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Minimum energy to sendk bits

through the Gaussian channel

with and without feedback

Yury Polyanskiy, H. Vincent Poor, and Sergio Verdú

Abstract

The minimum achievable energy per bit over memoryless Gaussian channels has been previously

addressed in the limit when the number of information bits goes to infinity, in which case it is known

that the availability of noiseless feedback does not lower the minimum energy per bit, which is−1.59 dB

below the noise level. This paper analyzes the behavior of the minimum energy per bit for memoryless

Gaussian channels as a function ofk, the number of information bits. It is demonstrated that in this

non-asymptotic regime, noiseless feedback leads to significantly better energy efficiency. In particular,

without feedback achieving energy per bit of−1.57 dB requires coding over at leastk = 10
6 information

bits, while we construct a feedback scheme that transmits a single information bit with energy−1.59 dB

and zero error. We also show that unlessk is very small, approaching the minimal energy per bit does

not require using the feedback link except to signal that transmission should stop.

Index Terms

Shannon theory, channel capacity, minimum energy per bit, feedback, non-asymptotic analysis,

Gaussian channels, Brownian motion, stop-feedback.

I. INTRODUCTION

A problem of broad practical interest is to transmit a message with minimum energy. For the

additive white Gaussian noise (AWGN) channel, the key parameters of the code are:
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• n: number of degrees of freedom,

• k: number of information bits,

• ǫ: probability of block error and

• E: total energy budget.

Of course, it is not possible to construct a code with arbitrary values ofn, k, ǫ andE. Determining

the region of feasible(n, k, ǫ, E) has received considerable attention in information theory,

primarily in various asymptotic regimes:

1) The first asymptotic result dates back to [1], where Shannon demonstrates that in the limit

of ǫ → 0, k → ∞, n → ∞ and k
n
→ 0 the smallest achievable energy per bitEb

△
= E

k

converges to
(

Eb

N0

)

min
= loge 2 = −1.59 dB , (1)

where N0

2
is the noise power per degree of freedom. The limit does not change if ǫ is

fixed, if noiseless causal feedback is available at the encoder, if the channel is subject to

fading, or even if the modulation is suitably restricted.

2) Alternatively, if one fixesǫ > 0 and the ratek
n
= R then ask → ∞ andn → ∞ we have

(e.g., [2])
Eb

N0

→ 4R − 1

2R
. (2)

Thus in this case the minimum energy per bit becomes a function ofR, but notǫ. In contrast

to (1), (2) only holds with coherent demodulation and is sensitive to both modulation and

fading; see [3].

3) Non-asymptotically, in the regime of fixed rateR and ǫ, bounds on the minimumEb for

finite k have been proposed [4], [5], studied numerically [6]–[10] and tightly approxi-

mated [5], [11].

In this paper we investigate the minimal energyE required to transmitk bits allowing error

probability ǫ ≥ 0 and n → ∞. Equivalently, we determine the maximal number of bits of

information that can be transmitted with a fixed (non-asymptotic) energy budget and an error

probability constraint, but without any limitation on the number of degrees of freedom (time-

bandwidth product). This is different from [1] in that we do not takek → ∞, and from [4]–[11]

in that we do not fix a non-zero ratek
n
. By doing so, we obtain abona fideenergy-information

tradeoff in the simplest possible setting of the AWGN channel not subject to fading. Even though
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the asymptotic value (1) can be obtained from (2) (i.e. from the regime of restricted rate) by

taking R → 0, the minimum energy for finitek cannot be obtained from the asymptotic limit

in (2).

The paper is organized as follows. In Section II we state the problem formally for both cases

of communication with and without feedback. In Section III we present the main results of the

paper and compare the two cases numerically. In particular,we demonstrate that without feedback

achieving−1.57 dB energy per bit necessarily requires coding overk = 106 information bits

while with feedback we construct a code that transmitsk = 1 bit at the optimal−1.59 dB.

This is the discrete-time counterpart of Turin’s result [13] on infinite bandwidth continuous-

time communication in the presence of white noise and noiseless feedback. Moreover, we show

that as long ask is not too small (say, more than 100) a stop-feedback code (which uses the

feedback link only to signal that the receiver does not need further transmissions) also closely

approaches the fundamental limit, thereby eliminating theneed for an instantaneous noiseless

feedback link. In general, for values ofk ranging from1 to 2000 feedback results in about10

to 0.5 dB improvement in energy efficiency, respectively.

II. PROBLEM STATEMENT

Without constraints on the number of degrees of freedom, theAWGN channel acts between

input spaceA = R∞ and output spaceB = R∞ by addition:

y = x+ z , (3)

whereR∞ is the vector space of real valued sequences1 (x1, x2, . . . , xn, . . .), x ∈ A, y ∈ B and

z is a random vector with independent and identically distributed (i.i.d.) Gaussian components

Zk ∼ N (0, N0/2) independent ofx.

Definition 1: An (E,M, ǫ) code (without feedback) is a list of codewords(c1, . . . , cM) ∈ AM ,

satisfying

||cj||2 ≤ E , j = 1, . . . ,M , (4)

and a decoderg : B → {1, . . . ,M} satisfying

P[g(y) 6= W ] ≤ ǫ , (5)

1In this paper, boldface lettersx, y etc. denote the infinite dimensional vectors with coordinatesxk, yk etc., correspondingly.
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wherey is the response tox = cW , andW is the message which is equiprobable on{1, . . . ,M}.

The fundamental energy-information tradeoff is given by

M∗(E, ǫ) = max{M : ∃(E,M, ǫ)-code} . (6)

Equivalently, we define the minimum energy per bit:

E∗
b
(k, ǫ) =

1

k
inf{E : ∃(E, 2k, ǫ)-code} . (7)

Although we are interested in (7),M∗(E, ǫ) is more suitable for expressing our results and (7)

is the solution to

k = log2M
∗(kE∗

b
(k, ǫ), ǫ) . (8)

Note that (3) also models an infinite-bandwidth continuous-time Gaussian channel without

feedback observed over an interval[0, T ], in which each component corresponds to a different

tone in an orthogonal frequency division representation. In that setup,E corresponds to the

allowed powerP timesT , and N0

2
is the power spectral density of the white Gaussian noise.

Definition 2: An (E,M, ǫ) code with feedback is a sequence of encoder functions{fk}∞k=1

determining the channel input as a function of the messageW and the past channel outputs,

Xk = fk(W,Y k−1
1 ) , (9)

satisfying

E [||x||2|W = j] ≤ E , j = 1, . . . ,M , (10)

and a decoderg : B → {1, . . . ,M} satisfying (5). The fundamental energy-information tradeoff

with feedback is given by

M∗
f
(E, ǫ) = max{M : ∃(E,M, ǫ)-code with feedback} (11)

and the minimum energy per bit by

E∗
f
(k, ǫ) =

1

k
inf{E : ∃(E, 2k, ǫ)-code with feedback} . (12)

We also define a special subclass of feedback codes:

Definition 3: An (E,M, ǫ) code with feedback is astop-feedback codeif its encoder functions

satisfy

fk(W,Y k−1) = f̃k(W )1{τ ≥ k} , (13)
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for some sequence of functions̃fk : {1, . . . ,M} → R and a stopping timeτ of the filtration

σ{Y1, . . . , Yj}. Therefore, the stop-feedback code uses the feedback link only once to send a

“ready-to-decode” signal, which terminates the transmission.

Notice that instead of (10) we could have defined a weaker energy constraint by averaging

over the codebook as follows:

1

M

M
∑

j=1

E [||x||2|W = j] ≤ E . (14)

However, in the context of feedback codes constraints (10) and (14) are equivalent:

Lemma 1:Any (E,M, ǫ) feedback code satisfying energy constraint (14) can be modified to

satisfy a stronger energy constraint (10).

The proof is given in Appendix A.

Similarly, one can show that for feedback codes, allowing random transformations in place

of deterministic functionsfn does not lead to any improvements of fundamental limitsM∗
f

andE∗
f
. Such claims, however are not true for either the non-feedback codes (Definition 1) or

stop-feedback codes (Definition 3). In fact, for the former allowing either a randomized encoder

{1, . . . ,M} → R∞ or imposing an average-over-the-codebook energy constraint (14) affects the

asymptotic behavior oflogM∗(E, ǫ) considerably; see [14, Section 4.3.3].

III. M AIN RESULTS

In the context of finite-blocklength codes without feedback, we showed in [5] that the max-

imum rate compatible with a given error probabilityǫ for finite blocklengthn admits a tight

analytical approximation which can be obtained by proving an asymptotic expansion under fixed

ǫ andn → ∞. We follow a similar approach in this paper obtaining upper and lower bounds on

logM∗(E, ǫ) and logM∗
f
(E, ǫ) and corresponding asymptotics for fixedǫ andE → ∞.

A. No feedback

Theorem 2:For everyM > 0 there exists an(E,M, ǫ) code for channel (3) with2

ǫ = E

[

min

{

MQ

(

√

2E

N0

+ Z

)

, 1

}]

, (15)

2As usual,Q(x) =
∫∞
x

1√
2π

e−t2/2 dt is defined for−∞ < x < ∞ and satisfiesQ−1(1− x) = −Q−1(x).
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andZ ∼ N (0, 1). Conversely, any(E,M, ǫ) code without feedback satisfies

1

M
≥ Q

(

√

2E

N0
+Q−1(1− ǫ)

)

. (16)

Proof: To prove (15), consider a codebook withM orthogonal codewords

cj =
√
E ej , j = 1, . . . ,M (17)

where{ej , j = 1, . . .} is a an orthonormal basis ofL2(R
∞). Such a codebook under a maximum

likelihood decoder has probability of error equal to

Pe = 1− 1√
πN0

∫ ∞

−∞

[

1−Q

(
√

2

N0

z

)]M−1

e
− (z−

√
E)2

N0 dz , (18)

which is obtained by observing that conditioned on(W = j, Zj) the events{||cj + z||2 ≤
||cj + z − ci||2}, i 6= j are independent. A change of variablesx =

√

2
N0

z and application of

the bound1− (1− y)M−1 ≤ min{My, 1} weakens (18) to (15).

To prove (16) fix an arbitrary codebook(c1, . . . , cM) and a decoderg : B → {1, . . . ,M}. We

denote the measureP j = Py|x=cj
on B = R∞ as the infinite dimensional Gaussian distribution

with meancj and independent components with individual variances equal to N0

2
; i.e.,

P j =
∞
∏

k=1

N
(

cj,k,
N0

2

)

, n = 1, 2, . . . (19)

wherecj,k is thek-th coordinate of the vectorcj. We also define an auxiliary measure

Φ =

∞
∏

k=1

N
(

0,
N0

2

)

, n = 1, 2, . . . (20)

Assume for now that the following holds for eachj and eventF ∈ B∞:

P j(F ) ≥ α =⇒ Φ(F ) ≥ βα(E) , (21)

where the right-hand side of (16) is denoted by

βα(E) = Q

(

√

2E

N0
+Q−1(α)

)

. (22)

From (21) we complete the proof of (16):

1

M
=

1

M

M
∑

j=1

Φ(g−1(j)) (23)

≥ 1

M

M
∑

j=1

βP j(g−1(j))(E) (24)

≥ β1−ǫ(E) , (25)
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where (23) follows becauseg−1(j) partitions the spaceB, (24) follows from (21), and (25)

follows since the functionα → βα(E) is non-decreasing convex (e.g., [5, Section III.D-3]) for

anyE and
1

M

M
∑

j=1

P j(g−1(j)) ≥ 1− ǫ (26)

is equivalent to (5), which holds for every(E,M, ǫ) code.

To prove (21) we compute the Radon-Nikodym derivative

loge
dP j

dΦ
(y) =

∞
∑

k=1

(

−1
2
c2j,k + cj,kYk

)

, (27)

and henceloge
dP j

dΦ
is distributed as

loge
dP j

dΦ
(y) ∼ N

( ||cj||2
2

, N0
||cj||2
2

)

(28)

if y ∼ P j and as

loge
dP j

dΦ
(y) ∼ N

(

−||cj||2
2

, N0
||cj||2
2

)

(29)

if y ∼ Φ. Then, (21) follows by the Neyman-Pearson lemma since||cj||2 ≤ E for all j ∈
{1, . . . ,M}. This method of proving a converse result is in the spirit of the meta-converse in [5,

Theorem 26].

For M = 2 bound (16) is equivalent to

ǫ ≥ Q

(

√

2E

N0

)

, (30)

which coincides with the upper bound obtained via antipodalsignalling. It is not immediately

obvious, however, that the bounds onlogM∗(E, ǫ) (and, equivalently, onE∗
b
(k, ǫ)) obtained in

Theorem 2 are tight in general. The next result, however, shows that they do agree up to the

first three terms in the asymptotic expansion. Naturally, these bounds are expected to be very

sharp non-asymptotically, which is validated by the numerical evaluation in Section IV.

Theorem 3:In the absence of feedback, the number of bits that can be transmitted with energy

E and error probability0 < ǫ < 1 behaves as3

logM∗(E, ǫ) =
E

N0
log e−

√

2E

N0
Q−1(ǫ) log e+

1

2
log

E

N0
+O(1) (31)

3All logarithms, log, and exponents,exp, in this paper are taken with respect to an arbitrary fixed base, which also determines

the information units.
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asE → ∞.

Proof: To obtain (31) fix0 < ǫ < 1 and denote

x∗ =

√

2E

N0
+Q−1

(

1− ǫ+

√

2N0

E

)

. (32)

We now chooseM = 1
Q(x∗) and observe that we have

1√
2π

∫ ∞

−∞
min(MQ(x), 1)e

− 1
2

(

x−
√

2E
N0

)2

dx (33)

= 1−Q

(

x∗ −
√

2E

N0

)

+
M√
2π

∫ +∞

x∗
Q(x)e

− 1
2

(

x−
√

2E
N0

)2

dx (34)

= ǫ−
√

2N0

E
+

M√
2π

∫ +∞

x∗
Q(x)e

− 1
2

(

x−
√

2E
N0

)2

dx (35)

≤ ǫ−
√

2N0

E
+

M

2πx∗

∫ +∞

x∗
e
− 1

2

(

x−
√

2E
N0

)2
−x2

2 dx (36)

= ǫ−
√

2N0

E
+

e
− E

2N0Q
(√

2x∗ −
√

E
N0

)

2
√
πx∗Q(x∗)

(37)

= ǫ−
√

2N0

E
+

e
− E

2N0
+ (x∗)2

2
− 1

2

(√
2x∗−

√

E
N0

)2
+o(1)

2
√
π
(√

2x∗ −
√

E
N0

) (38)

≤ ǫ−
√

2N0

E
+

1 + o(1)

2
√
π
(√

2x∗ −
√

E
N0

) (39)

≤ ǫ−
√

2N0

E
+

√

N0

E
(1 + o(1)) , (40)

asE → ∞, where (36) is by [15, (3.35)]

Q(x) ≤ e−
1
2x

2

x
√
2π

, (41)

while in (38) we used [15, (3.53)]

logQ(x) = −x2 log e

2
− log x− 1

2
log 2π + o(1) , x → ∞ (42)

(39) is by

− E

N0

+ (x∗)2 −
(

√
2x∗ −

√

E

N0

)2

= −
(

Q−1

(

1− ǫ+

√

2N0

E

))2

(43)

< 0 , (44)
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which follows from (32), and (40) is because

2
√
π

(

√
2x∗ −

√

E

N0

)

≥
√

E

N0
, (45)

is equivalent to (according to (32))

ǫ ≥
√

2N0

E
+Q

(

√

E

2N0

(

1− 1

2
√
π

)

)

, (46)

which holds for all sufficiently largeE.

Therefore, by (15) withM =
⌊

1
Q(x∗)

⌋

we have demonstrated that for all sufficiently largeE

logM∗(E, ǫ) ≥ − logQ

(

√

2E

N0
+Q−1

(

1− ǫ+

√

2N0

E

))

(47)

= − logQ

(

√

2E

N0

+Q−1 (1− ǫ) +O

(
√

N0

E

))

(48)

=
E

N0
log e+

√

2E

N0
Q−1(1− ǫ) log e+

1

2
log

E

N0
+O(1) , (49)

where (48) is by applying Taylor expansion toQ−1(x) for x = 1− ǫ and (49) is by using (42)

and Taylor expansion oflog x. Finally, application of (42) to (16) results in a lower bound

matching (49) up toO(1) terms.

As discussed in Section II, Theorems 2 and 3 may be interpreted in the context of the infinite-

bandwidth continuous-time Gaussian channel with noise spectral densityN0

2
. Indeed, denote by

M∗
c (T, ǫ) the maximum number of messages that is possible to communicate over such a channel

over the time interval[0, T ] with probability of errorǫ and power-constraintP . According to

Shannon [1] we have

lim
T→∞

1

T
logM∗

c (T, ǫ) =
P

N0
log e . (50)

Theorem 3 sharpens (50) to

logM∗
c (T, ǫ) =

PT

N0

log e−
√

2PT

N0

Q−1(ǫ) log e +
1

2
log

PT

N0

+O(1) (51)

asT → ∞. Furthermore, Theorem 2 provides tight non-asymptotic bounds onlogM∗
c (T, ǫ).
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B. Communication with feedback

We start by stating a non-asymptotic converse bound.

Theorem 4:Let 0 ≤ ǫ < 1. Any (E,M, ǫ) code with feedback for channel (3) must satisfy

d
(

1− ǫ|| 1
M

)

≤ E

N0
log e , (52)

whered(x||y) = x log x
y
+ (1− x) log 1−x

1−y
is the binary relative entropy.

Note that in the special caseǫ = 0 (52) reduces to

logM ≤ E

N0
log e . (53)

Proof: Consider an arbitrary(E,M, ǫ) code with feedback, namely a sequence of encoder

functions{fn}∞n=1 and a decoder mapg : B → {1, . . . ,M}. The “meta-converse” part of the

proof proceeds step by step as in the non-feedback case (19)-(26), with the exception that

measuresP j = Py|W=j on B are defined as

P j =
∞
∏

k=1

N (fk(j, Y
k−1
1 ), 1

2
N0) (54)

for j = 1, . . . ,M andβα is replaced bỹβα, which is the unique solutioñβ < α to

β̃α : d(α||β̃) = E

N0

log e . (55)

We need only to show that (21) holds with these modifications,i.e. for anyα ∈ [0, 1]

inf
F⊂B:P j(F )≥α

Φ(F ) ≥ β̃α . (56)

OnceW = j is fixed, the channel inputsXk become functionsB → R:

Xk = fk(j, Y
k−1
1 ) . (57)

To find the critical setF achieving the infimum in the hypothesis testing problem (56)we

compute the Radon-Nikodym derivative:

loge
dP j

dΦ
=

∞
∑

k=1

XkYk − 1
2
X2

k . (58)

Denote the total energy spent by the code

τ =

∞
∑

k=1

X2
k . (59)
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The key part of the proof is to show that (58) is equal to a Brownian motion with drift±1
2

(where the sign depends on the hypothesisP j or Φ), evaluated at timeτ , which in fact can be

interpreted as a stopping time of the Brownian motion. Assuming this, the proof is completed

by applying the following result of Shiryaev [30, Theorem 3,Section IV.2]:

Lemma 5 (Shiryaev):Consider a space

Ω = C(R+,R) (60)

of continuous functionsφ : R+ → R with the standard filtration{Ft}t≥0. Let P and Q be

probability measures onΩ such thatφt ∼ Bt (underP) andφt ∼ B̄t (underQ), whereBt and

B̄t denote Brownian motions

Bt =
t

2
+
√

N0

2
Wt , (61)

B̄t = − t

2
+
√

N0

2
Wt , (62)

andWt is a standard Wiener process fort ∈ [0,∞). Then

min
τ1,F1

Q(F1) = β̃α , (63)

whereβ̃α is defined in (55) and the minimization is over all stopping timesτ1 and setsF1 ∈ Fτ1

such that
∫

Ω

τ1dP ≤ E , (64)

P(F1) ≥ α . (65)

The application of Lemma 5 to our setting is the following. The left side of (56) can be lower

bounded as

inf
F⊂B:P j(F )≥α

Φ(F ) = inf
F1∈Fτ :P(F1)≥α

Q(F1) (66)

≥ min
F1,τ1

Q(F1) (67)

= β̃α , (68)

where (66) is by the assumed equivalenceloge
dP j

dΦ
∼ Bτ (underP j) and loge

dP j

dΦ
∼ B̄τ (under

Φ), (67) follows by minimizing over all stopping timesτ1 satisfying (64) which is valid since

the expectation ofτ (underP j) satisfies (64) by energy constraint (10), and (68) is by Lemma 5.
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We proceed to show that underP j we haveloge
dP j

dΦ
∼ Bτ . To do this, we will redefine

random variables(Y1, Y2, . . .) in terms of the Brownian motionBt. First, note that without loss

of generality we can choose nonvanishingfk in (57), since havingXk = 0 does not help in

discriminatingP j vs. Φ4. Then eachYk is a one-to-one function of

Lk = XkYk −
1

2
X2

k , k = 1, . . . (69)

According to (57) we can rewrite then

Xk = f̂k(L
k−1
1 ) , (70)

wheref̂k depends on the original encoder functionfk as well as the messagej ∈ {1, . . . ,M}.

Given an elementφ ∈ Ω (see (60)) we define the following sequences:

τ̂0 = 0 , (71)

X̂k = f̂k(L̂
k−1
1 ) , (72)

τ̂k = τ̂k−1 + X̂2
k , (73)

L̂k = φτ̂k − φτ̂k−1
, k = 1, . . . (74)

We now show that eacĥτk is a stopping time of the filtration{Ft}t≥0 on Ω. The proof is by

induction. Clearly the statement holds forτ̂0. Assumeτ̂k−1 is a stopping time. Then by (73) the

time τ̂k is a positive increment of̂τk−1 by aFτ̂k−1
-measurable value. Thuŝτk is also a stopping

time. Consequently, the increasing limit

τ̂
△
= lim

k→∞
τ̂k (75)

=

∞
∑

k=1

X̂2
k (76)

is also a stopping time of{Ft}t≥0.

Now, sinceP is such that (Lemma 5)

φt ∼ Bt , (77)

4Note that a good coding scheme will always allowXk = 0 for the purpose of conserving energy. However, we are free to

make modifications to the encoding mapsfk provided that they do not increase the left-hand side of (56).
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underP the distribution ofL̂n given L̂n−1
1 is N

(

1
2
X̂2

n,
N0

2
X̂2

n

)

. On the other hand, underP j

the distribution ofLn given Ln−1
1 is N

(

1
2
X2

n,
N0

2
X2

n

)

. Since by (70) and (72),̂Xn andXn are

identical functions of̂Ln−1
1 andLn

1 , respectively, we conclude that

(L∞
1 , X∞

1 ) ∼ (L̂∞
1 , X̂∞

1 ) (78)

Then, comparing (59) and (76) we obtain

τ ∼ τ̂ (79)

and, in particular,
∫

Ω

τ̂dP ≤ E (80)

by (10).

Finally, we have

loge
dP j

dΦ
=

∞
∑

k=1

Lk (81)

∼
∞
∑

k=1

L̂k (82)

= φτ̂ (83)

∼ Bτ , (84)

where (82) is by (78), (83) is by (74) and (76) and (84) is by (79) and (77).

Similarly, one shows that underΦ the distribution ofloge
dP j

dΦ
is equal to that ofB̄τ . Indeed,

relations (78), (79) and (83) remain true ifY ∞
1 is given distributionΦ andφ is given a distribution

Q (as in Lemma 5).

In [12] we have shown the following result:

Theorem 6:For anyE > N0, there exists an(E, 2, 0)-code with feedback. Consequently, for

all positive integersk we have

E∗
f
(k, 0) ≤ N0 . (85)

Furthermore, the ternary constellation{−1, 0,+1} suffices for the(E, 2, 0) code.

At the expense of allowing constellations of unbounded cardinality Theorem 6 can be consid-

erably sharpened. In fact, the next result shows that the availability of noiseless feedback allows

the transmission of a single information bit (k = 1) at the optimal value of−1.59 dB. As in
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the continuous-time AWGN channel with feedback [13], the proof of this result turns out to be

rather non-trivial.

Theorem 7:For anyE > N0 loge 2 there exists an(E, 2, 0)-code with feedback. Consequently,

for all positive integersk we have

E∗
f
(k, 0) = N0 loge 2 . (86)

Proof: We first show that the second claim follows from the first. Indeed, an(E1,M1, 0)

code and an(E2,M2, 0) code can be combined into an(E1 + E2,M1M2, 0) code by using the

first code on odd numbered channel inputs and the second code on even inputs. Thus, function

E∗
f
(·, 0) is non-increasing and according to the first claim we have

E∗
f
(k, 0) ≤ N0 loge 2 (87)

for all k > 0. Then (86) follows from (53) withM = 2k.

To prove the first claim, it is convenient to assume that the message set is{−1,+1} (instead

of {1, 2}). We use the following encoding functions:

fn(W,Y n−1) =
Wd

1 + exp{W · Sn−1}
. (88)

To motivate this choice assume that the sequence of encoder functionsfk is already fixed for

k = 1, . . . , n − 1. Then the joint distribution of(W,Xn−1
1 , Y n−1

1 ) is completely specified once

we specify thatW = ±1 is equiprobable. Consequently, we can define information densities

ı(w; yk1) =
k
∑

j=1

log
PYj |Xj

(yj|fj(w; yj−1
1 ))

PYj |Y j−1
1

(yj|yj−1
1 )

, k = 1, . . . , n− 1 (89)

and the log-likelihood process

Sk = log
P[W = +1|Y k]

P[W = −1|Y k]
(90)

= ı(+1; Y k
1 )− ı(−1; Y k

1 ) , k = 1, . . . , n− 1 . (91)

Notice now that the choice offn contributesE [|fn(+1, Y n−1)|2|W = +1] to the energy

E [||x||2|W = +1] andE [|fn(−1, Y n−1)|2 exp{−Sn−1}|W = +1] to the energyE [||x||2|W =

−1]. Thus the contribution to the unconditionalE [|x|2] is given by the expectation of

|fn(+1, Y n−1
1 )|2 + |fn(−1, Y n−1

1 )|2 exp{−Sn−1} . (92)
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If we now fix an arbitraryd > 0 and impose an additional constraint

fn(+1, Y n−1
1 )− fn(−1, Y n−1

1 ) = d , (93)

then the minimum of (92) is achieved with the encoder function (88).

Having specified the full sequence of the encoder functionsfj , j = 1, . . ., we have also

determined the probability distribution of(W,X∞, Y ∞). We now need to show that measures

PY ∞|W=+1 andPY ∞|W=−1 are mutually singular and also to estimate the total energy spent by

the scheme, that is the expectation of

Ed
△
= ||x||2 =

∞
∑

j=1

||Xj||2 . (94)

Note that by symmetry it is sufficient to analyze the case ofW = +1, and so in all arguments

below we assume that the distribution on(W,X∞, Y ∞) is in fact normalized by conditioning

on W = +1. For example, we now haveX1 =
d
2

almost surely.

Notice that according to the definition in (89), we have

ı(+1; yn)− ı(−1; yn) (95)

= ı(+1; yn−1)− ı(−1; yn−1) + log
PYn|Xn(yn|fn(+1, yn−1))

PYn|Xn(yn|fn(−1, yn−1))
(96)

= ı(+1; yn−1)− ı(−1; yn−1) +
log e

N0

[

(yn − fn(−1, yn−1))2 − (yn − fn(+1, yn−1))2
]

(97)

= ı(+1; yn−1)− ı(−1; yn−1) +
log e

N0

(

2ynd−
1− exp{Sn−1}
1 + exp{Sn−1}

d2
)

, (98)

where in the last step we have used definition of the encoder (88). If we now replaceyn with

random variableY n in (98), then (underW = +1) we haveYn ∼ d
1+exp{Sn−1} + Zn, where

Zn ∼ N
(

0, N0

2

)

. Therefore, almost surely we have for eachn:

Sn = Sn−1 +
2 log e

N0

[

1
2
d2 + dZn

]

, (99)

whereZn are i.i.d. with common distributionN
(

0, N0

2

)

.

From (99) we see that underW = +1, Sn is a submartingale drifting towards+∞, which

implies that the measuresPY ∞|W=+1 andPY ∞|W=−1 are mutually singular and thereforeW can

be recovered fromY ∞ with zero error. To complete the proof we need to show

lim
d→0

E [Ed] = N0 loge 2 . (100)
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First, notice that conditioned onW = +1 we have

Ed =

∞
∑

j=1

(

d

1 + exp{Sj}

)2

. (101)

To simplify the computation ofE [Ed], from now on replacedZn in (99) with Wnd2 −W(n−1)d2 ,

whereWt is a standard Wiener process. For convenience we also define the Brownian motion

Bt as in (61). In this way, we can write

Sn =
2 log e

N0
Bnd2 , (102)

i.e.Sn is just a sampling ofBt on ad2-spaced grid. Consequently, the conditional energy in (101)

is then given by

Ed =
∞
∑

j=1

(

d

1 + e
2

N0
Bjd2

)2

. (103)

We now show that the collection of random variables{Ed, d ∈ (0,
√
N0)} is uniformly

integrable. Notice that for all

0 < d ≤
√

N0 (104)

we have
{

4Bjd2 > jd2 for all j ≥ E
d2

}

⊆ {Ed ≤ E + c} , (105)

where

c =
1

1− e−1

1

N0

> 0 . (106)

Indeed, for any realization belonging to the set in the left-hand side of (105) we have

Ed =

∞
∑

j=0

(

d

1 + e
2

N0
Bjd2

)2

1
{

4Bjd2 > jd2
}

(107)

+

∞
∑

j=0

(

d

1 + e
2

N0
Bjd2

)2

1
{

4Bjd2 ≤ jd2
}

(108)

≤
∞
∑

j=0

d2e
− 4

N0
Bjd21

{

4Bjd2 > jd2
}

+
∞
∑

j=0

d21
{

4Bjd2 ≤ jd2
}

(109)

≤ d2
∞
∑

j=0

e
− 1

N0
jd2

+

∞
∑

j=0

d21
{

4Bjd2 ≤ jd2
}

(110)

≤ c +
∞
∑

j=0

d21
{

4Bjd2 ≤ jd2
}

(111)

≤ c + E , (112)
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where (109) follows from the inequalities(1 + ex)−1 ≤ e−x and (1 + ex)−1 ≤ 1 applied to the

first and second sum, respectively; (110) is because4Bjd2 > jd2 in the first sum, (111) is by

the inequality
∞
∑

j=0

e−λj =
1

1− e−λ
≤ 1

1− e−1

1

λ
, ∀0 < λ ≤ 1 , (113)

applicability of which is assured by (104); and finally (112)follows since by assumption the

realization satisfies

4Bjd2 > jd2 for all jd2 ≥ E . (114)

This establishes (105).

Assume the following identity (to be shown below):

P[B̃t > 0 for all t > E ] = 1− 2Q

(

√

E
8N0

)

, (115)

where

B̃t =
1

4
t+

√

N0

2
Wt . (116)

Then consider the following chain

P[Ed > E + c] ≤ P

[

∃j ≥ E
d2

: B̃jd2 ≤ 0

]

(117)

≤ P

[

∃t > E : B̃t ≤ 0
]

(118)

= 2Q

(

√

E
8N0

)

(119)

≤
√

16N0

πE e
− E

16N0 , (120)

where (117) is by (105), (119) is by (115), and (120) follows by the inequality (41). Clearly, a

uniform (in d) exponential upper bound on the tail of the distributionEd implies that random

variables{Ed, 0 < d ≤ √
N0} are uniformly integrable.

To show (115), define a collection of stopping times forb > 0 > a:

τa,b = inf
{

t > 0 : B̃t 6∈ (a, b)
}

. (121)

Applying Doob’s optional stopping theorem to the stopping momentτa,b and martingalee
−
√

1
2N0

Wt− 1
4N0

t
,

which is bounded (and hence uniformly integrable) on[0, τa,b], we obtain

P[B̃τa,b = b] =
1− e

− a
N0

e
− b

N0 − e
− a

N0

. (122)
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Moreover, asb → ∞ we have{B̃τa,b = b} ց {B̃t > a for all t > 0}. Therefore, from (122) we

get

P[B̃t > a for all t > 0] = 1− e
a
N0 . (123)

Expression (115) now follows by the following calculation:

P[B̃t > 0 for all t > E ] = E

[

P[B̃t − B̃E > −B̃E for all t > E|B̃E ]
]

(124)

=

∫ ∞

0

1√
πN0E

e
−(

x−E
4 )

2

N0E P[B̃t > −x for all t > 0]dx (125)

=

∫ ∞

0

1√
πN0E

e
−(

x−E
4 )

2

N0E
(

1− e
− x

N0

)

dx (126)

=

∫ ∞

0

1√
πN0E

(

e
−(

x−E
4 )

2

N0E − e
−(

x+E
4 )

2

N0E

)

dx (127)

= 1− 2Q

(

√

E
8N0

)

, (128)

where (124) is by conditioning oñBE , (125) is by the Markov property of Brownian motion

and integrating over the distribution of̃BE ∼ N
(E
4
, N0E

2

)

, (126) is by (123), and (128) is just

an elementary calculation.

According to (103) and the continuity of sample paths ofBt, we have

lim
d→0

Ed =

∫ ∞

0

(

1

1 + e
2

N0
Bt

)2

dt . (129)

Now taking the expectation we get

lim
d→0

E [Ed] = E

[

lim
d→0

Ed

]

(130)

= E

[

∫ ∞

0

(

1

1 + e
2

N0
Bt

)2

dt

]

(131)

=

∫ ∞

0

E

[

(

1

1 + e
2

N0
Bt

)2
]

dt (132)

=

∫ ∞

0

∫ ∞

−∞

(

1

1 + e
2

N0
x

)2
1√
πN0t

e
−(

x−1
2 t)

2

N0t dxdt (133)

= N0 loge 2 , (134)
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where (130) is by uniform integrability, (131) is by (129), and (132) is by Fubini’s theorem, (133)

is by using the fact thatBt ∼ N
(

t
2
, N0t

2

)

, and (134) is obtained by the following argument.5 If

we define

u(x)
△
=

∫ ∞

0

1√
πN0t

e
−(

x− 1
2 t)

2

N0t dt , (135)

then its two-sided Laplace transform is given by

∫ ∞

−∞
e−vxu(x)dx =

∫ ∞

0

∫ ∞

−∞

1√
πN0t

e
−(

x−1
2 t)

2

N0t
−vx

dxdt (136)

=

∫ ∞

0

e−t v
2
+

tN0
4

v2dt (137)

=
4

2v −N0v2
(138)

=
2

v
+

2N0

2−N0v
, (139)

provided that0 < v < 2
N0

. It is straightforward to check that (139) is a Laplace transform of the

function 2min{e
2

N0
x
, 1}. By the uniqueness of the Laplace transform we conclude that

u(x) = 2min{e
2

N0
x
, 1} . (140)

Now substituting this expression into (133) we obtain
∫ ∞

−∞

(

1

1 + e
2

N0
x

)2

u(x)dx = 2

∫ 0

−∞

(

1

1 + e
2

N0
x

)2

min
{

e
2

N0
x
, 1
}

dx (141)

= N0

∫ ∞

−∞

(

1

1 + ex

)2

exdx+N0

∫ ∞

0

(

1

1 + ex

)2

dx (142)

=
N0

2
+N0

(

loge 2−
1

2

)

(143)

= N0 loge 2 , (144)

which completes the proof of (134).

We proceed to give a tight analysis of the large-energy behavior, based on Theorem 7.

Theorem 8:In the presence of feedback, the number of bits that can be transmitted with

energyE and error probability0 ≤ ǫ < 1 behaves as

logM∗
f
(E, ǫ) =

E

N0

log e

1− ǫ
+O(1) (145)

5This elegant method was suggested by Yihong Wu.
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asE → ∞. More precisely, we have
⌈

E

N0

1

1− ǫ

1

loge 2
− 1

⌉

log 2 ≤ logM∗
f
(E, ǫ) (146)

≤ E

N0

log e

1− ǫ
+

h(ǫ)

1− ǫ
, (147)

whereh(x) = −x log x− (1− x) log(1− x) is the binary entropy function.

Proof: Fix ǫ ≥ 0 andE > 0. Then by Theorem 7 there exists an
(

E
1−ǫ

,M, 0
)

feedback code

with

logM =

⌈

E

N0

1

1− ǫ

1

loge 2
− 1

⌉

log 2 (148)

Then, we can randomize between this code and a trivial(0,M, 1) code (which sends an all-zero

codeword for all messages) by using the former with probability (1− ǫ).

We now describe this randomization procedure formally, by constructing a code satisfying

Definition 2. Let (fn, g) be the sequence of encoders and a decoder corresponding to the code

in (148). We construct a new code as follows:

f ′
n(W,Y n−1) =











0 , n = 1 ,

1
{

Y1 ≤
√

N0

2
Q−1(ǫ)

}

fn−1(W,Y n−1
2 ) , n ≥ 2 ,

(149)

g′(Y ∞) = g(Y∞
2 ) . (150)

Denote the event

S =

{

Y1 ≤
√

N0

2
Q−1(ǫ)

}

, (151)

which has probability

P[S] = 1− ǫ . (152)

The probability of error of the new code is estimated as

P[g′(Y ∞) 6= W ] = P[g′(Y ∞) 6= W |S]P[S] + P[g′(Y ∞) 6= W |Sc]P[Sc] (153)

≤ 0 · P[S] + 1 · P[Sc] (154)

≤ ǫ , (155)

since conditioned onS the transmission is governed by the code{fn, n = 1, . . .} whose decoder

g recovers the message with zero-error by construction. Similarly, the average energy of the new
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code is
∞
∑

n=1

E

[

∣

∣f ′
n(W,Y n−1)

∣

∣

2
]

=

∞
∑

n=2

E

[

∣

∣fn−1(W,Y n−1
2 )

∣

∣

2
∣

∣

∣
S
]

P [S] (156)

≤ (1− ǫ)
E

1− ǫ
(157)

= E , (158)

where (156) is because onSc the energy expenditure is zero, and (157) is because conditioned

on S the transmission is governed by the original code{fn, n = 1, . . .}, which by construction

has an average energy not exceedingE
1−ǫ

. Therefore(f ′
n, g

′) is indeed an(E,M, ǫ) feedback

code withM satisfying (148). Existence of such a code implies (146). Bound (147) follows

from (52) and

d(α||β) ≥ α log
1

β
− h(α) . (159)

A similar argument shows that in terms ofE∗
f
(k, ǫ) the converse (Theorem 4) and the achiev-

ability (Theorem 7 plus randomization) translate into
(

1− ǫ− h(ǫ)

k

)

loge 2 ≤ E∗
f
(k, ǫ)

N0
≤ (1− ǫ) loge 2 . (160)

C. Stop feedback

The codes constructed in the previous section achieve the optimal value of energy per bit

already fork = 1. However, they require the availability of full instantaneous noiseless feedback.

From a practical point of view, this may not always be attractive. In contrast, stop-feedback codes

only exploit the feedback link to terminate the transmission, which makes such codes robust to

noise in the feedback link. In this section we show that such codes also achieve the optimal

value of energy per bit as long as the value ofk is not too small.

Theorem 9:For anyE > 0 and positive integerM there exists an(E,M, ǫ) stop-feedback

code whose probability of error is bounded by

ǫ ≤ (M − 1)e
− E

N0 . (161)

The proof of this result is given in Appendix B. Asymptotically, Theorem 9 implies the

following lower bound onlogM∗
f
:
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Theorem 10:For any error probability0 < ǫ < 1, stop-feedback codes achieve

logM∗
f
(E, ǫ) ≥ E

N0

log e

1− ǫ
− log

E

N0
+O(1) (162)

asE → ∞.

Proof: Fix ǫ > 0 andE > 1. By Theorem 9 there exists an
(

E−1
1−ǫ

,M, 1
E

)

stop-feedback

code with

M ≥ 1

E
e

E−1
N0(1−ǫ) . (163)

Then, we can randomize between this code and a trivial
(

0,M, 1− 1
M

)

code (which sends an

all-zero codeword for all messages) by using the latter withprobability ǫ− 1−ǫ
E−1

.

We now describe this randomization procedure formally. Thestop-feedback code with size

lower-bounded by (163) is defined by the following three functions (see Definition 3):

1) a sequence of non-feedback encoder mapsf̃n : {1, . . . ,M} → R, n = 1, . . .,

2) a decoder mapg : R∞ → {1, . . . ,M}, and

3) a stopping time:τ : R∞ → Z+, which is a measurable function satisfying an additional

requirement that for anyn ≥ 0 the set{τ(y∞) ≤ n} is a function of onlyyn = (y1, . . . , yn).

From (f̃ , g, τ) we construct a new code(f̃ ′, g′, τ ′) as follows:

f̃ ′
n(W ) =











0 , n = 1 ,

f̃n−1(W ) , n ≥ 2
(164)

g′(Y ∞) = g(Y∞
2 ) (165)

τ ′(Y ∞) = 1 + τ(Y ∞
2 )1

{

Y1 ≤
√

N0

2
Q−1

(

ǫ− 1− ǫ

E − 1

)

}

(166)

One easily verifies that{τ ′(Y ∞) ≤ n} depends only onY n for any n ≥ 1, i.e. τ ′ is indeed a

stopping time of the filtration{σ(Y n), n ≥ 0}.
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The overall probability of error is then upper-bounded by

P[g′(Y ∞) 6= W ]

= P[g(Y ∞
2 ) 6= W |τ ′ = 1]P[τ ′ = 1] + P[g(Y∞

2 ) 6= W |τ ′ > 1]P[τ ′ > 1] (167)

=

(

1− 1

M

)

P[τ ′ = 1] + P[g(Y∞
2 ) 6= W |τ ′ > 1]P[τ ′ > 1] (168)

≤ P[τ ′ = 1] +
1

E
P[τ ′ > 1] (169)

≤
(

ǫ− (1− ǫ)

E − 1

)

+
1

E
· (1− ǫ)E

E − 1
(170)

= ǫ , (171)

where (168) is because conditioned onτ ′ = 1, random variablesW and Y ∞
2 are indepen-

dent, (169) is because conditioned onτ ′ > 1 transmission is governed by the original code

(fn, g) which has probability of error1
E

by construction, and (170) is because

P[τ ′ = 1] = P

[

Y1 >

√

N0

2
Q−1

(

ǫ− 1− ǫ

E − 1

)

]

(172)

= ǫ− 1− ǫ

E − 1
. (173)

Similarly, the average energy of the encoder{f ′
n, n = 1, . . .} is upper-bounded by

0 ·
(

ǫ− (1− ǫ)

E − 1

)

+
E − 1

1− ǫ
· (1− ǫ)E

E − 1
= E . (174)

Thus, we have constructed an(E,M, ǫ) stop-feedback code withM satisfying (163) as required.

D. Schalkwijk-Kailath codes

It is instructive to compare our results with the various constructions based on the Schalkwijk-

Kailath method [16]. Although none of such constructions can beat the codes of Theorem 7

(which essentially match the converse bound; see (146)-(147)), we discuss them here for com-

pleteness. Detailed proofs can be found in Appendix C.

There are several different non-asymptotic bounds that canbe obtained from the Schalkwijk-

Kailath method. Here are some of the results:
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1) The original result of Schalkwijk-Kailath [16, (6)-(12)] proves that for anyE > N0

2
and

positive integersL andM there exists an(E,M, ǫ) code with6

ǫ = 2Q





√
3L
√

2E
N0

− loge L− 1

M



 . (175)

Notice that whene
2E
N0

−2 is a positive integer the value ofL minimizing the right-hand side

of (175) is given by that integer. For such values ofE we get from (175) the following

lower bound onlogM∗
f
(E, ǫ):

logM∗
f
(E, ǫ) ≥ E

N0
log e+

1

2
log

3

e
− logQ−1

( ǫ

2

)

. (176)

2) Elias [17] proposed a method for transmitting a Gaussian random variable over the AWGN

channel with feedback (see also [18] and [19]). Such a methodleads to another variation

of Schalkwijk-Kailath, whose precise analysis is reportedin [20, Section III] (see also [21,

p. 18-6]). Taking the infimum in [20, (21)] over allnS = E
N0

proves that (176) holds for

all values of energyE > 0.

3) Zigangirov [23, (20)] optimized the locations of a uniform pulse amplitude modulation

(PAM) constellation in [16] to better approximate the normal distribution obtaining

logM∗
f
(E, ǫ) ≥ E

N0

log e+
1

2
log

π

2
− logQ−1

( ǫ

2

)

, (177)

for all E > 0 and0 < ǫ < 1, which improves (176).

Pinsker [22] claimed that there exist coding schemes for theAWGN channel with noiseless

feedback achievingm-fold exponential decrease of probability of error (in blocklength). For

the formal proof of this result, Zigangirov [23] proposed tosupplement the Schalkwijk-Kailath

method by a second phase which significantly reduces averageenergy by adaptively modifying

the constellation so that the most likely message (as estimated by the receiver) is mapped to

zero. A similar idea has been proposed by Kramer [24] for communication with orthogonal

waveforms and was shown to achieve anm-fold exponential probability of error. In the context

of fixed-energy, Zigangirov’s method results in the following zero-error bound, whose proof is

found in Appendix C:

6We used an upper-bound
∑L−1

i=1
1
i
< 1 + loge L in [16, (12)].
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Theorem 11:For anyM ∈ {2, 3, . . .} and

E

N0

>
1

2
+ loge

87(M − 1)

32
(178)

there exists an(E,M, 0) code. Equivalently, we have

E∗
f
(k, 0)

N0
≤ loge 2 +

1

k

(

1

2
+ loge

87(1− 2−k)

32

)

. (179)

Gallager and Nakiboğlu [20] devised a modification of Zigangirov’s second phase in order

to obtain a better bound on the optimal behavior of the probability of error in the regime of

fixed-rate feedback communication over the AWGN channel. Inthe present zero-error context,

which is not the main focus of [20], the analysis in [20, Section V.B] can be shown to imply

the following zero-error feedback achievability bound:

logM∗
f
(E, 0) ≥ E

N0

log e− log
2e3√
3
, (180)

or, equivalently,
E∗

f
(k, 0)

N0

≤ loge 2 +
1

k
loge

2e3√
3
. (181)

Numerical comparison of the bounds (146), (161), (176) and (177) for ǫ = 10−3 is shown

on Fig. 1. Each bound is computed by fixing a number of information bits k and finding the

smallestE for which a(2k, E, 10−3) code is guaranteed to exist; the plot showsEb

N0
= E

kN0
(dB).

The converse bound (Theorem 4) is not shown since it is indistinguishable, see (160), from the

bound achieved by the codes of Theorem 8 (hence the name, “optimal”). It can be seen that for

k & 300 the difference between the bounds becomes negligible so that even the stop-feedback

bound (the weakest on the plot) achieves energies below−1.5 dB, while for smaller values of

k the advantage of 1-bit method of Theorem 7 becomes more significant.

Fig. 2 compares thezero-error feedback achievability bounds (181), (179) and the optimal

code as given by Theorem 7. As expected the optimal code yields a significantly better energy

per bit for smaller valuesk. Further discussion and comparison with the non-feedback case is

given in Section IV.

E. Discussion

At first sight it may be plausible that, when zero-error is required, infinite bandwidth may

allow finite energy per bit even in the absence of feedback. However, by takingǫ → 0 in (16)
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information bits; block error rateǫ = 10−3.

we obtain

M∗(E, 0) = 1 (182)

for all E > 0. Equivalently, this can be seen as a consequence of [25]. At the same time, for

ǫ = 0 with feedback we have (Theorem 8)

logM∗
f
(E, 0) =

E

N0
log e+O(1) , (183)

in stark contrast with the non-feedback case (182).

Note also that asǫ → 0, the leading term in (145) coincides with the leading term in(31). As

we know, in the regime of arbitrarily reliable communication (and thereforek → ∞) feedback

does not help.

Theorems 6, 7, 11 and (180) demonstrate that noiseless feedback (along with infinite band-

width) allows for zero-error communication with finite average energy. This phenomenon is not

unique to the AWGN as the following simple argument demonstrates.
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Nakiboğlu [20] (upper bound (180)), Zigangirov [23] (upper bound (179)) and Theorem 7.

Consider an arbitrary memoryless channelPY |X with cost functionc(x) and a zero-cost symbol

x0; see [31] for details. Pick an arbitrary symbolx1 such thatc(x1) > 0 and

D(PY |X=x1||PY |X=x0) > 0 . (184)

First, consider a non-feedback code withM = 2 mapping messageW = 1 to an infinite string

of x0’s and messageW = 2 to an infinite string ofx1’s. Due to the memorylessness of the

channel and (184), the maximum likelihood message estimateŴ based on an infinite string of

observations(Y1, . . .) is exact:

P[W 6= Ŵ ] = 0 . (185)

Moreover the maximum likelihood estimatêWn based on the firstn observations(Y1, . . . , Yn)

satisfies

P[W 6= Ŵn|W = m] ≤ exp{−nθ} , m = 1, 2 (186)
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for some positiveθ. The total cost for such a two-codeword code is infinite because

E

[ ∞
∑

j=1

c(Xj)

∣

∣

∣

∣

∣

W = 2

]

= ∞ . (187)

To work around this problem we employ the feedback link as follows. After then-th channel

use the transmitter computes the estimateŴn and relabels the messages before issuingXn+1

so that the most likely messagêWn is mapped to a zero-cost symbolx0. This relabeling can

clearly be undone at the receiver side due to the knowledge ofŴn. Therefore, (185) and (186)

continue to hold. The average total cost for this modified scheme, however, becomes

E

[ ∞
∑

n=1

c(Xn)

]

=

∞
∑

n=1

c(x1)P[W 6= Ŵn] (188)

‘ ≤
∞
∑

n=1

c(x1) exp{−nθ} (189)

≤ c(x1)

exp{θ} − 1
(190)

< ∞ , (191)

where (188) is because our scheme spends a non-zero costc(x1) only in the caseŴn 6= W , (189)

is by (186), and (190) is becauseθ > 0. As required, we have obtained a zero-error feedback

code transmitting one bit of information with finite averagecost.

This illustrates that achieving zero-error relies essentially on the infinite bandwidth assumption

(see [20, Section VI] for a lower bound on the probability of error with finite number of degrees

of freedom). At the same time, the main code constructions presented here, Theorems 7 and 9,

can be restated for the case of a finite number of degrees of freedom,L, that satisfiesL ≫ k.

For example, in Theorem 7, instead of taking the limitd → 0 (see the proof of Theorem 7) we

can consider the code obtained with a small fixedd > 0. Then application of Lévy’s modulus

of continuity theorem [32] implies that the energy per bit increases to approximately

N0 loge 2 +N0 · O
(
√

d2

N0
log

N0

d2

)

, d → 0 . (192)

Regarding the probability of error, we know from (102) that after L channel uses, the log-

likelihood is distributed asN
(

Ld2 log e
N0

, 2Ld2 log2 e
N0

)

. Thus, the probability of error increases from

0 to approximately

ǫ ≈ e
− 3Ld2

N0 . (193)

DRAFT May 5, 2011



29

Hence, if a finite probability of errorǫ needs to be achieved with a finite number of degrees of

freedomL, then Theorem 7 can be modified to achieve an energy per bit

E ≥ N0 loge 2 +N0 · O
(
√

log 1
ǫ

L
log

L

log 1
ǫ

)

, L → ∞, (194)

which follows from takingd2 = N0

L
log 1

ǫ
in (192). A similar argument shows that the stop-

feedback construction of Theorem 9 can also be modified to allow for L ≫ logM .

Note that in the case whenL is small, i.e.L ∼ logM , the problem changes completely and

falls in the category of the finite blocklength analysis for the AWGN channel undertaken in [5,

Section III.J].

Finally, a natural question is whether the same improvements can be achieved by feedback

codes satisfying a stronger energy constraint, namely, if (10) is replaced by the requirement

P[||x||2 ≤ E|W = j] = 1 , j = 1, . . . ,M . (195)

The answer to this question is negative, as follows from the following result:

Theorem 12:Let 0 ≤ ǫ < 1. Any (E,M, ǫ) code with feedback satisfying energy con-

straint (195) must satisfy the non-feedback converse boundin (16).

Proof: We follow the proof of Theorem 4 with the only change being that instead of (80)

and (64) we have a stronger condition

τ̂ ≤ E , P-a.s.. (196)

Then, the minimizing setF in (56) necessarily belongs to theσ-algebraFE, where we recall

that {Ft, t ≥ 0} is a standard filtration onΩ in (60). ThusF becomes a conventional, fixed

observation time (or “fixed-sample-size”) binary hypothesis test for the drift of the Brownian

motion, or in other words, betweenP andQ restricted toFE. A simple computation shows

dP j

dΦ
∼ dP

dQ

∣

∣

∣

∣

FE

= φE , (197)

and by the Neyman-Pearson lemma (sinceφE ∼ BE underP and φE ∼ B̄E underQ, see

Lemma 5), we have

inf
F∈FE :P ′(F )≥α

Φ′(F ) = βα , (198)

whereβα is defined in (22). This completes the proof of (56) withβ̃α replaced byβα and results

in the bound (16) as shown in the proof of Theorem 2.

May 5, 2011 DRAFT



30

Theorem 12 parallels the result of Pinsker [22, Theorem 2] onblock coding for the AWGN

channel with fixed rate. We discuss the relationship to his results below.

In the converse part of [22, Theorem 2] Pinsker demonstratedthat Shannon’s cone-packing

lower bound on the probability of error [4] holds in the presence of noiseless feedback provided

that the power-constraint is in the almost sure sense, such as in (195). (Wyner [26] has also

demonstrated explicitly that enforcing constraint (195) for the Schalkwijk-Kailath scheme results

in probability of error decaying only exponentially.)

In particular, Pinsker’s result implies that for rates above critical the error exponent for the

AWGN channel is not improved by the availability of feedback. At the other extreme, for

M = 2 feedback is again useless [22, (12)] and [28]. ForM ≥ 3 and up to the critical

rate, however, feedback does indeed improve the error exponent. In fact, in the achievability

part of [22, Theorem 2] Pinsker derived a simple scheme achieving Shannon’s cone-packing

error exponent for all rates. His scheme consisted of an encoder employing a random spherical

code, which constantly monitors the decoding progress overthe feedback link and switches to

the Schalkwijk-Kailath mode once the true message is found among theL most likely (the

Schalkwijk-Kailath encoder is then used to select the actual message out of the list ofL).

Theorem 12 shows that a lower bound of Theorem 2 for the fixed-energy context serves the

same role as Shannon’s cone-packing lower bound does for thefixed-rate one. In particular, if

we fix M and letE → ∞ the converse (16) becomes

ǫ ≥ exp

{

− E

N0
log e+ o(E)

}

. (199)

This bound matches Pinsker’s feedback achievability bound[22, Theorem 1 and (33)]. The

non-feedback achievability bound in Theorem 2, only yields

ǫ ≤ exp

{

− E

2N0
log e + o(E)

}

(200)

for the regime ofM = const and E → ∞ (for the regimeM = exp{O(E)} see [27,

p.345]). Thus, although codes in Theorem 2 are optimal up toO(1) terms in the fixed-ǫ regime

(according to (31)), in the regime of exponentially decaying probability of error they become

quite suboptimal. This example illustrates that conclusions in the fixed-ǫ regime (which loosely

corresponds to working “close to capacity”) and the fixed-rate (or fixedM) regime may not

coincide.
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Fig. 3. Bounds on the minimum energy per bit as a function of the number of information bits with and without feedback;

block error rateǫ = 10−3.

We have shown that the lower-bound of Theorem 12 is tight for regimesM = const and

ǫ = const. It is natural, therefore, to expect that similarly to [22, Theorem 2] one can show that

Theorem 12 is also exponentially tight whenM scales withE → ∞ according toM = 2
E
Eb

whereEb > N0 loge 2 is a fixed energy-per-bit. Likely, the same two-phase strategy of Pinsker

will succeed.

IV. CONCLUSION

This paper finds new non-asymptotic bounds for the minimum achievable energy per bit and

uses those bounds to refine the current understanding of the asymptotic behavior. The main new

bounds are:

• Theorem 2: tight upper and lower bounds without feedback;

• Theorem 4: a converse bound with feedback;
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• Theorem 7: a 1-bit zero-error feedback scheme achieving theoptimal−1.59 dB energy per

bit;

• Theorem 9: a stop-feedback achievability bound.

In addition we have analyzed variations of the schemes of Schalkwijk-Kailath [16] and Zi-

gangirov [23] adapted for the purpose of minimizing the energy per bit (Section III-D and

Theorem 11).

Regarding the asymptotic expansions withE → ∞, our main results are given by Theo-

rems 3, 8 and 10 and can be compared as follows:

logM∗(E, ǫ) =
E

N0

log e +O(
√
E) (no feedback), (201)

logM∗
f
(E, ǫ) =

E

N0

log e

1− ǫ
+O(logE) (stop-feedback), (202)

logM∗
f
(E, ǫ) =

E

N0

log e

1− ǫ
+O(1) (full feedback) (203)
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asE → ∞.

As the number of information bits,k, goes to infinity, the minimum energy per bit required for

arbitrarily reliable communication is equal to−1.59 dB with or without feedback. However, in

the non-asymptotic regime, in which the block error probability is set toǫ, the minimum energy

per bit may substantially reduced thanks to the availability of feedback. Comparing Theorems 3

and 8, we observe a double benefit: feedback reduces the leading term in the minimum energy

by a factor of1− ǫ, and the penalty due to the second-order term in (31) disappears.

Theorem 7 shows that the optimal energy per bit of−1.59 dB is achievable already atk = 1

bit. This remarkable fact was observed by Turin [13] in the context of a continuous-time AWGN

channel with feedback. The Poisson channel counterpart hasbeen investigated recently in [29],

which shows that the minimum average energy per bit with feedback7 satisfies

E∗
f (k, ǫ) =

1

k
(1− ǫ) , 0 < ǫ ≤ 1. (204)

The result also holds forǫ = 0 in the special case when a) the dark current is absent and b)

signals of infinite duration are allowed.

The bounds developed above enable a quantitative analysis of the dependence of the required

energy on the number of information bits. In Fig. 3 we takeǫ = 10−3 and compare the bounds

on E∗
b
(k, ǫ) and E∗

f
(k, ǫ) developed in Section III. Non-feedback upper (15) and lower(16)

bounds are tight enough to conclude that for messages of sizek ∼ 100 bits the minimumEb

N0

is 0.20 dB, whereas the Shannon limit is only approachable within0.02 dB at k & 106 bits.

With feedback, the gap between the achievability and converse bounds is negligible enough,

see (160), to determine the value of the minimal energy per bit (denoted “Feedback (optimal)”

on the Fig. 3) for all practical purposes. Compared to the non-feedback case, Fig. 3 demonstrates

the significant advantages of using feedback with practicalvalues ofk. In Fig. 4 we compute

the bounds forǫ = 10−6, in which case the advantages of the feedback codes become even more

pronounced.

Another way to interpret Figs. 3 and 4 is to note that for moderate values ofk an improvement

of up to 10 dB is achievable with feedback codes. As discussed, this effect is analytically

7The result in [29] differs from (204) by a factor of2
k−1−1
2k

due to the fact that [29] uses an average over the codebook

energy constraint (14) instead of the per-codeword energy constraint in (10). The factor reflects that under the optimalscheme

one message has energy zero and all(2k − 1) others have energy1− ǫ.
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expressed by the absence of theO(
√
E) penalty term in expansion (145). Notice that under the

maximal energy constraint (195), feedback is unable to improve upon the non-feedback converse

bound and thus becomes useless even non-asymptotically (Theorem 12).

Surprisingly, our results demonstrate that the benefits of feedback are largely realized by stop-

feedback codes that use the feedback link only to send a single “stop transmission” signal (as

opposed to requiring a full noiseless feedback available atthe transmitter). Indeed, Theorem 10

demonstrates that the asymptotic expansion for stop-feedback codes remains free from the
√
E

penalty term. Moreover, as seen from the comparison in Fig. 1, for practically interesting values

of k, the suboptimality of our stop-feedback bound is insignificant compared to the gain with

respect to the non-feedback codes. Consequently, we conclude that for such values ofk the

dominant benefit of feedback on the energy per bit is already brought about by the stop-feedback

scheme of Theorem 9. In this way, the results of Section III-B(in particular (202)) easily extend

to noisy and/or finite capacity feedback links. Where the noiselessness of feedback plays the

crucial role, however, is in offering the possibility of achieving zero error with finite energy.
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APPENDIX A

PROOF OFLEMMA 1

Proof: Given a sequence of encoder mapsfn, n = 1, . . . we construct a different sequence

f ′
n as follows:

f ′
1(W ) = 0 , (205)

f ′
n(W,Y n−1) = fn−1(σ(Y1,W ), Y n−1

2 ) , n ≥ 2 , (206)

whereσ : R× {1, . . . ,M} → {1, . . . ,M} is a measurable map with two properties: 1) for any

y ∈ R the mapm 7→ σ(y,m) is a bijection of{1, . . . ,M}; 2) for anym the distribution of

σ(Z,m) is equiprobable on{1, . . . ,M} wheneverZ is Gaussian with varianceN0

2
. The existence

of such a map is obvious. We define the decoderg′ to satisfy

σ(Y1, g
′(Y ∞

1 )) = g(Y∞
2 ) , (207)

which is consistent sincem 7→ σ(y,m) is a bijection. Clearly, the probability of error of(f ′
n, g

′)

is the same as that of(fn, g). By assumption the original code satisfies (14) and therefore

1

M

M
∑

j=1

E

[ ∞
∑

n=2

∣

∣fn−1(j, Y
n−1
2 )

∣

∣

2

∣

∣

∣

∣

∣

σ(Y1,W ) = j

]

≤ E . (208)

Now for anyj ∈ {1, . . . ,M} per-codeword energy is:

E

[ ∞
∑

n=1

∣

∣f ′
n(W,Y n−1)

∣

∣

2

∣

∣

∣

∣

∣

W = j

]

= E

[ ∞
∑

n=2

∣

∣fn−1(σ(Y1,W ), Y n−1
2 )

∣

∣

2

∣

∣

∣

∣

∣

W = j

]

(209)

= E

[

E

[ ∞
∑

n=2

∣

∣fn−1(σ(Y1,W ), Y n−1
2 )

∣

∣

2

∣

∣

∣

∣

∣

σ(Y1,W )

] ∣

∣

∣

∣

∣

W = j

]

(210)

=
1

M

M
∑

i=1

E

[ ∞
∑

n=2

∣

∣fn−1(σ(Y1, j), Y
n−1
2 )

∣

∣

2

∣

∣

∣

∣

∣

σ(Y1, j) = i

]

(211)

≤ E , (212)

where (209) is by (205) and (206), (211) is becauseP[σ(Y1,W ) = i|W = j] = 1
M

, and (212)

is by (208). Thus by (212) the encoder sequencef ′
n, n = 1, . . . satisfies a per-codeword con-

straint (10).
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APPENDIX B

STOP-FEEDBACK CODES

The stop-feedback bound in Theorem 9 is just a representative of the following family of

bounds.

Theorem 13:For anyE > 0 and positive integerM there exists an(E,M, ǫ) code with

feedback for channel (3) satisfying

ǫ ≤ inf {1− α + (M − 1)β} , (213)

where the infimum is over all0 < β < α ≤ 1 satisfying

d(α||β) = E

N0

log e . (214)

Moreover, there exists an(E,M, ǫ) stop-feedback code; its probability of error is bounded

by (213) withα = 1, namely,

ǫ ≤ (M − 1)e
− E

N0 . (215)

Proof: Fix a list of elements(c1, . . . , cM) ∈ AM to be chosen later;||cj||2 need not be

finite. Upon receiving channel outputsY1, . . . , Yn the decoder computes the likelihoodSj,n for

each codewordj = 1, . . . ,M , cf. (27) and (58):

Sj,n =
n
∑

k=1

Cj,kYk − 1
2
C2

j,k , j = 1, . . . ,M . (216)

Fix two scalarsγ0 < 0 < γ1 and defineM stopping times

τj = inf{n > 0 : Sj,n 6∈ (γ0, γ1)} . (217)

Among those processes{Si,n} that upcrossγ1 without having previously downcrossedγ0, we

choose the process{Sj,n} for which theγ1 upcrossing occurs earliest. Then decoder outputs

Ŵ = j. The encoder conserves energy by transmitting only up untiltime τj (when the true

messageW = j):

Xn
△
= fn(j, Y

n−1
1 ) = Cj,n1{τj ≥ n} . (218)

At first, it might seem that we could further reduce the energyspent by replacingτj in (218) with

the actual decoding momentτ̃ . This however, is problematic for two reasons. First, whenever

γ0 > −∞, τ̃ equals∞ with some non-zero probability since it is possible for allM processes

{Si,n} to downcrossγ0 without first upcrossingγ1. Second, even ifγ0 = ∞ the expectation
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of E [τ̃ |W = j] becomes unmanageable unless one upper-boundsτ̃ with τj , which is simply

equivalent to (218). Similarly, the possibility of downcrossings precludes the interpretation of

our scheme as stop-feedback unlessγ0 is taken to be−∞.

To complete the construction of the encoder-decoder pair weneed to choose(c1, . . . , cM).

This is done by a random-coding argument. Fixd > 0 and generate eachcj independently with

equiprobable antipodal coordinates:

P[Cj,k = +d] = P[Cj,k = −d] =
1

2
, j = 1, . . .,M. (219)

We now upper-bound the probability of errorPe averaged over the choice of the codebook. By

symmetry it is sufficient to analyze the probabilityP[Ŵ 6= 1|W = 1]. We then have

P[Ŵ 6= 1|W = 1] ≤ P[S1,τ1 ≤ γ0|W = 1] +
M
∑

j=2

P[Sj,τj ≥ γ1, τj ≤ τ1|W = 1] , (220)

because there are only two error mechanisms:S1 downcrossesγ0 before upcrossingγ1, or some

otherSj upcrossesγ1 beforeS1. Notice that in computing probabilitiesP[S1,τ1 ≤ γ0|W = 1]

and P[S2,τ2 ≥ γ1, τ2 ≤ τ1|W = 1] on the right-hand side of (220) we are interested only in

time instants0 ≤ n ≤ τ1. For all such momentsXn = C1,n. Therefore, below for simplicity of

notation we will assume thatXn = C1,n for all n (whereas in realityXn = 0 for all n > τ1,

which becomes relevant only for calculating the total energy spent).

We defineBt and B̄t as in (61) and (62); then conditioned onW = 1 the processS1 can be

rewritten as

S1,n = Bnd2 , (221)

because according to (220) we are interested only in0 ≤ n ≤ τ1 and thusXk = C1,k. The

stopping timeτ1 then becomes

d2τ1 = inf{t > 0 : Bt 6∈ (γ0, γ1) , t = nd2, n ∈ Z} . (222)

If we now define

τ = inf{t > 0 : Bt 6∈ (γ0, γ1)} , (223)

τ̄ = inf{t > 0 : B̄t 6∈ (γ0, γ1)} , (224)

then the path-continuity ofBt implies that

d2τ1 ց τ asd → 0 . (225)
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Similarly, still under the conditionW = 1 we can rewrite (216) in the case of the second

codeword as

S2,n = d2
n
∑

k=1

Lk + B̄nd2 , (226)

whereLk are i.i.d., independent of̄Bt and

P[Lk = +1] = P[Lk = −1] =
1

2
. (227)

Note that one should not infer from (226) that the processesS1,n andS2,n have dependence as

Bt andB̄t which determine each other; see (61) and (62). The equality in (226) makes sense as

long as the processS2,n is considered separately fromS1,n.

Extending (225), we will show below that asd → 0 we have

P[S1,τ1 ≤ γ0|W = 1] → 1− α(γ0, γ1) , (228)

P[S2,τ2 ≥ γ1, τ2 < ∞|W = 1] → β(γ0, γ1) , (229)

whereα(γ0, γ1) andβ(γ0, γ1) are

α(γ0, γ1) = P[Bτ = γ1] , (230)

β(γ0, γ1) = P[B̄τ̄ = γ1, τ̄ < ∞] , (231)

i.e. the probabilities of hitting the upper thresholdγ1, without having gone belowγ0 by Bt

and B̄t, respectively8. Thus, the interval(γ0, γ1) determines the boundaries of the sequential

probability ratio test. As shown by Shiryaev [30, Section 4.2], α andβ satisfy

d(α(γ0, γ1)||β(γ0, γ1)) =
log e

N0
E [τ ] . (232)

Assuming (228) and (229) asd → 0 the probability of error is upper-bounded by (220):

P[Ŵ 6= 1|W = 1] ≤ 1− α(γ0, γ1) + (M − 1)β(γ0, γ1) . (233)

At the same time, the average energy spent by our scheme is

lim
d→0

E [||x||2] = lim
d→0

E [d2τ1] = E [τ ] , (234)

because of (225).

8The conditionτ̄ < ∞ is required for handling the special caseγ0 = −∞.
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Finally, comparing (214) and (232) it follows that optimizing (233) over allγ0 < 0 < γ1

satisfyingE [τ ] = E we obtain (213). To prove (215) simply notice that whenα = 1 we haveγ0 =

−∞, and hence the decision is taken by the decoder the first time any Sj upcrossesγ1. Therefore,

the timeτj (whose computation requires the full knowledge ofYk) can be replaced in (218) with

the time of decoding decision, which requires sending only asingle signal. Obviously, this

modification will not change the probability of error and will conserve energy even more (since

underγ0 = −∞, τj cannot occur before the decision time).

We now prove (228) and (229). By (221) and (225) we have

S1,τ1 = Bd2τ1 → Bτ , (235)

because of the continuity ofBt. From (235) we obtain (228) after noticing that again due to

continuity

P[Bτ ≤ γ0] = 1− P[Bτ ≥ γ1] = 1− P[Bτ = γ1] . (236)

The proof of (229) requires a slightly more intricate argument for which it is convenient to

introduce a probability space denoted by(Ω,H,P) which is the completion of the probability

space generated by{B̄t}∞t=0 and {Lk}∞k=1 defined in (62) and (227), respectively. For each

0 < d ≤ 1 we define the following random variables, where their explicit dependence ond is

omitted for brevity:

Dt = d2
∑

k≤⌊t/d2⌋
Lk , (237)

Σt = Dt + B̄d2⌊ t
d2
⌋ , (238)

τ2 = inf{t > 0 : Σt 6∈ (γ0, γ1)} , (239)

τ̄ = inf{t > 0 : Bt 6∈ (γ0, γ1)} . (240)

In comparison with the random variables appearing in (229)Σnd2 andτ2 take the role ofS2,n and

d2τ2, respectively; and alsoP henceforth is already normalized by the conditioning onW = 1.

Thus in the new notation we need to prove

lim
d→0

P[Στ2 ≥ γ1, τ2 < ∞] = P[B̄τ̄ = γ1, τ̄ < ∞] . (241)
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We define the following subsets ofΩ:

E0 = {ω ∈ Ω : ∃T < ∞ ∀t > T : sup
0<d≤1

Σt < 0} , (242)

E1 = {τ̄ = ∞} ∪ {τ̄ < ∞, ∀ǫ > 0 ∃t1, t2 ∈ (0, ǫ) s.t. B̄τ̄+t1 > B̄τ̄ , B̄τ̄+t2 < B̄τ̄} , (243)

E2 = {ω ∈ Ω : lim
d→0

Dt = 0 uniformly on compacts} , (244)

E = E0 ∩ E1 ∩ E2 . (245)

According to Lemma 14 the sets in (242)-(245) belong toH and have probability1.

The next step is to show

{B̄τ̄ = γ1, τ̄ < ∞} ∩ E ⊂ lim inf
d→0

{Στ2 ≥ γ1, τ2 < ∞} ∩ E . (246)

To that end select an arbitrary elementω ∈ {B̄τ̄ = γ1, τ̄ < ∞} ∩ E. SinceB̄t is continuous

it must attain its minimumb0 on [0; τ̄ ]; of course,b0 > γ0. Again, due to continuity ofB̄t at

t = τ̄ there must exist anǫ1 > 0 such that

b′0
△
= min

0≤t≤τ̄+ǫ1
B̄t > γ0 . (247)

On the other hand, becauseω ∈ E1 we have

b1
△
= max

0≤t≤τ̄+ǫ1
B̄t > γ1 . (248)

Moreover, sinceω ∈ E2 we haveDt → 0 uniformly on [0; τ̄ + ǫ1]; therefore, there exists a

d1 > 0 such that for alld ≤ d1 we have

sup
t∈[0;τ̄+ǫ1]

|Dt| ≤ ǫ2 , (249)

where

ǫ2 =
1

3
min(b1 − γ1, b

′
0 − γ0) > 0 . (250)

If we denote byt1 the point at whichBt1 = b1, then by continuity ofBt at t1 there exists a

δ > 0 such that

∀t ∈ (t1 − δ; t1 + δ) : Bt > b1 − ǫ2 . (251)

Then for everyd <
√
δ we have

max
t∈[0,τ̄+ǫ1]

B̄d2⌊ t
d2
⌋ > b1 − ǫ2 . (252)
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Finally, for everyd ≤ min(
√
δ, d1) we have

sup
t∈[0,τ̄+ǫ1]

Σt ≥ b1 − 2ǫ2 > γ1 (253)

and

inf
t∈[0,τ̄+ǫ1]

Σt ≥ b′0 − ǫ2 > γ0 (254)

by (247), (248), (250) and (252). Then of course, (253) and (254) prove thatτ2 ≤ τ̄ + ǫ1 and

{Στ2 ≥ γ1} holds for alld ≤ min(
√
δ, d1). Equivalently,

ω ∈ lim inf
d→0

{Στ2 ≥ γ1, τ2 < ∞} , (255)

proving (246).

Next, we show

lim sup
d→0

{Στ2 ≥ γ1, τ2 < ∞} ∩ E ⊂ {B̄τ̄ = γ1, τ̄ < ∞} ∩ E . (256)

Indeed, takeω ∈ lim supd→0{Στ2 ≥ γ1, τ2 < ∞} ∩ E, that is a point in the sample space for

which there exists a subsequencedl → 0 such thatΣτ2 ≥ γ1 for everyl. Sinceω ∈ E0 we know

that for all d we haveτ2(ω) ≤ T < ∞. First, we show

b1
△
= max

0≤t≤T
B̄t ≥ γ1 . (257)

Indeed, assuming otherwise and repeating with minor changes the argument leading from (248)

to (253), we can show that in this case

sup
t∈[0,T ]

Σt < γ1 (258)

for all sufficiently smalld. This contradicts the choice ofω.

We denote

t1 = inf{t > 0 : B̄t = b1} . (259)

Then (257) and continuity of̄Bt imply

τ̄ ≤ t1 < ∞ . (260)

We are left only to show that̄Bτ̄ = γ0 is impossible. If it were so, then̄τ < t1 < T . Moreover

becauseω ∈ E2 there must exist anǫ1 > 0 (similar to (247) and (248)) such that

b′0
△
= min

0≤t≤τ̄+ǫ1
B̄t < γ0 , (261)
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and

b′1
△
= max

0≤t≤τ̄+ǫ1
B̄t < γ1 . (262)

Thus, by repeating the argument behind (253) and (254) we canshow that for all sufficiently

small d we have

sup
t∈[0,τ̄+ǫ1]

Σt < γ1 , (263)

and

inf
t∈[0,τ̄+ǫ1]

Σt < γ0 , (264)

which contradicts the assumption thatω ∈ lim supd→0{Στ2 ≥ γ1, τ2 < ∞}.

Together (246) and (256) prove that

{B̄τ̄ = γ1, τ̄ < ∞} ∩ E ⊂ lim inf
d→0

{Στ2 ≥ γ1, τ2 < ∞} ∩ E ⊂

lim sup
d→0

{Στ2 ≥ γ1, τ2 < ∞} ∩ E ⊂ {B̄τ̄ = γ1, τ̄ < ∞} ∩ E , (265)

which implies that all three sets are equal. By Lemma 14 and the completeness ofH both

sets lim infd→0{Στ2 ≥ γ1, τ2 < ∞} and lim supd→0{Στ2 ≥ γ1, τ2 < ∞} are measurable and

computing their probabilities is meaningful. Finally, we have

lim
d→0

P[Στ2 ≥ γ1, τ2 < ∞] = lim
d→0

P[{Στ2 ≥ γ1, τ2 < ∞} ∩ E] (266)

= P[B̄τ̄ = γ1, τ̄ < ∞] , (267)

where (266) is by Lemma 14 and (267) by (265) and the bounded convergence theorem.

Lemma 14:The setE defined in (245) isH-measurable and

P[E] = 1 . (268)

Proof: By the completeness ofH it is sufficient to prove that all setsE0, E1 andE2 contain

a measurable subset of probability1. To prove

P[E0] = 1 , (269)

notice that

sup
0<d≤1

Dt = t sup
N≥t

1

N

N
∑

k=1

Lk , (270)
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and therefore, by the Chernoff bound,

P

[

sup
0<d≤1

Dt >
t

4

]

≤
∑

N≥t

O
(

e−a1N
)

(271)

= O
(

e−a1t
)

, (272)

for some constanta1 > 0. Hence, for an arbitraryt we have an estimate

P[B̄t + sup
0<d≤1

Dt ≥ −1] ≤ P

[

B̄t ≥ −1− t

4

]

+ P

[

sup
0<d≤1

Dt >
t

4

]

(273)

≤ O
(

e−a1t
)

, (274)

where (274) is becausēBt ∼ N
(

− t
2
, tN0

2

)

and (272).

Next, denote

δj =
1√
j
, (275)

tn =

n
∑

j=1

δj , (276)

Mj = max
tj≤t≤tj−1

Wt −Wtj , (277)

whereWt = t/2 +
√

2
N0

B̄t is the standard Wiener process; cf. (62).

Since tn ∼ 2
√
n and the series

∑∞
n=1 e

−a1
√
n converges, we can apply the Borel-Cantelli

lemma via (274) to show that

F1 =

{

{Btn + sup
0<d≤1

Dtn ≥ −1} –infinitely often

}

(278)

has measure zero. Similarly, sinceMj ∼ |Wδj | we have

∞
∑

j=1

P[Mj > (2N0)
−1] =

∞
∑

j=1

2Q

(

1

2N0

√

δj

)

≤ a3

∞
∑

j=1

e−a2
√
n < ∞ , (279)

for some positive constantsa2, a3. And therefore,

F2 =
{

Mj > (2N0)
−1 –infinitely often

}

(280)

also has measure zero. Finally we show that

F c
1 ∩ F c

2 ⊂ E0 . (281)

Indeed, for allt ∈ [tj ; tj + δj) we have

B̄t +Dt ≤ B̄tj +Dtj +

√

N0

2
Mj + 2δj , (282)
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because, from the definition ofDt,

|Ds1 −Ds2 | ≤ 2|s1 − s2| , (283)

for all d > 0. From (282) for anyω ∈ F c
1 ∩ F c

2 we have for all sufficiently larget

sup
0<d≤1

B̄t +Dt ≤ −1 +
1

2
+ 2δj , (284)

where j denotes the index of the unique intervalt ∈ [tj ; tj+1). Therefore, for all sufficiently

large t we have shown

sup
0<d≤1

Σt ≤ sup
0<d≤1

B̄t +Dt < 0 , (285)

completing the proof of (281) and, hence, of (269).

To showP[E1] = 1 notice that by the strong Markov property of Brownian motionfor any

finite stopping timeσ according to Blumenthal’s zero-one law [33] for

Fσ = {∀ǫ > 0 ∃t1, t2 ∈ (0, ǫ) s.t. B̄σ+t1 > B̄σ, B̄σ+t2 < B̄σ} (286)

we have

P[Fσ] = 1 . (287)

Sinceσn = min(τ̄ , n) are finite stopping times andσn ր τ̄ , we have

E1 ⊃
∞
⋂

n=1

Fσn . (288)

Therefore,P[E1] = 1 sinceP[Fσn ] = 1 for all n ≥ 1.

To show

P[E2] = 1 (289)

it is sufficient to show that for every integerK > 0

P[lim
d→0

Dt = 0 uniformly on[0;K]] = 1 (290)

and to take the intersection of such sets over allK ∈ Z+. To prove (290) notice that

P[lim sup
d→0

sup
0≤t≤K

|Dt| ≥ ǫ] = P

[

lim sup
d→0

d2 max
0≤n≤ K

d2

∣

∣

∣

∣

∣

n
∑

k=0

Lk

∣

∣

∣

∣

∣

≥ ǫ

]

(291)

= P

[

lim sup
m→∞

K

m
max

0≤n≤m

∣

∣

∣

∣

∣

n
∑

k=1

Lk

∣

∣

∣

∣

∣

≥ ǫ

]

(292)

≤ P

[

1

n

n
∑

k=1

Lk ≥ ǫ

K
–i.o.

]

+ P

[

1

n

n
∑

k=1

Lk ≤ − ǫ

K
–i.o.

]

(293)
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where “i.o.” stands for infinitely often. By the strong law oflarge numbers both probabilities

in (293) are zero and we obtain

lim sup
d→0

sup
0≤t≤K

|Dt| = 0 a.s., (294)

which is equivalent to (290).

APPENDIX C

Proof of Theorem 11:We improve upon Schalkwijk-Kailath’s scheme by employing Zi-

gangirov’s two-phase method [23]. Our construction will depend on the choice of the following

quantities (to be optimized later):

• E0: energy to be used forX1,

• L: number of channel uses in the first phase,

• E1: total energy spent in the first phase,

• ρ : auxiliary parameter governing the total energy spent in thesecond phase.

We assumeρ > 0, E1 > E0 > 0. Using these parameters define two sequences recursively as

follows:

σ2
n =











N0

2
, n = 1 ,

σ2
n−1

(

1 +
2c2nσ

2
n−1

N0

)−1

, n ≥ 2 ,
(295)

cn =























undefined, n = 1 ,

1
σn−1

√

E1−E0

L
, n = 2, . . . , L+ 1 ,

√

ρN0

2
1

σn−1
, n ≥ L+ 2 .

(296)

From these equations it is easy to see that

σ2
n =











N0

2

(

1 + 2(E1−E0)
LN0

)−n+1

, n = 1, . . . , L+ 1 ,

(1 + ρ)L+1−n σ2
L+1 , n ≥ L+ 2

(297)

and therefore for anyρ > 0

lim
n→∞

σ2
n = 0 . (298)

We now describe the encoding functionsfn(W, yn−1) for all n:
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1) Forn = 1, according to the method of Schalkwijk and Kailath [16], we map the message

W ∈ {1, . . . ,M} to the interval[−√
E0,

√
E0] by means of

X1 = f1(W ) =
√

E0
2W −M − 1

M − 1
. (299)

2) For n = 2 givenY1 the encoder computes the value of the noise

Z1 = Y1 −X1 (300)

and sends

X2 = f2(W,Y1) = c2Z1 . (301)

3) For n = 3, . . . , L+ 1 the encoder proceeds recursively by sending

Xn = cn(Z1 − Ẑn−1) , n = 3, . . . , L+ 1 , (302)

where Ẑk is the minimum mean square error (MMSE) estimate ofZ1 based on the

observations(Y2, . . . , Yk):

Ẑk
△
= E [Z1|Y k

2 ] , k = 1 , . . . , L+ 1 . (303)

4) Forn ≥ L+2 (the second phase) we modify the Schalkwijk-Kailath schemeby subtracting

X̂n:

Xn = fn(W,Y n−1) (304)

△
= cn(Z1 − Ẑn−1)− X̂n (305)

= cn

[

qδ

(

Y1 − Ẑn−1 +
√

E0

)

−
√

E0 −X1

]

, n = L+ 2, . . . (306)

where

X̂n
△
= cn

[

Y1 − qδ

(

Y1 − Ẑn−1 +
√

E0

)

−
√

E0 − Ẑn−1

]

, (307)

with qd(·) being ad-quantization map

qd(x)
△
= d

⌈

1

d
x− 1

2

⌉

, (308)

andδ the spacing between adjacent messages inX1:

δ
△
=

2
√
E0

M − 1
. (309)
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Additionally, for k ≥ L+ 2 the valueẐk appearing in (305) is defined as

Ẑk
△
= E [Z1|Y L+1

2 , Ỹ k
L+2] , k = L+ 2, . . . , (310)

where

Ỹk = Yk + X̂k , k = L+ 2 . . . (311)

is known at the receiver at timek.

Below we demonstrate that for alln ≥ 1 we have

Var[Z1|Y min(L+1,n)
2 , Ỹ n

L+2] = σ2
n . (312)

Using (298), (312) results in

Var[Z1|Y L+1
2 , Ỹ ∞

L+2] = 0 . (313)

Thus, givenY ∞
1 the decoder computes(Y L+1

2 , Ỹ ∞
L+2) and therefore by (313) can estimateZ1

(and henceX1 = Y1 − Z1) exactly:

P[X1 6= Y1 − E [Z1|Y L+1
2 , Ỹ ∞

L+2]] = 0 . (314)

The change in the encoding atn = L+2 follows the ingenious observation of Zigangirov [23]

that as long as one proceeds in Schalkwijk-Kailath mode (i.e., as forn ≤ L + 1) then due to

the discreteness ofX1, conditioned onY n−1
1 the inputXn has non-zero bias:

E [Xn|Y n−1
1 ] 6= 0 (315)

(conditioned onY n−1
2 the bias is zero by construction, of course). Therefore, to save energy it is

beneficial to eliminate this bias by subtractingE [Xn|Y n−1
1 ] which then can be added back at the

receiver since it knowsY n−1
1 . However, calculatingE [Xn|Y n−1

1 ] is complicated and instead we

considered an approximation to it given bŷXn in (307). The rationale for such an approximation

is to replaceX1, implicit in the definition ofXn in (302), with a naive estimateqδ
(

Y1 − Ẑn−1

)

.

Note thatẐn now is a function ofY n
1 , instead ofY n

2 used in the first phase.

The proof will now proceed in the following steps:

a) show (312) forn ≤ L+ 1;

b) show (312) forn ≥ L+ 2;

c) show that the total energy spent in the first phase is at most

E

[

L+1
∑

k=1

|Xk|2
]

≤ E1 , (316)
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d) show that the total energyE2 spent in the second phase is

E2
△
=

∞
∑

n=L+2

E [|Xn|2] (317)

=
N0

2

∞
∑

n=L+2

ρ s

(

δ

σn−1

)

, (318)

where

s(d)
△
=

∫ ∞

−∞

1√
2π

q2d(x)e
−x2

2 dx . (319)

e) conclude the proof by showing that optimization of the choices ofE0, E1, L andρ results

in

inf
E0,E1,L,ρ

E1 + E2 ≤ Ez(M) , (320)

where

Ez(M)
△
=

N0

2
+N0 loge

87(M − 1)

32
, (321)

which is the right-hand side of (178).

a) We prove (312) by induction. Forn = 1 the statement is obvious. For2 ≤ n ≤ L+ 1 we

have9

I(Z1; Y
n
2 ) =

1

2
log

N0

2Var[Z1|Y n
2 ]

. (322)

Suppose (312) is shown for1, . . . , n− 1 then

I(Z1; Y
n
2 ) = I(Z1; Y

n−1
2 ) + I(Z1; Yn|Y n−1

2 ) (323)

= I(Z1; Y
n−1
2 ) + I(Xn; Yn|Y n−1

2 ) (324)

= I(Z1; Y
n−1
2 ) +

1

2
log

(

1 +
2E [|Xn|2]

N0

)

(325)

= I(Z1; Y
n−1
2 ) +

1

2
log

(

1 +
2c2n Var[Z1|Y n−1

2 ]

N0

)

(326)

=
1

2
log

{

N0

2Var[Z1|Y n−1
2 ]

(

1 +
2c2nVar[Z1|Y n−1

2 ]

N0

)}

(327)

=
1

2
log

{

N0

2σ2
n−1

(

1 +
2c2nσ

2
n−1

N0

)}

(328)

=
1

2
log

N0

2σ2
n

, (329)

9We follow the elegant analysis of the Schalkwijk-Kailath method introduced in [21, p. 18-6].
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where (324) expresses the fact that givenY n−1
2 , Z1 is an invertible function ofXn; (325) is

becauseYj = Xj +Zj with Zj independent ofY j−1
2 ; (326) is by (302); (327) is by (322); (328)

is by the induction hypothesis; and (329) is by (295). The induction step is then proved by

comparing (329) and (322).

b) Next, considern ≥ L + 2. Due to (311) the relationship between(Z1 − Ẑn−1) and Ỹn in

the second phase is the same as for(Z1 − Ẑn−1) andYn in the first phase:

Ỹn = cn(Z1 − Ẑn−1) + Zn , (330)

whereZ1 − Ẑn−1 is still Gaussian. Thus the proof of the induction step in (322)-(329) holds

verbatim by replacingYn with Ỹn andE [|Xn|2] with E [|Xn + X̂n|2] for n ≥ L+ 2.

c) Note that in the course of the proof we have shown that

E [|Xn|2] = c2nσ
2
n−1 , n = 2, . . . , L+ 1 , (331)

and therefore substituting (296) and (297) into (331) and using

E [|X1|2] =
E0

3

M + 1

M − 1
≤ E0 (332)

inequality (316) follows.

d) Next we show (318). Sinceqδ(x) + δ = qδ(x+ δ), from (306) we have

Xn = cnqδ

(

Z1 − Ẑ1(Y
n−1
2 )

)

(333)

E [|Xn|2] = c2nσ
2
n−1s

(

δ

σn−1

)

, (334)

which trivially implies (318).
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e) We are left to show (320). First, we give an upper bound ons(d) for d ≥ 2:10

s(d) ≤ 2

∫ ∞

d
2

1√
2π

(

x2 + xd+
d2

4

)

e−
x2

2 dx (335)

=
d2

2
Q

(

d

2

)

+
2d√
2π

e−
d2

8 + 2

∫ ∞

d
2

x2

√
2π

e−
x2

2 dx (336)

≤ 3d√
2π

e−
d2

8 + 2

∫ ∞

d
2

x2

√
2π

e−
x2

2 dx (337)

=
4d√
2π

e−
d2

8 +

∫ ∞

d2

8

√

1

πy
e−ydy (338)

≤ 4d√
2π

e−
d2

8 +
4

d
√
2π

∫ ∞

d2

8

e−ydy (339)

≤ 5d√
2π

e−
d2

8 , (340)

where (335) follows by applying an upper bound

|qd(x)| ≤
(

|x|+ d

2

)

1{2|x| ≥ d} , (341)

(337) is by (41), (338) follows by integrating by parts withy = x2

2
, and (340) holds since by

assumptiond ≥ 2.

Notice that the dependence ofE2 on E0, E1 andL is only through the following parameter

δ1(E0, E1, L)
△
=

δ

σL+1
(342)

=
2

M − 1

√

2E0

N0

(

1 +
2(E1 − E0)

LN0

)
L
2

, (343)

where (343) follows from (297) and (309). From now on we writeE2(ρ, δ1) to signify the fact

thatE2 is implicitly a function ofρ andδ1.

Next, for anyδ1 > 2 we have

inf
ρ
E2(ρ, δ1) ≤

20N0δ1√
2π

e−
δ21
8

δ21 − 4
. (344)

10Note that althoughlimd→0 s(d) = 1, it is not true thats(d) ≤ 1. In fact s(d) > 1 for a certain intervald ∈ (0, d∗). This

explains why we use subtraction of̂Xn only for n ≥ L + 2. Indeed, without subtractionE |Xn|
2 = c2nσ

2
n−1 and therefore

from (334) we see that it is only sensible to use subtraction when s(d) ≤ 1, or equivalently whenσn−1 is sufficiently small.

This is an artifact of the suboptimal approximation ofE [Xn|Y
n−1
1 ] by X̂n. A slightly weaker bound ons(d) follows from [20,

Lemma 4.1].
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Indeed, consider the following upper bound:

E2(ρ, δ1) =
N0

2

∞
∑

k=0

ρ s
(

δ1(1 + ρ)
k
2

)

(345)

≤ 5N0δ1

2
√
2π

∞
∑

k=0

ρ(1 + ρ)
k
2 e−

δ21
8
(1+ρ)k (346)

≤ 5N0δ1

2
√
2π

∞
∑

k=0

ρe
k
2
loge(1+ρ)− δ21

8
(1+kρ) (347)

=
5N0δ1

2
√
2π

e−
δ21
8

∞
∑

k=0

ρe
− k

2

(

δ21
4
ρ−loge(1+ρ)

)

(348)

=
5N0δ1

2
√
2π

ρe−
δ21
8

(

1− e−
δ21ρ

8

√

1 + ρ

)−1

, (349)

where (345) is by (297) and (318); (346) is by applying (340);(347) is because(1+ρ)k ≥ 1+kρ,

and (349) is becauseδ
2
1

4
ρ > loge(1 + ρ) for all ρ > 0 and δ1 > 2. Finally, (344) is obtained by

taking ρ → 0 in (349).

Notice now that forE1 fixed the optimization ofδ1 overE0 andL is simple:

δ∗1(E1)
△
= sup

E0,L
δ1 (350)

= sup
E0,L

2

M − 1

√

2E0

N0

(

1 +
2(E1 −E0)

LN0

)
L
2

(351)

=
2

M − 1
e

E1
N0

− 1
2 (352)

(supremum is attained asL → ∞ andE0 → N0

2
). In other words, to achieve a certain value of

δ1 we need to expend slightly more than the energy

E∗
1(δ1) = N0

(

1

2
+ loge

M − 1

2
δ1

)

. (353)

Thus, we have

inf
E0,E1,L,ρ

E1 + E2(ρ, δ1) ≤ inf
E0,E1,L:δ1>2

E1 +
20N0δ1√

2π

e−
δ21
8

δ21 − 4
(354)

≤ inf
δ1>2

E∗
1(δ1) +

20N0δ1√
2π

e−
δ21
8

δ21 − 4
(355)

≤ N0

(

1

2
+ loge

M − 1

2
+ loge

87

16

)

(356)

= Ez(M) , (357)
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where (354) is by (344) and restricting to{δ1 > 2}; (355) is by (353); and (356) follows from

inf
δ1>2



loge δ1 +
20δ1√
2π

e−
δ21
8

δ21 − 4



 ≤ loge
87

16
, (358)

which is easily verified by takingδ1 = 5 in the left-hand side. This completes the proof of (320).
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