp ([43, Theorem
4, 6]). (For p = 1 the Dirichlet form should be replaced by E( f, log f ).) For f of the
form f (x) =∏i∈[n] g(xi ) with

Entπ (g)
Eπ [g] = c, equality is achieved.

Proof of (ii). Choose c ∈ [0, log q] such that bp(c) > qbp(c). Such c exists by
Prop. 26. For any function f of the form f (x) =∏i∈[n] g(xi ), we have

Entπ⊗n ( f )

Eπ⊗n [ f ] = n · Entπ (g)

Eπ [g] ,
E
(
f

1
p , f 1−

1
p

)

Eπ⊗n [ f ] = n ·
E
(
g

1
p , g1−

1
p

)

Eπ [g] . (147)

(For p = 1 the Dirichlet forms should be replaced by E( f, log f ) and E(g, log g)

respectively.) By Theorem 1, if Entπ (g)
Eπ [g] = c, then

E
(
g
1
p ,g

1− 1
p

)

Eπ [g] ≥ bp(c). Therefore for

all such product functions f , we have
E
(
f
1
p , f

1− 1
p

)

Eπ⊗n [ f ] ≥ nbp(c). On the other hand, by
slightly varying the proof of Prop. 23, for n large enough, there exists a distribution f

such that
Entπ⊗n ( f )
Eπ⊗n [ f ] = cn and

E
(
f
1
p , f

1− 1
p

)

Eπ⊗n [ f ] =
(
qbp(c) + o(1)

)
n.

Proof of (iii). For any distribution ν on [q]n with D(ν‖π⊗n) = cn, we have

D(ν PC⊗n
λ ‖π⊗n) ≤ npsλ(c) = nsλ(c), (148)

where the first step is by Theorem 4 and the second step is by psλ = sλ. For ν = μ⊗n

with D(μ‖π) = c, equality is achieved.
Proof of (iv). Choose c ∈ [0, log q] such that sλ(c) < psλ(c). Such c exists byProp. 26.

For any distribution ν of the form ν = μ⊗n , we have

D(ν‖π⊗n) = nD(μ‖π), D(ν PC⊗n
λ ‖π⊗n) = nD(μPCλ ‖π) (149)
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By Theorem 4, if D(μ‖π) = c, then D(μPCλ ‖π) ≤ sλ(c). Therefore for all such
product distributions μ, we have D(ν PC⊗n

λ ‖π⊗n) ≤ nsλ(c). On the other hand, by
slightly varying the proof of Corollary 25, for n large enough, there exists a distribution
ν on [q]n such that D(ν‖π⊗n) = cn and D(ν PC⊗n

λ ‖π⊗n) = (psλ(c) + o(1)
)
n. ��

We remark that Prop. 27(i)(iii) hold also for the Ornstein–Uhlenbeck semigroup with
extremal distributions of form N (0, σ 2 In).

Let us discuss some general implications of non-convexity of bp and non-concavity
of sλ near 0.

Let K be aMarkovkernelwith stationary distributionπ . Consider the tightest possible
p-NLSI given by

bp(x) := inf
f :X→R≥0,

Eπ [ f ]=1,Entπ ( f )=x

E
(
f

1
p , f 1−

1
p

)
. (150)

The p-log-Sobolev constant is

αp := inf
x>0

bp(x)

x
= inf

f :X→R≥0,Entπ ( f )>0

E
(
f

1
p , f 1−

1
p

)

Entπ ( f )
. (151)

We also define the spectral gap

λ := inf
f :X→R≥0,Var( f )>0

E( f, f )

Var( f )
, (152)

where Var( f ) = Eπ ( f − Eπ [ f ])2. For any p > 1, we have

p2

2(p − 1)
αp ≤ λ. (153)

The case p = 2 is proved in Diaconis and Saloff-Coste [14], and the general case is
proved in Mossel et al. [38]. Their proof in fact implies a stronger inequality.

Lemma 28.

lim sup
x→0+

bp(x)

x
≤ 2(p − 1)

p2
λ. (154)

In particular, when bp is strictly concave near 0, we have

αp < lim sup
x→0+

bp(x)

x
≤ 2(p − 1)

p2
λ, (155)

and (153) is strict.

Proof. Take any g : X → R≥0 with Var(g) > 0. Define fε = 1 + εg. As ε → 0, we
have

E
(
f

1
p

ε , f
1− 1

p
ε

)
= ε2

1

p

(
1 − 1

p

)
E(g, g) + o(ε2), (156)

Entπ ( fε) = 1

2
ε2 Var(g) + o(ε2). (157)
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Because Entπ ( fε) → 0 continuously as ε → 0, we have

lim sup
x→0+

bp(x)

x
≤ lim

ε→0

E
(
f

1
p

ε , f
1− 1

p
ε

)

Entπ ( fε)
= 2(p − 1)

p2
E(g, g)

Var(g)
. (158)

Lemma then follows because g is arbitrary. ��
Roughly speaking, existence of a “linear piece” near 0 in qbp implies that (153) is strict.
For the Potts semigroup with q ≥ 3, bp is strictly concave near 0 by proof of Prop. 26.
So (153) is strict for the Potts semigroup.

The story for non-linear SDPI is very similar. Let W be a channel and ν be an input
distribution. Consider the tightest possible non-linear SDPI given by

s(x) := sup
μ:D(μ‖ν)=x

D(μW‖νW ). (159)

The input-restricted KL divergence contraction coefficient is

ηKL(ν,W ) := sup
x>0

s(x)

x
= sup

μ:0<D(μ‖ν)<∞
D(μW‖νW )

D(μ‖ν)
. (160)

We also consider the input-restricted χ2-divergence contraction coefficient

ηχ2(ν,W ) := sup
μ:0<χ2(μ‖ν)<∞

χ2(μW‖νW )

χ2(μ‖ν)
. (161)

It is known (Ahlswede and Gács [2]) that

ηKL(ν,W ) ≥ ηχ2(ν,W ). (162)

Similarly to the p-NLSI case, the proof of (162) implies a stronger inequality.

Lemma 29.

lim inf
x→0+

s(x)

x
≥ ηχ2(ν,W ). (163)

In particular, when s is strictly convex near 0, we have

ηKL(ν,W ) > lim inf
x→0+

s(x)

x
≥ ηχ2(ν,W ). (164)

and (162) is strict.

Proof. Fix any distribution μ with 0 < χ2(μ‖ν) < ∞. Proof of [44, Theorem 2]
constructs a sequence of distributions με satisfying

D(με‖ν) = ε2χ2(μ‖ν) + o(ε2), (165)

D(μεW‖νW ) = ε2χ2(μW‖νW ) + o(ε2), (166)

and D(με‖ν) → 0 continuously as ε → 0. Therefore

lim inf
x→0+

s(x)

x
≥ lim

ε→0

D(μεW‖νW )

D(με‖ν)
= χ2(μW‖νW )

χ2(μ‖ν)
. (167)

Because μ is arbitrary, we finish the proof. ��
Roughly speaking, existence of a “linear piece” near 0 inps implies that (162) is strict.

For Potts channels PCλ with λ ∈
[
− 1

q−1 , 0
)

∪ (0, 1) and q ≥ 3, sλ is strictly convex

near 0 by proof of Prop. 26. So (162) is strict for Potts channels.
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3.3. Edge-isoperimetric inequalities As a toy application of the NLSIs for the product
spaces, we derive an edge-isoperimetric inequality for Kn

q , the graph whose vertex set
is [q]n , and edges connect vertex pairs with Hamming distance one. Given a graph G =
(V, E), edge-isoperimetric inequalities solve the following combinatorial optimization
problem:

�G(N ) = min{|E(S, Sc)| : |S| = N }, (168)

where |E(S, Sc)| = #{e ∈ E : |e ∩ S| = 1}. For Kn
q , the edge-isoperimetric problem

has been completely solved [4,25,26,29]. Specifically, [29] showed that the optimal
S minimizing |E(S, Sc)| for a fixed |S| consists of largest elements in [q]n under a
lexicographical order. In particular, we have

�Kn
q
(qm) = (n − m)(q − 1)qm . (169)

Thiswasobtainedbyan explicit combinatorial argument (via a formof shifting/compression).
What estimates can be obtained via LSIs and NLSIs?

Let f = 1S be the indicator function of a set S. Then for any p > 1 we have

E
(
f

1
p , f 1−

1
p

)

Eπ [ f ] = 1

q − 1
· |E(S, Sc)|

|S| and
Entπ ( f )

Eπ [ f ] = log
qn

|S| . (170)

If we relate these two ratios via the 2-LSI (note that from (10), of all p > 1 the p = 2
gives the best result here) and by using the known value of α2 from (13) we get

�Kn
q
(qm) ≥ qm(n − m)(q − 2)

log q

log(q − 1)
. (171)

Clearly the coefficient in front of (n − m)qm here is not tight.
The p-NLSI allows us to perform a better comparison. First, again via (10) we get

the best inequality for p = 2, which results in

�Kn
q
(qm) ≥ (q − 1)qmnqb2

(
n − m

n
log q

)
. (172)

We know that the function qb2 is continuous with qb2(log q) = b2(log q) = 1 (from (19)).
Thus, for any m = o(n) and n → ∞ we get that (172) implies

�Kn
q
(qm) ≥ (q − 1)qm(n − m)(1 + o(1)), (173)

which is tight in this regime. (However, from (19) we can also find that qb′
2(1) = ∞ and

thus, even when m = o(n) the right-hand side of the above inequality is (q − 1)qm(n −
ω(m)), implying the behavior in terms of m is not optimal.)
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4. Non-reconstruction for Broadcasting on Trees

In this section we prove non-reconstruction results for a general class of broadcasting
models on trees, using input-restricted KL divergence SDPI.

Let us formally define the model. Fix an integer q ≥ 2, a channel M : [q] → [q], and
a stationary distribution ν ∈ P([q]) of M with full support. Let T be a possibly infinite
tree with a marked root ρ. The model BOT(T, q, ν, M) generates a label σv ∈ [q] for
every vertex v ∈ T according to the following process.

1. Generate σρ ∼ ν.
2. Suppose we have generated a label for a vertex u. For every child v of u, we generate

σv independently according to

P(σv = j |σu = i) = M(i, j). (174)

We often consider the case where T is a Galton–Watson tree, meaning that every vertex
independently has t ∼ D children, where D is a distribution on Z≥0. We denote the
resulting model as BOT(q, ν, M, D). An important case is D = Pois(d), the Poisson
distribution with mean d. When D is a singleton at d ∈ Z≥0 we also denote the model
as BOT(q, ν, M, d).

Let Lk be the set of vertices at distance k to ρ, and σLk be the labels of Lk . We say
reconstruction is possible if

lim
k→∞ I (σρ; σLk , T ) > 0, (175)

and reconstruction is impossible if the limit is equal to zero.
We recall the branching number br(T ) of a tree T defined by Lyons [31].

Definition 30 (Branching number). Let T be a possibly infinite tree rooted at ρ. Define
a flow to be a function f : V (T ) → R≥0 such that for every vertex u, we have

fu =
∑

v∈c(u)

fv, (176)

where c(u) denotes the set of children of u. Define br(T ) to be the sup of all numbers λ

such that there exists a flow f with fρ > 0, and fu ≤ λ−d(u,ρ) for all vertices u, where
d(u, ρ) is the distance between u and ρ.

Recall Theorem 5, which states that for the model BOT(T, q, ν, M), reconstruction
is impossible if ηKL(ν, M∗) br(T ) < 1. Now we prove the theorem.

Proof of Theorem 5. For any vertex u, let Lu,k denote the set of descendants of u at
distance k to ρ. Define

au = H(ν)−1ηKL(ν, M∗)d(u,ρ) lim
k→∞ I (σu; σLu,k ). (177)

By DPI, I (σu; σLu,k ) is non-increasing for k ≥ d(u, ρ), so the limit exists.
For any v ∈ c(u), consider the Markov chain

σLv,k → σv
M∗−−→ σu . (178)



802 Y. Gu, Y. Polyanskiy

Because ν is an invariant distribution, the distributions of σv and σu are both ν. By SDPI,
we have

I (σu; σLv,k ) ≤ ηKL(ν, M∗)I (σv; σLv,k ). (179)

Because (σLv,k )v∈c(u) are independent conditioned on σu , we have

I (σu; σLu,k ) ≤
∑

v∈c(u)

I (σu; σLv,k ). (180)

Combine the two inequalities and let k → ∞. We get that

au ≤
∑

v∈c(u)

av. (181)

Clearly,

au ≤ ηKL(ν, M∗)d(u,ρ) (182)

for all vertices u. However, a is not quite a flow yet. We define a flow b from a. For a
vertex u, let u0 = ρ, . . . , u� = u be the shortest path from ρ to u. Define

bu = au
∏

0≤ j≤�−1

au j∑
v∈c(u j )

av

. (183)

(If
∑

v∈c(u j )
av = 0 for some j , then let bu = 0.) It is not hard to check that

bu =
∑

v∈c(u)

bv, (184)

and that

bu ≤ au ≤ ηKL(ν, M∗)d(u,ρ). (185)

By definition of branching number, we must have bρ = 0. This means

lim
k→∞ I (σρ; σLk ) = 0, (186)

and non-reconstruction holds. ��
Remark 31. In the definition of the reconstruction problem, it is not necessary to require
σρ to have distribution ν. Let σ i

Lk
denote the leaf labels conditioned on σρ = i . Then

Theorem 5 implies that when ηKL(ν, M∗) br(T ) < 1, we have

lim
k→∞TV(σ i

Lk
, σ

j
Lk

) = 0, (187)

for i 	= j ∈ [q].
Theorem 5 directly implies non-reconstruction results for Galton–Watson trees.

Corollary 32. Consider the model BOT(q, ν, M, D) with d = Eb∼Db. If

ηKL(ν, M∗)d < 1, (188)

then reconstruction is impossible.
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Proof. Let T be a Galton–Watson tree with offspring distribution D. If T extincts, then
non-reconstruction obviously hold. Conditioned on non-extinction, we have br(T ) = d
almost surely by [31], thus Theorem 5 applies. ��

Polyanskiy and Wu [44,45] proved non-reconstruction results on arbitrary directed
acyclic graphs (in particular trees) by reducing to percolation problems on the same
graph. In the case of the BOT model, their result says that reconstruction is impossible
if

ηKL(M) br(T ) < 1. (189)

For any channel M , we have

ηKL(ν, M) ≤ ηKL(M), (190)

and the inequality is often strict. So for reversible channels (i.e., M = M∗), Theorem
5 implies result (189). We do not know, however, how to extend Theorem 5 to general
DAGs using input-restricted contraction coefficients.

Külske and Formentin [28] proved a non-reconstruction result very similar to Theo-
rem 5. They considered the symmetrized KL divergence

DSKL(P‖Q) = D(P‖Q) + D(Q‖P), (191)

which is the f -divergencewith f (x) = (x−1) log x . Theyproved that non-reconstruction
holds for a Galton–Watson tree with expected offspring d if

ηSKL(ν, M∗)d < 1. (192)

By slightly modifying the proof of Theorem 5, their result can be strengthened to that
reconstruction is impossible for BOT(T, q, π, M) if

ηSKL(ν, M∗) br(T ) < 1. (193)

Proceeding to input-restricted contraction coefficients, we computed both numeri-
cally for several binary asymmetric channels and Potts channels.

In Fig. 2, we compare ηSKL(ν, M) and ηKL(ν, M) for the binary asymmetric channel

M =
(
1 − a a
b 1 − b

)
(194)

fora = 0.3andb ∈ [0, 1]. Simple computation shows that ν = ( b
a+b , a

a+b

)
andM = M∗.

In Fig. 3, we compare the input-restricted SKL and KL contraction coefficients for

Potts channels PCλ for q = 5 and λ ∈
[
− 1

q−1 , 1
]
. Because a simplified expression for

ηSKL(π,PCλ) is not known, we use a lower bound ηSKL(π,PCλ), which is defined as the
sup of DSKL(μPCλ ‖π)

DSKL(μ‖π)
over distributions μ = (p1, . . . , pq) ∈ P([q]) with p2 = · · · =

pq . Clearly ηSKL(π,PCλ) ≤ ηSKL(π,PCλ). [20] conjectured that ηSKL(π,PCλ) =
ηSKL(π,PCλ) always holds.

As shown in Figs. 2 and 3, in both cases, we observe

ηKL(ν, M∗) ≤ ηSKL(ν, M∗), (195)

which means Theorem 5 yields a stronger non-reconstruction result for these cases.
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Fig. 2. Contraction coefficient comparison for binary asymmetric channels with a = 0.3 and varying b ∈
[0, 1]. The figure shows ηSKL(ν, M) − ηKL(ν, M) is non-negative

Fig. 3. Contraction coefficient comparison for Potts channel with q = 5 and varying λ ∈
[
− 1

q−1 , 1
]
. The

figure shows ηSKL(π, PCλ) − ηKL(π, PCλ) is non-negative
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We remark that the input-unrestricted KL and SKL contraction coefficients agree.
Indeed, the function x �→ (x −1) log x is operator convex (e.g., [10, Example 3.6]), and
thus by [11, Theorem 1], we have

ηKL(M) = ηSKL(M)

for any channel M .
Suppose that for some function g, the g-mutual information satisfies the following

subadditivity property: for any Markov chain Y − X − Z , we have

Ig(X; Y, Z) ≤ Ig(X; Y ) + Ig(X; Z). (196)

Then non-reconstruction holds for a tree T with

ηg(ν, M∗) br(T ) < 1, (197)

by modifying the proof of Theorem 5. For mutual information subadditivity is standard.
For SKL mutual information, Formentin and Külske [20] proved that

ISKL(X; Y, Z) = ISKL(X; Y ) + ISKL(X; Z). (198)

An interesting question is, given a pair (ν, M), what is the smallest ηg(ν, M∗) over all
subadditive g-mutual informations. Solving this question would give the best possible
non-reconstruction result that can be achieved by our method.

In Appendix E, we study a broadcasting on trees model with Gaussian kernel con-
sidered in Eldan et al. [16], and prove tight non-reconstruction results for this model,
closing a gap left in op. cit.

5. Potts Model on a Tree

In this section, we apply Theorem 5 to get non-reconstruction results for Potts models on
a tree. In the Potts model, labels propagate through the Potts channel PCλ with invariant
distributionπ = Unif([q]). Because the Potts channels are reversible, Theorem5 implies
non-reconstruction for

ηKL(π,PCλ) br(T ) < 1. (199)

Thus Theorem 6 directly follows from Theorem 5.
Let us briefly discuss previous non-reconstruction results for the Potts channel. Mos-

sel and Peres [39] proved non-reconstruction for

qλ2

(q − 2)λ + 2
br(T ) < 1. (200)

By Prop. 40 we see that (200) exactly corresponds to using the input-unrestricted KL
contraction coefficient ηKL(PCλ). Therefore, Theorem 6 is strictly stronger than [39].
Martinelli et al. [33] proved non-reconstruction for regular trees for

d(1 − ε)
qλ2

(q − 2)λ + 2
< 1 (201)

for some ε = ε(q, d, λ) > 0.
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Sly [50] obtained very sharp results for regular trees, including that Kesten–Stigum
(KS) threshold is tight for q = 3 and large enough d, and an expression for the recon-
struction threshold for larger q and d → ∞. Mossel et al. [41] improved over [50] and
proved that the KS threshold is tight for q = 3, 4 and large enough tree, for Galton–
Watson random trees with mild assumptions on the offspring distribution. It is unclear
what results can be achieved for small d using their method. It seems that Theorem 6 is
not able to give tightness of the KS threshold in these cases.

Formentin and Külske [20] gave non-reconstruction results very similar to ours by
using the input-restrictedSKLcontraction coefficients.Asdiscussed inSect. 4, numerical
computation suggests that Theorem 6 gives better results than theirs in the case of Potts
models.

For certain parameters, we can compute the contraction coefficient ηKL(π,PCλ) in
closed form. In the following we show two examples.

5.1. Binary symmetric channel The Potts model with q = 2 is also known as the
Ising model. In this case, PCλ is the binary symmetric channel BSCδ with δ = 1−λ

2 ,
which is known (Ahlswede and Gács [2]) to have contraction coefficient ηKL(BSCδ) =
ηKL(π,BSCδ) = (1 − 2δ)2 = λ2. Therefore Theorem 6 implies non-reconstruction for
(1− 2δ)2 br(T ) < 1, which was shown in Bleher et al. [7] (for regular trees) and Evans
et al. [18] (for general trees). So for the Ising model on trees our method can give the
tight reconstruction threshold.

5.2. Random coloring The random coloring model is a special case of the Potts model
with broadcasting channel Colq := PC− 1

q−1
. This channel acts on input x ∈ [q] by

outputting y 	= x uniformly among all q − 1 alternatives.
We compute the exact input-restrictKLcontraction coefficient of the coloring channel

Colq .

Proposition 33.

ηKL(π,Colq) = log q − log(q − 1)

log q
. (202)

Proof. By (30) we have

ηKL(π,Colq) = sup
x∈
(
1
q ,1
]

log q + 1−x
q−1 log

1−x
q−1 + q+x−2

q−1 log q+x−2
(q−1)2

log q + x log x + (1 − x) log 1−x
q−1

= sup
x∈
(
1
q ,1
]

log q − log(q − 1) + 1−x
q−1 log(1 − x) + q+x−2

q−1 log q+x−2
q−1

log q + x log x + (1 − x) log 1−x
q−1

.

(203)

Taking x = 1, we get

ηKL(π,Colq) ≥ log q − log(q − 1)

log q
. (204)



Non-linear Log-Sobolev Inequalities 807

To prove the proposition, we only need to prove that for x ∈
(
1
q , 1
]
,

1−x
q−1 log(1 − x) + q+x−2

q−1 log q+x−2
q−1

x log x + (1 − x) log 1−x
q−1

≥ log q − log(q − 1)

log q
. (205)

(Note that both numerator and denominator in LHS are non-positive.) Define

g(x) = (log q − log(q − 1))x log x − log q

q − 1
(1 − x) log(1 − x), (206)

h(x) = g(x) + (q − 1)g

(
1 − x

q − 1

)
. (207)

Rearranging (205), we only need to prove that h(x) ≥ 0 for x ∈
(
1
q , 1
]
.

We compute that

g′(x) = (log q − log(q − 1))(1 + log x) +
log q

q − 1
(1 + log(1 − x)), (208)

g′′(x) = (log q − log(q − 1))
1

x
− log q

q − 1

1

1 − x
, (209)

g′′′(x) = −(log q − log(q − 1))
1

x2
− log q

q − 1

1

(1 − x)2
< 0. (210)

Claim 34. h′′′(x) < 0 on (0, 1).

Proof.

h′′′(x) = g′′′(x) − 1

(q − 1)2
g′′′
(
1 − x

q − 1

)

= −(log q − log(q − 1))
1

x2
− log q

q − 1

1

(1 − x)2

+
1

(q − 1)2

⎛

⎜⎝(log q − log(q − 1))
1

(
1−x
q−1

)2 +
log q

q − 1

1

(1 − 1−x
q−1 )

2

⎞

⎟⎠

= (log
q

q − 1
)

(
1

(1 − x)2
− 1

x2

)
+

log q

q − 1

(
1

(q − 2 + x)2
− 1

(1 − x)2

)

= 1

(1 − x)2

((
log

q

q − 1

)(
1 − (1 − x)2

x2

)
+

log q

q − 1

(
(1 − x)2

(q − 2 + x)2
− 1

))

=: 1

(1 − x)2
(s(x) + t (x)).

We have

1. s(x) < 0 for x < 1
2 , s(x) > 0 for x > 1

2 ;
2. t (x) < 0 for x ∈ (0, 1);
3. s(x) is increasing for x ∈ (0, 1);
4. t (x) is decreasing for x ∈ (0, 1).
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So h′′′(x) < 0 for x ≤ 1
2 . For x ≥ 1

2 , we have

s(x) + t (x) < s(1) + t

(
1

2

)
= log

q

q − 1
+

log q

q − 1

(
1

(2q − 3)2
− 1

)
. (211)

It is not hard to verify that the last term is < 0 for q ≥ 3. ��

By Claim 34, h′(x) is strictly concave. Because h′
(
1
q

)
= 0, h

(
1
q

)
= h(1) = 0, we

get that h(x) > 0 for x ∈ (1/q, 1). This finishes the proof. ��
Theorem 5 and Prop. 33 together imply non-reconstruction for

br(T ) <
log q

log q − log(q − 1)
= (1 − o(1))q log q. (212)

This result was previously established by Sly [49] (regular trees andGalton–Watson trees
with Poisson offspring distribution), Bhatnagar et al. [6] (regular trees), and Efthymiou
[15] (Galton–Watson trees with mild assumptions on the offspring distribution). Our
result does not assumeanyconditions on theoffspringdistributionother than the expected
offspring, and in fact works for arbitrary trees.

We note that [49] achieved more accurate lower order terms, proving that recon-
struction is impossible (for regular trees or Galton–Watson trees with Poisson offspring
distribution) if

d ≤ q(log q + log log q + 1 − log 2 − o(1)). (213)

Our method recovers the first order term, but cannot recover the lower order terms. We
suggest that the reason is that when combining information coming from subtrees, we
use subadditivity of mutual information (see (180)), which is very simple but may be
not tight. In contrast, [49] wrote down the exact formula for belief propagation recursion
and performed a very careful analysis.

Remark 35. We remark that previous methods based on information contraction do not
give the threshold (1−o(1))q log q. The information percolationmethod [19,44] implies
non-reconstruction for

ηKL(Colq) br(T ) < 1. (214)

By Prop. 40, this gives non-reconstruction for d < q − 1 which is far from being tight.
The SKL information contraction method [20] gives non-reconstruction for

ηSKL(π,Colq) br(T ) < 1. (215)

If we let νε := (1 − ε, ε
q−1 , . . . ,

ε
q−1 ), then

ηSKL(π,Colq) ≥ lim
ε→0

DSKL(νε Colq ‖π)

DSKL(νε‖π)
= 1

q − 1
. (216)

Therefore this method cannot give non-reconstruction results better than for d < q − 1.
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6. Stochastic Block Model

In this section we study the weak recovery problem for the stochastic block model with
q symmetric communities. In this model, there are n vertices, each independently and
uniformly randomly assigned one of q labels. Say vertex v ∈ [n] has lavel Xv ∈ [q]. A
random graph is generated, where for any two vertices, there is an edge between them
with probability a

n if they have the same labels, and with probability b
n otherwise. We

call the resulting model SBM(n, q, a, b).
The goal of weak recovery is to recover a non-trivial fraction of the communities

given the unlabeled graph. We say weak recovery is possible if there exists an estimator
pX(G) ∈ [q]V such that

lim
n→∞

1

n
EdH (X, pX(G)) < 1 − 1

q
, (217)

where dH (X,Y ) := min
τ∈Aut([q])

∑

i∈[n]
1{Xi 	= τ(Yi )}. (218)

Due to symmetry in the labels, we can only expect to recover the labels up to a permu-
tation, so in the definition of dH we take minimum over all permutations of the labels.
If X̂ outputs i.i.d. uniformly random labels, then the limit of 1

nEdH (X, X̂) is 1 − 1
q . So

the notion of weak recovery indicates whether we can recover the communities better
than purely random guessing.

In the following, we show that SDPI-based non-reconstruction results lead to im-
proved impossibility of weak recovery results for the SBM.

6.1. Impossibility of weak recovery via information percolation We first give an im-
possibility result via an information percolation method of Polyanskiy andWu [45]. For
the stochastic block model SBM(n, q, a, b), they constructed a corresponding broad-
casting on trees (BOT) model as follows.

Let d = (
√
a − √

b)2. Consider a Galton–Watson tree T with offspring distribution
Pois(d). We independently and uniformly randomly choose a label ∈ [q] for every
vertex. Say vertex v has label σv . We observe ωu,v = 1{σu = σv} for each edge (u, v).

Let ρ denote the root of T and Lk denote the set of vertices at distance k to ρ. Let ω
denote the set of all observations. We say reconstruction is impossible if

lim
k→∞ I (σρ; σLk |T, ω) = 0. (219)

Proposition 36 ([45, Prop. 8]). Weak recovery for the model SBM(n, q, a, b) is impos-
sible, if reconstruction is impossible for the above BOT model.

[45] proved that reconstruction is impossible for the above tree model when d <
q
2

using a coupling argument. We make an improvement using SDPI for the coloring
channel Colq (recall that Colq is the Potts channel PC− 1

q−1
).

Proposition 37. Reconstruction is impossible for the above BOT model if

d <

(
log q − log(q − 1)

log q

q − 1

q
+
1

q

)−1

= q − (1 + o(1))q/ log q. (220)
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Proof. The tree model is equivalent to the following top-down process:

1. Generate σρ uniformly randomly over [q].
2. Suppose we have generated a label for a vertex u. For every child v of u, we randomly

choose the transition matrix M , which is the identity channel Id with probability 1
q ,

and the coloring channel Colq with probability 1− 1
q . Then we generate v according

to P(σv = j |σu = i) = Mi, j .

For any vertex u, let Lu,k denote the set of descendants of u at distance k to ρ. Let v be
a child of u.

Note that π = Unif([q]) is an invariant distribution for both Id and Colq , and the two
channels are both reversible. We have

E
[
I (σu; σLv,k |T, ω)|ωu,v = 1

] ≤ ηKL(π, Id)I (σv; σLv,k |T, ω) = I (σv; σLv,k |T, ω)

(221)

and, by Prop. 33,

E
[
I (σu; σLv,k |T, ω)|ωu,v = 0

] ≤ ηKL(π,Colq)I (σv; σLv,k |T, ω)

= log q − log(q − 1)

log q
I (σv; σLv,k |T, ω). (222)

Taking expectation, we get

I (σu; σLv,k |T, ω) ≤
(
log q − log(q − 1)

log q

q − 1

q
+
1

q

)
I (σv; σLv,k |T, ω). (223)

Rest of the proof is the same as Theorem 5. ��
Prop. 36 andProp. 37 together show thatweak recovery is impossible for SBM(n, q, a, b)
when

(√
a − √

b
)2

<

(
log q − log(q − 1)

log q

q − 1

q
+
1

q

)−1

. (224)

As shown in Fig. 4, for certain parameters, (224) leads to slight improvement over [3].

6.2. Impossibility of weak recovery via Potts model We have shown that the informa-
tion percolation method together with the input-restricted KL contraction coefficients
gives a simple yet strong impossibility result for weak recovery of the stochastic block
model. The information percolation method can be understood as comparison with the
erasure channel. However, the stochastic block model is more closely related to the Potts
channel. In this section we prove Theorem 7, an even better impossibility result, via the
Potts model on a tree.

The following result says that impossibility of reconstruction for the Potts model
implies impossibility of weak recovery for the SBM. The result was first proved by
Mossel et al. [36] for the case q = 2, and their proof works for general q with slight
modification. For a proof for the general case, see Mossel et al. [41] or Gu [23, Theorem
5.15].
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Theorem 38 Consider the model SBM(n, q, a, b). Define

d = a + (q − 1)b

q
, λ = a − b

a + (q − 1)b
. (225)

If reconstruction is impossible for the Potts model BOT(q, π,PCλ,Pois(d)), then weak
recovery is impossible for the SBM.

We briefly sketch a proof of Theorem 38.

Proof Sketch. The proof is in two parts. In the first part, we show that for some ab-
solute constant c > 0, there exists a coupling between the c log n-neighborhood of
a vertex in the SBM, and the c log n-neighborhood of the root in the Potts model
BOT(q, π,PCλ,Pois(d)), such that the total variation distance between the two neigh-
borhood (containing labels) is o(1). Proof of this part is by observing that the c log n-
neighborhood in SBM has no cycle with high probability, and can be constructed using
a sequence of binomial random variables; on the other hand, the Potts model can be
constructed using a sequence of Poisson variables. Then we compare the two sequences
of random variables and find that they have very small total variation distance.

In the second part, we show that in the SBM, conditioned on labels on the boundary
of the c log n-neighborhood, labels inside and labels outside are approximately indepen-
dent. In other words, if A, B,C is a partition of V such that |A ∪ B| = o(

√
n) and B

separates A and C , then

P(XA|XB∪C ,G) = (1 + o(1))P(XA|XB,G) (226)

forG and X with probability 1−o(1). The proof is bywriting down the partition function
and removing exponents on 1 − a

n and 1 − b
n that have negligible effect.

Combining the two parts, one can prove that for any constant m and any vertices
v0, . . . , vm ,

I (Xv0; Xv1 , . . . , Xvm |G) = o(1). (227)

This implies impossibility of weak recovery. ��
Theorem 38 together with Theorem 6 implies Theorem 7 immediately.
Figure4 shows a comparison between the impossibility results for q = 5.
Note that (34) is equivalent to

λ2(q − 1)

2 log(q − 1)
· d < 1. (228)

Comparing Theorem 7 and (228) using (294), we see that Theorem 7 strictly improves
over (34) in the assortative regime.

Remark 39. Theorem 7 can be generalized to asymmetric SBMs. Let n ≥ 1, q ≥ 2, ν
be a distribution on [q] with full support, and A be a symmetric q ×q matrix. We define
the general stochastic block model SBM(n, q, ν, A) as follows. First every vertex v ∈ V
receives a label Xv independently from ν. Then a random graph G is constructed, where
every edge (u, v) is added with probability 1

n AXu ,Xv .
The weak recovery problem for the general SBMs asks to output a set S = S(G)

such that

#{v ∈ S : Xv = i}
#{v ∈ V : Xv = i} − #{v ∈ S : Xv = j}

#{v ∈ V : Xv = j} ≥ ε (229)
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Fig. 4. Impossibility of weak recovery results for SBM for q = 5. In the assortative regime, (224) gives better
results than [3] for certain parameters, and Theorem 7 gives the best results among the three

for some i, j ∈ [q] and absolute constant ε > 0. Note that for symmetric SBMs, this
agrees with the definition given in the beginning of Sect. 6 (see Abbe and Sandon [1]).

Note that the expected degree of a vertex with label i is equal to (νA)i + o(1). If
νA is not a multiple of 1, then weak recovery can be achieved by simply looking at
the degrees. Therefore we assume that νA = d1 for some d ≥ 1 and call such models
degree indistinguishable.

Gu [23, Theorem 5.15] proved that for a degree indistinguishable SBM, weak recov-
ery is impossible if reconstruction is impossible for BOT(q, ν, M,Pois(d)) (defined in
Sect. 4), where M is defined as

M(i, j) = 1

d
Ai, jν j , ∀i, j ∈ [q]. (230)

It is easy to verify that M is a Markov kernel, νM = ν, and (ν, M) is reversible.
Combining [23, Theorem 5.15] and Theorem 5, we get that weak recovery is impos-

sible if dηKL(ν, M) < 1.
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A. Input-Unrestricted Contraction Coefficient of Potts Channels

Computation of (input-restricted or input-unrestricted) contraction coefficients is often a
daunting task. Previously, Makur and Polyanskiy [32] obtained lower and upper bounds
of input-unrestricted KL divergence contraction coefficients for Potts channels. In this
section we compute the exact value of these contraction coefficients.
We remark that after our work, Ordentlich and Polyanskiy [42] proved that the input-

unrestricted contraction coefficients are achieved by input distributions of support size at
most two, giving an alternative (and simpler) proof for Prop. 40. We include our original
proof here for completeness.

Proposition 40.

ηKL(PCλ) = qλ2

(q − 2)λ + 2
. (231)

Proof. The result is obvious for λ ∈ {0, 1}. In the following, assume that λ 	∈ {0, 1}.
We use the following characterization of contraction coefficient using Rényi maximal

correlation [47] (see e.g. Sarmanov [48]). For any channel M , we have

ηKL(M) =
(
sup
μ

sup
f,g

E[ f (X)g(Y )]
)2

(232)

where μ is a distribution on [q], PX = μ, PY |X = M , f : X → R satisfies EX [ f ] = 0
and EX [ f 2] = 1, and g : Y → R satisfies EY [g] = 0 and EY [g2] = 1.
Specialize toM = PCλ.Writeμ = (p1, . . . , pq), f = ( f1, . . . , fq) and g = (g1, . . . , gq).
Then

E[ f (X)g(Y )] =
∑

i, j

fi pi g jP[Y = j |X = i] = λ
∑

fi pi gi . (233)
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When λ > 0, we need to maximize
∑

fi gi pi . When λ < 0, we make the transform
fi ← − fi , and still maximize

∑
fi gi pi . So we get the following optimization problem.

max
∑

fi gi pi

s.t.
∑

fi pi = 0, (234)
∑

f 2i pi = 1, (235)

∑
gi

(
λpi +

1 − λ

q

)
= 0, (236)

∑
g2i

(
λpi +

1 − λ

q

)
= 1, (237)

pi ≥ 0,
∑

pi = 1. (238)

Lower bound. Take

μ =
(
1

2
,
1

2
, 0, . . . , 0

)
, f = (1,−1, 0, . . . , 0), g = (u,−u, 0, . . . , 0) (239)

where

u =
√

q

(q − 2)λ + 2
. (240)

Then
∑

fi gi pi = u. (241)

So

ηKL(PCλ) ≥ (λu)2 = qλ2

(q − 2)λ + 2
. (242)

Upper bound. Let us fixμ and maximize over f and g. Assume for the sake of contrary
that

∑
fi gi pi > u. The space of possible g is bounded; some coordinates of f may be

unbounded, but their values do not affect the objective function. By compactness, the
maximum value of

∑
fi gi pi is achieved at some point f and g. Let us compute the

derivatives.

∇ f

∑
fi gi pi = (gi pi )i∈[q], (243)

∇ f

∑
fi pi = (pi )i∈[q], (244)

∇ f

∑
f 2i pi = (2 fi pi )i∈[q], (245)

∇g

∑
fi gi pi = ( fi pi )i∈[q], (246)

∇g

∑
gi

(
λpi +

1 − λ

q

)
=
(

λpi +
1 − λ

q

)

i∈[q]
, (247)

∇g

∑
g2i

(
λpi +

1 − λ

q

)
=
(
2gi

(
λpi +

1 − λ

q

))

i∈[q]
. (248)
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By maximality in f , there exist constants A and B such that

gi pi = Api + B fi pi (249)

for all i . By maximality in g, there exist constants C and D such that

fi pi = C

(
λpi +

1 − λ

q

)
+ Dgi

(
λpi +

1 − λ

q

)
(250)

for all i .
By (249),

∑
fi gi pi =

∑
fi (Api + B fi pi ) = B. (251)

By (250),

∑
fi gi pi =

∑
gi

(
C

(
λpi +

1 − λ

q

)
+ Dgi

(
λpi +

1 − λ

q

))
= D. (252)

So B = D > u > 0.
For i with pi 	= 0, we have gi = A + B fi by (249). If for some i , pi = 0, then

1 − λ

q
(C + Dgi ) = 0. (253)

This means #{gi : pi = 0} = 1. So we can choose fi for such i such that

gi = A + B fi (254)

for all i .
From (236), we get

0 =
∑

gi

(
λpi +

1 − λ

q

)

=
∑

(A + B fi )

(
λpi +

1 − λ

q

)

= A + B
1 − λ

q

∑
fi . (255)

From (237), we get

1 =
∑

g2i

(
λpi +

1 − λ

q

)

=
∑

(A2 + 2AB fi + B2 f 2i )

(
λpi +

1 − λ

q

)

= A2 + 2AB
1 − λ

q

∑
fi + B2λ + B2 1 − λ

q

∑
f 2i

= B2

(
λ +

1 − λ

q

∑
f 2i −

(
1 − λ

q

∑
fi

)2)
. (256)
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The result then follows from Claim 41 because we have

B = 1
√

λ + 1−λ
q

(∑
f 2i − 1−λ

q

(∑
fi
)2)

≤ 1
√

λ + 1−λ
q

(∑
f 2i − 1

q−1

(∑
fi
)2)

≤ 1√
λ + 1−λ

q · 2
= u. (257)

The second step is because 0 ≤ 1−λ
q ≤ 1

q−1 for all λ ∈
[
− 1

q−1 , 1
]
. ��

Claim 41. For any distribution μ and any f satisfying (234) and (235), we have

∑
f 2i − 1

q − 1

(∑
fi
)2 ≥ 2. (258)

Proof. Let us first prove the result for f with support size two. WLOG assume that
f1 > 0, f2 < 0, f3 = · · · = fq = 0. One can compute that

f1 =
√

p2
p1(p1 + p2)

, f2 = −
√

p1
p1(p1 + p2)

. (259)

Then

f 21 + f 22 − 1

q − 1
( f1 + f2)

2

≥ f 21 + f 22 − ( f1 + f2)
2

= 1

p1 + p2

(
p2
p1

+
p1
p2

−
(√

p2
p1

−
√

p1
p2

)2)

= 2

p1 + p2
≥ 2. (260)

Let us define

S(μ) :=
{
f :
∑

fi pi = 0,
∑

f 2i pi = 1
}

(261)

U ( f ) :=
∑

f 2i − 1

q − 1

(∑
fi
)2

. (262)

Now suppose that for some μ and f ∈ S(μ) we have U ( f ) < 2. The space S(μ)/{±}
is continuous as a subsapce of (Rq\{0})/{±} (with quotient topology), and there exists
f ∈ S(μ) withU ( f ) ≥ 2 (e.g., f with support size two), so for sufficiently small ε > 0
there exists f ∈ S(μ) such that U ( f ) ∈ (2 − ε, 2).
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Let λ = − 1
q−1 . Take ε small enough so that λ+ 1−λ

q (2− ε) > 0 and choose f ∈ S(μ)

with U ( f ) ∈ (2 − ε, 2). Define

B = 1√
λ + 1−λ

q U ( f )
> u, (263)

A = −B
1 − λ

q

∑
fi , (264)

gi = A + B fi∀i. (265)

One can check that g satisfies (236) and (237), and

∑
fi gi pi = B > u. (266)

By (232) and (233), this implies

ηKL

(
PC− 1

q−1

)
>

1

q − 1
. (267)

However, we have

ηKL

(
PC− 1

q−1

)
≤ ηTV

(
PC− 1

q−1

)
= 1

q − 1
. (268)

Contradiction. ��

B. An Upper Bound for Input-Restricted Contraction Coefficient for Potts
Channels

In this section we prove an upper bound for the input-restricted KL divergence contrac-
tion coefficient for ferromagnetic Potts channels.

Proposition 42. Fix q ≥ 3. For all λ ∈ [0, 1], we have

ηKL(π,PCλ) ≤ λ2

(1 − λ)
2(q−1) log(q−1)

q(q−2) + λ
. (269)

For all λ ∈ [− 1
q−1 , 0], we have

ηKL(π,PCλ) ≤ λ2

(1 + (q − 1)λ)
2(q−1) log(q−1)

q(q−2) − λ
log q

(q−1)(log q−log(q−1))

. (270)

We first prove a lemma.

Lemma 43. (qx−1)2

ψ(x) is concave in x ∈ [0, 1], where ψ : [0, 1] → R is defined in (16).
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Proof. Let f (x) = (qx−1)2

ψ(x) .

f ′(x) = 2q(qx − 1)

ψ(x)
− (qx − 1)2ψ ′(x)

ψ2(x)
. (271)

f ′′(x) = 2q2

ψ(x)
− 4q(qx − 1)ψ ′(x)

ψ2(x)
− (qx − 1)2ψ ′′(x)

ψ2(x)
+
2(qx − 1)2(ψ ′)2(x)

ψ3(x)

= 2

ψ3(x)
(qψ(x) − (qx − 1)ψ ′(x))2 − (qx − 1)2ψ ′′(x)

ψ2(x)
. (272)

Therefore it suffices to prove that

g(x) := ψ3(x) f ′′(x) = 2(qψ(x) − (qx − 1)ψ ′(x))2 − (qx − 1)2ψ(x)ψ ′′(x) (273)

is non-positive for x ∈ [0, 1]. Note that g
(
1
q

)
= 0. So we only need to prove that

g′(x) ≥ 0 for x ∈
[
0, 1

q

]
and g′(x) ≤ 0 for x ∈

[
1
q , 1
]
.

g′(x) = −4(qx − 1)ψ ′′(x)(qψ(x) − (qx − 1)ψ ′(x)) − 2q(qx − 1)ψ(x)ψ ′′(x)
− (qx − 1)2ψ ′(x)ψ ′′(x) − (qx − 1)2ψ(x)ψ ′′′(x)
= (qx − 1)(−6qψ(x)ψ ′′(x) + (qx − 1)(3ψ ′(x)ψ ′′(x) − ψ(x)ψ ′′′(x))). (274)

Therefore we would like to prove that

u(q, x) := −6qψ(x)ψ ′′(x) + (qx − 1)(3ψ ′(x)ψ ′′(x) − ψ(x)ψ ′′′(x)) (275)

is non-positive. We enlarge the domain of u and prove that u(q, x) ≤ 0 for real q > 1
and x ∈ (0, 1).
We fix x ∈ (0, 1) and consider ux (q) := u(q, x). We have ux

( 1
x

) = 0. So it suffices
to prove that ux is concave in q. We have

ψ ′(x) = log x − log
1 − x

q − 1
, (276)

ψ ′′(x) = 1

x
+

1

1 − x
, (277)

ψ ′′′(x) = 1

(1 − x)2
− 1

x2
, (278)

∂

∂q
ψ(x) = 1

q
− 1 − x

q − 1
, (279)

∂

∂q
ψ ′(x) = 1

q − 1
, (280)

∂

∂q
ψ ′′(x) = ∂

∂q
ψ ′′′(x) = 0. (281)
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So

u′
x (q) = − 6ψ(x)ψ ′′(x) − 6q

(
1

q
− 1 − x

q − 1

)
ψ ′′(x) + x(3ψ ′(x)ψ ′′(x) − ψ(x)ψ ′′′(x))

+ (qx − 1)

(
3

1

q − 1
ψ ′′(x) −

(
1

q
− 1 − x

q − 1

)
ψ ′′′(x)

)
. (282)

u′′
x (q) = − 12

(
1

q
− 1 − x

q − 1

)
ψ ′′(x) − 6q

(
− 1

q2
+

1 − x

(q − 1)2

)
ψ ′′(x)

+ 6x
1

q − 1
ψ ′′(x) − 2x

(
1

q
− 1 − x

q − 1

)
ψ ′′′(x)

+ (qx − 1)

(
−3

1

(q − 1)2
ψ ′′(x) −

(
− 1

q2
+

1 − x

(q − 1)2

)
ψ ′′′(x)

)

= (qx − 1)2(1 − 2q + (q − 2)x)

q2(q − 1)2x2(1 − x)2
≤ 0. (283)

We are done. ��
Proof of Prop. 42. For x ∈ [0, 1] and λ ∈

[
− 1

q−1 , 1
]
we define

fx (λ) := λ2ψ(x)

ψ
(
λx + 1−λ

q

) . (284)

(Value of fx (0) is defined using continuity.) Note that

ηKL(π,PCλ) = sup
x∈(0,1]

λ2

fx (λ)
. (285)

So to compute an upper bound for ηKL(π,PCλ), it suffices to lower bound fx (λ).
Because

fx (λ) = ψ(x)

(qx − 1)2
·
(
q
(
λx + 1−λ

q

)
− 1
)2

ψ
(
λx + 1−λ

q

) , (286)

by Lemma 43, for fixed x , fx (λ) is concave for λ ∈
[
− 1

q−1 , 1
]
. Therefore by computing

lower bounds of fx (λ) for λ = − 1
q−1 , 0, 1, we can get lower bounds on fx (λ) for all

λ ∈
[
− 1

q−1 , 1
]
.

By Prop. 33, we have

fx

(
− 1

q − 1

)
≥ log q

(q − 1)2(log q − log(q − 1))
. (287)
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By L’Hôpital’s rule,

fx (0) = ψ(x) lim
λ→0

2λ(
x − 1

q

)
ψ ′
(
λx + 1−λ

q

)

= ψ(x) lim
λ→0

2
(
x − 1

q

)2
ψ ′′
(
λx + 1−λ

q

)

= 2(q − 1)ψ(x)

(qx − 1)2
. (288)

By Lemma 43, g(x) := (qx−1)2

ψ(x) is concave in x . Also

g′
(
1 − 1

q

)
= 2q(q − 2)

1
q (q − 2) log(q − 1)

− (q − 2)2 · 2 log(q − 1)
(
1
q (q − 2) log(q − 1)

)2 = 0. (289)

So

g(x) ≤ g

(
1 − 1

q

)
= q(q − 2)

log(q − 1)
(290)

and

fx (0) ≥ 2(q − 1) log(q − 1)

q(q − 2)
. (291)

It is easy to see that

fx (1) ≥ 1. (292)

Because fx (λ) is concave in λ, (269) follows from (291) and (292), and (270) follows
from (287) and (291). ��
Proof of Prop. 42 implies the first order limit behavior of ηKL(π,PCλ) as λ → 0.

lim
λ→0

ηKL(π,PCλ)

λ2
= q(q − 2)

2(q − 1) log(q − 1)
. (293)

For all q ≥ 3 and λ ∈ (0, 1], we have

ηKL(π,PCλ) ≤ λ2

(1 − λ)
2(q−1) log(q−1)

q(q−2) + λ

≤ λ2(1 − λ)
q(q − 2)

2(q − 1) log(q − 1)
+ λ3

< λ2
q(q − 2)

2(q − 1) log(q − 1)

< λ2
q − 1

2 log(q − 1)
, (294)

where the second step is by Cauchy inequality.
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For comparison with input-unrestricted contraction coefficient

ηKL(PCλ) = qλ2

(q − 2)λ + 2
, (295)

we note that λ2

ηKL(PCλ)
is linear in λ, and

1

q − 1
<

log q

(q − 1)2(log q − log(q − 1))
, (296)

2

q
<

2(q − 1) log(q − 1)

q(q − 2)
. (297)

So Prop. 42 implies (31).

C. Non-convexity of Certain Functions

In this section we prove Prop. 26. Let us first prove a lemma.

Lemma 44. Let g be a strictly increasing smooth function from [x0, x1] to [y0, y1], and
f be a smooth function from [x0, x1] to R. Assume that g′(x0) = f ′(x0) = 0 and
(g′′ f ′′′ − f ′′g′′′)(x0) > 0. Then the function h = f ◦ g−1 : [y0, y1] → R is not concave
near y0.

Proof. Derivatives of h are

h′(x) = f ′(g−1(x))

g′(g−1(x))
, (298)

h′′(x) =
(

f ′′

g′ − f ′g′′

(g′)2

)(
g−1(x)

) 1

g′ (g−1(x)
)

=
(

f ′′

(g′)2
− f ′g′′

(g′)3

)(
g−1(x)

)
. (299)

So it suffices to study the sign of g′ f ′′ − f ′g′′ for x near x0. Let u = g′ f ′′ − f ′g′′. We
have u(x0) = 0. Let us compute the derivatives.

u′ = g′ f ′′′ − f ′g′′′, (300)

u′′ = g′ f (4) + g′′ f ′′′ − f ′′g′′′ − g′g(4). (301)

So u′(x0) = 0 and u′′(x0) = (g′′ f ′′′ − f ′′g′′′)(x0) > 0. So u is positive near x0. ��
Proof of Prop. 26. We apply Lemma 44 to g = ψ , x0 = 1

q , x1 = 1, y0 = 0, y1 = log q,
and various f . We have

ψ ′
(
1

q

)
= 0, (302)

ψ ′′
(
1

q

)
= q2

q − 1
, (303)

ψ ′′′
(
1

q

)
= −q3(q − 2)

(q − 1)2
. (304)
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Part (i), p = 1. For b1, take

f (x) = −(q − 1)ξ1(x) = log x + (q − 1) log
1 − x

q − 1
+ q(ψ(x) − log q). (305)

Then

f ′(x) = 1

x
− q − 1

1 − x
+ qψ ′(x), (306)

f ′′(x) = − 1

x2
− q − 1

(1 − x)2
+ qψ ′′(x), (307)

f ′′′(x) = 2

x3
− 2(q − 1)

(1 − x)3
+ qψ ′′′(x). (308)

So

f ′
(
1

q

)
= 0, (309)

f ′′
(
1

q

)
= − 2q3

q − 1
, (310)

f ′′′
(
1

q

)
= 3(q − 2)q4

(q − 1)2
. (311)

We have

(ψ ′′ f ′′′ − f ′′ψ ′′′)
(
1

q

)
= q2

q − 1
· 3(q − 2)q4

(q − 1)2
−
(

− 2q3

q − 1

)(
−q3(q − 2)

(q − 1)2

)

= q6(q − 2)

(q − 1)3
> 0. (312)

So Lemma 44 applies.
Part (i), p > 1. For bp with p > 1, take

f (x) = q − (q − 1)ξp(x)

=
(
x

1
p + (q − 1)

(
1 − x

q − 1

) 1
p
)(

x1−
1
p + (q − 1)

(
1 − x

q − 1

)1− 1
p
)

. (313)

For simplicity, write r = 1
p and let ur (x) = xr + (q − 1)

(
1−x
q−1

)r
. Then f (x) =

ur (x)u1−r (x). Let us compute derivatives of ur .

u′
r (x) = r

(
xr−1 −

(
1 − x

q − 1

)r−1
)

, (314)

u′′
r (x) = r(r − 1)

(
xr−2 +

1

q − 1

(
1 − x

q − 1

)r−2
)

, (315)

u′′′
r (x) = r(r − 1)(r − 2)

(
xr−3 − 1

(q − 1)2

(
1 − x

q − 1

)r−3
)

. (316)
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So

ur

(
1

q

)
= q1−r , (317)

u′
r

(
1

q

)
= 0, (318)

u′′
r

(
1

q

)
= r(r − 1)

q

q − 1

(
1

q

)r−2

, (319)

u′′′
r

(
1

q

)
= r(r − 1)(r − 2)

q(q − 2)

(q − 1)2

(
1

q

)r−3

. (320)

Now we compute derivatives of f .

f ′(x) = u′
r (x)u1−r (x) + ur (x)u

′
1−r (x), (321)

f ′′(x) = u′′
r (x)u1−r (x) + 2u′

r (x)u
′
1−r (x) + ur (x)u

′′
1−r (x), (322)

f ′′′(x) = u′′′
r (x)u1−r (x) + 3u′′

r (x)u
′
1−r (x) + 3u′

r (x)u
′′
1−r (x) + ur (x)u

′′′
1−r (x). (323)

So

f ′
(
1

q

)
= 0, (324)

f ′′
(
1

q

)
= r(r − 1)

q

q − 1

(
1

q

)r−2

· qr + (1 − r)(−r)
q

q − 1

(
1

q

)−r−1

· q1−r

= 2r(r − 1)
q3

(q − 1)
, (325)

f ′′′
(
1

q

)
= r(r − 1)(r − 2)

q(q − 2)

(q − 1)2

(
1

q

)r−3

· qr

+ (1 − r)(−r)(−r − 1)
q(q − 2)

(q − 1)2

(
1

q

)−r−2

· q1−r ,

= −3r(r − 1)
q4(q − 2)

(q − 1)2
. (326)

So

(ψ ′′ f ′′′ − f ′′ψ ′′′)
(
1

q

)
= q2

q − 1

(
−3r(r − 1)

q4(q − 2)

(q − 1)2

)

− 2r(r − 1)
q3

(q − 1)

(
−q3(q − 2)

(q − 1)2

)

= r(1 − r)
q6(q − 2)

(q − 1)3
> 0. (327)

So Lemma 44 applies.
Part (ii). For sλ, take

f (x) = ψ

(
λx +

1 − λ

q

)
. (328)
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Then

f ′(x) = λψ ′
(

λx +
1 − λ

q

)
, (329)

f ′′(x) = λ2ψ ′′
(

λx +
1 − λ

q

)
, (330)

f ′′′(x) = λ3ψ ′′′
(

λx +
1 − λ

q

)
. (331)

So

f ′
(
1

q

)
= 0, (332)

f ′′
(
1

q

)
= λ2ψ ′′

(
1

q

)
= λ2

q2

q − 1
, (333)

f ′′′
(
1

q

)
= λ3ψ ′′′

(
1

q

)
= −λ3

q3(q − 2)

(q − 1)2
. (334)

We have

(ψ ′′ f ′′′ − f ′′ψ ′′′)
(
1

q

)
= q2

q − 1

(
−λ3

q3(q − 2)

(q − 1)2

)
− λ2

q2

q − 1

(
−q3(q − 2)

(q − 1)2

)

= q5(q − 2)

(q − 1)3
(λ2 − λ3) > 0. (335)

So Lemma 44 applies. ��

D. Concavity of Log-Sobolev Coefficients

Let K be a Markov kernel with stationary distribution π . Define Dirichlet form E(·, ·)
and entropy form Entπ (·) as in Sect. 1.
For r ∈ R, we consider the tightest 1

r -log-Sobolev inequality, corresponding to

b̃ 1
r
(x) := inf

f :X→R≥0,
Eπ [ f ]=1,Entπ ( f )=x

E( f r , f 1−r ), (336)

�̃ 1
r
(y) := sup

f :X→R≥0,

Eπ [ f ]=1,E( f r , f 1−r )=y

Entπ ( f ). (337)

The 1
r -log-Sobolev constant is

α̃ 1
r

:= inf
x>0

b 1
r
(x)

x
= inf

y>0

y

� 1
r
(y)

. (338)
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Remark 45. When r = 0, the fraction 1
r should be understood as a formal symbol, and

by definition we have b̃ 1
0
(x) = b̃1(x) and �̃ 1

0
(y) = �̃1(y) whenever they are defined.

For r ∈ (0, 1), �̃ 1
r
(y) = � 1

r
(y) where � 1

r
the (pointwise) smallest function satisfying

(8), and α̃ 1
r

= α 1
r
where α 1

r
is defined in (9). However, in general α̃1 is not equal to α1.

We use ·̃ to emphasize the difference.

The following result says that log-Sobolev constants are concave in r .6

Proposition 46. We have

(i) For fixed x, b̃ 1
r
(x) is concave in r .

(ii) α̃ 1
r
is concave in r .

Furthermore, if (π, K ) is reversible, then

(iii) For fixed x, b̃ 1
r
(x) is maximized at r = 1

2 .

(iv) α̃ 1
r
is maximized at r = 1

2 .

Proof. Because inf of concave functions is still concave, it suffices to prove that for any
f : X → R≥0 with Eπ [ f ] = 1, E( f r , f 1−r ) is concave in r .

d

dr2
E( f r , f 1−r ) = d

dr2
∑

x,y∈X
(I − K )(x, y) f (y)r f (x)1−rπ(x)

=
∑

x,y∈X
(I − K )(x, y) f (y)r f (x)1−rπ(x)(log f (y) − log f (x))2

=
∑

x 	=y∈X
−K (x, y) f (y)r f (x)1−rπ(x)(log f (y) − log f (x))2

≤ 0.

When theMarkov chain is reversible,we haveE( f, g) = E(g, f ). So b̃ 1
r
(x) = b̃ 1

1−r
(x)

and by concavity, b̃ 1
r
(x) is maximized at r = 1

2 . ��

E. Non-reconstruction for Broadcasting with a Gaussian Kernel

In this section, we prove optimal non-reconstruction results for a BOT model with
continuous alphabet considered in Eldan et al. [16], using our method developed in
Sect. 4.

Definition 47 (Broadcasting on trees with a Gaussian kernel). In this model, we are
given a (possibly) infinite tree T with a marked root ρ. The state space X is the unit
circle S1 = R/2πZ. Let π = Unif(S1) be the uniform distribution. Let t > 0 be a
parameter. The transfer kernel is Mt , defined as Y = X + Zt where Zt ∼ N (0, t), where
X is the input and Y is the output.
Now for each vertex v ∈ T , we generate a label σv ∈ X according to the following
process:

6 An earlier version of the paper incorrectly stated that � 1
r
(y) is convex in r for fixed y. The incorrect

statement was not used elsewhere in the paper.
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1. Generate σρ ∼ π .
2. Suppose we have generated a label for vertex u. For every child v of u, we generate

v according to σv ∼ Mt (·|σu).
Let Lk denote the set of vertices at distance k to ρ. We say reconstruction is impossible
if and only if

lim
k→∞ I (σρ; σLk ) = 0. (339)

Let λ(Mt ) denote the second largest eigenvalue of Mt . [16] proved that for the above
BOT model on a regular tree with offspring d, reconstruction holds when dλ(Mt )

2 > 1,
and non-reconstruction holds for dλ(Mt ) < 1. Note that there is a λ(Mt ) factor gap
between the reconstruction result and the non-reconstruction result. In the following, we
prove that non-reconstruction holds as long as dλ(Mt )

2 < 1, closing the gap.
We remark that Mossel et al. [40] studied a different BOTmodel with Gaussian broad-

casting channels, and deteremined the reconstruction threshold for their model (which
happened to also coincide with the Kesten–Stigum threshold). While sharing some sim-
ilarities, their and our models do not seem to be directly comparable with each other.

Theorem 48 (Non-reconstruction for Gaussian BOT model). Consider the BOT model
defined in Definition 47.
Let T be an infinite rooted tree with bounded maximum degree. Then reconstruction

is impossible when

br(T )λ(Mt )
2 < 1. (340)

Let T be a Galton-Watson tree with expected offspring d. Then reconstruction is
impossible when

dλ(Mt )
2 < 1. (341)

The proof idea is to upper bound the input-restricted KL contraction coefficient by
λ(Mt )

2, then use a tree recursion similar to that of Theorem 5. However, because we are
working in a continuous space, we must be careful about what we mean by contraction
coefficients.
We would like an inequality of form

I (σu; σLv,k ) ≤ η̃KL(π, Mt )I (σv; σLv,k ) (342)

where u ∈ V (T ), v is child of u, Lv,k is the set of descendants of v at distance k to ρ,
and η̃KL(π, Mt ) is a continuous version of contraction coefficient ηKL(π, Mt ).
We have

I (σu; σLv,k ) = EσLv,k
D(Pσu |σLv,k

‖Pσu ) (343)

= EσLv,k
D(Mt ◦ Pσv |σLv,k

‖π). (344)

Let us consider the distribution Pσu |σLu,k
. If k = d(v, ρ), then Pσu |σLu,k

is a point
measure. However, as long as k > d(u, ρ), pdf of Pσu |σLu,k

is smooth on X by an
induction using belief propagation equation. Thereforewemake the following definition.
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Definition 49 (Smooth contraction coefficient). We define

η̃KL(π, Mt ) := sup
f ∈C

Entπ (Mt f )

Entπ ( f )
, (345)

C := { f : X → R≥0| f smooth,Eπ [ f ] = 1}. (346)

where Entπ ( f ) is defined in (2).

Lemma 50.

η̃KL(π, Mt ) ≤ exp(−t). (347)

Proof. Note that (Mt )t≥0 forms a semigroup. Therefore it suffices to prove that for all
f ∈ C, we have

d

dt
|t=0 Entπ ( ft ) ≤ −Entπ ( f ) (348)

where ft = Mt f .
We have

d

dt
|t=0 Entπ ( ft )

= E

[
d

dt
|t=0( ft log ft )

]

= E

[
(1 + log f )

d

dt
|t=0 ft

]

= E

[
(log f )

d

dt
|t=0 ft

]

= 1

2
E
[
f ′′ log f

]
heat equation

= − 1

2
E

[
( f ′)2

f

]
integration by parts

≤ − Entπ ( f ). [17]
This finishes the proof. ��
Now we are ready to prove Theorem 48.

Proof of Theorem 48. By Lemma 50, we have

η̃KL(π, Mt ) ≤ exp(−t) = λ(Mt )
2, (349)

where the value of λ(Mt ) is proved in e.g., [16]. Therefore we only need to prove that
br(T )̃ηKL(π, Mt ) < 1 implies non-reconstruction.Note that the channelMt is reversible.

Bounded degree case: For u ∈ V (T ), define

ru := lim
k→∞ I (σu; σLu,k ). (350)



828 Y. Gu, Y. Polyanskiy

By data processing inequality, I (σu; σLu,k ) is non-increasing for k ≥ d(u, ρ), so the
limit always exists. Because T has bounded maximum degree, we have

ru ≤ I (σu; σLu,d(u,ρ)+1). (351)

So there exists a constant C > 0 such that ru ≤ C for all u ∈ v(T ).
Now define

au = C−1η̃KL(π, Mt )
d(u,ρ)ru . (352)

Let c(u) be the set of children of u. For any v ∈ c(u), by Markov chain

σLv,k → σv → σu (353)

and discussion before Lemma 50, we have

I (σu; σLv,k ) ≤ η̃KL(π, Mt )I (σv, σLv,k ). (354)

Because (σLv,k )v∈c(u) are independent conditioned on σu , we have

I (σu; σLu,k ) ≤
∑

v∈c(u)

I (σu; σLv,k ). (355)

Combining the two inequalities and let k → ∞, we get

au ≤
∑

v∈c(u)

av. (356)

Furthermore, we have au ≤ η̃KL(π, Mt )
d(u,ρ).

Now define a flow b as follows. For any u ∈ V (T ), let u0 = ρ, . . . , u� = u be the
shortest path from ρ to u. Define

bu = au
∏

0≤ j≤�−1

au j∑
v∈c(u j )

av

. (357)

(If
∑

v∈c(u j )
av = 0 for some j , then let bu = 0.) Then we have

bu =
∑

v∈c(u)

bv, (358)

and that

bu ≤ au ≤ η̃KL(π, Mt )
d(u,ρ). (359)

By definition of branching number, we must have bρ = 0. Therefore rρ = 0 and non-
reconstruction holds.
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Galton–Watson tree case: Let D be the offspring distribution. We have

I (σρ; σLk |T ) ≤ Ec(ρ)

∑

v∈c(ρ)

I (σρ; σLv,k |T )

≤ Ec(ρ)

∑

v∈c(ρ)

η̃KL(π, Mt )I (σv; σLv,k |Tv)

= η̃KL(π, Mt )Ec(ρ)

∑

v∈c(ρ)

I (σv; σLv,k |Tv)

= η̃KL(π, Mt )Eb∼D
[
bI (σρ; σLk−1 |T )

]

= η̃KL(π, Mt )d I (σρ; σLk−1 |T ).

HereTv denotes the subtree rooted atv. Because I (σρ; σL1 |T ) < ∞,whendη̃KL(π, Mt ) <

1, we have

lim
k→∞ I (σρ; σLk |T ) = 0. (360)

This finishes the proof. ��
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