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Saddle point in the minimax converse for channel

coding
Yury Polyanskiy

Abstract—A minimax meta-converse has recently been pro-
posed as a simultaneous generalization of a number of classical
results and a tool for the non-asymptotic analysis. In this
paper it is shown that the order of optimizing the input and
output distributions can be interchanged without affecting the
bound. In the course of the proof, a number of auxiliary results
of separate interest are obtained. In particular, it is shown
that the optimization problem is convex and can be solved in
many cases by the symmetry considerations. As a consequence
it is demonstrated that in the latter cases the (multi-letter)
input distribution in information-spectrum (Verdú-Han) converse
bound can be taken to be a (memoryless) product of single-letter
ones. A tight converse for the binary erasure channel is re-derived
by computing the optimal (non-product) output distribution.
For discrete memoryless channels, a conjecture of Poor and
Verdú regarding the tightness of the information spectrum bound
on the error-exponents is resolved in the negative. Concept of
the channel symmetry group is established and relations with
the definitions of symmetry by Gallager and Dobrushin are
investigated.

I. INTRODUCTION

The meta-converse method proposed in [1, Sections III.E-

III.G] has been successfully applied to prove impossibility

results in problems of point-to-point channel coding [1],

communication with feedback [2], energy-efficient transmis-

sion [3], generalized to lossy source compression [4], multiple-

access communication [5], quantum-assisted coding [6] and

several other problems [7]–[9]. Most of these applications

employed a particular variation of the general method – a

minimax converse. The focus of the present paper is to provide

general results on and techniques for exact evaluation of the

minimax converse bound.

Exact evaluation is important from several viewpoints. First,

in the domain of finite blocklength analysis it is preferable

to isolate provably optimal bounds, so that time-consuming

numerical evaluations are carried out only for them. Since the

minimax converse dominates a number of other results [10,

Section 2.7.3], its evaluation becomes crucial. Second, theo-

retically it is required to understand what (multi-letter) input

distribution optimizes the converse bound. This problem is

emphasized by information-spectrum converse bounds, such

as the one by Verdú and Han [11], in which it is not clear

whether even for a memoryless channel one may restrict

optimization to memoryless input distributions. In this paper

this is positively resolved for symmetric channels. Satisfyingly,
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we find out that the optimal (multi-letter) input distribution

coincides with (power of) the capacity achieving one. Next,

for the characterization of the third (logarithmic) term in the

expansion of the maximum achievable rate, see [10, Section

3.4.5] and [7], a common technique of reduction to constant-

composition subcodes results in loose estimates of the third

term. Thus, for this question knowledge of the optimal input

distribution in the minimax converse is also crucial.

Consider an abstract channel coding problem, that is a

random transformation defined by a pair of measurable spaces

of inputs A and outputs B and a conditional probability

measure PY |X : A 7→ B. Let M be a positive integer and

0 ≤ ǫ ≤ 1− 1

M
. (1)

An (M, ǫ) code the random transformation (A,B, PY |X) is a
pair of (possibly randomized) maps f : {1, . . . ,M} → A (the

encoder) and g : B → {1, . . . ,M} (the decoder), satisfying

1

M

M
∑

m=1

P [g(Y ) 6= m|X = f(m)] ≤ ǫ . (2)

In practical applications, we take A and B to be n-fold
Cartesian products of alphabets A and B, and a channel to be

a sequence of random transformations {PY n|Xn : An → Bn}
[11]. In this paper, however, it is preferable not to assume that

A and B have any structure such as a Cartesian product.

Given a pair of distributions P and Q on common mea-

surable space W, a randomized test between those two dis-

tributions is defined by a random transformation PZ|W :
W 7→ {0, 1} where 0 indicates that the test chooses Q. In the

Neyman-Pearson (non-Bayesian) formulation, to a pair of P
and Q we associate the fundamental region of the unit square

defined as

R(P,Q)
△
=

{(α, β) : ∃PZ|W : α = P [Z = 1], β = Q[Z = 1]} . (3)
Clearly, R(P,Q) is closed convex, contains the diagonal and

is fixed by the symmetry (α, β) 7→ (1 − α, 1 − β), see [12,

Section 3.2 and Fig. 3.1]. The lower boundary of R(P,Q) is
denoted by

βα(P,Q)
△
= min{β : (α, β) ∈ R(P,Q)} (4)

= min

∫

PZ|W (1|w)Q(dw) , (5)

where the minimum is over all probability distributions PZ|W
satisfying

PZ|W :

∫

PZ|W (1|w)P (dw) ≥ α . (6)
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Fig. 1: Relation between the hypothesis testing regionR(P,Q)
and the Neyman-Pearson function βα(P,Q) (schematic).

The minimum in (5) is guaranteed to be achieved by the

Neyman-Pearson lemma. In other words, βα(P,Q) gives the

minimum probability of error under hypothesis Q if the

probability of error under hypothesis P is not larger than

1 − α. Because of the mentioned symmetry and closedness,

knowledge of βα(P,Q) is enough to reconstruct the entire

R(P,Q) and, moreover, α 7→ βα(P,Q) is a convex continuous
function on [0, 1]. This is illustrated on Fig. 1.1

In [1] it was shown that a number of classical con-

verse bounds, including Fano’s inequality, Shannon-Gallager-

Berlekamp, Wolfowitz strong converse and Verdú-Han infor-

mation spectrum converse, can be obtained in a unified manner

as a consequence of the meta-converse theorem [1, Theorem

26]. One of such consequences is the following minimax

converse [1]:

Theorem 1 (minimax converse): Every (M, ǫ) code for the

random transformation PY |X satisfies

(

1− ǫ,
1

M

)

∈
⋃

PX

⋂

QY

R(PXY , PX ×QY ) .

In particular,

1

M
≥ inf

PX

sup
QY

β1−ǫ(PXY , PX ×QY ) , (7)

where PX ranges over all input distributions on A, QY ranges

over all output distributions on B and PXY = PXPY |X
denotes the joint distribution on A × B:

PXY (dx, dy) = PX(dx)PY |X(dy|x) . (8)

In this paper we discuss the problem of exact computation

of the minimax problem in (7). This is unlike the majority

of applications of Theorem 1 (for example, those discussed

above) , in which one selects a convenient QY and then

proves a lower bound on βα(PXY , PXQY ) independent of

PX . In essence, such an argument invokes a looser bound (10)

1Note that some authors prefer α to carry meaning of the probability
of error, while β denotes the probability of success. The resulting region,
however, is the same: e.g., compare Fig. 1 with [12, Fig. 3.1].

evaluated at only one QY :

1

M
≥ inf

PX

sup
QY

β1−ǫ(PXY , PX ×QY ) (9)

≥ sup
QY

inf
PX

β1−ǫ(PXY , PX ×QY ) . (10)

Our primary goal is to develop tools to evaluate the optimizing

PX , QY and the values in (9)-(10), instead of relying on

a “lucky guess” of a good QY . The paper is structured as

follows:

1) Section II-A shows that the inner optimization in (9)

is equivalent to solving a composite hypothesis testing

problem. This is a simple consequence of the Wald-

LeCam theory of completeness of Bayes rules in mini-

max decision problems [13], [14].

2) Optimal composite tests correspond exactly to non-

signalling assisted (NSA) codes, thereby explaining the

mysterious result of W. Matthews [6] that NSA codes

achieve the minimax meta-converse bound (9) with

equality (Section II-B).

3) Next we proceed to studying general properties of the

function

PX 7→ βα(PXY , PX ×QY ) .

It is shown that this function is convex (Section III-A),

continuous in the topology of total variation (Sec-

tion III-B) and under regularity assumptions weakly con-

tinuous (Section III-C). It is also shown that functions

of ǫ appearing in the right-hand sides of (9) and (10)

are convex.

4) The bound (10) is simplified by replacing the domain of

the inner optimization with the elements of A (instead of

measures on A) and taking the convex hull (Section IV).

5) For compact (in particular, finite) A a simple conse-

quence of the convexity-continuity results in Section III

and Fan’s minimax theorem [15] is the saddle point

property for βα:

min
PX

max
QY

β1−ǫ(PXY , PX ×QY ) =

max
QY

min
PX

β1−ǫ(PXY , PX ×QY ) . (11)

In Section V the result is extended to non-compact

A. Thus, under regularity conditions the bounds (9)

and (10) are equal.

6) Next, we discuss how the general concept of channel

symmetry can be defined and how it simplifies calcula-

tion of the optimal PX and QY (Section VI-A).

7) Classes of symmetric channels and their inter-relations

are discussed in Section VI-B.

8) The saddle point is computed for the binary symmetric

channel (BSC) in Section VI-C, for the additive white

Gaussian noise (AWGN) channel in Section VI-F and

for the binary erasure channel (BEC) in Section VI-D.

Interestingly, for the latter we discover that the optimal

QY is not a product distribution despite the channel

being memoryless.

9) For discrete memoryless channels (DMC) the bound (9)

exponentially coincides with the sphere-packing bound
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of Shannon, Gallager and Berlekamp [16]. This resolves

the conjecture of Poor-Verdú [17] regarding the tightness

of their bound on the error-exponents (Section VI-E).

10) Discussion and general remarks conclude the paper

(Section VII).

As suggested by the title, our exposition focuses on deriving

the saddle point result (11) in Section V. One reason we

emphasize this result among others is that we see it as a non-

asymptotic analog of the classical characterization of channel

capacity:

C = max
PX

min
QY

D(PY |X ||QY |PX) (12)

= min
QY

max
PX

D(PY |X ||QY |PX) . (13)

In fact, this analogy is to be expected as for memoryless

channels Stein’s lemma shows that

βα(P
n
XY , P

n
XQ

n
Y ) = exp{−nD(PY |X ||QY |PX) + o(n)} .

Notation and assumptions: Throughout this paper we as-

sume that there exists a σ-finite measure µ such that the kernel

PY |X is given by

PY |X [E|x] △
=

∫

E

ρ(y|x)µ(dy) (14)

for some measurable function ρ : A × B → R and that all

singletons {x} and {y} are measurable subsets of A and B.

Criteria for satisfying condition (14) are discussed in [12,

Section A.4]. We also denote by M(A) the set of all finite

signed (countably-additive) measures on A, M+(A) the subset
of positive measures, and by M1(A) the set of all probability

measures. Absolute continuity of measure µ with respect to

ν is denoted as µ ≪ ν, and we write µ ∼ ν for the case

when µ ≪ ν and ν ≪ µ. We specify distributions of random

variables as X ∼ PX , e.g. W ∼ N (0, 1) defines W to be

standard Gaussian.

II. COMPOSITE HYPOTHESIS TESTING PROBLEM

Fix a distribution PX and a random transformation PY |X
and consider a (simple vs. composite) hypothesis testing

problem:

H0 : (X,Y ) ∼ PXY (15)

H1 : X ∼ PX and independent of Y , (16)

that is under H1 the pair (X,Y ) can be distributed according

to PX × QY with an arbitrary QY . Following the minimax

formulation to each randomized test PZ|XY : A×B → {0, 1}
we associate a pair of numbers

α = PXY [Z = 1] , (17)

β = sup
QY

PXQY [Z = 1] , (18)

where we adopted an intuitive notation

PXY [Z = 1] =

∫

A

∫

B

PZ|XY (1|x, y)PX(dx)PY |X(dy|x)
(19)

PXQY [Z = 1] =

∫

A

∫

B

PZ|XY (1|x, y)PX(dx)QY (dy) .

(20)

Analogous to (3) we define the fundamental region associ-

ated to this hypothesis testing problem as

R̃(PX , PY |X) = {(α, β) : ∃PZ|XY s.t. (17)-(18) hold}
and its lower boundary

β̃α(PX , PY |X)
△
= inf{β : (α, β) ∈ R̃(PX , PY |X)} (21)

To describe region R̃(PX , PY |X), first notice that it clearly
contains the diagonal {(α0, α0), α0 ∈ [0, 1]}, which corre-

sponds to trivial tests P ′
Z|XY (1|x, y) = α0. Next, for an

arbitrary test PZ|XY we may consider

P ′
Z|XY = (1 − λ)PZ|XY + λα0 , λ ∈ [0, 1] ,

which demonstrates that R contains a line segment connecting

any of its points to a point (α0, α0). Hence, R does not have

“holes” (formally, has diagonal as its strong deformation re-

tract) and it suffices to describe its upper and lower boundary.

In this paper we will only be concerned with the lower

boundary of R̃, described by (21). For completeness, though,

we briefly inspect the upper boundary, whose height at α
corresponds to finding

sup
PZ|XY

sup
QY

PXQY [Z = 1] = sup
QY

sup
PZ|XY

PXQY [Z = 1]

taken over all tests with PXY [Z = 1] ≥ α. It is possible to

show that this supremum for α > 0 is given by

α 7→ sup
y0∈B

min

(

α

PY (y0)
, 1

)

.

Thus, when miny0
PY (y0) exists the upper boundary consists

of two linear segments (0, 0) → (minPY (y0), 1) → (1, 1)
and is contained inside R̃. If infy0

PY (y0) = 0 not achievable

at any y0 then, the boundary is (0, 0) → (0, 1) → (1, 1) but

the vertical segment (except for the origin) does not belong to

R2. Thus, the portion of R̃ above the diagonal is convex but

maybe non-closed. Also, we note that unlike R the region R̃
does not have the symmetry (α, β) 7→ (1−α, 1−β). This fact
is especially clear if one considers an example with |A| = 1.
The lower boundary, parametrized by α 7→ β̃α, is not as

elementary. It is also convex, since for any two points (αj , βj),
j = 0, 1 and corresponding tests PZj |XY we may consider

PZ|XY = λPZ1|XY + (1− λ)PZ0|XY

which according to (17)-(18) achieves α = λα1 + (1 − λ)α0

and

β ≤ λβ1 + (1 − λ)β0 .

Thus, function β̃α is convex on [0, 1] and thus continuous on

[0, 1). In fact, we show next it is also continuous at α = 1
and the lower boundary (α, β̃α) is contained in R.

To that end consider the following result:

Proposition 2: For any test PZ|XY we have

sup
QY

PXQY [Z = 1] = sup
y∈B

∫

A

PZ|XY (1|x, y)PX(dx) . (22)

2For example, |A| = 1 and PY is geometric distribution on positive
integers.
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Furthermore, any test PZ|XY can be modified to PZ′|XY such

that

PXY [Z
′ = 1] = PXY [Z = 1] (23)

sup
QY

PXQY [Z
′ = 1] ≤ sup

QY

PXQY [Z = 1] (24)

and PZ′|XY is regular in the sense that

sup
QY

PXQY [Z
′ = 1] = esssup

y∈B

∫

A

PZ|XY (1|x, y)PX(dx)

(25)

= sup
QY ≪µ

PXQY [Z = 1] (26)

where essential supremum esssup is taken with respect to µ.
Proof: (22) follows by linearity of QY 7→ PXQY [Z = 1]

and assumption of measurability of singletons {y}. Denote

h(y)
△
=

∫

A

PZ|XY (1|x, y)PX(dx) .

Since h is measurable, e.g. [18, Proposition 1.6.9] , its essential

supremum is well defined. We set

PZ′|XY (1|x, y)
△
= PZ|XY (1|x, y)1{h(y) ≤ esssuph} .

Since PZ′|XY (1|x, y) ≤ PZ|XY (1|x, y) everywhere and

equality holds PX × µ-almost everywhere, the (23)-(24) are

satisfied. Then (25) follows from (22) applied to PZ′|XY .

From (25) we obtain (26) by noticing that L∞(B, µ) is the
dual of L1(B, µ) and thus for any f ∈ L∞(B, µ) we have

esssup |f | △
= ||f ||∞ = sup

g:||g||1=1

∫

f

g(y)f(y)µ(dy) ,

while every g ∈ L1 is naturally identified with QY ≪ µ.
By Proposition (2) we conclude that for the purpose of

evaluating β̃α(PX , PY |X) we may replace each PZ|XY with

its regularization PZ′|XY and restrict supremization in (21) to

QY ≪ µ. Thus, the set of regularized tests PZ|XY is naturally

identified with a closed convex subset of L∞(A×B, PX ×µ),
while the set of PX ×QY (with QY ≪ µ) is identified with

a closed convex subset of L1(A × B, PX ×QY ). Considering
the standard dual pairing between these two spaces and a

standard weak-∗ compactness result of Banach and Alaoglu

we conclude that the set of all tests is convex and compact in

the topology induced by L1, cf. [12, Theorem A.5.1]. Thus,

the infimum in (21) is attained and we obtain a simplified

characterization:

β̃α(PX , PY |X)
△
= min{β : (α, β) ∈ R̃(PX , PY |X)}(27)
= min

PZ|XY

sup
QY ≪µ

PXQY [Z = 1] , (28)

where the minimum is over all non-negative L∞ functions

(x, y) 7→ PZ|XY (1|x, y) satisfying
∫

A

∫

B

PZ|XY (1|x, y)PX(dx)PY |X(dy|x) ≥ α . (29)

Correspondingly, R̃ contains its lower boundary, and function

α 7→ β̃α is convex and continuous on [0, 1].

A. Relation to minimax converse

Composite hypothesis testing region can be used to bound

performance of error-correcting codes as follows:

Theorem 3: Every (M, ǫ) code for the random transforma-

tion PY |X satisfies

1

M
≥ inf

PX

β̃1−ǫ(PX , PY |X) , (30)

where PX ranges over all input distributions on A.

Proof: Let PX be the distribution induced by the encoder

f with message equiprobable on {1, . . . ,M}. Derivation of

Theorem 1 in [1] consisted of noticing that any code (f, g)
defines a hypothesis test

PZ|XY (1|x, y) = 1{f(x) = g(y)}
for PXY vs. PXQY with parameters α ≥ 1− ǫ and β = 1

M .

Clearly this test has the same parameters for the compos-

ite hypothesis test (15)-(16). Thus, (1 − ǫ, 1
M
) belongs to

R̃(PX , PY |X) and must satisfy (30).

Immediately from the definition we notice that

β̃α(PX , PY |X) ≥ sup
QY

βα(PXY , PXQY ) .

Thus Theorem 3 is at least as strong as Theorem 1. It turns

out the two are equivalent:

Theorem 4: For any PX and PY |X the lower boundaries of

R̃(PX , PY |X) and
⋂

QY
R(PXY , PXQY ) coincide:

β̃α(PX , PY |X) = sup
QY

βα(PXY , PXQY ) . (31)

Proof: In fact, (31) simply expresses the classical fact

in statistical decision theory that an optimal minimax rule

can be arbitrarily well approximated in the class of Bayes

decision rules. Indeed according to (28), among the decision

rules PZ|XY constrained by (29) one seeks the one minimizing

the worst case risk. Notice, however by linearity of the risk

function in QY taking a prior on the set of QY ’s is equivalent

to choosing a prior concentrated at a single point (the average).

Hence the left-hand side of (31) is just the worst-case Bayes

risk.

When the space B of values of Y is finite then the set

of distributions QY is compact. Thus, computation of the

minimax tradeoff β̃α is facilitated by the existence of the

least favorable prior QY , cf. [12, Section 3.8]. To satisfy the

regularity conditions in the general case, we first show that

just like in (26) it is sufficient to restrict attention to

QY ≪ µ

in the right-hand side of (31). Indeed, for any QY 6≪ µ by the

Lebesgue decomposition there exist probability measures Q1,

Q2, a number 0 < λ ≤ 1 and a pair of disjoint measurable

sets S1, S2 such that Q1 ≪ µ, Q2 ⊥ µ and

QY = λQ1 + (1− λ)Q2

and Q1[S1] = Q2[S2] = 1. Thus, any test PZ|XY can be

improved by restricting to S1:

PZ|XY (1|x, y) → PZ|XY (1|x, y)1{y ∈ S1}



5

which does not change PXY [Z = 1] (since PY ≪ µ) but

possibly reduces PXQY [Z = 1]. But then

PXQY [Z = 1] = λPXQ1[Z = 1] < PXQ1[Z = 1] ,

and the measure Q1 achieves a strictly larger β compared to

QY . Thus, to any QY 6≪ µ there is a Q1 ≪ µ which is less

favorable.

Next the space of measures PX × QY ≪ PX × µ can be

identified with a convex subset of a complete metric space

L1(A × B, PX × µ), while the set of PZ|XY with a convex

subset of L∞(A × B, PX × µ), corresponding to functions

taking values in [0, 1]. By σ-finiteness of PX × µ and a

theorem of Banach-Alaoglu the set of PZ|XY is thus weak-

∗ compact; see also [12, Theorem A.5.1]. The result then

follows from the completeness of the (closure of the) family

of Bayes decision functions [13, Chapter 3] and [14, Section

5]. Indeed, as explained above βα(PXY , PXQY ) corresponds
to the Bayes test for a prior QY , while by completeness such

tests approach β̃α(PX , PY |X) arbitrarily close. Alternatively,

by weak compactness of {PZ|XY }, (31) follows directly by

the Fan’s minimax theorem [15] applied to (28).

B. Relation to non-signalling assisted codes

Since for any test PZ|XY we have (22) it makes sense to

consider the following:

Definition 1: A randomized test PZ|XY : A × B → {0, 1}
is said to be PX -balanced if the function

y 7→
∫

A

PZ|XY (1|x, y)PX(dx)

is constant.

Remark: For deterministic tests Z = 1{(x, y) ∈ E}, PX -

balancedness means that the slices of the critical region {x :
(x, y0) ∈ E} have equal PX measure.

It can be seen that because of (22) every non-balanced test

can be modified (by increasing some of the PZ|XY (1|x, y)) to
a PX -balanced one without changing the

sup
QY

PXQY [Z = 1] (32)

and without decreasing PXY [Z = 1]. This proves:
Theorem 5: In the computation of β̃α(PX , PY |X) one may

restrict optimization to PX -balanced tests only:

R̃(PX , PY |X) =

{(α, β) : ∃PX -balanced PZ|XY s.t. (17)-(18) hold}(33)

As explained in [6, Section III] (see equation (36) in

particular), every PX and a PX -balanced PZ|XY can be

converted into a so-called non-signalling assisted (NSA) code

for the channel PY |X with number of codewords equal to the

reciprocal of (32) and the probability of successful decoding

equal to PXY [Z = 1]. Thus, we see that the maximal number

of codewordsM∗(ǫ) in an NSA code decodable with (average)

probability of error ǫ satisfies

M∗(ǫ) ≥
⌊

1

β̃1−ǫ(PX , PY |X)

⌋

. (34)

On the other hand, it is easy to show that the minimax

converse (7) also applies to the NSA codes. Overall, taking

supremum over all PX in (34) and applying Theorem 4 we

get

M∗(ǫ) =

⌊

1

infPX
supQY

β1−ǫ(PXY , PX ×QY ))

⌋

.

For the case of finite A and B, this result was shown in [6]

by indirect arguments relying on the duality in linear pro-

gramming. Here, however, we see that NSA codes are simply

equivalent to PX -balanced composite tests, which by virtue

of Theorem 4 are in turn equivalent to solving the original

minimax converse (7).

III. CONVEXITY AND CONTINUITY PROPERTIES OF βα

A. Convexity in PX

Each of the regions R(PXY , PXQY ) is convex. However,

the union of such regions need not be convex, unless there is a

special relationship between the sets. In this section we show

that the latter is indeed the case. The following is a key new

ingredient of this paper:

Theorem 6: For every PX let PXY and QXY denote the

joint distributions on A × B defined as:

PXY (dx dy)
△
= PX(dx)PY |X(dy|x) (35)

QXY (dx dy)
△
= PX(dx)QY |X(dy|x) . (36)

Then the function

(α, PX) → βα(PXY , QXY ) (37)

is convex.

Proof: Take a finite convex combination of points in the

domain of the function:

(α, PX) =
∑

j

λj · (αj , Pj) ,

with
∑

j λj = 1 and λj > 0. Let PZj |XY be the tests

achieving the optimal value βj for each j. Note that Pj ≪ PX

and thus there exist Radon-Nikodym derivatives
dPj

dPX
. Define

a new test

PZ|XY (1|x, y) =
∑

j

PZj |XY (1|x, y)λj
dPj

dPX
(x) . (38)

Since
∑

j

λj
dPj

dPX
(x) = 1

for PX -almost all x the value in the right-hand side of (38) is

between 0 and 1 and hence the test PZ|XY is well defined. No-

tice that by the definition of
dPj

dPX
we have in the notation (19)

PXY [Z = 1]

=

∫

A

∫

B

PZ|XY (1|x, y)PY |X(dy|x)PX(dx) (39)

=
∑

j

λj

∫

A

∫

B

PZj |XY (1|x, y)PY |X(dy|x)Pj(dx)(40)

=
∑

j

λjαj (41)

= α (42)
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Similarly, replacing PY |X with QY |X we obtain

QXY [Z = 1] =
∑

j

λjβj .

Thus, we have shown

βα(PXY , QXY ) ≤
∑

j

λjβj ,

which establishes convexity of (37).

From the general properties of convex functions we obtain

the following:

Corollary 7: Let Q be a family of random transformations

QY |X : A → B and Π be a convex set of probability measures

on A. Then

(α, PX) 7→ sup
QY |X∈Q

βα(PXY , QXY ) (43)

α 7→ inf
PX∈Π

sup
QY |X∈Q

βα(PXY , QXY ) (44)

are convex.

We can restate the results in terms of the unions and

intersections of the regions R(PXY , QXY ) as follows:
Theorem 8: Let Π be a convex set of probability measures

on A. Let QY |X : A → B be a random transformation. For ev-

ery PX let PXY and QXY denote the joint distributions (35)-

(36) on A × B. Then the set
⋃

PX∈Π

R(PXY , QXY ) (45)

is convex. Moreover, for any family Q of random transforma-

tions QY |X : A → B the set

⋃

PX∈Π

⋂

QY |X∈Q
R(PXY , QXY ) (46)

is convex.

Proof: By the symmetry (α, β) ↔ (1 − α, 1 − β) it

is sufficient to prove convexity of the union of the upper-

extended regions:

R′(PXY , QXY )
△
=

⋃

(α,β)∈R(PXY ,QXY )

{(α, β′) : β′ ≥ β} ,

which is precisely the epigraph of α 7→ βα(PXY , QXY ),
see [19]. Next notice that the set

⋃

PX∈Π

R′(PXY , QXY )

is in fact a projection of the epigraph of the convex function

(Theorem 6)

(α, PX) 7→ βα(PXY , QXY )

defined on [0, 1]×Π× [0, 1] onto the first and third coordinate.

The projection being linear must preserve the convexity.

Convexity of (46) follows from the fact that the convexi-

fying test (38) did not in fact depend on the kernel QY |X .

For the purpose of this paper the following application of

Theorems 6 and 8 is important:

Theorem 9: The set
⋃

PX

⋂

QY

R(PXY , PXQY ) (47)

is convex. Consequently,

α 7→ inf
PX

β̃α(PX , PY |X) (48)

is a convex function on [0, 1].
Proof: Convexity of (47) is established by (46). By

Theorem 4 the function in (48) is a lower boundary of the

closure of (47), which must be convex.

B. Continuity in PX : general input space

We next consider the continuity properties of

βα(PXY , PXY ) as a function of PX .

Theorem 10: For any QY and α ∈ [0, 1] the functions

PX 7→ βα(PXY , PXQY ) (49)

PX 7→ β̃α(PX , PY |X) (50)

are continuous in the topology of total variation.

Proof: If QY 6≪ µ then we can replace QY with the

absolutely continuous part of the latter without affecting the

βα(PXY , PXQY ), thus turning QY into a sub-probability

measure. So we assume QY is given by

QY [E] =

∫

E

q(y)µ(dy) , ∀E ⊂ B ,

for some q ≥ 0 with ||q||1 ≤ 1 in L1(B, µ).
First we consider the case α = 1. No matter what QY is

the optimal test PZ|XY achieving β1(PXY , PXQY ) is

PZ|XY (1|x, y) = 1{ρ(y|x) > 0} .
Indeed, consider reducing the value of PZ|XY (1|x, y) on any

E ⊂ A × B with PX × µ[E] > 0. Then for some ǫ > 0 we

must have

(PXµ)[E ∩ {ρ(Y |X) > ǫ}] > 0 ,

which in turn implies, cf. (14), that

PXY [E∩{ρ(Y |X) > ǫ}] > ǫ·(PXµ)[E∩{ρ(Y |X) > ǫ}] > 0

and thus

PXY [{ρ(Y |X) > 0} \ E] < 1 .

Thus, we have

β1(PXY , PXQY ) = E [g(X)] , (51)

where

g(x) =

∫

B

1{ρ(y|x) > 0}q(y)µ(dy) .

Since 0 ≤ g ≤ 1, from (51) we obtain for

|β1(PXY , PXQY )−β1(P ′
XY , P

′
XQY )| ≤ ||PX−P ′

X || , (52)
where || · || denotes the total variation distance and P ′

XY – the

joint probability distribution on A × B defined as in (8) with

PX(dx) replaced by P ′
X(dx). Thus continuity of β1 follows

from (52) and continuity of β̃1 follows from Theorem 4 and

the fact that (52) holds uniformly for all QY .
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Now fix α ∈ (0, 1). Note that if α ∈ (ǫ, 1 − ǫ) for some

ǫ > 0 then from the definition (5) it follows that

βα−ǫ(P,Q) − ǫ ≤ βα(P
′, Q′) (53)

≤ βα+ǫ(P,Q) + ǫ (54)

for every P, P ′, Q,Q′ with

||P − P ′|| ≤ ǫ, ||Q−Q′|| ≤ ǫ .

Now, since

||PXY − P ′
XY || = ||PX − P ′

X || (55)

||PXQY − P ′
XQY || = ||PX − P ′

X || (56)

we have from (53)-(54) and continuity of α 7→
βα(PXY , PXQY ) that

βα(P
′
XY , P

′
XQY ) → βα(PXY , PXQY )

as P ′
X → PX .

To prove continuity of PX 7→ β̃α(PX , PY |X) we consider

PX and P ′
X with

||PX − P ′
X || ≤ ǫ .

Then by taking supremum over QY in the obvious inequality

PXQY [Z = 1]− ǫ ≤ P ′
XQY [Z = 1] ≤ PXQY [Z = 1] + ǫ

we prove the analog of (53)-(54) for β̃α:

β̃α−ǫ(PX , PY |X)− ǫ ≤ βα(P
′
X , PY |X) (57)

≤ β̃α+ǫ(PX , PY |X) + ǫ . (58)

The statement follows by the continuity of α 7→
β̃α(PX , PY |X).
Note that on a finite-dimensional simplex there is only one

topology that is compatible with the linear structure. Thus no

matter how weak we choose the topology on the space of

probability measures, we have:

Corollary 11: On every finite-dimensional simplex of prob-

ability distributions on A the functions (49) and (50) are

continuous (in the trace of any topology compatible with the

linear structure).

Remark: Or, equivalently, the map

(λ, µ) 7→ βα(λP + (1− λ)P ′, µQ+ (1− µ)Q′)

is continuous on [0, 1]× [0, 1].
Note that every convex and locally upper-bounded function

is continuous on the interior of its domain. Thus, since 0 ≤
βα(PXY , QXY ) ≤ 1 one may naturally wonder whether it

is possible to show continuity of βα from the convexity. It

turns out this approach will not work for the subtle reason

that the interior of M1(A) is empty whenever A is infinite. In

fact, in the vector space M(A) even the algebraic interior of

a larger M+(A) is empty. To see this, consider any measure

ν. If ν is purely atomic with finitely many atoms, then since

|A| = ∞ there is a singleton {x0} and a δ-measure µ on it

such that ν − λµ 6∈ M+ for any λ > 0. Otherwise, in the

space L1(A, ν) there exists an unbounded integrable function

f , e.g. [18, Theorem 2.3.19], and hence setting

dµ = f · dν

we again conclude ν − λµ 6∈ M+ for any λ > 0. Thus

unlike the finite-dimensional case, every positive (in particular,

probability) measure is a boundary point in any topology

on the space of measures. That is why it is not generally

possible to derive continuity onM1 by a simple convexity and

local boundedness argument, and we had to give an explicit

argument for Theorem 10. Furthermore, in the next section we

show an example of the weak-discontinuity in βα.

C. Continuity in PX : topological input space

Our next goal will be to extend continuity of βα on

M1(A) to weaker topologies. One possible choice would be

to investigate the topology of pointwise convergence on all

measurable sets, known as strong topology or τ -topology,
cf. [20]. In this topology Pn → P if

Pn[E] → P [E] (59)

for any measurable set E ⊂ A. The advantage of this definition

is that it does not put any topological assumptions on the input

space A itself. There are, however, several disadvantages. First,

requirement (59) although much weaker than ||Pn − P || → 0
is still very strong. For example, the sequence N (0, 1/n) of

shrinking Gaussians does not converge to δ0, a Dirac-delta

at zero. The second problem is that typically the majority of

τ -open sets does not belong to the σ-algebra F generated by

BE,I = {PX : PX [E] ∈ I} , (60)

where E is a measurable subset of A and I – an open subset

of [0, 1]3. The importance of F is that then a measurable map

PX|W : W → M1(A) is precisely equivalent to defining a

random transformation PX|W : W → A. Thus since τ 6⊆ F
we cannot even guarantee that a τ -continuous function F :
M(A) → R induces a measurable map

w 7→ F (PX|W=w) (61)

on W.

To resolve these problems we consider a much weaker

notion of convergence, whose definition requires that the input

space A itself be topological. The weak (or, more properly,

weak-∗) topology on M1(A) is defined as the weakest topol-

ogy under which the maps

PX 7→
∫

A

f(x)PX(dx) ,

are continuous for any continuous bounded f . In the case when
A is Polish, the Borel σ-algebra of this topology coincides with
σ-algebra F and N (0, 1/n) → δ0.
Is (49) a continuous function in the weak topology? The

answer is negative:

Example (weak-discontinuity of βα). Let A = R, B –

arbitrary space with three probability distributions P0 6= P1

and QY on it. Then, consider

PY |X [·|x] = P0[·]1{x = 0}+ P1[·]1{x 6= 0} .

3A simple argument shows that in the case when A is Polish, the τ -topology
has cardinality at least 2R while |F| = |R|.
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Let PXn
be a uniform distribution on [−1/n, 1/n]. Then,

clearly PXn
→ PX , where PX = δ0 – a Dirac delta at 0.

Thus, we have for any α ∈ [0, 1]:

βα(PXnY , PXn
QY ) =

βα(P1, QY ) 6→ βα(PXY , PXQY ) = βα(P0, QY ) .(62)

This example demonstrates, of course, that in order for βα
to be weakly continuous, we need to put some continuity

requirements on the kernel PY |X itself. This is done in the

following:

Theorem 12: For every PX let PXY and QXY denote the

joint distributions (35)-(36) on A × B. Denote by f ′(y|x) the
µ-density of the absolutely continuous component of QY |X=x

in the Lebesgue decomposition of the latter. Assume that for

any γ ≥ 0 the function

x 7→ ℓ(x, γ) =

∫

B

|γρ(y|x)− f ′(y|x)|+µ(dy) (63)

is continuous. Then in the weak topology on M1(A) the

function

PX 7→ βα(PXY , QXY )

is continuous for α ∈ [0, 1) and lower semicontinuous for

α = 1.
Proof: Denote the Fenchel-Legendre conjugate of βα as

β∗
γ(P,Q)

△
= sup

0≤α≤1
γα− βα(P,Q) . (64)

By the general Fenchel-Legendre duality and continuity-

convexity of α 7→ βα we have

βα(P,Q) = sup
γ≥0

γα− β∗
γ(P,Q) . (65)

From the definition (5) we derive, as usual replacing Q with

Q≪ P if necessary,

β∗
γ(P,Q) =

∫

W

∣

∣

∣

∣

γ − dQ

dP

∣

∣

∣

∣

+

P (dw) .

Thus, in our context we get

β∗
γ(PXY , QXY ) =

∫

A

ℓ(x, γ)PX(dx) , (66)

which is weakly continuous in PX by assumption on ℓ(x, γ).
Then lower-semicontinuity of (12) follows by characteriza-

tion (65).

To show continuity for α < 1 denote by G the space of all

maps g : [0, 1) → [0, 1] corresponding to α 7→ βα for some

(P,Q):

G △
= {f : ∃(P,Q) : f(α) = βα(P,Q)} ,

and by G∗ the space of all maps g∗ : R+ → R
+ corresponding

to γ 7→ β∗
γ for some (P,Q):

G∗ △
= {f∗ : ∃(P,Q) : f∗(γ) = β∗

γ(P,Q)} .
Endow both G and G∗ with the topologies of pointwise

convergence. Then, we can write map (12) as composition:

M1(A)
β∗
γ−→ G∗ T−→ G ,

where the first map is PX 7→ β∗
γ(PXY , QXY ) and the

second is given by (65). Weak continuity of the first map

follows from (66) and continuity of the second map from the

following:

Lemma 13: Operator T : G∗ → G defined by (65) is

continuous.

Proof: Consider α < 1 and let f = T (f∗), then

f(α)
△
= sup

γ≥0
γα− f∗(γ) (67)

= max
γ≥0

γα− f∗(γ) (68)

= max
0≤γ≤ 1

1−α

γα− f∗(γ) , (69)

where (68) follows from the fact that the supremum must be

achieved by any γ which defines a line touching the graph of

f at α (i.e., γ is a subgradient of f at α), and (69) is because

the slope γ cannot exceed
1−f(α)
1−α for otherwise f(1−)

△
=

limαր1 f(α) > 1.
On the other hand every f∗ ∈ G∗ is a convex conjugate

of some f ∈ G. Thus if we take γ > γ1 and let α∗ be the

maximizer in the definition

f∗(γ) = max
α

γα− f(α) ,

then we have

f∗(γ)− f∗(γ1) ≤ γα∗ − f(α∗)− (γ1α∗ − f(α∗))(70)

= (γ − γ1)α∗ (71)

≤ γ − γ1 , (72)

where (70) is by taking a suboptimal α = α∗ for f∗(γ1)
and (72) is because 0 ≤ α∗ ≤ 1. Thus, every function in G∗

is Lipschitz with constant 1. Moreover, since f∗(0) = 0, we
also have

f∗(γ) ≤ γ , ∀γ ≥ 0 .

Then by Arzela-Ascoli theorem, the pointwise convergence in

G∗ coincides with the topology of uniform convergence on

compacts. By representation (69) the operator T : G∗ → G is

continuous in the latter.

Finally, before closing this section we demonstrate that

in the conditions of Theorem 12 there indeed can be a

discontinuity at α = 1.
Example (discontinuity at α = 1). Let A = B = R and let

the random transformation PY |X be defined via

Y = XW ,

where W ∼ N (0, 1) is standard Gaussian. Let QY = N (0, 1)
and

µ(dy) = δ0(dy) + dy ,

where dy stands for a Lebesgue measure. Conditions of

Theorem 12 are satisfied since the function

ℓ(x) =











1√
2π

∫

B

∣

∣

∣

∣

γ
|x|e

− y2

2x2 − e−
y2

2

∣

∣

∣

∣

+

dy , x 6= 0

γ , x = 0

is continuous, which is verified by applying dominated con-

vergence for xn → x 6= 0 and an explicit calculation
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for xn → 0. On the other hand, consider the sequence

PXn
= N (0, 1/n) → PX = δ0. We have

PXnY ∼ PXn
QY ∼ Leb(R2) ,

where Leb denotes a Lebesgue measure. Thus

β1(PXnY , PXn
QY ) = 1 ,

whereas

β1(PXY , PXQY ) = 0 ,

achieved by a simple test {Y = 0}.

IV. MAXIMIN CONVERSE

In this section we demonstrate that computation of

the inner optimization in the maximin version (10) can

be significantly simplified. By Theorem 8 we know that
⋃

PX
R(PXY , PXQY ) is a convex set. It turns out that its

extremal points correspond to the extremal measures on A:

Theorem 14: The union of R(PXY , PXQY ) taken over all

distributions on A equals the convex hull, co(·), of the union

over all single-point measures:

⋃

PX

R(PXY , PXQY ) = co

(

⋃

x∈A

R(PY |X=x, QY )

)

. (73)

Consequently,

inf
PX

βα(PXY , PXQY ) = (α 7→ inf
x∈A

βα(PY |X=x, QY )
∗∗ ,

(74)

where (·)∗∗ denotes the operation of taking a convex envelope

of a function (double Fenchel-Legendre conjugation).

Proof: First, notice that (74) follows from (73) since

the functions appearing on both sides of (74) are the lower

boundaries of the closures of the corresponding sets in (73).

Next, we show

⋃

PX

R(PXY , PXQY ) ⊆ co

(

⋃

x∈A

R(PY |X=x, QY )

)

. (75)

Indeed, consider any test PZ|XY and distribution PX . Define

α(x)
△
=

∫

B

PZ|XY (1|x, y)dPY |X=x(y) , (76)

β(x)
△
=

∫

B

PZ|XY (1|x, y)dQY (y) . (77)

Clearly we have

(α(x), β(x)) ∈ R(PY |X=x, QY ) , (78)

by the definition of R(PY |X=x, QY ). Averaging (78) over PX

we prove (75).

Conversely, consider any point

(α, β) ∈ co

(

⋃

x∈A

R(PY |X=x, QY )

)

.

By Caratheodory’s theorem there exist xi ∈ A, λi ∈ [0, 1] and
tests PZi|Y for each i = 1, 2, 3 such that

∑

i λi = 1 and

3
∑

i=1

λiP [Zi = 1|X = xi] = α , (79)

3
∑

i=1

λiQ[Zi = 1] = β , (80)

where we adopted the notation (19)-(20). Thus the test

PZ|XY (1|x, y) =
{

PZi|Y (1|y) , x = xi, i = 1, 2 or 3 ,

0 , otherwise.

proves that (α, β) belongs to R(PXY , PXQY ) with

PX [·] =
3
∑

i=1

λi1{xi ∈ ·} .

V. SADDLE POINT

The function βα(PXY , PXQY ) is clearly concave in QY

and was shown to be convex in PX by Theorem 6. Thus,

it is natural to expect that the sup and inf in (9)-(10) are

interchangeable. In this section we prove this under various

assumptions.

A. Compact A

If the spaces A and B are finite then the infima and suprema

in (9)-(10) are achievable and we have by the minimax

theorem and continuity of βα (Corollary 11):

min
PX

max
QY

βα(PXY , PXQY ) = max
QY

min
PX

βα(PXY , PXQY ) ,

(81)

i.e. the function (PX , QY ) 7→ βα(PXY , PXQY ) has a saddle

point (P ∗
X , Q

∗
Y ) found by solving the outer optimizations

in (81).

We next extend this result to a slightly more general setting:

Theorem 15: Let A be compact and the random transforma-

tion PY |X satisfy conditions of Theorem 12 for any QY ≪ µ.
Then for any α ∈ [0, 1] we have

min
PX

sup
QY

βα(PXY , PXQY ) = sup
QY

min
PX

βα(PXY , PXQY ) .

(82)

Proof: As shown in the proof of Theorem 4 we may

restrict to QY ≪ µ on both sides of (82). Since µ is σ-finite,
there is QY ∼ µ and hence for α = 1 both sides of (82) are

equal to 1. For α < 1 the result follows by Fan’s minimax

theorem [15] whose conditions are satisfied by concavity in

QY (obvious), convexity in PX (Theorem 6) and continuity

in PX (Theorem 12).

Conditions of Theorem 15 may be verified with the help of

the following:

Proposition 16: Let A be a first-countable topological space

and a random transformation PY |X be such that Radon-

Nikodym derivatives ρ(·|x) in (14) satisfy:

1) x 7→ ρ(y|x) is continuous for µ-almost all y and
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2) for every x there is a neighborhood U of x and µ-
integrable function g such that

ρ(y|x) ≤ g(y) ∀x ∈ U, y ∈ B . (83)

Then for any measurable function q : B → R the map

x 7→ ℓ(x, q)
△
=

∫

B

|ρ(y|x)− q(y)|+µ(dy) (84)

is continuous.

Proof: To show that (84) is continuous simply apply

the dominated convergence theorem in the neighborhood U
majorizing |ρ(y|x)− q(y)|+ by g(y) via (83).

B. Non-compact A

Next, we replace the condition of compactness on A in The-

orem 15 with local compactness (at the expense of additional

assumptions on PY |X ). Recall that a function f on a Hausdorff

topological space A is said to converge to a at infinity if for

every ǫ there is a compact Kǫ ⊆ A such that

sup
x/∈Kǫ

|f(x)− a| < ǫ .

Definition 2: A random transformation PY |X : A → B

satisfies the regularity assumptions if

1) A is a second-countable locally compact Hausdorff topo-

logical space;

2) for every q ∈ L1(B, µ) the map ℓ(x, q), see (84), is

continuous in x and converges to 1 at infinity.

Topological conditions on A are satisfied for any open subset

of a compact Polish space. Continuity of (84) can be verified

via Proposition 16. Regarding the convergence at infinity the

following is a simple criterion:

Proposition 17: If there exist sequences of compact sets

Kn ⊆ A and monotonically increasing measurable sets Bn ր
B such that

sup
x 6∈Kn

PY |X(Bn|x) → 0 n→ ∞ . (85)

then ℓ(x, q), see (84), converges to 1 as x → ∞ for any

q ∈ L1(B, µ).
Example: If A = B = R

d, µ is Lebesgue and ρ(y|x) =
(2π)−d/2e−||y−x||2/2 we can take Kn = {x : ||x|| ≤ 2n},
Bn = {y : ||y|| ≤ n}.

Proof: Consider the chain:
∣

∣

∣

∣

∫

B

min{ρ(y|x), q(y)}µ(dy)
∣

∣

∣

∣

≤
∫

Bn

ρ(y|x)µ(dy) +
∫

Bc
n

|q(y)|µ(dy) (86)

= PY |X(Bn|x) +
∫

Bc
n

|q(y)|µ(dy) (87)

and thus

sup
x/∈Kn

|ℓ(x, q)− 1|

= sup
x/∈Kn

∣

∣

∣

∣

∫

B

µ(dy)min{ρ(y|x), q(y)}
∣

∣

∣

∣

(88)

= sup
x/∈Kn

PY |X(Bn|x) +
∫

Bc
n

|q(y)|dµ(y) , (89)

which converges to zero by (85) and Bn ր B as n→ ∞.

Theorem 18: For random transformation PY |X satisfying

Definition 2 we have for all 0 ≤ α ≤ 1:

inf
PX

sup
QY

βα(PXY , PXQY ) = sup
QY

inf
PX

βα(PXY , PXQY ) . (90)

Consequently,





⋃

PX

⋂

QY

R(PXY , PXQY )



 =





⋂

QY

⋃

PX

R(PXY , PXQY )





(91)

where [·] denotes the closure.

Proof: Denote

b1(α) = inf
PX

sup
QY

βα(PXY , PXQY ) , (92)

b2(α) = sup
QY

inf
PX

βα(PXY , PXQY ) . (93)

By Theorems 9 and 14 both functions are convex, non-

decreasing on [0, 1]. Thus, it is enough to show that their

convex conjugates match. Since clearly b1(α) ≥ b2(α) it is

enough to show for every γ > 0:

max
0≤α≤1

α− γb1(α) ≥ max
0≤α≤1

α− γb2(α) (94)

Consider the left-hand side first:

max
0≤α≤1

α− γb1(α)

= sup
PX

max
0≤α≤1

α− γ sup
QY

βα(PXY , PXQY ) (95)

= sup
PX

max
0≤α≤1

α− γβ̃α(PX , PY |X) (96)

= sup
PX

max
0≤α≤1

max
PZ|XY :P [Z=1]≥α

α− γ sup
QY

PXQY [Z = 1]

(97)

= sup
PX

max
PZ|XY

PXY [Z = 1]− γ sup
QY

PXQY [Z = 1] (98)

= sup
PX

max
PZ|XY

inf
QY

PXY [Z = 1]− γPXQY [Z = 1] (99)

= sup
PX

inf
QY

max
PZ|XY

PXY [Z = 1]− γPXQY [Z = 1] (100)

= sup
PX

inf
q

max
PZ|XY

[

PXY [Z = 1]

− γ

∫

A

PX(dx)

∫

B

q(y)PZ|XY (1|xy)µ(dy)
]

(101)

= sup
PX

inf
q

∫

A

ℓ(x, γq)PX(dx) , (102)

where (95) is by definition, (96) is by (31), (97) is by (28), (98)

is by merging the two optimizations, (100) is by a minimax

theorem of Ky Fan [15], (101) is by taking dQY = q(y)dµ
with

q ∈ L1(B, µ) : q ≥ 0, ||q|| = 1 ,

which is done without loss of generality as argued in the proof

of Theorem 4; and (102) is by solving a simple optimization

over PZ|XY and the definition of ℓ(x, q) in (84).
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For the right-hand side of (94) we have

max
0≤α≤1

α− γb2(α)

= max
0≤α≤1

inf
QY

sup
PX

α− γβα(PXY , PXQY ) (103)

≤ inf
QY

max
0≤α≤1

sup
PX

α− γβα(PXY , PXQY ) (104)

= inf
QY

sup
PX

max
0≤α≤1

α− γβα(PXY , PXQY ) (105)

= inf
q
sup
PX

∫

A

ℓ(x, γq)PX(dx) , (106)

where (103) is by definition of b2 in (93), (104) is by the

general interchanging of max and inf , (105)-(106) is by the

same argument as in (100)-(102).

Thus, (94) will follow once we show that the sup and inf
in (102) and (106) are interchangeable. To that end, we employ

the regularity conditions, which also guarantee that supPX
is

in fact a max, and a minimax theorem of Fan.

Denote the Banach space of all regular σ-additive measures

on A by Mreg(A), cf. [21, Definition III.5.10], and by C0(A)
the space of all continuous functions tending to 0 at infinity.

By [21, Theorem IV.6.3] and a simple one-point (Alexandroff)

compactification argument, Mreg is the continuous dual of

C0(A). The weakest topology on Mreg under which all

elements of C0(A) are continuous is called weak-∗ topology

(not to be confused with the topology of weak convergence

of measures defined by C(A)). Topological assumptions on A

imply it is a normal space and thus (Urysohn lemma) any finite

measure on A is regular. Consequently M1 is a convex subset

of Mreg, which is closed in the topology of total variation

but in general is not weak-∗ closed. The weak-∗ closure of

M1 is the set of all positive measures not exceeding 1 in total

variation:

M+
≤1

△
= {λ : λ[A] ≤ 1, λ ≥ 0} ,

which is weak-∗ compact by Banach-Alaoglu theorem.

We now argue that the extension of the domain from M1

to M+
≤1 in (102) and (106) is immaterial. Indeed, take any

ν ∈ M+
≤1 with ν[A] = a ∈ (0, 1]. Then by non-negativity of

ℓ(x, q) we have
∫

A

ℓ(x, γq)ν(dx) ≤
∫

A

ℓ(x, γq)ν̃(dx) ,

where ν̃ = 1
aν. Hence to every choice in M+

≤1 there exists a

better or equal choice in M1:

sup
PX

∫

A

ℓ(x, γq)PX(dx) = max
ν∈M+

≤1

∫

A

ℓ(x, γq)ν(dx)

(107)

sup
PX

inf
q

∫

A

ℓ(x, γq)PX(dx) = max
ν∈M+

≤1

inf
q

∫

A

ℓ(x, γq)ν(dx) .

(108)

Thus, by the minimax theorem of Ky Fan [15] we get

inf
q

max
ν∈M+

≤1

∫

A

ℓ(x, γq)ν(dx) = max
ν∈M+

≤1

inf
q

∫

A

ℓ(x, γq)ν(dx) ,

completing the proof of (94).

Finally, (91) follows from (90) by the symmetry of the

regions.

VI. COMPUTING SADDLE POINT

Computing the distributions (PX , QY ) achieving the saddle

point (81) is in general a hard problem. It can be signifi-

cantly simplified if the random transformation possesses some

symmetries. In this section we define such symmetries and

demonstrate how they help in computing the value of the

minimax problem.

A. General symmetry considerations

Definition 3: A pair of measurable maps f = (fi, fo) is a

symmetry of PY |X if

PY |X(f−1
o (E)|fi(x)) = PY |X(E|x) ,

for all measurable E ⊂ B and x ∈ A. Two symmetries f and

g can be composed to produce another symmetry as

(gi, go) ◦ (fi, fo) △
= (gi ◦ fi, fo ◦ go) . (109)

A symmetry group G of PY |X is any collection of invertible

symmetries (automorphisms) closed under the group opera-

tion (109).

Note that both components of an automorphism f = (fi, fo)
are bimeasurable bijections, that is fi, f

−1
i , fo, f

−1
o are all

measurable and well-defined functions.

Naturally, every symmetry group G possesses a canonical

left action on A × B defined as

g · (x, y) △
= (gi(x), g

−1
o (y)) . (110)

Since the action on A × B splits into actions on A and B, we

will abuse notation slightly and write

g · (x, y) △
= (g x, g y) .

For the cases of infinite A,B we need to impose certain

additional regularity conditions:

Definition 4: A symmetry group G is called regular if it

possesses a left-invariant Haar probability measure ν such that

the group action (110)

G× A × B → A × B

is measurable.

Note that under the regularity assumption the action (110) also

defines left-action of G on M1(A) and M1(B) according to

(gPX)[E]
△
= PX [g−1E] , (111)

(gQY )[E]
△
= QY [g

−1E] , (112)

or, in words, if X ∼ PX then gX ∼ gPX , and similarly for

Y and gY . For every distribution PX we define an averaged

distribution P̄X as

P̄X [E]
△
=

∫

G

PX [g−1E]ν(dg) , (113)

which is the distribution of random variable gX when g ∼ ν
and X ∼ PX . The measure P̄X is G-invariant, in the sense

that gP̄X = P̄X . Indeed, by left-invariance of ν we have for

every bounded function f
∫

G

f(g)ν(dg) =

∫

G

f(hg)ν(dg) ∀h ∈ G ,
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and therefore

P̄X [h−1E] =

∫

G

PX [(hg)−1E]ν(dg) = P̄X [E] .

Similarly one defines Q̄Y :

Q̄Y [E]
△
=

∫

G

QY [g
−1E]ν(dg) , (114)

which is also G-invariant: gQ̄Y = Q̄Y .

The main property of the action of G may be rephrased as

follows: For arbitrary φ : A × B → R we have
∫

A

∫

B

φ(x, y)PY |X(dy|x)(gPX)(dx)

=

∫

A

∫

B

φ(gx, gy)PY |X(dy|x)PX (dx) . (115)

In other words, if the pair (X,Y ) is generated by taking X ∼
PX and applying PY |X , then the pair (gX, gY ) has marginal

distribution gPX but conditional kernel is still PY |X . For finite

A,B this is equivalent to

PY |X(gy|gx) = PY |X(y|x) , (116)

which may also be taken as the definition of the automorphism.

In terms of the G-action on M1(B) we may also say:

gPY |X=x = PY |X=gx ∀g ∈ G, x ∈ A . (117)

Proposition 19: Fix PX , QY and g ∈ G and denote P ′
X =

gPX , Q′
Y = gQY . Then

βα(P
′
XY , P

′
XQ

′
Y ) = βα(PXY , PXQY ) , (118)

β̃α(P
′
X , PY |X) = β̃α(PX , PY |X) , (119)

inf
PX

βα(PXY , PXQ
′
Y ) = inf

PX

βα(PXY , PXQY ) . (120)

Proof: All statements are proved by a straightforward

application of (115). For example, to show (118) it is sufficient

to verify

βα(P
′
XY , P

′
XQ

′
Y ) ≥ βα(PXY , PXQY ) , (121)

since the reverse inequality follows by applying the argu-

ment with g → g−1. Let PZ′|XY be the test achieving

βα(P
′
XY , P

′
XQ

′
Y ). Then define

PZ|XY (1|x, y) = PZ′|XY (1|gx, gy)

and apply (115) to show

PXY [Z = 1] = P ′
XY [Z

′ = 1] .

On the other hand,

PXQY [Z = 1]

=

∫

A

∫

B

PZ′|XY (1|gx, gy)QY (dy)PX(dx) (122)

=

∫

A

∫

B

PZ′|XY (1|x, y)(gQY )(dy)(gPX)(dx) ,(123)

which follows by a standard change of variable formula

and (111)-(112). (119) and (120) are shown similarly.

The main result of this section is the following:

Theorem 20: Let G be a regular group of symmetries of

PY |X . Then the infima and suprema in both (9) and (10) can

be restricted to G-invariant distributions, namely:

∀g ∈ G : ∀E ⊂ B : QY [g
−1E] = QY [E] , (124)

∀g ∈ G : ∀E ⊂ A : PX [g−1E] = PX [E] . (125)

Moreover, whenever PX and QY are such, the optimal test

PZ|XY achieving βα(PXY , PXQY ) can be chosen to be con-

stant on the orbits of G-action on A×B. Similarly, whenever

PX is G−invariant, there exists an optimal PX -balanced G-
invariant test achieving β̃α(PX , PY |X).
Remark: For example, in DMC G can be chosen to be the

symmetric group, in which case the orbits on A × B are the

joint types and the optimization problem becomes simpler,

see [6, Section III.B].

Proof: The following claims are being made:

1) Outer optimization in (9):

inf
PX

sup
QY

βα(PXY , PXQY )

= inf
PX–sat. (125)

sup
QY

βα(PXY , PXQY ) (126)

2) Inner optimization in (10) subject to PX satisfy-

ing (125):

sup
QY

βα(PXY , PXQY ) = sup
QY –sat. (124)

βα(PXY , PXQY )

(127)

3) Tests for G-invariant PX and QY :

βα(PXY , PXQY ) = inf
PZ|XY

PXQY [Z = 1] , (128)

where PZ|XY satisfies

PXY [Z = 1] ≥ α

and

PZ|XY (1|x, y) = PZ|XY (1|gx, gy)
for all x ∈ A, y ∈ B, g ∈ G.

4) A similar set of claims for (10).

A very simple method to show (126)-(128) would be the

following. First notice that by (118) and Theorem 4 we have

that the function

f(PX) = sup
QY

βα(PXY , PXQY ) (129)

is constant on the orbits of G. Therefore, by invoking convex-

ity of βα (Theorem 6) and applying the Jensen inequality we

obtain:

f(PX) =

∫

G

f(gPX)ν(dg) ≤ f(P̄X) ,

where ν is the Haar measure on G, P̄X is the distribution

of gX when g ∼ ν and X ∼ PX . Since obviously P̄X is

G-invariant (126) follows. Similarly, one shows (127), (128)

and analogous claims for (10).

Unfortunately, the proofs as above (with exception of that

for (128)) contain a subtle gap: it is not known whether f
defined by (129) is measurable on M1. Notice that because

of the remark (61), Theorem 10 does not help. Fortunately, it
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is not hard to find an explicit proof for these claims without

invoking Jensen’s inequality.

For example, we show (126), which is equivalent to (The-

orem 4)

β̃α(PX) ≥ β̃α(P̄X) , (130)

where for the remainder of the proof we omit the second

argument of β̃α. Indeed, assume to the contrary that there is

ǫ > 0 such that:

β̃α(PX) < β̃α(P̄X)− ǫ . (131)

First, by Corollary 11 we have for some small ǫ1:

β̃α((1− ǫ1)PX + ǫ1P̄X) < β̃α(P̄X)− ǫ/2 .

Thus, perhaps by replacing PX with (1− ǫ1)PX + ǫ1P̄X we

may assume without loss of generality that PX ≪ P̄X . Denote

ψ(x)
△
=
dPX

dP̄X
(x) .

Next, we observe that

(gPX)[E] =

∫

E

ψ(g−1x)P̄X(dx) . (132)

Thus, functions ψ(g−1x) are the P̄X -densities of gPX . There-

fore applying Fubini’s theorem

P̄X [E] =

∫

G

(gPX)[E]ν(dg) (133)

=

∫

G

∫

E

ψ(g−1x)ν(dg)P̄X (dx) (134)

we conclude that
∫

G

ψ(g−1x)ν(dg) = 1 (135)

for P̄X -almost all x.
Next, consider a test PZ|XY achieving β̃α(PX) and let

PZ̄|X,Y (1|x, y) =
∫

G

ψ(g−1x)PZ|XY (1|g−1x, g−1y)ν(dg) .

(136)

By (135) the right-hands side of (136) does not exceed 1 and

therefore defines a valid probability kernel. We have then

P̄XY [Z̄ = 1]

=

∫

A

∫

B

∫

G

PZ|XY (1|g−1x, g−1y)

· ψ(g−1x)ν(dg)PY |X(dy|x)P̄X(dx) (137)

=

∫

G

ν(dg)

∫

A

∫

B

PZ|XY (1|g−1x, g−1y)

· PY |X(dy|x)(gPX )(dx) (138)

=

∫

G

ν(dg)

∫

A

∫

B

PZ|XY (1|x, y)ν(dg)PY |X(dy|x)PX(dx)

(139)

=

∫

G

ν(dg)PXY [Z = 1] (140)

≥ α , (141)

where in (137) we denote P̄XY = P̄XPY |X , (138)

is by (132), (139) is by (115) with φ(x, y) =

PZ|XY (1|g−1x, g−1y), and (141) is by assumption on

PZ|XY .

On the other hand,

sup
QY

P̄XQY [Z̄ = 1]

= sup
y

∫

A

PZ̄|XY (1|x, y)P̄X(dx) (142)

= sup
y

∫

A

∫

G

PZ|XY (1|g−1x, g−1y)ψ(g−1x)ν(dg)P̄X (dx)

(143)

= sup
y

∫

G

ν(dg)

∫

A

PZ|XY (1|g−1x, g−1y)(gPX)(dx) (144)

= sup
y

∫

G

ν(dg)

∫

A

PZ|XY (1|x, g−1y)PX(dx) (145)

≤
∫

G

ν(dg) sup
y

∫

A

PZ|XY (1|x, g−1y)PX(dx) (146)

=

∫

G

ν(dg) sup
y

∫

A

PZ|XY (1|x, y)PX(dx) (147)

=

∫

G

ν(dg)β̃α(PX) = β̃α(PX) , (148)

where (142) is by (22), (143) is by (136), (144) is

by (132), (145) is by a change of variable formula, (146)

is possible since we show next that the function under the

integration over G is measurable (in fact, constant), (147)

follows since g−1 : B → B is a bijection and (148) is by

the assumption that PZ|XY achieves β̃α(PX). Hence, (148)
implies (130) and therefore (131) cannot hold.

The measurability assumptions in the proofs of (127) and

the analogous claims for (10) can be worked around in a

similar fashion.

B. Symmetric channels

As Theorem 20 shows, the larger the G-orbits in A (or B)

are, the easier the solution of the saddle-point problem (81)

becomes. The extreme cases deserve a special definition:

Definition 5: The random transformation PY |X is called

input-symmetric (output-symmetric) if there exists a regular

group of symmetries G acting transitively on A (B).

Theorem 21: If the channel is input-symmetric (resp.

output-symmetric), then the saddle-point in (81) is achieved

by the uniform PX (resp. QY ).

Proof: We will show that under the assumptions there

is only one G-invariant distribution, which may be defined

via (113) or (114) starting from an arbitrary PX orQY . Indeed,

consider the case of input symmetry and assume there are two

G-invariant input distributions P1 and P2. Let

P0 =
1

2
P1 +

1

2
P2

and let ψ1 = dP1

dP0
, be the P0-densities of P1. The G-invariance

of P0, P1 and P2, equivalently, states that for any bounded f
∫

G

f(x)Pj(dx) =

∫

G

f(gx)Pj(dx) j = 0, 1, 2 . (149)
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Applying (149) to P1 and rewriting in terms of P0 we get:
∫

G

f(x)ψ1(x)P0(dx) =

∫

G

f(gx)ψ1(x)P0(dx) (150)

=

∫

G

f(x)ψ1(g
−1x)P0(dx) , (151)

where in (151) we applied G-invariance property (149) of P0

for g−1. Since (151) holds for all f we conclude

ψ1(x) = ψ1(g
−1x)

for P0-almost all x and all g ∈ G. Since G acts transitively

on A we conclude that ψ1 is a constant, indeed a unity:

ψ1(x) = 1 ,

and hence P1 = P2 = P0.

We mention relations of these definitions to other concepts

of symmetry which have previously appeared in the literature.

We restrict the following discussion to the case of finite A, B

and thus PY |X is just a |A|×|B| stochastic matrix, or a DMC:

• PY |X is a group-noise channel if A = B is a group and

PY |X acts by composing X with a noise variable Z:

Y = X ◦ Z ,
where ◦ is a group operation and Z is independent of X .

• PY |X is called Dobrushin-symmetric if every row of

PY |X is a permutation of the first one and every column

of PY |X is a permutation of the first one; see [22].

• PY |X is called Gallager-symmetric if the output alphabet

B can be split into a disjoint union of sub-alphabets

such that restricted to each sub-alphabet PY |X has the

Dobrushin property: every row (every column) is a per-

mutation of the first row (column); see [23, Section 4.5].

• for convenience, say that the channel is square if |A| =
|B|.

We demonstrate some of the relationship between these

various notions of symmetry:

1) Note that it is an easy consequence of the definitions that

any input-symmetric (resp. output-symmetric) channel’s

PY |X has all rows (resp. columns) – permutations of the

first row (resp. column). Hence,

input-symmetric, output-symmetric=⇒ Dobrushin

(152)

2) Group-noise channels satisfy all other definitions of

symmetry:

group-noise=⇒ square, input/output-symmetric (153)

=⇒ Dobrushin, Gallager (154)

3) Since Gallager symmetry implies all rows are permuta-

tions of the first one, while output symmetry implies the

same statement for columns we have

Gallager, output-symmetric=⇒ Dobrushin

4) Clearly, not every Dobrushin-symmetric channel is

square. One may wonder, however, whether every square

Dobrushin channel is a group-noise channel. This is

not so. Indeed, according to [24] the latin squares

that are Cayley tables are precisely the ones in which

composition of two rows (as permutations) gives another

row. An example of the latin square which is not a

Cayley table is the following:












1 2 3 4 5
2 5 4 1 3
3 1 2 5 4
4 3 5 2 1
5 4 1 3 2













. (155)

Thus, by multiplying this matrix by 1
15 we obtain a

counter-example:

Dobrushin, square 6=⇒ group-noise

In fact, this channel is not even input-symmetric. Indeed,

suppose there is g ∈ G such that g4 = 1 (on A). Then,

applying (116) with x = 4 we figure out that on B the

action of g must be:

1 7→ 4, 2 7→ 3, 3 7→ 5, 4 7→ 2, 5 7→ 1 .

But then we have

gPY |X=1 =
(

5 4 2 1 3
)

· 1

15
,

which by a simple inspection does not match any of the

rows in (155). Thus, (117) cannot hold for x = 1. We

conclude:

Dobrushin, square 6=⇒ input-symmetric

Similarly, if there were g ∈ G such that g2 = 1 (on B),

then on A it would act as

1 7→ 2, 2 7→ 5, 3 7→ 1, 4 7→ 3, 5 7→ 4 ,

which implies via (116) that PY |X(g1|x) is not a column

of (155). Thus:

Dobrushin, square 6=⇒ output-symmetric

5) Clearly, not every input-symmetric channel is Dobrushin

(e.g., BEC). One may even find a counter-example in the

class of square channels:








1 2 3 4
1 3 2 4
4 2 3 1
4 3 2 1









· 1

10
(156)

This shows:

input-symmetric, square 6=⇒ Dobrushin

6) Channel (156) also demonstrates:

Gallager-symmetric, square 6=⇒ Dobrushin .

7) Example (156) naturally raises the question of whether

every input-symmetric channel is Gallager symmetric.

The answer is positive: by splitting B into the orbits of

G we see that a subchannel A → {orbit} is input and

output symmetric. Thus by (152) we have:

input-symmetric =⇒ Gallager-symmetric (157)
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8) As previous argument shows, input-symmetry is more

restrictive than Gallager symmetry. It turns out, however,

one may define a notion of a weakly input symmetric

channel [2, Definition 4], which is close in spirit to the

definition of input symmetry (in the sense of implying

that all inputs have equivalent coding properties), while

being also more general than Gallager’s definition; see

discussion in [10, Section 3.4.5].

9) Other definitions that have appeared in the literature may

also be recast in terms of requirements on the action ofG
on A or B. For example, Hof et al [25] define the DMC

to be symmetric if A is an abelian group and there is a

set of bijections Tx : B → B, x ∈ A such that

PY |X(Tx2−x1
(y)|x2) = PY |X(y|x1) .

It is easy to see that, the element that acts by adding x0
on A and by T−1

x0
on B forms a channel symmetry (·+

x0, T
−1
x0

(·)). This collection can be completed to form a

group (under composition (109)) by adding elements σ
that act trivially on A and permute B such that

PY |X(σ(y)|x) = PY |X(y|x)∀x ∈ A, y ∈ B .

Thus, we see that symmetry of [25] is a special case of

input symmetry, when the action of G is addition in the

abelian group A.

A pictorial representation of these relationships between the

notions of symmetry is given schematically on Fig. 2.

C. Binary symmetric channel (BSC)

Recall that the BSC(n, δ) of blocklength n and crossover

probability δ has the binary input and output alphabets, A =
B = F

n
2 , and transition probabilities

PY n|Xn(yn|xn) = δ|y
n−xn|(1− δ)n−|yn−xn| , (158)

where |zn| denotes the Hamming weight of the binary vector

zn. Consider the group G = F
n
2 ⋊Sn generated by symmetries

of two kinds:

1) translation by v ∈ F
n
2 :

fi(x
n) = xn + v (159)

fo(y
n) = yn − v . (160)

2) permutation by σ ∈ Sn – a group of all bijections

{1, . . . , n} → {1, . . . , n}:

fi(x
n) = (xσ(1), . . . , xσ(n)) , (161)

fo(y
n) = (yσ(1), . . . , yσ(n)) (162)

It is easy to see that group G acts transitively on both A

and B, and thus by Theorem 21 we have:

Theorem 22: Uniform distributions PX and QY are the

saddle point in (81) for the BSC. The value of the saddle

point is

min
PXn

max
QY n

βα(PXnY n , PXnQY n) = (1− λ)βL + λβL+1 ,

where βℓ, λ ∈ [0, 1) and the integer L are found from

βℓ =

ℓ
∑

k=0

(

n

k

)

2−n (163)

α = (1− λ)αL + λαL+1 (164)

αℓ =
ℓ−1
∑

k=0

(

n

k

)

(1 − δ)n−kδk . (165)

Remark: The resulting minimax channel coding converse

coincides with the classical sphere packing bound, e.g. [1,

Theorem 35].

D. Binary erasure channel (BEC)

Recall that BEC(n, δ) for blocklength n and erasure prob-

ability δ is defined as follows: the input alphabet A = F
n
2 , the

output alphabet B = {0, e, 1}n, and the transition probabilities

are

PY n|Xn(yn|xn)

=







(

δ
1−δ

)

e(yn)

(1− δ)n, (xn, yn) – compatible ,

0, otherwise ,
(166)

where (xn, yn) is called compatible if xi = yi whenever yi 6=
e and

e(yn) = #{j : yj = e} .

Consider the same group G as for the BSC, except that in

the definition (160) of translation by v on the output space,

the arithmetic on {0, e, 1} is extended from F
n
2 as 0 + e = e,

1 + e = e.
Theorem 23: The saddle point in (81) for the BEC is:

P ∗
Xn(xn) = 2−n (167)

Q∗
Y n(yn) = λ

(

δ

1− δ

)

e(yn)

(1− δ)n · 1{e(yn) ≥ u} ,
(168)

where the parameter u ∈ R depends on α and λ is a

normalization factor:

λ−1 =
∑

e≥u

2n−e

(

n

e

)

δe(1− δ)n−e .

The value of the saddle point can be represented parametrically

as

min
PXn

max
QY n

βα(PXnY n , PXnQY n) = 2u−n , (169)

where

α =

n
∑

e=0

(

n

e

)

δe(1 − δ)n−e2−|e−u|+ (170)

for all u ∈ R.

Remark: A simple inspection reveals that the resulting

channel coding converse bound implied by (7) and (169)

coincides exactly with the tight finite-blocklength converse [1,

Theorem 38], obtained there by an ad-hoc (BEC-specific)

argument.
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Fig. 2: Schematic representation of inclusions of various classes of channels

Proof: Optimality of (167) immediately follows from

Theorem 21. We next compute the value of the saddle point

by evaluating β̃α(P
∗
Xn , PY n|Xn). First, it is clear that the most

general form of the test achieving β̃α is:

PZ|XY (1|xn, yn)

=

{

0, (xn, yn) – not compatible ,

f(e(yn)) otherwise
(171)

where f : {0, . . . , n} → [0, 1] is some function. On the other

hand, by Theorem 5 function f can further be constrained to

be constant over yn so that
∑

xn

2−nf(e(yn)) = const ,

where summation is over all xn compatible with a given yn.
Thus, we find that

f∗(e) = 2−|e−u|+ , (172)

for some u. Thus the test is uniquely specified by (171)-(172),

resulting in

β̃α(P
∗
Xn , PY n|Xn) = 2−|e−u|+ , (173)

where α is found from (170). By Theorem 4 we conclude

min
Pn

X

max
QY n

βα(PXnY n , PXnQY n) = 2−|e−u|+ .

We are left to show that in the dual problem

max
QY n

min
PXn

βα(PXnY n , PXnQY n) (174)

the outer maximization is solved by (168). Note that any QY n

that satisfies

βα(P
∗
XnY n , P ∗

XnQY n) ≥ β̃α(P
∗
Xn , PY n|Xn) , (175)

will automatically be the optimal one since the reverse in-

equality (which always holds) shows one must have in fact

equality in (175).

First, we show how the form (168) of the distribution can

be derived. By Theorem 20 it is sufficient to restrict attention

to

QY n(yn) = q(e(yn)) , (176)

where q : {0, . . . , n} → [0, 1] is a function satisfying the

normalization requirement:

n
∑

e=0

2n−e

(

n

e

)

q(e) = 1 .

For any such QY n the minimizing PXn in (174) is given by

the uniform P ∗
Xn (Theorem 20). By definition of βα and (171)

we have

βα(PXnY n , P ∗
XnQY n) = min

n
∑

e=0

(

n

e

)

q(e)f(e) , (177)

where minimum is taken over all f such that

n
∑

e=0

(

n

e

)

δe(1− δ)n−ef(e) ≥ α .

It is natural to look forQY n such that the optimizing f in (177)

were given by (172). Then by the Neyman-Pearson lemma, it

is clear that we must have

q(e) = λδe(1− δ)n−e

for all e ≥ u and some λ. It is natural to complete the

definition of q(e) by taking it to be zero for e < u, which
results in (168).

Finally, to show (175) with QY n given by (168) consider

the test

PZ|XY (1|xn, yn) =











0, (xn, yn) – not compatible ,

τ e(yn) ≥ u ,

1 e(yn) < u
(178)

with τ chosen to satisfy

P ∗
XnY n [Z = 1] = α
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where α is given by (170). This test is optimal by Neyman-

Pearson lemma and it achieves

P ∗
XnQ∗

Y n [Z = 1] = 2u−n ,

which is shown by a direct verification. Thus by (173)

the (175) follows.

E. General discrete memoryless channel (DMC)

In the previous section we have seen an example that the

optimal distribution QY n may not be a product distribution.

For an arbitrary DMC, by the action of the permutation group

Sn and Theorem 20 one may restrict attention to exchangeable

distributions PXn and QY n . In this section we demonstrate,

however, that it is safe to further restrict QY n to a product

distributions at least as far as the error-exponent asymptotic is

concerned.

We follow the notation of [26], in particular A = Xn,B =
Yn, where |X |, |Y| <∞ and the random transformation is

PY n|Xn(yn|xn) =
n
∏

j=1

W (yj|xj) ,

where W : X → Y is a fixed stochastic matrix. The sphere-

packing exponent at rate R is defined as

Esp(R)
△
= max

P
min

V :I(P,V )≤R
D(V ||W |P ) ,

where P ranges over all distributions on X and V over all

stochastic matrices V : X → Y , see [26, Chapter 10].

Denote by ǫmc(n,R) the smallest ǫ satisfying the minimax

converse (7):

ǫmc(n,R) =

min

{

ǫ : inf
PXn

sup
QY n

β1−ǫ (PXnY n , PXnQY n) ≤ exp{−nR}
}

.

(179)

Theorem 24: For any DMC W there exist sequences δn →
0 and δ′n → 0 such that for all rates R > 0 for which

Esp(R) <∞ we have

ǫmc(n,R + δ′n) = exp{−n(Esp(R) + δn)} ,
while for all other rates

ǫmc(n,R + δ′n) = 0 ,

for all n sufficiently large.

Remark: Since at low rates the sphere packing bound

on the error exponent is known to be non-tight [16], and

since the Poor-Verdú bound [17] is a consequence of (7),

see [10, Section 2.7.3], Theorem 24 settles in the negative

the conjecture about the tightness of the Poor-Verdú bound

on the error exponent [17]. For the BEC this has been shown

previously in [27].

Proof: First we show

ǫmc(n,R + δ′n) ≥ exp{−n(Esp(R) + δn)} , (180)

for a suitably chosen δn, δ
′
n → 0. The proof of (180) shows

that the sphere-packing error-exponent can be derived from the

minimax converse by taking QY n to be a product distribution,

cf. [10, Section 2.7.3]. Then it is sufficient to show that

sup
QY n=(QY )n

β1−ǫn(PXnY n , PXnQY n) ≤ exp{−n(R+ δ′n)}
(181)

implies

ǫn ≥ exp{−n(Esp(R) + δn)} , (182)

where we restricted to product distributions QY n and PXn

corresponds to the optimal distribution in (179).

Since the symmetric group Sn is a natural symmetry group

for a DMC of blocklength n, then according to Theorem 20

PXn is a convex combination

PXn =
∑

j

λjP
(j)
Xn ,

∑

j

λj = 1, λj ≥ 0 (183)

where j ranges over all n-types on X and P
(j)
Xn is a distribution

uniform on the j-th type. If decomposition (183) consists

of a single non-zero term, then (181) (even with δ′n = 0)
implies (182) by a standard argument [28]. In general, since

the number of different types is bounded by n|X |−1, there is

j0 with λj0 ≥ 1
n|X|−1 , and thus the general case follows from

the following self-evident result:

Lemma 25: Let PX =
∑

j λjPXj
be a convex combination

of PXj
with λj > 0. Then for all QY and j we have

β1−ǫ(PXY , PXQY ) ≥ λjβ1−ǫλ−1

j
(PXjY , PXj

QY ) .

Furthermore, if supports of PXj
are pairwise disjoint then

β1−ǫ(PXY , PXQY ) = inf∑
j
λjǫj=ǫ

∑

j

λjβ1−ǫj (PXjY , PXj
QY ) .

To prove the converse of (180), we notice that by Theorem 4

ǫmc(n,R) =

min

{

ǫ : inf
PXn

β̃1−ǫ

(

PXn , PY n|Xn

)

≤ exp{−nR}
}

. (184)

Thus, it is sufficient to construct a PXn and one test PZ|XnY n

which achieves

sup
yn

∑

xn

PXn(xn)PZ|XnY n(1|xn, yn)

≤ exp{−n(R+ δ′n)} , (185)

PXnY n [Z = 0] ≤ exp{−n(Esp(R) + δn)} (186)

for some δn → 0 and δ′n → 0.
Recall that, [26, Problem 10.28] and [29], for any rate R >

0 for which Esp(R) <∞ there exists a positive integer ℓ and
a sequence of codebooks C list-decodable to a constant list

size ℓ with probability of error

ǫn ≤ exp{−n(Esp(R) + δn)} , (187)

and of asymptotic rate R:

|C| = exp{nR+ o(n)} .

To each codebook C we define a distribution PXn

PXn(xn) = exp{−nR}1{xn ∈ C} ,
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and the test

PZ|Xn,Y n(1|xn, yn) = 1{xn ∈ L(yn)} ,
where L(yn) is the list output by the decoder. Elementary

calculation then shows that in (185) we have

sup
yn

∑

xn

PXn(xn)PZ|XnY n(1|xn, yn)

=
ℓ

|C| = exp{−nR+ δ′n} , (188)

for a suitably chosen δ′n → 0. Hence (180) holds. Similarly,

for rates with Esp(R) = ∞ there exist zero-error constant

list-size codes implying we have ǫn = 0 in (187) and the

right-hand side of (186).

F. Additive white Gaussian noise (AWGN) channel

The AWGN channel AWGN(n, P ) is given by A = R
n

and B = R
n and PY n|Xn acts by adding a white Gaussian

noise:

Y n = Xn + Zn , (189)

where Zn ∼ N (0, In) – is the isotropic standard normal

vector. We impose an equal-power constraint on the codebook:

each codeword ci, i = 1, . . . ,M must satisfy

||ci||2 = nP . (190)

By a standard n→ n+ 1 argument this power constraint can

be assumed without loss of generality, e.g. [1, Lemma 39].

Regardless of the location of the M codewords on the

power sphere, it is clear that the optimal (maximum likelihood)

decoder operates on the basis of yn

||yn|| only. Thus, we may

replace PY n|Xn with an equivalent random transformation

PB|A : Sn−1 → S
n−1:

B =

√
nPA+ Zn

||A+ Zn|| , (191)

where the input A and the output B are elements of S
n−1,

an (n − 1)-dimensional sphere embedded canonically into

R
n. A regular group of symmetries G can be taken to be

SO(n) – the special orthogonal group, which acts in a standard
manner on both the input and the output Sn−1. Since this

action is transitive, Theorem 21 implies that for the equivalent

channel (191) the saddle point is achieved by the uniform

distributions on the sphere. The resulting minimax converse

bound is precisely the Shannon’s cone-packing [30].

VII. DISCUSSION

We conclude with several observations regarding the results

we have obtained.

First, we have shown that the optimization over the input

distributions in the minimax converse, Theorem 1, is a convex

problem which is further simplified by the channel sym-

metries present in many practical communication channels.

Thus not only does the minimax converse strengthen known

information-spectrum bounds, see [10, Section 2.7.3], but it

also simplifies the calculation. In particular, we have demon-

strated that for symmetric channels one may restrict attention

to memoryless input distributions (in both the information-

spectrum bounds or the minimax converse). For general mem-

oryless channels, one may restrict to exchangeable distribu-

tions.

Second, in all of the examples considered in the paper

the optimal input distribution turned out to coincide with the

distribution yielding (e.g., via random coding) the best known

achievability bounds. Therefore, one naturally expects that in

cases where the saddle-point input distribution is non-product,

we may hope to improve non-asymptotic achievability bounds

by considering non-product input distributions.

Third, the example of BEC (Section VI-D) demonstrated

that the saddle-point output distribution may be non-product.

Interestingly, BEC is one of a few examples of channels with

zero in the logarithmic term in the expansion, cf. [1]:

logM∗(n, ǫ) = nC−
√
nV Q−1(ǫ)+O(1) , n→ ∞ (192)

where M∗(n, ǫ) is the maximal cardinality of the code of

blocklength n and error probability ǫ, C is the channel capacity

and V – the channel dispersion. Note that the behavior of βα
for product distributions is given by, e.g. [10, (2.71)],

log βα (Pn, Qn) = −nD(P ||Q)

−
√

nV (P ||Q)Q−1(α)− 1

2
logn+O(1) , (193)

implying that an upper-bound obtained from (10):

logM∗(n, ǫ) ≤ sup
PXn

− logβ1−ǫ(PXnY n , PXnQY n)

cannot yield a zero logn term whenever QY n is a product

distribution. However, since we have shown that the exact

minimax converse for BEC coincides with the (BEC-specific)

converse used in [1] to show (192) we conclude that Theo-

rem 1 may still be used to show tight estimates for the logn
term even in case when this term is 0 · logn and that in such

cases the optimal QY n is necessarily non-product. For more

on the logn term in expansions (192) we refer to [10, Section

3.4.5] and [7].

Overall, we conclude that studying the saddle point (81)

provides interesting new insights regarding the structure and

performance of optimal channel codes.
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finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, May 2010.

[2] ——, “Feedback in the non-asymptotic regime,” IEEE Trans. Inf.

Theory, vol. 57, no. 8, pp. 4903–4925, Aug. 2011.
[3] ——, “Minimum energy to send k bits with and without feedback,”

IEEE Trans. Inf. Theory, vol. 57, no. 8, pp. 4880–4902, Aug. 2011.
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