Minimum energy to send bits
through the Gaussian channel

with and without feedback
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Abstract

The minimum achievable energy per bit over memoryless Gaugshannels has been previously
addressed in the limit when the number of information bitegto infinity, in which case it is known
that the availability of noiseless feedback does not lolwvemhinimum energy per bit, which is1.59 dB
below the noise level. This paper analyzes the behaviorefitmimum energy per bit for memoryless
Gaussian channels as a functionfgfthe number of information bits. It is demonstrated thathis t
non-asymptotic regime, noiseless feedback leads to signify better energy efficiency. In particular,
without feedback achieving energy per bit-ef .57 dB requires coding over at lealst= 10°¢ information
bits, while we construct a feedback scheme that transmitsgéesnformation bit with energy-1.59 dB
and zero error. We also show that unléss very small, approaching the minimal energy per bit does

not require using the feedback link except to signal thatsmsission should stop.

Index Terms

Shannon theory, channel capacity, minimum energy per bédliack, non-asymptotic analysis,

Gaussian channels, Brownian motion, stop-feedback.

I. INTRODUCTION

A problem of broad practical interest is to transmit a messagh minimum energy. For the

additive white Gaussian noise (AWGN) channel, the key patars of the code are:
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« n: number of degrees of freedom,
« k: number of information bits,
« € probability of block error and

. L total energy budget.

Of course, it is not possible to construct a code with arbitvalues ofn, k, e and E. Determining
the region of feasiblgn, k, e, £) has received considerable attention in information theory
primarily in various asymptotic regimes:

1) The first asymptotic result dates back to [1], where Shardemonstrates that in the limit
of e =+ 0, k — 00, n = oo and £ — 0 the smallest achievable energy per bif 2 2
converges to

(ﬂ)mn —log, 2 = —1.59 dB, 1)

No

Where% is the noise power per degree of freedom. The limit does nah@# ife is
fixed, if noiseless causal feedback is available at the asrcdidthe channel is subject to
fading, or even if the modulation is suitably restricted.

2) Alternatively, if one fixes > 0 and the ratef; = R then ask — oo andn — oo we have

(e.g., [2])
B, 4f—1

— =
Ny 2R

Thus in this case the minimum energy per bit becomes a fumofi®, but note. In contrast

(@)

to (1), (2) only holds with coherent demodulation and is gesmsto both modulation and
fading; see [3].

3) Non-asymptotically, in the regime of fixed rateande, bounds on the minimunk,, for
finite £ have been proposed [4], [5], studied numerically [6]-[1@H &ightly approxi-
mated [5], [11].

In this paper we investigate the minimal enerfyrequired to transmit: bits allowing error
probability e > 0 andn — oo. Equivalently, we determine the maximal number of bits of
information that can be transmitted with a fixed (non-asytip} energy budget and an error
probability constraint, but without any limitation on the@mber of degrees of freedom (time-
bandwidth product). This is different from [1] in that we dotriakek — oo, and from [4]-[11]
in that we do not fix a non-zero ratfné By doing so, we obtain &dona fideenergy-information

tradeoff in the simplest possible setting of the AWGN chama¢ subject to fading. Even though
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the asymptotic value (1) can be obtained from (2) (i.e. fréva tegime of restricted rate) by
taking R — 0, the minimum energy for finitd cannot be obtained from the asymptotic limit
in (2).

The paper is organized as follows. In Section Il we state tioblpm formally for both cases
of communication with and without feedback. In Section Ik wresent the main results of the
paper and compare the two cases numerically. In partiouademonstrate that without feedback
achieving—1.57 dB energy per bit necessarily requires coding oker 10° information bits
while with feedback we construct a code that transnkits 1 bit at the optimal—1.59 dB.
This is the discrete-time counterpart of Turin’s result][D® infinite bandwidth continuous-
time communication in the presence of white noise and neéseleedback. Moreover, we show
that as long as is not too small (say, more than 100) a stop-feedback codéwinses the
feedback link only to signal that the receiver does not negthér transmissions) also closely
approaches the fundamental limit, thereby eliminatingribed for an instantaneous noiseless
feedback link. In general, for values éfranging from1 to 2000 feedback results in about

to 0.5 dB improvement in energy efficiency, respectively.

I[I. PROBLEM STATEMENT
Without constraints on the number of degrees of freedomAN&N channel acts between
input spaceA = R* and output spacB = R> by addition:
y=x+z, 3

whereR> is the vector space of real valued sequehdes, zs,...,2,,...), x €A, y € B and
z is a random vector with independent and identically digteld (i.i.d.) Gaussian components
Zx ~ N (0, Ny/2) independent ok.
Definition 1: An (E, M, ¢) code (without feedback) is a list of codewords, . .., cy) € AY,
satisfying
ljlP<E,j=1,....M, (4)

and a decodeg : B — {1,..., M} satisfying
Plg(y) # W] <, (5)
Un this paper, boldface lettess, y etc. denote the infinite dimensional vectors with coordisat,, v, etc., correspondingly.
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wherey is the response te = ¢y, andiV is the message which is equiprobable{an. . ., M}.

The fundamental energy-information tradeoff is given by

M*(E,e) = max{M : I(E, M, e)-codée . (6)
Equivalently, we define the minimum energy per bit:

Bk, ¢) = %mf{E . 3(E, 2%, ¢)-codé )

Although we are interested in (7)/*(E, ¢) is more suitable for expressing our results and (7)
is the solution to
klegQ M*<kEl;k<k7€)7€) (8)

Note that (3) also models an infinite-bandwidth continuboe Gaussian channel without
feedback observed over an intery@l 7], in which each component corresponds to a different
tone in an orthogonal frequency division representationthiat setup,© corresponds to the
allowed powerP timesT, and% is the power spectral density of the white Gaussian noise.

Definition 2: An (E, M, ¢) code with feedback is a sequence of encoder functigh$;2 ,

determining the channel input as a function of the mes$&gand the past channel outputs,
Xy = oW, YF), €)

satisfying
E(lx|PfW=j<E, j=1,....M, (10)

and a decodeg : B — {1,..., M} satisfying (5). The fundamental energy-information tiafie
with feedback is given by

M (E,e) =max{M : 3(FE, M, ¢)-code with feedback (11)
and the minimum energy per bit by
Ei(k,e) = %inf{E : 3(E, 2%, ¢)-code with feedback. (12)

We also define a special subclass of feedback codes:
Definition 3: An (FE, M, ¢) code with feedback is stop-feedback codéits encoder functions
satisfy
[rW YR = fu(W)1{r > kY (13)

DRAFT May 5, 2011



5

for some sequence of functionfs : {1,...,M} — R and a stopping time of the filtration
o{Y1,...,Y;}. Therefore, the stop-feedback code uses the feedback filkkamce to send a
“ready-to-decode” signal, which terminates the transiorss

Notice that instead of (10) we could have defined a weakerggnewnstraint by averaging

over the codebook as follows:
1 M
17 2Bl =3 < E. (14)
j=1

However, in the context of feedback codes constraints (h@)(&4) are equivalent:

Lemma 1:Any (E, M, ¢) feedback code satisfying energy constraint (14) can be fiaddio
satisfy a stronger energy constraint (10).

The proof is given in Appendix A.

Similarly, one can show that for feedback codes, allowingdoan transformations in place
of deterministic functionsf,, does not lead to any improvements of fundamental lindifs
and Ef. Such claims, however are not true for either the non-feekllcades (Definition 1) or
stop-feedback codes (Definition 3). In fact, for the formiaveing either a randomized encoder
{1,..., M} — R*> or imposing an average-over-the-codebook energy cons{{yd) affects the

asymptotic behavior ofog M*(E, €) considerably; see [14, Section 4.3.3].

I1l. M AIN RESULTS

In the context of finite-blocklength codes without feedhaske showed in [5] that the max-
imum rate compatible with a given error probabiliyfor finite blocklengthn admits a tight
analytical approximation which can be obtained by provingaaymptotic expansion under fixed
e andn — oo. We follow a similar approach in this paper obtaining upped dower bounds on

log M*(E,¢) andlog M (E,€) and corresponding asymptotics for fixednd £ — oo.

A. No feedback

Theorem 2:For everyM > 0 there exists afiE, M, ¢) code for channel (3) with
i {MQ ( [, Z) 1}] | 15)
No

’As usual,Q(z) = [ \/%679/2 dt is defined for—co < x < co and satisfie®) (1 — z) = —Q ' (x).

e = E
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and Z ~ N(0,1). Conversely, any E, M, ¢) code without feedback satisfies
1 2F
— > — 11— .
M_Q< oot e)) (16)
Proof: To prove (15), consider a codebook withh orthogonal codewords
ci=VEe;, j=1,....M (17)

where{e;, j = 1,...} is a an orthonormal basis @f,(R>). Such a codebook under a maximum

likelihood decoder has probability of error equal to
M—-1

1 o 2 _=VE)?
Pezl—\/W_NO/_OO{l—Q<\/%Oz)} e o dz, (18)

which is obtained by observing that conditioned @ = j,Z;) the events{||c; + z||* <

lc; +z — ¢;||*}, i # j are independent. A change of variables- \/NZOZ and application of
the boundl — (1 — y)”~! < min{My, 1} weakens (18) to (15).

To prove (16) fix an arbitrary codebodk;, ..., c,/) and a decodeg : B — {1,..., M}. We
denote the measur®’ = Pyjx—c; on B = R* as the infinite dimensional Gaussian distribution

with meanc; and independent components with individual variances Ietq»u%@; i.e.,

- N,
Pl = EN (cj,k, 70) . n=12,... (19)
wherec;;, is the k-th coordinate of the vectat;. We also define an auxiliary measure
(I):ﬁ_/\/'<0%) n=1,2 (20)
Pt Y 2 Y Y )t

Assume for now that the following holds for eaghand eventF' € B>:
P/(F) > a== ®(F) > f.(E), (21)
where the right-hand side of (16) is denoted by

Ba(E) =Q 0/% + Q‘%a)) : (22)

From (21) we complete the proof of (16):

1 1 M
W= a0 (23)
1 M
> MZBPJ(W(J'»(E) (24)
j=1
> Bi-e(B), (25)
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where (23) follows becausg '(j) partitions the spac®, (24) follows from (21), and (25)
follows since the functiomv — 3,(F) is non-decreasing convex (e.g., [5, Section 111.D-3]) for

any £ and
1 &
P =1 (26)
j=1

is equivalent to (5), which holds for evefy, M, ¢) code.

To prove (21) we compute the Radon-Nikodym derivative

de - 1.2
log, ——(y) = (=365 %+ ¢iwYs) (27)
dd p
and hencdog, 2" is distributed as
r’ lleil? s el l?
log. —(v) ~ I Ny—2 2
oe, g ) ~ (150 o 19 (28)
if y ~ P’ and as
ar’ llesl? s llesl?
og, ) ~ A (140, 1 29)

if y ~ ®. Then, (21) follows by the Neyman-Pearson lemma sificg|? < E for all j €
{1,..., M}. This method of proving a converse result is in the spirithaf iIneta-converse in [5,
Theorem 26]. [ ]
For M = 2 bound (16) is equivalent to

2F
e>Q (\/;0> (30)

which coincides with the upper bound obtained via antipaighalling. It is not immediately

obvious, however, that the bounds big M*(E, ¢) (and, equivalently, ot (k, €)) obtained in

Theorem 2 are tight in general. The next result, howevemnvshbat they do agree up to the

first three terms in the asymptotic expansion. Naturallgséhbounds are expected to be very

sharp non-asymptotically, which is validated by the nucarevaluation in Section IV.
Theorem 3:In the absence of feedback, the number of bits that can benigbed with energy

E and error probability) < € < 1 behaves &s

E
log M™(E, ¢) ——loge—@/ Q €)loge + IOgFJrO( ) (31)
0

3All logarithms, log, and exponents:xp, in this paper are taken with respect to an arbitrary fixee pagich also determines

the information units.

May 5, 2011 DRAFT



ask — oo.

Proof: To obtain (31) fix0 < ¢ < 1 and denote

°E 2Ny
Y Junid 1—etq/ 220
x NO+Q ( €+ E)

We now choosel/ = ﬁ and observe that we have

L C><Jmin x 6_%<x_\/12\’j§>2 x
T /  min(MQ(2).1) d

—1-Q (x*— @) +\/%/:0Q(x)e—%(r—

e e e
™ Ja*

[2N, M [T _i(,_ [2E)_ a2

s o TO+27W* . ‘ 2< NO) Hdo
_ B

N, ¢ e (var - /%)
- TNTE T 20w

N, e (VE ) o)
= € —+

E 2\/m <\/§x*—,/N£O)
< ¢ 2N0 1"—0(1)

F (- )
< 6—@4-\/%(14-0(1)),

as £ — oo, where (36) is by [15, (3.35)]

while in (38) we used [15, (3.53)]

2% loge
2

1
logQ(x) = — —logx — 3 log 2w+ o(1),

(39) is by

E w2 X E i _ -1
_FO+($) —<\/§x—\/%o> = —(Q <1—e+

DRAFT

>dx

T — o0

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)
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which follows from (32), and (40) is because

27 (ﬂx - ﬁ) >\ (45)

is equivalent to (according to (32))

62@+Q<\/E®<1—2\1ﬁ)>, (46)

which holds for all sufficiently large~.

Therefore, by (15) with\/ = Lﬁj we have demonstrated that for all sufficiently large

log M*(E,e) > —1ogQ<,/?V—E+Q—1 (1-%,/%)) (47)
0
— —logQ<\/%+Q_l(1—e)+O< %)) (48)

E 2K 1 E
= 1 N1 —e)l —log — 1 49
N, oge+ NOQ (1—¢) oge+2ogN0+O(), (49)

where (48) is by applying Taylor expansion €' (z) for x = 1 — ¢ and (49) is by using (42)
and Taylor expansion ofog z. Finally, application of (42) to (16) results in a lower baun
matching (49) up ta)(1) terms. [ |

As discussed in Section I, Theorems 2 and 3 may be integbretthe context of the infinite-
bandwidth continuous-time Gaussian channel with noisetspiedensity%. Indeed, denote by
M (T, ) the maximum number of messages that is possible to comntardear such a channel
over the time interval0, 7'] with probability of errore and power-constrainP. According to
Shannon [1] we have

o1 o P
Tlggo T log MX(T,¢) = N loge. (50)

Theorem 3 sharpens (50) to

PT 2PT 1 PT
log MX(T,¢) = N loge — N, Q *(e)loge + 3 log N +0(1) (51)

asT — oo. Furthermore, Theorem 2 provides tight non-asymptoticnidguwonlog M (T, ¢).
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10

B. Communication with feedback

We start by stating a non-asymptotic converse bound.
Theorem 4:Let 0 < e < 1. Any (E, M, ¢) code with feedback for channel (3) must satisfy

E
d(l—e||ﬁ)§mloge, (52)

whered(z||y) = zlog ¥ + (1 — ) log }‘TZ is the binary relative entropy.

Note that in the special case= 0 (52) reduces to
E
log M < —loge. (53)
No

Proof: Consider an arbitraryFE, M, ¢) code with feedback, namely a sequence of encoder
functions{f,}>>, and a decoder map : B — {1,..., M}. The “meta-converse” part of the
proof proceeds step by step as in the non-feedback caseg2@Q)with the exception that

measures’’ = P, ,_; on B are defined as
P =T Nl YE), 5N0) (54)
k=1
for j =1,...,M andp, is replaced by3,, which is the unique solutiof < « to
~ E
B d(al]) = 5 loge. (55)
We need only to show that (21) holds with these modificatiaes,for any« € [0, 1]
inf  ®(F) > fa. (56)
FCB:Pi(F)>a

OnceWW = j is fixed, the channel inputy’, become function® — R:

X = fuG, Y97, (57)

To find the critical setf’ achieving the infimum in the hypothesis testing problem (&)
compute the Radon-Nikodym derivative:

log, — d<1> ZXkYk 1xt. (58)

Denote the total energy spent by the code

T=Y X{. (59)
k=1
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The key part of the proof is to show that (58) is equal to a Bliawmmotion with drifti%
(where the sign depends on the hypothédsisor @), evaluated at time, which in fact can be
interpreted as a stopping time of the Brownian motion. Adsgnthis, the proof is completed
by applying the following result of Shiryaev [30, TheoremS&ction 1V.2]:

Lemma 5 (Shiryaev)Consider a space
Q=CR.,R) (60)

of continuous functions) : R, — R with the standard filtratio{ 7;};>,. Let P and Q be
probability measures oft such thatp, ~ B, (underP) and ¢, ~ B, (underQ), where B, and

B, denote Brownian motions

t

Bt = 5 + %Wt ) (61)
_ t
B, = 5 + %Wt ; (62)

and W, is a standard Wiener process foe [0, c0). Then

min Q(F1) = fa, (63)

71,1

wheref, is defined in (55) and the minimization is over all stoppingesr; and sets; € Fr

/ 1 dP
Q

P(F) > a. (65)

such that

IN

E, (64)

The application of Lemma 5 to our setting is the following €Tleft side of (56) can be lower

bounded as
FCB:IPI}%‘F)ZQ (I)(F) - F1€.7:-,—1:%fF1)2a Q(Fl) (66)
> minQ(F) (67)
= fa, (68)

where (66) is by the assumed equivalehge % ~ B, (underP’) andlog, % ~ B, (under
®), (67) follows by minimizing over all stopping times satisfying (64) which is valid since

the expectation of (underP’) satisfies (64) by energy constraint (10), and (68) is by Lendn
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12

We proceed to show that undét’ we havelog, % ~ B.. To do this, we will redefine
random variablegYy,Ys,...) in terms of the Brownian motio®,. First, note that without loss
of generality we can choose nonvanishifigin (57), since havingX, = 0 does not help in

discriminating P’ vs. ®*. Then eachy}, is a one-to-one function of

1
Lk:XkYk—ﬁX,f, k=1,... (69)
According to (57) we can rewrite then
Xk = fk(Llf_l) ) (70)

wherefk depends on the original encoder functifinas well as the messagec {1,..., M}.

Given an elemenp € (2 (see (60)) we define the following sequences:

7 = 0, (71)
X = f@i), (72)
B o= T+ X7, (73)
L = 65 — b5, k=1,... (74)

We now show that eachy is a stopping time of the filtratiod F; },~o on 2. The proof is by
induction. Clearly the statement holds for Assumer,_; is a stopping time. Then by (73) the
time 7 is a positive increment of,_; by a F;,_,-measurable value. Thug is also a stopping

time. Consequently, the increasing limit

72 lim 7 (75)
k—o0

= > Xi (76)
k=1

is also a stopping time ofF; }:>o.

Now, sinceP is such that (Lemma 5)

¢r ~ By, (77)

“Note that a good coding scheme will always alléi = 0 for the purpose of conserving energy. However, we are free to

make modifications to the encoding mafisprovided that they do not increase the left-hand side of.(56)
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underP the distribution ofL, given L™ is A/ (%Xﬁ, %Xﬁ) On the other hand, undg?’
the distribution ofL,, given Ly~ is & (3X2, 22 X2). Since by (70) and (72)X,, and X,, are

identical functions ofL”~! and L?, respectively, we conclude that
(L5, X7) ~ (L7, X7) (78)

Then, comparing (59) and (76) we obtain

T~T (79)
and, in particular,
/ 7dP < E (80)
Q
by (10).
Finally, we have
dPi -
loge % = Z Lk (81)
k=1
~ Ly, (82)
k=1
= ¢z (83)
~ BT? (84)

where (82) is by (78), (83) is by (74) and (76) and (84) is by)@8d (77).

Similarly, one shows that und&r the distribution oflog, % is equal to that of3.. Indeed,
relations (78), (79) and (83) remain truevif° is given distribution® and¢ is given a distribution
Q (as in Lemma 5). [ |

In [12] we have shown the following result:

Theorem 6:For any £ > N,, there exists afiF, 2, 0)-code with feedback. Consequently, for
all positive integers: we have

Ef(k,0) < Ny. (85)

Furthermore, the ternary constellati¢r-1,0,+1} suffices for the(E, 2,0) code.
At the expense of allowing constellations of unboundedioalily Theorem 6 can be consid-
erably sharpened. In fact, the next result shows that thiéahildy of noiseless feedback allows

the transmission of a single information bit & 1) at the optimal value of-1.59 dB. As in

May 5, 2011 DRAFT



14

the continuous-time AWGN channel with feedback [13], thegbrof this result turns out to be
rather non-trivial.
Theorem 7:For anyE > Njlog, 2 there exists afF, 2, 0)-code with feedback. Consequently,

for all positive integers: we have
Ef(k,0) = Nylog, 2. (86)

Proof: We first show that the second claim follows from the first. kedlean(E;, M;,0)
code and an £, M,,0) code can be combined into &, + E», M;M,,0) code by using the
first code on odd numbered channel inputs and the second e¢odeen inputs. Thus, function

E¢(-,0) is non-increasing and according to the first claim we have
E; (k,0) < Nylog, 2 (87)

for all £ > 0. Then (86) follows from (53) with\/ = 2*.
To prove the first claim, it is convenient to assume that thesage set i§—1, +1} (instead
of {1,2}). We use the following encoding functions:

Wd

n—1
Jn(W,Y") = 1+exp{W-S,1}

(88)

To motivate this choice assume that the sequence of encodetidns f;. is already fixed for
k =1,...,n — 1. Then the joint distribution of W, X! Y;*~!) is completely specified once

we specify thatl = +1 is equiprobable. Consequently, we can define informatiorsities

1
w4 Zl Py, x, (y;] £ (w; yi~ ))7 he 1. n1 (89)
Py\yﬂ 1<yj|y1 )

and the log-likelihood process

PW = +1|Y*]
=1 90
= o(+L,YE) (=1, k=1,...,n—1. (91)

Notice now that the choice of,, contributesE [|f,(+1, Y™ 1)|?|[W = +1] to the energy
E[[[x[[*W = +1] and E[| (=1, Y" ™) [? exp{—S,1 }[W = +1] to the energyk ||x|[[*|IV =

—1]. Thus the contribution to the unconditioriaf|x|?] is given by the expectation of

(L YD A+ =177 P exp{ =Sy} - (92)
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If we now fix an arbitraryd > 0 and impose an additional constraint
fn(+17}/1n_1> _fn(_17}/1n_1> :d7 (93)

then the minimum of (92) is achieved with the encoder fumc(i®8).

Having specified the full sequence of the encoder functibng = 1,..., we have also
determined the probability distribution @iV, X, Y>°). We now need to show that measures
Pyoojyy—41 and Py~ yy—_; are mutually singular and also to estimate the total enepgytsby

the scheme, that is the expectation of
A o0
Ea = |Ix[[P =111 (94)
j=1

Note that by symmetry it is sufficient to analyze the casélof= +1, and so in all arguments
below we assume that the distribution O, X Y">°) is in fact normalized by conditioning
on W = +1. For example, we now hav&, = g almost surely.

Notice that according to the definition in (89), we have

(+1y") —u(=1;y") (95)
PYn\Xn (yn|fn(+17 yn_l))
Py, 1x, Ynl fu(=1,y"71))

= a(+1;y" ) —o(=1;9"7") + log (96)

= (41" —u(=Ly" ) + l(j\g,oe (Y — fu(=1,9" 7)) = (Yo — fu(+1,5"71))?] (97)
— = L= 1Og6 1— eXp{Sn_l}
= o(+L;y" Y — (=1 + N (2ynd 17 exp{Sn_l}dQ) , (98)

where in the last step we have used definition of the encodgr [Bwe now replacey™ with

d

Topm T+ Zn, Where

random variableY™ in (98), then (unded?V = +1) we haveY,, ~

Zy, ~ N (0,22). Therefore, almost surely we have for each

2loge ry
N, 3> +dZ,) , (99)

Sp=Sn_1+ 5
where Z,, are i.i.d. with common distributioV (0, %)

From (99) we see that undé’ = +1, S,, is a submartingale drifting towardsoo, which
implies that the measuréd,«;y—;1 and Py« —_; are mutually singular and therefol& can

be recovered fromY"> with zero error. To complete the proof we need to show

limE [E,] = Nplog, 2. (100)

d—0
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First, notice that conditioned o = +1 we have

0 d 2
53 (o) (o

=
To simplify the computation oE [E;], from now on replacel Z,, in (99) with W, 2 — W,_1)s2,

where W, is a standard Wiener process. For convenience we also déinBrownian motion

B; as in (61). In this way, we can write

Bz, (102)

i.e. S, is just a sampling of3, on ad?-spaced grid. Consequently, the conditional energy inY101

is then given by

j=1 1 + ™o i
We now show that the collection of random variables,;,d € (0,v/Ny)} is uniformly
integrable. Notice that for all

0<d< /N (104)
we have
&
{4Bjdz > jd? for all j > ﬁ} C{E;<&+¢}, (105)
where
c= LI >0 (106)
N 1—e1 NO .
Indeed, for any realization belonging to the set in the heifitd side of (105) we have
00 d 2
E, = ————— ) 1{4B;pp > jd* (107)
d ;<1+6Niijd2) { Jd }
1{4B,z < jd? 108
+Z<1+€N0B3d2) { = } ( )
< Z e %P1 {4Be > jd} + Y &1 {4Bje < jd*} (109)
=0 =0
< d2Ze o +Zd21 (4B, < jd*} (110)
7=0
< ¢+ Z d*1 {4B;p < jd?} (111)
< c+ £ , (112)
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where (109) follows from the inequalitigg + ¢®)~! < e and (1 + ¢*)~! < 1 applied to the
first and second sum, respectively; (110) is becali3g: > jd* in the first sum, (111) is by
the inequality

[e.e]

. 1 11
Ze_)‘le S <ty Y0<A<L (113)
— € — €

j=0
applicability of which is assured by (104); and finally (11f8)lows since by assumption the
realization satisfies

4Bjg > jd* for all jd* > £ . (114)
This establishes (105).

Assume the following identity (to be shown below):

P[B, >0 forall t > £] =1 —2Q ,/i : (115)
8Ny
-1 [ Ny
By = jt+y\ 5 W (116)

Then consider the following chain

where

PE,>E+d < P [aj > % B < o} (117)
< P[ﬂwgzétgo} (118)
5
— 20 ( 8—%> (119)
L0No v (120)
&

where (117) is by (105), (119) is by (115), and (120) followstbe inequality (41). Clearly, a
uniform (in d) exponential upper bound on the tail of the distributibn implies that random
variables{ £;,0 < d < /Ny} are uniformly integrable.

To show (115), define a collection of stopping times far 0 > a:

Tap = inf {t >0: Bt Z (a, b)} ) (121)

Applying Doob’s optional stopping theorem to the stoppingmentr, , and martingale v ﬁwﬁ_ﬁt,
which is bounded (and hence uniformly integrable)[0nr, ], we obtain
- 1— e_NLO

—p =" (122)

__v __a
e No —e MNo
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Moreover, a9 — oo we have{BTa,b = b} \, {B, > afor all t > 0}. Therefore, from (122) we

get

P[B, > aforall t>0]=1—e . (123)

Expression (115) now follows by the following calculation:

P[B,>0foralt>¢& = E [P[Bt — Be> —Beforall t > 5|Bg]} (124)
_ [ _(zNif 2IP’[B > for all ¢t > 0]dz  (125)
B 0 \/WNQg ! o
00 (--5)" .
- \/1Tge_ o (1 . e‘N—o> dr (126)
TN
_ = 1 —(zz;%g)Q —(z;%j d (127)
~ Jo VanE \ ’ ’

_ -9 (,/8]5\7()) (128)

where (124) is by conditioning o3¢, (125) is by the Markov property of Brownian motion
and integrating over the distribution @ ~ N (£, 2£), (126) is by (123), and (128) is just

an elementary calculation.

According to (103) and the continuity of sample pathsif we have

[e%S) 1 2
lim B, — / <7) dt (129)
=0 0 \1+4eN™

Now taking the expectation we get

ImE[E] = E [(lil_rf(l]Ed} (130)
00 1 2
x|/ (73) i (131)
0 1+eM"
0 1 2
- [ (73) it (132)
1+ e
21 ()
= / / e Mot dxdt (133)
1+6N0 ﬂ‘NQt
= Nylog, 2, (134)
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where (130) is by uniform integrability, (131) is by (129hda(132) is by Fubini's theorem, (133)
is by using the fact thaB; ~ N/ (t Not) and (134) is obtained by the following argumert.

we define )
(=)
0 0
then its two-sided Laplace transform is given by
00 o—bt 2
e u = / / Not " dadt (136)
50 \/7TN0
_ / 5 gy (137)
0
4
- 20 — N()’U2 (138)
2 2Ny
= Z 139
v * 2 — N()’U ’ ( )

provided that) < v < Nlo It is straightforward to check that (139) is a Laplace tfama of the

function 2min{eNlo“’, 1}. By the uniqueness of the Laplace transform we conclude that
u(z) =2 min{eNlox, 1}. (140)

Now substituting this expression into (133) we obtain

00 1 2 0 1 2 5
/ (72) u(z)de = 2/ < 5 ) min {eN_or,l}dx (141)
—co \14e™M” o0 \1 4 e™M”
0o 1 2 0o 1 2
= N “dx + N, —— | dx (142
of () o [ () o e

- Moy <1oge 2 — 1) (143)
2 2
= Nylog, 2, (144)
which completes the proof of (134). [ |

We proceed to give a tight analysis of the large-energy behadvased on Theorem 7.
Theorem 8:In the presence of feedback, the number of bits that can besrigted with
energyF and error probability) < ¢ < 1 behaves as

E loge

log M{ (E,¢€) = Nl

+0(1) (145)

This elegant method was suggested by Yihong Wu.
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as E — oo. More precisely, we have

E 1 1
Nol—elog,2

- 1—‘ log2 < log M{(FE,e¢) (146)

E loge+ h(e)
-~ Nyl—€ 1—¢’

(147)

whereh(z) = —xzlogx — (1 — x) log(1 — x) is the binary entropy function.

Proof: Fix e > 0 and £ > 0. Then by Theorem 7 there exists é\f&, M, 0) feedback code
with
E 1 1
No1l—elog, 2

logM = { — 1—‘ log 2 (148)

Then, we can randomize between this code and a trivial/, 1) code (which sends an all-zero
codeword for all messages) by using the former with proltshill — ¢).

We now describe this randomization procedure formally, bystructing a code satisfying
Definition 2. Let(f,,g) be the sequence of encoders and a decoder corresponding todk

in (148). We construct a new code as follows:

0, n=1,
Lwy ) = (149)
H{vi <20 @} a3, nz2,
g=) = g(¥5°). (150)
Denote the event
S = {Yl < \/%Q‘I(E)} , (151)
which has probability
P[S] =1 —¢. (152)

The probability of error of the new code is estimated as

Plg'(Y™) # W] = Plg'(Y™) # WISIP[S] + Plg'(Y™) # W|SP[S] (153)
< 0-P[S]+1- P[99 (154)
< e, (155)

since conditioned o1$' the transmission is governed by the cddg,n = 1, ...} whose decoder

g recovers the message with zero-error by construction.|&ilyjithe average energy of the new
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code is

ZE[\f Wy ] = ZE[}fnl Y| 8] pis (156)
E
1—e€
= F, (158)

< (1-o (157)

where (156) is because @&t the energy expenditure is zero, and (157) is because coneldi
on S the transmission is governed by the original cddg,n = 1, ...}, which by construction
has an average energy not exceedifig. Therefore(f,¢') is indeed an(E, M, e) feedback
code with M satisfying (148). Existence of such a code implies (146)urgb(147) follows
from (52) and

d(al}3) = alog 5 ~ h(a). (159)

[ |
A similar argument shows that in terms &f (k, ¢) the converse (Theorem 4) and the achiev-

ability (Theorem 7 plus randomization) translate into

<1 —€— ?) log, 2 < E:](\];’E) <(1—¢€)log, 2. (160)

0

C. Stop feedback

The codes constructed in the previous section achieve thimapvalue of energy per bit
already fork = 1. However, they require the availability of full instantaes noiseless feedback.
From a practical point of view, this may not always be ativ&ctin contrast, stop-feedback codes
only exploit the feedback link to terminate the transmisshich makes such codes robust to
noise in the feedback link. In this section we show that suatfes also achieve the optimal
value of energy per bit as long as the valuekas not too small.

Theorem 9:For any F > 0 and positive integef\/ there exists anFE, M, ¢) stop-feedback

code whose probability of error is bounded by
e < (M —1)e ™. (161)

The proof of this result is given in Appendix B. AsymptotigalTheorem 9 implies the
following lower bound onlog M
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Theorem 10:For any error probability) < ¢ < 1, stop-feedback codes achieve

E loge E
log M{ (E,€) > — — log — 1 162

ask — oo.

Proof: Fix ¢ > 0 and £ > 1. By Theorem 9 there exists aff=, M, +) stop-feedback
code with

1 E—1
M > zemlo . (163)

Then, we can randomize between this code and a tr(\ﬁ]'aM,l — %) code (which sends an

all-zero codeword for all messages) by using the latter wittbability e — é:el.

We now describe this randomization procedure formally. $tap-feedback code with size
lower-bounded by (163) is defined by the following three tiots (see Definition 3):

1) a sequence of non-feedback encoder nyéps{l, oMY= R,n=1,..,
2) a decoder map : R>* — {1,..., M}, and
3) a stopping timer : R* — Z_, which is a measurable function satisfying an additional

requirement that for any > 0 the set{7(y>°) < n} is a function of onlyy™ = (y1, ..., yn).

From (f, g,7) we construct a new codg”, ¢, 7') as follows:

- 0, n=1,
W) = ¢ (164)
fn—1<W> ;N2 2
g=) = g(¥3) (165)
7(Y®) = 1+7(¥30)1 {Yi < %Q‘l (e — j}l«?:el) } (166)

One easily verifies thafr'(Y>°) < n} depends only oy’ for anyn > 1, i.e. 7’ is indeed a

stopping time of the filtratioq o (Y™),n > 0}.
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The overall probability of error is then upper-bounded by

Plg'(Y™) # W]
= Plg(¥y") # WIr' = 1JP[r' = 1] + Plg(¥Yy*) # W' > 1]P[r’ > 1] (167)
= (1 — %) Plr" = 1] + Plg(Y5®) # W|r' > 1|P[7' > 1] (168)
< P =1+ %]P)[T, > 1] (169)
(1 —¢) 1 (1—-¢eFE
> (E—E_l)—FE' E_1 (170)
- (171)

where (168) is because conditioned oh= 1, random variabledV and Y;* are indepen-
dent, (169) is because conditioned eh> 1 transmission is governed by the original code

(fn, 9) which has probability of error]{j by construction, and (170) is because

;o B % . 1—e¢
Pr'=1 = P|Y;> 2@ <e E—l)] (172)
1—c¢
= €~ (173)
Similarly, the average energy of the encodéf,n = 1,...} is upper-bounded by
_(1-=¢ E—-1 (1-¢F
o<e 1)1 51 & (174)

Thus, we have constructed &h, M, ¢) stop-feedback code with/ satisfying (163) as required.
[

D. Schalkwijk-Kailath codes

It is instructive to compare our results with the variousstamctions based on the Schalkwijk-
Kailath method [16]. Although none of such constructions teat the codes of Theorem 7
(which essentially match the converse bound; see (14&)}1#e discuss them here for com-
pleteness. Detailed proofs can be found in Appendix C.

There are several different non-asymptotic bounds thateaobtained from the Schalkwijk-

Kailath method. Here are some of the results:
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1) The original result of Schalkwijk-Kailath [16, (6)-(1]2proves that for any~ > % and
positive integers, and M there exists aE, M, ¢) code witl

(\/SL 22 _Jog, L — 1)

=20 (175)

M

Notice that wher:% 2 is a positive integer the value @f minimizing the right-hand side
of (175) is given by that integer. For such valuesifwe get from (175) the following
lower bound onlog M (E, ¢):
log M{ (E,¢€) > % loge + %logg —log Q! (%) . (176)
2) Elias [17] proposed a method for transmitting a Gaussaadom variable over the AWGN
channel with feedback (see also [18] and [19]). Such a melihadls to another variation
of Schalkwijk-Kailath, whose precise analysis is repoitef20, Section Ill] (see also [21,
p. 18-6]). Taking the infimum in [20, (21)] over allS = N% proves that (176) holds for
all values of energy > 0.
3) Zigangirov [23, (20)] optimized the locations of a uniforpulse amplitude modulation
(PAM) constellation in [16] to better approximate the noflmetribution obtaining

E 1
log M7 (B, €) > 5 loge + 5 log g “log Q! (%) , (177)

forall £ >0 and0 < ¢ < 1, which improves (176).

Pinsker [22] claimed that there exist coding schemes forAW&N channel with noiseless
feedback achievingn-fold exponential decrease of probability of error (in K@ngth). For

the formal proof of this result, Zigangirov [23] proposedstapplement the Schalkwijk-Kailath
method by a second phase which significantly reduces averagrgy by adaptively modifying
the constellation so that the most likely message (as estdnay the receiver) is mapped to
zero. A similar idea has been proposed by Kramer [24] for camoation with orthogonal

waveforms and was shown to achieverarfold exponential probability of error. In the context
of fixed-energy, Zigangirov’'s method results in the follogizero-error bound, whose proof is

found in Appendix C:

SWe used an upper-bour” ' 2 < 1+ log, L in [16, (12)].
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Theorem 11:For any M € {2,3,...} and

E 1 87(M — 1)
— > —+log, ———= 178
there exists arf£, M, 0) code. Equivalently, we have
Ef(k,0) 1 /1 87(1 —27%)
< log.24+(=+log, ——— | . 17

Gallager and Nakiboglu [20] devised a modification of Zigaov’'s second phase in order
to obtain a better bound on the optimal behavior of the pritibalof error in the regime of
fixed-rate feedback communication over the AWGN channethénpresent zero-error context,
which is not the main focus of [20], the analysis in [20, SactV.B] can be shown to imply

the following zero-error feedback achievability bound:

E 2e3
log M (E,0) > —loge — log — , 180
g M¢ (E,0) N, o8 8 75 (180)
or, equivalently,
Ef(k,0) 1 2¢3
<log, 2+ —log, —=. 181
N, g 08 (181)

Numerical comparison of the bounds (146), (161), (176) aw%¥) fore = 10~ is shown
on Fig. 1. Each bound is computed by fixing a number of inforomabits £ and finding the
smallestE for which a(2*, £, 10-?) code is guaranteed to exist; the plot sho%)s: kLNO (dB).
The converse bound (Theorem 4) is not shown since it is indigishable, see (160), from the
bound achieved by the codes of Theorem 8 (hence the naménajt It can be seen that for
k = 300 the difference between the bounds becomes negligible scetem the stop-feedback
bound (the weakest on the plot) achieves energies beldow dB, while for smaller values of
k the advantage of 1-bit method of Theorem 7 becomes morefisiymti.

Fig. 2 compares theero-error feedback achievability bounds (181), (179) and the optimal
code as given by Theorem 7. As expected the optimal codesyalignificantly better energy
per bit for smaller valueg. Further discussion and comparison with the non-feedbask ¢s

given in Section IV.

E. Discussion

At first sight it may be plausible that, when zero-error isuieed, infinite bandwidth may

allow finite energy per bit even in the absence of feedbackvd¥er, by takinge — 0 in (16)
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Stop-feedback (161)

Schalkwijk-Kailath (176)

Schalkwijk-Kailath (177)

Optimal codes (146) .

L L L
2 3 4

) o 10
Information bits, k

Fig. 1. Comparison of various feedback achievability baund the minimum energy per bit as a function of the number of

information bits; block error rate = 1072.

we obtain
M*(E,0) =1 (182)

for all £ > 0. Equivalently, this can be seen as a consequence of [25]héAsame time, for

e = 0 with feedback we have (Theorem 8)
E
log M{ (E,0) = ﬁloge%—O(l), (183)
0

in stark contrast with the non-feedback case (182).

Note also that as — 0, the leading term in (145) coincides with the leading terng3h). As
we know, in the regime of arbitrarily reliable communicatiand thereforé: — oo) feedback
does not help.

Theorems 6, 7, 11 and (180) demonstrate that noiselessdeledqblong with infinite band-
width) allows for zero-error communication with finite asge energy. This phenomenon is not

unique to the AWGN as the following simple argument demautss.
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Bound (180)

. dB

Ey

A Bound (179)

Optimal (Theorem 7)

-2 L Lol L Lol L Lol L Lol L Lol L L
0 1 2 3 4 105 106

10 10
Information bits, k

Fig. 2. Comparison of the minimum energy per bit achievableth® zero-error feedback codes obtained from Gallager-
Nakiboglu [20] (upper bound (180)), Zigangirov [23] (updeound (179)) and Theorem 7.

Consider an arbitrary memoryless chanRgly with cost functionc(z) and a zero-cost symbol

xo; see [31] for details. Pick an arbitrary symhal such thatc(x;) > 0 and
D(Py|x =z, || Py|x=2,) > 0. (184)

First, consider a non-feedback code with= 2 mapping message’ = 1 to an infinite string
of zy’'s and messagél’ = 2 to an infinite string ofz;’s. Due to the memorylessness of the
channel and (184), the maximum likelihood message estifateased on an infinite string of

observationgY, .. .) is exact:

P[W # W] =0. (185)

Moreover the maximum likelihood estimat&, based on the first observationgY;,...,Y,)
satisfies

P[W # W,|W =m] < exp{—nf}, m=1,2 (186)
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for some positive). The total cost for such a two-codeword code is infinite beeau

[e.9]

> X))

j=1

E

W:2] = . (187)

To work around this problem we employ the feedback link atoved. After then-th channel
use the transmitter computes the estimidfe and relabels the messages before issuihg,
so that the most likely messad¥, is mapped to a zero-cost symha). This relabeling can
clearly be undone at the receiver side due to the knowledd®,ofTherefore, (185) and (186)

continue to hold. The average total cost for this modifiecesndy, however, becomes

E Zc()m] = D cle)PW # W, (188)
© <) ca) exp{—nb} (189)
n=1
C(.Tl)
< W (190)
< o0, (191)

where (188) is because our scheme spends a non-zero(¢psbnly in the casél, #+ W, (189)
is by (186), and (190) is because> 0. As required, we have obtained a zero-error feedback
code transmitting one bit of information with finite averagest.

This illustrates that achieving zero-error relies essdigton the infinite bandwidth assumption
(see [20, Section VI] for a lower bound on the probability afoe with finite number of degrees
of freedom). At the same time, the main code constructioesented here, Theorems 7 and 9,
can be restated for the case of a finite number of degrees eddne, L, that satisfied. > k.

For example, in Theorem 7, instead of taking the lihit> 0 (see the proof of Theorem 7) we
can consider the code obtained with a small fixed 0. Then application of Lévy's modulus

of continuity theorem [32] implies that the energy per bitreases to approximately

d? No
N010g82+N0-O< ﬁOIOgﬁ> , d—0. (192)
Regarding the probability of error, we know from (102) thétten L channel uses, the log-

likelihood is distributed as\’ (Ldj\}gge, 2Ldj\}§g26>. Thus, the probability of error increases from

0 to approximately

_ 3Ld?

ex~e N . (193)
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Hence, if a finite probability of errof needs to be achieved with a finite number of degrees of
freedomL, then Theorem 7 can be modified to achieve an energy per bit
E2N010g82+N0-O< %logil> , L — oo, (194)
L log =
which follows from takingd® = %log% in (192). A similar argument shows that the stop-
feedback construction of Theorem 9 can also be modified tovdibr L > log M.

Note that in the case wheh is small, i.e.L ~ log M, the problem changes completely and
falls in the category of the finite blocklength analysis foe tAWGN channel undertaken in [5,
Section 11.J].

Finally, a natural question is whether the same improveseah be achieved by feedback

codes satisfying a stronger energy constraint, namely,0J (s replaced by the requirement
PIx|P <EW =jl=1, j=1...,M. (195)

The answer to this question is negative, as follows from thiewing result:
Theorem 12:Let 0 < € < 1. Any (E, M,¢) code with feedback satisfying energy con-
straint (195) must satisfy the non-feedback converse baurd6).
Proof: We follow the proof of Theorem 4 with the only change beingt ingtead of (80)
and (64) we have a stronger condition

+<E, Pas. (196)

Then, the minimizing sef’ in (56) necessarily belongs to thealgebraFz, where we recall

that {F;,¢ > 0} is a standard filtration o in (60). ThusF becomes a conventional, fixed
observation time (or “fixed-sample-size”) binary hypoike®st for the drift of the Brownian

motion, or in other words, betwedhand Q restricted toFz. A simple computation shows

dpP7 dpP
@~ al, "o (197)

and by the Neyman-Pearson lemma (singe ~ Bp underP and ¢ ~ Bg underQ, see
Lemma 5), we have
inf P'(F) = Bq, (198)

FeFg:P'(F)>a
whereg, is defined in (22). This completes the proof of (56) withreplaced by3, and results
in the bound (16) as shown in the proof of Theorem 2. [ |
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Theorem 12 parallels the result of Pinsker [22, Theorem 2block coding for the AWGN
channel with fixed rate. We discuss the relationship to hésilte below.

In the converse part of [22, Theorem 2] Pinsker demonstrétatd Shannon’s cone-packing
lower bound on the probability of error [4] holds in the pnese of noiseless feedback provided
that the power-constraint is in the almost sure sense, ssidh 6195). (Wyner [26] has also
demonstrated explicitly that enforcing constraint (19%)the Schalkwijk-Kailath scheme results
in probability of error decaying only exponentially.)

In particular, Pinsker’s result implies that for rates abavitical the error exponent for the
AWGN channel is not improved by the availability of feedbadk the other extreme, for
M = 2 feedback is again useless [22, (12)] and [28]. Bdr > 3 and up to the critical
rate, however, feedback does indeed improve the error expoin fact, in the achievability
part of [22, Theorem 2] Pinsker derived a simple scheme drigeShannon’s cone-packing
error exponent for all rates. His scheme consisted of andartoemploying a random spherical
code, which constantly monitors the decoding progress theeffeedback link and switches to
the Schalkwijk-Kailath mode once the true message is foundng the L most likely (the
Schalkwijk-Kailath encoder is then used to select the dchessage out of the list af).

Theorem 12 shows that a lower bound of Theorem 2 for the fixenlgy context serves the
same role as Shannon’s cone-packing lower bound does fdixtéabrate one. In particular, if

we fix M and letE — oo the converse (16) becomes

E
€ > exp {—F loge + O(E)} : (199)
0

This bound matches Pinsker’'s feedback achievability boja2] Theorem 1 and (33)]. The

non-feedback achievability bound in Theorem 2, only yields

E
e < exp {—W loge + O(E)} (200)
0

for the regime of M = const and £ — oo (for the regimeM = exp{O(E)} see [27,
p.345]). Thus, although codes in Theorem 2 are optimal up(tb terms in the fixed- regime
(according to (31)), in the regime of exponentially decgyprobability of error they become
quite suboptimal. This example illustrates that conclasim the fixede regime (which loosely
corresponds to working “close to capacity”) and the fixet-rgor fixed M) regime may not

coincide.
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Achievability (no feedback)

Converse (no feedback)

Optimal (feedback)

Fig. 3. Bounds on the minimum energy per bit as a function efriamber of information bits with and without feedback;

block error ratee = 1073.

We have shown that the lower-bound of Theorem 12 is tight égimesM = const and
€ = const. It is natural, therefore, to expect that similarly to [22yébrem 2] one can show that
Theorem 12 is also exponentially tight whén scales withE — oo according toM = 2%
where E}, > Nylog, 2 is a fixed energy-per-bit. Likely, the same two-phase sisatef Pinsker

will succeed.

IV. CONCLUSION

This paper finds new non-asymptotic bounds for the minimuhiexable energy per bit and
uses those bounds to refine the current understanding osymepdotic behavior. The main new

bounds are:

« Theorem 2: tight upper and lower bounds without feedback;

« Theorem 4: a converse bound with feedback;
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12

10 Achievability (no feedback) 4

Converse (no feedback)

Optimal (feedback)

-2 L Lol L Lol L Lol L Lol L Lol

Fig. 4. Bounds on the minimum energy per bit as a function efriamber of information bits with and without feedback;

block error ratee = 1076.

« Theorem 7: a 1-bit zero-error feedback scheme achievinggtiemal —1.59 dB energy per
bit;
« Theorem 9: a stop-feedback achievability bound.
In addition we have analyzed variations of the schemes of&l8alijk-Kailath [16] and Zi-
gangirov [23] adapted for the purpose of minimizing the ggeper bit (Section IlI-D and
Theorem 11).
Regarding the asymptotic expansions wifih— oo, our main results are given by Theo-

rems 3, 8 and 10 and can be compared as follows:

log M*(E, €) = % loge + O(VE) (no feedback) (201)
0

log M (E,¢) = % iof 66 + O(log E) (stop-feedback) (202)

log M (E, ¢) = % iof “ o) (full feedback) (203)
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asE — oo.

As the number of information bitg;,, goes to infinity, the minimum energy per bit required for
arbitrarily reliable communication is equal te1.59 dB with or without feedback. However, in
the non-asymptotic regime, in which the block error probgbis set toe, the minimum energy
per bit may substantially reduced thanks to the availgbiftfeedback. Comparing Theorems 3
and 8, we observe a double benefit: feedback reduces thedgetatim in the minimum energy
by a factor ofl — ¢, and the penalty due to the second-order term in (31) disappe

Theorem 7 shows that the optimal energy per bit-af59 dB is achievable already at= 1
bit. This remarkable fact was observed by Turin [13] in thateat of a continuous-time AWGN
channel with feedback. The Poisson channel counterparbéas investigated recently in [29],
which shows that the minimum average energy per bit withldael satisfies

1
Ei(k,e) = E<1 —€), 0<e<l (204)

The result also holds for = 0 in the special case when a) the dark current is absent and b)
signals of infinite duration are allowed.

The bounds developed above enable a quantitative analiysie dependence of the required
energy on the number of information bits. In Fig. 3 we take 103 and compare the bounds
on Ei(k,e) and Ef(k,¢) developed in Section Ill. Non-feedback upper (15) and logld)
bounds are tight enough to conclude that for messages ofksizel 00 bits the minimumﬁ—g
is 0.20 dB, whereas the Shannon limit is only approachable withi? dB at k£ > 10°¢ bits.
With feedback, the gap between the achievability and ceevéounds is negligible enough,
see (160), to determine the value of the minimal energy pefdenoted “Feedback (optimal)”
on the Fig. 3) for all practical purposes. Compared to thefeedback case, Fig. 3 demonstrates
the significant advantages of using feedback with practieéles ofk. In Fig. 4 we compute
the bounds for = 10~¢, in which case the advantages of the feedback codes becanearewe
pronounced.

Another way to interpret Figs. 3 and 4 is to note that for matkevalues ok an improvement

of up to 10 dB is achievable with feedback codes. As discussed, thectef6 analytically

"The result in [29] differs from (204) by a factor cﬁ’% due to the fact that [29] uses an average over the codebook
energy constraint (14) instead of the per-codeword eneogsgtcaint in (10). The factor reflects that under the optiscdeme

one message has energy zero and ll— 1) others have energy — e.
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expressed by the absence of théy/E) penalty term in expansion (145). Notice that under the
maximal energy constraint (195), feedback is unable to avpupon the non-feedback converse
bound and thus becomes useless even non-asymptoticakpi@din 12).

Surprisingly, our results demonstrate that the benefiteedlback are largely realized by stop-
feedback codes that use the feedback link only to send aesfstpp transmission” signal (as
opposed to requiring a full noiseless feedback availabtbeatransmitter). Indeed, Theorem 10
demonstrates that the asymptotic expansion for stop-fegdbodes remains free from thér
penalty term. Moreover, as seen from the comparison in Fifprlpractically interesting values
of k, the suboptimality of our stop-feedback bound is insigaiftccompared to the gain with
respect to the non-feedback codes. Consequently, we am¢hat for such values df the
dominant benefit of feedback on the energy per bit is alreadydiht about by the stop-feedback
scheme of Theorem 9. In this way, the results of Section I{lFBparticular (202)) easily extend
to noisy and/or finite capacity feedback links. Where theselaissness of feedback plays the

crucial role, however, is in offering the possibility of aeting zero error with finite energy.
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APPENDIX A
PROOF OFLEMMA 1

Proof: Given a sequence of encoder magfysn = 1, ... we construct a different sequence

f! as follows:

fiw) =0, (205)
WYY = fua(o(Y, W), Y37, n>2, (206)
whereo : R x {1,...,M} — {1,..., M} is a measurable map with two properties: 1) for any

y € R the mapm — o(y,m) is a bijection of{1,..., M}; 2) for any m the distribution of
o(Z,m) is equiprobable of1,..., M} wheneverZ is Gaussian with variancé2. The existence

of such a map is obvious. We define the decagdo satisfy
o(Y1,9' (Y1) = g(¥57) (207)

which is consistent since. — o(y, m) is a bijection. Clearly, the probability of error 6§/, )

is the same as that dff,,, g). By assumption the original code satisfies (14) and thesefor
1 M

O E
j=1

Now for anyj € {1,..., M} per-codeword energy is:

oY, W)=j| <E. (208)

Z }fn—l(jv }/'211—1)}2

E DAy W=
n=1
= E |3 | facrlo(, W), Y3 O | W = (209)
Ln=2
= EE |3 |facslo(M, W), Y3 ) [*| o(¥1, W) ’sz] (210)
1_M "~ 00
= 72 E D [faalo(i) vy am,j):i] (211)
i=1 n=2
< E, (212)

where (209) is by (205) and (206), (211) is becalge(Y;, W) = i|[IW = j] = &7, and (212)
is by (208). Thus by (212) the encoder sequeriten = 1, ... satisfies a per-codeword con-
straint (10). ]
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APPENDIX B

STOP-FEEDBACK CODES

The stop-feedback bound in Theorem 9 is just a represeatafivthe following family of
bounds.
Theorem 13:For any £ > 0 and positive intege)/ there exists an( £, M,e) code with

feedback for channel (3) satisfying
e<inf{l—a+ (M -1)8}, (213)
where the infimum is over all < § < a < 1 satisfying
E
d(a||f) = = loge. (214)
No

Moreover, there exists aff, M, ¢) stop-feedback code; its probability of error is bounded
by (213) witha = 1, namely,

E

e< (M —1)e M. (215)

Proof: Fix a list of elementg(cy,...,cy) € AM to be chosen later

¢;||* need not be
finite. Upon receiving channel outpuls, . .., Y, the decoder computes the likelihosd,, for
each codeword = 1,..., M, cf. (27) and (58):

Sin=> CiaYe—1C3. j=1,... M. (216)
k=1
Fix two scalarsy, < 0 < v, and defineM stopping times

7 =inf{n >0:5;, & (v,7)}- (217)

Among those process€sS; ,} that upcrossy; without having previously downcrossed, we
choose the procesgS;,,} for which the~; upcrossing occurs earliest. Then decoder outputs
W = j. The encoder conserves energy by transmitting only up tinti 7; (when the true
messagel’ = j):

X0 £ £, YY) = Cinl{r; > n} . (218)

At first, it might seem that we could further reduce the enesgnt by replacing; in (218) with
the actual decoding momefit This however, is problematic for two reasons. First, whene
Y > —o0, T equalsco with some non-zero probability since it is possible for @&l processes

{Si»} to downcrossy, without first upcrossingy;. Second, even ify, = co the expectation
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of E[7|W = j] becomes unmanageable unless one upper-botingish 7;, which is simply
equivalent to (218). Similarly, the possibility of downsgings precludes the interpretation of
our scheme as stop-feedback unlegss taken to be—occ.

To complete the construction of the encoder-decoder paineed to choosécy,...,cy).
This is done by a random-coding argument. &ix 0 and generate eaat}y independently with
equiprobable antipodal coordinates:

1
i,jzl,...,M. (219)

We now upper-bound the probability of errét averaged over the choice of the codebook. By

P[Cj,k - +d] — ]ID[C'J'Jf - —d] =

symmetry it is sufficient to analyze the probabil®jii” 1|1V = 1]. We then have

M
PIW # LW = 1] <P[S1,, < y|W =1]+> P[S;,, > 7,7 <7|W = 1], (220)

j=2
because there are only two error mechanisfhsdowncrosses, before upcrossing,, or some
other S; upcrossesy; before S;. Notice that in computing probabilitieB[S; ,, < v|W = 1]
and P[Ss,., > 71,7 < m|W = 1] on the right-hand side of (220) we are interested only in
time instantd) < n < 7. For all such moment(,, = (' ,,. Therefore, below for simplicity of
notation we will assume thaX,, = C,, for all n (whereas in realityX,, = 0 for all n > 7,
which becomes relevant only for calculating the total epesgent).

We defineB, and B, as in (61) and (62); then conditioned & = 1 the processS; can be
rewritten as

Sin = Bne, (221)

because according to (220) we are interested onlg i n < 7, and thusX, = C; ;. The

stopping timer; then becomes

d*r = inf{t >0: B, & (70,71) ,t = nd*,n € Z} . (222)

If we now define
7 = inf{t >0: B & (70,7)}, (223)
7 o= inf{t>0:B,¢& (v,m)}, (224)

then the path-continuity oB, implies that

d*m \y7 asd — 0. (225)
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Similarly, still under the conditioi’ = 1 we can rewrite (216) in the case of the second

codeword as
S2,n = d2 Z Lk + Bnd2 ) (226)

k=1
where L, are i.i.d., independent aoB, and

P[L, = +1] = P[L, = —1] = % . (227)

Note that one should not infer from (226) that the procestgsand S, ,, have dependence as
B, and B, which determine each other; see (61) and (62). The equalif226) makes sense as
long as the processS,,, is considered separately frof ,,.
Extending (225), we will show below that @s— 0 we have
PSin <wlW=1 — 1-alwm), (228)

P[Syr, > 71,72 < oo|lW =1] = B(v,7), (229)
wherea(vo,71) and 3(o, 1) are
a(y,m) = P[Br =], (230)

B(vo,m) = P[Br=m,T < o0, (231)

i.e. the probabilities of hitting the upper threshojd without having gone below, by B,
and B,, respectivel§. Thus, the intervaly,,~;) determines the boundaries of the sequential
probability ratio test. As shown by Shiryaev [30, SectioB]4« and 5 satisfy

d(a(r0,7)|180r0s 1)) = B4R [7]. (232)

No
Assuming (228) and (229) as— 0 the probability of error is upper-bounded by (220):
PW £ 1[W =1] < 1 — a(y0,%) + (M — 1)B(70, 1) - (233)
At the same time, the average energy spent by our scheme is

IimE[||x|]%] = imE [d*n] = E[7], (234)
d—0 d—0

because of (225).

8The condition < oo is required for handling the special cagg= —oc.
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Finally, comparing (214) and (232) it follows that optimmagi (233) over allyy < 0 < 7
satisfyingE [r] = F we obtain (213). To prove (215) simply notice that whegs- 1 we havey, =
—oo, and hence the decision is taken by the decoder the first tipé aupcrosses,. Therefore,
the timer; (whose computation requires the full knowledgeYpj can be replaced in (218) with
the time of decoding decision, which requires sending onlyirgle signal. Obviously, this
modification will not change the probability of error and Mabnserve energy even more (since
undery, = —oo, 7; cannot occur before the decision time).

We now prove (228) and (229). By (221) and (225) we have
Sin = Ben — Br, (235)

because of the continuity aB;. From (235) we obtain (228) after noticing that again due to

continuity

P[B: <] =1-P[B; 2] =1-P[B; = n]. (236)

The proof of (229) requires a slightly more intricate argatt®r which it is convenient to
introduce a probability space denoted @y, #,P) which is the completion of the probability
space generated byB;}>°, and {L;}:°, defined in (62) and (227), respectively. For each
0 < d < 1 we define the following random variables, where their exptiependence od is

omitted for brevity:

D, = d&* ) L, (237)
k<|t/d?]

Xy = Di+ de EYE (238)

T, = inf{t>0:% ¢ (v,M)}, (239)

In comparison with the random variables appearing in (229) andr, take the role of5,,, and
d*r,, respectively; and alsB henceforth is already normalized by the conditioninglon= 1.

Thus in the new notation we need to prove

}lirré P>, > 7, <ol =P[B: =v,7 < . (241)
—)
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We define the following subsets 6f.

Ey = {lweQ:d3T<ocoVt>T: sup %; <0}, (242)

0<d<1
E1 = {7_' = OO} U {7_— < OO,VE >0 Eltl,tz S (0, 6) S.t. B?—i—tl > B;—, Bq_—+t2 < B;—}, (243)
Ey, = {we: }lir% D; = 0 uniformly on compacts, (244)
—

E = EyNE NE,. (245)

According to Lemma 14 the sets in (242)-(245) belongt@and have probabilityt.

The next step is to show
{B: =7,7 < oo}ﬂECli{iniélf{ETQ >y, e < 00}NE. (246)
—

To that end select an arbitrary element {B: = v,,7 < oo} N E. Since B, is continuous
it must attain its minimund, on [0; 7]; of course,by > . Again, due to continuity of3, at

t = 7 there must exist ap; > 0 such that

A 2 min By > . (247)

0<t<7+e1

On the other hand, becausec £, we have

by = max B; > 7. (248)

0<t<7T+e1
Moreover, sincev € E, we haveD, — 0 uniformly on [0; 7 + ¢;]; therefore, there exists a

d; > 0 such that for alld < d; we have

sup | Dy| < ey, (249)
te[0;7+€1]
where
1
€, = zmin(b; — 1,05 — ) > 0. (250)

3
If we denote byt, the point at whichB;, = b;, then by continuity ofB, at ¢, there exists a
0 > 0 such that
Vi€ (ty —0;t14+6): By > by — €. (251)

Then for everyd < /6 we have

max Bdgtd%J>b1—62. (252)

tE[O,T’-l—el]
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Finally, for everyd < min(v/4,d;) we have

sup X > by — 269 > (253)
te[0,7+e€1]
and
inf X > b/O — €2 > (254)
te[0,7+e€1]

by (247), (248), (250) and (252). Then of course, (253) aritDrove that, < 7+ ¢; and
{%,, >y} holds for alld < min(+/§, d;). Equivalently,

w € liminf{¥,, > v, 7 < oo}, (255)
d—0
proving (246).
Next, we show
limsup{®,, >y, <00} NE C{B;=v,7<o}NE. (256)

d—0
Indeed, takev € limsup,_,,{X,, > 71,72 < co} N E, that is a point in the sample space for
which there exists a subsequenge— 0 such that:,, > v, for every!l. Sincew € E, we know

that for all d we havern(w) < T < co. First, we show

by 2 max By > . (257)

0<t<T
Indeed, assuming otherwise and repeating with minor clatigeeargument leading from (248)

to (253), we can show that in this case

sup Xy <7 (258)

te[0,7
for all sufficiently smalld. This contradicts the choice af.
We denote

tp =inf{t >0: B, =b}. (259)
Then (257) and continuity o3, imply
F<t <o0. (260)

We are left only to show thaB. = v, is impossible. If it were so, thef < ¢, < T.. Moreover

becausev € E, there must exist ap, > 0 (similar to (247) and (248)) such that

B2 min B <, (261)

0<t<7T+e1
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and

B2 max B <. (262)

0<t<7T+e1
Thus, by repeating the argument behind (253) and (254) weshaw that for all sufficiently

small d we have

sup ¥ <71, (263)
te[0,7+e1]
and
inf Y, <, (264)
te[0,7+€1]

which contradicts the assumption thak lim sup,_, {2, > 71, 2 < oco}.
Together (246) and (256) prove that

{B: =y, 7<o0}NEC lilzln_éonf{ZT2 >y, e <oo}NEC

limsup{%,, > 71,72 <00} NE C{B;=v,T<x}NE, (265)
d—0

which implies that all three sets are equal. By Lemma 14 amedcttmpleteness of{ both
setsliminf, ,o{X,, > 71,7 < oo} andlimsup,_,,{¥., > 71, < oo} are measurable and

computing their probabilities is meaningful. Finally, wae

ImPE, >y, <oo] = ImPH{E, >y, <oo}NE] (266)
d—0 d—0
= P[Br =y, 7 < o], (267)

where (266) is by Lemma 14 and (267) by (265) and the boundedecgence theorem. ®
Lemma 14:The setFE defined in (245) isH-measurable and

P[E]=1. (268)

Proof: By the completeness 6{ it is sufficient to prove that all set&,, £, and F, contain

a measurable subset of probability To prove

P[Ey) =1, (269)
notice that
| N
sup D; =tsup — Ly, 270
0<d1§31 ' N§ N ; g (270)
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and therefore, by the Chernoff bound,

t
P D>~ < Y O ¥ 271
|:Os<lcll£)1 L 4:| N N>t (e ) ( )
= 0™, (272)

for some constant; > 0. Hence, for an arbitrary we have an estimate

_ _ t t
PB;+ sup D; > —1] < P [Bt > -1 — —} + P [ sup D; > - (273)

0<d<1 4 0<d<1 4
< O(e ™), (274)

where (274) is becausB, ~ N (—%, %) and (272).
Next, denote
5, = (275)
J \/j ’
th o= > 6, (276)
j=1

Mj = max Wt — Wt]‘ s (277)

t;<t<t;_1

whereW, =t/2 + , /NlOBt is the standard Wiener process; cf. (62).
Sincet, ~ 2/n and the serie$ " e~“V" converges, we can apply the Borel-Cantelli

lemma via (274) to show that

F = {{Btn + sup D, > —1} —infinitely often} (278)

0<d<1

has measure zero. Similarly, singé; ~ [WWs,| we have

ZIP [M; > (2Np)~ Zz@ <2Nof> <azy eV < oo, (279)

J=1 J=1

for some positive constants, as. And therefore,
Fy = {M; > (2Ny)~" —infinitely often} (280)
also has measure zero. Finally we show that
FfnFy C Ey. (281)

Indeed, for allt € [t;;t; + 0,) we have
_ _ N,
B+ Dy < By, o+ Dy, + 4 > M; + 205, (282)
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because, from the definition db,,
|Ds1 _D52| §2|51_32|7 (283)
for all d > 0. From (282) for anyw € F{ N Fy we have for all sufficiently large

_ 1
sup By + D; < _1+§+25j, (284)

0<d<1

where j denotes the index of the unique intervak [¢;;¢,.,). Therefore, for all sufficiently
larget we have shown
sup Xy < sup B, + Dy <0, (285)

0<d<1 0<d<1

completing the proof of (281) and, hence, of (269).
To showP[E;] = 1 notice that by the strong Markov property of Brownian motfon any

finite stopping times according to Blumenthal’s zero-one law [33] for
F,={Ve>03t,t, € (0,¢) S.t. B,44, > By, Boyy, < Bo} (286)

we have
P[F,] =1. (287)

Sinceo,, = min(7,n) are finite stopping times and, 7, we have

E1 D () Fo. (288)

n=1

Therefore,P[E;] = 1 sinceP[F, | =1 for all n > 1.
To show
P[Ey =1 (289)

it is sufficient to show that for every integéf > 0

P[}lin% D, = 0 uniformly on0; K] =1 (290)
_>
and to take the intersection of such sets overiakk Z,. To prove (290) notice that
Pllimsup sup |D;| >¢] = P |limsupd® max ZLk > € (291)
d—0  0<t<K | d—0 0<n< 3 |20 |
= IP’_I' s K a iL >_ (292)
= F|imee sy i, |2 | 2
B RS SV RN BRI L o AR [P
a L k=1 k_K . nlc:l - K -
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where “i.0.” stands for infinitely often. By the strong law lafrge numbers both probabilities

in (293) are zero and we obtain

limsup sup |D;/=0 a.s, (294)
d—0 O0<t<K
which is equivalent to (290). [ |
APPENDIX C

Proof of Theorem 11:We improve upon Schalkwijk-Kailath’'s scheme by employing Z
gangirov’'s two-phase method [23]. Our construction wilpded on the choice of the following
guantities (to be optimized later):

o Fjy: energy to be used fak,
« L: number of channel uses in the first phase,
« Fj: total energy spent in the first phase,

« p: auxiliary parameter governing the total energy spent inséb@nd phase.

We assume > 0, E; > Ey > 0. Using these parameters define two sequences recursively as

follows:
)
2 %?7 n/::l)
o, = bz N1 (295)
\UEL—I (1_‘_7}\7707171) ; TLZ2,
(
undefined n=1,
Cn = N\ /B =2, L+1, (296)
\/ %ﬁ , n>L+2.

From these equations it is easy to see that

—n+1
) %(1_‘_2(‘317]\_[;5@) , n=1,...,L+1,

0, =

" (297)
(L+p)" " 0h, nzL+2

and therefore for any > 0

lim 02 = 0. (298)

n— oo

We now describe the encoding functiofig W, y"~1!) for all n:
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1) Forn =1, according to the method of Schalkwijk and Kailath [16], waprthe message
W e {l,..., M} to the interval|—+/Ey, v/ Eo] by means of

X = W) = VBT (299)

2) Forn = 2 givenY; the encoder computes the value of the noise

Zi=Y1-X (300)
and sends
Xo = fo(W,Y)) = 27, . (301)
3) Forn=3,...,L+ 1 the encoder proceeds recursively by sending
Xo=co(Zy — Zpr), n=3,....L+1, (302)

where Z,, is the minimum mean square error (MMSE) estimate Zf based on the

observationgY, ..., Y):
Z.EE[ZVY],  k=1,... L+1. (303)

4) Forn > L+2 (the second phase) we modify the Schalkwijk-Kailath schegnsubtracting

X,
X, = f.(W,y" Y (304)
S (% = Zua) - X, (305)
_ cn[q(;(yl—zn_ﬁ\/ﬁo)—\/fo—xl}, n—=1L+2, .. (306)
where
%2 e [Vi-0 (Y= Zus+ VE) ~ VEo — Zana] (307)
with ¢4(-) being ad-quantization map
e 2| 2o = 5] (309
and¢ the spacing between adjacent messages;in
52 2VE (309)

M-1
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Additionally, for k& > L + 2 the valueZ, appearing in (305) is defined as
Iy SR[LYE VES], k=L+2,..., (310)

where
Vi=Ye+Xe, k=L+2... (311)

is known at the receiver at time

Below we demonstrate that for all > 1 we have

Var[ 2,V v ) = o2

(312)
Using (298), (312) results in

Var[Z, |V Ve, = 0. (313)

Thus, givenY;* the decoder compute®,-',Yy*,) and therefore by (313) can estimate
(and henceX; =Y, — 7;) exactly:

PLX, # Vi — E[Z,Y, V55, = 0. (314)

The change in the encodingat= L+ 2 follows the ingenious observation of Zigangirov [23]
that as long as one proceeds in Schalkwijk-Kailath mode, @ forn < L + 1) then due to

the discreteness oY, conditioned onY{“1 the inputX,, has non-zero bias:
E [X, Y]] # 0 (315)

(conditioned onyy* ! the bias is zero by construction, of course). Thereforeat@ £nergy it is
beneficial to eliminate this bias by subtractiig.X,,|Y" '] which then can be added back at the
receiver since it know%;"~'. However, calculatingt [X,,|Y,""'] is complicated and instead we
considered an approximation to it given By, in (307). The rationale for such an approximation
is to replaceX;, implicit in the definition ofX,, in (302), with a naive estimaig <Y1 — Zn_l).
Note thatZ, now is a function ofY;", instead ofY;* used in the first phase.
The proof will now proceed in the following steps:
a) show (312) fom < L+ 1;
b) show (312) forn > L + 2;

c) show that the total energy spent in the first phase is at most
L+1

PRk
k=1

E < Ey, (316)
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d) show that the total energl/, spent in the second phase is

B = Y E[X.P (317)
n=L+2
N o
_ Mo < 0 ) , (318)
2 On-1
n=L+2
where
s(d) 2 /OO L 2(1’)6_§d$ (319)
Lo V 27rqd '
e) conclude the proof by showing that optimization of theicée of Ey, F;, L and p results
in
inf Ey+ Ey < E,(M), (320)
Eo,Eq,L,p
where
N, M —1
E.(M) = 70 + No log, % ; (321)

which is the right-hand side of (178).

a) We prove (312) by induction. For = 1 the statement is obvious. FOr<n < L + 1 we
havé

1 Ny
I(Z;Yy)) = = log —————. 22
(2i:¥7) = 5 loe S 7 v (322)
Suppose (312) is shown far,...,n — 1 then
[(Z:Ys) = I(ZuYy ™)+ 1(Zi: YY) (323)
= [(Z;Y] )+ I(Xn; Yo |Ys ™) (324)
1 2E [| X, |2
= I(Zy;Yy )+ Zlog (14 2E (| Xa[] (325)
2 Ny
2 n—1
C I(ZuYE Y 4 L log AL (326)
2 Ny
1 Ny 2¢2 Var[Z, |V ]
= -1 1 n 327
2 Og{QVar[Zl\YQ"_l] ( * No (327)
1 Ny 2c202
— _1 1 n-'n
5 og{%i_1 ( + No (328)
1 No
= Zlog —
5 og 207 (329)

*We follow the elegant analysis of the Schalkwijk-Kailaththd introduced in [21, p. 18-6].
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where (324) expresses the fact that givéh ', 7, is an invertible function ofX,,; (325) is
becaus&’; = X; + Z; with Z; independent oty '; (326) is by (302); (327) is by (322); (328)
is by the induction hypothesis; and (329) is by (295). Theuoiin step is then proved by
comparing (329) and (322).

b) Next, considern > L + 2. Due to (311) the relationship betweé#; — Zn_l) andY,, in

the second phase is the same as(foy — Zn_l) andY,, in the first phase:

~ ~

Y, = ca(Z1 — Znr) + Zo, (330)

~

where Z; — Z,_; is still Gaussian. Thus the proof of the induction step in2j3@29) holds
verbatim by replacing’, with V,, andE [| X, |?] with E [|X,, + X,,|] for n > L + 2.

c) Note that in the course of the proof we have shown that

E[|X,* =02 ,, n=2,...,L+1, (331)
n“n—1

and therefore substituting (296) and (297) into (331) aridgus

Eog M +1
E[IX[) = =2

<
1S B (332)

inequality (316) follows.

d) Next we show (318). Sincg(z) + d = gs(z + §), from (306) we have

X, = s (71— 2077 (333)
R e o (334)
n—1

which trivially implies (318).
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e) We are left to show (320). First, we give an upper bound(@h for d > 2:1°

s(d) < 2[; \/% (:52 + xd + d{) e da (335)
— %ZQ <g) n j;l_ﬁe—é v 2/: %e—édx (336)
< j’%e—f n 2/; \/x;_ﬂe_z;dx (337)
- \;l;l_ﬂe_% + /oo \/ge—ydy (338)
< \jj_ﬁe +- jﬁ /_°° edy (339)
< ;%e—f , (340)

where (335) follows by applying an upper bound
d
o) < (1ol +5 ) 1024 ) (341)

(337) is by (41), (338) follows by integrating by parts with= %, and (340) holds since by
assumptiond > 2.

Notice that the dependence 6% on £y, £; and L is only through the following parameter
4]

OL+1

2 2R 2Er — Ey)\ ?
- e (2B (343)

where (343) follows from (297) and (309). From now on we wiitgp, J;) to signify the fact

1>

51(E07 E17 L)

(342)

that £, is implicitly a function of p and ;.

Next, for anyd; > 2 we have

(344)

“Note that althoughimg,o s(d) = 1, it is not true thats(d) < 1. In fact s(d) > 1 for a certain intervall € (0,d*). This
explains why we use subtraction of,, only for n > L + 2. Indeed, without subtractiofL | X,,|> = ¢2¢2_, and therefore
from (334) we see that it is only sensible to use subtractiberns(d) < 1, or equivalently wherv,,_ is sufficiently small.
This is an artifact of the suboptimal approximation®fX,, |Y;"~'] by X,.. A slightly weaker bound or(d) follows from [20,

Lemma 4.1].
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Indeed, consider the following upper bound:

E2(p7 61) =

IN

5N051
1+p)2ze”
2\/271’ Z p)

5N051 Z k 10g6(1+/’
2V/2m

. 5Ny _11 -
- \/27r Zp

IN

2
91

% f:ps (51(1 +/))§>

8 (1+p)

(1+kp)

%( 1+ p—log,( 1+p)>

Nod -1
= o Olpe_? (1—6_58\/H) )

24/ 21

(345)

(346)

(347)

(348)

(349)

where (345) is by (297) and (318); (346) is by applying (348%7) is becausél +p)* > 1+kp,
and (349) is becaus%?p > log,.(1+ p) for all p > 0 andd; > 2. Finally, (344) is obtained by

taking p — 0 in (349).

Notice now that forE; fixed the optimization ob; over £, and L is simple:

>

o7 (EY) sup 0;
FEo,L
L
2 [2E, 2Er — Ey)\ ?
— 1
PR TV, < TTIN
2 By _1
— e™ 2
M — 1

(350)

(351)

(352)

(supremum is attained as — oo and Ey — %). In other words, to achieve a certain value of

01 we need to expend slightly more than the energy

M —

1
Ef(0,) = (2 + log, 5

Thus, we have

. < i
sl 1+ Balpo) <l B
<
< 511r1>f2E1(51)

IN

DRAFT

1 M —
No <§ + log,

1
n).

20N051
\ 2T 52

20Nyo, e
\/_

2

! +1
o) J—
ge ]_6

5% -
87

0

(353)

(354)

(355)

(356)

(357)
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where (354) is by (344) and restricting {6, > 2}; (355) is by (353); and (356) follows from

2
1

5
2051 e s 87
inf |1 20 <log, 2L
dnf, log. o1 + 5 32— 4| = %16 (358)

which is easily verified by taking, = 5 in the left-hand side. This completes the proof of (320).
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