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Abstract—In this work we demonstrate how a lack of synchro-
nization can in fact be advantageous in the problem of random
access. Specifically, we consider a multiple-access problem over
a frame-asynchronous 2-user binary-input adder channel in the
unsourced setup (2-UBAC). Previous work has shown that under
perfect synchronization the per-user rates achievable with linear
codes over the 2-UBAC are limited by 0.5 bit per channel
use (compared to the capacity of 0.75). In this paper, we first
demonstrate that arbitrary small (even single-bit) shift between
the user’s frames enables (random) linear codes to attain full ca-
pacity of 0.75 bit/user. Furthermore, we derive density evolution
equations for irregular LDPC codes, and prove (via concentration
arguments) that they correctly track the asymptotic bit-error rate
of a BP decoder. Optimizing the degree distributions we construct
LDPC codes achieving per-user rates of 0.73 bit per channel use.

Index Terms—Multiple-Access, Low-density parity check
(LDPC), Unsourced, massive machine-type communication

I. INTRODUCTION

A recent line of work, termed unsourced random access (URA
or UMAC), exploits the idea of same-codebook communi-
cation [2]. This approach allows to separate the different
messages in a multiple-access channel (MAC) based purely
on the structure of the codebook, i.e., the set of allowed
messages. It was shown that good unsourced code designs can
approach the capacity of the additive white Gaussian noise
(AWGN) adder channel without the need for coordination
[2], [3]. While many unsourced code constructions have been
proposed [3]–[9], most of them lack analytic understanding
and it is not well understood what properties make a good
unsourced codebook. Furthermore, many proposed schemes
have a high decoding complexity. Recent works [10], [11] have
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constructed LDPC codes specifically for two-user communi-
cation on the unsourced binary input adder channel (UBAC).
It was found that linear codes in general suffer a rate loss
in the UBAC and cannot achieve sum rates higher than 1
bit/channel use, which is still far from the sum-rate capacity
of 1.5 bits/channel use.

Another concern for the practical applicability of unsourced
codes is the assumption of perfect synchronization, present
in many works. In low-power low-cost transmitters perfect
synchronization is hard to achieve. Classic results [12] show
that frame-asynchrony does not change the capacity of a
discrete MAC, as long as the allowed delay is smaller than
the blocklength. Recent solutions for uncoordinated multiple-
access schemes that can deal with asynchronism were pro-
posed in [13], [14]. Both of these works present schemes
specifically for orthogonal frequency-division multiplexing
(OFDM) modulation with timing offsets within the cyclic
prefix. Such timing offsets can be efficiently handled in the
frequency domain. Nonetheless, OFDM is not necessarily the
best choice for the mMTC scenario since it requires a high
level of frequency synchronization, which is hard to achieve
with low-cost transmitters.

In this work, we first show that random linear codes
achieve the BAC capacity of 1.5 bits/ch. use as soon as a
frame delay of at least one symbol is introduced. As such,
it enables same-codebook communication with linear codes
and linear decoding complexity that does not suffer from
the rate 1 bottleneck, which limits unsourced linear codes
in the frame-synchronous case. Although the channel model
is idealistic, it is also quite general and does not rely on
any specific modulation method. Further, we design LDPC
codes with linear decoding complexity for the two-user frame-
asynchronous UBAC. We find codes that achieve sum-rates of
1.46 bits/ch. use. The decoding can be done by two copies
of a conventional single-user belief propagation (BP) decoder
that periodically exchange information. We also show that our
design works if the delay is a random integer with a maximum
value that scales at most sub-linearly with the blocklength.

Randomized LDPC code designs for the two-user multiple-
access channel with AWGN have been presented in [15], [16].
For the code construction presented in [16] it is crucial that the
two code ensembles are optimized independently, resulting in
two different ensembles. If one check node (CN) distribution
is fixed, the CN distribution of the other user can be optimized
by a linear program. In [15], one common code ensemble is
designed, but the two users pick a different random code from
the same ensemble. In addition, to obtain a linear optimization



program, the codes in [15] are constrained such that variable
nodes (VNs) that are connected through the MAC have the
same degree. Such a constraint would be hard to enforce in a
model with random delay. In contrast, in this work we design
one LDPC ensemble from which one code is chosen at random
and used by both users. The design of the ensemble relies on
alternating optimization of CN and VN degree distributions.
Surprisingly, we find that degree one VNs do not result in error
floors, in contrast to LDPC codes for the single-user binary-
erasure channel (BEC). A particular difficulty in proving the
density evolution (DE) in the joint graph is that the channel
transition probabilities for one user depends on the transmitted
codeword of the other user. Since the codewords come from
the same codebook the channel outputs may be correlated.
To that end we employ the symmetrization technique of coset
ensembles, cf. [17], although an additional subtlety in our case
is that we need to show that both users can use the same coset.
Thus, our design strictly adheres to the unsourced paradigm
where both users use a common codebook. The symmetriza-
tion allows us to prove that DE describes the asymptotic bit-
error rate (BER) and, furthermore, that it is independent of the
transmitted codewords. This implies that we can assume that
both users transmit the all-zero codeword plus a dither when
analyzing the error probability. We provide a full proof that the
asymptotic error probability is described by the DE and give an
analysis of the probability of short-length stopping sets, which
result in an error floor. The error floor analysis shows that we
can expurgate short-length stopping sets created by the MAC
nodes as long as the fraction of degree one VNs is below
a certain threshold. Numerical simulations confirm that DE
accurately predicts the error probability for large blocklengths.
We use the DE to construct codes that approach the capacity
of the two-user BAC. Our work shows that frame-asynchrony
can be exploited to design efficient linear unsourced codes.

To summarize, our main intellectual contributions in this
paper are:
• A random coding argument that shows that linear codes can

achieve the full BAC capacity with a single symbol delay.
• The derivation of the DE equations under the same-

codebook constraint and sub-linear frame delays.
• A rigorous proof that the BER of a random code from the

ensemble will concentrate around the DE.
• The design of a codebook that enables two-user communi-

cation at rates close to the Shannon limit.
These findings imply that a non-zero frame delay enables two
users to use the same LDPC encoder while still achieving
rates close to the two-user BAC capacity. In addition, decoding
can be done with linear complexity and a simplified decoder
architecture that consists of two connected copies of the same
single-user BP decoder.

II. CHANNEL MODEL

We study the frame-asynchronous noiseless BAC:

yi = c1,i + c2,i−τ (1)

where τ ∈ [0 : τmax] and cu,i ∈ {1,−1} for u ∈ {1, 2}, i ∈
[1 : n] and cu,i = 0 for i < 1 or i > n. More specifically, each
user transmits a binary-phase-shift keying (BPSK) modulated
version of a binary codeword cu = 2mu − 1,mu ∈ {0, 1}n.
We will analyze the case where τ is random and uniformly
distributed. Furthermore, we will study the asymptotic behav-
ior of code constructions when τmax ∈ o(n), i.e., τmax/n → 0
as n → ∞. This setting is also known as mild asynchrony in
information theory [18]. Both users transmit a uniform i.i.d.
sequence of nR bits, b1,b2, by picking the respective binary
codewords m1,m2 independently, uniformly at random from a
common codebook over the binary field C ∈ Fn×2nR

2 , where n
denotes the blocklength and 0 < R < 1 the per-user rate. The
decoder outputs a list of two messages g(y) and the per-user
error probability is defined as Pe =

1
2 (P(b1 /∈ g(y))+P(b2 /∈

g(y))).
Since the model includes no noise, the channel model

reduces to an erasure channel where a received symbol can be
considered as erased if (c1,i, c2,i−τ ) ∈ {(+1,−1), (−1,+1)}.

Remark 1: The coding construction in this paper also works
for the synchronous model if users employ a randomly chosen
cyclic shift of their codeword before transmission. However,
in this case some mechanism needs to be added that allows to
recover the shift of each user, e.g., adding a preamble to each
codeword. For the model (1) this is not necessary since τ can
be found easily from amplitude information in y.

Remark 2: The BAC model can also be used to model on-
off keying modulation. In that case there is some ambiguity
since there is no dedicated idle symbol. Nonetheless, it is
still possible to detect the start of a frame by introducing a
preamble.

III. RANDOM LINEAR CODES

We next show that a frame delay of just one symbol is enough
for random linear codes to achieve the two-user BAC capacity

Theorem 1: There exist linear (n, k) codes for the two-user
frame-asynchronous UBAC with τ = 1 and

Pe ≤
n− 1

2
2n(2R−1.5) + on(1). (2)

□
Proof: The proof is given in [1].

Theorem 1 shows that random linear codes can achieve a
vanishing error probability if R < 0.75− δ for any δ > 0. It
can be shown for both parity check and generator ensembles.
We briefly describe the intuition behind the proof for parity
check ensembles and why τ > 0 is strictly necessary to
get rates larger than 0.5. The idea is to treat the channel
as erasure channel, as described in Section II. The erased
symbols can, in principle, be recovered by solving the parity
check equations Hm1 = 0 and Hm2 = 0. A key property
of the BAC is that on the erased set the codewords from the
two user have opposed bits, i.e. c1,i = −c2,i−τ . This gives a
second collection of parity equations for each codeword. For
τ = 0 the additional parity check equations would be linearly



dependent, and provide no new information. In that case, since
the size of the erased set is around n/2, the parity check matrix
needs to have n/2 + δ linearly independent rows for correct
recovery, resulting in R < 1/2. In contrast, for τ = 1 we
show that the collection of parity check equations arising from
c1,i = −c2,i−τ for i ∈ E is linearly independent from the set of
equations given by Hm1 = Hm2 = 0 with high probability.
Therefore n/4+δ linearly independent equations for each user,
resulting in a total of n/2+2δ linearly independent equations
for each codeword, will be enough to ensure correct decoding,
allowing for R < 3/4. In the following we will construct
LDPC codes that approach this limit with linear decoding
complexity.

IV. LDPC CODE DESIGN

A. LDPC Code Ensembles

LDPC codes are defined by a bipartite graph where the
transmitted bits are represented by VNs which are subject to
local parity checks, represented by CNs. We study random
codes that are drawn uniformly at random from a given
ensemble, defined by the degree distribution of VNs and CNs.
Specifically, a random graph code from the ensemble is created
by first assigning degrees to VN and CNs proportional to some
degree distributions. Then the emanating stubs (half-edges)
of VNs and CNs are connected through a uniform random
permutation (multi-edges are not explicitly forbidden). Finally
the VNs are also permuted uniformly at random. We would
like to emphasize that it is important for our construction
that the ensemble definition includes a random permutation of
the VNs. For memoryless single-user channels this is usually
not necessary since the error probability is invariant under
permutation of VNs, and some works do not mention it for
this reason, e.g., [19]. However, in the multiple-access case
correlations between VN degrees of neighboring nodes may
introduce unwanted correlations in the joint graph.

Let Li denote the fraction of nodes with degree i, λi the
fraction of edges that connect to degree i VNs, and ρi the
fraction of edges that connect to degree i CNs. We also define
the corresponding power series L(x) :=

∑
Lix

i, λ(x) :=∑
λix

i−1, and ρ(x) :=
∑

ρix
i−1, and we denote the cor-

responding ensemble as LDPC(λ, ρ).

B. Message Passing Decoding

We study the bit-error probability under BP decoding on
the joint graph.The values of VNs (v1,i, v2,i) are initialized
with their know values if yi ̸= 0 and are initialized with the
erased symbol ϵ if yi = 0. BP decoding on the joint graph
can be realized by running two conventional single-user BP
decoders on (y1, ..., yn) and (y1+τ , ..., yn+τ ) respectively and
exchanging information between them on (y1+τ , ..., yn). The
information exchange is particularly simple for the BAC since
c1,i fully defines c2,i−τ given yi. We denote the function nodes
that enforce the channel constraint (1) as MAC nodes. An
example of a joint graph is depicted in Fig. 1 where triangles
depict MAC nodes, squares are CNs, and circles are VNs.

The single-user decoder can be run for multiple iterations

Fig. 1: Factor Graph for a UBAC with τ = 1. Triangles denote MAC nodes,
squares are CNs, circles are VNs.

before information exchange. Nonetheless, in this paper we
only study the case where each iteration of the single-user
decoders is followed by a message exchange through the MAC
nodes. This decoder has O(n) complexity.

C. Coset Codes

To simplify the analysis we consider the ensemble of cosets
of LDPC codes where each code in this ensemble is specified
by a graph G and a ‘dither’ vector d̃ ∈ {0, 1}n with its BPSK
representation d ∈ {±1}n. The ensemble is then specified by a
degree distributions pair (λ(x), ρ(x)) and the dither vector. We
consider the ensemble generated by randomly choosing VN
and CN degrees according to the distribution pair λ(x), ρ(x)
followed by a random permutation between the left sockets
and right sockets, and by choosing d̃ uniformly from {0, 1}n.
Let CG,d̃ denote the coset code corresponding to a given G
and d̃. Let G and H denote the generator matrix and parity
check matrix of the LDPC code, respectively, with a given G
and d̃ = 0. Then, m ∈ CG,d̃ if and only if Hm = Hd̃.

At the encoders, the bit sequences b1 and b2 are encoded
into codewords m1 and m2, respectively, according to

mu = Gbu + d̃, u ∈ {1, 2}. (3)

Note that both users share the same dither d̃. Since the BPSK
mapping is one-to-one, we can also express the addition of
the dither as multiplication of c1, c2 with d, resulting in the
channel output

yi = c1,idi + c2,i−τdi−τ .

Since d is chosen as part of the code design, it is known at
the receiver and its effect can be easily incorporated into the
message passing rules. The analysis in Section V will show
that a randomly chosen dither will be good for any code and
all codeword combinations with probability approaching 1 as
n → ∞.

Remark 3: Note that the constructed LDPC codes are not
strictly linear but affine. Nonetheless, they can be encoded
with a linear encoder followed by a common offset. Besides,
numerical results suggest that the error probabilities stay
unchanged when no dithering is used. As such, the dither is
mainly used as an analytic tool here.



V. DENSITY EVOLUTION ANALYSIS

We next track the fraction of erased edges through the itera-
tions averaged over the code and dither ensemble as n → ∞.
Let xl be the probability that a message from a variable node to
a check node is erased, yl the probability that a message from
a check node to a variable node is erased, wl the probability
that a message from a variable node to a MAC node is erased,
and zl the probability that a message from a MAC node to
a variable node is erased. The subscript l refers to the l-th
iteration. The passed messages are visualized in Fig. 2.

xl

yl

zl−1

wl

wl

Fig. 2: Fraction of erased messages between VNs, CNs and MAC nodes.

Assuming that the depth l neighborhood of each node is
a tree, we can derive a recursion for the evolution of the
above parameters as follows. Begin with initial conditions
y0 = 1, x0 = 1, z0 = 1/2

xl+1 = zlλ(yl) (4)
yl+1 = 1− ρ (1− xl+1) (5)
wl+1 = L (yl+1) (6)

zl+1 =
1

2
wl+1. (7)

These equations are obtained by following the basic message
passing rules. An edge from a degree i VN to a CN is erased
if all incoming edges are erased. The VN has a total of
i−1 incoming edges from other CNs which are independently
erased with probability yl and one incoming edge from a
MAC node which is erased with probability zl, resulting in
an erasure probability zly

i−1
l . Averaging over all VN degrees

gives the expression for xl+1. The other equations are derived
similarly. The factor 1/2 in zl+1 arises since the value of
each MAC node is independently erased with probability 1/2.
Note that this is only true because of the symmetrization by
the dither.

By performing some standard substitutions, we end up with
the following scalar recursion:

xl+1 =
1

2
L (1− ρ (1− xl))λ (1− ρ (1− xl)) . (8)

Likewise, we can obtain the following recursion on yl:

yl+1 = 1− ρ

(
1− 1

2
L(yl)λ(yl)

)
. (9)

The probability that a bit remains erased at the end of
iteration l + 1 is given by

pl+1 = zlL(yl+1), (10)

where (pl)l=1,2,... is a deterministic sequence of numbers.
Our main theorem below shows that the BER of a randomly

chosen code with a random dither sequence after l decoding
iterations concentrates tightly around pl. Let

Pb(d, c, l) := Pb(c,G, n, l,d, τ)

=
1

2n

2n∑
i=1

E[1{vli = ϵ}|G,d] (11)

be the BER (fraction of erased VNs) at blocklength n after l
iterations for a given code G ∈ LDPC(λ, ρ) and codeword pair
c = (c1, c2). Also let P̄b(d, l) = 1

|C|2
∑

c Pb(d, c, l) denote
the average BER. Then the following holds:

Theorem 2: As n → ∞, for any τ ∈ [1 : τmax]

PG,d(|P̄b(d, l)− pl| > λ) → 0 (12)

for any λ > 0. □
Proof: The proof is given in [1].

VI. OPTIMIZATION

We can use the DE equations to optimize the degree distribu-
tions. Specifically, define

fρ(y) = y − 1 +

rmax∑
i=2

ρi

(
1− 1

2
L(z(y)λ(y)

)i−1

(13)

where rmax is the maximal CN degree. For fixed λ, (13) is
linear in ρi and gives rise to the linear program:

min
ρ

∑
i

ρi
i

s.t. ρi ≥ 0;
∑
i

ρi = 1; fρ(y) > δ ∀y ∈ (0, 1)
(14)

where δ ≥ 0 is a slack variable. For fixed ρ, (8) results in
an optimization problem with linear objective and quadratic
constraints. Details on the quadratic program are given in [1].
Unfortunately, it can be shown that the constraints are not
positive semidefinite. Therefore, the problem is not convex
in general and a solver is not guaranteed to converge to the
optimal solution. Nonetheless, we find that general purpose
quadratic solvers lead to good results and we are able to em-
pirically find degree distributions that achieve rates close to the
BAC capacity by alternating optimization of ρ and λ. To find
distributions which can be decoded in a reasonable amount of
iterations and are robust to finite length fluctuations we follow
[20, Sec. VII] and set the slack variable to δ = c/

√
n. The

parameter c is set empirically. Higher c will result in lower
rates but less required decoding iterations.

A. Error-Floor Analysis

In single-user LDPC ensemble constructions, degree one
VNs are usually avoided because they prevent the BER (and
the BLER) from going to zero. Indeed, when two degree
one VNs connect to the same CN, they create a low-weight
stopping set that cannot be recovered, even by an ML decoder.
However, for the two-user frame-asynchronous case, under
certain circumstances, the presence of degree one VNs does
not prevent the BLER from going to zero as n → ∞. This



Code 1 Code 2 Code 3

L1 0.376 0.560 0.444
L2 0.594 0.371 0.445
L5 0.014
L6 0.016
L7 0.061
L8 0.008 0.111
R4 0.586 0.128 0.323
R5 0.188 0.582 0.489
R10 0.227 0.290
R20 0.188

Design Rate 0.689 0.716 0.733
Mean Iterations 30 30 100

TABLE I: Degree distributions for three codes at different rates.

implies that we can increase the rates in the finite-blocklength
regime without introducing error floors by introducing a small
fraction of degree one VNs.

In the joint graph, degree one VNs can be recovered through
the MAC nodes, even if they connect to the same CN. An
example of a cycle of length 4 is depicted in Fig. 3. More
details on the appearance of cycles can be found in [1].

1 2 . . . i i+ 1

1 2 . . . i

Fig. 3: Stopping set of size 4 in a joint graph for τ = 1

VII. NUMERICAL RESULTS

Table I shows some degree distributions obtained using the
optimization procedure given in Section VI. The slack variable
δ was adjusted empirically to find codes that work with small
blocklength and a reasonable number of required iterations.
The erasure probability for Code 2 in Table I predicted from
DE is shown in Fig. 4 together with some random decoding
realizations with blocklength n = 5 · 104. The empirical
block error rate (BLER) of the codes in Table I is shown
in Fig. 5 for a fixed delay τ = 1. For the code construction
we choose a random sample from the permutation ensemble
and we check if it contains 4K-stopping sets up to K = 3. If
it does, we sample again. The number of required samples is
typically less than 10 for Code 2 and between zero and two
for Codes 1 and 3. We can see in Fig. 5 that the resulting
codes do not show an error floor. The case with random delay
τ ∈ [1 : τmax] is explored in Fig. 6. We choose τmax = 100
for Code 1 and τmax = 500 for Codes 2 and 3. The reason
for choosing a smaller τmax for Code 1 is that for n < 1000,
a delay of several hundred symbols is a significant fraction
of the blocklenght, in which case the number of symbols
where both codewords collide is rather small and hence, the
BER is small, too. This effect also explains the non-monotonic
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Fig. 4: Erased fraction of VNs as a function of the number of iterations for
Code 2. The black thick line represents the erasure probability from DE. The
thin lines are sample paths for n = 5 · 104.
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Fig. 5: BLER as a function of n for τ = 1.

behavior of the BER for Code 2. Note that both BLER and
BER are limited by 1/τmax because τ = 0 will always result
in a block error. As expected from the analysis in Section
VI-A, the codes exhibit an error floor due to short length
stopping sets caused by degree one VNs and therefore the
corresponding BLERs do not vanish. We can observe in the
simulations that for large enough n, block errors are caused
almost exclusively by 4 remaining bit-errors for Code 1 and
3, while Code 2 also occasionally exhibits 8 or 12 remaining
bit-errors. Thus, a high-rate outer code would be sufficient
to resolve the remaining bit-errors in this case. For example,
a BCH code would suffice with minimum distance 8 or 24,
respectively.

102 103 104 105 106
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B
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Fig. 6: BER as a function of n for random τ ∈ [0, τmax], with τmax = 100
for Code 1, and τmax = 500 for Code 2 and 3.
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