
Capacity of Noisy Permutation Channels
Jennifer Tang
EECS (MIT)

Cambridge, MA, USA
jstang@mit.edu

Yury Polyanskiy
EECS (MIT)

Cambridge, MA, USA
yp@mit.edu

Abstract—We establish the capacity of a class of communica-
tion channels introduced in [2]. The n-letter input from a finite
alphabet is passed through a discrete memoryless channel PZ|X
and then the output n-letter sequence is uniformly permuted. We
show that the maximal communication rate (normalized by logn)
equals 1

2
(rank(PZ|X) − 1) whenever PZ|X is strictly positive.

This is done by establishing a converse bound matching the
achievability of [2]. The two main ingredients of our proof are (1)
a sharp bound on the entropy of a uniformly sampled vector from
a type class and observed through a DMC; and (2) the covering
ε-net of a probability simplex with Kullback-Leibler divergence
as a metric. In addition to strictly positive DMC we also find
the noisy permutation capacity for q-ary erasure channels, the
Z-channel and others.

I. PROBLEM STATEMENT AND MAIN RESULTS

The noisy permutation channel, as formally introduced
in [2], is a communication model in which an n-letter input
undergoes a concatenation of a discrete memoryless channel
(DMC) and a uniform permutation of the n letters. Since
the receiver observes a uniformly permuted output, the order
of symbols conveys no information. See Section I-C for a
motivation of this model. More formally, the channel PY n|Xn

can be described by the following Markov chain:

Xn → Zn → Y n . (1)

Here the channel input Xn = (X1, . . . Xn) is a length n
sequence where each position takes a value in X = [q] (where
[q] = {1, 2, . . . , q}). The sequence Xn goes through the DMC
which operates independently and identically on each symbol.
This results in a sequence Zn where each position takes a
value in Y = [k]. The DMC transition probabilities can be
represented as a q × k matrix PZ|X . Then, the sequence Zn

goes through the permutation part of the channel and results
in Y n which is a uniformly random permutation of symbols
on Zn.

Let fn and gn be the channel encoder and decoder re-
spectively. For each message W ∈ [M ], the input to the
channel is Xn = fn(W ). The output is Y n, which the decoder
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decodes as Ŵ = gn(Y n). The probability of error is given by
P

(n)
error

4
= P[W 6= Ŵ ]. The rate1 for the encoder-decoder pair

(fn, gn) is defined as

R
4
=

logM

log n
. (2)

A rate R is achievable if there is a sequence of encoder-
decoder pairs (fn, gn) with rate R such that limn→∞ P

(n)
error =

0. The capacity for the noisy permutation channel with DMC
PZ|X is Cperm(PZ|X)

4
= sup{R ≥ 0 : R is achievable} .

In [2], the author determined that the noisy permutation
channel capacity2 for DMC PZ|X is bounded by

Cperm(PZ|X) ≥
rank(PZ|X)− 1

2
. (3)

For strictly positive matrices PZ|X (meaning all the transition
probabilities are greater than 0), the author shows two converse
bounds: Cperm(PZ|X) ≤ (|Y| − 1)/2 and Cperm(PZ|X) ≤
(ext(PZ|X)− 1)/2, where ext(P ) is the number of extreme
points of the convex hull of the rows of P . For the case of
strictly positive DMC PZ|X , these upper and lower bounds
do not necessarily match if the rank of matrix PZ|X does not
equal to |Y| or ext(PZ|X).

A. Main Results

Our main result is establishing tightness of the lower
bound (3), resolving Conjecture 1 of [2].

Theorem 1 (Strictly Positive DMC). For strictly positive
PZ|X ,

Cperm(PZ|X) =
rank(PZ|X)− 1

2
. (4)

Our proof uses the idea of covering the space of distributions
via an ε-net under the Kullback-Leibler (KL) divergence dis-
tance, following upon our investigations of a similar question
in [3]. In order to reduce to the covering question, we first need
another result that is, perhaps, of separate interest as well.

1Notice that rate R for the noisy permutation channel is not the typical def-
inition of information theory rate where R = logM

n
. The noisy permutation

channel would have rate 0 under this typical definition.
2While it might seem that the noisy permutation channel capacity should

be a continuous function of the values in PZ|X , note that this is not the case
due to how capacity is defined. Changing values in PZ|X by a small δ could
change the rank of PZ|X by 1, but no matter how small δ is, there exists an
n large enough so its effects can make a difference.
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Fig. 1. This diagram illustrates the special case of Theorem 2 where QY =
PY . It shows how Ŷ n relates to Y n.

We let Pn be the set of n-types3 (probabilities which can be
written with denominator n). For P ∈ Pn, let Tn(P ) be the set
of sequences of length n in the type class of P . The notation
QY means a distribution on random variable Y . We will use
QnY to mean the product distribution QnY (yn) =

∏n
t=1QY (yt).

For any distribution U on length n sequences, the distribution
PnY |X ◦ U can be understood as the distribution on random
sequences derived by first randomly selecting a sequence
according to U , then passing each symbol in this sequence
through the transition probabilities PY |X independently. (See
Section I-E for more discussion.)

Theorem 2. Fix channel PY |X which is strictly positive. Then
there exists a constant c = c(PY |X) such that the following
holds: For any n-type P , let U be uniform on Tn(P ). For all
QY we have

nD(PY ‖QY ) ≤ D(PnY |X ◦ U‖Q
n
Y ) ≤ nD(PY ‖QY ) + c

(5)

where PY is the marginal distribution of Y under (P×PY |X).

Remark 1. It can be shown that the constant c in Theorem 2
is

c ≤ q − 1

2
log

2πα2

c∗
+

q

12n
≤ q − 1

2
log

2πα2

c∗
+

q

12
. (6)

where α is a universal constant (see Section III) and if pbj
denote the values in matrix PY |X ,

c∗ = min
b

minj pbj
maxj pbj

. (7)

Theorem 2 deals with the following scenario: Select some
P ∈ Pn and suppose we have two sequences, Xn and X̂n. The
sequence Xn is generated iid using the probability P ; whereas
X̂n has uniform probability over all sequences in the type
Tn(P ). Both sequences Xn and X̂n undergo the transition
PY |X applied independently on each symbol and respectively
results in Y n and Ŷ n. How different are the distributions of
Y n and Ŷ n under KL divergence? See Figure 1 for a diagram.
Another interpretation of this scenario is if there are n balls of
q colors in an urn. The sequence Xn are n draws from the urn
with replacement and X̂n are n draws without replacement.
These observations both go through the same noisy process to
produce Y n and Ŷ n.

It turns out that if PY |X is strictly positive, then regardless
of the sequence length n, D(PŶ n‖PY n) ≤ c where c is a con-
stant that only depends on PY |X . Theorem 2 actually shows
something more general. The sequence Xn can be generated

3See Section 11.1 of [4] for background on types.

iid with another distribution Q, and the KL divergence can
still be bounded by constant c plus another term which is the
KL divergence of the marginals on Y generated by P and Q.
In other words, the divergence of (a complicated distribution)
PŶ n to any iid distribution QnY can be approximated with
nD(PY ‖QY ) and this approximation will only be off by
an additive constant. We note also that the constant c in
Theorem 2 is sharp (cannot be improved to o(1)). This is
discussed in [1].

Remark 2. Note that D(PX̂m‖PmX ) describes the difference
between sampling m balls from an n-urn with and without re-
placement. This is a classical question studied in [5]. Our set-
ting studies this question for the particular case when n = m
and when the observations are noisy. Bounds for the noiseless
case D(PX̂m‖PmX ) can still be an upper bound for the noisy
case if we apply the data processing inequality. This shows that
D(PnY |X ◦ U‖P

n
Y ) ≤ D(PX̂n‖PnX) ≤ k−1

2 (log n + c), where
the second inequality is shown using Stirling’s approximation.
Our result removes the log n term in this bound, but only under
the assumption of a strictly positive PY |X . We also note that
results of [5] as shown in [6] imply the finitary case of de
Finetti’s theorem.

We use similar techniques to get converse results in other
settings which do not have strictly positive DMC matrices.
These are below and discussed in [1].

Theorem 3. Other channel results:
1) Suppose PZ|X can be written as a block diagonal matrix

with β blocks where each block is strictly positive. Then,

Cperm(PZ|X) =
rank(PZ|X) + β − 2

2
. (8)

2) For DMC PZ|X which is a q-ary erasure channel for
q ≥ 2 (assuming non-zero transition probabilities), then

Cperm(PZ|X) =
q − 1

2
. (9)

3) For DMC PZ|X which is a Z-channel (assuming non-
zero probabilities on the edges), then

Cperm(PZ|X) =
1

2
. (10)

B. Paper Organization

We continue this section with the motivation, a high level
summary of our covering method, and the notation. In Sec-
tion II, we discuss how covering is used to determine the
capacity of the noisy permutation channel along with some
basics in covering. We give the proofs (or proof sketches) of
Theorem 2 and Theorem 1 in Section III.

C. Motivation

The motivation for studying the permutation channel is that
it captures a setting where codewords get reordered. This
occurs in applications such as communication networks and
biological storage systems. More details on these applications
and other relevant work can be found in [2].
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a) Communication Networks: Suppose we have a point-
to-point communication network where the information is
transmitted through a multipath routed network. Different
packets are transmitted through different routes in the network,
and each route has its own amount of latency, causing packets
traveling on different routes to arrive at different times. The
order in which the sender transmits packets is no longer
preserved at the receiver end. Such a scenario is studied in [7]
where the authors are primarily concerned with reducing delay
in their channel. Unlike our work, they do not consider noisy
symbols. Another line of work on packet-switched networks
deals with the permutation channel along with errors such
as insertions, deletions, and substitutions of symbols [8], [9].
Their work primarily focuses on building minimum distance
codes and perfect codes for the permutation channel.

b) DNA Storage Systems: DNA-based storage systems
are an attractive option for data storage due to its ability
to withstand time and encode a very high-density of infor-
mation [10], [11]. The state-of-the-art technology for storing
information on DNA uses nucleotides with relatively small
lengths (few hundreds) [12]. Each of these DNA molecules
are stored in a pool without any regard to order. The different
molecule types can be treated as symbols in the setting of
the permutation channel. Noise in this channel models any
error that can occur in the process. DNA storage is also the
motivation for studying the permutation channel in [13], [14].

As typical in information theory, a question of fundamental
interest is to determine the capacity of channels. We determine
the capacity of the noisy permutation channel in the strictly
positive case, settling the problem introduced in [2]. This
setting differs from some of the models studied above. In
[13], the authors find asymptotic bounds on rate, but for a
fixed number of errors rather than probabilitistic errors. The
work in [12] finds the capacity when the symbols are sampled
randomly then read, something relevant to DNA models, but
not to general permutation channels. The results in [14] are
specifically for when the permuted objects are a string of
symbols and the noisy process is applied to symbols on a
string; the set of strings are permuted but symbols in each
string are not.

D. Covering Numbers and Rate

All of our results use the method of covering. A covering is
a set of points in a space (we will call them centers) for which
all other points in the space are within a certain distance ε to
(see Definition 1). Using covering as a technique to determine
the capacity for the noisy permutation channel is reasonable
because the centers which are far apart can intuitively be
equated with messages that are distinguishable. When the
messages correspond to two distributions Q1 and Q2 which
are far in KL divergence, it is unlikely that noisy versions of
Q1 will be close to noisy versions of Q2. If two distributions
are close in KL divergence, their noisy versions are likely
to be confused. If the messages in our communication are
centers of a covering, then we know that if we add another
center (or message), it will be close to one of the existing

covering centers and thus cause error in determining which of
the centers (or messages) was sent. This gives us a limit on
the total number of messages which can be sent, creating a
converse bound4.

In order to use this intuition mathematically, we need
to overcome the obstacle of computing the KL divergence
over the noisy output distributions of the messages. This is
difficult to do because these output distributions are not iid.
This is where Theorem 2 is useful, as it allows us to use
KL divergences over iid distributions in place of the KL
divergence over this output distribution (since we can replace
a hypergeometric distribution which undergoes noise with a
multinomial distribution). Other obstacles include determining
the covering number under KL divergence (see Section II).

E. Notation

The set of all probability distributions on q symbols is
defined as the probability simplex ∆q−1. The q × k DMC
matrix PZ|X has values in each row which sums up to 1
(i.e, the matrix is stochastic). Symbol b ∈ X has probability
PZ|X(j|b) (also written as pbj) of becoming symbol j ∈ Y .
We say that the DMC matrix is strictly positive if pbj > 0 for
all b and j in the matrix. For example, we can write the DMC
matrix for the binary symmetric channel (BSC) with crossover
probability δ as

PZ|X =

[
1− δ δ
δ 1− δ

]
. (11)

If 0 < δ < 1, then this DMC matrix is strictly positive.
Though different from how we described it in the intro-

duction, it is convenient to describe the Markov chain of the
noisy permutation channel as π → Xn → Zn → Y n . Each
π = (π1, .., πq) ∈ ∆q−1 corresponds to a possible channel
input. For each n, we will restrict π to be in Pn. The value
of πb represents the proportion of positions in sequence Xn

which have symbol b.
Note that it is entirely equivalent to perform the permutation

on the sequence Xn first and then apply the DMC. In this case,
we no longer need the random variable Zn. Because of this,
we will also use PY |X to specify the transition matrix, where
PY |X and PZ|X are the same and interchangeable.

We will specify a way to parameterize the distributions on
Y . We use the notation QY |µ for µ = (µ1, ..., µk) ∈ ∆k−1

to mean a distribution on symbols Y where the probability
of symbol j ∈ Y is QY |µ(j) = µj . The distribution QnY |µ
is the multinomial distribution with parameters µ and number
of independent trials n. These distributions do not (directly)
relate the permutation channel; we define them since they are
important for our analysis.

On the other hand, the distribution PY n|π refers the the
distribution on sequences Y n when π ∈ Pn is the input
to the noisy permutation channel on n letters. Note that in
general PY n|π is not a multinomial distribution. As seen
in Theorem 2, PY n|π = PnY |X ◦ U where U is a uniform

4A similar notion to covering is packing. Intuitively, covering corresponds
to a converse bound while packing corresponds to an achievability bound.
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distribution on Tn(π). Both represent the distribution on the
output of the noisy permutation channel. Permuting the input
symbols gives a sequence in the support of U , and then
each permuted symbol goes through the transition probabilities
PY |X independently.

When it is clear what π is, we use PY to mean the marginal
distribution for each Yt in the sequence Y n ∼ PnY |X ◦U . This
distribution does not depend on the index t since U is uniform
on all permutations.

II. COVERING CONVERSE

Our core method for finding our new results is to use
divergence covering of the probability simplex. First, we give
some basic definitions and results (which are proved in [1]).

Definition 1 (Divergence Covering Number).

M(k, ε) = inf{m : ∃{Q1, ..., Qm}
s.t max

P∈∆k−1

min
Qi

D(P ||Qi) ≤ ε} . (12)

Let M(k, ε,B) be defined like M(k, ε) except that P ∈ B
for a subspace B ⊂ ∆k−1.

Theorem 4 (Upper Bound on Divergence Covering). For 0 <
ε ≤ 1,

M(k, ε) ≤ ck−1

(
k − 1

ε

) k−1
2

(13)

for some constant c.

While the above result is sufficient for showing our theo-
rems, stronger bounds do exist (see [15], which also discusses
Definition 1 in detail). The next proposition is proved in [1].

Proposition 1. For B ⊂ ∆k−1, suppose there is a stochastic
matrix F which maps ∆q−1 onto B. Suppose that B is a space
of dimension `− 1 (or likewise, F has rank `). Then,

M(k, ε,B) ≤
(
q

`

)
M(`, ε) . (14)

Our main proof, which combines the previous results, uses
covering ideas similar to [16, Theorem 1] in order to upper
bound the mutual information I(π;Y n). In summary, we need
to find a set of covering centers which are close in KL
divergence to all the possible distributions on Y n that can
occur as outputs of the noisy permutation channel. Our set of
centers need not be possible distributions over Y n generated
by the channel. We will opt for using multinomial distributions
as our set of covering centers.

Let Nn be a discrete set in ∆k−1 which we will specify
(later) for each n (these will be the covering centers). Mutual
information has the property that

I(π;Y n) ≤ max
π

D(PY n|π‖Q̃Y n) . (15)

This equation holds for any Q̃Y n , thus we can choose

Q̃Y n(yn) =
1

|Nn|
∑
µ∈Nn

QnY |µ(yn) =
1

|Nn|
∑
µ∈Nn

n∏
t=1

QY |µ(yt) .

(16)

The following proposition is the main work-horse of all our
converse results.

Proposition 2 (Covering for Noisy Permutation Channels).
Suppose that for the noisy permutation channel with DMC
PY |X , we have that for any π ∈ Pn,

D(PnY |X ◦ U‖Q
n
Y ) ≤ nD(PY ‖QY ) + f(n) (17)

where U is uniform on the type Tn(π), PY is the marginal
distribution of PnY |X ◦ U and f is only a function of n and
PY |X . Then

Cperm(PY |X) ≤
rank(PY |X)− 1

2
+ lim
n→∞

f(n)

log n
. (18)

In Proposition 2, when the DMC is strictly positive, the
f(n) term is constant in n (which is shown via Theorem 2
and gives the proof for Theorem 1). However, when the DMC
is not strictly positive, f(n) is not necessarily constant in n.
Non-constant values of f(n) are used in deriving some of the
results in Theorem 3.

Proof. Following techniques used in the proof of Theorem 1
from [16], we can upper bound the mutual information given
in (15) by

I(π;Y n) ≤ log |Nn|+ max
π∈Pn

min
µ̄∈Nn

D(PY n|π‖QnY |µ̄) . (19)

To specify Nn, first define L(PY |X) =
⋃
π∈∆k−1

µM (π)

where µM (π)
4
= (
∑
i πipi1, ...,

∑
i πipik) for any π ∈ ∆q−1.

This is the space of all possible marginals PY .
LetNn be a covering of L(PY |X) under KL divergence with

covering radius 1/n. In other words, Nn = {µ̄(1), ..., µ̄(m)}
so that maxµ∈L(PY |X) minµ̄∈Nn

D(QY |µ‖QY |µ̄) ≤ 1/n .
Let ` be the dimension of L(PZ|X). Using Proposition 1,

|Nn| ≤ C(q, `)
(

`
1/n

) `
2

where C(q, `) depends on q and ` but
not n.

Using assumption (17) and putting this into (19), gives

I(π;Y n) ≤ log |Nn|+ max
π∈Pn

min
µ̄∈Nn

D(PY n|π‖QnY |µ̄) (20)

≤ log

(
C(q, `)

(
`

1/n

) `
2

)
+ f(n) + max

π∈Pn

min
µ̄∈Nn

nD(PY ‖QY |µ̄) (21)

≤ `

2
log n+ c′ + f(n) (22)

where c′ is a constant which does not depend on n.
For the noisy permutation channel, recall that the rate is

defined as (2). Since asymptotically logM ≤ I(π, Y n) ≤
`
2 log n+ c′ + f(n), we have

R ≤ `

2
+

c′

log n
+
f(n)

log n
→ `

2
+ lim
n→∞

f(n)

log n
. (23)

Since ` = rank(PZ|X)−1, we have an upper bound for the
capacity of the noisy permutation channel.
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III. DIVERGENCE UNDER FIXED TYPES

For computing our converse bounds, we need to determine
the expression (17) for strictly positive DMC matrices. This
is where we need Theorem 2. The following results are also
needed and both are proved in [1].

Proposition 3. Let U be uniform on the type Tn(P ) and
(X,Y )n be iid from (P × PY |X). Let PY be the marginal
distribution of Y under (P × PY |X). Then for all QY ,

D(PnY |X ◦ U‖Q
n
Y ) = nD(PY ‖QY )+∑

yn∈Yn

P[Y n = yn|A = 1] log
P[A = 1|Y n = yn]

P[A = 1]
(24)

where A = I{Xn ∈ Tn(P )} (and we use P to mean under
the probability where (X,Y )n is iid from (P × PY |X)).

Lemma 1. Let P = (p1, ..., pq) ∈ Pn and let A = I{Xn ∈
Tn(P )}. Then if (X,Y )n is drawn iid from (P × PY |X),

log
1

P[A = 1]
≤ −1

2
log n+

∑
i:pi>0

1

2
log pin

+
q − 1

2
log 2π +

1

12n
. (25)

Let Sn =
∑n
i=1Wi where the Wi are independent. Each

Wi is distributed Bernoulli with probability pi. Using concen-
tration results from [17] (details in [1]), we can show that for
any integer z (and universal constant α)

P[Sn = z] ≤ α√∑n
i=1 min{pi, 1− pi}

. (26)

We will use this in the next lemma which is key to computing
the second term in (24).

Lemma 2. There are n balls thrown in q bins independently,
so that for the i-th ball, the probability of landing in bin b is
pi,b. Let Nb be the ball count of the b-th bin. Then if πb > 0
for all b and

∑
b πb = 1, we have

P[N1 = nπ1, . . . , Nq = nπq] ≤
αq−1

n(q−1)/2
√
B

(27)

where πmax = maxb πb,

B = cq−1
∗

∏
b πb

πmax
, c∗ = min

i

c−(i)

c+(i)
, (28)

c−(i) = min
b

pi,b
πb

, c+(i) = max
b

pi,b
πb

, (29)

and α is the universal constant used in [17].

Proof. For notation, let Wi,b be the indicator variable of
whether ball i was thrown into bin b. We can express Nb =∑n
i=1Wi,b. Arrange the indices so that π1 ≤ π2 · · · ≤ πq .
First observe that

P[N1 = nπ1, . . . , Nq = nπq] (30)

=

q∏
b=1

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] . (31)

For b = q, P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] = 1 .
For b < q, we can compute for any i that

min

{
pi,b∑q
a=b pi,a

, 1− pi,b∑q
a=b pi,a

}
(32)

≥
mina

pi,a
πa

maxa
pi,a
πa

min

{
πb∑q
a=b πa

,

∑q
a>b πa∑q
a=b πa

}
(33)

≥ min
i

c−(i)

c+(i)

1∑q
a=b πa

min

{
πb,

q∑
a>b

πa

}
(34)

= c∗
πb∑q
a=b πa

. (35)

We get the last equality because we have arranged πb in
increasing order. Hence by (26)

P[Nb = nπb|N1 = nπ1, . . . , Nb−1 = nπb−1] (36)

≤ α√(
n−

∑b−1
a=1 nπa

)
c∗

πb∑q
a=b πa

(37)

=
α

n1/2
√
c∗πb

(38)

where we used that n −
∑b−1
a=1 nπa = n

∑q
a=b πa to get the

last inequality. Taking a product of all terms in (30), gives

P[N1 = nπ1, . . . , Nq = nπq] ≤
αq−1

n(q−1)/2
√
B
. (39)

Proof Sketch of Theorem 2. To show the lower bound, using
Proposition 3, we need only to show the last term in (24) is
positive, which we can do by expressing it as a KL divergence.

For the upper bound, we express the last term of (24)
as a difference of two terms

∑
yn∈Yn P[Y n = yn|A =

1] logP[A = 1|Y n = yn] − logP[A = 1] and use Lemma 2
for the first term and Lemma 1 for the second term. To see
why Lemma 2 applies to the first term, note that the first term
is trying to calculate given some Y n, what the probability that
the type of Xn is equal to Tn(P ). This under a distribution
where (X,Y )n ∼ (PY |X × P ).

We will express the type Tn(P ) with P = (π1, ..., πq)
where P ∈ Pn. This implies that πb = P[X = b]. Let
the balls described in Lemma 2 be each of the elements of
Y n. If Yi = yi, then let pi,b = P[Xi = b|Yi = yi] =
P[X = b|Y = yi] (because the symbols are iid). This way
pi,b is appropriately the probability that the ith symbol lands
in bin b. As in Lemma 2, Nb is the number of balls in bin
b. Then the probability that Xn ∈ Tn(P ) is equivalent to
P[N1 = nπ1, . . . , Nq = nπq].

The remaining details we give in [1].

Proof of Theorem 1. Using Theorem 2 with Proposition 2
completes the proof for strictly positive DMC.
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