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Abstract—This paper quantifies the fundamental limits of
variable-length transmission of a general (possibly analog) source
over a memoryless channel with noiseless feedback, under a
distortion constraint. We consider excess distortion, average
distortion and guaranteed distortion (d-semifaithful codes). In
contrast to the asymptotic fundamental limit, a general conclu-
sion is that allowing variable-length codes and feedback leads
to a sizable improvement in the fundamental delay-distortion
tradeoff. In addition, we investigate the minimum energy re-
quired to reproduce k source samples with a given fidelity after
transmission over a memoryless Gaussian channel, and we show
that the required minimum energy is reduced with feedback and
an average (rather than maximal) power constraint.

Index Terms—Variable-length coding, joint source-channel
coding, lossy compression, single-shot method, finite-blocklength
regime, rate-distortion theory, feedback, memoryless channels,
energy-distortion tradeoff.

I. INTRODUCTION

A famous result due to Shannon [1] states that feedback
cannot increase the capacity of memoryless channels. Burna-
shev [2] showed that feedback improves the error exponent
in a variable-length setting. Polyanskiy et al. [3] showed
that allowing variable-length coding and non-vanishing error-
probability ε boosts the ε-capacity of the discrete memoryless
channel (DMC) by a factor of 1−ε. Furthermore, as shown in
[3], if both feedback and variable-length coding are allowed,
then the asymptotic limit C

1−ε is approached at a fast speed

O
(

log `
`

)
as the average allowable delay ` increases:1

(1− ε) logM?(`, ε) = `C +O (log `) , (1)

where M?(`, ε) is the maximum number of messages that can
be distinguished with average error probability ε at average
delay `, and C is the channel capacity. This is in contrast to
channel coding at fixed blocklength n where, in most cases,
the optimum speed of convergence of the maximal rate to
capacity is O

(
1√
n

)
, even when feedback is available, see

[3], [4]. Thus, variable-length coding with feedback (VLF) not
only boosts the ε-capacity of the channel, but also markedly
accelerates the speed of approach to it. Moreover, zero-error
communication is possible at an average rate arbitrarily close
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Science and Technology Center, under Grant CCF-0939370.

1Unless explicitly noted, all log and exp in this paper are to arbitrary
matching base, which also defines units of entropy, information density and
mutual information.

to capacity via variable-length coding with feedback and
termination (VLFT) codes, a class of codes that employs a
special termination symbol to signal the end of transmission,
which is always recognized error-free by the receiver [3].
As discussed in [3], the availability of zero-error termination
symbols models that common situation in which timing infor-
mation is managed by a higher layer whose reliability is much
higher than that of the payload.

In [5], we treated variable-length data compression with
nonzero excess distortion probability. In particular, we showed
that in fixed-to-variable-length compression of a block of k
i.i.d. source outcomes, the minimum average encoded length
`?(k, d, ε) compatible with probability ε of exceeding distor-
tion threshold d satisfies, under regularity assumptions,

`?(k, d, ε) = (1−ε)kR(d)−
√
kV(d)

2π
e−

1
2Q
−1(ε)2

+O (log k) ,

(2)
where R(d) and V(d) are the rate-distortion and the rate-
dispersion functions, and Q is the standard normal comple-
mentary cumulative distribution function. The second term in
the expansion (2) becomes more natural if one notices that for
Z ∼ N (0, 1),

E [Z · 1
{
Z > Q−1 (ε)

}
] =

1√
2π

e−
1
2Q
−1(ε)2

. (3)

As elaborated in [5], the expansion (2) has an unusual feature:
the asymptotic fundamental limit is approached from the
“wrong” side, e.g. larger dispersions and shorter blocklengths
reduce the average compression rate.

In this paper, we consider variable-length transmission of a
general (possibly analog) source over memoryless channels
with feedback, under a distortion constraint. This variable-
length joint source-channel coding (JSCC) setting can be
viewed as a generalization of the setups in [3], [5], which, as
explained above, analyze channel coding and source coding,
respectively. Related work includes an assessment of the
nonasymptotic fundamental limits of fixed-length JSCC in
[6]–[8], a dynamic programming formulation of zero-delay
JSCC with feedback in [9], and a practical variable-length
almost lossless joint compression/transmission scheme in [10].
Various feedback coding strategies are discussed in [11]–
[17] while pragramic feedback communication schemes that
implement VLF include [18]–[22].

We treat several scenarios that differ in how the distortion
is evaluated and whether a termination symbol is allowed. In
all cases, we analyze the average delay required to achieve
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the objective. The results in Section III are summarized as
follows:
• Under the average distortion criterion, E [d(Sk, Ŝk)] ≤ d,

the minimal average delay `?(k, d) attainable by VLF
codes transmitting k source symbols satisfies

`?(k, d)C = kR(d) +O (log k) . (4)

• Under the excess distortion probability criterion,
P[d(Sk, Ŝk) > d] ≤ ε, the minimal average delay
attainable by VLF codes transmitting k source symbols
satisfies

`?(k, d, ε)C = (1− ε)kR(d)−
√
kV(d)

2π
e−

1
2Q
−1(ε)2

+O (log k) . (5)

• Under the guaranteed maximal distortion criterion,
P[d(Sk, Ŝk) > d] = 0, the minimal average delay
attainable by VLFT codes transmitting k source symbols
satisfies

`?t (k, d, 0)C = kR(d) +O (log k) . (6)

Similar to (1), approaching the limits in (4), (5) and (6) only
requires an extremely thin feedback link, namely, the decoder
sends just a single acknowledgement signal (stop-feedback)
once it is ready to decode. 2 Note that (5) exhibits significant
similarities with (2): the asymptotic limit is approached from
below, i.e. in contrast to the results in [6], [23], [24], smaller
blocklengths and larger source dispersions are beneficial. Note
also that the leading term of the expansion in (5) can be
attained with variable-length codes without feedback.

Interestingly, naive separate source/channel coding fails to
attain any of the limits mentioned. For example, it approaches
the asymptotic fundamental limit from above, e.g. even the
sign of the second term in (5) is not attainable. This obser-
vation led us to believe, initially, that competitive schemes in
this setting should be of successive refinement and adaptation
sort such as in [25], [26], or dynamic programming-like as
in [9], [27]. It turns out, however, that like the fixed-length
JSCC achievability schemes in [6], [7], attaining limits (4)-
(6) requires a rather simple variation on the separation archi-
tecture: one only needs to allow a variable-length interface
between the source coder and the channel coder. Note that
typically, separation is understood in the sense that the output
of the compressor is treated as pure bits, which can be
arbitrarily permuted without affecting the performance of the
concatenated scheme [8], [28], provided that an inverse per-
mutation is applied at the input of the decompressor. Similarly,
the performance of a variable-length separated scheme is
insensitive to permutations (but not additions or deletions) of
the bits at the output of the source coder. These semi-joint
achievability schemes are the subject of Section II, and form
the basis for the lossy joint source-channel codes, which are
the subject of Section III.

2Stop-feedback is not to be confused with the termination symbol, which
is a special symbol that the encoder can transmit error-free in order to inform
the decoder that the transmission has ended and it is time to decode.

Energy-limited codes are the subject of Section IV. The
optimal energy-distortion tradeoff achievable in the transmis-
sion of an arbitrary source vector over the AWGN channel is
studied in Section V. In that setting, disposing of the restriction
on the number of channel uses per source sample, we limit
the total available transmitter energy E and we study the
tradeoff between the source dimension k, the total energy E
and the fidelity of reproduction. Related prior work includes
a study of asymptotic energy-distortion tradeoffs [29] and
a nonasymptotic analysis of the energy per bit required to
reliably send k bits through an AWGN channel [30]. The main
results in Section V are the following:
• Under the average distortion constraint, the total mini-

mum energy required to transmit k source samples over
an AWGN channel with feedback satisfies

E?f (k, d) · log e

N0
= kR(d) +O(log k) , (7)

where N0

2 is the noise power per degree of freedom.
• Under the excess distortion probability constraint, the

minimum energy required to transmit k source samples
over an AWGN channel without feedback satisfies

E? (k, d, ε) · log e

N0
(8)

= kR(d) +
√
k (2R(d) log e+ V(d))Q−1 (ε) +O (log k) .

• Under the excess distortion probability constraint, the
total minimum average energy3 required to transmit k
source samples over an AWGN channel with feedback
satisfies

E?f (k, d, ε) · log e

N0
(9)

= kR(d)(1− ε)−
√
kV(d)

2π
e−

(Q−1(ε))2

2 +O (log k) .

Like (5), particularizing (9) to ε = 0 also covers the
case of guaranteed distortion. The leading term in the
expansion (9) can be achieved even without feedback, as
long as ε > 0 and the power constraint is understood on
the average over the codebook.

We point out the following parallels between variable-length
codes and energy-limited-codes.
• Under average distortion, in both cases the fundamental

limit is approached at speed O
(

log k
k

)
(cf. (4), (7)).

• Allowing a non-vanishing excess-distortion probability
and variable length (or variable power) boosts the asymp-
totic fundamental limit by a factor of 1− ε.

• Allowing both feedback and variable length (or variable
power) leads to expansions (5), (9), in which shorter
blocklengths are beneficial.

• As long as feedback is available, in both variable length
coding with termination and average energy-limited cod-
ing, guaranteed distortion (ε = 0) can be attained, even
though the channel is noisy.

3The energy constraint in (8) is understood on a per-codeword basis. The
energy constraint in (9) is understood as averaged over the source and noise
realizations.
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II. FEEDBACK CODES FOR NON-EQUIPROBABLE MESSAGES

In this section we consider joint source-channel coding
assessing reliability by the probability that the (possibly non-
equiprobable) message is reproduced correctly. These results
lay the foundation for the analysis of joint source-channel
coding under distortion constraints presented in Section III.
Our key tools are two extensions of the channel coding bounds
for the DMC with feedback from [3]. VLF and VLFT codes
are formally defined as follows.

Definition 1. A variable-length feedback code (VLF) trans-
mitting message W (taking values in W) over the channel
{PYi|XiY i−1}∞i=1 with input/output alphabets A/B is defined
by:

1) A random variable U ∈ U revealed to the encoder and
decoder before the start of the transmission.

2) A sequence of encoding functions fn : U ×W ×Bn−1 7→
A, specifying the channel inputs

Xn = fn
(
U,W, Y n−1

)
. (10)

3) A sequence of decoding functions gn : U × Bn 7→ W ,
n = 1, 2, . . .

4) A non-negative integer-valued random variable τ , a
stopping time of the filtration Fn = σ {U, Y1, . . . , Yn},
which determines the time at which the decoder output is
computed:

Ŵ = gτ (U, Y τ ). (11)

The average transmission duration is E [τ ].

A very similar concept is that of an VLFT code:

Definition 2. A variable-length feedback code with termi-
nation (VLFT) transmitting W ∈ W over the channel
{PYi|XiY i−1}∞i=1 with input/output alphabets A/B is defined
similarly to VLF codes with the exception that condition 4) in
Definition 1 is replaced by

4’) A non-negative integer-valued random variable τ , a stop-
ping time of the filtration Gn = σ{W,U, Y1, . . . , Yn}.

The idea of allowing the transmission duration τ to depend
on the true message W models the practical scenarios (see [3])
where there is a highly reliable control layer operating in
parallel with the data channel, which notifies the decoder when
it is time to make a decision.

Two special cases of Definitions 1 and 2 are stop-feedback
and fixed-to-variable codes:

1) stop-feedback codes are a special case of VLF codes
where the encoder functions {fn}∞n=1 satisfy:

fn(U,W, Y n−1) = fn(U,W ) . (12)

Such codes require very limited communication over
feedback: only a single signal informing the encoder to
stop transmitting symbols once the decoder is ready to
decode.

2) fixed-to-variable codes, defined in [31], are also required
to satisfy (12), while the stopping time is4

τ = inf{n ≥ 1 : gn(U, Y n) = W} , (13)

and therefore, such codes are zero-error VLFT codes.
For both VLF and VLFT codes, we say that a code that

satisfies E [τ ] ≤ ` and P
[
W 6= Ŵ

]
≤ ε, when averaged over

U , message and channel, is an (`, ε) code for source/channel(
W, {PYi|XiY i−1}∞i=1

)
.

The random variable U serves as the common randomness
shared by both transmitter and receiver, which is used to
initialize the codebook. As a consequence of Caratheodory’s
theorem, the amount of this common randomness can always
be reduced to just a few bits: as shown in [3, Theorem
19], if there exists an (`, ε) code with |U| = ∞, then there
exists an (`, ε) code with |U| ≤ 3. Allowing for common
randomness does not affect the asymptotic expansions, but
leads to more concise expressions for our non-asymptotic
achievability bounds. Furthermore, no common randomness
is needed at all if the channel is symmetric [3, Theorem 3].

First, we quote an achievability result [3, (107)-(118)]. Let
PY be the capacity achieving output distribution of the DMC.
Denote information density as usual:

ıX;Y (a; b)
4
= log

PY |X(b|a)

PY (b)
. (14)

Theorem 1 ( [3]). For every DMC with capacity C, any
positive integer M and probability of error ε there exists an
(`, ε) stop-feedback code for the message W taking M values5

such that
C` ≤ logM + log

1

ε
+ a0 ,

where
a0 , max

x,y
ıX;Y (x; y). (15)

We note that a similar result is also contained in many other
works, starting from [2] and later in [32], [33].

Next, we tighten Theorem 1 in the case of non-equiprobable
messages.

Theorem 2. For every DMC with capacity C and random
variable W there exists an (`, ε) stop-feedback code for W
with

C` ≤ H(W ) + log
1

ε
+ a0, (16)

where a0 is defined in (15).

Proof. If H(W ) = ∞ then there is nothing to prove, so we
assume otherwise. Denote the information in m

ıW (m)
4
= log

1

PW (m)
, (17)

4As explained in [31], this model encompasses fountain codes in which
the decoder can get a highly reliable estimate of τ autonomously without the
need for a termination symbol.

5Although the result in [3] is stated for average (over equiprobable mes-
sages) error probability, in fact, it applies to non-equiprobable W. Furthermore,
if we do not insist on |U| ≤ 3, Theorem 1 also applies to maximal probability
of error.
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and note that by the memorylessness assumption,

ıXn;Y n(an; bn) =

n∑
i=1

ıX;Y (ai; bi). (18)

In the achievability scheme of [3, Theorem 3], at time n
the decoder observes Y n, computes M information densities
ıXn;Y n(Cn

1 ;Y n), . . . , ıXn;Y n(Cn
M ;Y n), where Cn

1 , . . . ,C
n
M

are the codewords, and stops the first time one of the infor-
mation densities exceeds a threshold. However, instead of one
common threshold, we assign lower thresholds to the more
likely messages.

Code construction: We define the common randomness
(revealed to the encoder and decoder before the transmission
starts) to be a random variable U as follows:

PU , PX∞ × . . .× PX∞︸ ︷︷ ︸
|W|

, (19)

where X∞ consists of i.i.d. copies drawn from (any) capacity-
achieving input distribution. A realization of U defines |W|
infinite dimensional vectors C∞m ∈ A∞, m ∈ W . To transmit
m0 ∈ W , the encoder passes the entries of the corresponding
codeword C∞m0

to the channel one by one, so that the first n
entries of the codeword, Cn

m0
, are transmitted by time n:

Xn = Cn
m0
. (20)

At time n, the decoder computes the values

In(m) = ıXn;Y n(Cn
m;Y n)− ıW (m), (21)

The decoder defines the stopping times:

τm = inf{n ≥ 0: In(m) ≥ γ}, (22)

where γ > 0 is an arbitrary constant. The final decision Ŵ is
made by the decoder at the stopping time τ?:

τ? = min
m∈W

τm (23)

Ŵ = g(Y τ
?

) = argmin
m∈W

τm . (24)

where the tie-breaking rule is immaterial.
Analysis: We claim that, averaged over U , we have:

P[W 6= Ŵ ] ≤ exp(−γ) (25)
C E [τ?] ≤ H(W ) + γ + a0 . (26)

Abbreviate the stopping time of the true message as

τ
4
= τW . (27)

The union bound results in, cf. [3, Theorem 3]:

P[W 6= Ŵ |W = m0] ≤
∑

m∈W\{m0}

P[τm ≤ τ |W = m0].

(28)

Due to memorylessness of the channel, ıXn;Y n(Xn;Y n)−nC
is a martingale with jump size upper-bounded by a0 (defined in
(15)). For each j ∈ N, min{τ, j} is a bounded stopping time,

so by Doob’s optional stopping theorem (e.g. [34, Theorem
10.10]) we have

C E [min{τ, j}]−H(W ) = E
[
Imin{τ,j}(W )

]
≤ γ + a0.

(29)

By the monotone convergence theorem, it follows from (29)
that

C E [τ ]−H(W ) ≤ γ + a0. (30)

Therefore, the stopping time τ has bounded expectation,
and since the martingale ıXn;Y n(Xn;Y n) − nC also has
bounded increments, Doob’s optional stopping theorem applies
to conclude

E [ıXτ ;Y τ (Xτ ;Y τ )] = C E [τ ] . (31)

Next, we have, by a change of measure argument, for every
m 6= m0:

P[τm = n|W = m0] ≤ exp (−ıW (m)− γ)P[τm = n|W = m] .
(32)

Consequently, using (32), we have

P[τm ≤ τ |W = m0] ≤ P[τm <∞|W = m0] (33)

=

∞∑
n=0

P[τm = n|W = m0] (34)

≤ exp (−ıW (m)− γ) , (35)

where we used that P [τ <∞] = P [τm <∞|W = m] = 1,
which in turn follows from (30). Summing (35) over all m 6=
m0 and using (28) we get (25). Note that the reasoning in (32)–
(35) generalizes that in [3, (111)-(118)] to nonequiprobable
messages.

The estimate of average length in (26) follows from τ? ≤ τ
and (29). Finally, the desired bound (16) follows by taking
γ = log 1

ε .

Remark 1. A slightly less sharp bound could also be de-
rived via a variable-length separated scheme: compress W
losslessly into a variable-length string {0, 1}∗ with average
length less than H(W ), cf. [35], then send the length via
O(logH(W )) channel symbols incurring in a very small
probability of error and finally send the data bits.

Next, we extend the zero-error bound in [3, Theorem 11]
to the case of non-equiprobable messages:

Theorem 3. For every DMC with capacity C there exists a
constant a1 such that for every discrete random variable W
there exists an (`, 0) VLFT code with

C` ≤ H(W ) + a1. (36)

Proof. Without loss of generality, we assume that H(W ) <∞
and W takes values in positive integers. The codebook is a
countable collection of infinite strings C∞m , m = 1, 2, . . ..
Given the codebook and the realization of W = m0, the
encoder sends in the first n channel uses

Xn = Cn
m0
. (37)
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The decoder outputs m error-free at the stopping time τ? given
by:

τ? = inf
n

{
In(m) > max

j 6=m
In(j)

}
, (38)

where
In(m) = ıXn;Y n(Cn

m;Y n)− ıW (m). (39)

According to (38), if the true message is m the transmission
stops at the first instant n when In(m) exceeds all In(j),
j 6= m. Note that τ depends on the transmitted message m,
as permitted by the paradigm of VLFT codes.

Analysis: The probability that the time to transmit message
m exceeds n is

P [τ? > n|W = m] = P

 ⋃
j 6=m

{In(j) > In(m)} |W = m

 .
(40)

Applying the random coding argument, we now assume that
the codebook strings C∞1 ,C

∞
2 , . . . are drawn i.i.d. from

PX∞ = PX × PX × . . ., where PX is the capacity-achieving
channel input distribution. Denoting by X̄n an independent
copy of Xn and taking the expectation of the right side of
(40) with respect to the codebook, we have (41)–(43) at the
bottom of the page, where we used the union bound and
min{1, a} = exp

(
−
∣∣log 1

a

∣∣+).
Applying (43) we get

E [τ?] =

∞∑
n=0

P [τ? > n] (44)

≤
∞∑
n=0

E
[
exp(−|ıXn;Y n(Xn;Y n)− ıW (W )|+)

]
.

(45)

Finally, (45) implies (36) by applying the result [3, (162)-
(179)]:
∞∑
n=0

E
[
exp(−|ıXn;Y n(Xn;Y n)− γ|+)

]
≤ γ

C
+ a1 , (46)

where a1 is a constant determined by the distribution of
ıX1;Y1

(X1;Y1).

III. ASYMPTOTIC EXPANSIONS OF THE RATE-DISTORTION
TRADEOFF

A. Definitions

We proceed from the setup of Section II where a discrete
message is transmitted over the channel with feedback to a

more general scenario, in which a, possibly analog, signal
is transmitted over a channel with feedback, under a fidelity
constraint. We will consider the following scenarios:

1) excess distortion probability: A VLF code transmitting
memoryless source Sk ∈ Sk with reproduction alphabet
Ŝk and separable distortion measure d : Sk × Ŝk 7→
[0,+∞] is called a (k, `, d, ε) excess-distortion code if
the decoding time and the distortion satisfy

E [τ ] ≤ `, (47)

P[d(Sk, Ŝk) > d] ≤ ε. (48)

The corresponding fundamental limit is

`?(k, d, ε)
4
= inf{` : ∃ an (k, `, d, ε) VLF code} . (49)

2) average distortion: A VLF code satisfying, instead
of (48), an average constraint

E [d(Sk, Ŝk)] ≤ d. (50)

is called a (k, `, d) average-distortion code. The corre-
sponding fundamental limit is

`?(k, d)
4
= inf{` : ∃ an (k, `, d) VLF code} . (51)

3) guaranteed distortion: A VLFT code transmitting mem-
oryless source Sk ∈ Sk with reproduction alphabet Ŝk
and separable distortion metric d is called a (k, `, d, 0)
guaranteed-distortion code if it achieves ε = 0 in (48).
The corresponding fundamental limit is

`?t (k, d, 0)
4
= inf{` : ∃ an (k, `, d, 0) VLFT code} .

(52)
We will use the following notation for the various mini-

mizations of information measures:

RS(d) , min
PZ|S : S7→Ŝ :

E[d(S,Z)]≤d

I(S;Z), (53)

RS(d, ε) , min
PZ|S : S7→Ŝ :

P[d(S,Z)>d]≤ε

I(S;Z), (54)

Hd,ε(S) , min
c : S7→Ŝ :

P[d(S,c(S))>d]≤ε

H(c(S)). (55)

The quantity in (55) is referred to as the (d, ε)-entropy of
the source S [36]. The (d, 0)-entropy is also known as epsilon-
entropy [36]:6

Hd,0(S) , min
c : S7→Ŝ :

d(S,c(S))≤d a.s.

H(c(S)). (56)

6N.B. in that terminology “epsilon” corresponds to d, not ε.

P

 ⋃
j 6=m

{
PW (j)PY |X(Y |Xj)

PW (m)PY |X(Y |Xm)
≥ 1

}
|W = m

 ≤ E

[
min

{
1,

∞∑
j=1

P
[
PW (j)PY n|Xn(Y |X̄n)

PW (m)PY n|Xn(Y n|Xn)
≥ 1 | Xn, Y n

]}]
(41)

≤ E

min

1,

∞∑
j=1

PW (j)

PW (m)

E
[
PY n|Xn(Y n|X̄n)|Y n

]
PY n|Xn(Y n|Xn)


 (42)

= E
[
exp(−|ıXn;Y n(Xn;Y n)− ıW (m)|+)

]
, (43)
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Provided that the infimum in (53) is achieved by some
transition probability kernel PZ?|S , the d-tilted information in
s ∈ S is defined as [24]

S(s, d) , − logE [exp (−λ?d(s, Z?) + λ?d)] , (57)

where7

λ? = −R′S(d). (58)

Note that in almost-lossless compression, Z? = S and

S(s, d) , ıS(s). (59)

B. Regularity assumptions on the source

We assume that the source, together with its distortion
measure, satisfies the following assumptions:
A1 The source {Si} is stationary and memoryless, PSk =

PS × . . .× PS.
A2 The distortion measure is separable, d(sk, zk) =

1
k

∑k
i=1 d(si, zi).

A3 The distortion level satisfies dmin < d < dmax, where
dmin is the infimum of values at which the minimal
mutual information quantity RS(d) is finite, and dmax =
infz∈Ŝ E [d(S, z)], where the expectation is with respect to
the unconditional distribution of S.

A4 The rate-distortion function is achieved by some PZ?|S:
RS(d) = I(S;Z?).

A5 E
[
d12(S,Z?)

]
<∞ where the expectation is with respect

to PS × PZ? .
The rate-dispersion function of the source satisfying as-

sumptions A1–A5 is given by [24]

V(d) = Var (S(S, d)) . (60)

We showed in [5] that under assumptions A1–A5 for all
0 ≤ ε ≤ 1

RSk(d, ε)

Hd,ε(S
k)

}
= (1−ε)kR(d)−

√
kV(d)

2π
e−

(Q−1(ε))2

2 +O (log k) .

(61)

C. Average distortion

Theorem 4. Under assumptions A1–A5 we have

C`∗(k, d) = kR(d) +O(log k) . (62)

Proof. Achievability: fix 1 < p ≤ 12, ε > 0, source codebook
c1, . . . , cM and consider a separated scheme

S − f(S)−X − Y − Ŵ − c(Ŵ )

such that P
[
f(S) 6= Ŵ

]
≤ ε and

f(sk) = arg min
m∈{1,...,M}

d(sk, cm), sk ∈ Sk (63)

c(m) = cm, m ∈ {1, . . . ,M} (64)

7Note that the existence of PZ?|S guarantees the differentiability of RS(d).

The average distortion is bounded by

E
[
d
(
Sk, c

Ŵ

)]
≤ E

[
d(Sk, cW )

]
+ E

[
d(Sk, c

Ŵ
)1
{
Ŵ 6= W

}]
(65)

≤ E
[

min
m∈{1,...,M}

d(Sk, cm)

]
+
(
E
[
dp(Sk, c

Ŵ
)
]) 1

p ε1−
1
p

(66)

where (66) holds by Hölder’s inequality. Taking the expecta-
tion of both sides over c1, . . . , cM drawn i.i.d. from P kZ? , we
conclude, via a random coding argument, that there exists a
separate source/channel code with average distortion bounded
by

d ≤ d̄+ E
1
p
[
dp(Sk, Z1)

]
ε1−

1
p , (67)

where we denoted

d̄ , E
[

min
m∈{1,...,M}

d(Sk, Zm)

]
, (68)

and PSkZ1...ZM = PSkP
k
Z? . . . P

k
Z? . The work of Pilc [37]

(finite alphabet) and Yang and Zhang [38] (abstract alphabet)
shows that under assumptions A1–A5,8

logM = kR
(
d̄
)

+O(log k). (69)

Letting ε = k
p
p−1 , we conclude by assumption A5 that the

second term in (67) is bounded by O
(

1
k

)
, i.e. d ≤ d̄+O

(
1
k

)
.

Finally, by Theorem 1, C` ≤ logM + O (log k), and the ‘≤’
direction in (62) follows by the differentiability of R(d) in the
region of assumption A3.

Converse: By the data-processing inequality and [2, Lemma
1-2] we have

kR(d) ≤ `C (70)

for any (k, `, d) VLF code.

D. Excess distortion probability

Theorem 5. Under assumptions A1–A5 and any ε > 0 we
have

`?(k, d, ε)C = (1−ε)kR(d)−
√
kV(d)

2π
e−

(Q−1(ε))2

2 +O (log k)

(71)

Proof. Achievability: Pair a lossy compressor Sk → W with
excess-distortion probability ε′ = ε − 1√

k
and H(W ) =

Hd,ε′(S
k)9 with a VLF code from Theorem 2 transmitting

W with probability of error 1√
k

. Apply (61) to (16)10.
Converse: Apply the data-processing inequality and [2,

Lemma 1-2] to get:

`C ≥ RSk(d, ε) (72)

for every (k, `, d, ε) VLF code.
8In particular, the bounded twelfth moment in A5 is required for the

applicability of the result of Yang and Zhang [38].
9Although the optimal mapping c? that achieves (d, ε)-entropy is not

known in general, the existence of good approximations satisfying the
constraint in (55) that approach Hd,ε(Sk) to within log2Hd,ε(S

k) bits is
guaranteed by a random coding argument, see [5].

10Note that (61) also holds if ε in the left side is replaced by ε+O
(

1√
k

)
.
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E. Guaranteed distortion

Theorem 6. Under assumptions A1–A5, we have

`?t (k, d, 0)C = kR(d) +O (log k) (73)

Proof. For the achievability we note that the estimate of the
Hd,ε(S

k) in (61) applies with ε = 0 and thus

Hd,0(Sk) = kR(d) +O(log k) . (74)

Then, we can pair the mapping achieving Hd,0(Sk) with the
zero-error VLFT code from Theorem 3.

Conversely, repeating the argument of [3, Theorem 4], with
the replacement of the right side of [3, (67)] by RS(d, ε) we
conclude that any (`, d, ε) VLFT code must satisfy

RS(d, ε) ≤ C`+ log(`+ 1) + log e . (75)

F. Discussion

We make several remarks regarding the rate-distortion trade-
off in all three settings considered above:

1) The case d = dmin is excluded by the assumptions of
Theorems 4–6. However, in the important special case of
a distortion measure that satisfies

d(a, b) =

{
dmin, a = b

> dmin, a 6= b
, (76)

d = dmin corresponds to almost-lossless transmission,
and both Theorems 4 and 5 apply with R(d) and V(d)
equal to the entropy and the varentropy of the source,
respectively, as long as the source is stationary and
memoryless and the third moment of ıS(S) is finite.

2) For almost-lossless transmission of finite alphabet
sources, the asymptotic expansion (71) can be achieved
by reliably (i.e. with probability of error ∼ 1

k ) transmit-
ting the type of the source outcome first followed by an
index that describes the source outcome within its type
class, unless the type of the source outcome is one of the
least likely types with total mass ε, in which case nothing
is transmitted.

3) Even if the channel is not symmetric, the asymptotic
expansions in Theorems 4–6 can be achieved without
common randomness U , by using constant composition
channel codebooks. For instance, consider the scheme
in Theorem 2 with PX∞ drawn from the distribution
equiprobable over the capacity-achieving type. Since
E [τ |X∞] = E [τ ] a.s., almost every such codebook at-
tains the bound in (29) up to logarithmic terms, resulting
in a deterministic construction attaining (71).

4) Stop-feedback codes are remarkably powerful at finite
blocklength; indeed, up to the terms of order O (log k),
they attain the fundamental limits in the settings of
Theorems 4, 5 and 6. As the converse parts of Theorems
4, 5 and 6 demonstrate, relying on feedback more heavily
can only bring in an improvement of order at most
O (log k).

5) Note that (71) is achieved by a stop-feedback code. We
can further show that even without any feedback one can
still achieve the optimal first-order performance

`C ≤ (1− ε)kR(d) +O(
√
k log k), (77)

provided variable-length channel coding is allowed. In-
deed, one can first use the variable-length excess-
distortion compressor from [5] on Sk to get a binary
string of average length (1− ε)kR(d) +O(

√
k), see (2).

Then, truncating the length at k2 and transmitting 2 log k
data bits with reliability 1

k2 , we can reliably inform the
encoder about the total number of data bits b to be
sent next. We may then use a capacity-achieving code
of length b

C + O(
√
b log b) to send the data bits with

reliability 1
k [23].

6) The naive separation scheme, i.e. a fixed-length source
code followed by a channel code achieves at most:

`C ≥ (1− ε)kR(d) + a
√
k log k, a > 0. (78)

Indeed, according to Theorem 1, the number of messages
M that can be transmitted via a VLF code with error
probability η satisfies

logM ≥ `C

1− η
+O (log `) . (79)

On the other hand, the number of codewords of a source
code with probability of exceeding distortion d no greater
than ζ satisfies [24]

logM ≤ kR(d) +
√
kV(d)Q−1 (ζ) +O (1) . (80)

Optimizing over η + ζ ≤ ε yields (78).
7) The semi-joint separated schemes that attain (71) contain

a vital ingredient missing from naive separated schemes:
namely, the channel code employs unequal error pro-
tection. Consequently, the more likely source codewords
are decoded with higher reliability, resulting in massive
improvement at finite blocklength evidenced by (71).
Unequal error protection can be achieved ether via a
maximum-a-posteriori-like decoder of Theorem 2 or the
variable-length separation interface of Remark 1.

8) The Schalkwijk-Bluestein [22] (see also [39]) elegant
linear feedback scheme for the transmission of a single
Gaussian sample S ∼ N (0, σ2) over the AWGN channel
achieves the mean-square error σ2

(1+P )n , after n channel
uses, where P is the average transmit SNR. In other
words, the minimum delay in transmitting a Gaussian
sample over a Gaussian channel with feedback is given
by

`?(1, d) =
R(d)

C
, (81)

as long as R(d)
C is integer.11 Note that (81) is achieved

with fixed, not variable length, and average, not maximal,
power constraint. If there are k Gaussian samples to
transmit, repeating the scheme for each of the samples
achieves

`?(k, d) = k
R(d)

C
, (82)

11If R(d) = C, no feedback is needed.
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which implies, in particular, that in general our estimate
of O (log k) in (62) is too conservative. Beyond Gaussian
sources and channels, a sufficient condition for a fixed-
length JSCC feedback scheme to achieve (82) is provided
in [16].

9) The Schalkwijk-Bluestein scheme uses instantaneous
feedback and has notoriously resisted generalization be-
yond Gaussian channels, which limits the applicability
of the scheme. In contrast, the simple separated scheme
in Theorem 4 uses only stop-feedback and applies to
arbitrary sources and channels.

IV. ENERGY-LIMITED FEEDBACK CODES FOR
NON-EQUIPROBABLE MESSAGES

In this section, we study the transmission of a message
over an AWGN channel under an energy constraint. We would
like to know how much information can be pushed through
the channel, if a total of E units of energy is available to
accomplish the task. Formally, the codes studied in this section
are defined as follows.

Definition 3. An energy-limited code without feedback for the
transmission of a random variable W taking values inW over
an AWGN channel is defined by:

1) A sequence of encoders fn : W 7→ A, specifying the
channel inputs

Xn = fn (W ) (83)

satisfying

P

 ∞∑
j=1

X2
j ≤ E

 = 1. (84)

2) A decoder g : B∞ 7→ W producing Ŵ = g(Y∞), where
{Yj} is the output of a memoryless AWGN channel:

Yj = Xj + Zj , Zj ∼ N
(

0,
N0

2

)
. (85)

Definition 4. An energy-limited feedback code for the trans-
mission of a random variable W taking values in W over an
AWGN channel is defined by:

1) A sequence of encoders fn : W × Bn−1 7→ A, defining
the channel inputs

Xn = fn
(
W,Y n−1

)
(86)

satisfying
∞∑
j=1

E
[
X2
j

]
≤ E. (87)

2) A decoder g : B∞ 7→ W producing Ŵ = g(Y∞), where
{Yj} is the output of the memoryless AWGN channel (85).

An (E, ε) code for the transmission of random variable W
over the Gaussian channel is a code with energy bounded by
E and P

[
W 6= Ŵ

]
≤ ε.

Definitions 3–4 do not impose any restrictions on the
number of degrees of freedom n, restricting instead the total
available energy. The problem of transmitting a message with

Bit number Sequence of time slots
1 1 2 4 7 · · ·
2 3 5 8 · · ·
3 6 9 · · ·
...

`(W )

Fig. 1. Illustration of the diagonal numbering of channel uses in Theorem 7.

minimum energy was posed by Shannon [40], who showed
that Eb, the minimum energy per information bit compatible
with vanishing block error probability converges to N0 loge 2
as the number of information bits goes to infinity, where N0

2 is
the noise power per degree of freedom. Recently, Polyanskiy et
al. [30, Theorem 7] showed a dynamic programming algorithm
for the error-free transmission of a single bit over an AWGN
channel with feedback that attains exactly Shannon’s optimal
energy per bit tradeoff

Eb = N0 loge 2. (88)

The next non-asymptotic achievability result leverages that
algorithm to transmit error-free a binary representation of a
random variable over the AWGN channel by means of a
variable-length separate compression/transmission scheme.

Theorem 7. There exists a zero-error feedback code for the
transmission of a random variable W over the AWGN channel
with energy

E

N0
log e < H(W ) + 1. (89)

Conversely, any (E, 0)-feedback code must satisfy

H(W ) ≤ E

N0
log e. (90)

Proof. The encoder converts the source into a variable-length
string using the Huffman code, so that the codebook is prefix-
free and the expectation of the encoded length `(W ) is
bounded as

E [`(W )] < H(W ) + 1 . (91)

Next, each bit (out of `(W )) is transmitted at the optimal
energy per bit tradeoff N0 loge 2 using the zero-error feedback
scheme in [30, Theorem 7]. Transmissions corresponding to
different bits are interleaved diagonally (see Fig. 1): the first bit
is transmitted in time slots 1, 2, 4, 7, 11, . . ., the second one in
3, 5, 8, 12, . . ., and so on. The channel encoder is silent at those
indices allocated to source bits `(W ) + 1, `(W ) + 2, . . . For
example, if the codeword has length 2 nothing is transmitted in
time slots 6, 9, 13, . . .. The receiver decodes the first transmit-
ted bit focusing on the time slots 1, 2, 4, 7, 11, . . . It proceeds
successively with the second bit, etc., until it forms a codeword
of the Huffman code, at which point it halts. Thus, it does not
need to examine the outputs of the time slots corresponding
to information bits that were not transmitted, and in which the
encoder was silent.

Since the scheme spends N0 loge 2 energy per bit, the total
energy to transmit the codeword representing W is

`(W )N0 loge 2. (92)
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Taking the expectation of (92) over W and applying (91), (89)
follows.

In the converse direction, due to the zero-error requirement
and data processing, H(W ) = I(W ; g(Y∞)) ≤ I(W ;Y∞).
Let Φ =

∏∞
k=1N

(
0, N0

2

)
be a product measure on R∞. It

was shown in the proof of [30, Theorem 4] that the joint
distribution of(

loge
dPY∞|W (Y∞|W )

dΦ(Y∞)
,

∞∑
k=1

X2
k

)
coincides with the joint distribution of(

2

N0
·Bτ , τ

)
,

where τ is the stopping time of the Brownian motion Bt =
t
2 +
√

N0

2 Wt defined in the proof of [30, Theorem 4], and Wt

is the standard Wiener process. From Doob’s optional stopping
theorem we obtain

E [Bτ ] =
1

2
E [τ ] =

1

2
E

[ ∞∑
k=1

X2
k

]
. (93)

Consequently, we have

I(W ;Y∞) ≤ D(PY∞|W ‖Φ|PW ) (94)

= E
[
log

dPY∞|W (Y∞|W )

dΦ(Y∞)

]
(95)

=
2 log e

N0
E [Bτ ] (96)

≤ E

N0
log e , (97)

where (97) follows from the energy constraint (87).

Our next achievability result studies the performance of a
variable-length separated scheme.

Theorem 8. Fix positive E1 and E2 such that

E1 + E2 ≤ E. (98)

Denote

ε(E,m) (99)

, 1− 1√
πN0

∫ ∞
−∞

1−Q

x+
√
E√

N0

2

m−1

e−
x2

N0 dx.

Assume that W takes values in {1, 2, . . . ,M}. There exists
an (E, ε) non-feedback code for the transmission of random
variable W over an AWGN channel without feedback such
that

ε ≤ E [ε (E1,W )] + ε(E2, blog2Mc+ 1). (100)

Proof. Assume that the outcomes of W are ordered in de-
creasing probabilities. Consider the following variable-length
separated achievability scheme: the source outcome m is first
losslessly represented as a binary string of length blog2mc by
assigning it to the m-th binary string in {∅, 0, 1, 00, 01, . . .}

(the most likely outcome is represented by the empty string).
Then, all binary strings are grouped according to their encoded
lengths. A channel codebook is generated for each group of
sequences. The encoded length is sent over the channel with
high reliability, so the decoder almost never makes an error
in determining that length. Then the encoder makes an ML
decision only between sequences of that length. A formal
description and an error analysis follow.

Codebook: the collection of M + blogMc+ 1 codewords

cj =
√
E1 ej , j = 1, 2, . . . ,M (101)

cj =
√
E2 ej , j = M + 1, . . . ,M + blog2Mc+ 1 (102)

where {ej , j = 1, 2, . . .} is an orthonormal basis of L2(R∞).
Encoder: The encoder sends the pair (m, blog2mc) by

transmitting cm + cM+blog2 mc+1.
Decoder: Having received the infinite string corrupted by

i.i.d. Gaussian noise z, the decoder first (reliably) decides
between blog2Mc + 1 possible values of blog2mc based on
the minimum distance:

ˆ̀, argmin
j
‖z− cM+j+1‖, j = 0, . . . , blog2Mc (103)

As shown in [41, p. 258]), [42], [30, Theorem 3], the probabil-
ity of error of such a decision is given by ε(E, blog2Mc+1).
This accounts for the second term in (100). The decoder then
decides between 2

ˆ̀ messages12 j with blog jc = ˆ̀:

ĉ , argmin ‖z− cj‖, j = 2
ˆ̀
, . . . ,min{2ˆ̀+1− 1,M} (104)

The probability of error of this decision rule is similarly upper
bounded by ε (E,m), provided that the value of blog2mc was
decoded correctly: ˆ̀ = blog2mc. Since 2blog2 mc ≤ m, this
accounts for the first term in (100).

Normally, one would choose 1 � E2 � E1 so that the
second term in (100), which corresponds to the probability of
decoding the length incorrectly, is negligible compared to the
first term, and the total energy E ≈ E1. Moreover, if W takes
values in a countably infinite alphabet, one can truncate it so
that the tail is negligible with respect to the first term in (100).
To ease the evaluation of the first term in (100), one might use
i ≤ 1

PW (i) . In the equiprobable case, this weakening leads to
E [ε (E1,W )] ≤ ε (E1,M).

If the power constraint is average rather than maximal, a
straightforward extension of Theorem 8 ensures the existence
of an (E, ε) code (average power constraint) for the AWGN
channel with

ε ≤ E [ε (E1(blog2W c),W )] + ε(E2, blogMc+ 1), (105)

where E1 : {0, 1, . . . , blog2Mc} 7→ R+ and E2 ∈ R+ are
such that

E [E1(blog2W c)] + E2 ≤ E. (106)

12More precisely, 2ˆ̀ messages if ˆ̀≤ blog2Mc−1 and M−2blog2 Mc+
1 ≤ 2blog2 Mc messages if ˆ̀= blog2Mc.
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V. ASYMPTOTIC EXPANSIONS OF THE
ENERGY-DISTORTION TRADEOFF

A. Problem setup

This section focuses on the energy-distortion tradeoff in the
JSCC problem. Like in Section IV, we limit the total available
transmitter energy E without any restriction on the (average)
number of channel uses per source sample. Unlike Section IV,
we allow general (not neccesarily discrete) sources, and we
study the tradeoff between the source dimension k, the total
energy E and the fidelity of reproduction. Thus, we identify
the minimum energy compatible with a given target distortion
without any restriction on the time-bandwidth product (number
of degrees of freedom). As in Section III-A, we consider both
the average and the excess distortion criteria.

Formally, we let the source be a k-dimensional vector
Sk ∈ Sk. A (k,E, d, ε) energy-limited code is an energy-
limited code for Sk with total energy E and probability ≤ ε of
distortion exceeding d (see (48)). Similarly, a (k,E, d) energy-
limited code is an energy-limited code for Sk with total energy
E and average distortion not exceeding d (see (50)). In the
remainder of this section, we characterize the minimum energy
required to transmit k source samples at a given fidelity, i.e.
to characterize the following fundamental limits:

E?f (k, d) , {inf E : ∃ a (k,E, d) feedback code} , (107)

E?f (k, d, ε) , {inf E : ∃ a (k,E, d, ε) feedback code} (108)

as well as the corresponding limits E?(k, d) and E?(k, d, ε)
of the energy-limited non-feedback codes.

B. Previous results on the energy-per-bit and the energy-
distortion tradeoff

If the source produces equiprobable binary strings of length
k, Shannon [40] showed that the minimum energy per infor-
mation bit to noise power spectral density ratio compatible
with vanishing block error probability converges to

E?(k, 0, ε)

kN0
→ loge 2 = −1.59 dB (109)

as k → ∞, ε → 0. The fundamental limit in (109) holds
regardless of whether feedback is available. Moreover, this
fundamental limit is known to be the same regardless of
whether the channel is subject to fading or whether the receiver
is coherent or not [43]. Polyanskiy et al. refined (109) as [30,
Theorem 3]

E?(k, 0, ε)
log e

N0
= k +

√
2k log eQ−1(ε)− 1

2
log k +O (1)

(110)
for transmission without feedback, and as [30, Theorem 8]

E?f (k, 0, ε)
log e

N0
= (1− ε)k +O (1) (111)

for transmission with feedback. Moreover, [30, Theorem 7]
(see also (88)) shows that in fact

E?(k, 0, 0)
log e

N0
= k, (112)

i.e. in the presence of full noiseless feedback, Shannon’s limit
(109) can be achieved with equality already at k = 1 and
ε = 0.

For the finite blocklength behavior of energy per bit in
fading channels, see [44].

For the transmission of a memoryless source over the
AWGN channel under an average distortion criterion, Jain et
al. [29, Theorem 1] pointed out that as k →∞,

E?(k, d)

k

log e

N0
→ R(d). (113)

Note that (113) still holds even if noiseless feedback is
available.

Unlike Polyanskiy et al. [30], we allow analog sources and
arbitrary distortion criteria, and unlike Jain et al. [29], we are
interested in a nonasymptotic analysis of the minimum energy
per sample.

C. Energy-limited feedback codes

Our first result in this section is a refinement of (113).

Theorem 9. Let the source and its distortion measure satisfy
assumptions A1–A5. The minimum energy required to transmit
k source symbols with average distortion ≤ d over an AWGN
channel with feedback satisfies

E?f (k, d) · log e

N0
= kR(d) +O(log k). (114)

Proof. Achievability. The expansion in (114) is achieved by
the following separated source/channel scheme. For the source
code, we use the code of Yang and Zhang [38] (abstract al-
phabet) that compresses the source down to M representation
points with average distortion d such that

logM = kR(d) +O(log k). (115)

For the channel code, we transmit the binary representation
of M error-free using the optimal scheme of Polyanskiy et al.
[30, Theorem 7], so that

logM =
E

N0
log e. (116)

Converse. By data processing, similarly to (90),

kR(d) ≤ E

N0
log e. (117)

Remark 2. For the transmission of a Gaussian source over the
feedback AWGN channel, we have

E?f (k, d) · log e

N0
= kR(d). (118)

Indeed, the Schalkwijk-Bluestein scheme [22], [39] attains
(118) for k = 1. For k > 1, transmitting the Schalkwijk-
Bluestein codewords corresponding to i-th source sample in
time slots i, k + i, 2k + i, . . . attains (118) exactly for all
k = 1, 2, . . ..

Theorem 10. In the transmission of a source satisfying the
assumptions A1–A5 over an AWGN channel with feedback,
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the minimum average energy required for the transmission of
k source samples under the requirement that the probability of
exceeding distortion d is no greater than 0 ≤ ε < 1 satisfies,
as k →∞,

E?f (k, d, ε)
log e

N0
= (1− ε)kR(d)−

√
kV(d)

2π
e−

(Q−1(ε))2

2

+O (log k) . (119)

Proof. Achievability. Pair a lossy compressor Sk → W with
excess-distortion probability ε and H(W ) = Hd,ε(S

k) with
the achievability scheme in Theorem 7 and apply (89) and
(61).

Converse. Again, the converse result follows proceeding as
in (90), invoking (61).

Comparing (119) and (71), we observe that, similar to the
setup in Section III, allowing feedback and average power
constraint reduces the asymptotically achievable minimum
energy per sample by a factor of 1 − ε. As in Section III,
that limit is approached from below rather than from above,
i.e. shorter blocklenghts are more economical in terms of the
energy per transmitted symbol.

Similar to the setup of Section III, naive separation achieves
at most

E?f (k, d, ε)
log e

N0
≤ (1− ε)kR(d) + a

√
k log k, a > 0. (120)

D. Energy-limited non-feedback codes

Our next result generalizes [30, Theorem 3]. Loosely speak-
ing, it shows that the energy E, probability of error ε and
distortion d of the best non-feedback code satisfy

E

N0
log e− kR(d) ≈

√
kV(d) +

2E

N0
log e ·Q−1(ε). (121)

Note that in (121) source and channel dispersions add up,
as in the usual (non-feedback) joint source-channel coding
problem [6], [8]. More precisely, we have the following:

Theorem 11. In the transmission of k samples of a stationary
memoryless source (satisfying the assumptions A1–A5) over
the AWGN channel, the minimum energy necessary for achiev-
ing probability 0 < ε < 1 of exceeding distortion d satisfies,
as k →∞,

E? (k, d, ε)
log e

N0
(122)

= kR(d) +
√
k (2R(d) log e+ V(d))Q−1 (ε) +O (log k) .

Proof. Achievability: We let the total energy E be such that

E
log e

N0
= kR(d) +

√
k (2R(d) log e+ V(d))Q−1

(
ε− a√

k

)
+ b log k, (123)

and we show that a > 0 and b can be chosen so that the excess
distortion probability is bounded by ε.

We consider a good lossy code with M = exp(2kR(d))
representation points, so that the probability that the source is
not represented within distortion d is exponentially small. We
show that a combination of that code with the variable-length
separated scheme in Theorem 8 achieves (123). First, we prove
the following generalization of Theorem 8 to the lossy case:
for any M , there exists an (k,E, d, ε′) code for the AWGN
channel (without feedback) such that

ε′ ≤ E
[
ε

(
E1,

1

P kZ?(Bd(Sk))

)]
+ ε(E2, blogMc+ 1)

+ E
[(

1− P kZ?(Bd(S
k)))

)M]
, (124)

where
Bd(s

k) , {zk ∈ Ŝk : d(sk, zk) ≤ d}. (125)

Towards that end, let the representation points Z1, Z2, . . . , ZM
be drawn i.i.d. from P kZ? . The source encoder goes down the
list of the representation points and outputs the index of the
first d-close match to Sk:

W , min{i : d(Sk, Zi) ≤ d} (126)

(if there is no such index, it outputs 1). Averaged over
Z1, . . . , ZM , the probability that no d-close match is found is
upper bounded by the third term in (124) (e.g. [24, Theorem
10]). The index W is then transmitted over the channel using
the scheme in Theorem 8, with the total probability of error
averaged over all lossy codebooks given by

ε′ ≤ E [ε (E1,W )] + ε(E2, blogMc+ 1)

+ E
[(

1− P kZ?(Bd(S
k)))

)M]
. (127)

Since conditioned on S = s, W is geometrically distributed
with success probability P kZ?(Bd(s

k)), we have

E
[
W |Sk = sk

]
=

1

P kZ?(Bd(sk))
. (128)

Noting that ε(E,m) is a concave function of m, we have by
Jensen’s inequality

E [ε (E,W )] ≤ E
[
ε
(
E,E

[
W |Sk

])
}
]
, (129)

which gives the first term in (100).
We proceed to show that with the choice of

E1 = E − c logE, (130)

for an appropriate c > 0, and M = exp(2kR(d)), the right
side of (124) is upper bounded by ε.

A reasoning similar to [24, (108)–(111)] and the Cramér-
Chernoff bound yield

E
[(

1− PZk?(Bd(S
k))
)M] ≤ exp(−ka1) (131)

for some a1 > 0. On the other hand, (110) [30, Theorem 3]
implies

ε (E,m) = P [logm > G(E)] +O

(
1√
k

)
, (132)

where G(E)
D
= N

(
E
N0

log e− 1
2 log E

N0
, 2E
N0

log2 e
)

.
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Applying (131) and (132) to (100), we conclude that the
excess-distortion probability is bounded above by

P
[
log

1

PZk?(Bd(Sk))
> G(E − c logE)

]
+ P [log (logM + 1) > G (c logE)] +O

(
1√
E

)
. (133)

The second term in (133) can be made to decay as fast as
O
(

1√
E

)
for large enough c. To evaluate the first term in (133),

we recall [24, Lemma 2], which states that for k large enough,

P

[
log

1

PZk?(Bd(Sk))
≤

k∑
i=1

S(Si, d) + C log k + c0

]
≥ 1− K√

k
, (134)

where c0 and K are constants, and C is a constant explicitly
identified in [24, Lemma 2]. Letting b = c+C− 1

2 and applying
(134) to upper-bound the first term in (133), we conclude by
the Berry-Esséen Theorem that

P
[
log

1

PZk?(Bd(Sk))
> G (E − c logE)

]
≤ ε− a√

k
+O

(
1√
k

)
. (135)

Since a can be chosen so that (133) is upper bounded by ε for
k large enough, this concludes the proof of the achievability
part.

Converse: The result in [6, Theorem 1] states that the excess
distortion probability is bounded as in (136) in the bottom
of the page, where Sk(sk, d) is the d-tilted information in
sk ∈ Sk defined in (57), ıX;Ȳ(x;y) , log

dPY|X=x

dPȲ
(y), and

PY|X=x and PȲ are specialized to

PȲ
D
=

∞∏
k=1

N
(

0,
N0

2

)
(137)

PY|X=x
D
=

∞∏
k=1

N
(
xk,

N0

2

)
(138)

ıX;Ȳ(x;Y)
D
= N

(
‖x‖2

N0
log e,

2‖x‖2

N0
log e

)
(139)

Next, we let in (136) γ = 1
2 log E

N0
. Since Sk(Sk, d) =∑k

i=1 S(Si, d) is a sum of independent random variables, the
Berry-Esséen bound applies to the probability in (136), and
the converse direction of (122) follows since ‖x‖2 ≤ E.

If the maximal power constraint in (84) is relaxed to (87),
then E?a (k, d, ε), the minimum average power required for
transmitting k source samples over an AWGN channel with
the probability of exceeding distortion d smaller than or equal
to 0 < ε < 1 satisfies, under assumptions A1–A5:

E?a (k, d, ε)
log e

N0
= R(d)(1− ε)k +O

(√
k log k

)
, (140)

i.e. the asymptotically achievable minimum energy per sample
is reduced by a factor of 1− ε if a maximal power constraint
is relaxed to an average one. This parallels the result in
(77), which shows that variable-length coding over a channel
reduces the asymptotic fundamental limit by a factor of 1− ε
compared to fixed-length coding, even without feedback.

Proof of (140). Observe that Theorem 10 ensures that a
smaller average energy than that in (140) is not attainable even
with full noiseless feedback. In the achievability direction, let
(f?, g?) be the optimal variable-length source code achieving
the probability of exceeding d equal to ε′ (see [5, Section
III.B]). Denote by `(f?(s)) the length of f?(s). Let M be the
size of that code. Set the energy to transmit the codeword of
length `(f?(Sk)) to

`(f?(Sk))N0 loge 2 +
√
k log k. (141)

As shown in [5], E [`(f?(S))] is equal to the right side of
(71) (with ε replaced by ε′). Choosing ε′ = ε − a√

k
for

some a, we conclude that indeed the average energy satisfies
(140). Moreover, (132) implies that the expression inside the
expectation in (105) is O

(
1√
k

)
. It follows that for a large

enough a, the excess distortion probability is bounded by
ε.

VI. CONCLUSIONS

We have considered several scenarios for joint source-
channel coding with and without feedback. Our main con-
clusions are:

1) The average delay vs. distortion tradeoff with feedback,
as well as the average energy vs. distortion tradeoff with
feedback, is governed by the channel capacity, and the
source rate-distortion and rate-dispersion functions. In
particular, the channel dispersion plays no role.

2) In variable-length coding with feedback, the asymptoti-
cally achievable minimum average length is reduced by a
factor of 1−ε, where ε is the excess distortion probability.
This asymptotic fundamental limit is approached from be-
low, i.e., counter-intuitively, smaller source blocklengths
lead to smaller attainable average delays.

3) Introducing a termination symbol that is always decoded
error-free allows for transmission over noisy channels
with guaranteed distortion.

4) Variable-length transmission without feedback still im-
proves the asymptotic fundamental limit by a factor of
1− ε, where ε is the excess distortion probability.

5) In all the cases we have analyzed the approach to the
fundamental limits is very fast: O

(
log k
k

)
, where k is

the source blocklength. This behavior is attained, under
average distortion, by a separated scheme with stop-
feedback.

ε ≥ sup
γ>0

{
sup
PȲ

E
[

inf
x : ‖x‖2≤E

P
[
Sk(Sk, d)− ıX;Ȳ(x;Y) ≥ γ | S

]]
− exp (−γ)

}
(136)
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6) The setting of a wideband Gaussian channel with an
energy constraint exhibits many interesting parallels with
the variable-length coding setting. Allowing a non-
vanishing excess distortion probability ε and an aver-
age (rather than maximal) energy constraint reduces the
asymptotically achievable minimum energy by a factor
of 1 − ε. In the presence of feedback, just as in the
variable-length coding, this asymptotic fundamental limit
is approached from below.

7) Error-free transmission of a random variable W over
the AWGN channel with ideal feedback, with almost
optimal energy consumption, is possible via a variable-
length separated scheme.

8) More generally, variable-length separated schemes per-
form remarkably well in all considered scenarios.
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[6] V. Kostina and S. Verdú, “Lossy joint source-channel coding in the finite
blocklength regime,” IEEE Transactions on Information Theory, vol. 59,
no. 5, pp. 2545–2575, May 2013.

[7] A. Tauste Campo, G. Vazquez-Vilar, A. Guillén i Fàbregas, and A. Mar-
tinez, “Random-coding joint source-channel bounds,” in Proceedings
2011 IEEE International Symposium on Information Theory, Saint-
Petersburg, Russia, Aug. 2011, pp. 899–902.

[8] D. Wang, A. Ingber, and Y. Kochman, “The dispersion of joint source-
channel coding,” in Proceedings 49th Annual Allerton Conference on
Communication, Control and Computing, Monticello, IL, Sep. 2011.

[9] T. Javidi and A. Goldsmith, “Dynamic joint source-channel coding with
feedback,” in IEEE International Symposium on Information Theory,
Istanbul, Turkey, July 2013, pp. 16–20.

[10] G. Caire, S. Shamai, and S. Verdú, “Almost-noiseless joint source-
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