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Abstract—This paper continues the investigation of the combi-
natorial formulation of the joint source-channel coding problem.
In particular, the connections are drawn to error-reducing codes,
isometric embeddings and list-decodable codes. The optimal
performance for the repetition construction is derived and is
shown to be achievable by low complexity Markov decoders.

The compound variation of the problem is proposed and some
initial results are put forward.

I. INTRODUCTION

Recently, a combinatorial model of the problem of joint-

source channel coding (JSCC) was proposed in [8]. The gist

of it for the binary source and symmetric channel (BSSC) can

be summarized by the following

Definition 1: A pair of maps f : Fk
2 → F

n
2 and g : Fn

2 → F
k
2

is called a (k, n,D, δ) JSCC if

|x+ g(f(x) + e)| ≤ kD ,

for all x ∈ F
k
2 and all |e| ≤ δn, where | · | and dH(x, y) = |x+

y| denote the Hamming weight and distance. The asymptotic

fundamental limit is:1

D∗
ad(ρ, δ) = lim

k→∞
inf{D : ∃(k, ⌊ρk⌋, D, δ)-JSCC} . (1)

We briefly overview some results from [8]. The perfor-

mance of any (k, ⌊ρk⌋, D, δ) scheme can be bounded by the

information-theoretic converse:

1− h2(D) ≤ ρ(1− h2(δ)), (2)

where h2(x) = −x log x−(1−x) log(1−x) is binary entropy.

Consequently, D∗
ad(1, δ) ≤ δ. On the other hand for n = k,

the simple scheme defined by identity maps yields D = δ. We

conclude that D∗
ad(1, δ) = δ.

We now compare this to any separation-based scheme,

comprising of source quantization and an error-correcting

code. A distortion of:

1− h2(D) = ρR (3)

can be achieved if and only if there exists an error correcting

code (ECC) of rate R for portion of channel flips δ. By the

Plotkin bound, there is no ECC of positive rate for any δ ≥ 1/4.
Specializing to ρ = 1 we see that a separation-based scheme

will have D = 1/2 for 1/4 ≤ δ < 1/2, cf. the optimal D = δ.
For general values of ρ we do not know the optimal

performance, but can still lower- and upper-bound it. First,
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Fig. 1. Trade-off between δ and D in a BSSC(δ) for ρ = 3.

a stronger upper bound on ECC rates than the Plotkin bound

is given by the MRRW II bound [10]:

RMRRW (δ) = min
0<α≤1−4δ

1+ ĥ(α2)− ĥ(α2+4δα+4δ) , (4)

with ĥ(x) = h2(1/2 − 1/2
√
1− x). In conjunction with

(3), this gives an upper bound on the performance of any

separation-based scheme. On the other hand, the Gilbert-

Varshamov bound states that an ECC of rate:

RGV (δ) = 1− h2(2δ) (5)

exists, which gives an achievable performance using separa-

tion. An upper bound on the performance of any scheme which

is stronger than (2) for δ < 1/4 is given by the coding converse:

RGV (D
∗
ad(ρ, δ)) ≤ ρRMRRW (δ) . (6)

Finally, for integer ρ we can use a ρ-repetition code, with

a majority-vote decoder (with ties broken in an arbitrary

manner). It can be shown that for odd ρ, this very simple

scheme achieves:

D =
2δρ

ρ+ 1
. (7)

Thus, as in the case ρ = 1, for any odd ρ there exists an

interval of δ where separation is strictly sub-optimal. Figure 1

demonstrates the various bounds for ρ = 3.
The details of this problem can be illustrated by exhibiting

the optimal decoder for a given encoding f : Fk
2 → F

n
2 . To

that end, for any S ∈ F
n
2 we define its circumscribed (exterior)

radius

erad(S) = min
x∈F

n
2

max
y∈S

|y − x| (8)

and any x achieving the minimum is called an exterior

Chebyshev center of S. Now, let Bn(x, r) = {y : |y−x| ≤ r}



be a ball of radius r centered at x in F
n
2 . Encoding f is (D, δ)-

decodable iff

∀y ∃x : f−1B(y, δn) ⊂ B(x,Dk) , (9)

or, equivalently, the radius of the preimage of every δn-ball
does not exceed Dk. The optimal decoder is then:

g(y) = exterior center of f−1Bn(y, δn) . (10)

The smallest distortion achievable by the encoder f is given

by

Dopt(f, δ) =
1

k
max
y∈F

n
2

erad(f−1Bn(y, δn)) . (11)

Furthermore, an injective f is (D, δ)-decodable iff

∀y ∃x : B(y, δn) ∩ Im f ⊂ f(B(x, kD)) ,

and the optimal distortion-D decoder

g(y) = argmax
x

dH(y, C \ f(B(x, kD))) (12)

searches for the set f(B(x, kD)) which contains the largest

inscribable sphere centered at y.2

The initial results [8] leave many basic questions open. For

example, the largest noise level which still leads to non-trivial

distortion can be defined as

δmax(ρ) = sup

{

δ : D∗
ad(ρ, δ) <

1

2

}

(13)

By the repetition scheme, we know that at least when ρ is

an odd integer: δmax(ρ) ≥ 1
4
1+ρ
ρ

, while from (3) we know

that traditional separated schemes are useless for δ > 1
4 . What

is the actual value of δmax(ρ)? How does it behave as ρ →
∞? In the low distortion regime, separation is optimal [8,

Section IV.C]. Does it also achieve the optimal slope of δ 7→
D∗

ad(ρ, δ)?

In this paper, we discuss relation between the JSCC

and other combinatorial problems, such as error-reducing

codes (Section II-A), list-decoding of codes and L-multiple

sphere packings (Section II-B) and isometric embeddings

(Section II-C). Then in Section III we characterize the D− δ
tradeoff of the repetition construction (note: [8] only gave

upper and lower bounds). We also show that a certain low-

complexity Markov decoder is asymptotically optimal.

Generalizing the view beyond the BSSC case is not straight-

forward. For one, it is not clear what is equivalent of having at

most δn flips, since in general there is no channel degradation

order. Consequently, [8] proposes an alternative where the

adversary is constrained to produce a source and a channel

that are both strongly typical with respect to some nominal

distributions. In Section IV, based upon this model, we further

allow the nominal distributions to vary inside some class, thus

having a compound adversary.

2(12) may be interepreted as follows: The goal of the encoder f is to cover
the space F

n

2
with sets Ux = f(B(x, kD)) in such a way that surrounding

every point y is a large δn-ball fully contained in one of Ux’s. In other words,
the best encoder f will maximize the Lebesgue’s number of the covering
{Ux, x ∈ F

k
2
}.

II. CONNECTIONS TO PREVIOUS WORK

A. Spielman’s error-reducing codes

In [11] a closely related concept of an error-reducing code

was introduced. An encoder-decoder pair (f, g), f : Fk
2 → F

n
2

and g : Fn
2 → F

k
2 , is called an error-reducing code of rate

ρ = n/k, error reduction ǫ and distance ∆ if

∀x∀|e| ≤ ∆n : |x+ g(f(x) + e)| < ǫ
k

n
|e| .

In other words, g is a decoder for f that simultaneously

achieves all pairs (D = ǫδ, δ) for all 0 ≤ δ < ∆.

Spielman [11, Section 3] proposed to use a linear f :

f(x) = x[Ik A] , (14)

where Ik is a k× k identity matrix and A is an k by (n− k)
adjacency matrix of a bipartite expander graph.

Theorem 1 ([11],[12]): Suppose that the graph G : [k] →
[m] has left degree at most d and is a γ vertex expander for

all sets (of left nodes) of size upto αk. Then for (14) there is

an O(k)-decoder g (see [11]) making (f, g) an error-reducing

code with

ρ = 1 +
m

k
, ǫ =

2ρ

4γ − 3d
, ∆ =

α

ρ(d+ 1)
(15)

Note that on the (D, δ) plane (recall Fig. 1), the performance

of Spielman’s code always starts at (D = 0, δ = 0) with the

slope ǫ. The limitation on ∆, however, is quite restrictive.

Indeed, even if there existed an expander with α ≈ 1 and

γ ≈ d we would still only have ∆ ≈ 1
ρ(d+1) , Dmax =

ǫ∆ ≈ 2
d(d+1) , demonstrating that Spielman’s codes (without

additional modifications) are not informative in the regime of

δ > 1/4 or D > 1/4. As mentioned in Section I, however,

given the performance of separated schemes this is the more

interesting region; see Fig. 1.

Finally, notice that Spielman introduced the error-reducing

codes in order to show that those can be used recursively

to produce an error-correcting code which is both efficiently

decodable and has a positive relative distance. Although (upto

universality in δ), the error-reducing codes are precisely the

JSCC codes, it does not follow, however, that any generic

JSCC code can be bootstrapped into an error-correcting code.

Indeed, the expander-based code (14) possesses an additional

very special property: it reduces distortion to exactly zero

provided that the parity bits are error free (and the message

bits are not too noisy).

B. L-multiple packings and list-decodable codes

Another instructive connection is between the JSCC and

L-multiple packings. A set C ⊂ F
n
2 is called an L-multiple

packing of radius r if

∀y ∈ F
n
2 : |Bn(y, r) ∩ C| ≤ L ,

equivalently,

∀x1, . . . , xL+1 ∈ C : erad({x1, . . . , xL+1}) > r , (16)



equivalently, balls of radius r centered at points of C cover

the space with multiplicity at most L; equivalently, C is an r-
error-correcting code with a decoder of list size L. We define

Aℓ(n, r, L) = max{|C| : C is an L-packing of radius r} .
The asymptotics of Aℓ(n, r, L) was studied in a number works

including [1], [3], [6]. In particular, a simple counting and

random coding argument show that when L is growing to

infinity with n, e.g. exponentially, we have

Aℓ(n, δn, exp{λn}) = exp{n(1− h(δ) + λ) + o(n)} . (17)

The asymptotic for a fixed L is more delicate. In particular,

an elegant upper bound was shown in [3] that interpolates

between the Elias-Bassalygo and Hamming bounds as L grows

from 1 to ∞.

The connection to the JSCC comes from the following

simple observation:

Proposition 2: The image Im f of any f : Fk
2 → F

n
2 which

is (D, δ)-decodable is an L-multiple packing of radius δn with

L = |Bk(0, kD)| =
∑

0≤j≤kD

(

k

j

)

.

Proof: Indeed, by (9) every preimage f−1Bn(y, δn) must

be contained inside some Bk(x0, kD).
In view of (17), we see however that asymptotically the

converse bound of Proposition 2 reduces to the information

theoretic (2). Thus, although it is easy to construct a large

constellation C, achieving (17) and such that any δn-ball
contains almost exactly 2nλ points, it is much harder (in fact

impossible for most values of ρ and δ) to then label the points

of C with elements of Fk
2 so as to guarantee that each such

2nλ-list has a small radius in F
k
2 . In other words, only very

special L-multiple packings are good JSCC.

C. Distance-preserving embeddings

In this section we show a connection of JSCC for BSSC to

distance-preserving embedding in Hamming space. Distance-

preserving embedding of and metric space into other is a well-

studied problem, most notably for the ℓ2-spaces where we have
the celebrated Johnson-Lindenstrauss lemma [7]. In Hamming

space, there is no such lemma in general as per our knowledge.

However some weaker results are true. Below we describe one

such result and its consequence.

Suppose, we have an encoding f : Fk
2 → F

n
2 that is (D, δ)-

decodable. A sufficient condition for this property is that for

any two points in F
k
2 whose distance is greater than or equal

to Dk, must be mapped to two points in F
n
2 at least distance

2δn apart. To be precise, we have the following lemma.

Lemma 3: Suppose, f : Fk
2 → F

n
2 and for any x, y ∈ F

k
2 ,

|x− y| ≥ Dk implies |f(x)− f(y)| ≥ 2δn. Then the optimal

decoder given in (10) achieves a distortion D. Moreover,

the suboptimal decoder g : F
n
2 → F

k
2 given by the map

g(y) = argminx∈F
k
2

|f(x) − y| (resolving ties arbitrarily)

achieves distortion D at noise level δ.
Proof: From the condition of the theorem, ∀y ∈

F
n
2 , erad(f

−1Bn(y, δn)) ≤ Dk. Hence the optimal decoder

must achieve the distortion D.

We check the case of the suboptimal minimum-distance de-

coder now. Let x ∈ F
k
2 is to be encoded and y = f(x)+u ∈ F

n
2

is received, where |u| ≤ δn. Let the decoder output z ∈ F
k
2 .

This implies, |y− f(z)| ≤ |y− f(x)| = |u| ≤ δn. And hence,

|f(z)−f(x)| ≤ |f(x)−y|+|y−f(z)| ≤ 2δn. But this implies

|z − x| ≤ Dk.
At this point, we quote a lemma from [14].

Lemma 4: Let 0 ≤ ǫ ≤ 1
2 and 1 ≤ l ≤ k. Let each entry

of an n × k binary matrix R be independent Bernoulli(ǫ2/l).
Then for some C > 0 and any u, v ∈ F

k
2 :

|u−v| > l

2ǫ
=⇒ P

[

|Ru−Rv| > (1− ǫ)ǫn

2

]

≥ 1−e−Cǫ3n .

We have the following theorem.

Theorem 5: Let 0 ≤ ǫ ≤ 1
2 and 1 ≤ l ≤ k. Suppose,

Cǫ3ρ > ln 2, where C is the constant mentioned in Lemma 4

and ρ = n/k. Then there exists a matrix R such that for all

u ∈ F
k
2 , if |u| > l/(2ǫ) then |Ru| > (1− ǫ)ǫn/2.
Proof: The proof is immediate from Lemma 4, where we

take one of the vectors from the pair to be the zero vector. If we

had a random matrix as in that lemma, then the probability that

the distance condition is not satisfied for at least one u ∈ F
k
2

is at most 2ke−Cǫ3n < 1, from the union bound. This shows

existence of a desired matrix.

For the case of f : Fk
2 → F

n
2 being linear, i.e., a k × n

matrix G, the condition of Lemma 3 simplifies. Indeed, G is

(D, δ) decodable, if |u| > Dk implies |Gu| > 2δk for all

u ∈ F
k
2 . This brings us to the following result.

Theorem 6: There exists a linear JSCC given by a matrix G
that achieves a distortionD over a BSSC(δ), for δ = λ(2D−λ)

16D2 ,

for any ρ = n/k > 8 ln 2.D3

Cλ3 , where C is the constant given

by Lemma 4 and 0 < λ < 1 can be chosen arbitrarily.

Proof: Let us choose, l = λk and ǫ = λ/(2D) in

Theorem 5. It is evident that there exists a matrix such that

for all u ∈ F
k
2 , if |u| > Dk then |Ru| > λ(2D−λ)

16D2 .
The result of Lemma 4 certainly does not permit us to come

up with a strong JSCC code. However if this lemma can be

replaced with a similar statement with stronger guarantee, then

one will be able to construct stronger JSCCs. Nonetheless, this

section outlines the connection between JSCCs and the rich

literature of distance-preserving embeddings.

III. REPETITION OF A SMALL CODE

In contrast to channel coding, repetition of a single code

of small block length leads to a non-trivial asymptotic per-

formance [8]. In this section we show that such a repetition

code can be decoded optimally with very small complexity

and “on-the-fly”, that is without having to wait for the entire

channel output yn.
Fix an arbitrary encoder given by the mapping f1 : Fu

2 →
F
v
2, to be called “small code”. Based on f1 we construct longer

codes by L-repetition to obtain an fL : Fk
2 → F

n
2 with k =

Lu, n = Lv, and

fL(x1, . . . , xL) = (f1(x1), . . . , f1(xL)) .

This yields a sequence of codes with ρ = n/k = v/u. It is
convenient to think of inputs and outputs in terms the u-ary



and v-ary super-letters. To that end we introduce the input

X = F
u
2 and the output Y = F

v
2 alphabets.

Note that the expressions for the optimal decoder (10) and

(12) are too complicated to draw any immediate conclusions.

In particular they do not appear to operate on the basis of

super-letters. It turns out, however, that there exists a much

simpler asymptotically optimal decoder, whose structure we

describe next.

Given a transition probability kernel P
Ŝ|Y : Y → X we

construct the decoder g : YL → XL as follows. First the

estimate ŝL ∈ XL is initialized to all blanks. Then given

a letter b ∈ Y , the decoder scans yL for occurrences of b
and fills the associated entries of ŝL with symbols from X
in proportion specified by P

Ŝ|Y (or the best possible rational

approximation). The operation is repeated for each b ∈ Y .
Note that this procedure can be realized by a finite-state

(Markov) machine: for each letter yj the decoder outputs the

letter ŝj from X and updates its state so as to repeatedly

cycle through all of X in proportion specified by P
Ŝ|Y (a

good rational approximation of the kernel may need to be

precomputed first). A decoder constructed as above will be

called a Markov decoder. Note that block-by-block decoders

discussed in [8] are a special case corresponding to matrices

P
Ŝ|Y of 0 and 1.
Theorem 7: Fix a small code f1 : Fu

2 → F
v
2 and consider

an L-repetition construction. The limit

D∞(f1, δ) = lim
L→∞

Dopt(fL, δ) ,

cf. (11), exists and is a non-negative concave function of δ.
As any such function it has a dual representation:

D∞(f1, δ) = inf
λ≥0

λδ −D∗
∞(f, λ) ,

where the concave conjugate D∗
∞(f, λ) is given by any of the

following equivalent expressions:

D∗
∞(f1, λ)

△
= inf

δ≥0
λδ −D∞(f1, δ)

= max
P

Ŝ|Y

min
PSY

E

[

λ
|f1(S)− Y |

v
− |S − Ŝ|

u

]

= min
PSY

max
P

Ŝ|Y

E

[

λ
|f1(S)− Y |

v
− |S − Ŝ|

u

]

, (18)

where the probability space is a Markov chain S → Y → Ŝ
with S, Ŝ ∈ X = F

u
2 and Y ∈ Y = F

v
2. Moreover,

solutions to outer maximizations maxP
Ŝ|Y

and minPSY
yield

the asymptotically optimal Markov decoder and the worst-case

source-adversary realization, respectively.

Remark: We may further simplify (18) to get:

D∞(f1, δ) =
1

u
max

PS,Y :E [|f1(S)−Y |]≤δv

∑

y

PY (y) rad(PS|Y=y) ,

where

rad(PS) = min
ŝ

∑

s

PS(s)|s− ŝ|

is the moment of inertia of distribution PS on Fu
2 . This moment

of inertia (in the special case of uniform PS on a subset

of F
u
2 ) plays an important role in the study of L-multiple

packings [1]–[3].

IV. COMPOUND ADVERSARY

In this section we break from the BSSC model in two ways.

First, we go beyond the binary case. As in [8] we define

an adversary (P,W ) as one that has to output a source

sequence that is strongly-typical w.r.t. P (in the sense of

[5]), and a channel output that is strongly-typical given the

input. A scheme is said to be (k, n,D)-adversarial for (P,W )
similarly to Definition 1. Many of the results presented in the

Introduction carry over to this model.

Second, we consider a compound adversary. That is, the

adversary can choose to be typical w.r.t. any pair (P,W )
in some class A. We say that a JSSC scheme is (k, n,D)-
adversarial for A if it is (k, n,D)-adversarial for all pairs

(P,W ) ∈ A. For asymptotic analysis we can define:

D
∗

ad(A, ρ) = lim sup
k→∞

inf{D : ∃(k, ⌊ρk⌋, D)

adversarial JSCC for A} , (19)

D∗
ad(A, ρ) = lim inf

k→∞
inf{D : ∃(k, ⌊ρk⌋, D)

adversarial JSCC for A} . (20)

In order to bound these quantities, we first make a digression

from JSCC, and treat unequal error protection (UEP) in the

combinatorial setting. We then use this for JSCC, not unlike

the way in which the achievability JSCC excess-distortion

exponent is shown by Csiszár [4].

A. Combinatorial Unequal Error Protection Coding

In the UEP setting, the adversary may choose the channel

to be strongly typical with respect to any element W of a

set AC . The encoder is assumed to know W , but the decoder

does not. The rate that is sent may depend upon W , and the

goal is to have “good” tradeoff between the rates R(W ) given
different channels.

IfW was known to the decoder, then the best known achiev-

able rate is given by the GV bound. In order to generalize the

bound (5) beyond the binary case, we use the following defi-

nitions. For any input x ∈ Xn transmitted through the channel

W , let UW (x) be the set of all possible outputs of the channel
W and the confusability set of the channel W is defined by

VW (x) = {y ∈ Xn : UW (x)∩UW (y) 6= ∅}. Then there exists

a codebook for this channel of size
|X |n

maxx∈Xn |VW (x)| [9].
3 The

asymptotic rate of this code is

RGV (W ) , lim
n→∞

1

n
log2

|X |n
maxx∈Xn |VW (x)|

= log2 |X | − 1

n
lim
n→∞

log2 max
x∈Xn

|VW (x)|. (21)

Note that in the case of a binary input-output adversarial

channel that can introduce at most δn errors, this rate reduces

indeed to (5), as the confusability set is a ball of radius 2δ.

3Indeed, the denominator can be improved to 1 + 1

|X|n
∑

x
|VW (x)|

for general adversarial channels [13], however we will not use that in the
following.



Back in the UEP setting assume that the set AC is de-

graded, i.e., it is totally ordered w.r.t. the stochastic channel

degradation relation. Then, the following states that RGV (W )
is achievable even if W is not known to the decoder.

Theorem 8: If AC is a degraded class of channels of size

that is polynomial in n, then for any channel W ∈ AC an

asymptotic rate of RGV (W ) can be achieved.

Proof: Suppose, W1, . . . ,Wℓn are the channels in AC

ordered from worst to the best, |AC | = ℓn. Let the max-

imum size of the confusability set of the channel Wi be

given by Vi = maxx∈Xn |VWi
(x)|. Let us construct a code

by the following greedy (Gilbert) algorithm. Start with any

x
(1)
1 ∈ Xn and include it in the codebook. Choose the next

codeword x
(1)
2 from Xn \ VW1

(x
(1)
1 ). Then, choose x

(1)
j from

Xn \∪k<jVW1
(x

(1)
k ) for j = 2, . . . ,M1 where M1 =

⌊

|X |n

ℓnV1

⌋

.

In general, set Mi =
⌊

|X |n

ℓnVi

⌋

, for i = 1, . . . , ℓn. Choose

codeword x
(i)
j from

Xn \
(

∪l<i ∪1≤k≤Ml
VWl

(x
(l)
k )

)

\
(

∪k<j VWi
(x

(i)
k )

)

.

Clearly, the code C can be partitioned into C = ∪iCi, where
Ci = {x(i)

1 , . . . , x
(i)
Mi

}.
Suppose, the encoder knows now that the channel is Wi.

It then chooses its codebook to be ∪j≤iCj. As VWi
(x) does

not contain any codeword other than x for all x ∈ ∪j≤iCj the

following decoding is always successful. Suppose x ∈ Cj , j ≤
i is transmitted. Having received y ∈ UWi

(x) ⊆ UWj
(x), the

decoder, for each of l = 1, 2, . . . , tries to find a codeword x̂
in ∪k≤lCk such that y ∈ UWk

(x̂). It stops whenever it finds

one with the smallest l. This would not be possible for any

l < j and the correct transmitted vector will then be found.

The size of the code is
∑i

j=1 Mj =
∑i

j=1

⌊

|X |n

ℓnVj

⌋

≥ |X |n

ℓnVi
.

Hence the rate of the code is asymptotically RGV (Wi) as ℓn
is only polynomially growing with n.
Note that the assumption on |AC | is not restrictive, since

for finite alphabet, the total number of possible channels

(conditional types) is only polynomial in n.

B. Compound JSCC

We restrict our attention to the case where the class A
is degraded. A source Q is (stochastically) degraded w.r.t. a

source P if there exists a channel with input distribution P
and output distribution P . Degradedness of channels is defined

in the same usual way. This is extended to classes as follows.

Definition 2: A class of sources AS is degraded if it is

totally ordered w.r.t. the stochastic source degradation relation.

A class of channelsAC is degraded if it is totally ordered w.r.t.

the stochastic channel degradation relation. A class of source-

channel pairs A is degraded, if it is a subset of the product of

degraded source and channel classes AS ×AC .

In such a compound setting, a separation-based scheme

suffers from an additional drawback compared to the strongly-

typical case. Since the source-channel interface rate is fixed,

it must be suitable for the worst-case source and worse-case

channel. It is not difficult to see that a separation-based scheme

can achieve a distortion D if and only if for any allowed

P there exists an ECC of rate R(P,D) for the worst W
s.t. (P,W ) ∈ AC . A general JSCC scheme may do better

than this. Intuitively speaking, when the source is such that

R(P,D) is low, the rate of the source-channel interface may be

adapted in order to accommodate for lower-capacity channels.

In order to show this, we use UEP coding.

Theorem 9: If

inf
(P,W )∈A

kR(P,D)− nC(W ) > 0

then no JSCC scheme can achieve D at blocklengths (k, n).
For a degraded class, asymptotically, if

inf
(P,W )∈A

R(P,D)− ρRGV (W ) < 0

then D is achievable.

Proof: The first (converse) part is trivial given the strong-

typicality version of (2). For the second (direct) part, we

provide the following construction. The encoder observes the

source type P , then uses an optimal combinatorial RDF-

achieving (“type-covering”) codebook of rate R(P,D). The
outputs of these possible codebooks are all mapped to an UEP

channel codebook, where for any source type P ot is assumed

that the channel type is

W (P ) = arg min
W :(P,W )∈A

RGV (W ).

Note that since the number of possible source types is

polynomial in n, then so is the number of possible channel

assumptions, as required in Theorem 8. By the degradedness

property, correct encoding will hold for any allowed adversary

in A.

Remark: the analysis in this section can also be applied to

the BSSC setting.
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