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Abstract—Consider a pair of input distributions which after
passing through a Poisson channel become ǫ-close in total varia-

tion. We show that they must necessarily then be ǫ
0.5+o(1)-close

after passing through a Gaussian channel as well. In the opposite
direction, we show that distributions inducing ǫ-close outputs over

the Gaussian channel must induce ǫ
1+o(1)-close outputs over the

Poisson. This quantifies a well-known intuition that “smoothing”
induced by Poissonization and Gaussian convolution are similar.
As an application, we improve a recent upper bound of Han-
Miao-Shen’2021 for estimating mixing distribution of a Poisson

mixture in Gaussian optimal transport distance from n
−0.1+o(1)

to n
−0.25+o(1).

I. INTRODUCTION

Fix three positive parameters a, σ, γ > 0 and consider two

channels with a common input space X = [0, a]. The first

channel, denoted Gsnσ , acts on input X = x0 by outputting

YG ∼ N (x0, σ
2). The second channel, denoted Poiγ , acts by

outputting YP ∼ (Poi)(γx0). Note that the output spaces

of these two channels are very different. For the first one

YG ∈ R and for the second one YP ∈ Z+. When X ∼ π
we denote by Gsnσ ◦ π and Poiγ ◦ π the laws of YG and YP ,

respectively. Despite the fact that these probability measures

live on different spaces, we can view either of them as a

kind of “smoothed” version of π, which destroys small local

variations in π. One may wonder, thus, whether one can

perturb a fixed π in such a way that the perturbation, while

invisible after passing through Poisson channel, is apparent

after passing through the Gaussian one. In this work, we

answer this in the negative and provide quantitive bounds.

Specificially, we show that whenever two measures π1 and

π2 have total variation distance ǫ after Poisson smoothing,

they must necessarily also be close after Gaussian smoothing

(within total variation almost O(
√
ǫ)), and an even better

bound in the opposite direction. Informally speaking, this

demonstrates that the information embedded in local variations

of X is destroyed similarly by both channels.

Besides independent interest, our results have various ap-

plications. One could be in the domain of covert communica-

tion [1], where coded distribution is supposed to have low total

variation distance from a pure noise (our result compares these

tasks over two channels). However, our original motivation lies

in the domain of Gaussian optimal transport (GOT) introduced

in [2]. We recall that a σ-GOT distance is defined as

W
(σ)
1 (ν, µ)

= inf
PA,B

{E[|A−B|] : A ∼ Gsnσ ◦ ν,B ∼ Gsnσ ◦ µ} , (1)

with infimum over all possible joint distributions PA,B with

given marginals. When σ = 0 this corresponds to the standard

Wasserstein distance and is denoted by W1 without the su-

perscript. It is known that estimating a distribution (supported

on [0, 1]d) in Wasserstein distance is rather slow (typically, at

rate n−1/d from n iid samples). If, however, one is interested

in only recovering distribution up to features of scale σ, then

estimation metric could arguably be replaced by W
(σ)
1 . It turns

out that estimating in the latter can be done at much faster

rates.

One example of this phenomena, and a second motivation

for this work, is a result of [3], who showed that estimating π
from n iid samples of Poiγ ◦π while essentially impossible [4]

in W1 (rate being polylog(n)) can be done in GOT at a

polynomial rate of (almost) n−0.1. Our channel comparison

analysis paired with a recent bound of [5] improves the

estimate to (almost) n−1/4.

From the technical side, our innovation is bringing the

complex-analytic tools, previously used for Poisson-type prob-

lems in [6]–[9] to bear on this channel comparison question.

With this brief outline, we proceed to formal statements next.

Notation. . and & denote inequalities up to absolute

constants (in particular, these constants do not depend on the

problem parameters a, σ). Similarly, Oa,σ,γ(1) and oa,σ,γ(1)
denote quantity that stays bounded or vanishes, but depends

on a, σ, γ. log denotes a base-e logarithm. When doing sum-

mation or integral, we will denote π(t) as the probability mass

(or density) function of distribution π at t.

II. MAIN RESULTS

Throughout the paper, we restrict ourselves to priors of

bounded support. That is, we denote P([0, a]) the set of all

probability distributions supported on [0, a]. In addition to

W
(σ)
1 , W1 that were already defined, we also recall definition

of TV and Hellinger for two distributions P,Q as follows [10,

(7.3), (7.5)].

TV(P,Q) , EQ

[∣
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=
1

2

∫

|dP − dQ|, (2)
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H2(P,Q) , EQ





(

1−
√

dP

dQ

)2


 =

∫

(
√
dP −

√

dQ)2.(3)

A. Comparison of Poisson and Gaussian channels

Theorem 1: There exists c = c(a, σ, γ) > 0 such that for

any π1, π2 ∈ P([0, a]) we have

TV(Poiγ ◦ π1,Poiγ ◦ π2) ≤ ǫ

=⇒ TV(Gsnσ ◦ π1,Gsnσ ◦ π2) ≤ c(a, σ, γ)
√
ǫta,σ,γ(ǫ)

where ta,σ(ǫ) = ǫo(1) as ǫ → 0, and more explicitly, we have

ta,σ,γ(ǫ) =
ℓ
3/4
ǫ√
log ℓǫ

e(
log a−log(σ2)−log(γ)

2 +o(1)) ℓǫ
log ℓǫ , ℓǫ = log

1

ǫ
.

In the opposite direction, we have the following result.

Theorem 2: There exists c = c(a, σ, γ) > 0 such that for

any π1, π2 ∈ P([0, a]) we have

TV(Gsnσ ◦ π1,Gsnσ ◦ π2) ≤ ǫ

=⇒ TV(Poiγ ◦ π1,Poiγ ◦ π2) ≤ cǫe3γσ
√

2 log 1
ǫ .

Remark 1: We consider a simple example on how TVs of

Gaussian and Poisson mixtures behave. Let π1 = δt and π2 =
δt+ǫ for some small ǫ > 0, and 0 < t < a − ǫ, where δ is

the dirac-delta distribution. Then TV(N (t, 1),N (t + ǫ, 1)) =
ǫ · ( 1√

2π
+ o(1)); while

exp(−t)

2
(1− exp(−ǫ))

(a)

≤ TV(Poi(t),Poi(t+ ǫ))
(b)

≤ ǫ

with (a) by comparing the PMF at 0 and (b) by [11, (2.2)].

Since the TV of both channels are of Θ(ǫ), the exponent of ǫ
in Theorem 1 and Theorem 2 cannot exceed 1.

B. Application to Gaussian optimal transport

Next, we discuss statistical applications of the results above.

Consider the problem of estimating the distribution π sup-

ported on [0, a] from n iid indirect observations YP ∼ Poi(X),
X ∼ π. Here we denote the shorthand notation Poi , Poi1.

One can pose different questions related to estimating π. For

example, while estimating π in TV is impossible, it can be

estimated, for example, in Wasserstein W1 distance, albeit at

a slow rate. Specifically, [3] and [4] show that

inf
π̂

sup
π∈P([0,a])

E[W1(π, π̂)] = Θa

(

log logn

logn

)

. (4)

Despite the poor performance of estimation of mixing dis-

tribution π in this nonparametric inverse problem, estimation

of the mixture distribution Poi ◦ π can be done at an al-

most parametric rate. Several different estimators π̂, including

Non-Parametric Maximum Likelihood Estimator (NPMLE),

minimum Hellinger distance and minimum χ2-distance, were

shown by [5] to achieve an estimation rate (in Hellinger

distance) given by

sup
π∈P([0,a])

E[H2(Poi ◦ π,Poi ◦ π̂)] ≤ Oa

(

logn

n log logn

)

, (5)

where the Hellinger squared distance H2 was defined above. It

was shown previously in [12, Appendix E] that this estimation

rate cannot be improved. A previous result by [13, Proposition

3.1] also shows convergence of χ(Poi ◦ π̂‖Poi ◦ π) at the rate

of faster than n−(1/2−τ) for any τ > 0.

Finally, estimation under the GOT distance (1) was consid-

ered recently. Specifically, [3, Theorem 3.1.] states that for any

0 < c < 0.1, there exists a constant C = C(σ, a, c) such that

the NPMLE solution π̂ satisfies

sup
π∈P([0,a])

E[W
(σ)
1 (π, π̂)] ≤ Cn−c . (6)

We note that [3] presents results for non-Poisson channels as

well, but for the Poisson channel c = 0.1 − o(1) is the rate

obtained therein, cf. [3, Remark 3.2].

Here we improve this result as follows.

Corollary 2.1: For any 0 < c < 1
4 , there exists a constant

C = C(σ, a, c) such that the NPMLE solution π̂ of the Poisson

mixture attains rate

sup
π∈P([0,a])

E[W
(σ)
1 (π, π̂)] ≤ Cn−c. (7)

Furthermore, if a ≤ σ2γ, then the right-hand side can be

replaced with n−1/4Polylog(n).
We only sketch the main steps here; the complete proof is

in Appendix A. First, by the standard bounds, e.g. [10, (7.20)]

we have TV(P,Q) ≤ H(P,Q) and thus by Cauchy-Schwarz

and (5) we have

sup
π∈P([0,a])

E[TV(Poi ◦ π,Poi ◦ π̂)] = Oa

(

1√
n
·
√

logn

log logn

)

Next, we leverage Theorem 1 to get:

sup
π∈P([0,a])

E[TV(Gsnσ ◦ π̂,Gsnσ ◦ π)] = Oa,σ

(

n−1/4+o(1)
)

(8)

which, in the case where a ≤ σ2γ, no(1) is actually Polylog(n)
given that ta,σ,γ(ǫ) in Theorem 1 is Polylog(1ǫ ).

For the next step we need the following estimate, to be

proven in Appendix A.

Lemma 3: There exists c1 = c1(a, σ) such that for all

π1, π2 ∈ P([0, a]) and for all δ > 0 we have1

TV(Gsnσ◦π1,Gsnσ◦π2) ≤ δ =⇒ W
(σ)
1 (π1, π2) ≤ c1δ log

1

δ
.

(9)

Applying Lemma 3 to (8) we get

sup
π∈P([0,a])

E[W
(σ)
1 (π, π̂)] ≤ n−1/4+o(1) ,

which completes the proof of Corollary 2.1.

Remark 2 (On the level of smoothing): We have obtained

the bound for σ-smoothed distance between NPMLE and

truth which is n−c for any c < 1/4. This result required a

constant fixed σ. However, it turns out that it is sufficient

to set σ = 1/Polylog(n), while holding a, γ fixed and

1We remark that the bound is likely not tight, as for example when σ = 0,

we can easily get a better bound of W1(π1, π2) ≤
aδ

2
[14, Theorem 6.15].



letting n → ∞. Indeed, inspecting the proofs, the constant

c(a, σ, γ) in Theorem 1 is exp(σ
2γ2

2 )·Poly(σ, 1
σ ). On the other

hand, setting 1
σ2 to grow with (log 1

ǫ )
v where 0 < v < 1,

ta,σ,γ(ǫ) becomes ǫ−v/2. Thus, the overall bound in RHS

of the Theorem becomes ǫ(1−v)/2Polylog(ǫ). Recalling that

ǫ = 1√
n

√

logn
log log n we get the claimed n−c bound by taking v

sufficiently small.

III. COMPLEX-ANALYTIC PRELIMINARIES

The main proof technique for this work is complex analysis.

Here, we remind that the z-transform Z(π)(z) (for priors

π with discrete support), Laplace transform L(π)(s), and

characteristic function Ψπ(t) of a distribution π are defined

as follows.

Z(π)(z) ,
∞
∑

n=0

PMF(π)(n)zn ∀z ∈ C (10)

L(π)(s) , EX∼π[exp(sX)] ∀s ∈ C (11)

Ψπ(t) , EX∼π[exp(itX)] = L(π)(it) ∀t ∈ R (12)

We now consider the following identities for all bounded

priors π ∈ P([0, a]): for Poisson mixtures and Gaussian

mixtures we have

Z(Poiγ ◦ π)(z) = L(π)(γ(z − 1)) ∀z ∈ R ; (13)

L(Gsnσ ◦ π)(s) = exp

(

s2σ2

2

)

L(π)(s) ∀s ∈ R . (14)

In addition, the Plancherel’s theorem [15, Theorem 2]

implies the following:

L2(Gsnσ ◦ π1,Gsnσ ◦ π2)
2

,

∫ ∞

−∞
((Gsnσ ◦ π1)(t)− (Gsnσ ◦ π2)(t))

2dt

=
1

2π

∫ ∞

−∞
exp(−σ2t2)|Ψπ1(t)−Ψπ2(t)|2dt (15)

using the fact that the Fourier transform of the function f(t) ,

e
−σ2t2

2 Ψπ(t) is f̂(u) = 2π(Gsnσ ◦ π)(2πu).
We now describe a main idea that we will be using: the

Hadamard’s three-circle theorem [16, Theorem 12.1] that

states the following. Let x0 ∈ C, r0 < r1 ∈ R. Consider

a function f that is analytic on the annulus Ar0,r1 , {z :
r0 < |z − x0| < r1} and continuous everywhere else. Denote

Mx0(r; f) , sup|z−x0|≤r |f(z)|. Then

logMx0(r; f) is a convex function of log r. (16)

Finally, we will also frequently use the following tail bound

of the Gaussian distribution [17, Theorem 4.7].

P(N(0, σ) > T ) ≤
√

2

π

σ exp(−T 2/(2σ2))

T
, ∀T > 0 .

(17)

We will use (16) to bound the difference in characteristic

functions of the Gaussian mixtures. Then the L2 distance can

be bounded via (15) and finally the TV distance via Lemma 4.

IV. PROOF OF THEOREM 1

The following lemma shows that it suffices to bound the L2

distance in establishing Theorem 1.

Lemma 4: Let ǫ, a > 0 be given, π1 and π2 ∈ P([0, a]) be

such that

L2(Gsnσ ◦ π1,Gsnσ ◦ π2) ≤ ǫ (18)

Then

TV(Gsnσ ◦ π1,Gsnσ ◦ π2) . ǫ · 4

√

σ2 log
1

ǫ
+ a (19)

The complete proof is established in Appendix A. The proof

idea is to bound the quantity
∫ T

−T
|Gsnσ ◦ π1 − Gsnσ ◦ π2|dt

using Cauchy–Schwarz inequality, and bound this quantity

outside the said interval using (17) and compactness of sup-

port.

Here, we consider the following lemma on transforming

bounds on Laplace transform into the characteristic function,

relying only on the total variation of the Poisson mixtures and

the support bound of the priors.

Lemma 5: Let π1, π2 ∈ P([0, a]) be such that

sup
|s+γ|≤γ

|L(π1)(s) − L(π2)(s)| ≤ 2ǫ . (20)

Denote Rǫ > 1 a solution of

log(1/ǫ) = a(Rǫ(logRǫ − log γ − 1) + γ) . (21)

Then for all t ∈ R we have

|Ψπ1(t)−Ψπ2(t)| ≤ 2min

(

1, ǫ · exp(a
2
Rǫ log(1 +

t2

γ2
))

)

.

(22)

Proof of Lemma 5: Denote f(s) = L(π1)(s)
2 − L(π2)(s)

2 .

For all r > 0, we consider M(r) = sup|s+γ|≤r |f(s)| as per

Fig. 1. Then we have the following estimates for M :

M(γ) ≤ ǫ, ∀r > γ : M(r) ≤ exp(a(r − γ)) (23)

where the second one is due to the fact that π1, π2 ∈ P([0, a])
and sup|s+γ|≤r,x∈[0,a] | exp(sx)| = exp(a(r − γ)). Consider,

now, the function g(u) = log(M(γeu)), then we have g(0) ≤
− log(1/ǫ) and for all u > 0, g(u) ≤ aγ(eu − 1).

√

R2
ǫ − γ2

Re(s)

Im(s)

Fig. 1: Bounding |Ψπ1 −Ψπ2 | on red line using M(r) on pink

and black circles.

Given that both π1 and π2 are in P([0, a]), f is analytic on

C. Therefore, g is convex by (16). Consider Rǫ as given in



uǫ

log(ǫ)

u

g(u)

aγ(eu − 1)
tangent line

Fig. 2: Bound on g(u) via Hadamard’s 3-circle theorem.

(21). Let uǫ = log(Rǫ) − log(γ), then log(1/ǫ) = aγ((uǫ −
1) exp(uǫ)+1). The motivation of this choice of Rǫ and uǫ is

given in Fig. 2: for any choice of uǫ we would get an upper

bound on g given by the line joining the endpoints; the tangent

line has the smallest slope, and therefore the best bound.

For each u ∈ [0, uǫ], the convexity of g entails

g(u) ≤ g(0)(1− u

uǫ
) + g(uǫ) ·

u

uǫ

≤ − log(1/ǫ) +
u

uǫ
(aγ(euǫ − 1) + aγ((uǫ − 1)euǫ + 1))

= − log(1/ǫ) + aγu exp(uǫ) . (24)

Now, Ψπ1(t) − Ψπ2(t) = 2f(it). Since |Ψπ(t)| ≤ 1 for

all π, |f(it)| ≤ 1. On the other hand, |it + γ| =
√

γ2 + t2.

Therefore, for all |t| ≤
√

R2
ǫ − γ2, we have

|f(it)| ≤ M(
√

t2 + γ2)

= exp

(

g(
1

2
log(1 +

t2

γ2
))

)

≤ exp

(

− log(1/ǫ) +
aγ exp(uǫ) log(1 +

t2

γ2 )

2

)

= ǫ · exp
(

aRǫ log(1 +
t2

γ2 )

2

)

. (25)

On the other hand, for |t| >
√

R2
ǫ − γ2 we have ǫ ·

exp(
aRǫ log(1+

t2

γ2 )

2 ) ≥ exp(a(Rǫ − γ)) > 1, implying that

the bound is trivially true then. Thus, f(it) ≤ min(1, ǫ ·
exp(aRǫ log(1 + t2)/2)) for all t.

Proof of Theorem 1: We first establish the following

bound via (13).

sup
s:|s+γ|≤γ

|L(π1)(s)− L(π2)(s)|

= sup
z:|z|≤1

|Z(Poiγ ◦ π1)(z)−Z(Poiγ ◦ π2)(z)|

≤
∞
∑

n=0

|(Poiγ ◦ π1)(n) − (Poiγ ◦ π2)(n)|

= 2TV(Poiγ ◦ π1,Poiγ ◦ π2) ≤ 2ǫ (26)

Motivated by (15), we consider Rǫ as per Lemma 5 and

denote E(s) , −σ2s+aRǫ log(1+
s
γ2 ) for all s > −γ2. Then

E is concave and attains its global maximum at s = aRǫ

σ2 −γ2,

thus for all t ∈ R we have

E(t2) ≤ Emax

:= aRǫ(log(aRǫ)− log(σ2γ2)− 1) + σ2γ2

= log(1/ǫ)− aγ + aRǫ log(
a

σ2γ
) + σ2γ2 . (27)

This means we may now bound the squared L2 distance as

follows:

L2(Gsnσ ◦ π1,Gsnσ ◦ π2)
2

(a)
=

1

2π

∫ ∞

−∞
exp(−σ2t2)|Ψπ1(t)−Ψπ2(t)|2dt

(b)

.

∫ ∞

−∞
exp(−σ2t2) ·min(1, ǫ · exp(

aRǫ log(1 +
t2

γ2 )

2
))2dt

(c)

≤
(

∫

|t|≤Rǫ

ǫ2 exp(E(t2))dt+

∫

|t|>Rǫ

exp(−σ2t2)dt

)

(d)

. Rǫǫ
2 exp(Emax) + exp(−σ2R2

ǫ ) (28)

where in (a) we used Plancherel (15), in (b) we ap-

plied Lemma 5, in (c) we split the integral into two parts

and applied respective bounds from previous line, in (d) we

used (27) and (17).

To proceed, we notice that the function f(r) = r log r has

f( y
log y ) = y(1 − log log y

log y ) for all y > e, so as y → ∞ the

solution to f(r) = y has r = (1 + o(1)) y
log y . This, together

with (21), implies that Rǫ = (1+ o(1)) 1a
log(1/ǫ)

log log(1/ǫ) as ǫ → 0.

Then, the second term in (28) is o(ǫ) = oa,σ,γ(ǫ) and can be

neglected, whereas for the first term we can see from (27) that

expEmax =
1

ǫ
sa,σ,γ(ǫ) ,

sa,σ,γ(ǫ) := exp

{

σ2γ2 − aγ +

(

log
a

σ2γ
+ o(1)

)

log 1
ǫ

log log 1
ǫ

}

.

Collecting terms, thus, we have shown that as ǫ → 0 we

have

L2(Gsnσ ◦ π1,Gsnσ ◦ π2)
2 . ǫRǫsa,σ,γ(ǫ) .

Finally, taking the square root and invoking Lemma 4 we

obtain the statement of the theorem.

V. PROOF OF THEOREM 2

For the comparison in the other direction, we need the

following bound on the magnitude of the difference of Laplace

transform.

Lemma 6: Consider the same setting as before, where

π1, π2 ∈ P([0, a]). Given ǫ > 0 such that

TV(Gsnσ ◦ π1,Gsnσ ◦ π2) ≤ ǫ . (29)

Then the Laplace transform satisfies the following:

|L(π1)(s)− L(π2)(s)|

. ǫ exp

(

−σ2Re(s2)

2
+ Ea,σ(ǫ, s)

)

. (30)



Ea,σ(ǫ, s) := σ2Re(s)2 + a · |Re(s)|+ |Re(s)|
√

2σ2 log
1

ǫ
.

(31)

Proof of Lemma 6: We will show that

|L(Gsnσ ◦ π1 − Gsnσ ◦ π2)(s)| ≤ ǫ exp(Ea,σ(ǫ, s)) (32)

with Ea,σ(ǫ, s) as per (31), and then the conclusion follows

from (14).

Indeed, we first consider the following:

|L(Gsnσ ◦ π1 − Gsnσ ◦ π2)(s)|

≤
∫ ∞

−∞
| exp(st) · (Gsnσ ◦ π1(t)− Gsnσ ◦ π2(t))|dt

=

∫ ∞

−∞
exp(Re(st))|Gsnσ ◦ π1(t)− Gsnσ ◦ π2(t)|dt.(33)

Consider T > σ2|Re(s)| + a, we now split this into three

parts:
∫ −T

−∞

∫ T

−T

∫ ∞

T

First, the term in the middle:

∫ T

−T

exp(Re(st))|Gsnσ ◦ π1(t)− Gsnσ ◦ π2(t)|dt

≤ sup
|t|≤T

exp(Re(st))

∫ T

−T

|Gsnσ ◦ π1(t)− Gsnσ ◦ π2(t)|dt

≤ exp(T · |Re(s)|)ǫ . (34)

Next, for each π ∈ P([0, a]), Gsnσ ◦π(t) is nonnegative for all

t, while also bounded above by 1√
2πσ

exp(−−t2

2σ2 ) for t ≤ 0,

and 1√
2πσ

exp(− (t−a)2

2σ2 ) for t ≥ a. Therefore, denoting:

M1(T ) , T + σ2Re(s), M2(T ) , T − a− σ2Re(s) ,
(35)

the left tail can be computed as

∫ −T

−∞
exp(Re(st))|Gsnσ ◦ π1(t)− Gsnσ ◦ π2(t)|dt

≤ 1√
2πσ

∫ −T

−∞
exp(tRe(s)) · exp(− t2

2σ2
)dt

(a)
=

1√
2πσ

∫ −T

−∞
exp(− (t− σ2Re(s))2

2σ2
+

σ2Re(s)2

2
)dt

(b)

≤
√

2

π

σ

M1(T )
exp(

σ2Re(s)2

2
) · exp(−M1(T )

2

2σ2
)

where (a) is completing the square and (b) follows from (17).

We also have the right tail computed similarly as

∫ ∞

T

exp(Re(st))|Gsnσ ◦ π1(t)− Gsnσ ◦ π2(t)|dt

≤ 1√
2πσ

∫ ∞

T

exp(tRe(s)) · exp(− (t− a)2

2σ2
)dt

≤
√

2

π

σ

M2(T )
exp(

σ2Re(s)2

2
+ a ·Re(s)) · exp(−M2(T )

2

2σ2
) .

Denote, now, M3(T ) , T − a − σ2|Re(s)|. Then

min{M1(T ),M2(T )} ≥ M3(T ) ≥ 0. Therefore, collecting

terms above,

|L(Gsnσ ◦ π1 − Gsnσ ◦ π2)(s)|
.ǫ exp(T · |Re(s)|) (36)

+
σ

M3(T )
exp(−M3(T )

2

2σ2
+

σ2Re(s)2

2
+ a · |Re(s)|).(37)

Next, we choose T = σ2|Re(s)| + a+
√

2σ2 log 1
ǫ . Thus,

the first term (36) evaluates to

ǫ exp(σ2Re(s)2 + a · |Re(s)|+ |Re(s)|
√

2σ2 log
1

ǫ
) .

With this choice of T , we have M3(T ) =
√

2σ2 log 1
ǫ . Then,

the second term (37) is bounded as

σ
√

2σ2 log(1ǫ )
exp(

σ2Re(s)2

2
+ a · |Re(s)|)ǫ .

Therefore collecting the two terms together, and taking the

maximum of the exponents, gives us (32).

Proof of Theorem 2: As in [7, (33)] we use the standard

fact that for any real r > 1, a function f(z) ,
∑∞

n=0 anz
n

satisfies
∞
∑

n=0

|an| ≤
r

r − 1
sup
|z|≤r

|f(z)| (38)

(as a consequence of Cauchy’s integral formula).

Now if an = (Poi◦π1)(n)− (Poi◦π2)(n), then using (13),

f(z) = L(π1)(γ(z−1))−L(π2)(γ(z−1)). Thus setting r = 2,

we have, by Lemma 6,

2TV(Poi ◦ π1,Poi ◦ π2)

≤ 2 sup
|z|≤r

|f(z)|

= 2 sup
|z|≤r

|L(π1)(γ(z − 1))− L(π2)(γ(z − 1))|

. sup
|s+γ|≤2γ

ǫ exp

(

−σ2Re(s2)

2
+ Ea,σ(ǫ, s)

)

≤ ǫ exp

(

3γσ ·
√

2 log
1

ǫ
+

9γ2σ2

2
+ 9γ2σ2 + 3γa

)

where we used |Re(s)| ≤ |s| ≤ 3γ and |Re(s2)| ≤ |s2| ≤ 9γ2

for all s with |s+ γ| ≤ 2γ.
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APPENDIX A

PROOFS OF AUXILLARY LEMMAS

Proof of Corollary 2.1: We first consider the following

steps: there is a constant c1 = c1(a) such that

sup
π∈P([0,a])

E[TV(Poi ◦ π,Poi ◦ π̂)]

(a)

≤ sup
π∈P([0,a])

E[H(Poi ◦ π,Poi ◦ π̂)]

(b)

≤ sup
π∈P([0,a])

√

E[H2(Poi ◦ π,Poi ◦ π̂)]

(c)

. sup
π∈P([0,a])

c1(a)
1√
n
·
√

logn

log logn
(39)

where (a) is due to TV(P,Q) ≤ H(P,Q) [10, (7.20)],

(b) is (E[H(P,Q)])2 ≤ E[H2(P,Q)] by Cauchy-Schawrz

inequality, and (c) is by (5).

Combining Theorem 1 and Lemma 3, we see that there is

a constant c2 = c2(a, σ) such that for all π, π̂ ∈ P([0, a]) and

X > 0,

TV(Poi ◦π,Poi◦ π̂) ≤ X =⇒ W
(σ)
1 (π, π̂) ≤ c2

√
Xua,σ(X)

(40)

where for all x with 0 < x < 1
2e we define ua,σ(x) ,

ta,σ(x) log
(

1
x

)

, ta,σ(x) as per Theorem 1.

Now we have two cases:

• If a < σ2, then limua,σ(x) → 0 as x → 0, (the polylog

factor of 1
x is offset by the factor exp(( log a−log σ2

2 +

o(1))
log 1

x

log log 1
x

)) so ua,σ(x) is bounded in (0, 2e ) by some

factor C = C(a, σ).
• If a ≥ σ2, then there is N = N(a, σ2) such that

ua,σ(
1√
n
) is increasing in n but 1

4
√
n
ua,σ(

1√
n
) is decreas-

ing in n for n ≥ N . This means, when X ≥ 1√
n

,

ua,σ(X) ≤ ua(
1√
n
); when X ≤ 1√

n
,
√
Xua,σ(X) ≤

1
4
√
n
ua(

1√
n
).

The first case gives us

sup
π∈P([0,a])

E[W
(σ)
1 (π, π̂)] ≤ CE[

√
X]

(a)

≤ C
√

E[X ]
(b)

. Cc2(
logn

n log logn
)1/4

where (a) follows from Cauchy-Schwarz inequality and (b)

from (39).

For the second case, we have

sup
π∈P([0,a])

E[W
(σ)
1 (π, π̂)]

(a)

≤ E[
√
Xua,σ(X)]

= E[
√
Xua,σ(X)1{

X≥ 1
√

n

}]

+ E[
√
Xua,σ(X)1{

X< 1
√

n

}]

≤ ua,σ

(

1√
n

)

E[
√
X ] +

1
4
√
n
ua,σ

(

1√
n

)

(b)

. c2

(

logn

n log logn

)1/4

ua,σ

(

1√
n

)

(41)

where the (a) follows from (40), and (b) from Cauchy-Schawrz

and (39). Finally,

ua,σ(
1√
n
)

=
log(

√
n)7/4

√

log log(
√
n)

exp((
log a− log(σ2)

2
+ o(1))

log(
√
n)

log log(
√
n)

)

which is noa,σ(1) as n → ∞. Therefore E[W
(σ)
1 (π, π̂)] .

n−1/4+oa,σ(1).

https://proceedings.mlr.press/v65/polyanskiy17a.html
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Proof of Lemma 3: We consider the following statement

in [14, Theorem 6.15] (using p = 1, p′ = ∞) : For any point

x0 we have

W1(π1, π2) ≤
∫ ∞

x=−∞
|x0 − x||dπ1(x)− dπ2(x)| . (42)

Choose x0 = a
2 , then for every T > a we have

W
(σ)
1 (π1, π2)

≤
∫ ∞

−∞
|u− a

2
|·|(Gsnσ ◦ π1)(u)− (Gsnσ ◦ π2)(u)|du

≤
∫

|u− a
2 |≤T− a

2

|u− a

2
|·|(Gsnσ ◦ π1)(u)− (Gsnσ ◦ π2)(u)|du

+

∫

|u− a
2 |>T− a

2

|u− a

2
|·|(Gsnσ ◦ π1)(u)− (Gsnσ ◦ π2)(u)|du

≤ 2δ|T − a

2
|2

+

∫

|u− a
2 |>T− a

2

|u− a

2
|·|(Gsnσ ◦ π1)(u)− (Gsnσ ◦ π2)(u)|du .

(43)

Because π1 and π2 are supported on [0, a], for π ∈ {π1, π2}
and for all u with |u − a

2 | > a
2 we have

0 ≤ Gsnσ ◦ π(u) ≤ 1√
2πσ

exp(− (|u− a/2| − a/2)2

2σ2
) .

Now that the tail bound is symmetric on both sides, we have
∫

|u− a
2 |>T− a

2

|u− a

2
|·|(Gsnσ ◦ π1)(u)− (Gsnσ ◦ π2)(u)|du

≤ 2√
2πσ

∫ ∞

T

|u− a

2
| exp(− (|u− a/2| − a/2)2

2σ2
)du

=
2√
2πσ

∫ ∞

T

(u− a

2
) exp(− (u− a)2

2σ2
)du

(a)
= aP[N(0, σ2) > T − a] +

2σ√
2π

exp(− (T − a)2√
2π

)

(b)

≤
( √

2aσ√
π(T − a)

+
2σ√
2π

)

exp(− (T − a)2

2σ2
) (44)

where (a) is by the expansion of (u − a
2 ) exp(−

(u−a)2

2σ2 ) into
a
2 exp(−

(u−a)2

2σ2 ) + (u− a) exp(− (u−a)2

2σ2 ), and (b) (first term)

is due to [17, Theorem 4.7].

Finally, setting T =
√

2σ2 log(1/δ) + a, (43) is now

bounded by

2
(

√

2σ2 log(1/δ) +
a

2

)2

δ

+

( √
2aσ√

π
√

2σ2 log(1/δ)
+

2σ√
2π

)

δ

. δ
(

2σ2 log(1/δ) + a2 + a+ σ
)

.

Proof of Lemma 4: According to the definition of L2,

we have
∫ ∞

−∞
((Gsnσ ◦ π1)(t) − (Gsnσ ◦ π2(t))

2dt ≤ ǫ2. (45)

Consider any T > a. By Cauchy-Schwarz inequality we have
(

∫ T

−T

|(Gsnσ ◦ π1)(t) − (Gsnσ ◦ π2)(t)|dt
)2

≤
(

∫ T

−T

((Gsnσ ◦ π1)(t)− (Gsnσ ◦ π2)(t))
2dt

)(

∫ T

−T

1dt

)

. 2T · ǫ2 . (46)

In addition, since both π1 and π2 ∈ P([0, a]), we have

P(|Gsnσ ◦ π| > T ) ≤ 2P(N(0, σ) > T − a) .
2σ

T−a exp(− (T−a)2

2σ2 ) for each π ∈ {π1, π2}, with the last

inequality follows from (17). This means
∫

|t|>T

|(Gsnσ ◦ π1)(t)− (Gsnσ ◦ π2)(t)|dt

≤
∫

|t|>T

|(Gsnσ ◦ π1)(t)|+ |(Gsnσ ◦ π2)(t)|dt

.
2σ

T − a
exp(− (T − a)2

2σ2
) . (47)

Thus collecting (46) and (47) we have

2TV((Gsnσ ◦ π1)(t), (Gsnσ ◦ π2)(t))

.
√
T · ǫ+ σ

T − a
exp(− (T − a)2

2σ2
) .

Now choose T =
√

2σ2 log(1ǫ ) + a, we have

√
T · ǫ+ 1

T − a
exp(− (T − a)2

2
)

= ǫ

√

√

2σ2 log(
1

ǫ
) + a+

ǫ
√

2 log(1ǫ )

. ǫ · 4

√

σ2 log(
1

ǫ
) + a

where the last inequality we used

√

2σ2 log(1ǫ ) + a ≤
√

2(2σ2 log(1ǫ ) + a2).
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