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Abstract—Recently, Altug and Wagner [1] posed a question following non-asymptotic fundamental limits:

regarding the optimal behavior of the probability of error w hen
channel coding rate converges to the capacity sufficientlylawly.

They gave a sufficient condition for the discrete memoryless

channel (DMC) to satisfy a moderate deviation property (MDB
with the constant equal to the channel dispersion. Their siicient
condition excludes some practically interesting channelsuch as
the binary erasure channel and the Z-channel. We extend thei
result in two directions. First, we show that a DMC satisfies MDP
if and only if its channel dispersion is nonzero. Second, werpve

that the AWGN channel also satisfies MDP with a constant equal

to the channel dispersion. While the methods used by Altug ah

Wagner are based on the method of types and other DMC-specific

ideas, our proofs (in both achievability and converse partsrely
on the tools from our recent work [2] on finite-blocklength regime
that are equally applicable to non-discrete channels and @mnels
with memory.

e (n, M)
= inf{e: 3(n, M, ¢)-code (maximal probab. of errg(B)
efwg(n, M)

= inf{e: 3(n, M, e)-code (average probab. of errpi(¥)

For several memoryless channels as well as some channels
with memory it is known that

0, R<C

5
1, R>C, ®)

lim €*(n,exp{nR}) = {

whereC is the capacity of the channel. The convergence in (5)
is known to be exponential, but the precise evaluation & thi

Index Terms—Shannon theory, channel capacity, channel dis- exponent is generally an open problem even for the simplest

persion, moderate deviations, discrete channels, AWNGN clmael,
finite blocklength regime.

|. INTRODUCTION

A random transformation is defined by a pair of measurable
spaces of inputé and outputd and a conditional probability
measurePy | x : A+ B. An (M, ¢) code (average probability

of error) for the random transformatiof®, B, Py x ) is a pair
of (possibly randomized) mapg : {1,...,M} — A (the
encoder) andy : B — {1,..., M} (the decoder), satisfying

1 M
— Plg(Y) # m|X = f(m)] <e. 1
Mg; g

Similarly, an (M, ¢) code (maximal probability of errorjs a
pair of (possibly randomized) mags: {1,..., M} — A and
g:B—{1,..., M}, satisfying

DMCs.

If we replaceexp{nR} with exp{nC — A\/n} then the
probability of error converges to a number betwéeand 1,
as follows?

lim_ € (n,exp{nC — AVii}) = Q (%) NG

whereV is the channel dispersion, a fundamental characteris-
tic of a channel, especially valuable in the finite blockigng
analysis; see [2], [4].

Reference [1] raised the question of the best possible
behavior of the probability of error when the coding rate
approaches capacity slower thahn,/n. If we assume that (6)
holds uniformly in A, then we expect that

mmmmm%mmD~Q<€?0

This argument justifies the following definition:
Definition 1: A channel with capacityC is said to satisfy
the moderate deviation property (MDP) with constarit for

7"’9%
~ e T2V

()

e Plg(Y) #m|X = f(m)] <e. (2)  any sequence of integerd,, such that
In applications, we will takeA and B to be n-fold Cartesian log My = nC = np, (8)
products of alphabetd andB, and a channel to be a sequencerherep,, > 0, p, — 0 andnp? — oo, we have
of random transformation$ Py-n|x» : A" — B"} indexed 1
by blocklength [3]. An(M, €) code for{A", B", Pyn|xn} is nan;O P log e*(n, M,,)
called an(n, M, ¢) code. For a chosen channel we define the P 1
= nlLH;o W 10g Ezvg(n, Mn) (9)
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The regime of rate slowly converging to capacity as in (&entral-limit (6) holds with dispersioi” and MDP holds with
falls between the central-limit theorem (CLT) regime (6fanconstant (thus,V > 0 andv > 0). Then
the large deviations (or error-exponent) regime (5). B
In [1] it was shown that MDP holds for a certain subset of V=uv. (16)
the DMCs (which excludes, for example, the binary erasure Proof: Define a sequence of cumulative density functions
channel (BEC) and the Z-channel). We show how a refinemg@DFs) as follows:
of their result can be easily derived using methods develope A
in [2]. Namely, we show that a DMC satisfies MDP if and only Fo(x) = € (n, lexp{nC + 2vnV}]). a7
if its channel dispersion is posmve._Thereforg, not oryvae Then, on one hand the central-limit property (6) ensures tha
extend the subset of DMCs for which MDP is shown, but we
show that this subset cannot be further extended. Additigna F.(z) — ®(z), (18)
we show that the additive white Gaussian noise (AWGI\%
channel satisfies MDP. We also show that for any channel (W[(O 1):
necessarily stationary, memoryless, or even non-antmipp T @
the constant in the MDP and the dispersid in the central- O(x) = /
limit (6) cannot differ.
One of the main tools in our treatment [2] is the performanéen the other hand, the MDP property, cf. Definition 1, can
of the optimal binary hypothesis test defined as follow®e reformulated as follows: For every sequeage> 0 s.t.
Consider aW-valued random variablé¥ which can take 1 < a, < +/n we have
probability measures” or Q. A randomized test between ) 1
those two distributions is defined by a random transformatio nhj{}o 2
Pziw : W +— {0,1} where0 indicates that the test chooses "
Q. The best performance achievable among those randomi
tests is given b¥y

all x € R, where® is the CDF of the standard Gaussian

y2

—Tdy. (19)

e
oo V2T

loge
log F(=an) = ==~ (20)

red = {. We must show that = 1.
To do so, define the following non-increasing sequence of

numbers: A
Ba(P,Q) = min 3 Q(w)Pzw(llw), (1) un £ sup sup | F(2) — ®(2)] . (21)
wEW m>n rER
where the minimum is over all probability distributiof,y;, ~Since the convergence in (18) is necessarily uniform, wehav
satisfying Up — 0. (22)
Prw Z P(w)Pzw (ljw) = . (12)  Notice that ifu,, = 0 for all sufficiently largen, then the result
weW follows automatically since for any sequenag satisfying

The minimum in (11) is guaranteed to be achieved by tlwnditions for (20) we have

Neyman-Pearson lemma. Thus,(P,_Q)_gives the mi_n_imum Y loge
probability of error under hypothesi@ if the probability of AJim_ —5 log ®(—an) = — > (23)
error under hypothesi® is not larger thanl — «. It is easy " o
to show that (e.g. [5]) for any > 0 andd = 1. Thus, in the remaining we assume that does

ip not vanish for anyn.

a<P [@ > 7} +7Ba(P, Q). (13) First, suppose that
. 1
On the other hand, limsup ~logun < 0. (24)
Ba(P,Q) < i, (14) Then for somej > 0 and alln > N; we should have
T %

for any v, that satisfies up < exp{—nd} (25)

AP But then, for any admissible sequence we have

P[@Z%} > o (15)

.1 .1
nlingo a—210g F.(—ay) = nlingo a—glog D(—ay) (26)

II. ON THE MDP CONSTANT

For an arbitrary channel, neither (6) implies (10), ndpecause
vice versa. However, if both limits hold, then the respestiv |Fo(—an) — ®(—ay)| < exp{—nd} (27)

constants must be equal: and by the conditions on,,, ®(—a,) > exp{—nd}. Finally,

Theorem 1:Consider an arbitrary channel (i.e. a sequenggplication of (23) to (26) completes the proof in this case.
of random transformations) with capacity and suppose that  Second, suppose that

2We write summations over alphabets for simplicity; howewat of our

. 1
general results hold for arbitrary probability spaces. limsup n logup = 0. (28)

n—oo



Assume, for example, th& > 1. Fix anyd > 0 such that

1 1
—+d>—=4+26.

2 20 (29)
Choose the following sequeneg > 0:
1 —1

Gy = <29 + 26) log, u, . (30)

The limit (23) implies that for all sufficiently large we have

B(—a,) < e (30 = (u,), (31)

wherer; > 1 by (29). Condition (28) shows that sequengge

satisfies conditions for (20), from which we find that for all

sufficiently largen we have

Fo(—ay) > e”(#50)% = (u,)72, (32)
wherery < 1. Consider the chain of inequalities:
un = |Fu(—an) — ®(—an)| (33)
> Fu(—an) — ®(—an) (34)
> (un)™ — (un)" (35)

where (33) is by the definition af,, in (21) and (35) is by (31)

and (32). Finally, (35) is a contradiction sineg < 1 < 1.
Similarly, one shows that < 1 is also impossible. [ ]

IIl. DISCRETE MEMORYLESS CHANNELS

« conditional information variance
V(P,W)

= E[Var(i(X;Y)|X)] (42)
2 W(ylz)
Z P(x Z W (y|z) log?
zeA {yeB PW( )
- [D(WIHPW)P} (43)
« third absolute moment of the information density
W(ylx)
Z Z P(x)W (y|z)| log
reAyeB PW( )
3
— D(W,||PW) (44)

Note thatl (P, W), V(P,W) and T (P, W) are continu-
ous functions ofP € P; see [2, Lemma 62].
« the compact subset chpacity-achieving distributiond

H2{PeP: I(P,W)=C}. (45)

where

C= max I(P,W). (46)

« channel dispersionwhich according to [2, Theorem 49]
is equal to

V= min V(P,W). (47)

In the sequel we use the notation of [2, Section IV.A]. In

particular, the DMC has finite input alphahdt finite output
alphabet, and conditional probabilities

HW yz|xz s

whereW (-|z) is a conditional probability mass function ¢h
for all z € A, which is abbreviated a#/,, when notationally
convenient. We denote the simplex of probability distribus
on A by P. It is useful to partition into n-types:

Py xn (y"]z") (36)

P,={PeP: nP(x)€Zs Ve A}. (37)
We use the following notation and terminology:
« output distributionPW
Z P(x)W (y|z) . (38)
zeA
« information density
: W (y|x)
i(z;y) =lo . 39
(z;y) = log PV () (39)
« mutual information
I(P,W) = E[i(X;Y)] (40)
= > P@)W(ylx)log (43(4)
reAyeB

Apart from analyzing the I|m|t ot;,, the result of [1] can
be stated as follows:

Theorem 2 ([1]): Consider a DMCW. If W (y|z) > 0 for
all z € A,y € BandV > 0 then DMC W satisfies MDP
with the constant’.

The main result of this section is:

Theorem 3:The DMC W satisfies MDP if and only i#” >
0, in which caseV is the MDP constant of the DMC.

Theorem 3 follows from Theorems 4 and 6 below.

Theorem 4:Consider a DMCIW and a sequencg,, such
that p, > 0, p, — 0 and p?n — oco. If V > 0 then there
exists a sequence ¢h, exp{nC —np,},,) codes (maximal
probability of error) with
(48)

li ! lo <
msup —= €p < ———
o 2 2 & 2V
On the other hand, whelw = 0 there exists a sequence of
(n,exp{nC —np,},€,) codes (maximal probability of error)
with

€n < 26XP{_nPn}v (49)

so that the channel cannot satisfy MDP.

Proof: Denote byP the capacity achieving distribution
that also achieve¥” in (47). According to the DT bound [2,
Theorem 17], there exist afn,2 exp{nC — np,},€,) code
(average probability of error) such that

e <E [exp{—|i(X”,Y”)—nC+npn|+H . (50)



where DenoteS = Y}, 07 andT = >}, ;. Wheneverz > 1

o A, W (ylz we have
i(z",y )=Zlog7(y]| J) (51)
— " PW(y;) n AT s AsT
’ P Y (X — k) > 2VS| > Qa)e” 572 (1 - 3—/295) :
And therefore, by a standard “purging” method, there also[x—1 S (60)

exists an(n, exp{nC — np, }, €,) code (maximal probability

of error) with e, = 2¢., or Theorem 6:Consider a DMCW and a sequence of

(n, M,,€,) codes (average probability of error) with
en <2E [exp {— [i((X™,Y"™) —nC + npn|+H . (52) log My, > nC — npy, , (61)

If V=0 theni(X™ Y™)=nC and (49) readily follows. wherep,, > 0, p, — 0 and p2n — oo. If V > 0 then we

AssumeV > 0, fix arbitrary A < 1 and consider a chain of have log e

elementary inequalities: lim inf L loge, > — ) (62)
n—oo mp2 -2V
exp {— [i(X",Y") —nC + npnIJr} (53) Proof: Replacing the encoder with an optimal determin-
< 1{(X™Y™) < nC — Anpy) (54) istic one, we can only reduce the average probabilitqufrerro
oo N Next, if we have an(n, M,,, ¢,) code (average probability of
+exp {— [((X7Y™) = nC +npy| } error) with a deterministic encoder, then a standard argame
x 1{i(X™,Y"™) > nC — Anp,} (55) shows that there exists am, %Mn, 2¢,,) subcode (maximal

probability of error). Replacing/,, — %Mn ande, — 2¢,,
without loss of generality we may assume the code to have a
+exp{—(1 = A)npn}. (56)  deterministic encoder and a maximal probability of empr

Now for eachn denote byP, < P, the n-type containing
the largest number of codewords. A standard type-counting

< {i(X™MY™) <nC — Mnp,}

By [6, Theorem 3.7.1] we have

Jim sup % 1og P[i(X",Y™) < nC — Anpn] argument shows that then .there exist§anM/ , €, ) constant
n—oo NP compositionP,, subcode with
2
< 2 ;’/ge . (57) log My, > nC — np,, — |Allog(n +1). (63)

By compactness oP the sequencé’, has an accumulation

Therefore, by taking th tation in (56) and b ggi . : .
erefore, by taking the expectation in (56) and by conditio ppint P*. Without loss of generality, we may assunilg —
P*.

on p,, the second term is asymptotically dominated by the fir

and we obtain: Now for eachn define the following probability distribution

i L (X" YT — + Qy~ onB™:
hgl—»solip e logE [exp{ [i{(X™,Y™) —nC + npy| H Y §
_ A loge . (58) Qv»(y") = H PaW (y;) - (64)
- 2V j=1
Since X < 1 was arbitrary we can tak® — 1 to obtain (48). According to [2, Theorem 31] we have
[ |
The main analytic tool required in proving the converse Bi—e, (Pxnyn, PxnQyn) < M (65)

bound in this section is a tight non-asymptotic lower bour\ﬁhere here and belowy
for the probability of a large deviation of a random variablgnCOder onA™.

from its mean. This question has been addressed by man)ﬁpplying (13) we get that for any we have:
authors working in probability and statistics, startingnfr o
Kolmogorov [7]. Currently, one of the most general such . > p [1ng < 7} —exp{y—logM'}. (66)
results belongs to Rozovsky [8], [9]. The following is a Qy~(Y") "
weakening of [8, Theorem 1] which plays the same role &¥e now fix arbitraryA > 1 and takey = nC — Anp,, to
Berry-Esseen inequality in the analysis of (6); see®[2]. obtain:

is the distribution induced by the

Theorem 5 (RozovskyYhere exist universal constants Wy xm)
A; > 0 and A, > 0 with the following property. LetX, ¢n = P llog Qyn (Y7 <nC = Anpp
k=1,...,n be independent with finite third moments: —exp{—npa(A —1) + |Allog(n + 1)} . (67)
pr = E[Xy], of = Var[X,], andty, = E[| X}, — ux|*] . Notice that since the code has constant compositipnthe
(59) distribution oflog % given X™ = z" is the same for

o ) o all z™. Therefore, assuming such conditioning we have
3Similar to well-known extensions of the Berry-Esseen iraigy to the

case of random variables without a third absolute momentof&ky does W(Y"|X") i 7 (68)
~ ] 5
j=1

not require thait | X |? be bounded. However, we only will need this weaker log A v
result. Qy=(Y™)



whereZ; are independent and

n

> E)

n

Z Var|Z;]

3 E (12, -E[Z)]

= nl(P,, W), (69)
= nV(P,,W),  (70)
= nT(P,,W).  (71)

In terms of Z; the bound in (67) asserts

€n >

First, suppose that(P*, W

j=1

P [ZZJ- <nC — Anpy,

—exp{—np,(A—1) + |Allog(n +1)}. (72)

) < C. Then a simple Chernoff

Finally, it is easy to see that the second term in (73) is
asymptotically dominated by the first term according to (78)
andnp,, > np2. Thus, from (78) we conclude that

loge

1
liminf — loge, > — (79)

[ |
IV. THE AWGN CHANNEL

The AWGN channel with signal-to-noise ratio (SNR) equal
to P is defined for each blocklength as follows: the input
space is a subset of vectors&f satisfying

|2"]]> < nP, (80)

the output space iR™ and the channel acts by adding a white
Gaussian noise of variande

Y= X"+ 2", (81)

bound implies that the right-hand side of (67) converges towhere Z7» ~ N(0,1,).
and (62) holds.

Next, assumel (P*, W) =

have from (72):

€n 2

whereV (P*, W) > V since P* is capacity-achieving. There-

P

Jj=1

> Zj—nl(Py, W) < —/\npn]

—exp{—np,(A —1) + |Allog(n + 1)}. (73)
Note that by continuity o’ (P, W) we have

V(P,, W)= V(P*W)>V >0,

fore, by Theorem 5 we obtain:

j=1

A
- Q( V)

P> Zj —nI(Py, W) < —/\npn]

(1 AT (P W)
V2(P,, W) ")

sinceT(P,, W) is continuous and, thus, bounded & we

see that the term in parentheseslis- o(1) because of the
conditions onp,,. Therefore,

n—oo

>

Y

7j=1

(74)

A3 AT (P, W)
V3(Pn.w)  Pn

(75)

lim mf — 1og]P’ |:ZZ —nl(P,,W) < )\npn:|

lim —lo gQ(ﬁ\/ p2>

n—o0 npy,

) 1
+ lim —2<
n—oo NPy
_ A2loge
2V (P, W)
_)\2 loge
2V

NALT(P,, W)

V3 (P, W)

wit) (o)
77)

(78)

The channel dispersion of the AWGN channel is given by [2,

C. Since I(P,,W) < C we Theorem 54]

7log26 1
TR A R S

Theorem 7:The AWGN channel with SNRP satisfies
MDP with constantV (P).
Proof: We rely heavily on the notation and results of [2,
Section 111.J].
ConverseConsider a sequence @f, M,,, €,,) codes (aver-
age probability of error) with

M, = exp{nC - npn} ) (83)

wherep,, > 0, p, — 0 and p2n — oo. Following the method
of [10] and [2, Lemma 39] we can assume without loss of
generality that every codewo@; ¢ R",j = 1,..., M, lies
on a power-sphere:

IC|[* = nP. (84)

We apply the meta-converse bound [2, Theorem 27] With.
chosen as

Qv = [[N(0,1+P), (85)

Jj=1
to obtain
B1-c, (Pxnyn, PxnQyn) < exp{—nC +np,} , (86)

where Px« is the distribution induced by the encoder Rf.
As explained in [2, Section 111.J] we have the equality

B1—e, (Pxnyn, PxnQyn) = B1_c,(Pyn|xn—g,Qyn), (87)

where z = [VP,...,v/P]". Now applying (13)
B1—e, (Pyn|xn=zg,Qyn) With v = nC — Anp,, where
A > 1 is arbitrary we obtain

_loge 9
P(1—-Z7)+2VPZ; < —Anpy
21+ P) Z )+ < AP

—exp{— npn(/\ - 1)}, (88)

€n




n|xXn=g

where we have written the distribution afg 2> —— ex-
plicitly in terms of the i.i.d. random variables; ~ N (0, 1);
see [2, (205)]. According to [6, Theorem 3.7.1], the firstrter
in the right-hand side of (88) dominates the second one al
we have

lim inf L lo > — a (89)
e mp? 0= Tav(p)

and taking\ \, 1 we obtain
lim inf b lo _ (90)
w mpf oS T V(P)”

Achievability: Similar to [2, Section 111.J] we apply thes
bound [2, Theorem 25], witk chosen to be the power sphere

F={2" €R":|l2"]|> = nP} (91)

and Qy~ as in (85). Using the identity (87) and the loweF.0]

bound on«.(F, Qy~) given by [2, Lemma 61] we show that
forall 0 < e < 1and0 < 7 < € there exists arnin, M, ¢)
code (maximal probability of error) with

1 —Can

T—e
M 2 ~ )
C1 Br—cir(Pyn|xn—g, Qyn)

(92)

wherez = [V/P,...,/P|" € R" is a vector on the the power
sphere, and’; and C, are some positive constants. We now
take 7 = § and apply the upper bound ag# from (14) to
obtain the statement: For anpythere exists an@n, M, ¢) code
(maximal probability of error) with

€ — 2¢~Can
M>—— 93
T exp{7} (93)
and
APy xns
€ — 9P logi <~ (94)
QY’”

Now takevy, = nC —Anp,,, whereX < 1 is arbitrary. By [6,
Theorem 3.7.1] we obtain a sequence of codes with

log M,, > nC — np,, (95)
for all n sufficiently large and
hglsogp n—l,% loge, < — QV)\(QP) . (96)
In particular,
lim sup % log e*(n,exp{nC —np,}) < X , (97)
n—oo NP7 2V (P)

and since\ < 1 is arbitrary we can take " 1 to finish the
proof. [ |

i
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