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Abstract

In this paper we consider a channel model that is often used to describe the mobile wireless scenario: multiple-
antenna additive white Gaussian noise channels subject to random (fading) gain with full channel state information
at the receiver. Dynamics of the fading process are approximated by a piecewise-constant process (frequency non-
selective isotropic block fading). This work addresses the finite blocklength fundamental limits of this channel
model. Specifically, we give a formula for the channel dispersion – a quantity governing the delay required to
achieve capacity. The multiplicative nature of the fading disturbance leads to a number of interesting technical
difficulties that required us to enhance traditional methods for finding the channel dispersion. Alas, one difficulty
remains: the converse (impossibility) part of our result holds under an extra constraint on the growth of the peak-
power with blocklength.

Our results demonstrate, for example, that while capacities of nt × nr and nr × nt antenna configurations
coincide (under fixed received power), the coding delay can be sensitive to this switch. For example, at the received
SNR of 20 dB the 16×100 system achieves capacity with codes of length (delay) which is only 60% of the length
required for the 100 × 16 system. Another interesting implication is that for the MISO channel, the dispersion-
optimal coding schemes require employing orthogonal designs such as Alamouti’s scheme – a surprising observation
considering the fact that Alamouti’s scheme was designed for reducing demodulation errors, not improving coding
rate. Finding these dispersion-optimal coding schemes naturally gives a criteria for producing orthogonal design-like
inputs in dimensions where orthogonal designs do not exist.

I. INTRODUCTION

Given a noisy communication channel, the maximal cardinality of a codebook of blocklength n which
can be decoded with block error probability no greater than ε is denoted as M∗(n, ε). The evaluation of this
function – the fundamental performance limit of block coding – is alas computationally impossible for most
channels of interest. As a resolution of this difficulty [1] proposed a closed-form normal approximation,
based on the asymptotic expansion:

logM∗(n, ε) = nC −
√
nV Q−1(ε) +O(log n) , (1)

where the capacity C and dispersion V are two intrinsic characteristics of the channel and Q−1(ε) is the
inverse of the Q-function1. One immediate consequence of the normal approximation is an estimate for
the minimal blocklength (delay) required to achieve a given fraction η of the channel capacity:

n &

(
Q−1(ε)

1− η

)2
V

C2
. (2)

Asymptotic expansions such as (1) are rooted in the central-limit theorem and have been known classically
for discrete memoryless channels [2], [3] and later extended in a wide variety of directions; see the surveys
in [4], [5].
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The fading channel is the centerpiece of the theory and practice of wireless communication, and hence
there are many slightly different variations of the model: differing assumptions on the dynamics and
distribution of the fading process, antenna configurations, and channel state knowledge. The capacity
of the fading channel was found independently by Telatar [6] and Foschini and Gans [7] for the case
of Rayleigh fading and channel state information available at the receiver only (CSIR) and at both the
transmitter and receiver (CSIRT). Motivated by the linear gains promised by capacity results, space time
codes were introduced to exploit multiple antennas, most notable amongst them is Alamouti’s ingenious
orthogonal scheme [8] along with a generalization of Tarokh, Jafarkhani and Calderbank [9]. Motivated
by a recent surge of orthogonal frequency division (OFDM) technology, this paper focuses on an isotropic
channel gain distribution, which is piecewise independent (“block-fading”) and assume full channel state
information available at the receiver (CSIR). This work describes finite blocklength effects incurred by
the fading on the fundamental communication limits.

Some of the prior work on similar questions is as follows. Single antenna channel dispersion was
computed in [10] for a more general stationary channel gain process with memory. In [11] finite-
blocklength effects are explored for the non-coherent block fading setup. Quasi-static fading channels in the
general MIMO setting have been thoroughly investigated in [12], showing that the expansion (1) changes
dramatically (in particular the channel dispersion term becomes zero); see also [13] for evaluation of the
bounds. Coherent quasi-static channel has been studied in the limit of infinitely many antennas in [14]
appealing to concentration properties of random matrices. Dispersion for lattices (infinite constellations)
in fading channels has been investigated in a sequence of works, see [15] and references. Note also that
there are some very fine differences between stationary and block-fading channel models, cf. [16, Section
4]. The minimum energy to send k bits over a MIMO channel for both the coherent and non-coherent
case was studied in [17], showing the latter requires orders of magnitude larger latencies. [18] investigates
the problem of power control with an average power constraint on the codebook in the quasi-static fading
channel with perfect CSIRT. A novel achievability bound was found and evaluated for the fading channel
with CSIR in [19]. Parts of this work have previously appeared in [20], [21].

The paper is organized as follows. In Section II we describe the channel model and state all our main
results formally. Section III characterizes capacity achieving input/output distributions (caid/caod, resp.)
and evaluates moments of the information density. Then in Sections IV and V we prove the achievability
and converse parts of our (non rank-1) results, respectively. Section VI focuses on the special case of
when the matrix of channel gains has rank 1. Finally, Section VII contains a discussion of numerical
results and the behavior of channel dispersion as a function of the number of antennas.

The numerical software used to compute the achievability bounds, dispersion and normal approximation
in this work can be found online under the Spectre project [22].

II. MAIN RESULTS

A. Channel Model
The channel model considered in this paper is the frequency-nonselective coherent real block fading

(BF) discrete-time channel with multiple transmit and receive antennas (MIMO) (See [23, Section II] for
background on this model). We will simply refer to it as the MIMO-BF channel, which we formally define
here. Given parameters nt, nr, P, T as follows: let nt ≥ 1 be the number of transmit antennas, nr ≥ 1
be the number of receive antennas, and T ≥ 1 be the coherence time of the channel. The input-output
relation at block j (spanning time instants (j − 1)T + 1 to jT ) with j = 1, . . . , n is given by

Yj = HjXj + Zj , (3)

where {Hj, j = 1, . . .} is a nr × nt matrix-valued random fading process, Xj is a nt × T matrix channel
input, Zj is a nr×T Gaussian random real-valued matrix with independent entries of zero mean and unit
variance, and Yj is the nr × T matrix-valued channel output. The process Hj is assumed to be i.i.d. with
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isotropic distribution PH , i.e. for any orthogonal matrices U ∈ Rnr×nr and V ∈ Rnt×nt , both UH and
HV are equal in distribution to H . We also assume

P[H 6= 0] > 0 (4)

to avoid trivialities. Note that due to merging channel inputs at time instants 1, . . . , T into one matrix-input,
the block-fading channel becomes memoryless. We assume coherent demodulation so that the channel
state information (CSI) Hj is fully known to the receiver (CSIR).

An (nT,M, ε, P )CSIR code of blocklength nT , probability of error ε and power-constraint P is a pair
of maps: the encoder f : [M ] → (Rnt×T )n and the decoder g : (Rnr×T )n × (Rnr×nt)n → [M ] satisfying
the probability of error constraint

P[W 6= Ŵ ] ≤ ε . (5)

on the probability space
W → Xn → (Y n, Hn)→ Ŵ ,

where the message W is uniformly distributed on [M ], Xn = f(W ), Xn → (Y n, Hn) is as described
in (3), and Ŵ = g(Y n, Hn). In addition the input sequences are required to satisfy the power constraint:

n∑
j=1

‖Xj‖2F ≤ nTP P-a.s. ,

where ‖M‖2F
4
=
∑

i,jM
2
i,j is the Frobenius norm of the matrix M .

Under the isotropy assumption on PH , the capacity C appearing in (1) of this channel is given by [6]

C(P ) =
1

2
E
[
log det

(
Inr +

P

nt
HHT

)]
(6)

=

nmin∑
i=1

E
[
CAWGN

(
P

nt
Λ2
i

)]
, (7)

where CAWGN(P ) = 1
2

log(1 + P ) is the capacity of the additive white Gaussian noise (AWGN) channel
with SNR P , nmin = min(nr, nt) is the minimum of the transmit and receive antennas, and {Λ2

i , i =
1, . . . , nmin} are eigenvalues of HHT . Note that it is common to think that as P →∞ the expression (7)
scales as nmin logP , but this is only true if P[rankH = nmin] = 1.

The goal of this line of work is to characterize the dispersion of the present channel. Since the channel
is memoryless it is natural to expect, given the results in [1], [10], that dispersion (for ε < 1/2) is given
by

V (P )
4
= inf

PX :I(X;Y |H)=C

1

T
EVar(i(X;Y,H)|X) (8)

where we denoted (single T -block) information density by

i(x; y, h)
4
= log

dPY,H|X=x

dP ∗Y,H
(y, h) (9)

and P ∗Y,H is the capacity achieving output distribution (caod). Justification of (8) as the actual (operational)
dispersion, appearing in the expansion of logM∗(n, ε) is by no means trivial and is the subject of this
work.
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B. Statement of Main Theorems
Here we formally state the main results, then go into more detail in the following sections. Our first

result is an achievability and partial converse bound for the MIMO-BF fading channel for fixed parameters
nt, nr, T, P .

Theorem 1. For the MIMO-BF channel, there exists an (nT,M, ε, P )CSIR maximal probability of error
code with 0 < ε < 1/2 satisfying

logM ≥ nTC(P )−
√
nTV (P )Q−1(ε) + o(

√
n) . (10)

Furthermore, for any δn → 0 there exists δ′n → 0 so that every (nT,M, ε, P )CSIR code with extra
constraint that maxj ‖xj‖F ≤ δnn

1/4, must satisfy

logM ≤ nTC(P )−
√
nTV (P )Q−1(ε) + δ′n

√
n (11)

where the capacity C(P ) is given by (6) and dispersion V (P ) by (8).2

Proof. This follows from Theorem 16 and Theorem 19 below.

Remark 1. Note that the converse has an extra constraint maxj ‖xj‖F ≤ δnn
1/4. Mathematically, this

constraint is needed so that the n-fold information information density i(xn;Y n, Hn) behaves Gaussian-
like, via the Berry-Esseen theorem. For example, if xn had x11 =

√
nTP and zeroes in all other

coordinates, then one term in the information density would O(n) while the rest would be O(1), and
hence no asymptotic behavior would emerge. All known bounds to obtain the channel dispersion rely
on approximating the information density by a Gaussian, and hence a fundamentally different method of
analysis is needed to handle the situation where maxj ‖xj‖F ≥ δnn

1/4

Fortunately, this constraint is satisfied by most practical systems. To violate this constraint, a significant
portion of the power budget must be poured into a single coherent block, which 1) creates a very large
PAPR (often illegal by regulating bodies), and 2) does a poor job of exploiting the diversity gain from
coding over multiple independent coherent blocks. Therefore, our results should give the behavior for any
practical system.

Remark 2. The remainder term o(
√
n) in (11) depends on the hyper-parameters (nt, nr, PH) in a com-

plicated way, which we did not attempt to study here.

The behavior of dispersion found in Theorem 1 turns out to depend crucially on whether rank(H) ≤ 1
a.s. or not. When rank(H) > 1, all capacity achieving input distributions (caids) yield the same conditional
variance (8), yet when rank(H) ≤ 1, the conditional variance varies over the set of caids. The following
theorem discusses the case where P[rankH > 1] > 0. In this case, the dispersion (8) can be calculated
for the simplest Telatar caid (i.i.d. Gaussian matrix X). The following theorem gives full details.

Theorem 2. Assume that P[rankH > 1] > 0, then V (P ) = Viid(P ), where

Viid(P ) = TVar

(
nmin∑
i=1

CAWGN

(
P

nt
Λ2
i

))

+

nmin∑
i=1

E
[
VAWGN

(
P

nt
Λ2
i

)]
+

(
P

nt

)2(
η1 −

η2
nt

)
(12)

2For the explicit expression for i(x; y, h) see (49) below.
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where {Λ2
i , i = 1, . . . , nmin} are eigenvalues of HHT , VAWGN(P ) = log2 e

2

(
1− 1

(1+P )2

)
, and

c(σ) ,
σ

1 + P
nt
σ

(13)

η1
4
=

log2 e

2

nmin∑
i=1

E
[
c2(Λ2

i )
]

(14)

η2
4
=

log2 e

2

(
nmin∑
i=1

E
[
c(Λ2

i )
])2

(15)

Proof. This is proved in Proposition 11 below.

Remark 3. Each of the three terms in (12) is non-negative, see Remark 7 below for more details.

In the case where the fading process has rank 1 (e.g. for MISO systems), there are a multitude of caids,
and the minimization problem in (8) is non-trivial. Quite surprisingly, for some values of nt, T , we show
that the (essentially unique) minimizer is a full-rate orthogonal design. The latter were introduced into
the field of communications by Alamouti [8] and Tarokh et al [9]. This shows a somewhat unexpected
connection between schemes optimal from modulation-theoretic and information-theoretic points of view.
The precise results are as follows.

Theorem 3. When P[rank(H) ≤ 1] = 1, we have

V (P ) = TVar

(
CAWGN

(
P

nt
Λ2

))
+ E

[
VAWGN

(
P

nt
Λ2

)]
(16)

+

(
P

nt

)2(
η1 −

η2
n2
tT
v∗(nt, T )

)
(17)

where Λ2 is the non-zero eigenvalues of HHT , and

v∗(nt, T ) =
n2
t

2P 2
max

PX :I(X;Y,H)=C
Var(‖X‖2F ) (18)

Proof. This is the content of Proposition 12 below.

The quantity v∗(nt, T ) is defined separately in Theorem 3 because it isolates how the dispersion depends
on the input distribution. Unfortunately, v∗(nt, T ) is generally unknown, since the maximization in (18)
is over a manifold of matrix-valued random variables. However, for many dimensions, the maximum can
be found by invoking the Hurwitz-Radon theorem [24]. We state this below to introduce the notation, and
expand on it in Section VI.

Theorem 4 (Hurwitz-Radon). There exists a family of n× n real matrices V1, . . . , Vk satisfying

V T
i Vi = In i = 1, . . . , k (19)

V T
i Vj + V T

j Vi = 0 i 6= j (20)

if and only if k ≤ ρ(n), where

ρ(2ab) = 8
⌊a

4

⌋
+ 2amod4, a, b ∈ Z, b–odd . (21)

In particular, ρ(n) ≤ n and ρ(n) = n only for n = 1, 2, 4, 8.

For a concrete example, note that Alamouti’s scheme is created from a Hurwitz-Radon family for
n = k = 2. Indeed, take the matrices

V1 = I2, V2 =

[
0 1
−1 0

]
,
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then Alamouti’s orthogonal design can be formed by taking aV1+bV2. It turns out that “maximal” Hurwitz-
Radon families give capacity achieving input distributions for the MIMO-BF channel, see Proposition 22
for the details.

The following theorem summarizes our current knowledge of v∗(nt, T ).

Theorem 5. For any pair of positive integers nt, T we have

v∗(T, nt) = v∗(nt, T ) ≤ ntT min(nt, T ) . (22)

If nt ≤ ρ(T ) or T ≤ ρ(nt) then a full-rate orthogonal design is dispersion-optimal and

v∗(nt, T ) = ntT min(nt, T ) . (23)

If instead nt > ρ(T ) and T > ρ(nt) then for a jointly-Gaussian capacity-achieving input X we have3

n2
t

2P 2
Var(‖X‖2F ) < ntT min(nt, T ) . (24)

Finally, if nt ≤ T and (23) holds, then v∗(n′t, T ) = n′2t T for any n′t ≤ nt (and similarly with the roles of
nt and T switched).

Note that the ρ(n) function is monotonic in even values of n (and is 1 for n odd), and ρ(n) → ∞
along even n. Therefore, for any number of transmit antennas nt, there is a large enough T such that
nt ≤ ρ(T ), in which case an nt × T full rate orthogonal design achieves the optimal v∗(nt, T ).

III. PRELIMINARY RESULTS

The section gives some results that will be useful for the achievability and converse proofs (Theorem 16
and Theorem 19, respectively), along with generally aiding our understanding of the MIMO-BF channel
at finite blocklength. The results in this section and where they are used is summarized as follows:
• Theorem 6 gives a characterization of the caids for MIMO-BF channel. While all caids give the same

capacity (by definition), when the channel matrix is rank 1, they do not all yield the same dispersion.
This characterization is needed to reason about the minimizers in (8), especially in the rank 1 case.

• Proposition 8 computes variance Vn(xn) of information density conditioned on the channel input xn.
A key characteristic of the fading channel is that Vn(xn) varies as xn moves around the input space,
which does not happen in DMC’s or the AWGN channel. This variation in Vn(xn) poses additional
challenges in the converse proof, where we partition the codebook based on thresholding Vn(xn) (see
the proof of Theorem 19 for details). Knowledge of Vn(xn) will also allow us to understand when
the information density can be well approximated by a Gaussian (see Lemma 13).

• Propositions 11 and 12 explicitly give the expression for the dispersion found from the achievability
and converse proofs for the rank(H) > 1 and rank(H) ≤ 1 case, respectively. These expressions
show how the dispersion depends on nt, nr, T, P , and are the contents of Theorems 2 and 3 above.

A. Known results: capacity and capacity achieving output distribution
First we review a few known results on the MIMO-BF channel. Since the channel is memoryless, the

capacity is given by

C =
1

T
max

PX :E[‖X‖2F ]≤TP
I(X;Y,H) . (25)

3So that in these cases the bound (22) is either non-tight, or is achieved by a non-jointly-Gaussian caid.
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It was shown by Telatar [6] that whenever distribution of H is isotropic, the input X ∈ Rnt×T with entry
i, j given by

Xi,j
iid∼ N

(
0,
P

nt

)
, (26)

is a maximizer, resulting in the capacity formula (6). The distribution induced by a caid at the channel
output (Y,H) is called the capacity achieving output distribution (caod). A classical fact is that, while
there may be many caids, the caod is unique, e.g. [25, Section 4.4]. Thus, from (26) we infer that the
caod is given by

P ∗Y,H
4
= PHP

∗
Y |H , (27)

P ∗Y |H
4
=

T∏
j=1

P ∗Y (j)|H , (28)

P ∗Y (j)|H=h

4
= N

(
0, Inr +

P

nt
hhT

)
, (29)

Y = [Y (1), . . . , Y (T )], where Y (j) is j-th column of Y , which, as we specified in (3), is a nr×T matrix.

B. Capacity achieving input distributions
A key feature of the MIMO-BF channel is that it has many caids, whereas many commonly studied

channels (e.g. BSC, BEC, AWGN) have a unique caid. Understanding the set of distributions that achieve
capacity is essential for reasoning about the minimizer of the condition variance in (8). The following
theorem characterizes the set of caids for the MIMO-BF channel. Somewhat surprisingly, for the case of
rank-1 H (e.g. for MISO) there are multiple non-trivial jointly Gaussian caids with different correlation
structures. For example, space-time block codes can achieve the capacity in the rank 1 case, but do not
achieve capacity when the rank is 2 or greater e.g. [26].

Theorem 6.
1) Every caid X satisfies

∀a ∈ Rnt , b ∈ RT :
nt∑
i=1

T∑
j=1

aibjXi,j ∼ N
(

0,
P

nt
‖a‖22‖b‖22

)
. (30)

If P[rankH ≤ 1] = 1 then condition (30) is also sufficient for X to be caid.

2) Let X =

R1

· · ·
Rnt

 be decomposed into rows Ri. If X is caid, then each Ri ∼ N (0, P
nt
IT ) (i.i.d.

Gaussian) and

E[RT
i Ri] =

P

nt
IT , i = 1, . . . , nt (31)

E[RT
i Rj] = −E[RT

j Ri], i 6= j . (32)

If X is jointly zero-mean Gaussian and P[rankH ≤ 1] = 1, then (31)-(32) are sufficient for X to
be caid.

3) Let X = (C1 . . . CT ) be decomposed into columns Cj . If X is caid, then each Cj ∼ N (0, P
nt
Int)

(i.i.d. Gaussian) and

E[CiC
T
i ] =

P

nt
Int , i = 1, . . . , T (33)

E[CiC
T
j ] = −E[CjC

T
i ], i 6= j . (34)
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If X is jointly zero-mean Gaussian and P[rankH ≤ 1] = 1, then (33)-(34) are sufficient for X to
be caid.

4) When P[rankH > 1] > 0, any caid has pairwise independent rows:

Ri ⊥⊥ Rj ∼ N
(

0,
P

nt
IT

)
∀i 6= j (35)

and in particular
Xi,j ⊥⊥ Xk,l ∀(i, j) 6= (k, l) . (36)

Therefore, among jointly Gaussian X the i.i.d. Xi,j is the unique caid.
5) There exist non-Gaussian caids if and only if P[rankH ≥ min(nt, T )] = 0.

Remark 4. (Special case of rank-1 H) In the MISO case when nt > 1 and nr = 1 (or more generally,
rankH ≤ 1 a.s.), there is not only a multitude of caids, but in fact they can have non-trivial correlations
between entries of X (and this is ruled out by (36) for all other cases). As an example, for the nt = T = 2
case, any of the following random matrix-inputs X (parameterized by ρ ∈ [−1, 1]) is a Gaussian caid:

X =

√
P

2

[
ξ1 −ρξ2 +

√
1− ρ2ξ3

ξ2 ρξ1 +
√

1− ρ2ξ4

]
, (37)

where ξ1, ξ2, ξ3, ξ4 ∼ N (0, 1) i.i.d.. In particular, there are caids for which not all entries of X are pairwise
independent.

Remark 5. Another way to state conditions (31)-(32) is: all elements in a row (resp. column) are pairwise
independent ∼ N (0, P

nt
) and each 2×2 minor has antipodal correlation for the two diagonals. In particular,

if X is caid, then XT and any submatrix of X are caids too (for different nt and T ).

Proof. We will rely repeatedly on the following observations:
1) if A,B are two random vectors in Rn then and for any v ∈ Rn we have

∀v ∈ Rn : vTA
d
= vTB ⇐⇒ A

d
= B . (38)

This is easy to show by computing characteristic functions.
2) If A,B are two random vectors in Rn independent of Z ∼ N (0, In), then

A+ Z
d
= B + Z ⇐⇒ A

d
= B . (39)

This follows from the fact that the characteristic function of Z is nowhere zero.
3) For two matrices Q1, Q2 ∈ Rn×n we have

∀v ∈ Rn : vTQ1v = vTQ2v ⇐⇒ Q1 +QT
1 = Q2 +QT

2 . (40)

This follows from the fact that a quadratic form that is zero everywhere on Rn must have all
coefficients equal to zero.

Part 1 (necessity). Recall that the caod is unique and given by (27). Thus an input X is caid iff for
PH-almost every h0 ∈ Rnr×nt we have

h0X + Z
d
= h0G+ Z , (41)

where G is an nt × T matrix with i.i.d. N (0, P/nt) entries (for sufficiency, just write I(X;Y,H) =
h(Y |H) − h(Z) with h(·) denoting differential entropy). We will argue next that (41) implies (under
isotropy assumption on PH) that

∀a ∈ Rnt : aTX
d
= aTG . (42)

From (38), (42) is equivalent to
∑

i,j aibjXi,j
d
=
∑

i,j aibjGi,j for all b ∈ Rnt .
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Let E0 be a PH-almost sure subset of Rnt×nr for which (41) holds. Let O(n) = {U ∈ Rn×n : UTU =
UUT = In} denote the group of orthogonal matrices, with the topology inherited from Rn×n. Let {Uk}
and {Vk} for k ∈ {1, 2, . . .} be countable dense subsets of O(nt) and O(nr), respectively. (These exist
since Rn2 is a second-countable topological space). By isotropy of PH we have PH [Uk(E0)Vl] = 1 and
therefore

E
4
= E0 ∩

∞⋂
k=1,l=1

Uk(E0)Vl (43)

is also almost sure: PH [E] = 1. Here, Uk(E0) denotes the image of E0 under Uk. By assumption (4),
E must contain a non-zero element h0, for otherwise we would have PH [0] = 1, contradicting (4).
Consequently, by isotropy Ukh0Vl is also in E. From (39) and (41), we conclude that

Ukh0VlX
d
= Ukh0VlG ∀k, l .

Arguing by continuity and using density of {Uk} and {Vl}, this implies also

Uh0V X
d
= Uh0V G ∀U ∈ O(nt), V ∈ O(nr) . (44)

In particular, for any a ∈ Rnt there must exist a choice of U, V such that Uh0V has the top row equal
to c0aT for some constant c0 > 0. Choosing these U, V in (44) and comparing distributions of top rows,
we conclude (42) after scaling by 1/c0.

Part 1 (sufficiency). Suppose P[rankH ≤ 1] = 1. Then our goal is to show that (42) implies that X is
a caid. To that end, it is sufficient to show h0X

d
= h0G for all rank-1 h0. In the special case

h0 =


aT

0
...
0

 ,

the claim follows directly from (42). Every other rank-1 h′0 can be decomposed as h′0 = Uh0 for some
matrix U , and thus again we get Uh0X

d
= Uh0G, concluding the proof.

Parts 2 and 3 (necessity). From part 1 we have that for every a, b we must have aTXb ∼ N (0, ‖a‖22‖b‖22 Pnt ).
Computing expected square we get

E [(aTXb)2] =
P

nt

(∑
i

a2i

)(∑
j

b2j

)
. (45)

Thus, expressing the left-hand side in terms of rows Ri as aTX =
∑

i aiRi we get

bT

E

(∑
i

aiRi

)T (∑
i

aiRi

) b = bT

(∑
i

a2i IT

)
b ,

and thus by (40) we conclude that for all a:

E

(∑
i

aiRi

)T (∑
i

aiRi

) =

(∑
i

a2i

)
IT .

Each entry of the T ×T matrices above is a quadratic form in a and thus again by (40) we conclude (31)-
(32). Part 3 is argued similarly with roles of a and b interchanged.

Parts 2 and 3 (sufficiency). When H is (at most) rank-1, we have from part 1 that it is sufficient to show
that aTXb ∼ N (0, ‖a‖22‖b‖22 Pnt ). When X is jointly zero-mean Gaussian, we have aTXb is zero-mean

9



Gaussian and so we only need to check its second moment satisfies (45). But as we just argued, (45) is
equivalent to either (31)-(32) or (33)-(34).

Part 4. As in Part 1, there must exist h0 ∈ Rnr×nt such that (44) holds and rankh0 > 1. Thus, by
choosing U, V we can diagonalize h0 and thus we conclude any pair of rows Ri, Rj must be independent.

Part 5. This part is never used in subsequent parts of the paper, so we only sketch the argument and
move the most technical part of the proof to Appendix A. Let ` = max{r : P[rankH ≥ r] > 0}. Then
arguing as for (44) we conclude that X is caid if and only if for any h with rankh ≤ ` we have

hX
d
= hG .

In other words, we have ∑
i,j

ai,jXi,j
d
=
∑
i,j

Gi,j ∀a ∈ Rnt×T : rank a ≤ ` . (46)

If ` = min(nt, T ), then rank condition on a is not active and hence, we conclude by (38) that X d
= G.

So assume ` < min(nt, T ). Note that (46) is equivalent to the condition on characteristic function of X
as follows:

E
[
ei

∑
i,j ai,jXi,j

]
= e

− P
2nt

∑
i,j a

2
i,j ∀a : rank a ≤ ` . (47)

It is easy to find polynomial (in ai,j) that vanishes on all matrices of rank ≤ ` (e.g. take the product of
all ` × ` minors). Then Proposition 24 in Appendix A constructs non-Gaussian X satisfying (47) and
hence (46).

C. Information density and its moments
In finite blocklength analysis, a key object of study is the information density, along with its first and

second moments. In this section we’ll find expressions for these moments, along with showing when the
information density is asymptotically normal.

It will be convenient to assume that the matrix H is represented as

H = UΛV T , (48)

where U, V are uniformly distributed on O(nr) and O(nt) (which follows from the isotropic assumption
H), respectively,4 and Λ is the nr × nt diagonal matrix with diagonal entries {Λi, i = 1, . . . , nmin}. Joint
distribution of {Λi} depends on the fading model. It does not matter for our analysis whether Λi’s are
sorted in some way, or permutation-invariant.

For the MIMO-BF channel, let P ∗Y H denote the caod (27). To compute the information density with
respect to P ∗Y H (for a single T -block of symbols) as defined in (9), denote y = hx+ z and write an SVD
decomposition for matrix h as

h = uλvT ,

where u ∈ O(nr), v ∈ O(nt) and λ is an nr × nt matrix which is zero except for the diagonal entries,
which are equal to λ1, . . . , λnmin

. Note that this representation is unique up to permutation of {λj}, but
the choice of this permutation will not affect any of the expressions below. With this decomposition we
have:

i(x; y, h)
4
=
T

2
log det

(
Inr +

P

nt
hhT

)
+

log e

2

nmin∑
j=1

λ2j‖vTj x‖2 + 2λj〈vTj x, z̃j〉 − P
nt
λ2j‖z̃j‖2

1 + P
nt
λ2j

(49)

4Recall that O(m) = {A ∈ Rm×m : AAT = ATA = Im} is the space of all orthogonal matrices. This space is compact in a natural
topology and admits a Haar probability measure.
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where we denoted by vj the j-th column of V , and have set z̃ = uT z, with z̃j representing the j-th row
of z̃. The definition naturally extends to blocks of length nT additively:

i(xn; yn, hn)
4
=

n∑
j=1

i(xj; yj, hj) . (50)

We compute the (conditional) mean of information density to get

Dn(xn)
4
=

1

nT
E [i(Xn;Y n, Hn)|Xn = xn] (51)

= C(P ) +

√
η2
2

ntnT

n∑
j=1

(‖xj‖2F − TP ) , (52)

where we used the following simple fact:

Lemma 7. Let U ∈ R1×nt be uniformly distributed on the unit sphere, and x ∈ Rnt×T be a fixed matrix,
then

E[‖Ux‖2] =
‖x‖2F
nt

(53)

Proof. Note that by additivity of ‖Ux‖2 across columns, it is sufficient to consider the case T = 1, for
which the statement is clear from symmetry.

Remark 6. A simple consequence of Lemma 7 is E[‖Hx‖2F ] = E[‖H‖2F ]
‖x‖2F
nt

, which follows from
considering the SVD of H .

Proposition 8. Let Vn(xn)
4
= 1

nT
Var(i(Xn;Y n, Hn)|Xn = xn), then we have

Vn(xn) =
1

n

n∑
j=1

V1(xj) , (54)

where the function V1 : Rnt×T 7→ R defined as V1(x) , 1
T

Var(i(X;Y,H)|X = x) is given by

V1(x) = TVar (Cr(H,P )) (55)

+

nmin∑
i=1

E
[
VAWGN

(
P

nt
Λ2
i

)]
(56)

+ η5

(
‖x‖2F
nt
− TP

nt

)
(57)

+ η3

(
‖x‖2F
nt
− TP

nt

)2

(58)

+ η4

(
‖xxT‖2F −

1

nt
‖x‖4F

)
(59)

11



where c(·) was defined in (13) and

Cr(H,P )
4
=

1

2
log det

(
Inr +

P

nt
HHT

)
=

nmin∑
i=1

CAWGN

(
P

nt
Λ2
i

)
(60)

η3 ,
log2 e

4
Var

(
nmin∑
k=1

c(Λ2
k)

)
(61)

η4 ,
log2 e

2nt(nt + 2)

(
E

[
nmin∑
i=1

c2(Λ2
i )

]
− 1

(nt − 1)

∑
i 6=j

E
[
c(Λ2

i )c(Λ
2
j)
])

(62)

η5 ,
log e

2
Cov

(
Cr(H,P ),

nmin∑
k=1

c(Λ2
k)

)
+

log2 e

T

nmin∑
k=1

E

 Λ2
k(

1 + P
nt

Λ2
k

)2
 . (63)

Remark 7. Every term in the definition of V1(x) (except the one with η5) is non-negative (for η4-term,
see (88)). The η5-term will not be important because for inputs satisfying power-constraint with equality
it vanishes. Note also that the first term in (63) can alternatively be given as

Cov

(
Cr(H,P ),

nmin∑
k=1

c(Λ2
k)

)
= nt

d

dP
Var [Cr(H,P )] .

Proof. From (49), we have the form of the information density. First note that the information density
over n channel uses decomposes into a sum of n independent terms,

i(xn;Y n, Hn) =
n∑
j=1

i(xj, Yj, Hj) . (64)

As such, the variance conditioned on xn also decomposes as

Var(i(xn;Y n, Hn)) =
n∑
j=1

Var(i(xj;Yj, Hj)) , (65)

from which (54) follows. Because the variance decomposes as a sum in (65), we focus on only computing
Var(i(x;Y,H)) for a single coherent block. Define

f(h)
4
= TCr(h, P ) (66)

g(x, h, z)
4
=

log e

2

nmin∑
k=1

Λ2
k‖vTk x‖2 + 2Λk〈vTk x, z̃k〉 − P

nt
Λ2
k‖z̃k‖2

1 + P
nt

Λ2
k

(67)

so that i(x; y, h) = f(h) + g(x, h, z) in notation from (49). With this, the quantity of interest is

Var(i(x, Y,H)) = Var(f(H)) + Var(g(x,H, Z)) + Cov(f(H), g(x,H, Z)) (68)
= Cov(f(H), g(x,H,Z))︸ ︷︷ ︸

4
=T1

+ Var(f(H))︸ ︷︷ ︸
4
=T2

+ VarE[g(x,HZ)|H]︸ ︷︷ ︸
4
=T3

+EVar(g(x,H,Z)|H)︸ ︷︷ ︸
4
=T4

(69)

where (69) follows from the identity

Var(g(x,H, Z)) = EVar(g(x,H,Z)|H) + VarE[g(x,H,Z)|H] . (70)

12



Below we show that T1 and T3 corresponds to (57), T2 corresponds to (55), T4 corresponds to (56),
and T3 corresponds to (58) and (59). We evaluate each term separately.

T1 = Cov(f(H), g(x,H,Z)) (71)
= E [(f(H)− E[f(H)])(g(x,H,Z)− E[g(x,H,Z)])] (72)

=
log e

2

(
‖x‖2F
nt
− TP

nt

) nmin∑
k=1

E
[
(f(H)− E[f(H)])(c(Λ2

k)− E[c(Λ2
k)])
]

(73)

=
log e

2

(
‖x‖2F
nt
− TP

nt

) nmin∑
k=1

Cov
(
f(H), c(Λ2

k)
)

(74)

where (73) follows from noting that

E [g(x,H, Z)|H] =

nmin∑
k=1

(
‖V T

k x‖2 −
TP

nt

)
c(Λ2

k)
log e

2
. (75)

Now, since Vk is independent from Λk by the rotational invariance assumption, we have that f(H) is
independent from Vk, since f(H) only depends on H through its eigenvalues, see (60). We are only
concerned with the expectation over g(x,H,Z) in (72), which reduces to

E [g(x,H, Z)− E[g(x,H, Z)]|Λ1, . . . ,Λnmin
] =

(
‖x‖2F
nt
− TP

nt

) nmin∑
k=1

c(Λ2
k)− E[c(Λk)

2]
log e

2
, (76)

giving (73).
Next, T2 in (69) becomes

T2 = Var(f(H)) (77)

= T 2Var

(
nmin∑
k=1

CAWGN

(
P

nt
Λ2
k

))
. (78)

For T3 in (69), we obtain

T3 = EVar(g(x,H, Z)|H) (79)

=
log2 e

4
E

nmin∑
k=1

4Λ2
k‖V T

k x‖2 + 2T
(
P
nt

)2
Λ4
k(

1 + P
nt

Λk

)2
 (80)

=
log2 e

2

nmin∑
k=1

TE

2TP
nt

Λ2
k + T

(
P
nt

)2
Λ4
k(

1 + P
nt

Λk

)2
+ 2E

 ‖x‖2Fnt Λ2
k − TP

nt
Λ2
k(

1 + P
nt

Λ2
k

)2
 (81)

= T

nmin∑
k=1

VAWGN

(
P

nt
Λ2
k

)
+ log2(e)

(
‖x‖2F
nt
− TP

nt

)
E

 Λ2
k(

1 + P
nt

Λ2
k

)2
 (82)

where
• (80) follows from taking the variance over Z̃ (recall Z̃ = UTZ in (49)).
• (81) follows from Lemma 7 applied to E[‖V T

k x‖2], and adding and subtracting the term

log2(e)E

 TP
nt

Λ2
k(

1 + P
nt

Λ2
k

)2
 . (83)
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Continuing with T3 from (69),

T3 = VarE[g(x,H,Z)|H] (84)

= Var

(
log e

2

nmin∑
k=1

c(Λ2
k)

(
‖V T

k x‖2 −
TP

nt

))
(85)

= η3

(
‖x‖2F
nt
− TP

nt

)2

+
log2 e

4
EVar

(
nmin∑
k=1

c(Λ2
k)‖V T

k x‖2
∣∣∣∣∣Λ1, . . . ,Λnmin

)
(86)

where
• (85) follows from taking the expectation over Z̃,
• (86) follows from applying the variance identity (70) with respect to V and Λ1, . . . ,Λnmin

, as well
as recalling (61).

We are left to show that the term (86) equals (59). To that end, define

φ(x) , EVar

(
nmin∑
k=1

c(Λ2
k)‖V T

k x‖2
∣∣∣∣∣Λ1, . . . ,Λnmin

)
(87)

=

nmin∑
k=1

E[c2(Λ2
k)]Var

(
‖V T

k x‖2
)

+

nmin∑
k 6=l

E[c(Λ2
k)c(Λ

2
l )]Cov(‖V T

k x‖2, ‖V T
l x‖2) . (88)

We will finish the proof by showing

φ(x) =
4

log2 e
η4

(
‖xxT‖2F −

1

nt
‖x‖4F

)
.

To that end, we first compute moments of V drawn from the Haar measure on the orthogonal group.

Lemma 9. Let V be drawn from the Haar measure on O(n), then for i, j, k, l = 1, . . . , n all unique,

E[V 2
ij ] =

1

n
(89)

E[VijVik] = 0 (90)

E[V 2
ijV

2
ik] =

1

n(n+ 2)
(91)

E[V 2
ijV

2
kl] =

n+ 1

n(n− 1)(n+ 2)
(92)

E[V 4
ij ] =

3

n(n+ 2)
(93)

E[VijVikVljVlk] =
−1

n(n− 1)(n+ 2)
. (94)

Proof of this Lemma is given below.

14



First, note that the variance Var(‖V T
k x‖2) does not depend on k, since the marginal distribution of each

Vk is uniform on the unit sphere. Hence below we only consider V1. We obtain

Var(‖V T
1 x‖2) = E[‖V T

1 x‖4]− E2[‖V T
1 x‖2] (95)

= E

( T∑
i=1

nt∑
j=1

nt∑
k=1

Vj1Vk1xjixki

)2
− ‖x‖4F

n2
t

(96)

= E

[
nt∑
j=1

nt∑
k=1

nt∑
l=1

nt∑
m=1

Vj1Vk1Vl1Vm1〈rj, rk〉〈rl, rm〉

]
(97)

where rj denotes the j-th row of x. Now it is a matter counting similar terms.

E[‖V T
1 x‖4] =

nt∑
j=1

E[V 4
j1]‖rj‖4 + 2

nt∑
j 6=k

E[V 2
j1V

2
k1]〈rj, rk〉

2 +
nt∑
j 6=k

E[V 2
j1V

2
k1]‖rj‖2‖rk‖2 (98)

=
3

nt(nt + 2)

nt∑
j=1

‖rj‖4 +
2

nt(nt + 2)

nt∑
j 6=k

〈rj, rk〉2 +
1

nt(nt + 2)

∑
j 6=k

‖rj‖2‖rk‖2 (99)

=
1

nt(nt + 2)

(
‖x‖4F + 2‖xxT‖2F

)
(100)

where
• (98) follows from collecting like terms from the summation in (97).
• (99) uses Lemma 9 to compute each expectation.
• (100) follows from realizing that

‖x‖4F =

(
nt∑
j=1

‖rj‖2
)2

=
nt∑
j=1

‖rj‖4 +
nt∑
j 6=k

‖rj‖2‖rk‖2 (101)

‖xxT‖2F =
nt∑
j=1

nt∑
k=1

〈rj, rk〉2 =
nt∑
j=1

‖rj‖4 +
nt∑
j 6=k

〈rj, rk〉2 (102)

Plugging this back into (95) yields the variance term,

Var(‖V T
1 x‖2) =

1

nt(nt + 2)

(
‖x‖4F + 2‖xxT‖2F

)
− ‖x‖

4
F

n2
t

=
2

nt(nt + 2)

(
‖xxT‖2F −

‖x‖4F
nt

)
. (103)

Now we compute the covariance term from (88) in a similar way. By symmetry of the columns of V , we
can consider only the covariance between ‖V T

1 x‖2 and ‖V T
2 x‖2, i.e.

Cov(‖V T
1 x‖2, ‖V T

2 x‖2) = E[‖V 2
1 x‖2‖V T

2 x‖2]−
‖x‖4F
n2
t

. (104)

Expanding the expectation, we get

E[‖V T
1 x‖2‖V T

2 x‖2] (105)

=
∑
j,k,l,m

E[V1jV1kV2lV2m]〈rj, rk〉〈rl, rm〉 (106)

=
nt∑
j=1

E[V 4
1j]‖rj‖4 +

∑
j 6=k

E[V 2
1jV

2
2k]‖rj‖2‖rk‖2 + 2

∑
j 6=k

E[V1jV1kV2jV2k]〈rj, rk〉2 (107)

=
1

nt(nt + 2)

nt∑
j=1

‖rj‖4 +
nt + 1

(nt − 1)nt(nt + 2)

∑
j 6=k

‖rj‖2‖rk‖2 −
2

(nt − 1)nt(nt + 2)

∑
j 6=k

〈rj, rk〉2 (108)

=
1

(nt − 1)nt(nt + 2)

(
(nt + 1)‖x‖4F − 2‖xxT‖2F

)
. (109)
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With this, we obtain from (104),

Cov(‖V T
1 x‖2, ‖V T

2 x‖2) =
2

(nt − 1)nt(nt + 2)

(
‖x‖4F
nt
− ‖xxT‖2F

)
(110)

where the steps follow just as in the variance computation (98)-(100).
Finally, returning to (88), using the variance (103) and covariance (110), we obtain

φ(x) =
2

nt(nt + 2)

(
‖xxT‖2F −

‖x‖4F
nt

)( nt∑
k=1

E[c2(Λ2
k)]−

1

nt − 1

∑
k 6=l

E[c(Λ2
k)c(Λ

2
l )]

)
. (111)

Plugging this into (86) finishes the proof.

Proof of Lemma 9. We first note that all entries of V have identical distribution, since permutations
of rows and columns leave the distribution invariant. Because of this, we can WLOG only consider
V11, V12, V21, V22 to prove the lemma.
• (89) follows immediately from

∑n
i=1 V

2
ij = 1 a.s.

• Let Vi, Vj be any two distinct columns of V , then (90) follows from

0 = E[〈Vi, Vj〉] = nE[V11V21] (112)

• For (91) and (94), let E1 = E[V 4
11] and E2 = E[V 2

11V
2
21]. The following relations between E1, E2 hold,

1 = E

( n∑
j=1

V 2
1j

)2
 (113)

= nE1 + n(n− 1)E2 (114)

and, noticing that multiplication of V by the matrix 1/
√

2 −1/
√

2 0

1/
√

2 1/
√

2 0
0 0 In−2

 (115)

where In is the n× n identity matrix. This is an orthogonal matrix, so we obtain the relation

E1 = E

[(
V11√

2
+
V12√

2

)4
]

(116)

=
1

2
E1 +

3

2
E2 (117)

from which we obtain E1 = 3E2. With this and (114), we obtain

E1 =
3

n(n+ 2)
(118)

E2 =
1

n(n+ 2)
(119)

• For (92), take

E3 = E[V 2
11V

2
22] (120)

= E

[
V 2
11

(
1−

n∑
j 6=2

V 2
2j

)]
(121)

=
1

n
− 1

n(n+ 2)
− (n− 2)E3 . (122)
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Solving for E3 yields (92).
• For (94), let V1, V2 denote the first and second column of V respectively, and let E4 = E[V11V12V21V22],

then (94) follows from

0 = E[〈V1, V2〉2] (123)
= nE2 + n(n− 1)E4 . (124)

Using E2 from (119) and solving for E4 gives (94).

The following propsition gives the value of the conditional variance of the information density when
input distribution has i.i.d. N (0, P/nt) entries. This will turn out to be the operational dispersion in the
case where rankH > 1.

Proposition 10. Let Xn = (X1, . . . , Xn) be i.i.d. with Telatar distribution (26) for each entry. Then

EVar(i(Xn;Y n, Hn)|Xn) = nTViid(P ) , (125)

where Viid(P ) is the right-hand side of (12).

Proof. To show this, we take the expectation of the expression given in Proposition 8 when Xn has i.i.d.
N (0, P/nt) entries. The terms (55) and (56) do not depend on Xn, and these give us the first two terms
in (12). (57) vanishes immediately, since E[‖X‖2F ] = TP by the power constraint. It is left to compute
the expectation over (58) and (59) from the expression in Proposition 8. Using identities for χ2 distributed
random variables (namely, E [χ2

k] = k, Var(χ2
k) = 2k), we get:

η3
n2
t

Var(‖X1‖2F ) =
η3
nt

(
P

nt

)2

2T (126)

E[‖X1‖4F ] = TP 2

(
T +

2

nt

)
(127)

E[‖X1X
T
1 ‖2F ] = ntT

(
P

nt

)2

(1 + T + nt) (128)

E
[
‖X1X

T
1 ‖2F −

‖X1‖4F
nt

]
= T

(
P

nt

)2

(nt − 1)(nt + 2) . (129)

Hence, the sum of terms in (58) + (59) after taking expectation over Xn yields

T

(
P

nt

)2 [
2
η3
nt

+ (nt − 1)(nt + 2)η4

]
.

Introducing random variables Ui = c(Λ2
i ) the expression in the square brackets equals

log2 e

2

1

nt

[
Var

(∑
i

Ui

)
+ (nt − 1)

∑
i

E [U2
i ]−

∑
i 6=j

E [UiUj]

]
. (130)

At the same time, the third term in expression (12) is

log2 e

2

1

nt

nt∑
i

E [U2
i ]−

(∑
i

E [Ui]

)2
 . (131)

One easily checks that (130) and (131) are equal.

The next proposition shows that, when the rank of H is larger than 1, the conditional variance in (8)
is constant over the set of caids. Thus we can compute the conditional variance for the i.i.d. N (0, P/nt)
caid, and conclude that this expression is the minimizer in (8).
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Proposition 11. If P[rankH > 1] > 0, then for any caid X ∼ PX we have

Var(X;Y,H)) = TE [V1(X)] = TViid(P ) .

In particular, the V (P ) defined as infimum over all caids (8) satisfies V (P ) = Viid(P ).

Proof. For any caid the term (57) vanishes. Let X∗ be Telatar distributed. To analyze (58) we recall that
from (36) we have

E [‖X‖4F ] =
∑
i,j,i′,j′

E [X2
i,jX

2
i′,j′ ] = E [‖X∗‖4F ] .

For the term (59) we notice that
‖XXT‖2F =

∑
i,j

〈Ri, Rj〉2 ,

where Ri is the i-th row of X . By (35) from Theorem 6 we then also have

E [‖XXT‖2F ] = E [‖X∗X∗T‖2F ] .

To conclude, E [V1(X)] = E [V1(X
∗)] = Viid(P ).

In the case where rankH ≤ 1, it turns out that the conditional variance does vary over the set of caids.
The following proposition gives the expression for the conditional variance in this case, as a function of
the caid.

Proposition 12. If P[rank(H) ≤ 1] = 1, then for any capacity achieving input X we have

1

T
EVar(i(X;Y,H)|X) = TVar

(
CAWGN

(
P

nt
Λ2

1

))
+ EVAWGN

(
P

nt
Λ2

1

)
(132)

+ η1

(
P

nt

)2

− η2
2n2

tT
Var(‖X‖2F ) (133)

where η1, η2 are defined in (14)-(15).

Proof. As in Prop. 10 we need to evaluate the expectation of terms in (57)-(59). Any caid X should satisfy
E [‖X‖2F ] = TP and thus the term (57) is zero. The term (58) can be expressed in terms of Var(‖X‖2F ),
but the (59) presents a non-trivial complication due to the presence of ‖XXT‖2F , whose expectation is
possible (but rather tedious) to compute by invoking properties of caids established in Theorem 6. Instead,
we recall that the sum (58)+(59) equals (86). Evaluation of the latter can be simplified in this case due
to constraint on the rank of H . Overall, we get

EVar(i(X;Y,H)|X) = T 2Var

(
CAWGN

(
P

nt
Λ2

1

))
+ TE

[
VAWGN

(
P

nt
Λ2

1

)]
(134)

+
log2 e

4
EVar

[
c(Λ2

1)

(
‖V T

1 X‖2 −
TP

nt

)∣∣∣∣X] , (135)

where c(·) is from (13). The last term in (135) can be written as

E
[
c(Λ2

1)
2
]
E

[(
‖V T

1 X‖2 −
TP

nt

)2
]
− E2[c(Λ2

1)]E

[(
E[‖V T

1 X‖2F |X]− TP

nt

)2
]

(136)

which follows from the identity Var(AB) = E[A2]E[B2]−E2[A]E2[B] for independent A,B. The second
term in (136) is easily handled since from Lemma 7 we have E[‖V T

1 X‖2F |X] = ‖X‖2F/nt. To compute
the first term in (136) recall from Theorem 6 that for any fixed unit-norm v and caid X we must have
vTX ∼ N (0, P/ntIT ). Therefore, we have

E

[(
‖V T

1 X‖2 −
TP

nt

)2 ∣∣∣∣V1
]

=
2TP 2

n2
t

.
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Putting everything together we get that (136) equals

E[c(Λ2
1)

2]2T

(
P

nt

)2

− E[c(Λ2
1)]

2 1

n2
t

Var(‖X‖2F ) (137)

concluding the proof.

The question at hand is: which input distribution X that achieves capacity minimizes (132)? Propo-
sition 12 reduces this problem to maximizing Var(‖X‖2F ) over the set of capacity achieving input
distributions. This will be analyzed in Section VI.

Finally, the following lemma computes the Berry Esseen constant. This is a technical result that will
be needed for both the achievability and converse proofs.

Lemma 13. Fix x1, . . . , xn ∈ Rnt×T and let Wj = i(xj;Yj, Hj), where Yj, Hj are distributed as the output
of channel (3) with input xj . Define the Berry-Esseen ratio

Bn(xn)
4
=
√
n

∑n
j=1 E [|Wj − E [Wj]|3](∑n

j=1 Var(Wj)
)3/2 . (138)

Then whenever
∑n

j=1 ‖xj‖2F = nTP and maxj ‖xj‖F ≤ δn
1
4 we have

Bn(xn) ≤ K1δ
2
√
n+K2n

1/4 +
K3

n1/2

where K1, K2, K3 > 0 are constants which only depend on channel parameters but not xn or n.

The proof of Lemma 13 can be found in Appendix B.

D. Hypothesis testing
Many finite blocklength results are derived by considering an optimal hypothesis between appropriate

distributions. We define βα(P,Q) to be the minimum error probability of all statistical tests PZ|W between
distributions P and Q, given that the test chooses P when P is correct with at least probability α. Formally:

βα(P,Q) = inf
PZ|W

{∫
W
PZ|W (1|w)dQ(w) :

∫
W
PZ|W (1|w)dP (w) ≥ α

}
. (139)

The classical Neyman-Pearson lemma shows that the optimal test achieves

βα(P,Q) = Q

[
dP

dQ
> γ

]
(140)

where dP
dQ

denotes the Radon-Nikodym derivative of P with respect to Q, and γ is chosen to satisfy

α = P

[
dP

dQ
> γ

]
. (141)

We recall a simple bound on βα following from the data-processing inequality (see [1, (154)-(156)] or,
in different notation, [27, (10.21)]):

βα(P,Q) ≥ exp

(
−D(P ||Q) + hB(α)

α

)
. (142)

A more precise bound [1, (102)] is

βα(P,Q) ≥ sup
γ>0

1

γ

(
α− P

[
log

dP

dQ
≥ log γ

])
. (143)
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We will also need to define the performance of composite hypothesis tests. To this end, let F ⊂ X and
PY |X : X → Y be a random transformation. We define

κτ (F,QY ) = inf
PZ|Y

{∫
Y
PZ|Y (1|y)dQY : inf

x∈F

∫
Y
PZ|Y (1|y)dPY |X=x ≥ τ

}
. (144)

We can lower bound the error in a composite hypothesis test κτ by the error in an appropriately chosen
binary hypothesis test as follows:

Lemma 14. For any PX̃ on X we have

κτ (F,QY ) ≥ βτPX̃ [F ](PY |X ◦ PX̃ , QY ) (145)

Proof. Let PZ|Y be any test satisfying conditions in the definition (144). We have the chain∫
Y
PZ|Y (1|y)d(PY |X ◦ PX̃) =

∫
X
dPX̃

∫
Y
PZ|Y (1|y)dPY |X=x (146)

≥ τPX̃ [F ] , (147)

where (146) is from Fubini and (147) from constraints on the test. Thus PZ|Y is also a test satisfying
conditions in the definition of βτPX̃ [F ]. Optimizing over the tests completes the proof.

IV. ACHIEVABILITY

In this section, we prove the achievability side of the coding theorem for the MIMO-BF channel. We
will rely on the κβ bound [1, Theorem 25], quoted here:

Theorem 15 (κβ bound). Given a channel PY |X with input alphabet A and output alphabet B, for any
distribution QY on B, any non-empty set F ⊂ A, and ε, τ such that 0 < τ < ε < 1/2, there exists and
(M, ε)-max code satisfying

M ≥ κτ (F,QY )

supx∈F β1−ε+τ (PY |X=x, QY )
. (148)

The art of applying this theorem is in choosing F and QY appropriately. The intuition in choosing
these is as follows: although we know the distributions in the collection {PY |X=x}x∈F , we do not know
which x is actually true in the composite, so if QY is in the “center” of the collection, then the two
hypotheses can be difficult to distinguish, making the numerator large. However, for a given x, PY |X=x

vs QY may still be easily to distinguish, making the denominator small. The main principle for applying
the κβ-bound is thus: Choose F and QY such that PY |X=x vs QY is easy to distinguish for any given x,
yet the composite hypothesis Y ∼ {PY |X=x}x∈F is hard to distinguish from a simple one Y ∼ QY .

The main theorem of this section gives achievable rates for the MIMO-BF channel, as follows:

Theorem 16. Fix an arbitrary caid PX on Rnt×T and let

V ′
4
=

1

T
EVar(i(X;Y,H)|X) = E [V1(X)] , (149)

where V1(x) is introduced in Proposition 8. Then we have

logM∗(nT, ε, P ) ≥ nTC(P )−
√
nTV ′Q−1(ε) + o(

√
n) (150)

with C(P ) given by (6).

Proof. Let τ > 0 be a small constant (it will be taken to zero at the end). We apply the κβ bound (148)
with auxiliary distribution QY = (P ∗Y,H)n, where P ∗Y,H is the caod (27), and the set Fn is to be specified
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shortly. Recall notation Dn(xn), Vn(xn) and Bn(xn) from (51), (54) and (138). For any xn such that
Bn(xn) ≤ τ

√
n, we have from [28, Lemma 14],

− log β1−ε+τ (PY nHn|Xn=xn , P
∗n
Y H) ≥ nTDn(xn) +

√
nTVn(xn)Q−1(1− ε− 2τ)− log

1

τ
−K ′ (151)

where K ′ is a constant that only depends on channel parameters. We mention that obtaining (151) from [28,
Lemma 14] also requires that Vn(xn) be bounded away from zero by a constant, which holds since in
the expression for Vn(xn) in Proposition 8, the term (56) is strictly positive, term (57) will vanish, and
terms (58) and (59) are both non-negative.

Considering (151), our choice of the set Fn should not be surprising:

Fn
4
=

{
xn : ‖xn‖2F = nTP, Vn(xn) ≤ V ′ + τ,max

j
‖xj‖F ≤ δn

1
4

}
, (152)

where δ = δ(τ) > 0 is chosen so that Lemma 13 implies Bn(xn) ≤ τ
√
n for any xn ∈ Fn. Under this

choice from (151), (52) and Lemma 13 we conclude

sup
xn∈Fn

log β1−ε+τ (PY nHn|Xn=xn , P
∗n
Y H) ≤ −nTC(P ) +

√
nT (V ′ + τ)Q−1(ε− 2τ) +K ′′ , (153)

where K ′′ = K ′ + log 1
τ
.

To lower bound the numerator κτ (Fn, P ∗nY,H) we first state two auxiliary lemmas, whose proofs follow.
The first, Lemma 17, shows that the output distribution induced by an input distribution that is uniform
on the sphere is “similar” (in the sense of divergence) to the n-fold product of the caod.

Lemma 17. Fix an arbitrary caid PX and let Xn have i.i.d. components ∼ PX . Let

X̃n 4=
Xn

‖Xn‖F

√
nTP (154)

where ‖Xn‖F =
√∑n

t=1 ‖Xj‖2F . Then

D(PY nHn|Xn ◦ PX̃n||P ∗nY,H) ≤ TP log e

nt
E [‖H‖2F ] , (155)

where P ∗nY,H is the n-fold product of the caod (27).

The second, Lemma 18, shows that a uniform distribution on the sphere has nearly all of its mass in
Fn as n→∞.

Lemma 18. With X̃n as in Lemma 17 and set Fn defined as in (152) (with arbitrary τ > 0 and δ > 0)
we have as n→∞,

P[X̃n ∈ Fn]→ 1

Denote the right-hand side of (155) by K1 and consider the following chain:

κτ (Fn, QY n) ≥ exp

(
−
D(PY nHn|Xn ◦ PX̃n||QY n) + log 2

τPX̃n [Fn]

)
(156)

≥ exp

(
−K1 + log 2

τPX̃n [Fn]

)
(157)

= exp

(
−K1 + log 2

τ + o(1)

)
(158)

≥ K2(τ) , (159)

where (156) follows from Lemmas 14 and (142) with PX̃n as in Lemma 17, (157) is from Lemma 17, (158)
is from Lemma 18, and in (159) we introduced a τ -dependent constant K2.
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Putting (153) and (159) into the κβ-bound we obtain

logM∗(nT, ε, P ) ≥ nTC(P )−
√
nT (V ′ + τ)Q−1(ε− 2τ)−K ′′ −K2(τ) .

Taking n→∞ and then τ → 0 completes the proof.

Now we prove the two lemmas used in the Theorem.

Proof of Lemma 17. In the case of no-fading (Hj = 1) and SISO, this Lemma follows from [29, Propo-
sition 2]. Here we prove the general case. Let us introduce an auxiliary channel acting on Xj as follows:

Ỹj = Hj
Xj

‖Xn‖F

√
nTP + Zj, j = 1, . . . , n (160)

With this notation, consider the following chain:

D(PY nHn|Xn ◦ PX̃n||P ∗nY,H) = D(PỸ nHn|Xn ◦ PXn||P ∗nY,H) (161)

= D(PỸ nHn|Xn ◦ PXn||PY nHn|Xn ◦ PXn) (162)

= D(PỸ nHn|Xn||PY nHn|Xn|PXn) (163)

= D(PỸ n|Hn,Xn||PY n|Hn|Xn|PXnPHn) (164)

=
log e

2
E

(1−
√
nTP

‖Xn‖F

)2 n∑
t=1

‖HjXj‖2F

 (165)

=
log e

2nt
E[‖H‖2F ]E

[(
‖Xn‖F −

√
nTP

)2]
(166)

=
log e

nt
E[‖H‖2F ](nTP −

√
nTPE [‖Xn‖F ]) (167)

where (161) is by clear from (160), (162) follows since PX is caid, (163)-(164) are standard identities for
divergence, (165) follows since both Ỹj and Yj are unit-variance Gaussians and D(N (0, 1)‖N (a, 1)) =
a2 log e

2
, (166) is from Lemma 7 and (167) is just algebra along with the assumption that E [‖Xn‖2F ] = nTP .

It remains to lower bound the expectation E [‖Xn‖F ]. Notice that for any uncorrelated random variables
Bt ≥ 0 with mean 1 and variance 2 we have

E

√√√√ 1

n

n∑
t=1

Bt

 ≥ 1− 1

n
, (168)

which follows from
√
x ≥ 3x−x2

2
for all x ≥ 0 and simple computations. Next consider the chain:

E[‖Xn‖F ] = E

√√√√∑
i,j

n∑
t=1

(Xt)2i,j

 (169)

≥
√

n

ntT

∑
i,j

E

√√√√ 1

n

n∑
t=1

(Xt)2i,j

 (170)

=
√
nTP

(
1− 1

n

)
(171)

where in (171) we used the fact that for any caid, {(Xt)i,j, t = 1, . . . n} ∼ N (0, P/nt) i.i.d. (from
Theorem 6) and applied (168) with Bt =

(Xt)2i,jnt

P
. Putting together (167) and (171) completes the proof.
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Proof of Lemma 18. Note that since ‖Xn‖2F is a sum of i.i.d. random variables, we have ‖Xn‖F√
nTP

→ 1
almost surely. In addition we have

E [‖X1‖8F ] ≤ (ntT )3
∑
i,j

E [(X1)
8
i,j]

4
= K ,

where we used the fact (Theorem 6) that X1’s entries are Gaussian. Then we have from independence of
Xj’s and Chebyshev’s inequality,

P[max
j
‖Xj‖F ≤ δ′n

1
4 ] = P[‖X1‖F ≤ δ′n

1
4 ]n ≥

(
1− K

δ′8n2

)n
→ 1

as n→∞. Consequently,

P[max
j
‖X̃j‖F ≤ δn

1
4 ] ≥ P

[
max
j
‖Xj‖F ≤

δ

2
n

1
4

]
− P

[
‖Xn‖F√
nTP

<
1

2

]
→ 1

as n→∞.
Next we analyze the behavior of Vn(X̃n). From Proposition 8 we see that, due to ‖X̃n‖2F = nTP , the

term (57) vanishes, while (58) simplifies. Overall, we have

Vn(X̃n) = K +

(
nTP

‖Xn‖2F

)2
1

n

n∑
j=1

(
η3 − η4
nt

‖Xj‖4F + η4‖XjX
T
j ‖2F

)
, (172)

where we replaced the terms that do not depend on xn with K. Note that the first term in parentheses
(premultiplying the sum) converges almost-surely to 1, by the strong law of large numbers. Similarly, the
normalized sum converges to the expectation (also by the strong law of large numbers). Overall, applying
the SLLN in the limit as n→∞, we obtain:

lim
n→∞

Vn(X̃n) = lim
n→∞

1

n

n∑
j=1

V1(X̃j) (173)

= E[V1(X)]
4
= V ′ . (174)

In particular, P[Vn(X̃n) ≤ V ′ + τ ]→ 1. This concludes the proof of P[X̃n ∈ Fn]→ 1.

V. CONVERSE

Here we state and prove the converse part of Theorem 1. There are two challenges in proving the
converse relative to other finite blocklength proofs. First, behavior of the information density (49) varies
widely as xn varies over the power-sphere

Sn = {xn ∈ (Rnt×T )n : ‖xn‖2F = nTP}. (175)

Indeed, when maxj ‖xj‖F ≥ cn
1
4 the distribution of information density ceases to be Gaussian. In contrast,

the information density for the AWGN channel is constant over Sn.
Second, assuming asymptotic normality, we have for any xn ∈ Sn:

− log β1−ε(PY nHn|Xn=xn , P
∗n
Y,H) ≈ nC(P )−

√
nVn(xn)Q−1(ε) + o(

√
n) .

However, the problem is that Vn(xn) is also non-constant. In fact there exists regions of Sn where Vn(xn)
is abnormally small. Thus we need to also show that no capacity-achieving codebook can live on those
abnormal sets.

The main theorem of the section is the following:
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Theorem 19. For any δn → 0 there exists δ′n → 0 such that any (n,M, ε)-max code with ε < 1/2 and
codewords satisfying max1≤j≤n ‖xj‖F ≤ δnn

1
4 has size bounded by

logM ≤ nTC(P )−
√
nTV (P )Q−1(ε) + δ′n

√
n , (176)

where C(P ) and V (P ) are defined in (7) and (8), respectively.

Proof. As usual, without loss of generality we may assume that all codewords belong to Sn as defined
in (175), see [1, Lemma 39]. The maximal probability of error code size is bounded by a meta-converse
theorem [1, Theorem 31], which states that for any (n,M, ε) code and distribution QY nHn on the output
space of the channel,

1

M
≥ inf

xn
β1−ε(PY nHn|X=xn , QY nHn) , (177)

where infimum is taken over all codewords. The main problem is to select QY nHn appropriately. We do
this separately for the two subcodes defined as follows. Fix arbitrary δ > 0 (it will be taken to 0 at the
end) and introduce:

Cl , C ∩ {xn : Vn(xn) ≤ n(V (P )− δ)} (178)

Cu , C ∩ {xn : Vn(xn) > n(V (P )− δ)} . (179)

To bound the cardinality of Cu, we select QY nHn = (P ∗Y,H)n to be the n-product of the caod (27), then
apply the following estimate from [28, Lemma 14], quoted here: for any ∆ > 0 we have

log β1−ε(PY nHn|X=xn , P
∗n
Y,H) ≥ −nDn(xn)−

√
nVn(xn)Q−1

(
1− ε− Bn(xn) + ∆√

n

)
− 1

2
log

n

∆2
, (180)

where Dn, Vn and Bn are given by (52), (54) and (138), respectively. We choose ∆ = n
1
4 and then from

Lemma 13 (which relies on the assumption that ‖xj‖F ≤ δn
1
4 ) we get that for some constants K1, K2 we

have for all xn ∈ Cu:

Bn(xn) + ∆ ≤ K1δ
2
n

√
n+K2n

1
4 +

K3

n1/2
.

From (177) and (180) we therefore obtain

log |Cu| ≤ nTC(P )−
√
nT (V (P )− δ)Q−1(ε− δ′′n) +

1

4
log n , (181)

where δ′′n = K1δ
2
n +K2n

− 1
4 → 0 as n→∞.

Next we proceed to bounding |Cl|. To that end, we first state two lemmas. Lemma 20 shows that, if
in addition to the power constraint E[‖X‖2F ] ≤ TP , we also required E[V1(X)] ≤ V (P ) − δ, then the
capacity of this variance-constrained channel is strictly less than without the latter constraint.

Lemma 20. Consider the following constrained capacity:

C̃(P, δ)
4
=

1

T
sup
X

{
I(X;Y |H) : E[‖X‖2F ] ≤ TP,E[V1(X)] ≤ V (P )− δ

}
, (182)

where V (P ) is from (8) and V1(x) is from (55). For any δ > 0 there exists τ = τ(P, δ) > 0 such that
C̃(P, δ) < C(P )− τ .

Remark 8. Curiously, if we used constraint E [V1(X)] > V (P ) + δ instead of E[V1(X)] ≤ V (P )− δ in
(182), then the resulting capacity equals C(P ) regardless of δ.

The following Lemma shows that, with the appropriate choice of an auxiliary distribution QY n,Hn , the
expected size of the normalized log likelihood ratio is strictly smaller than capacity, while the variance
of that same ratio is upper bounded by a constant (i.e. does not scale with n).
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Lemma 21. Define the auxiliary distribution

QY |H(y|h) =

{
P ∗Y |H(y|h) ‖h‖2F > A

P̃ ∗Y |H(y|h) ‖h‖2F ≤ A
(183)

where A > 1 is a constant, P ∗Y |H(y|h) is the caod for the MIMO-BF channel, and P̃ ∗Y |H(y|h) is the caod
for the variance-constrained channel in (182). Let QY,H = PHQY |H , and QY n,Hn =

∏n
i=1QY,H . Then

there exists constants τ,K > 0 such that for all xn ∈ Cl,

Cn ,
1

nT
E
[
log

PY n,Hn|Xn

QY n,Hn

(Y n, Hn|xn)

]
≤ C(P )− τ (184)

Vn ,
1

nT
Var

(
log

PY n,Hn|Xn

QY n,Hn

(Y n, Hn|xn)

)
≤ K (185)

where Yi = Hixi + Zi, i = 1, . . . , n is the joint distribution.

Remark 9. The reason we let QY |H take on two distributions depending on the value of H is because
we do not know the form of P̃ ∗Y |H , hence we do not explicitly know how it depends on H . This choice
of QY |H ensures that expectations involving P̃ ∗Y |H are finite.

Choose QY,H as in Lemma 21, so that the bounds on Cn, Vn from (184), (185) respectively, hold.
Applying [28, Lemma 15] with α = 1 − ε (the statement of this lemma is the contents of (186)), we
obtain

log β1−ε(PY n,Hn|Xn=xn , P̃
∗n
Y,H) ≥ −nTCn −

√
2nTVn
1− ε

− log
1− ε

2
(186)

≥ −nT (C(P )− τ)−
√

2nTK

1− ε
+ log

1− ε
2

. (187)

Therefore, from (177) we conclude that for all n ≥ n0(δ) we have

log |Cl| ≤ nT
(
C(P )− τ

2

)
. (188)

Overall, from (181) and (188) we get (due to arbitrariness of δ) the statement (176).

Proof of Lemma 20. Introduce the following set of distributions:

P ′ ,
{
PX : E[‖X‖2F ] ≤ TP, E[V1(X)] ≤ V − δ

}
. (189)

By Prokhorov’s criterion (e.g. [30, Theorem 5.1], tightness implies relative compactness), the norm
constraint implies that this set is relatively compact in the topology of weak convergence. So there
must exist a sequence of distributions P̃n ∈ P ′ s.t. P̃n

w→ P̃ and I(X̃n;HX̃n + Z|H) → C̃(P, δ) where
X̃n ∼ P̃n. By Skorokhod representation [30, Theorem 6.7], we may assume X̃n

a.s.→ X̃ ∼ P̃ , i.e. there
exists random variable X̃ that is the pointwise limit of the X̃n’s. Notice that for any continuous bounded
function f(h, y) we have

E [f(H,HX̃n + Z)]→ E [f(H,HX̃ + Z)] ,

and therefore PỸn,H
w→ PỸ ,H . Assume (to arrive at a contradiction) that C̃(P, δ) = C(P ), then by the

golden formula, cf. [25, Theorem 3.3], we have

I(X̃n;HX̃n + Z|H) = D(PY H|X‖P ∗Y,H |PX̃n)−D(PỸn,H‖P
∗
Y,H) (190)

= E [D1(X̃n)]−D(PỸn,H‖P
∗
Y,H) (191)

≤ C(P )−D(PỸn,H‖P
∗
Y,H) , (192)
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where D1(x) is from (52). Therefore, we have

D(PỸn,H‖P
∗
Y,H)→ 0 .

From weak lower-semicontinuity of divergence [25, Theorem 3.6] we have D(PỸ ,H‖P ∗Y,H) = 0. In
particular, if we denote X∗ to have Telatar distribution (26), we must have

E [‖Ỹ ‖2F ] = E [‖HX̃ + Z‖2F ] = E [‖HX∗ + Z‖2F ] . (193)

From Lemma 7 we have
E [‖Hx‖2F ] =

E [‖H‖2F ]

nt
‖x‖2F (194)

and hence from independence of Z from (H,X) we get

E [‖HX̃ + Z‖2F ] =
E [‖H‖2F ]

nt
E [‖X̃‖2F ] + nrT ,

and similarly for the right-hand side of (193). We conclude that

E [‖X̃‖2F ] = E [‖X∗‖2F ] = TP .

Finally, plugging this fact into the expression for D1(x) in (52) and (191) we obtain

I(X̃;HX̃ + Z|H) = E [D1(X̃n)] = C(P ) .

That is, X̃ is caid. But from Fatou’s lemma we have (recall that V1(x) ≥ 0 since it is a variance)

E [V1(X̃)] ≤ lim inf
n→∞

E [V1(X̃n)] ≤ V (P )− δ ,

where the last step follows from P̃n ∈ P ′. A caid achieving conditional variance strictly less than V (P )
contradicts the definition of V (P ), cf. (8), as the infimum of E [V1(X)] over all caids.

Proof of Lemma 21. First we analyze Cn from (184). Denote

i(x; y, h) = log
PY |H,X
P ∗Y |H

(y|h, x) (195)

ĩ(x; y, h) = log
PY |H,X

P̃ ∗Y |H
(y|h, x) . (196)

Here, i(x; y, h) is the information density given by (49), while ĩ(x; y, h) instead has the caod for the
variance-constrainted channel (182) in the denominator. Since QY |H takes on one of two distribution
based on the value of H , conditioning on H in two ways yields

Cn =
1

nT
E
[
log

PY n,Hn|Xn

QY n,Hn

(Y n, Hn|xn)

]
(197)

=
1

nT

n∑
j=1

E
[
i(xj;Yj, Hj)

∣∣‖Hj‖2F > A
]
P[‖Hj‖2F > A] (198)

+
1

nT

n∑
j=1

E
[̃
i(xj, Yj, Hj)

∣∣‖Hj‖2F ≤ A
]
P[‖Hj‖2F ≤ A] . (199)

The Hj’s are i.i.d. according to PH , so we define p , P[‖Hj‖2F > A]. Using capacity saddle point, (198)
is bounded by

p

nT
E

[
n∑
j=1

i(xj;Yj, Hj)

∣∣∣∣∣‖Hj‖2F > A

]
≤ pC(PH>A) (200)
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where C(PH) denotes the capacity of the MIMO-BF channel with fading distribribution PH , and PH>A
denotes the distribution of H conditioned on ‖H‖2F > A (similarly, PH≤A will denote H conditioned
on ‖H‖2F ≤ A). (200) follows from the fact that the information density, i.e. log

PY |H,X
P ∗
Y |H

(y|h, x), is not a
function of PH , hence changing the distribution PH does not affect the form of i(x; y, h). Similarly, using
Lemma 20, (199) is bounded by

1− p
nT

E

[
n∑
j=1

ĩ(Xj;Yj, Hj)

∣∣∣∣∣‖Hj‖2F ≤ A

]
≤ (1− p)C̃(PH≤A) (201)

= (1− p)C(PH≤A)− τ ′) (202)

where τ ′ > 0 is a positive constant. Putting together (200) and (202), we obtain an upper bound on Cn,

Cn ≤ pC(PH>A) + (1− p)(C(PH≤A)− τ ′) . (203)

By the law of total expectation, this simplifies to

Cn ≤ C(PH)− (1− p)τ ′ . (204)

Finally, we can upper bound p using Markov’s inequality as

p = P[‖H1‖2F > A] ≤ 1

A
(205)

since A > 1. Applying this bound to (204), we obtain

Cn ≤ C(PH)− (1− p)τ ′ (206)

≤ C(PH)−
(

1− 1

A

)
τ ′ . (207)

Defining τ , (1− 1/A)τ ′ completes the proof of (184).

Next we analyze Vn from (185). The strategy will be to decompose (185) into two terms depending on
the value of ‖H‖2F , then show that each terms is upper bounded by C1 + C2

∑n
j=1 ‖xj‖4F , where C1, C2

are constants not depending on xn. Finally, we will show that
∑n

j=1 ‖xj‖4F = O(n) when xn ∈ Cl. To this
end,

Vn =
1

nT
Var

(
log

PY n,Hn|Xn

QY n,Hn

(Y n, Hn|xn)

)
(208)

=
1

nT

n∑
j=1

Var

(
log

PY,H|X
QY,H

(Yj, Hj|xj)
)

(209)

≤ 1

nT

n∑
j=1

E

[(
log

PY,H|X
QY,H

(Yj, Hj|xj)
)2
]

(210)

where (209) follows from the independence of the terms, and (210) is from the bound Var(X) ≤ E[X2].
Again we condition on H in two ways,

Vn ≤
p

nT

n∑
j=1

E
[
i(xj;Yj;Hj)

2
∣∣‖Hj‖2F > A

]
(211)

+
1− p
nT

n∑
j=1

E
[̃
i(xj;Yj, Hj)

2
∣∣‖Hj‖2F ≤ A

]
. (212)
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For the first term, (211), we know the expression for i(x; y, h) from (49), so we simply upper bound
i(x; y, h)2. To this end,

i(x; y, h)2 ≤ 2

(
T

2
log det

(
Inr +

P

nt
hhT

))2

+ 2

(
log e

2

nmin∑
j=1

λ2j‖vTj x‖2 + 2λj〈vTj x, z̃j〉 − P
nt
λ2j‖z̃j‖2

1 + P
nt
λ2j

)2

(213)
≤ C1‖h‖2F + C2‖x‖4F + C3(z̃j)‖x‖2F + C4(z̃j) (214)

where C1, C2 are non-negative constants, and C3(z̃j), C4(z̃j) are functions of only z̃j that have bounded
moments. This follows from:
• Bounding the first term via(

T

2
log det

(
Inr +

P

nt
hhT

))2

≤ log2(e)
PT 2

4nt
nmin‖h‖2F , (215)

which can be derived from the basic inequality log(1 + x) ≤ log(e)
√
x.

• Noting that the second term is bounded in h, since for all λ ∈ R,
|λ|

1 + P
nt
λ2
≤ 1

2
√

P
nt

(216)

λ2

1 + P
nt
λ2
≤ nt
P
. (217)

• Noting that all moments of ‖z̃j‖2 are finite because this is the norm of a standard normal vector.
Therefore, after taking the expectation of (214) and summing over all n, we obtain

p

nT

n∑
j=1

E
[
i(xj;Yj;Hj)

2
∣∣‖Hj‖2F > A

]
≤ 1

nT

(
C5 + C6

n∑
j=1

‖xj‖4F

)
(218)

for some non-negative constants C5, C6.
To bound the second term, (212), first we split the logarithm as

E
[̃
i(xj;Yj, Hj)

2
∣∣‖Hj‖2F ≤ A

]
(219)

≤ 2E
[
log
(
PY |H,X(Yj|Hj, xj)

)2∣∣∣‖Hj‖2F ≤ A
]

+ 2E
[
log
(
P̃ ∗Y |H(Yj|Hj)

)2∣∣∣∣‖Hj‖2F ≤ A

]
(220)

The first term in (220) is simple to handle, since its expression is given by the definition of the channel,

E
[
log
(
PY |H,X(Yj|Hj, xj)

)2∣∣∣‖Hj‖2F ≤ A
]

= E

[(
−nrT

2
log(2π)− 1

2
‖Zj‖2F

)2
]

(221)

≤ 1

2
nrT log2(2π) +

1

2
nrT (2 + nrT ) (222)

, K1 (223)

i.e. we have a constant upper bound. For the second term in (220), notice that P̃ ∗Y,H that is inducible
through channel, i.e. there exists an input distribution PX such that P̃ ∗Y,H(y, h) = E[PY,H|X(y, h|X)].
Using this fact, we obtain the bound

− log P̃ ∗Y |H(y|h) = − logE[PY |H,X(y|h,X)] (224)

≤ E[− logPY |H,X(y|h,X)] (225)

= E
[
nrT

2
log(2π) +

1

2
‖y − hX‖2F

]
(226)

≤ nrT

2
log(2π) + ‖y‖2F + TP‖h‖2F (227)
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where (225) follows from Jensen’s inequality, (226) is from the definition of the channel, and (227) follows
from applying the inequality ‖A+B‖2F ≤ 2‖A‖2F +2‖B‖2F along with ‖hX‖2F ≤ ‖h‖2F‖X‖2F , then noting
that X satisfies E[‖X‖2F ] = TP . Using this, we can bound the second term in (220) via

E
[
log
(
P̃ ∗Y |H(Yj|Hj)

)2∣∣∣∣‖Hj‖2F ≤ A

]
(228)

≤ E

[(
nrT

2
log(2π) + ‖Yj‖2F |+ TP‖Hj‖2F

)2
∣∣∣∣∣‖Hj‖2F ≤ A

]
(229)

≤ E
[
3
n2
rT

2

4
log2(2π) + 3‖Yj‖4F + 3T 2P 2‖Hj‖4F

∣∣∣∣‖Hj‖2F ≤ A

]
(230)

≤ K2 +K3‖x‖4F (231)

where K2, K3 are non-negative constants which do not depend on x, (229) is from the above bound (227),
and (231) follows from applying the bound

E[‖Yj‖4F ||‖Hj‖2F ≤ A] = E[‖Hjxj + Zj‖4F |‖Hj‖2F ≤ A] (232)
≤ 8E[‖Hj‖4F |‖Hj‖2F ≤ A]‖xj‖4F + 16n2

rT
2 (233)

≤ 8A‖xj‖4F + 16n2
rT

2 . (234)

Putting together (231) and (223), we obtain an upper bound on (212),

1− p
nT

n∑
j=1

E
[̃
i(xj;Yj, Hj)

2
∣∣‖Hj‖2F ≤ A

]
≤ 2(1− p)

nT

(
K3 +K4 +K5

n∑
j=1

‖xj‖4F

)
. (235)

Now, since xn ∈ Cl by assumption, we can control the quantity
∑n

i=1 ‖xi‖4F via
n∑
i=1

‖xi‖4F ≤
n∑
i=1

V1(xi) (236)

≤ n(V (P )− δ) , (237)

where the first inequality follows from the non-negativity of the terms in V1(x) given in Proposition 8,
and the second inequality is from the definition of Cl. Hence the sum of fourth powers of the ‖xi‖F ’s is
O(n) on Cl. All together, combining (235) and (218) yields the following bound on Vn,

Vn ≤
1

n

(
K ′ +K ′′

n∑
j=1

‖xi‖4F

)
(238)

≤ K (239)

which completes the proof of (185).

VI. THE RANK 1 CASE

When H is rank 1, for example in the MISO case, i.e. nt > nr = 1, the MIMO-BF channel has multiple
input distributions that achieve capacity, as shown in Theorem 6. Theorem 1 proved that the dispersion
in the general MIMO-BF channel is given by (8), where we minimize the conditional variance of the
information density over the set of caids. In this section, we analyze those minimizers for the rank 1 case,
which turns out to be non-trivial.

From Theorem 3, when H is rank 1, the conditional variance takes the form

V (P ) = K1 −K2v
∗(nt, T ) (240)
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where K1, K2 > 0 are constants that depend on the channel parameters but not the input distribution.
From (18), computing v∗(nt, T ) requires us to maximize the variance of the squared Frobenius norm of the
input distribution over the set of caids. Intuitively, this says that minimizing the dispersion is equivalent to
maximizing the amount of correlation amongst the entries of X when X is jointly Gaussian. In a sense,
this asks for the capacity achieving input distribution having the least amount of randomness.

Here we characterize v∗(nt, T ). The manifold of caids is not easy to optimize over, since one must
account for all the independence constraints on the rows and columns, the covariance constraints on the
2 × 2 minors, positive definite constraints, etc. as described in Theorem 6. Our strategy instead will be
to give an upper bound on v∗(nt, T ), then show that for certain pairs (nt, T ), the upper bound is tight.
Before stating the main theorem of the section, we review orthogonal designs, which will play a large
role in the solution to this problem.

A. Orthogonal designs
Definition 1 (Orthogonal Design). A real n × n orthogonal design of size k is defined to be an n × n
matrix A with entries given by linear forms in x1, . . . , xk and coefficients in R satisfying

ATA =

(
k∑
i=1

x2i

)
In (241)

In other words, all columns of A have squared Euclidean norm
∑k

i=1 x
2
i , and all columns are pair-

wise orthogonal. A common representation for an orthogonal design is the sum A =
∑k

i=1 xiVi where
{V1, . . . , Vk} is a collection of n × n real matrices satisfying Hurwitz-Radon conditions (19)-(20). Such
collection is called a Hurwitz-Radon family. Theorem 4 shows that the maximal cardinality of a Hurwitz-
Radon family is the Hurwitz-Radon number ρ(n), cf. (21).

The definition of orthogonal designs can be generalized to rectangular matrices [9], as follows:

Definition 2 (Generalized Orthogonal Design). A generalized orthogonal design is a p×n matrix A with
p ≥ n with entries as linear forms of the indeterminates {x1, . . . , xk} satisfying (241).

The quantity R = k/p is often called the rate of the generalized orthogonal design. This term is justify
by noticing that if p represents a number channel uses and k represents the number of data symbols, then
R represents sending k data symbols in p channel uses. In this work, we are only interested in the case
R = 1 (i.e. k = p), called full-rate orthogonal designs. Full-rate orthogonal design can be constructed
from a Hurwitz-Radon family {V1, . . . , Vn}, each Vi ∈ Rk×k by forming the matrix A

A = [V1x · · · Vnx] (242)

where x = [x1, . . . , xk]
T is the vector of indeterminates. It follows immediately from this construction

that (241) is satisfied. Theorem 4 allows us to conclude that a generalized full rate n × k orthogonal
design exists if and only if n ≤ ρ(k).

The following proposition shows that full rate orthogonal designs correspond to caids in the MIMO-BF
channel.

Proposition 22. Take nt = ρ(T ) and a maximal Hurwitz-Radon family {Vi, i = 1, . . . , nt} of T × T
matrices (cf. Theorem 4). Let ξ ∼ N (0, P/ntIT ) be an i.i.d. row-vector. Then the input distribution

X =
[
V T
1 ξ

T · · ·V T
ntξ

T
]T

(243)

achieves capacity for any MIMO-BF channel provided P[rankH ≤ 1] = 1.
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Proof. Since {V1, . . . , Vnt} is a Hurwitz-Radon family, they satisfy (19)-(20). Form X as in (243). Then
each row and column is jointly Gaussian, and applying the caid conditions (31) and (32) from Theorem 6
shows,

E[RT
i Ri] = V T

i E[ξT ξ]Vi =
P

nt
V T
i Vi =

P

nt
IT (244)

E[RT
i Rj] = V T

i E[ξT ξ]Vj =
P

nt
V T
i Vj = −P

nt
V T
j Vi = −E[RT

j Ri] (245)

Therefore X satisfies the caid conditions, and hence achieves capacity.

Remark 10. The above argument implies that if X ∈ Rnt×T is constructed above, then removing the last
row of X gives an (nt − 1)× T input distribution that also achieves capacity.

B. Proof of theorem 5
Theorem 5 states that for dimensions where orthogonal designs exist, the conditional variance (8) is

minimized if and only if the input is constructed from an orthogonal design as in Proposition 22. The
approach is first to prove an upper bound on v∗, then show that conditions for tightness of the upper
bound correspond to conditions of the Hurwitz-Radon theorem.

We start with a simple lemma, which will be applied with A,B equal to the rows of the capacity
achieving input X .

Lemma 23. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) each be i.i.d. random vectors from the same
distribution with finite second moment E[A2

1] = σ2 <∞. While A and B are i.i.d. individually, they may
have arbitrary correlation between them. Then

n∑
i=1

n∑
j=1

Cov(Ai, Bj) ≤ nσ2 (246)

with equality iff
∑n

i=1Ai =
∑n

i=1Bi almost surely.

Proof. Simply use the fact that covariance is a bilinear function, and apply the Cauchy-Schwarz inequality
as follows:

n∑
i=1

n∑
j=1

Cov(Ai, Bj) = Cov

(
n∑
i=1

Ai,
n∑
j=1

Bj

)
(247)

≤

√√√√Var

(
n∑
i=1

Ai

)
Var

(
n∑
j=1

Bj

)
(248)

=
√

(nVar(A1))(nVar(B1)) (249)
= nσ2 (250)

We have equality in Cauchy-Schwarz when
∑n

i=1Ai and
∑n

i=1Bi are proportional, and since these sums
have the same distribution, the constant of proportionality must be equal to 1, so we have equality in (246)
iff
∑n

i=1Ai =
∑n

i=1Bi almost surely.

Proof of Theorem 5. First, we rewrite v∗(nt, T ) defined in (18) as

v∗(nt, T ) ,
n2
t

2P 2
max

PX :I(X;Y |H)=C

nt∑
i=1

nt∑
j=1

T∑
k=1

T∑
l=1

Cov(X2
i,k, X

2
j,l) (251)
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From here, v∗(nt, T ) = v∗(T, nt) follows from the symmetry to transposition of the caid-conditions on
X (see Theorem 6) and symmetry to transposition of (251). From now on, without loss of generality we
assume nt ≤ T .

For the upper bound, since the rows and columns of X are i.i.d., we can apply Lemma 23 with Ai = X2
i,k

and Bj = X2
j,l (and hence σ2 = 2(P/nt)

2) to get∑
i,j,k,l

Cov(X2
i,k, X

2
j,l) ≤

∑
i,j

2T (P/nt)
2 = 2n2

tT (P/nt)
2 , (252)

which together with (251) yields the upper bound (22) (recall that nt ≤ T ).
Equation (252) implies that if X achieves the bound (22), then removing the last row of X achieves (22)

as an (nt − 1)× T design. In other words, if (22) is tight for nt × T then it is tight for all n′t ≤ nt.
Notice that for any X such that any pair Xi,k,Xj,l is jointly Gaussian, we have

n2
t

2P 2
Var(‖X‖2F ) =

∑
i,j,k,l

ρ2ikjl , (253)

where

ρikjl
4
=
nt
P

Cov(Xik, Xjl) . (254)

Take X ∈ Rnt×T as constructed in (243). By Proposition 22, X is capacity achieving and identity (253)
clearly holds. In the representation (243), the matrix V T

j Vi contains the correlation coefficients between
rows i and j of X , since E[(ξVj)

T (ξVi)] = P
nt
V T
j Vi, so

‖V T
j Vi‖2F =

T∑
k=1

T∑
l=1

ρ2ikjl . (255)

Therefore we can represent the sum of squared correlation coefficients as∑
i,j,k,l

ρ2ijkl =
nt∑
i=1

nt∑
j=1

‖V T
j Vi‖2F (256)

=
nt∑
i=1

nt∑
j=1

tr
(
VjV

T
j ViV

T
i

)
(257)

= tr

( nt∑
i=1

ViV
T
i

)2
 (258)

= n2
t .T (259)

Line (259) follows since the Vi’s are orthogonal by the Hurwitz-Radon condition, so each ViV T
i = IT in

the summation in (258). Hence the X constructed in (243) achieves the upper bound in (252) and (22).
Next we prove (24). Suppose X is a jointly-Gaussian caid saturating the bound (252). From Lemma 23,

the condition for equality in (246) implies that for all j ∈ {1, . . . , nt},

‖Rj‖2F = ‖R1‖2F a.s. (260)

where Rj is the j-th row of X for j = 1, . . . , nt. In particular, this means that every Rj is a linear function
of R1. Consequently, we may represent X in terms of a row-vector ξ ∼ N (0, P/ntI) as in (243), that is
Rj = ξVj for some T × T matrices Vj, j ∈ [nt]. We clearly have

E [RT
i Rj] =

P

nt
V T
i Vj .
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But then the caid constraints (31)-(32) imply that the matrix A in (242) constructed using indeterminates
{x1, . . . , xnt} and family {V1, . . . , VnT } satisfies Definition 2. Therefore, from Theorem 4, (see also [31,
Proposition 4]), we must have nT ≤ ρ(T ).

Remark 11. In the case nt = T = 2 it is easy to show that for any non-jointly-Gaussian caid,
there exists a jointly-Gaussian caid achieving the same Var(‖X‖2F ). Indeed, consider (37) with ρ =
cov(X2

1,1,X
2
2,2)+cov(X2

1,2,X
2
2,1)

8(P/nt)2
. If this phenomena held in general, we would conclude that (23) holds if and

only if nt ≤ ρ(T ) or T ≤ ρ(nt). As a step towards the proof of the latter, we notice that any caid X
achieving equality in (252) satisfies

XXT =
‖X‖2F
nt

Int (a.s.) , (261)

which is equivalent to saying RiR
′
j = 0 for i 6= j. The latter follows from applying (260) to rows of

UX , where U is an arbitrary orthogonal matrix. Identity (261) could be informally stated as “any caid
saturating (252) is a random full-rate orthogonal design”.

In summary, the full-rate orthogonal designs (when those exist) achieve the optimal channel dispersion
V (P ). Some examples (ξj are i.i.d. N (0, 1)) for nt = T = 4 and nt = 4, T = 3, respectively, are as
follows:

X =

√
P

4


ξ1 ξ2 ξ3 ξ4
−ξ2 ξ1 −ξ4 ξ3
−ξ3 ξ4 ξ1 −ξ2
−ξ4 −ξ3 ξ2 ξ1

 (262)

X =

√
P

4


ξ1 ξ2 ξ3
−ξ2 ξ1 −ξ4
−ξ3 ξ4 ξ1
−ξ4 −ξ3 ξ2


C. Beyond full-rate orthogonal designs

For pairs (nt, T ) where nt > ρ(T ), full-rate orthogonal design do not exist. For example ρ(3) = 1, so
no full-rate orthogonal design exits for nt = 2, T = 3. Which caids are minimizer for (8) in this case?
In general, we do not know the answer and do not even know whether one can restrict the search to
jointly-Gaussian caids. But one thing is certain: it is definitely not an i.i.d. Gaussian (Telatar) caid. To
show this claim, we will give a method for constructing improved caids.

To that end, suppose that X consists of entries ±ξj , j = 1 . . . , d, where ξj
i.i.d.∼ N (0, P/nt). Then we

have:
n2
t

2P
Var(‖X‖2F ) =

d∑
t=1

(`t)
2 , (263)

where `t is the number of times ±ξt appears in the description of X . By this observation and the remark
after Theorem 6 (any submatrix of a caid X is also a caid), we can obtain lower bounds on v∗(nt, T ) for
nt > ρ(T ) via the following truncation construction:

1) Take T ′ > T such that ρ(T ′) ≥ nt and let X ′ be a corresponding ρ(T ′) × T ′ full-rate orthogonal
design with entries ±ξ1, . . .± ξT ′ .

2) Choose an nt × T submatrix of X ′ maximizing the sum of squares of the number of occurrences
of each of ξj , cf. (263).
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TABLE I
VALUES FOR v∗(nt, T )

nt \ T 1 2 3 4 5 6 7 8
1 1 2 3 4 5 6 7 8
2 8 10∗ 16 18 24 26 32
3 21∗ 36 [39,45] [46,54] [57,63] 72
4 64 [68,80] [80,96] [100,112] 128
5 [89,125] [118,150] [155,175] 200
6 [168,216] [222,252] 288
7 [301,343] 392
8 512

Note: Table is symmetric about diagonal; intervals [a, b] mark entries for which dispersion-optimal input is unknown. The optimality of
entries marked with ∗ is only established in the class of all jointly-Gaussian caids.

As an example of this method, by truncating a 4× 4 design (262) we obtain the following 2× 3 and
3× 3 submatrices:

X =

√
P

3

 ξ1 ξ2 ξ3
−ξ2 ξ1 ξ4
−ξ3 −ξ4 ξ1

 X =

√
P

2

[
ξ1 ξ2 ξ3
−ξ2 ξ1 ξ4

]
(264)

By independent methods we were able to show that designs (264) are dispersion-optimal out of all jointly
Gaussian caids. Note that in these cases (23) does not hold, illustrating (24).

Our current knowledge about v∗ is summarized in Table I. The lower bounds for cases not handled by
Theorem 5 were computed by truncating the 8x8 orthogonal design [9, (5)]. Based on the evidence from
2× T and 3× 3 we conjecture this construction to be optimal.

From the proof of Theorem 5 it is clear that Telatar’s i.i.d. Gaussian is never dispersion optimal, unless
nt = 1 or T = 1. Indeed, for Telatar’s input ρikjl = 0 unless (i, k) = (j, l). Thus embedding even a
single 2× 2 Alamouti block into an otherwise i.i.d. nt×T matrix X strictly improves the sum (251). We
note that the value of V

C2 entering (2) can be quite sensitive to the suboptimal choice of the design. For
example, for nt = T = 8 and SNR = 20 dB estimate (2) shows that one needs
• around 600 channel inputs (that is 600/8 blocks) for the optimal 8× 8 orthogonal design, or
• around 850 channel inputs for Telatar’s i.i.d. Gaussian design

in order to achieve 90% of capacity. This translates into a 40% longer delay or battery spent in running
the decoder.

Thus, curiously even in cases where pure multiplexing (that is maximizing transmission rate) is needed
– as is often the case in modern cellular networks – transmit diversity enters the picture by enhancing
the finite blocklength fundamental limits. Remember, however, that our discussion pertains only to cases
when the transmitter (base-station) is equipped with more antennas than the receiver (user equipment), or
when the channel does not have more than one diversity branch.

In cases when full-rate designs do not exist, there have been various suggestions as to what could be
the best solution, e.g. [31]. Thus for non full-rate designs the property of minimizing dispersion (such
as (264)) could be used for selecting the best design for cases nt > ρ(T ).

VII. DISCUSSION

Figure 1 plots the capacity, normal approximation, and ββ achievability bound for the MIMO channel
with nt = nr = T = 4 for the complex case. The details of this computation are given in [19]. The ββ
bound was developed by Yang et al [19] and is often more computationally friendly than the κβ bound.
This figure illustrates the gap between achievability and the normal approximation, as well as the gap
to capacity. For example, at blocklength 400, we can achieve about 88% of capacity, and at blocklength
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Fig. 1. Achievability and normal approximation for nt = nr = T = 4, P = 0dB, and ε = 10−3.

1000 we can achieve about about 92% of capacity, given P = 0dB and tolerating an error probability of
10−3.

Figure 2 shows the dependence of the rate on the coherence time T for the 4× 4 MIMO channel. The
normal approximation for T = 1, 20, 80 is plotted. From (6) and (12), we know the capacity does not
depend on T , but the dispersion depends on T in an affine relationship. Hence, from the dispersion we see
that a larger coherence time reduces the maximum transmission rate when the other channel parameters
are held fixed. Intuitively, when the coherence time is lower, we are able to average over independent
realizations of the fading coefficients in less channel uses. Note that the CSIR assumption implies that we
know the channel coefficient perfectly, which may be unrealistic at short coherence times for a practical
channel.

We now ask: how does the dispersion depend on the number of transmit and receive antennas? Figures 3
and 4 depict the normalized dispersion V/C2, cf. (2), as a function of the number of antennas. The fading
process is chosen to be i.i.d. N (0, 1). Each plot has two curves: one curve with nr fixed and nt growing,
and the other curve with nt fixed and nr growing. In both plots, coherence time is T = 16. The difference
is that on Fig. 3 the received power Pr is held fixed (at 20 dB, i.e. P is chosen so that Pr = 100), whereas
on Fig 4 it is the transmit power P that is held fixed (also at 20 dB, i.e. P = 100). The relation between
Pr and P is as follows:

Pr =
P

nt
E[‖H‖2F ] , (265)

These figures also display the asymptotic limiting values of V
C2 computed via random-matrix theory:
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1) When nr is fixed and nt →∞ under fixed received power Pr we have

C(Pr) =
nr
2

log

(
1 +

Pr
nr

)
+ o(1) (266)

V (Pr) = log2(e)
Pr

1 + Pr
nr

+ o(1) . (267)

2) When nt is fixed and nr →∞ under fixed received power Pr we have

C(Pr) =
nt
2

log

(
1 +

Pr
nt

)
+ o(1) (268)

V (Pr) = log2(e)
Pr(2 + Pr

nt
)

2(1 + Pr
nt

)2
+ o(1) . (269)

3) When nr is fixed and nt →∞ under fixed transmitted power P we have

C(P ) =
nr
2

log (1 + P ) + o(1) (270)

V (P ) = log2(e)
nrP

1 + P
+ o(1) . (271)

4) When nt is fixed and nr →∞ under fixed transmit power P we have

C(P ) =
nt
2

log

(
1 +

nrP

nt

)
+ o(1) (272)

V (P ) = log2(e)
nt
2

+ o(1) . (273)
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Fig. 3. Normalized dispersion V
C2 as a function of nr and nt. The received power is Pr = 20dB and T = 16. Dashed lines are asymptotic

values from (266)-(269).

Note that when the received power is fixed, reciprocity holds: the capacity of the nt × nr channel is
the same as the capacity of the nr × nt one. Having information about dispersion, we may ask the more
refined question: although capacities of the channels are the same, which one has better dispersion (i.e.
causes smaller coding latency)?

From approximations (267) and (269), we can see that the channel dispersion is not symmetric in nt, nr.
For example, in the setting of Fig. 3 we see that the delay penalty in the nt � nr regime is 58% of the
penalty in the nr � nt regime. Hence, in a two user channel, if user 1 has n1 antennas and user 2 has
n2 > n1 antennas, then the asymptotic analysis suggest that channel from user 1 to user 2 can support
higher rates than the channel from user 2 to user 1 at finite blocklength.

Figure 4 shows the scenario where the transmit power is fixed. In this case, the capacity approaches a
finite limit when nr is held fixed and nt →∞, but grows logarithmically when nt is fixed and nr →∞,
as shown in equations (270) and (272). In this setting, the normalized dispersion approaches a finite limit
when nr is fixed and nt →∞, yet it vanishes when nt is fixed and nr →∞. Consequently in this regime,
we can always choose the number of receive antennas nr large enough so that our system can achieve a
given fraction of capacity η using blocklength n. The normalized dispersion in this case is proportional
to 1/ log2(nr).

APPENDIX A
EXISTENCE OF NON-GAUSSIAN CAIDS

Proposition 24. Let S ⊂ Rn be such that a) 0 ∈ S and b) there exists a non-zero polynomial in n
variables with real coefficients vanishing on S. Then there exists a random variable X taking values in
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values from (270)-(273).

Rn with the property that its characteristic function Ψ(t)
4
= E [ei

∑n
k=1 tjXj ], t ∈ Rn satisfies

Ψ(t) = e−
‖t‖22
2 ∀t ∈ S

but there exist a t0 ∈ Rn such that Ψ(t0) 6= e−
‖t0‖

2
2

2 (i.e. X 6∼ N (0, In)).

Remark 12. The simplest application of this proposition is the following. Suppose that three random
vectors in R3 have the property that projection onto any (2-dimensional) plane has the joint distribution
N (0, I2)×N (0, I2)×N (0, I2). Does it imply that the joint distribution of them is N (0, I3)×N (0, I3)×
N (0, I3)? Note that it is easy to argue that joint distribution of any pair of them is indeed N (0, I3) ×
N (0, I3) and thus the only jointly Gaussian distribution that satisfies the requirements is indeed the i.i.d.
triplet. However, the above proposition shows that the general answer is still negative. Here S is a subset
of all R3×3 with determinant zero.

Proof. We will slightly extend the argument of [32]. We will assume familiarity with basic commutatitive
algebra on the level of [33]. Consider an identity expressing the well-known computation of the Gaussian
characteristic function:

1√
2πα2

∫
R
eitx−

x2

2α2 = e−α
2 t2

2 .

Setting β = 1
α2 , changing sign of t we get∫

R
e−itx−

βx2

2 dx =

√
2π

β
e−

t2

2β .
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Differentiating this in β and setting β = 1
2

we get∫
R
x2ke−itx−

x2

4 dx = p2k(t)e
−t2 ,

where p2k(t) is some polynomial of degree 2k with real coefficients (and involving only even powers of
t). For later convenience, we also interchange t and x to get∫

R
t2ke−itx−

t2

4 dt = p2k(x)e−x
2

. (274)

(Identity (274) also follows from the fact that Hermite polynomials times Gaussian density are eigenfunc-
tions of the Fourier transform.)

Next, suppose that there is a polynomial q(t1, . . . , tn) such that q vanishes on S and each monomial
tk11 · · · tknn in q has all k1, . . . , kn even. Then, define the characteristic function

Ψ(t1, . . . , tn)
4
= e−

∑n
k=1 t

2
k

2 + εe−
∑n
k=1 t

2
k

4 q(t1, . . . , tn) . (275)

We will argue that for ε sufficiently small, Ψ is a characteristic function of some (obviously non-Gaussian)
probability density function f on Rn. By taking the inverse Fourier transform we get that

f(x) =
1

(2π)
n
2

e−
‖x‖22

2 (1 + εg(x)) .

where e−
‖x‖22

2 g(x) is the inverse Fourier transform of the second term in (275). Since Ψ(t) is even in
each tj , we conclude that f(x) is real. Since q(0) = 0 (recall that 0 ∈ S) we have Ψ(0) = 1, and thus∫
Rn f = 1. So to prove that f is a valid density function for small ε we only need to show that

sup
x∈Rn
|g(x)| <∞ . (276)

To that end, notice that applying (274) to each monomial
∏
t
2kj
j we get∫

Rn

(
n∏
j=1

t
2kj
j

)
e−i

∑
j tjxj−

‖t‖22
4 dt1 · · · dtn =

(∏
j

p2kj(xj)

)
e−‖x‖

2
2 . (277)

Multiplying the right-hand side by e
‖x‖22

2 we conclude that contribution of each monomial of q to supx |g(x)|
is bounded by

sup
x∈Rn

∣∣∣∣∣
(∏

j

p2kj(xj)

)
e−
‖x‖22

2

∣∣∣∣∣ <∞ .

Since there are finitely many monomials in q, the proof of (276) and of validity of Ψ(t) is done.
We are left to argue that there must necessarily exist polynomial q with required properties. By

assumption there exist some other polynomial q0 vanishing on S. Consider an inclusion of rings

T
4
= R[x21, x

2
2, . . . , x

2
n] ↪→ R[x1, . . . , xn]

where R[x1, . . . , xn] denotes the ring of polynomials with variables x1, . . . , xn and coefficients in R,
and ↪→ denotes an inclusion map. This morphism of rings is obviously finite. Consider ideal (q0) of
R[x1, . . . , xn] and denote as usual by (q0)

c 4= (q0)∩ T its contraction. We argue that (q0)
c 6= (0). Assume

otherwise, then we have (q0)
c = (0) and

√
(q0)

c
= (0) (since

√
(0) = (0) as T is an integral domain).

Take all minimal primes of (q0), call these {pj}, then the radical of (q0) is the intersection of all prime
ideals that contain it, i.e.

√
(q0) = ∩jpj . Then, denoting qj

4
= pcj we get that ∩jqj = (0) in T . By

“prime-avoidance”, cf. [33, Prop. 1.11], we know (0) ⊂ ∩jqj implies that qj ⊂ (0) for some j, hence qj
is the zero ideal for some j. This contradicts “going-up theorem”, cf. [33, Corollary 5.9], so we must
have (q0)

c 6= (0), and hence we may take q as an arbitrary non-zero element of (q0)
c.
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APPENDIX B
ANALYSIS OF THE BERRY-ESSEEN CONSTANT

Proof of Lemma 13. We begin with upper bounding the numerator in (138), i.e.
n∑
j=1

E [|Wj − E [Wj]|3] . (278)

The information density is given by

i(x; y, h) =
1

2
log det (Σ)− 1

2

T∑
j=1

‖yj − hxj‖2 +
1

2
tr
(
yTΣ−1y

)
(279)

where

Σ = Inr +
P

nt
HHT . (280)

Define W = i(x;Y,H) under the distribution Y = Hx+ Z. (279) reduces to

W =
T

2
log det (Σ)− 1

2
‖Z‖2F +

1

2
tr
(
xTHTΣ−1Hx+ 2xTHTΣ−1Z + ZTΣ−1Z

)
(281)

= c(H,Z) +
1

2
tr
(
xTHTΣ−1Hx

)
+ tr

(
xTHTΣ−1Z

)
(282)

where the scalar random variable

c(H,Z) =
T

2
log det(Σ)− 1

2
‖Z‖2F +

1

2
tr(ZTΣ−1Z) (283)

is the sum of all the terms that do not depend on x. Note that

Etr
(
xTHTΣ−1Hx

)
= tr(xTE[HTΣ−1H]x) (284)

Etr
(
xTHTΣ−1Z

)
= 0 . (285)

Therefore, the “centered” information density is

W − E[W ] = c0(H,Z)− E[c(H,Z)] +
1

2
tr
(
xT
(
HTΣ−1H − E[HTΣ−1H]

)
x
)

+ tr
(
xTHTΣ−1Z

)
(286)

= c0(H,Z) + tr(xTAx) + tr(xTB) (287)

where

A =
1

2
(HTΣ−1H − E[HTΣ−1H]) (288)

B = HTΣ−1Z (289)
c0(H,Z) = c(H,Z)− E[c(H,Z)] . (290)

Hence we can upper bound the centered third moment as

E[|W − E[W ]|3] ≤ 3E[|c0(H,Z)|3︸ ︷︷ ︸
S1

+3E[|tr(xTAx)|3]︸ ︷︷ ︸
S2

+3E[|tr(xTB)|3]︸ ︷︷ ︸
S3

. (291)
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We now proceed to upper bound each term individually. First S2,

S2 = E[|tr(xTAx)|3] (292)

=
1

8
E[|xTHTΣ−1Hx− xTE[HTΣ−1H]x|3] (293)

≤ 1

8
E[|xTHTΣ−1Hx+ xTE[HTΣ−1H]x|3] (294)

≤ 1

8
E

[∣∣∣∣2ntP ‖x‖2F
∣∣∣∣3
]

(295)

=
(nt
P

)3
‖x‖6F (296)

where
• (294) follows since HTΣ−1H is PSD, and E[HTΣ−1H] is also PSD as a non-negative combination

of PSD matrices, so that both xTHTΣ−1Hx and xTE[HTΣ−1H]x are non-negative
• (295) follows since HTΣ−1H = V DV T where

D = diag
(
c(Λ2

1), . . . , c(Λ
2
nmin

), 0, . . . , 0
)

(297)

and D ≤ nt
P
Int in the PSD ordering, so

xTHTΣ−1Hx ≤ nt
P
xTV V Tx =

nt
P
‖x‖2F (298)

and

xTE[HTΣ−1H]x ≤ nt
P
xTE[V V T ]x =

nt
P
‖x‖2F . (299)

Now we bound S3 from (291),

S3 = E[|tr(xTB)|3] (300)

= E[tr(xTHTΣ−1Z)|3] (301)

= E

∣∣∣∣∣
nt∑
i=1

T∑
j=1

x̃ijZij
Λi

1 + P
nt

Λ2
i

∣∣∣∣∣
3
 (302)

≤ n2
tT

2

nt∑
i=1

T∑
j=1

E

|x̃ij|3|Zij|3
∣∣∣∣∣ Λi

1 + P
nt

Λ2
i

∣∣∣∣∣
3
 (303)

≤ n2
tT

2

4

(nt
P

)3/2
‖x‖3F (304)

where
• In (302), define x̃ = V Tx and expand the trace.
• (303) follows from the triangle inequality, along with |

∑n
i=1 ai|3 ≤ n2

∑n
i=1 |ai|3.

• (304) we have used E[|Z|3] ≤ 2 for Z ∼ N (0, 1) along with the bound∣∣∣∣ x

1 + ax2

∣∣∣∣ ≤ 1

2
√
a
. (305)

Now notice that
nt∑
i=1

T∑
j=1

|x̃ij|3 ≤

(
nt∑
i=1

T∑
i=1

x̃2ij

)3/2

(306)
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which can be viewed as the norm inequality ‖a‖3 ≤ ‖a‖2 for a ∈ Rd. Finally, we use ‖V Tx‖2F = ‖x‖2F
for any orthogonal matrix V .

For the denominator in (138), the expression for 1
T

Var(Wj) is given in (55)-(59). Note that the final
term (59) is non-negative, so we have the lower bound

n∑
j=1

Var(Wj) ≥ K ′1n+K ′2

n∑
j=1

(
‖xj‖2F − TP

)2 (307)

≥ max

(
nK ′1, K

′
2

n∑
j=1

(
‖xj‖2F − TP

)2) (308)

where

K ′1 = T 2Var (Cr(H,P )) + T

nmin∑
i=1

E
[
VAWGN

(
P

nt
Λ2
i

)]
(309)

K ′2 = T

(
‖x‖2F
nt
− TP

nt

)2

. (310)

Hence K ′1 > 0 whenever P > 0. Note that we use the assumption ‖xn‖2F = nTP freely here, as stated
before. The lower bound on the variance (308), we obtain the upper bound

Bn(xn) ≤
√
n

∑n
j=1K1‖xj‖6F +K2‖xj‖3F +K3(

max
(
nK ′1, K

′
2

∑n
j=1 (‖xj‖2F − TP )

2
))3/2 (311)

where all constant are non-negative. There are two cases based on which term achieves the max in the
dominator. First, suppose

nK ′1 ≥ K ′2

n∑
j=1

(
‖xj‖2F − TP

)2
. (312)

Expanding the square yields

K ′2

n∑
j=1

‖xj‖4F ≤ nK ′1 + nT 2P 2K ′2 . (313)

Thus the terms in the numerator are bounded by
n∑
j=1

‖xi‖6F ≤
(

n
max
i=1
‖xi‖2F

) n∑
j=1

‖xi‖4F ≤ n3/2δ2(K ′1 + T 2P 2K ′2) (314)

n∑
j=1

‖xi‖3F ≤ n1/4

n∑
j=1

‖xi‖4F ≤ n5/4(K ′1 + T 2P 2K ′2) (315)

where (314) uses the assumption ‖xj‖F ≤ δn
1
4 . Applying this to Bn in (311), we see that in this case,

Bn(xn) ≤
√
nδ2C1 + n1/4C2 +

C3

n1/2
(316)

where the constant C1, C2, C3 are non-negative constants.
Now take the case when

K ′2

n∑
j=1

(
‖xj‖2F − TP

)2 ≥ nK ′1 . (317)
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Note that since K ′1 > 0, in the case we must also have K ′2 > 0 for the above inequality to hold. Let a be
defined as follows

a =
T 2P 2

T 2P 2 +
K′1
K′2

. (318)

Here a < 1 since K ′1/K
′
2 > 0. Applying (317) yields

a

n∑
j=1

‖xj‖4F ≥ a

(
n
K ′1
K ′2

+ nT 2P 2

)
(319)

≥ nT 2P 2 . (320)

With this, from (311) we obtain the following upper bound

Bn(xn) ≤
√
n

∑n
j=1K1‖xj‖6F +K2‖xj‖3F +K3

K
′3/2
2

(
(1− a)

∑n
j=1 ‖xj‖4F + a

∑n
j=1 ‖xj‖4F − nT 2P 2

)3/2 (321)

≤
√
n

∑n
j=1K1‖xj‖6F +K2‖xj‖3F +K3

K
′3/2
2

(
(1− a)

∑n
j=1 ‖xj‖4F

)3/2 . (322)

where (322) uses (320). Now, we can upper bound each term in (322) as

K1

∑n
j=1 ‖xj‖6F

K
′3/2
2

(
(1− a)

∑n
j=1 ‖xj‖4F

)3/2 ≤ K1 maxi=1,...,n ‖xi‖2F
K
′3/2
2 (1− a)3/2

(∑n
j=1 ‖xj‖4F

)1/2 (323)

≤ K1δ
2n1/2

n1/2K
′3/2
2 (1− a)3/2(T 2P 2 + nK ′1)

1/2
(324)

K2

∑n
j=1 ‖xj‖3F

K
′3/2
2

(
(1− a)

∑n
j=1 ‖xj‖4F

)3/2 ≤ K2n
1/4

K
′3/2
2 (1− a)3/2

(∑n
j=1 ‖xj‖4F

)3/4 (325)

≤ K2n
1/4

n1/2K
′3/2
2 (1− a)3/2(T 2P 2 + nK ′1)

3/4
(326)

K3

K
′3/2
2

(
(1− a)

∑n
j=1 ‖xj‖4F

)3/2 ≤ K3

n3/2 (K ′2(1− a)(T 2P 2 + nK ′1))
3/2

(327)

where in (325) we have used
∑n

i=1 a
3
i ≤ n1/4 (

∑n
i=1 a

4
i )

3/4 (easily obtained from p-norm inequalities),
and both (323) and (327) use the assumption ‖xj‖F ≤ δn

1
4 . Using these bounds in (322), we obtain

Bn(xn) ≤
√
nδ2C ′1 + n1/4C ′2 +

C ′3
n1/2

(328)

where C ′1, C
′
2, C

′
3 are non-negative constants.

From (316) and (328), we conclude that

Bn(xn) ≤
√
nδ2C ′′1 + n1/4C ′′2 +

C ′′3
n1/2

. (329)
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